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Abstract 

Semiconducting nanoparticles have emerged in the past few decades as an interesting 

material with great potential in various interdisciplinary applications such as light-emitting 

devices, solar cells and field-effect transistors, mostly notably for their size-dependent electronic 

structure and properties. Manipulation of their electronic-optical characters through defects 

control is one of the most important approaches towards realization of these applications.  

This thesis focuses on understanding the role of defects, including their impact on carrier 

density and conductivity at both room and elevated temperature, their impact on growth kinetics  

of colloidal nanoparticles and new opportunities for dopant control. To achieve these goals, 

colloidal CdSe quantum dots are doped with gallium atoms and important changes in electronic 

and optical properties of the material are reported, which shows a significant impact on the 

growth kinetics of quantum dots, and reveals clues about the mechanism of the gallium dopant 

incorporation into the CdSe. It is shown that the gallium doping significantly impacts the 

conductivity of CdSe thin film made of the quantum dots as well as the photoluminescence and 

chemical reactivity of the quantum dots, in agreement with the expected n-type character. 

P3HT/CdSe hybrid cells are constructed with Ga-, In- and Sn-doped CdSe QDs, demonstrating 

high conductivity and stronger electronic coupling which leads to enhanced charge separation 

and transport efficiency, both essential for hybrid inorganic-organic solar cells.  

This work also demonstrates a novel heating method that can drastically improve size 

distribution control of colloidal nanoparticle synthesis. Sub-2-nm ultra-small CdSe QDs are 

prepared with the induction (magnetic) heating and show excellent agreement of its emission 

profile compared with natural sunlight. The impact of extreme high heating rate on the 

development of more accurate nucleation and growth theories are also discussed.  

Finally, this study also investigates the stabilization of charges from intrinsic defects by 

looking for altered blinking behaviors of CdSe nanorods (NRs) under different polar 

environments. TMOS-PTMOS gradient films are prepared with infusion withdrawal dip-coating 

technique. Although no significant differences are observed of the fluorescence statistics of these 

NRs, permanent bleaching induced by exciting laser light is discovered, which significantly 

lowers raw blinking spot count and increases the “off” time of these fluorophores.  
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and optical properties of the material are reported, which shows a significant impact on the 
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incorporation into the CdSe. It is shown that the gallium doping significantly impacts the 
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high conductivity and stronger electronic coupling which leads to enhanced charge separation 

and transport efficiency, both essential for hybrid inorganic-organic solar cells.  

This work also demonstrates a novel heating method that can drastically improve size 

distribution control of colloidal nanoparticle synthesis. Sub-2-nm ultra-small CdSe QDs are 

prepared with the induction (magnetic) heating and show excellent agreement of its emission 

profile compared with natural sunlight. The impact of extreme high heating rate on the 

development of more accurate nucleation and growth theories are also discussed.  

Finally, this study also investigates the stabilization of charges from intrinsic defects by 

looking for altered blinking behaviors of CdSe nanorods (NRs) under different polar 

environments. TMOS-PTMOS gradient films are prepared with infusion withdrawal dip-coating 

technique. Although no significant differences are observed of the fluorescence statistics of these 
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Chapter 1 - Introduction 

1. Background 

Semiconducting nanoparticles have a great variety of unique properties that are different 

from their bulk material because of the quantum size effect and large surface to volume ratio. 

These properties give them interesting application potential in areas such as solar cells1, bio-

imaging2, catalysis3 and data storage4. Due to the strong dependence of these properties on their 

crystalline size, controlling the size of these particles is crucial to tuning these characteristics5. 

CdSe quantum dots (QDs) have been studied extensively as a model system of such particles. 

The ability to manufacture mono-dispersed CdSe quantum dots in bulk is of critical interest since 

their photoelectronic properties are closely related to their size and low-cost fabrication makes 

them desirable in applications compared to conventional silicon-based solar cells. In order to 

study these properties with respect to size variation, it is of great importance to be able to 

produce highly homogeneous, mono-dispersed nanoparticles in a bench-top synthetic route, with 

potential of scaling up to industrial production, which should also provide control over their 

surface chemistry, crystalline structure and shape5. Although current synthetic methods provide 

some level of control of these parameters, there’s plenty more to be desired. Doping 

nanoparticles introduces interesting electronic, optical,  and chemical changes. Solving issues 

related to doping quantum dots such as self-purification, and investigating their effects are also 

of great research interests in this field. 

 

2. Unique Properties of Quantum Dots and Rationale for CdSe Quantum 

Dots 

 Surface to Volume Ratio 

Quantum dots have large surface-to-volume ratios due to their small sizes. A quantum dot 

can be treated approximately as a spherical particle, whose surface-to-volume ratio 𝑅 then can be 

expressed as 

𝑅 =
6

𝐷
 



2 

where 𝐷 is the diameter of the sphere. The large surface to volume ratio is an attractive feature as 

various functions, including chemical and biological sensors and catalysis for instance, utilize the 

surface of the particle for their electronic, optical and chemical properties. A particle with larger 

surface-to-volume ratio is more effective at providing features resulting from these properties per 

unit volume of the material. A quantum dot with 5 nm diameter would have the surface-to-

volume-ratio 1000 times that of a particle with 5 μm diameter, and therefore be 1000 times more 

efficient at providing the aforementioned functions. In addition, the large surface area promotes 

formation of surface defects, a unique challenge that has significant impact on the optical, 

physical, chemical properties of these QDs. 

 

 Quantum Confinement Effect 

An electron-hole pair generated inside a quantum dot can be treated in a way similar to 

that of an electron-proton pair and defined as an exciton, where the most probable distance of the 

pair is accordingly defined as the Bohr exciton radius. When the size of the particle is close to or 

smaller than the Bohr exciton radius, the quantum dot serves as a three-dimensional potential 

well, resulting in significantly different electronic and optical properties.  In bulk material, the 

exciton behaves like a free particle where it has continuous energy states. When the size of the 

particle reduces to below its Bohr radius, its energies become discreet, and its bandgap becomes 

size-dependent. A quantum mechanical treatment similar to the particle-in-a-box problem 

indicates a blueshift of its photoluminescence when its size decreases, which is in accordance 

with experimental observations. The relation of its energy levels and dimension spacing could be 

expressed with the following equations: 

𝜓𝑛𝑥,𝑛𝑦,𝑛𝑧 = √
8
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As a result, shown in Figure 1.16, in semiconducting quantum dots the Fermi level lies 

between the bandedge and therefore the bandedge, or its size, becomes the deciding factor in its 

optical and electrical properties. For comparison, the Fermi level in bulk metal lies within the 

band and the energy level spacing are so small that its optical and electrical properties appear 



3 

continuous. For CdSe quantum dots, Figure 1.27 shows a comparison of their bandedge energies 

(a) and absorption spectra (b). For practical calculation and prediction of CdSe QDs sizes and 

excitation energies, Yu et al.8 have attempted an experimental approach in determining the two 

relations and reported an empirical function as follows: 

CdSe: 𝐷 = (1.6122 × 10−9)𝜆4 − (2.6575 × 10−6)𝜆3 + (1.6242 × 10−3)𝜆2 − (0.4277)𝜆 +

(41.57)  

where 𝐷 is the diameter of the particle and 𝜆 is the wavelength of the absorption peak. 

 

Figure 1.16 A: Comparison of density of states in bulk metal and semiconductor 

nanocrystals. B: Comparison of density of states of quantum dots with other quantum 

confined structures. (Reprinted with permission from ref. 6. Copyright © 1996 AAAS.) 
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Figure 1.27 (a)Bandgap of CdSe QDs of different sizes (b) their absorption spectra. 

(Reprinted with permission from ref. 7. Copyright © 2013 Optical Society of America.) 

 

 Defects and Doping 

Roles of defects and reasons of doping in semiconducting nanoparticles  

Defects in crystalline materials arise for various reasons and from various sources. In the 

case of quantum dots, defects could be produced during high temperature synthesis through lack 

of annealing, from chemical etching, or by introducing dopant atoms into the crystal structure. In 

high temperature syntheses, the quantum dot could go through different crystalline phases driven 

by chemical potential, shifting from a phase with higher chemical potential at high temperatures 

to one with lower potential while it cools. However if the cooling was fast enough that the 

particle does not have enough time to fully complete the phase shift, defects are created at the 

boundary of different phases. Chemical etching agents could also be applied to the particle, 

which removes certain atoms on the surface of the particle, destroying its crystalline structure. 

Therefore defects created by this method are mostly on the surface. A foreign atom of similar 

size to the host crystal atom could be introduced to replace the host atom creating a doped 

particle.  

By introducing different dopant atoms, p-type or n-type semiconductors could be 

achieved, a method commonly used in semiconducting material manufacturing. Generally, 

defects could be undesirable as they reduce conductivity and mechanical integrity of the 

crystalline material. In semiconducting nanoparticles, defects could potentially lower their 
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photoluminescent efficiency by creating trap states that do not result in light emission at desired 

wavelength.  However it may also induce chemical, electrochemical and spectroscopic changes 

that could be beneficial to various applications, as will be discussed in Chapter 3. In this thesis, 

the doping aspect of introducing defects in colloidal quantum dots will be discussed extensively.  

In matters of application, although it is well known that undoped nanocrystals are already 

highly photoluminescent strongly dependent on sizes, Klimov et al.9 have pointed out that such 

emisisons are rather inefficient in lasers and that instead carriers introduced by dopant could 

drastically increase its emission efficiency. For instance, Wang et al.10 have demonstrated that by 

doping CdSe quantum dots, the lasing threshold could be reduced to three times lower than that 

of the undoped crystals. In the field of bioimaging, Pradhan et al.11 have successfully doped 

ZnSe nanoparticles for superior emitting characteristics to replace the toxic CdSe based emitters, 

and have shown its lower susceptibility to temperature and other environmental variations which 

is critical to its application in real world external conditions. The authors also reported reduced 

photo-oxidation under prolonged illumination of doped nanocrystals through faster transfer of 

photons to the dopants thus decreasing probability of unintended chemical reactions, a property 

of extreme importance for such type of material’s application in solar cells.  

Challenges and issues of doping 

There are several challenges towards successful incorporation of dopant atoms into the 

host particle in a desired manner. Tchebotareva et al.12 have pointed out that the probability of 

dopants contained in a nanocrystal can be expressed as follows: 

𝑃(𝑘) =
𝑒−𝑉𝑛𝑐𝑛(𝑉𝑛𝑐𝑛

𝑘)

𝑘!
 

where the volume of the nanocrystal is 𝑉𝑛𝑐, the number of dopants is 𝑘, and the concentration of 

dopants is 𝑛. Such relation indicates the random nature of Poissonian distribution of the doping 

process. The variation of dopant concentration with respect to sizes of the particles and the 

uncertainty of the distribution of dopant atoms into particles could pose a challenge to producing 

uniformly doped particles. Therefore a fine control of the density of dopants in particles is very 

desirable. In this thesis, various aspects of control including reducing size distribution of 

colloidal quantum dots will be discussed at length.  

Another challenge of doping is impurities in these QDs from different sources. A 

common cause of surface impurities is the surface irregularities in the crystalline structure. The 
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phase changes induced by temperature variation during the colloidal synthesis could introduce 

unannealed surface atoms caused by various sources including violent heating or uneven cooling. 

Additionally, irregular stacking patterns could arise from these processes as well, which may 

exhibit “dangling” bonds that contribute to undesirable optical-electrical features. As discussed 

in later sections in this thesis, these dangling bonds could be utilized to combine with passivating 

ligand molecules, including fatty acids and amines particularly, for surface functionalization 

purposes such as modifying their hydrophobicity properties. However, they are also susceptible 

to unintentional bonding with surface ligands such as oxygen13 or hydroxyls14. Proper treatment 

of the surface is important in that it could potentially remove excess charges of the particle and 

thus reduce chances of unintentional bonding, introduce trap states, or act as an electron donor15, 

in addition to provide chemical stability of the particle. 

An additional challenge of dopant incorporation is the self-purification of nanoparticles. 

Interestingly, it was mentioned in literature16 long ago that smaller crystalline structures tend to 

have fewer defects, as they’re more likely to remove these defects from the system. Dalpian et 

al.17 proved theoretically that dopants suffer from reduced solubility in the nano-sized host 

material compared with that in the bulk material as the formation energy of impurities increases 

while the particle size decreases (Figure 1.3). Dopants that end up inside the host particle during 

synthesis undergo a thermodynamic process where the dopant atoms are expelled out of the 

system through gradual diffusion.  
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Figure 1.3 Formation energies of Mn dopant in CdSe nanocrystal with respect to particle 

size. (Reprinted with permission from ref. 17. Copyright © 2006 American Physical 

Society.) 

 

 Doping Strategies 

Currently two major strategies of doping include “nucleation doping” and “growth 

doping”, which are summarized in Table 118. In nucleation doping, the dopants are incorporated 

into the precursor molecule and serve as nucleation centers, thus resulting in all nanoparticles 

being doped. Since all precursor molecules contain the dopant atoms, the doping is uniform for 

all particles. In growth doping, dopants are introduced separately into the reaction mixture 

alongside precursor molecules, such as in forms of salts of the dopant element. The dopants then 

distribute during growth following Poissonian statistics into individual particles. Therefore, this 

method of doping is nonuniform due to its highly statistical nature. In both methods, the dopants 

are subject to self-purification of the host particle and could be rather unstable. And due to 

increased potential of the dopant-host interface, growth of certain crystal facets could become 

unfavorable. 
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Table 1 Summary of Nucleation Doping and Growth Doping18. (Reprinted with permission 

from ref. 18. Copyright © 2013 Royal Society of Chemistry.)  

 

 Capping Agents 

As mentioned in the previous section, ligands have proven to be an effective method of 

controlling the nanocrystal’s surface functionalization and other characters such as reducing 

dangling bonds, unintended bonding with oxygen and hydroxyls, acting as electron donor, 

providing trap states, and so on. Therefore, understanding of the capping agents and their 

interaction with the quantum dot surface is another important aspect of such material. 

 Surfactants could be easily attached to the surface of CdSe quantum dots during 

synthesis. Ligand molecules surround the CdSe nanoparticle as a stabilizing layer that prevents 

coalescing driven by the lowering of surface tension. In general, surfactants of different 

properties could be attached to achieve certain properties such as hydrophobicity or 

hydrophilicity. Additionally, as Embden and Mulvaney19 have pointed out, the capping agent 

plays a key role in the growth kinetics of CdSe nanoparticles as well. It is understood that the 

capping agent has an effect on the critical nucleus radius, and eventually the size and size 

distribution of the ensemble.  Different surfactants also have different affinities to the particle 

surface compared to the monomers, thus changing the surface free energy. 

Weiss et al.20 have also mentioned in their study that the surfactants alter the rate of 

surface reactions, which include adsorption/absorption of monomers. The surfactants act as a 

passivating layer on the particle. A dense layer of surfactant would lower the chance of 

monomers or other reactants entering the surface of the particle, thus lowing the surface reaction 

rate. The affinity of the specific surfactant towards the reacting molecule in solution also greatly 

affects the reaction rate.  
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 Why Study CdSe Quantum Dots 

CdSe quantum dots have been studied extensively in the past few decades as a model 

system to investigate the various effects related to syntheses and properties of semiconducting 

nanoparticles, and notably because their band gap can be tuned in the visible light region 

between 400−800 nm by controlling the size of the particles. A query in Web of Science 

database generated over 10,000 results related to CdSe quantum dots. They has already seen 

applications in areas such as solar cells1, batteries, bio-imaging2, catalysis3 and data storage4, 

although with the drawback of health and environmental issues. Selenides are in general toxic 

compounds and cadmium is a heavy metal, which causes concerns during their production and 

usage. CdSe has also been identified to induce cancer in humans. Nevertheless, this thesis 

continues to use CdSe quantum dots as a platform to study and demonstrate the experimental and 

theoretical discoveries of semiconducting quantum dots in general, which could be readily 

applied to other similar but safer and more environmentally friendly materials as well. 

 

3. Current Understandings, Limitations, and Motivation for This Thesis 

Progress in the study of the synthesis and experimental and theoretical understanding of 

semiconductor nanoparticles is a crucial part of the nanoscience and nanotechnology. The 

quantum confinement effect gave rise to various size- and shape-dependent properties at the 

nanoscale where radius of the particles is smaller than the Bohr exciton radius of the material. In 

general, binary semiconductors are semiconductors that consist of two different groups of 

elements. Such semiconductor material has superior properties over conventional semiconductor 

material such as silicon, which generated intense research interests in recent years for their 

potential application in the micro-electronics industry. Colloidal semiconducting quantum dots 

have sizes in the nanometer regime and are grown in solution. They’re typically stabilized by a 

layer of organic ligands which prevents aggregation of the particles. By tuning the size, shape, 

composition, crystal structure and surfactants of the particles various useful properties can be 

obtained, which makes it possible to utilize them in making more complicated structures and 

devices as building blocks, for example, as inorganic fluorophores in biomedical assays, light 

emitting diodes, lasers and solar cells. 
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 Colloidal Synthesis of CdX (X = Se, Te, S) Quantum Dots 

Many properties of colloidal nanocrystals such as size-tunable band gaps and 

luminescence energies which are a result of their electronic states, can be easily tuned by 

controlling their composition, size and shape. The ability to achieve uniform size, shape and 

control of their composition, crystal structure and surface properties is crucial in understanding 

and manipulation of desired properties of these nanoparticles. Colloidal nanocrystals have an 

inorganic core that is stabilized by a layer of surface surfactants. In general, semiconducting 

nanoparticles are synthesized by the reaction between metal ions or their complexes and 

precursors containing appropriate ions in a stabilizing solvent such as hexadecylamine (HDA), 

followed by nucleation and growth of the particles, particularly the “hot-injection” method21 and 

“heating-up” method22.  

 

Hot Injection Synthesis of QDs 

Hot injection method has been widely used in the past 20 years in synthesis of colloidal 

nanocrystals.23 Bawendi and co-workers first introduced the hot-injection method in their 

synthesis of cadmium chalcogenide nanocrystals24. The method is based on the homogeneous 

nucleation and growth through rapid injection of precursor into the reaction mixture at elevated 

temperature.5 The rapid injection causes a short period of high precursor concentration, which 

induces a “burst” nucleation stage. This method achieves small size distribution by minimizing 

the growth during nucleation, since the size distribution is mainly determined during the 

nucleation stage.  

Murray et al.24 produced CdSe, CdS, and CdTe nanoparticles by thermolysis of the 

complex [MeCdSe2CNEt2]2(E=S,Se) in a high-boiling coordinating solvent with the hot injection 

method. In another synthesis by the same author, the TOPSe or TOPTe stock solution is prepared 

by addition of Se or Te to TOP.25  Two separate solutions, one containing dimethylcadmium in 

TOP, and one consisting of 1 M TOPSe solution were mixed and injected into TOPO at 250 °C. 

TOPO-capped nanocrystallites of CdSe were also produced by replacing the phosphine 

chalcogenide precursors with (TMS)2S, (TMS)2Se, and (BDMS)2S and carrying out the reaction 

at 290−320 °C. The size of the particles is principally controlled by the temperature of the 
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reaction, with larger particles being obtained at higher temperatures. The sizes of the particles 

can also be controlled by the temperature of heating during the synthesis. The absorption 

spectrum (figure below) shows that the size distribution is actually quite narrow. The size 

distribution obtained from TEM images showed a standard deviation of around 5%. Furthermore 

a size-selective precipitation of the final material is employed. 

 

Figure 1.425 Left: Optical absorption spectrum of CdSe nanocrystallites dispersed in 

toluene; Right: Evolution of UV-visible absorption spectrum during thermolysis of the 

precursor. (Reprinted with permission from ref. 25. Copyright © 1989 American Chemical 

Society.)  

 

 

 

Single-source precursor synthesis of Cd-based nanoparticles 

Although hot injection method provides an approach to increase the nucleation rate and 

therefore narrow down the size distribution of the particles, it is restrictive in that the precursor 

molecules in solid form could not be used, thus severely limiting the range of reactions and 

choice of precursors. Additionally, since the precursor is injected into the reaction mixture at 

elevated temperature, they could not be pre-mixed to achieve higher uniformity. Local variation 

of precursor concentration during the mixing stage becomes a major drawback that could result 

in broadened size distribution of initial nuclei. However, by using a single precursor these issues 

could be resolved. Cumberland et al.26 later developed a convenient single-source precursor 

method for the preparation of CdSe Quantum Dots (QDs) by utilizing the inorganic cluster 
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(Li)4[Cd10Se4(SPh)16], in which the complex was heated in hexadecylamine (HDA), an amine 

that acts as both solvent and a stabilizing agent that caps the nanoparticles’ surface. The resulting 

QDs have sizes ranging between 2.5-9.0 nm depending on experimental parameters, and a size 

distribution of ~12%, and ~5% after size-selective precipitation. Microwave synthesis of various 

types of nanoparticles have also been reported by Gerbec et al.27, which removes the need for hot 

injection and allows for faster heating rate. In a typical MW synthesis a 2.45 GHz, 300−400 

W/cm2 MW will be used. The precursor will be heated up to the boiling point of the solvent, 

same as in induction heating, but in 20 min.  

Numerous complexes have been used as precursors for the syntheses of Cd-based 

nanoparticles. Dithiocarbamato complexes [M(S2CNR2)2] (M = Zn or Cd, R = Alkyl) were used 

to synthesize CdS and CdSe nanoparticles by O’Brien and co-workers. [Cd(E2CNEt2)] (E = S, 

Se)) is a 3-electron donor ligand which is capable of stabilizing the metal centers in different 

oxidation states28. The complexes have been widely used in the rubber industry29, analysis, and 

the petrochemical industry,30 due to their advantage of being air-stable. In a typical synthesis, 

[Cd(E2CNEt2)] (E = S, Se) were dissolved and refluxed in 4-ethylpyridine, which is a high-

boiling (168 °C) coordinating solvent, and dilute solutions of bis(dithio- or 

diselenocarbamato)cadmium . The solution were able to remain optically clear for days. Murray 

et al.31 used a similar TOPO method to produce TOPO-capped CdSe and CdS nanoparticles by 

using mixed alkyl compounds [MeCdE2CNEt2]2 (E = S, Se)32 as complex. These particles were 

also used as starting materials to prepare composites using other organic ligands such as 2,2-

bipyrimidine. This method avoids the use of dimethylcadmium at high temperatures, which is an 

advantage of the single-source precursor approach. This method is also superior to other methods 

in that it is possible to produce a variety of different kinds of nanoparticles by changing the 

design of precursors. In various applications of these nanoparticles, morphological properties, 

which depend on the structure of the precursor, are essential. Elemental Se and hexagonal CdSe 

NPs are the major product of [Cd(Se2CNEt2)2] as precursor, while [Cd(S2CNEt2)2] produced CdS 

nanoparticles.33 [NpCd(E2CNEt2)]2 (E = S, Se) and other mixed alkyl compounds of cadmium 

were also reported to be able to produce CdSe and CdS nanoparticles. CdS nanoparticles 

obtained from using [Cd(S2CNEt2)2] as precursor show a red shift as compared to those particles 

obtained from [RCd(E2CNEt2)]2, indicating that larger particles were produced under similar 

reaction conditions.32 It is also reported that [EtCd(E2CNEt2)]2
34 and [EtZn(E2CNEt2)]2

 35 were 
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used to synthesize TOPO-capped ZnSe and ZnS nanoparticles by such similar single-source 

precursor route.  

Although these mixed alkyl derivatives as single-source precursors were able to produce 

nanoparticles with relatively good size distribution (with σ≈5%-15%) and quality, the particles 

have the disadvantage of being air-sensitive and therefore cannot be stored for a long period of 

time. On the other hand [Cd(S2CNEt2)2] has the advantage of being stable for years, but the yield 

was lower than the former method and quality of nanoparticles was not as good. Later 

Revaprasadu and co-workers reported36 that [M(ECNMenHex)2] (M = Cd, Zn; E = S, Se) are 

better alkyl derivatives for growth of Cd-based nanoparticles. They used a so-called “one-pot” 

synthesis in TOPO with [M(E2CNMenHex)2] as complex. The produced nanoparticles have 

narrow size distribution and good quality. In a similar approach37, [Bi(S2CNMenOctadecyl)3] 

was synthesized and used for the preparation of self-capped Bi2S3 nanoparticles. 

[Cd(S2CNMenOctadecyl)3] was also used to produce self-capped CdS quantum dots with the 

same method. In this study IR and NMR spectroscopies were used to characterize the capping 

agent and it showed that the CdS nanoparticles prepared at 150−250 °C were cubic, and those 

prepared at 300 °C were hexagonal. 

O’Brien and co-workers first reported38 that monodispersed nanoparticles can be 

prepared in TOPO using cadmium salts. Murray and co-workers24 and Peng et al.39 then 

modified this approached and further developed it to synthesize CdTe, CdSe, and CdS quantum 

dots with CdO, TOPO, and hexylphosphonic acid (HPA) or tetradecylphosphonic acid (TDPA) 

under 300 °C. By adding tellurium, selenium, and sulfur stock solutions the corresponding 

nanoparticles can be produced. 

[M10E4(EPh)16]
4+ (M = Cd; E = S, Se) and [M8E(EPh)16]

2− have also been used to 

produce near-monodispersed nanoparticles40. These complexes are air-stable inorganic molecular 

clusters26. Cd[(SePiPr2)2N]2 was also used to synthesize QDs in a so called one-step size-

controlled41 approach. The sizes of the QDs produced by this method can be controlled fairly 

precisely by varying the reaction time. The QDs have emission over the visible light range 

varying up to 650 nm depending on the particle size. 
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Figure 1.526 Proposed reaction mechanism for formation of CdSe nanocrystals from cluster 

precursors. (Reprinted with permission from ref. 26. Copyright © 2002 American 

Chemical Society.) 

Thiourea and N-alkylthioureas (with alkyl groups methyl or ethyl) cadmium complexes 

have also been used42 as precursors to prepare TOPO-capped CdS nanoparticles (Figure 1.6). 

These complexes have the advantage of being air-stable, low-cost, and easy to prepare.  

 

Figure 1.6 Molecular structure of CdCl2(CS(NH2)NHCH2CH3)2.  

O’Brien and co-workers reported43 that cadmium diisopropyldiselenophosphinate 

[Cd(iPr2PSe2)2] can be used as a single-source precursor as an easy and convenient technique to 

mass produce high-quality CdSe nanoparticles. In a microfluidic reactor (fused silica 

microcapillary tube) the precursor is dissolved in TOP and oleylamine at 200 °C. The CdSe 
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nanoparticles produced were then mixed with [Cd(S2CNMenHex)2] and returned to the reaction 

vessel for the growth of the CdSe/CdS core−shell structures. The quantum yield increased from 

12% for CdSe to 33% for CdSe/CdS and are highly luminescent. 

 

Single-source precursor synthesis of nanoparticles based on elements other than Cadmium 

Single-source precursor methods have been used for the preparation of nanoparticles 

based on various elements other than Cadmium such as AlN, GaN, InN, InP, GaP, In2Se3, GaSe, 

In2S3, PbS, etc. 

Polymeric gallium imide, [Ga(NH)3/2]n, and gallium azides, [Et2GaN3]3, 

(N3)2Ga[(CH2)3NMe2], or (Et3N)Ga(N3)3 have been used as precursors to synthesize GaN 

nanoparticles.44 The sizes of the particles produced are controlled by the amount of precursors 

used.  The particles are usually aggregates of 20−200 nm that consist of 4 nm crystals. In this 

approach poly(imidogallane) precursor was used44 to synthesize GaN nanoparticles. However it 

involves the use of pure ammonia, which is hazardous and difficult to manipulate. The complex 

has poor solubility, which makes it difficult to control the sizes. As a result only a small 

percentage of nanosized particles are obtained at higher reaction temperature. Patten et al. 

improved this method by pyrolysis of this compound.45 This improved method increased the 

yield of GaN nanocrystals significantly and also does not involve the use of ammonia. This 

method is related to the ability of the coordinating ligands to cap the particle surfaces as soon as 

GaN nuclei are formed. The reaction does not produce any GaN without the presence of HDA, 

which suggest transamination by HDA45.  

Wurtzite (hexagonal) QDs of AlN, GaN, and InN have been synthesized46 by using 

[M(H2NCONH2)6]Cl3 (M = Al, Ga) and In(H2NCONH2)3Cl3 as precursors and refluxing the 

precursors in n-trioctylamine. The resulting GaN QDs have sizes between 2−3 nm in diameter 

and showed two emission bands at 380 and 340 nm. In the synthesis of In nanoparticles47, a 

small amount of indium oxide is also produced. The indium analogue of (N3)2Ga[(CH2)3NMe2]  

undergoes thermolysis in TOPO and the resulting InN nanoparticles are cubic, with sizes ranging 

between 2−10 (Figure 1.7). The particles are fractionated by size-selective precipitation and 

particles with an average diameter of 4.5 nm have emission at 690 nm (1.82 eV), which is 

consistent with the band gap of the bulk InN near 0.7 eV.  
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Figure 1.748 HR-TEM image of InN nanoparticles. The principal zone axes of the cubic unit 

cell are indicated for the top particle. (Inset) Fourier transform electron diffraction pattern 

of the particle in the top of the image. (Reprinted with permission from ref. 48. Copyright 

© 2006 Royal Society of Chemistry.) 

 

In a similar method, Gillan et al.49 produced wurtzite InN QDs in superheated toluene 

which is then refluxed in hexadecane at 280 °C. Characterization of the resulting QDs shows that 

lower temperature reactions produced less crystalline nanoparticles with a zinc blende (cubic) 

structure whereas mixed metal nitrides, Ga1−xInxN, where x is 0.5 and 0.75, were produced in 

mixed indium and gallium azide precursors in toluene. Both InN and Ga−In−N QDs showed 

emission in the red and green visible light region. Furthermore, Mishra et al.50 used ammonium 

hexafluoroindategallate [(NH4)3In1-xGaxF6] as precursor and produced a mixture of cubic and 

hexagonal (InGa)N particles. Characterization of the synthesized material shows a ratio of 9:1 

for the cubic to hexagonal structures and emission in the visible region at around 735 nm (1.69 

eV) at room temperature. 

Diorganophosphides [M(PtBu2)3] (M = Ga, In)51 were used to synthesize InP and GaP 

nanoparticles in dry alkylpyridine. A complicated mix of reductive and β-hydrogen elimination 

is involved in the mechanism of the thermolysis of the precursor, which also produced metal 

phosphide and metallic impurities. The reaction produced capped QDs which showed distinct 

optical quantum size effects. Wells et al.52 used [X2GaP(SiMe3)2]2 (X = Br, I) or (Cl3Ga2P)n, to 

synthesize crystalline monodispersed GaP.  The precursor decomposes at relatively low 
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temperatures under vacuum. Guzei et al.53 used [H2GaE(SiMe3)2]3 (E = P, As) to produce GaP 

and GaPs NPs. The complex decomposes at 450 °C in xylene and the resulting QDs have 

diameters around 5 nm. Helliwell et al.54 and Hamilton et al.55 reported the synthesis of HDA-

capped InAs and GaAs nanoparticles from dimeric compounds [tBu2AsInEt2]2 and 

[tBu2AsGaMe2]2 respectively. Both InAs and GaAs NPs produced in this synthesis showed a 

blue shift in their absorption spectra compared to their bulk materials. 

Dimitirjevic and Kamat56 reported the synthesis of In2Se3 by using either poly(vinyl 

alcohol) (PVA) or sodium metaphosphate (SMP). The produced nanoparticles have diameters of 

around 2−3 (with SMP) and 30 nm (with PVA) and showed absorption maximum at 375 and 250 

nm (with SMP) and 550 nm (with PVA). By a similar approach they also produced57 In2S3 QDs 

in acetonitrile with diameters ranging between 100 and 200 nm. Barron et al.58 used cubane 

precursors [(tBu)GaSe]4 and [(EtMe2C)InSe]4 to produce GaSe and InSe nanoparticles. 

Characterization by TEM showed that the resulting GaSe NPs have a mean diameter of around 

42 nm with standard deviation of 13 nm and InSe particles have a mean diameter of around 88 

nm with standard deviation of 30 nm. O’Brien et al.59 used [In(E2CNEt2)3] (E = S, Se) to 

produce InS and InSe nanoparticles capped with TOPO and InSe nanoparticles capped with 4-

ethylpyridine (Figure 1.8).  

 

Figure 1.859 4-Ethylpyridine-capped InSe nanoparticles from [In(Se2CNEt2)3]: (a) TEM 

micrograph and (b) size distribution histogram. (Reprinted with permission from ref. 58. 

Copyright © 1999 Royal Society of Chemistry.) 

 

Dutta et al. used methylindium thiolate complexes to produce 

In2S3 nanoparticles.60 However the produced indium sulfide nanoparticles had poor quality. Later 
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they used indium xanthates as precursors and the quality of the QDs improved significantly. 

They also synthesized Ga2S3 and In2S3 NPs with polymeric indium and gallium precursors 

[MeM(SCH2CH2S)]n (M = In, Ga). These precursors were prepared by the reaction of trimethyl 

gallium/indium ether adduct (Me3Ga/InOEt2) with 1,2-ethanedithiol (HSCH2CH2SH) with 1:1 

stoichiometric ratio. The reaction takes place in a tube furnace and at the temperature between 

300 and 500 °C.  

O’Brien et al.61 first reported the synthesis of PbS NPs from diethyldithiocarbamate. The 

resulting material showed to have well-defined cubic structure. Later Cheon et al.62 showed that 

shape control was possible with changes in the reaction conditions. Vittal et al. synthesized PbS 

nanoparticles by employing a Lewis-base-catalyzed approach63 to decompose metal alkyl 

xanthates by using alkyl amines as a solvent. When long-chain alkylamines were used the 

resulting PbS nanoparticles had a spherical shape and diameters between 5−10 nm. Such above-

mentioned precursors have the advantage of being air-stable for months and easy to synthesize, 

and having high yields. Cheon and co-workers also discussed64 the ripening process observed 

with the PbS nanoparticles from a single-source precursor. They showed that by varying the 

precursor solvent ratio and reaction temperature, it is possible to obtain materials with shapes 

like rods or cubes. 

Rosenthal et al.65 used tin dithiocarbamate [Sn(S2CNEt2)2] with oleylamine as solvent to 

produce SnS nanoparticles. Their method compared with previously reported ones does not 

involve the use of phosphines and some other organometallic compounds which are volatile and 

hazardous. The resulting SnS NPs has well-defined crystalline structure and showed strong 

optical absorption in the visible and near IR regions. 

 

Limitations of Current CdSe Quantum Dots Synthetic Methods and Motivation of this 

Work 

Although lots of work is presented in the literature, these methodologies leave much 

room for improvement on the particles’ size uniformity. In the hot injection method, excess 

amount of precursor is rapidly injected into heated solvent. The monomer concentration is 

rapidly increased and the excess free energy from super-saturation is released through rapid 

nucleation of nanoparticles and the monomer concentration decreases quickly. The nucleation 
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process typically completes in a few seconds timescale. Although this method is able to produce 

nanoparticles of fairly narrow size distribution, the composition of the particles is hard to control 

because of more than one precursor used.  By using the single-precursor heating-up method, 

composition of the particles can be tuned by controlling the composition and nature of the 

precursor complex, while still maintaining the advantage of producing narrow size distribution.  

In this method the single-precursor and solvent are mixed at a lower temperature and then heated 

up to a higher temperature for the nucleation to begin. This method also has the advantage of 

simplicity and ease of control due to prolonged reaction time6, 7. Due to the short reaction time 

this method has poor reproducibility. The composition and size distribution of the nanoparticles 

are also difficult to control by this method.  

Size-selective precipitation in particular is an inefficient and tedious process, which is 

unsuitable for large-scale industrial production. Another challenge remaining is the ability to 

produce sub-2nm QDs, a type of QD referred to as magic size QDs because of its particular 

stability.19 In a typical QD growth, after the initial nucleation stage the particles are allowed to 

grow in order to narrow the size distribution, a process dominated by Ostwald ripening and 

monomer diffusion. Larger particles grow at the expense of smaller particles’ re-dissolving. Due 

to their particular size (<2nm), these magic size QDs do not go through Ostwald ripening and are 

stable.66 Investigation of the magic size nanoparticles could give interesting insights into their 

photo-electronic properties at the molecule-cluster transition regime.67 They also have potential 

application in white light LEDs68, biological detection69, and seeding growth of larger particles. 

The Cumberland26 method could not achieve such small size and uniformity at the same time. As 

the nucleation initiates, the precursor complex decomposes and nuclei start forming. However, 

the nucleation stage and growth stage could not be separated because the precursors do not 

decompose fast enough. In fact, the nuclei already started growing as the complex is still 

decomposing. After most precursor molecules have completed decomposition, some of the 

earliest nuclei have already grown significantly larger than the newer ones, creating a broad 

initial size distribution. Moreover, in order to narrow such broad size distribution, prolonged 

growth is needed and therefore small particle size can not be achieved.  

The induction heating method described in Chapter 5 could resolve these issues. Our data 

have shown that it provides a heating rate of at least 110 °C per second, 6,600 times faster than 

using a typical heating mantle (1 °C per minute). As indicated by calculation, induction heating 
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would provide far greater power and heating rate compared to MW method as well. It is 

expected that induction heating will produce smaller particle sizes and initial nuclei size 

distribution compared to both the heating mantle and the microwave synthesis. 

 

Colloidal CdSe Quantum Dots Growth Kinetics 

Besides the experimental aspects, this thesis also investigated the growth kinetics of 

CdSe quantum dots in colloidal solution from the theoretical perspective. Classical nucleation 

theories consider the particles as bulk material. From the general perspective, there should be 

two terms that determine the growth rate: one responsible for the formation of new bonds, and 

the other the energy required to form new interfaces between different phases. These two terms 

compete with each other in the equation of free energy of the system, and therefore a maximum 

could be found. And since these terms are expressed as functions of particle radius, a so-called 

critical radius could be determined, where the particle size is thermodynamically favored. In 

simple terms, the free energy could be expressed as70: 

 ∆𝐺 = −
4

3
𝜋𝑟3|∆𝐺𝑉| + 4𝜋𝑟2𝛾,  

where ∆𝐺𝑉 is the unit volume free energy difference between two phases, and 𝛾 is the unit area 

surface free energy, with 𝑟 being the particle radius. It is clear from the expression that it 

assumes the particle to be spherical, which is a reasonable approximation. The center issue 

therefore is finding out the state of related parameters where 𝑑Δ𝐺/𝑑𝑟 = 0. In order to achieve 

this, several assumptions and approximations need to be made regarding the chemical potential 

of absorbing/dissolving a monomer, flux of monomers towards/away from the nuclei, and initial 

monomer saturation. The theory utilized in Talapin et al.’s simulation71 could be adopted, which 

gives  

 
𝑑𝑟

𝑑𝑡
∝ 𝑆,  

with 𝑆 being the dimensionless initial supersaturation ratio. Then, another assumption could be 

made regarding the rate of nucleation in solution described by Nielsen as follows: 

 𝐽𝑁 = 𝐵𝑁exp⁡(−
Δ𝐺𝑁

𝑅𝑇
)  

 Δ𝐺𝑁 =
16𝜋𝛾3𝑉𝑀

2

3(𝑅𝑇𝑙𝑛𝑆)2
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Here 𝐵𝑁 is the preexponential factor relating to factors such as desolvation of species, Δ𝐺𝑁
 is the 

activation energy for nucleation, 𝛾 is the specific surface energy, and 𝑉𝑀 is the molar volume. 

With these relations, we could see (Figure 1.9) within the regime of 1 < 𝑆 < 1000, the 

nucleation rate increases more rapidly compared to the growth. As the heating rate increases, the 

precursor molecules decompose more quickly, providing more monomers, which could either 

end up forming new nuclei, or grow onto other existing nuclei. But since the increase of 

nucleation rate is greater than that of growth, it is sensible to believe that by increasing the 

heating rate and therefore the initial saturation 𝑆, the solution will end up with more nuclei. 

 

Figure 1.9 In the regime of 1<Saturation<1000, nucleation rate increases more rapidly than 

growth rate 

 

Generally, theories including LaMer72 burst nucleation and Ostwald ripening have been 

used to describe the growth of nanoparticles in solution. However, due to the nature of such 

process, it is difficult to monitor the growth experimentally. With such lack of empirical data, 

theories were crude until the advancement of several in-situ and ex-situ measurement techniques. 

UV-vis spectroscopy is a convenient technique to monitor the particle size in solution during and 

after growth, as the nanoparticles’ sizing curve can be readily obtained through calculations8 and 
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experiments.73 Emission spectroscopy could provide important information on the electronic 

structure of these particles, and is crucial to understanding other affecting factors as well such as 

interaction with surfactants. More recent studies include use of small-angle X-ray scattering and 

liquid cell transmission electron microscopy.74 These data have facilitated the development of 

much more refined models. But to date, there still lacks a successful model that describes the 

growth and especially the nucleation stage of CdSe QDs. Due to the difficulty of separating the 

nucleation and growth process, it is challenging to obtain experimental data pertaining to the two 

stages separately. As pointed out by Qu el al.75, the crystallization of nanoclusters, especially the 

early nucleation stage has been a challenging area of study mainly due to lack of experimental 

data. Although numerous theoretical attempts at understanding such process have been done, it is 

not uncommon to have theoretical prediction differ by tens of orders of magnitude with 

experimental data.70 The difficulty of gaining insights into the nucleation stage lies in the fact 

that nucleation and growth, including the appearance and disappearance of nuclei happen 

simultaneously in a dynamic fashion. Through separation of the nucleation and growth stage of 

the quantum dots, this thesis provides valuable data with controlled variables that address the 

different experimental conditions during growth and nucleation separately, which will facilitate 

greatly the development of a more accurate theory describing such processes.  

 



23 

 Impact of Doping on Charge Carrier Density and Application in Solar Cells 

 

Figure 1.10 Progression of best research-cell power conversion efficiencies by NREL. 

(Reprinted with permission from National Renewable Energy Laboratory (NREL). 

Copyright © 2016 NREL) 

 

The light harvesting potential of CdSe quantum dots is an attractive property that 

received much attention in recent years as part of a continuing global effort in developing 

photovoltaic technology to resolve the energy and environmental challenges the world is facing 

in the near future76. The currently most adopted solar cell solution involves devices based on 

single-crystal silicon material, which yields a conversion efficiency of about 28%. Although 

these devices have proven to be functional, they suffer from prohibiting high cost of 

manufacturing in the single-crystal preparation process which severely limits their scope of 

commercialization, and their PCE has seen only ~4% growth in the past 25 years. A second 

generation of solar cells based on polycrystalline semiconducting material has since emerged 

from research efforts, which could lead to significant lowering of manufacturing cost. However, 

there’s still much room for improvement of their power conversion efficiency compared with 

that of the single-crystal silicon based devices. In recent years, focus has been turned to the so-

called organic-inorganic heterojunction nanomaterial based solar cells, which could deliver 
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satisfactory efficiency at an economically viable cost. Nanomaterials with various structures 

including nanowires, nanotubes, nanorods, and quantum dots have been studied extensively for 

this purpose. In this thesis, the photoconductivity and charge carrier density characteristics of 

CdSe quantum dots have been explored for this consideration. The physiochemical properties of 

CdSe quantum dots, among other quantum dot material have been investigated since several 

decades ago77. Literature78 has pointed out the following charge separation process in CdSe 

nanocrystals: 

CdSe + h𝑣⁡ → CdSe⁡(ep +⁡hp) → es +⁡hs 

CdSe(es +⁡hs) ⁡→ CdSe + h𝑣′⁡⁡ 

where s and p indicates the states of the electrons (e) and holes (h). Various theories and 

experiments have shown that defects affect this process in significant ways, as discussed in detail 

in Chapter 4. It was previously mentioned in this chapter that surface ligands on CdSe quantum 

dots serve as a stabilizing agent that prevents coalescence of the particles. However these 

capping agents could pose a challenge in its optoelectrical device application since they decrease 

the conductivity of such material by inhibiting electron transfer in the material79. A power 

conversion efficiency chart was compiled by National Renewable Energy Laboratory as shown 

in Figure 1.10, demonstrating progression of highest confirmed conversion efficiencies for 

research cells, among which QD cells have seen significant development in the past five years 

(red hollow diamond, lower right). Zhou et al.48 reported improved 2% power conversion 

efficiency of (P3HT):CdSe QD solar cells after a simple hexanoic acid washing to reduce the 

hexadecylamine shell around the particle. 4.94% PCE were reported80 for cells based on 

TiO2/ZnSe/CdS/CdSe cascade structured electrodes. Firdaus et al.81 improved PCE of PbS QDs 

up to 0.91%. Guyot-Sionnest et al.82 have demonstrated that by doping with potassium, the 

conductivity of n-type CdSe thin film could be increased by up to 12 times. Based on this 

evidence, it is intuitive to postulate that doping would have significant impact on the charge 

carrier density and conductivity of CdSe quantum dots as well.  

Another crucial aspect of the effect of doping in the application of solar cells is its 

behavior under elevated temperatures. Photovoltaic devices for energy harvesting purposes are 

expected to operate under higher than normal room temperature, as the nature of such operation 

requires prolonged exposure to direct sunlight. Given the relative energy conversion rate, such 

device would not be efficient if it requires active cooling. Therefore the performance of the solar 
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cell under higher temperature is of critical importance for such application, an aspect rarely 

explored in current studies.  

For the above arguments, this thesis will demonstrate experimentally a simple method to 

dope and control the photoconductivity and charge carriers of CdSe QDs, showing increased 

photoconductivity leading to a more efficient hybrid solar cell. The chemical dopants (Ga, In and 

Sn) of CdSe QDs not only result in a controllable photoconductivity, but also a stronger 

electronic interaction at elevated temperatures. The high conductivity and stronger electronic 

coupling of doped CdSe QDs can largely enhance charge separation and transport efficiency, 

which are essential for hybrid inorganic-organic solar cells. The results shown here represent a 

potentially powerful tactic for increasing the efficiency of hybrid solar cells via enhancing the 

photoconductivity and controlling electronic interaction between the organic and inorganic 

materials. 

 

 

4. Thesis Outline 

The goal of this thesis is to understand the role of defects and the control of defects 

through doping in quantum confined systems, particularly CdSe quantum dots. Various 

experimental techniques are utilized to achieve this goal including single-source precursor 

synthesis and doping of quantum dots, magnetic heating for achieving extreme high heating rate 

and rapid quenching, spectral measurements and monitoring of QD growth, infusion withdrawal 

dip coating technique for preparation of the TMOS and PTMOS gradient film, and finally 

reflection on some of the limitations of these techniques and areas for potential improvements. 

They are described in the Experimental Techniques Chapter 2. 

The work described in Chapter 3 aimed at controlling various chemical, electrochemical 

and spectroscopic properties of CdSe quantum dots through doping. To achieve this, CdSe QDs 

doped with gallium was synthesized. TEM, XRD and elemental analyses was done to obtain the 

size distribution of the particles and confirm the presence of dopant atoms as well as determined 

its crystal structure. Cyclic voltammetry was used to investigate the band-edge electronic states 

of the doped QDs and computational modeling was performed to understand the dopant atom’s 

role in the host’s crystal lattice. 
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In Chapter 4 I describe work whose goal is to explore the possibility and advantages of 

doped CdSe quantum dot for hybrid solar cells. Indium and gallium doped CdSe QDs were 

prepared and CdSe/P3HT hybrid bi-layer solar cells were constructed. Their photovoltaic current 

density-voltage characteristics and quantum efficiency was measured. The conductivity of solar 

cells based on doped QDs was compared with that of the undoped to measure its performance. 

The effect of temperature on conductivity of QDs was also explored.  

Chapter 5 focuses on achieving greater control of size distribution and preparation of 

ultra-small quantum dots through induction heating. The chapter will demonstrate the advantage 

of induction heating through a series of syntheses with induction heating and microwave heating. 

The effect of solvents, ligands, and quenching will also be explored through according 

comparative syntheses. The chapter will also discuss the effects of extreme high heating rate on 

nucleation and growth of such nanocrystals.  

Chapter 6 describes study of the blinking behaviors of CdSe nanorods under polar 

environments. Infusion withdrawal dip coating technique was used to prepare a polarity gradient 

film where the CdSe NRs are placed. Various analyses of data including count of number of 

blinking spots, spectral shift over time, on-off time frequency, spots intensity distribution and 

mean intensity time sequence were performed to investigate variation of their blinking statistics 

with respect to different polar environments and NR orientation. 
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Chapter 2 - Experimental Techniques 

1. Single-source Precursor Synthesis and Doping of Quantum Dots 

CdSe quantum dots were prepared by the single-source precursor method reported26 by 

Cumberland et al. (Figure 2.1). The inorganic cluster precursor (Li)4[Cd10Se4(SPh)16] can be 

synthesized as reported in literature83. In 1983, Dance et al.83 described the synthesis, properties, 

and molecular and crystal structures of (Me4N)4[E4M10(SPh)16] (E=S, Se; M=Zn, Cd), a 

molecular fragment of the cubic metal chalcogenide lattice. (Me4N)2[Cd4(SPh)10] was first 

prepared by adding Cd(NO3)2·4H2O into thiophenol and triethylamine, followed by addition of 

tetramethylammonium chloride. Selenium metal was then added to the product to produce 

(Me4N)4[E4M10(SPh)16]. Then, CdSe quantum dots were synthesized in hexadecylamine, 

dodecylamine, and other possible amines. The different solvents acting as capping agent would 

alter the rate of the dissociation of precursor molecules, as these surfactants can “capture” 

partially decomposed precursor molecules at different rates. During the growth stage, different 

solvents would also result in different growth rate, as surfactants greatly affect the surface 

reaction.  

For doping, the appropriate metal chloride was added into reaction mixture before 

synthesis. To insure precise molar ratio of metal chloride added since the amount could be as low 

as a few milligrams, a larger amount of metal chloride might be first dissolved in solvents, and 

then have the proper amount added to the reaction mixture before the solvent vaporizes. 

Figure 2.2 shows the TEM image of a sample obtained with this method. The quantum 

dots are spherical in shape and relatively uniformly sized.  



28 

 

Figure 2.1 Reaction mechanism for formation of CdSe nanocrystals from cluster 

precursors. (Reprinted with permission from ref. 26. Copyright © 2002 American 

Chemical Society.) 

 

Figure 2.2 CdSe quantum dots synthesized with single precursor84. (Reprinted with 

permission from ref. 84. Copyright © 2015 American Chemical Society.) 
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2. Magnetic Heating 

 Mechanism of Heating and Experimental Setup 

Induction heating utilizes electromagnetic induction to generate heat by the internal 

resistance of a conducting metal. High frequency AC is run through an electromagnet, which 

generates Eddy current in the workpiece. The method has application in processing various types 

of metals for the ability to raise the temperature of the metal to their melting point in a short 

period of time. In the experimental setup, the precursors were placed in a glass container (Figure 

5.1 top right) filled with steel beads to allow for semi-uniform heating. Glass beads can be mixed 

with the steel beads to control the heating rate, and heating uniformity can be controlled by the 

steel bead sizes. An optical temperature probe was placed inside the solution. The container was 

filled with argon to purge out any oxygen for 1 min prior to heating. Figure 5.1 left shows the 

rise of temperature of the solvent over time. In 12.8 seconds, temperature of the solvent rose 

from 28 °C to 186 °C, at a rate of 12 °C/s. However, dodecylamine has a boiling point at 247 °C 

and during actual heating the solvent was observed to start boiling in under 2 seconds. Due to 

limitation of the temperature probe’s response time, actual heating rate could instead be as high 

as 110 °C/s. In a conventional synthesis, a heating mantle and temperature controller were used 

to first melt the solvent at 70 °C, followed by raising the temperature to 275 °C in 3 hours and 25 

min, or 1 °C /min.  

 

 Unique Characters of Magnetic Heating 

This method has the advantage of injecting a massive amount of heat into the reaction 

solution within a short period of time. With this method, as the heating starts, the precursor 

rapidly decomposes, creating a large number of small, uniformly sized nuclei, before growth 

could even start. Compared to conventional synthesis in a heating mantle, or the relatively faster 

microwave method, when Ostwald ripening comes into effect, a larger portion of precursors will 

be depleted, producing the final small, uniformly sized nanoparticles. The faster depletion of the 

complex also leads to possibility of separating the nucleation and growth stage completely, by 

tweaking the amount of complex used and the current applied in heating. By decreasing the 
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complex used in the synthesis, we could reach a point where all of the precursor molecules have 

decomposed after the few seconds of heating.  

Because of all these unique characters of magnetic heating, we are able to achieve 

preparation of sub-2nm magic sized CdSe crystals with improved size uniformity and white light 

emission, and to investigate the kinetics impact of extremely high heating rate. 

 

 Adaptation for Industrial Implementation 

Additionally, this setup could be easily modified to drastically increase the amount of 

product produced in a reproducible manner compared to conventional method, considering that 

the ability of cheap, bench-top mass production is one of the key attractions of nanoparticles in 

industrial application. Such setup consists of a continuous production system utilizing a flow-

thru tube design (Figure 2.3).  

The system includes a setup where the complex solution is continuously supplied by 

being pumped into a narrow tube that goes through the induction coil. The part of tube inside the 

coil is filled with steel beads and trapped in between two filters. As the solution passes through 

the heating chamber, reaction occurs and nanoparticles are formed. The solution continues to 

flow through a passage where external cooling is applied. The cooled product will stay in liquid 

form at 40 °C and can be collected. This system would be fully concealed from atmosphere, 

therefore eliminating oxygen and water, substances that the complex and quantum dots are 

sensitive to under high temperature. The cooled product can be conveniently collected under 

atmospheric conditions in liquid form since at 40 °C no significant reaction would occur even 

with the presence of oxygen and water. The collected product will further solidify as temperature 

drops below 30 °C and can be stored for a long period of time. With our current setup, 2 grams 

of solution could finish reaction in 2 seconds. With a more delicate cooling setup to match the 

reaction speed, the system could theoretically process 3.6 kilograms of raw material per hour. 

 

Figure 2.3 Schematic Diagram of Continuous Synthesis Setup 
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3. Rapid Quenching 

In this thesis, a rapid quenching method was utilized to study the effects of fast cooling 

on the growth kinetics of these nanoparticles. For the quenching experiments, CdSe complex 

dissolved in the amine solvents are placed in a glass vial with an injection cap. An optical 

temperature probe is inserted inside the vial, and two needles are injected through the cap to 

allow for entry of argon and exhaust gas exit. The vial is similarly placed inside the coil, held 

with a clamp on a ring stand. Liquid nitrogen is placed under the vial to allow for quick transfer 

of the sample. After heating has finished, the clamp is quickly let loose and the vial is dropped 

inside liquid nitrogen immediately. As described in details in later chapters, the data show that 

temperature of the solution could be dropped to 40 °C within 60 seconds in nitrogen. It is notable 

that due to the nature of such cooling method, solution around the outside of the vial cools far 

more quickly than solution in the center. Data is taken of the temperature at the center of the 

solution to ensure the entirety of the sample has been cooled.  

 

4. Growth Monitoring and Sample Characterization Techniques 

In-situ fluorescence spectroscopy and absorption spectroscopy can be employed to 

monitor the growth of the particles in solution. The presence of complex remaining in the 

solution after synthesis has completed could be detected with NMR. We could also employ in-

situ PL monitoring of the solution to detect newly formed small nuclei and the growth of such 

nuclei as they will appear at the shorter wavelength end of the spectrum. FWHM of the 

fluorescence can be obtained to account for the size distribution of the particles. TEM images 

can be taken of the final product to confirm the presence of the particles and their size 

distribution.   

 

5. Infusion Withdrawal Dip Coating (IWDC) 

Infusion withdrawal dip coating (IWDC)85 is a method utilized in Chapter 6 to prepare 

tetramethoxy silane (TMOS)/phenyl trimethoxy silane (PTMOS) gradient film. The process 

involves preparation of first the tetramethoxy silane sol for the base layer, and then followed by 
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preparation of the TMOS base layer on a coverslip and tetramethoxy silane and phenyl 

trimethoxy silane sols for gradient deposition, and finally the gradient film with dip-coating. 

 Preparation of tetramethoxy silane sol for the base layer 

Several small vials were plasma-cleaned and left in the glove box along with several 200 

μL and 1mL pipettes. A small magnetic stir bar was also rinsed with water and dried with 

nitrogen. A solution of 0.1M hydrochloric acid and 200 proof ethanol was prepared. 200μL of 

TMOS (0.207g) was taken out of the glove box and added to 2491 μL 200 proof ethanol. The 

mixture was then stirred with the magnetic stir bar for 1 minute followed by addition of 135 μL 

0.1M HCl and then stirred again for 1 hour. The TMOS sol was then taken out and put in a glass 

desiccator for aging for 23 hours before spin coating on the coverslip. 

 Preparation of the TMOS base layer on coverslip 

A piece of wrapping foil and the metal substrate of the spin coater were cleaned with 

ethanol and dried. Then it was made sure the vacuum was working properly by placing a 

coverslip on it. 10-12 very clean microscopic glass coverslips were taken from the petri dishes 

with the dust cleaned off by nitrogen gas and then plasma-cleaned (in batches of 4) for at least 5 

minutes. Then one piece of the plasma cleaned coverslip was placed on the spin coater and 

centered with tweezers. Vacuum was then applied to keep the coverslip in place. The 23-hour-

aged sol was then taken out for spin coating. 150 μL of the aged TMOS sol was pipetted onto the 

center of the coverslip and then spin coated for 30 seconds at 5000 rpm. The coated coverslip 

was then transferred to a petri dish. The same process was repeated for all plasma cleaned 

coverslips with the goal to achieve as smooth and uniform TMOS base layer as possible. Then, 

all the petri dishes with TMOS base layer were placed in the glass desiccator to dry.  Such 

prepared TMOS base layers can be used after 12 hours to up to a week old. 

 Preparation of tetramethoxy silane (TMOS) and phenyl trimethoxy silane sols for 

gradient deposition 

TMOS: 1200 μL (1.23g) of TMOS was taken from glove box into a large vial and added to 28 

mL 200 proof ethanol. A clean and dry stir bar was put into the TMOS and stirred for 1 minute, 

followed by addition of 830 μL 0.1M HCl and then stirred again for 5 minutes. 600 μL 1M  
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NH4OH was then added to the mixture and stirred for 35 minutes. An appropriate amount of 

CdSe solution was added based on specific experimental needs. The TMOS sol was then left in 

the desiccator for aging for 4-5 hours. 

PTMOS: 500 μL (0.531g) PTMOS was taken from the glove box and put into a large vial and 

added with 9500 μL 200 Proof ethanol. A clean and dry stir bar was put into the solution and 

stirred for 1 minute followed by addition of 290 μL 0.1M HCl. The mixture was then stirred for 

10 minutes then added with 200 μL 1M NH4OH and stirred again for 30 minutes. An appropriate 

amount of CdSe solution was added based on specific experimental needs. The PTMOS sol was 

then left in the desiccator for aging for 4-5 hours. 

 

 Preparation of gradient film with Infusion Withdrawal Dip Coating (IWDC) 

The syringe pumps were set up from the 3rd hour of aging time of the TMOS and PTMOS 

sol. The infusion and withdrawal rate were first determined for the syringes and set accordingly. 

The motor that moves the coverslip up and down during the dip coating was checked to be in 

working order to prevent occasional jamming, which could take a bit effort to fix up. The cell, 

syringe and tubings were then placed in the dip coating room with the syringes fixed along with 

the tubings in the syringe pumps and connected to the opening (hoses) of the cell. A smooth base 

layer was picked to be plasma cleaned for one and a half minutes with the rest discarded. The 

infusion syringe was then loaded with the TMOS that has been aged for 4-5 hrs. The plasma-

cleaned base layer was then clipped in the dip coater such that the base layer faces the operator. 

The stir bar was then transferred from the vial containing the PTMOS into the cell with 9.5 mL 

of PTMOS sol that was also aged for 4-5 hours pipetted into the cell. The cell was then put right 

below the clipped base layer in such a way that when the base layer was lowered it will move 

right across the middle of the meniscus. To achieve this, the cell can be moved very slightly so as 

to avoid the slashing of meniscus since it was where the deposition was performed and extra care 

needs to be taken in its handling. The base layer was then lowered into the cell that is partially 

filled with PTMOS sol controlled with computer at 200 rpm. The motor was stopped when the 

bottom edge of the base layer (coverslip) was just above the outlet opening to fix the coverslip at 

its place. At the same time, the sol in the cell (i.e. PTMOS sol) was stirred slowly. Once the 

meniscus was stable, the opening of the dip coater was closed and both the pumps were turned 

on such that the infusion and withdrawal could start simultaneously (Figure 2.4). 
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Figure 2.4 Experimental setup of Infusion Withdrawal Dip Coating 

 

6. Limitations, Future Work and Improvements 

In the magnetic heating synthesis setup, the sizes of the steel beads used in induction 

heating would affect the uniformity of heating. Theoretically, the difference of amount of heat 

received by solution from different distances to the beads can be decreased by using smaller 

beads. However, smaller sizes will also leave smaller spaces between the beads, reducing the 

amount of solution that could be used in one synthesis. Therefore, it is both theoretically and 

practically impossible to achieve absolute uniform heating by infinitely decreasing the sizes of 

the beads. With the parameters employed as discussed above, a reasonable approximation could 

be achieved to study the effects of induction heating.  

The experimental techniques discussed in this chapter will also enable possible future 

efforts at making proper predictions of the effect of our experimental conditions using theories 

reported in literature for such systems. It is possible to fit the experimental data with numerical 

simulations accounting for varying parameters, and performing a series of simulations based on 

theoretical models discussed in Chapter 1. It is easy to implement simple simulations of the 

growth accounting for different conditions. A Monte Carlo simulation similar to that described 

by Talapin et al.71 can be performed to reflect the high heating rate of induction heating, whose 

result could be compared with that from experimental data.  
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Chapter 3 - Synthesis and Characterization of Gallium Doped CdSe 

Quantum Dots 

 

1. Introduction 

Doping quantum confined semiconductor nanocrystals (quantum dots or QD’s) will allow 

for a new generation of electronic devices built on a bottom-up construction model that are smaller 

and more powerful than devices currently fabricated by photon-lithography.86 The ability to 

synthesize high quality quantum dots24, 87 via bench-top chemistry makes doping quantum dots to 

enhance electrical properties of the utmost importance. Despite several drawbacks such as the low 

availability of elements in earth’s crust and highly negative environmental impact,88 CdSe 

quantum dots produced through colloidal synthesis are the ideal system for doping studies simply 

due to extensive investigation over the past 20 years.89 Because of the small number of atoms 

composing the QD, successful doping was initially thought to be unlikely because even a single 

dopant atom would lead to dopant/cm3 values more consistent with alloy materials.90 Several 

obstacles, such as self-purification17 and low dopant solubility, would have to be overcome. 

Reports of successful incorporation of aluminum,91 chromium,92 cobalt,93 copper,94, indium,91, 95 

iron,96 manganese,97 silver98 and tin95a introduced magnetic properties to CdSe and ZnSe10 QD’s.  

Creation of n-type CdSe via “charge injection” of an electron into the conduction band using 

reducing agents has been used to study electron relaxation in the absence of an accompanying 

hole.82 However, up until several years ago there were no reports of attempting n-type doping of 

CdSe QD’s.  Indium has been used in doping CdSe thin films99 and CdSe nanowires,100 which 

creates electron donor states below the conduction band characteristic to n-type semiconductors.  

Indium doped CdSe QD’s were also reported by Knox et al.101 However, little evidence of the 

dopant atoms' impact on the properties of the QD’s was presented. 

Previous reports of successful doping of CdSe QD’s with indium95b showed that the 

presence of indium had dramatic effects on the growth of CdSe:In. Briefly, CdSe dots grown in 

the presence of InCl3 showed increased growth rates in the “heterogeneous growth regime” along 

with rapid size focusing. Indium was found to activate the growth of QDs, resulting in larger 

particles than QD’s grown in the absence of dopant and significant quenching of band-edge 
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photoluminescence in spite of a ZnS passivating shell and corroborating results reported with 

“charge-injected” particles8 as well as with indium doping in thin films.9 Further work on indium 

and tin doped CdSe showed that donor electrons are not ionized into the conduction band until 

temperatures well above room temperature.95a In an ideal n-type semiconductor, electrons from 

the donor level are ionized into the conduction band at room temperature due to the extra electron 

being weakly bound to the dopant atom.  Gallium had been reported as an n-type dopant in thin 

films of CdSe.102  Due to the higher ionization temperature shown by tin and indium, gallium was 

chosen for investigation in the hopes that the 4p orbital would align with the QD’s 1Se conduction 

band level at room temperature to provide increased donor electron occupation. 

Here the synthesis of gallium-doped CdSe QDs are reported. Structural characterization of 

the CdSe QDs show no significant changes in the CdSe wurtzite structure upon introduction of 

gallium atoms. Experimental data on the growth of the CdSe QDs from Li4[Cd10Se4(SPh)16] 

suggest that the gallium may exchange into the complex at the early stage of the nucleation.  The 

resulting doped CdSe QDs exhibit more reducing character confirmed by oxidative etching and 

cyclic voltammetry experiments. Spectroscopic characterization reveals that the gallium-doped 

QDs show a stronger temperature dependent photoluminescence quenching and shortened 

excitonic lifetime as a result of the increased dopant ionization above room temperature. 

2. Experimental Section 

Chemicals:  All chemicals are used as purchased with the exception of hexadecylamine, which is 

vacuum distilled at 2 torr.  InCl3, SnCl2, GaCl3, diethylzinc, hexamethyldisilithiane and tri-n-octyl 

phosphine (TOP) are all stored in an inert atmosphere/low water vapor concentration glovebox.  

Zn/S stock solution is prepared according Hines et al.103 by mixing 7 mL of diethylzinc with 1 mL 

hexamethyldisilithiane and 32 mL of distilled TOP. Tri-n-octylphosphine oxide (TOPO), 2-amino-

propanol (APOL), N,N-dimethyl sulfoxide (DMSO) and a supporting electrolyte 

(Tetrabutylammonium perchlorate (TBAP)) are used as purchased and stored under ambient 

conditions. 

Synthesis:  Doped and undoped CdSe core particles are synthesized using the Li4[Cd10Se4(SPh)16] 

single source precursor (SSP) prepared as reported by Cumberland26 in hexadecylamine with metal 

chloride as the doping agent.  In this work, the gallium doped CdSe quantum dots are synthesized 

either with ZnS shell for the photoluminescence experiments or without ZnS shell for the 

electronic characterization.   
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Ga:CdSe quantum dot synthesis: 25 g of distilled hexadecylamine and 0.3 g of SSP are loaded into 

a three-neck flask and passed into a glovebox where the appropriate amount of metal chloride is 

added. All dopant load percentages are based on the total selenium content of the reaction. The 

reaction flask is purged on an Ar gas line for 3 minutes and heated to 70°C at 1.5 °C/min 

temperature ramp. The mixture is then heated to 275 °C at 1 °C/min and kept for 1 hour to allow 

growth of the particles, and cooled to 180 °C and kept for 18 hours to narrow the size distribution 

of the particles.  

Ga:CdSe/ZnS Quantum dot synthesis: 50 g of distilled hexadecylamine and 0.6 g of the (SSP) are 

loaded into a three-neck flask and passed into a glovebox where the appropriate amount of metal 

chloride is added. All dopant load percentages are based on the total cadmium content of the 

reaction.  The reaction flask is purged on an Ar gas line for 20 minutes before being very slowly 

heated to 120 °C with careful attention made to minimize temperature overshoot, as the stability 

of the magic sized nanocluster is extremely sensitive to temperature.  The solution is stirred at 120 

°C for 18 hours while in-situ fluorescence spectra are collected.95b After 18 hours the temperature 

is increased to 240 °C and the particles grow to their final size over 3 hours.  ZnS shell growth is 

accomplished by using an automated syringe pump to dispense a solution of 2 mL of the Zn/S 

stock solution diluted with 8 mL of TOP over one half hour followed by one hour of growth at 250 

°C.  After one hour of shell growth, cooling studies are performed.  Following the cooling studies 

described below, another layer of shell material is grown by repeating the slow Zn/S injection at 

250 °C.  This sequential shell growth is repeated for a total of four injections.  

Monitoring ZnS Formation via Temperature Dependent Photoluminescence:  Following the 

ZnS shell growth, the reaction mixture is allowed to cool from 250 °C to 60 °C with the flask 

covered with foil to ensure a slow, even cooling process.  Photoluminescence spectra are recorded 

every second.  This cooling process is repeated five times without exposure to oxygen.  A surface 

reflection probe equipped with a 405 nm LED excitation source is used to collect the spectrum 

during all growth phases.20 

Particle Preparation for Temperature Dependent Photoluminescence Studies:  ~1 g of crude 

reaction solution is dissolved in 10 mL of toluene and gently heated until the crude solid is melted.  

This solution is centrifuged at 7000 rpm for ~5 minutes to allow all of the excess metal to 

precipitate out leaving a clean suspension of quantum dots.  The toluene suspended quantum dots 

are refluxed in ~3 g TOPO for 4 hours followed by precipitation with methanol and re-suspension 
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in toluene and precipitated via methanol one final time. The solid is dried under vacuum for ½ 

hour after which 10 mL APOL is added to the centrifuge tube and sonicated until the quantum dots 

disperse in the APOL. 

Temperature Dependent Photoluminescence Studies of Purified Quantum Dots:  A dilute 

solution of quantum dots in APOL is made by filling a fluorescence cuvette with 3 mL of APOL 

and adding 1 mL of QD’s in APOL described in “Particle Preparation for Low Temperature 

Photoluminescence Studies” above.  The cuvette is fitted with a glass stem to allow accurate 

temperature measurement and sealed with a rubber o-ring to keep oxygen out.  The experimental 

set up is a home-built 405 nm variable output laser diode equipped with UV-resistant fiber optic 

cables.  Spectra are collected at a 90 angle from the excitation fiber.  A small heating element is 

located at the base of the set-up and attached to a programmable power-supply. The cuvette is 

placed in the experimental set-up and heated to 80°C where the temperature is maintained at 80°C 

for twenty minutes to ensure uniform solution temperature.  The apparatus is then cooled via water 

pump at a rate of 1 °C/minute down to 10 °C. During this time fluorescence spectra are collected 

every 10 seconds. For the time-resolved temperature dependent data, the 405 nm continuous 

excitation source is replaced by a pulsed laser source. The pulsed laser consists of a cavity dumped 

output of a mode-locked Ti:Sapphire laser (λmax = 780 nm, repetition rate = 2 MHz, average power 

= ~80 mW), pumped by a diode laser (532 nm, 4.6 W). The 800 nm light is frequency doubled 

with the help of a nonlinear crystal (BBO) and gently focused on the sample. Detection is 

accomplished with a Hamamatsu MCP PMT and time-correlated single photon counting 

electronics (EG&G Ortec). Wavelength selection is accomplished using color filters. 

Single Particle Fluorescence Study of the Zns/Gallium doped CdSe Quantum Dots with the 

Help of a Wide-field Microscope: Fluorescence images of the samples were also acquired by 

wide-field imaging.104 The system employed is built upon an inverted epi-illumination microscope 

(Nikon Eclipse TiE). Excitation light in these experiments was either from a Nd:YVO4 laser 

(Coherent, Verdi, 532 nm) or a diode laser (488 nm). The incident light was first focused into a 

spinning optical diffuser and subsequently collected and passed through a polarization scrambler 

before being directed into the epi-illumination port of the microscope. The light was reflected from 

a dichroic beam splitter (Chroma Q555LP or Chroma, Q505LP), for 532 nm and 488 nm 

excitation, respectively) and focused into the back aperture of an objective (Nikon Apo TIRF 

100X, 1.49 N.A.). Fluorescence from the sample placed on a heatable sample stage was collected 
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and separated from the incident laser light by passage back through the beam splitter and a 580 nm 

band pass filter having a 40 nm pass band. A back-illuminated EM-CCD camera (Andor iXon DU-

897) was used as the detector.  

High Resolution Transmission Electron Microscopy (HR-TEM):  HR-TEM imaging is done 

on a FEI Tecnai F20 XT Field Emission electron microscope. Samples are prepared by dispersion 

in chloroform and dropped onto a lacey carbon nickel grid.  Nickel grids are necessary to eliminate 

Cu-K and Cu-L lines from obscuring Ga-K and Ga-L lines.  The resolution of the instrument is 

0.25 nm in TEM mode and 0.18 nm in Scanning Transmission Electron Microscopy with High 

Angular Annular Diffraction (STEM-HAADF) mode for elemental analysis. 

Etching study of doped CdSe QDs: After washing the CdSe QDs with methanol three times, the 

particles are dissolved in APOL (3-amino-1-propanol, Sigma Aldrich) and then precipitated with 

acetone to remove the TOPO ligands from the surface. This precipitate is then re-dispersed in 

APOL. The concentration of the doped and undoped quantum dots is prepared so that the first 

electronic absorption peaks are at 0.4 optical density. These CdSe solutions are then placed into a 

cuvette holder, which is set up for temperature control and in situ photoluminescence (PL) 

recording.  The PL setup consists of a 405 nm laser diode exciting the nanoparticles in the cuvette, 

and a fiber optic spectrometer recording the PL at 90⁰ to the excitation source to minimize scattered 

light.  A constant stream of air is passed into the holder, monitored by an air flow meter.  For this 

experiment a flow rate of 290±10 sccm (standard cubic centimeters) is maintained.  Before passing 

into the holder, the air is passed through a bubbler heated to 30 ⁰C to minimize the effects of 

humidity fluctuations. The samples are heated for 16 hours at 80 ⁰C. UV-Vis absorbance was taken 

before and after the 16 hours of annealing. Because shifts in the peak maximum wavelength are 

not a good indicator of actual rates of etching, we determined the cadmium flux across unit surface 

area. By calculating flux we obtain size independent data that allows us to make an accurate 

comparison.  To do this, we first obtain the total amount of cadmium atoms in a particle at a given 

time. First, the diameter of the particle is calculated by using the empirical fitting function15 of the 

CdSe sizing curve, which is given by the equation below.  

CdSe: 𝐷 = (1.6122 × 10−9)𝜆4 − (2.6575 × 10−6)𝜆3 + (1.6242 × 10−3)𝜆2 − (0.4277)𝜆 +

(41.57)  

where 𝐷 (nm) is the size of a given nanocrystal sample and λ (nm) is the wavelength of the first 

excitation peak.  Using the radius obtained in the above method we can the calculate the number 
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of cadmium atoms per particle (NCd/QD) using equation 3 in ref 103:  𝑁Cd/QD =
4

3
𝜋𝑎3

2

𝑉unit
,⁡where a 

is the radius (nm) and Vunit is the volume of the unit cell containing two CdSe units. The bulk CdSe 

wurtzite unit cell is 112 Å3.16 The bulk volume as XRD studies have shown exhibited less than 

0.5% lattice contraction for the QD unit cell compared with the bulk unit cell.17 The number of 

particles in a given sample can be obtained by determining the concentration according to Beer’s 

law and multiplying by Avogadro’s number and the volume of our sample.  Finally, the flux can 

be calculated by dividing the total number of cadmium atoms by the total surface area. 

Computational Methods: Geometry optimizations were performed on the doped and undoped 

CdSe clusters using Density Functional Theory, as implemented in the ADF 2012.01 package.105 

The PBE exchange-correlation functional106 and a triple-zeta polarized basis set with frozen core 

were used for all calculations. Scalar relativistic effects were included using the zeroth order 

regular approximation (ZORA).107 Both gas phase and solvent calculations were performed. The 

solvent used is triethylamine and it is modeled as a continuum solvent with the COSMO 

model.108 In COSMO, the solvent is modeled by a dielectric constant ɛ and a radius R. For 

triethylamine, ɛ=2.44 and Rad=3.81 Å. In order to investigate the effect of solvent size, radii of 

2.5 and 4.0 Å are also investigated. 
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Figure 3.1109 Low resolution TEM image of 4% gallium doped CdSe quantum dots. The 

inset indicates the size and size distribution of the dots. (Reprinted with permission from 

ref. 110. Copyright © 2015 American Chemical Society.) 

 

3. Results and Discussions 

In this work, gallium doped CdSe nanoparticles are obtained from a modified single 

precursor nanoparticle growth method.26 TEM images of the 4% gallium doped particles (Figure 

3.1) showed a relatively uniform shape and narrow normal size distribution, similar to that reported 

by Cumberland et al.26 The HRTEM images (Figure 3.2) showed characteristic spacings of [100] 

plane from wurtzite structured CdSe crystals.  

The presence of wurtzite structured CdSe was further confirmed by XRD analysis (Figure 

3.3) where the characteristic (103) peak was identified, which is in accordance with statistical 

analysis of all spacings obtained from the diffractograms. The (012) spacings of the particles 

showed an increase when doped with gallium (Figure 3.3B), indicating possible lattice expansion 

as more dopants are introduced during the syntheses. 
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Figure 3.2 HRTEM image of 18% gallium doped CdSe dots indicating the wurtzite 

structure. (Reprinted with permission from ref. 110. Copyright © 2015 American Chemical 

Society.) 
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Figure 3.3 (A) Powder XRD of gallium-doped 5% CdSe quantum dots. The figure also 

contains the simulated CdSe XRD for wurtzite, zinc blende, and rock salt structures 

including size effect (4 nm) and lattice strain 1.5% lattice. (B) Histogram of lattice spacing 

determined from the HRTEM images of gallium-doped (2–18%) CdSe quantum dots. 

(Reprinted with permission from ref. 110. Copyright © 2015 American Chemical Society.) 
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Addition of an increasing amount of metal chloride to the quantum dot growth solution 

produced a nearly linear relation between the absorption maximum and the percentage of metal 

ion dopant (Figure 3.4). Particles doped with indium exhibited similar shifts in the absorption 

spectrum, but not with sodium (inset). It is plausible that during the early stages of 

crystallization, dopant ion exchange into the complex accelerates crystallization, producing 

larger particles, which gives rise to absorption of particles at longer wavelengths. As indicated in 

Figure 3.4, the atomic radii of the cadmium, gallium, indium and sodium are similar. The size of 

sodium atom (also shown in Figure 3.4) differs greatly from the cadmium atom, therefore no 

sodium exchange into the complex is expected resulting in little impact on the growth kinetics. 

How gallium and indium doping may produce the larger sized CdSe QDs is discussed below. 

 

Figure 3.4 Impact of InCl3 and GaCl3 on the CdSe quantum dots synthesis. The final 

absorption peak maximum of the gallium- and indium-doped CdSe quantum dots 

produced from Li4[Cd10Se4(SPh)16] complex. The inset shows that the addition of NaCl to 

the synthesis does not have any impact on the absorption wavelength of the CdSe QDs. The 

text inset shows the atomic radii of the metal ions relevant to this work in pms. (Reprinted 

with permission from ref. 110. Copyright © 2015 American Chemical Society.) 
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The original mechanism described by Cumberland et al.26 has shown that a fragment of the  

Li4[Cd10Se4(SPh)16] is held together during the quantum dot synthesis in HDA. These fragmented 

CdSe clusters aggregate to form larger CdSe quantum dots. This is in contrast to the CdSe hot 

injection synthesis in TOPO, which starts out with precursor molecules from basic constituents of 

CdSe. From the doping perspective, the TOPO synthesis contains organic phosponic acids that 

could inhibit the incorporation of transition metal dopants due to complexation.110 In the presence 

of HDA, which is a weak organic base, this complexation is expected in a lesser amount. Previous 

work has shown that the HDA synthesis has been successfully utilized to produce various doped 

CdSe quantum dots.97a Previously, it has been found that tin and indium dopants accelerate the 

growth of quantum dots, resulting in larger particles. Here, the impact of the GaCl3 is investigated 

on the final CdSe product following the synthesis. In these experiments, the amount of 

Li4[Cd10Se4(SPh)16] is held constant while the relative amount of GaCl3 is varied. The finite 

amount of complex used in the experiments also implies that the number of dots vs. their final size 

has a fixed relationship determined by the conservation of mass if all the precursor molecules are 

reacted. Figure 3.4 shows that the final size (bandgap in wavelength) exhibits a pseudo-linear 

relationship in the concentration regimes investigated. An increasing amount of GaCl3 produces 

CdSe quantum dots where the bandgap is shifted to longer wavelengths.  This red-shift is primarily 

associated with the size change and no significant band bending is observed. Figure 3.5 shows the 

bandgap variation of gallium doped (0-18%) CdSe quantum dots vs. the size determined from 

TEM analysis. The experimental sizing curve for wurtzite CdSe quantum dots is also shown.  
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Figure 3.5 The absorption peak maximum position of gallium doped CdSe quantum dots 

(0-18% gallium content) with respect to the measured size of the dots. The error bar 

indicates the measurement error determined from TEM analysis. The red curve taken 

from literature is the calculated bandgap vs. size of wurtzite CdSe quantum dots. 

(Reprinted with permission from ref. 110. Copyright © 2015 American Chemical Society.) 

Since the nucleation and growth are competing processes in this synthesis due to the finite 

amount of precursor available in the synthesis, the result of the GaCl3 producing larger CdSe dots 

can be interpreted either as the effect of dopant on the nucleation reducing the barrier height for 

forming the initial nuclei or the impact of dopant on the growth of the particles. Previously, it has 

been observed that tin and indium chlorides enhanced the growth rate of the quantum dots under 

very similar synthetic conditions. Here, we think both nucleation and growth have been accelerated 

due to the impact of the presence of gallium chloride. We propose that the origin of the increased 

growth rate of the dots is via exchange of the metal ion to the [Cd10Se4(SPh)16]
4- complex by 

replacing the Cd2+ with a single or multiple Ga3+ ions. The resulting Li4-xGaxCd10-xSe4(SPh)16]
4-x 

complex will lead to the decreased overall charge of the cadmium and selenium containing 

complex anion, leading to the increased relative reaction rate observed experimentally. Confirming 

this hypothesis, the addition of sodium chloride to the growth solution does not produce an 

observable change on the size of the CdSe quantum dots under these conditions (see Figure 3.4 

inset). This is possibly because the size of sodium is significantly larger than gallium in comparison 
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to the cadmium in the Li4[Cd10Se4(SPh)16] complex. In support of this hypothesis, the literature 

shows evidence of metal ion exchange into the analogues of Li4[Cd10Se4(SPh)16] at relatively low 

temperatures.111  

 

Figure 3.6 DFT optimized CdSe:Ga structures in the gas phase. The relative energies in 

black bold correspond to the optimized structures in the gas phase. The relative energies in 

red bold correspond to the optimized structures in triethylamine solvent. Structure 1 is the 

most energetically favorable. Color coding: blue = Cd, red = Se, orange = S, white = H, and 

dark green = Ga. (Reprinted with permission from ref. 110. Copyright © 2015 American 

Chemical Society.) 

Our DFT calculations suggest that the gallium dopant could potentially be incorporated 

into the very core of the Li4[Cd10Se4(SPh)16] complex, which would explain why the growth 

conditions can produce gallium doped CdSe quantum dots. The cadmium atom that is most likely 

to be replaced by the gallium is one of the core cadmium atoms in the complex, as also shown in 

Figure 3.6. In fact, the preferred doping position for Ga is one that coordinates to two Se atoms 

and two S atoms. On the other hand, coordination to four S atoms is highly unfavorable in the gas 

phase. It is interesting to see that complexes (1) and (2) are quite similar, with Ga coordinated to 

two Se atoms and two S atoms, yet complex (2) is higher in energy than (1). One difference here 

is the trans arrangement of the hydrogen atoms coordinated to the two S atoms in (2) and the cis 

arrangement of these hydrogens in (1). The Ga-Se bond lengths are both 2.42 Å for (2). The Ga-

Se bond lengths are 2.42 and 2.40 Å for (1), which is quite similar. In addition, the Ga-S bond 

lengths for (2) are 2.41 Å whereas they are 2.40 and 2.39 Å for (1). A slightly larger distortion 

occurs when one looks at the bond length between the sulfur atoms coordinated to the gallium and 

their adjacent cadmium atoms. In fact, for (2) these distances are 2.81 Å whereas for (1) they are 

2.78 and 2.79 Å. We now compare the geometries of the undoped and doped complexes. Relevant 

bond distances are summarized in Table 2. For the undoped complex, the average Cd-Se distance 

is 2.70 Å (±0.01 Å). Upon gallium doping in (2), the Ga-Se bond distance is 2.42 Å, which is 
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nearly 0.3 Å smaller than the corresponding Cd-Se bond length in the undoped complex. On the 

other hand, the average Cd-Se bond distance is 2.71 Å for (2), similar to the undoped complex. 

For (1), the Ga-Se distances and Cd-Se distances are similar to (2). We label the position of the 

doping gallium atom in (1) D1 and the position of the Ga dopant in (2) D2. Due to symmetry, D1 

and D2 have two nearly equivalent positions in the complex. The Cd-S distances at position D1 

and its geometrical equivalent are 2.75 Å for the undoped complex with deviations smaller than 

0.01 Å. For (2), the Cd-S distances at position D1 and its geometrical equivalent are 2.70 Å on 

average, with deviations up to 0.02 Å. This value is 0.05 Å smaller than for the undoped complex.  

For (1), the distance between the gallium at position D1 and the adjacent S atom is 2.40 Å on 

average. At the symmetrically equivalent position, the Cd-S distance is 2.72 Å on average, similar 

to the undoped complex and (2). This yields an average metal-sulfur distance of 2.56 Å. Overall, 

gallium doping induces large distortions. At the D2 doping position and its symmetrical equivalent, 

the average Cd-S bond length for the undoped complex is 2.79 Å with deviation less than 0.01 Å. 

This value is 0.05 Å larger than the Cd-S length at the D1 position for this same complex. For (2), 

the Ga-S distance at D2 is 2.41 Å whereas the Cd-Se distance at the symmetrically equivalent 

position is 2.75 Å. For (1), the average Cd-S bond distance at D1 is 2.74 Å, which is 0.04 Å smaller 

than the undoped complex. For complex (3), the average bond distances are very similar to the 

undoped complex but some bonds undergo very large distortions. 

Table 2 Average bond lengths of the undoped CdSe complex and Ga-doped complexes in Å 

in the gas phase. M-S (M= Cd, Ga) bond at doping position D1 of (1) and D2 of (2) and 

their symmetrically equivalent position are averaged. (Reprinted with permission from ref. 

110. Copyright © 2015 American Chemical Society.) 

 CdSe Undoped 

complex 

CdSe-Ga complex 

(1) 

CdSe-Ga complex 

(2) 

CdSe-Ga complex 

(3) 

Cd-Se 2.70 (±0.01) 2.72 (±0.05) 2.71(±0.06) 2.69(±0.05) 

Ga-Se N/A 2.41 (±0.01) 2.42 N/A 

M-S (D1) 2.75 (±0.01) 2.56 (±0.18) 2.70 (±0.02) 2.76 (±0.17) 

M-S (D2) 2.79 (±0.01) 2.74 (±0.03) 2.58 (±0.17) 2.80 (±0.20) 
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The same complexes are optimized in triethylamine solvent. In this solvent, (1) is still the 

most stable complex. It is interesting to note that (3) becomes slightly lower in energy than (2) in 

triethylamine solvent, indicating that the solvent stabilizes this doping position. Also, (2) becomes 

much higher in energy than in the gas phase, indicating that the solvent destabilizes this doping 

position. Table 3 shows the relevant bond lengths of the undoped and three gallium-doped 

complexes. We can see that the bond distortions in (3) are smaller than in the gas phase. In order 

to investigate the influence of solvent molecule size, solvent molecule radii of 2.5 and 4.0 Å are 

investigated. The results are reported in Table 4. Regardless of the solvent radius, complex (1) 

remains by far the most energetically favorable. In case of a small solvent radius (Rad=2.5 Å), 

complexes (2) and (3) become similar in energy. For a solvent radius of 4.0 Å, (2) is 0.38 kJ/mol 

lower in energy than (3). Note that for triethylamine which has a solvent radius of 3.81 Å, (3) is 

0.39 kJ/mol lower in energy than (2). Therefore, gallium doping is somewhat sensitive to the nature 

of the solvent. 

Table 3 Average bond lengths of the undoped CdSe complex Ga-doped complexes in Å in 

triethylamine solvent. M-S (M= Cd, Ga) bond  at doping position D1 of (1) and D2 of (2) 

and their symmetrically equivalent position are averaged. (Reprinted with permission from 

ref. 110. Copyright © 2015 American Chemical Society.) 

 CdSe Undoped 

complex 

CdSe-Ga complex 

(1) 

CdSe-Ga complex 

(2) 

CdSe-Ga complex 

(3) 

Cd-Se 2.70 (±0.01) 2.71 (±0.05) 2.71 (±0.06) 2.69(±0.04) 

Ga-Se N/A 2.42 (±0.01) 2.42 N/A 

M-S (D1) 2.74 (±0.02) 2.55 (±0.17) 2.70 (±0.03) 2.74 (±0.13) 

M-S (D2) 2.77 (±0.01) 2.73 (±0.03) 2.57 (±0.17) 2.78 (±0.15) 

 

Table 4 Relative energies of Ga-doped clusters in kJ/mol for different solvent radii with 

=2.44. (Reprinted with permission from ref. 110. Copyright © 2015 American Chemical 

Society.) 

Complex Solvent Rad=4.0 Solvent Rad=2.5 
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(1) 0 0 

(2) 7.37 8.07 

(3) 7.75 8.03 

The gallium doped CdSe quantum dots are investigated with respect to the changes 

induced by the dopant. The replacement of the Cd2+ with a Ga3+ potentially produces an n-type 

material. In n-type material the Fermi level of the material is increased with respect to the 

intrinsic semiconductor. Previously, it has been found that due to quantum confinement these 

dopants may ionize at higher temperature compared to doping the same bulk semiconductor. 

Cyclic voltammetry is a valuable technique in characterizing the quantum dots because it can be 

used to find the band edge electronic states of the quantum dots including the defect states 

present.112 Cyclic voltammetry is conveniently performed under mild experimental conditions 

and can be performed in solution.113 One problem that must be taken into consideration is that 

the ligands on the quantum dots are extremely non-polar and will not dissolve in polar solvents; 

however, there are few non-polar solvents that are electrically conductive enough to effectively 

characterize the electrical properties of a sample. Therefore, the samples are dissolved in non-

polar toluene and then mixed with polar N,N-dimethyl sulfoxide (DMSO) and a supporting 

electrolyte (Tetrabutylammonium perchlorate (TBAP)). Also, moisture, oxygen and CO2 present 

in the air can interfere with potentiostat measurement; therefore, all reactions must take place in 

the inert atmosphere glovebox and all solvents used are anhydrous. According to the original 

paper, the bandgap will vary the electrochemical potential of both conduction band (CB) and 

valance band(VB); however, in the narrow size range we are investigating the CB and VB are 

roughly independent of size.  

A key goal to achieve successful gallium doping is to increase the conductivity of QD 

films. This is demonstrated by measuring the current voltage characteristics of the QD films 

assembled from the purified doped and undoped QDs. Here, the gallium-doped and undoped 

CdSe QD film current voltage characteristics are presented along with the indium-doped CdSe 

QDs. The transport properties are sensitive to the type of ligand present on the surface of the 

CdSe QDs. The effect of ligand exchange, Ga- and In-dopants on the transport properties of 

doped CdSe films is demonstrated by the DC current density (J)–voltage (V) characteristics of 
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the electron-only devices. The CdSe-based electron-only device consists of Ag:self-assembled 

monolayer (SAM), CdSe, and Ag layers. The Ag:SAM layer blocks the hole injection to the 

CdSe. As shown in Figure 3.7, the treated electron-only device exhibits a strong enhancement of 

electron transport over the untreated device. In the treated device J decreases after EDT ligand 

exchange treatment, as shown in Figure 3.7. This result is again consistent with the fact that the 

ligand (EDT) exchange increases the electron transport in CdSe phase. 

 

Figure 3.7 (a) J–V characteristics of an electron only doped CdSe (5% In–CdSe, 5% Ga–

CdSe) device measured with incident light intensities from 100 mW/cm2 AM 1.5 solar 

simulator using pyridine ligand exchange treatment. (b) J–V characteristics of an electron 

only CdSe device measured with incident light intensities from 100 mW/cm2 AM 1.5 solar 

simulator after EDT ligand exchange treatment. (Reprinted with permission from ref. 110. 

Copyright © 2015 American Chemical Society.) 
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Figure 3.8 Cyclic voltametric measurements of the valance and conduction band of the 

CdSe quantum dot samples. (Reprinted with permission from ref. 110. Copyright © 2015 

American Chemical Society.) 

Here, undoped and doped CdSe QDs are grown with similar bandgaps to obtain accurate 

comparisons. From Figure 3.8 it appears that both the CB and VB of the gallium doped samples 

are consistently above the undoped CdSe quantum dots; however, the difference is small. It is 

thought that the introduction of n-type dopants will increase the Fermi level; therefore, this 

observation is consistent with the n-type nature of the CdSe dots upon gallium doping. The 

relatively small difference between the doped and undoped CdSe quantum dots is most likely due 

to the low ionization of the dopant at room temperature. We have attempted to obtain similar data 

at elevated temperature without success due to difficulty to stabilize temperatures above room 

temperature.  

The increase of the Fermi level may be exhibited by the QD becoming a more effective 

reducing agent in redox reactions. This behavior is predicted by Guyot-Sionnest et al. in their early 

work.114 In order to assess the difference between the reactivity of the undoped and doped dots in 

redox reactions, the dissolution kinetics of undoped CdSe compared to gallium doped CdSe is 

studied. The hypothesis is that after applying  an oxidative etching method identical to the one 

developed by Li et al.,115 the observed kinetics will be sensitive to the presence of dopant atoms 

introduced into the CdSe QDs. Specifically, it can be hypothesized that the introduction of 3+ ions 



53 

in place of Cd2+ will lead to more reducing quantum dots.  In order to accurately compare the rates 

of removal of atoms from the different sized quantum dots, the flux of CdSe removal (# of CdSe 

units/surface area) across the unit surface area is calculated from the size changes.  The results 

from etching experiments show a significant difference between doped and undoped systems. The 

flux of CdSe removal of tin-, indium-, and gallium-doped and undoped quantum dots is given in 

Figure 3.9.  In addition to the gallium doped CdSe, indium and tin doped quantum dot are also 

prepared the data are also shown in Figure 3.9. Our results show gallium doped CdSe with the 

largest flux, followed by tin, and then indium, and with undoped having the lowest flux. When we 

compare this to calculations of activation energy levels an inverse trend is observed. The trend 

observed in the reactivity order of these differently doped CdSe Quantum dots is not surprising as 

gallium will much more readily donate electrons in comparison to tin or indium. 

 

Figure 3.9 The relative rate of cadmium removal in various doped CdSe quantum dots. 

Each quantum dot is doped at 5%. (Reprinted with permission from ref. 110. Copyright © 

2015 American Chemical Society.) 
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Figure 3.10 Photoluminescence vs 1/temperature of 2.5% gallium doped CdSe Quantum dots 

upon addition of more ZnS shell material. (Reprinted with permission from ref. 110. 

Copyright © 2015 American Chemical Society.) 

In addition to the changes predicted by the chemical behavior of the doped quantum dots, 

doping has a significant impact on the photoluminescence properties of the quantum dots. In n-

type semiconductors, the dopant atom will ionize followed by delocalization of the electron in the 

conduction band. In case of quantum confined systems, this delocalization is restricted to the 

discrete levels determined by the shape and size of the semiconductor. From the dopant ionization, 

the photoluminescence of the dots are quenched due to Auger type interaction of the delocalized 

electron with the excitation from photoexcitation. In doped quantum dots, the photoluminescence 

quenching is temperature dependent and it is related to the extent of ionization of the dopant 

(variation of the dopant levels with respect to the conduction band edge from non-uniform doping). 

In order to remove the temperature dependent quenching from surface defects, the gallium doped 

CdSe QDs is prepared with the addition of ZnS shell (type I core/shell structure). The completeness 

of the shell is monitored in situ during synthesis by temperature dependent photoluminescence 

quenching between 70 and 230 °C after injection of ZnS precursor material. Once the shell is 

complete, the temperature dependent photoluminescence becomes linear with the inverse 

temperature. This is the sample that is used for further characterization for both doped and undoped 

CdSe QDs. Figure 3.11 shows the Energy-dispersive X-ray spectroscopy (EDX) trace of ZnS 
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coated gallium doped CdSe QDs. The EDX trace confirms the presence of all the expected 

constituents of the material present in the material. The HRTEM image also shows the lattice 

fringes consistent with the presence of the ZnS shell.  

 

Figure 3.11 EDX line scan of 4 groups of gallium doped CdSe/ZnS core shell structures. The 

data clearly shows the presence of gallium and gallium together in the CdSe quantum dots. 

The EDX also confirms the Zn, S and Se atoms in these dots (not shown). (Reprinted with 

permission from ref. 110. Copyright © 2015 American Chemical Society.) 

The temperature dependent photoluminescence of the ZnS coated gallium doped CdSe is 

investigated in the etching APOL solution, which is known to affect the surface of the dots  

resulting in strong variations in the photoluminescencewhen the ZnS shell is incomplete. However, 

we did not observe this variation during the time scale of the investigation; therefore, it is 

concluded that the variation of the photoluminescence is the result of the dopant ionization. The 

results are shown in Figure 3.12. The integrated photoluminescence of the QDs is plotted vs. 

inverse temperature and normalized to unity at 80 ºC. The error bar indicated the deviations over 

5 subsequent measurements for both doped and undoped quantum dots. The results indicated the 

gallium doped dots have steeper temperature dependence in agreement with the expected dopant 

ionization. Since the difference is observable in the 20-80°C temperature range, we estimate that 

the dopant ionization is in the range of few tens of meV (room temperature would be ~25 meV). 

The temperature dependent time-resolved photoluminescence confirms this difference in that it 

shows a clear lifetime shortening of the bandedge emission (Figure 3.13). The solution based 

photoluminescence data provide information on how the ensemble average of the PL of the doped 

dots differs from the undoped QDs.  
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Figure 3.12 Temperature dependence of photoluminescence intensity of gallium doped and 

undoped CdSe/ZnS core shell quantum dots. (Reprinted with permission from ref. 110. 

Copyright © 2015 American Chemical Society.) 

 

Figure 3.13 Photoluminesence lifetime of the bandedge emission of undoped and gallium 

doped CdSe/ZnS core shell quantum dots solution in APOL taken at room temperature and 

80°C. (Reprinted with permission from ref. 110. Copyright © 2015 American Chemical 

Society.) 
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Bulk experimental measurements do not provide sufficient information about the variations 

of dopant from particle to particle. To investigate how dopant concentration may vary from 

particle-to-particle, single particle photoluminesence measurements of the gallium doped and 

undoped CdSe quantum are performed. All dots exhibit blinking behavior typical to CdSe QDs.116  

In these experiments, the QD blinking are investigated as a function of temperature to provide 

insight into how the ionized gallium dopant might affect the photoluminescence. The blinking 

statistics are fitted with a power law and the power law coefficient is investigated as a function of 

temperature. In Figure 3.14, the average height of the blinking is measured at the same excitation 

power levels, which shows the height of the blinking steps is smaller for the doped QDs. The 

smaller step size is indicative that the doped dots are less emissive due to the presence of the dopant 

levels, which provide recombination sites for the excitons generated in the material. In addition, 

the power law coefficient of the doped QDs appears much larger (shorter on-time) than the 

undoped CdSe QDs. This shorter on-time suggests that the dopant promotes the dynamical 

pathways that lead to the dark excitonic state of CdSe.117 The power law coefficient of the doped 

QD also exhibit somewhat stronger temperature dependence as expected from the dopant 

ionization. Interestingly, the off-time power law is not influenced by the presence of the doped 

QDs. 
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Figure 3.14 UPPER Amplitude of the fluorescence blinking of the gallium doped and 

undoped CdSe quantum dots at various temperatures. LOWER The change of the power 

law coefficient (ON) of the blinking of the gallium doped and undoped CdSe/ZnS core shell 

structures as function of temperature. In both figures, the error bar represents the 

variation of the signal from particle to particle determined as standard deviation. 

(Reprinted with permission from ref. 110. Copyright © 2015 American Chemical Society.) 

 

4. Conclusions 

In this work, the preparation and characterization of gallium doped CdSe quantum dots are 

reported. The gallium induces important chemical, electrochemical and spectroscopic changes in 

the quantum dots that are consistent with n-type behavior of a semiconductor. The gallium doping 

of CdSe quantum dots might be an effective way to manipulate the electrical properties of quantum 

dot films and solar cells at near room temperature.  
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Chapter 4 - Indium and Gallium Doped CdSe Quantum Dot for 

Hybrid Solar Cell 

 

1. Introduction 

 

The so called 3rd generation solar cells have been the interest of the scientific community 

with a promise of providing cheap and efficient photovoltaic devices.118 One of the 3rd 

generation solar cell concepts depends on a combination of inorganic and organic 

photosensitizers.119 The inorganic components can consist of quantum confined semiconductor 

structures118c, 120 (nanoparticle, nanorod, tetrapods) that are synthesized via colloidal route 

combined with conductive polymers such as P3HT.121 Varying the composition, size and shape 

of the inorganic component these photovoltaic cells allows capturing and utilizing photons from 

different parts from the solar output. While these solar cells are proven to be functional, it is 

difficult to manufacture them with high overall power conversion efficiencies; therefore, 

research needs to focus on concepts that can identify components that are responsible for the lack 

of improvements. 

Among the quantum dot (QD) materials, CdSe QDs received significant attention in this 

quest of producing efficient solar cells. Although CdSe is not a sustainable material, it provides a 

platform to study many different effects associated with the construction of polymer/inorganic 

solar cells.118c In addition, the bandgap of colloidal CdSe QDs (2.6-1.7 eV) overlaps reasonably 

well with the solar output to capture large portion of the sunlight’s energy. There are several 

reports that show P3HT/CdSe QDs solar cells provide somewhat efficient power conversion 

efficiencies in the few percent range.120, 122 Recently, Zhou et al. have reached 5.3% record 

power conversion efficiency in PCPDTBT: CdSe device as a result of removal of trap sites upon 

the ethanedithiol treatment.123 Dixit el al. have shown that doping the CdSe/P3HT hybrid solar 

cell with carbon nantubes can lead to significant enhancement in power conversion efficiency. 

They have argued that the carbon nanotubes quickly transport the photo-generated electrons to 

the electrodes resulting in the power conversion efficiency of 5.4%.124 Theory and experiments 
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suggests that at higher temperatures the charge transport is governed by space charge limited 

conduction influenced by traps.125 Parisi et al.122h have found that amine modification of the 

surface of the CdSe QDs show significant impact on the solar cell performance. By attaching 

butylamine to the CdSe surface, they have achieved 2.0% power conversion efficiency. Mathur 

et al.122b have shown the surface of CdSe modified by addition of ZnS leading to 5.1% power 

conversion efficiency under non-standard illumination conditions. Parisi et al.122n even 

manipulated the ratio of Cd to Se resulting in variations in the conversion efficiencies of this type 

of solar cell. Their results have shown that excess amount of cadmium with respect to selenium 

could be favorable to produce efficient solar cells.  

From these previous observations, it is clear that uncontrolled and controlled defects in 

CdSe influence solar energy performance significantly in the CdSe/P3HT photovoltaic device. 

Here, the effect of chemical doping (controlled introduction of defects) of CdSe QDs on the 

performance characteristics of bilayer CdSe/P3HT solar cells is investigated. In general, the 

process of doping has been instrumental in first generation solar cells to achieve the high 

efficiency of the silicon p-n junctions. Similar expectations can be raised towards doping QDs to 

improve the efficiency of these types of solar cells. Doping QDs during colloidal growth is 

difficult90, 126 due to the limited understanding of the chemical steps involved during growth, 

self-purification of doped QDs17 and the highly statistical nature of the doping process.126a CdSe 

has been doped successfully for the purpose of creating magnetic dilute semiconductors126b, 127 or 

providing efficient energy transfer from QDs to dopant levels.128 Early on, Guyot-Sionnest et al. 

have pointed out that the bottleneck of the widespread application of QDs is the improvement of 

their electrical conductivity. Their work addressed this via electrochemical doping of CdSe 

QDs.82 Electrical doping of CdSe QDs through chemical means has also been investigated by 

introducing tin and indium into the CdSe QDs.95 Photoluminescence quenching experiments 

show that the doped QDs exhibit increased temperature dependence due to the ionization of the 

dopant levels to the 1Se level that turn the CdSe QD into a more n-type.82 Here we expect to see 

that the doping will impact both the trap states in the composite solar cells and the mobility of 

the major and minority carriers. In agreement with the previous temperature dependent 

measurements, the photovoltaic devices constructed in this work show inverted behavior that 

potentially opens up ways to utilize the solar cells more efficiently combining them with solar 

concentrators. 
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2. Experimental Section 

Chemicals:  All chemicals are used as purchased with the exception of hexadecylamine, which is 

vacuum distilled at 2 torr. InCl3, SnCl2, GaCl3, diethylzinc, hexamethyldisilithiane and tri-n-octyl 

phosphine (TOP) are all stored in an inert atmosphere/low water vapor concentration glovebox.  

Tri-n-octylphosphine oxide (TOPO) and 2-amino-propanol (APOL) are used as purchased and 

stored under ambient conditions. 

Synthesis:  Doped and undoped CdSe core particles are synthesized using the Li4[Cd10Se4(SPh)16] 

single source precursor (SSP) prepared as reported by Cumberland26 in hexadecylamine with metal 

chloride as the doping agent.  Briefly, 50 g of distilled hexadecylamine and 0.6 g of the (SSP) are 

loaded into a three-neck flask and passed into a glovebox where the appropriate amount of metal 

chloride (gallium, tin, indium) is added. All dopant load percentages are based on the total 

cadmium content of the reaction.  The reaction flask is purged on an Ar gas line for 20 minutes 

before being very slowly heated to 70 °C with careful attention made to minimize temperature 

overshoot, as the stability of the magic sized nanocluster is extremely sensitive to temperature.  At 

this time the flask is then heated from 70 oC to 225 oC at the rate of 1 oC per minute.  The flask is 

then cooled to 180 ⁰C and annealed for 18 hours to decrease the size distribution.   

Ligand exchange of undoped and doped CdSe QDs: Before being incorporated into P3HT 

polymer to form P3HT/CdSe hybrid blends, undoped and doped CdSe QDs with HDA capping 

ligands were treated by hexanoic acid-assisted washing procedure. Typically, 2 mL as-synthesized 

QDs were added to 10 mL hexanoic acid at 110 °C and stirred for 30 min. 20 mL anhydrous 

methanol was added and stirred to precipitate QDs, which were later recovered by the 

centrifugation. Then 1.5 mL chloroform and 4.5 mL methanol were added to precipitate the QDs 

again. After being recovered by centrifugation, QDs were finally dispersed into anhydrous 1,2-

dichlorobenzene (1,2-DCB) at a concentration of about 30 mg/ml, showing a very good solubility.  

Assembly and performance measurement of undoped and doped CdSe QD/P3HT 

photovoltaic devices: The whole photovoltaic device structure consists of the following sequence 

of films and thicknesses: ITO/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS)(40 nm)/ P3HT: CdSe (120 nm)/Al (100 nm).129 PEDOT:PSS (Baytron PVP CH 

8000) is spin cast onto a 0.5 × 0.5 in2 glass substrate with pre-patterned ITO electrodes. The 

PEDOT: PSS is useful as a hole transport and smooths the surface of ITO. The P3HT in 1,2-DCB 

solution with different ratio concentrations were blended with undoped and doped CdSe QDs in 



62 

1,2-DCB solution.  The blended solution is spun at 1000 rpm, dipped in 0.002 M EDT solution for 

30 s, and exposed to solvent annealing overnight. The coated device was annealed at 175 °C for 

10 min, and then quickly cooled to room temperature. The 10 nm thick Ca layer was evaporated 

at a rate of 0.1 nm/s as exciton blocking layer, which is followed by top contact Al layer. The top 

Al contact was evaporated through a shadow mask to generate an array of patterned electrodes. 

The final device area was defined by the overlap between the top and bottom electrodes. Current-

voltage (J-V) characteristics of the finished devices are measured in a nitrogen atmosphere 

glovebox with a source-meter (Keithley 6487). The light response was measured under 

illumination from a 100mW/cm2 AM1.5 solar simulator. Transmittance and absorbance spectra of 

the device active layer were measured with a Cary 5000 UV-Vis-NIR dual-beam 

spectrophotometer. Photoluminescence was performed on a Cary Eclipse fluorescence 

spectrometer equipped with a xenon flashlamp. 

Structural characterization: A FEI FEG analytical electron microscope operated at 200 kV 

was used for transmission electron microscopy (TEM). Elemental mapping was performed using 

energy-dispersive X-ray spectroscopy (EDS) in conjunction with a TEM operating in STEM 

mode.  

Structure and chemical characterization of doped CdSe QDs: The selective area electron 

diffraction pattern (SAED) and EDX spectra in Figure 4.1 obtained from Sn doped CdSe QDs 

confirmed the chemical composition and Sn dopants (40.0%). The EDX spectrum from the Ga-

doped CdSe QDs (Figure 4.2b) shows Ga contents (5.5 at%), within the CdSe matrix. The EDX 

spectrum from the In-doped CdSe QDs (Figure 4.2d), shows a In composition (6.3 at%). The 

high concentration of the tin in the CdSe suggest alloy formation due to the preferential 

incorporation of the tin during syntheses. This has been observed previously with the same 

doping procedure. The dopant concentration affects the charge carrier density and mobility as 

shown in the discussion below.  
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Figure 4.1130 The selective area electron diffraction pattern (SAED) and EDX images of Sn 

doped CdSe QDs. (Reprinted with permission from ref. 131. Copyright © 2015 

Electrochemical Society.) 

 

 

Figure 4.2 (a) and (b) TEM and EDX images of Ga doped CdSe QDs. (c) and (d) TEM and 

EDX images of In doped CdSe QDs. (Reprinted with permission from ref. 131. Copyright 

© 2015 Electrochemical Society.) 
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J-V Characterization of electron-only CdSe Schottky devices: The effect of ligand exchange, 

Ga-, In- and Sn-dopants on the transport properties of doped CdSe films was demonstrated by 

the DC current density (J)–voltage (V) characteristics of the electron-only (Figure 4.3a) devices. 

The CdSe-based electron-only device consisted of Ag:self-assembled monolayer (SAM), CdSe, 

and Ag layers. The Ag:SAM layer blocks the hole injection to the CdSe. As shown in Figure 

4.3a, the treated electron-only device shows a strong enhancement of electron transport over the 

untreated device. As shown in Figure 4.3a and Figure 4.3b, the treated device showed a decrease 

in J after EDT ligand exchange treatment. This result is again consistent with the fact that the 

ligand (EDT) exchange increases the electron transport in CdSe phase. 

 

Figure 4.3 (a) J-V characteristicss of an electron only doped CdSe device measured with 

incident light intensities from 100 mW/cm2 AM 1.5 solar simulator using pyridine ligand 

exchange treatment. (b) J-V characteristics of an electron only CdSe device measured with 

incident light intensities from 100 mW/cm2 AM 1.5 solar simulator after EDT ligand 

exchange treatment. (Reprinted with permission from ref. 131. Copyright © 2015 

Electrochemical Society.) 

 

 

3. Results and Discussions 

The QDs used to construct the photovoltaic cell consist of indium, tin and gallium doped 

crystalline CdSe. These dopants have been reported in the literature to increase the electrical 

conductivity of bulk CdSe.131 Literature suggests that CdSe can be doped to increase the 

concentration of the electron carriers (n-type), however, recent reports by Norris et al. also show 

that CdSe QDs can be made p-type as well.98 Here the purpose of doping CdSe QDs is to 

increase the n-type of carrier in hybrid CdSe/P3HT solar cell to achieve increased performance. 
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As a representative example, the low and high resolution transmission electron microscopy 

image shows narrow size distribution (<5%) and wurtzite structure of the gallium doped CdSe in 

Figure 4.4. The CdSe QDs are grown from a single precursor Li4[Cd10Se4(SPh)16] developed by 

Yun et al.26 The gallium, indium and tin dopant is introduced into the hexadecylamine solution 

prior to the growth of CdSe QDs. The quantum dots are grown via a temperature program from 

70 oC to 225 oC at the rate of 1 oC per minute followed by an annealing step at 180 °C for 18 

hours.  

The dopant atoms introduced into the growth solution are similar in size to the cadmium 

atoms except the gallium most likely resulting in a substitutional doping. Gallium (atomic 

radius=130 pm; ionic radius 76 pm) is significantly smaller than the cadmium (atomic 

radius=155pm; ionic radius=109pm), which suggest that the doping mechanism is either 

interstitial or facilitated by the lattice contraction in these nanoparticles. The concentration of the 

dopant probably follows the poissonian distribution and proportional to the volume of the 

particles.12 For the doped QDs, the surface to volume ratio is relatively small; therefore, it is 

likely that the probability of finding the dopant atoms inside the QDs is greater than on the 

surface. Previous studies have shown that etching the surface of CdSe QDs from the single 

precursor synthesis did not change significantly the measured dopant concentration.95b Based on 

the elemental analysis (see supporting information), the tin doped QDs exhibit preferential 

incorporation of the dopant into the CdSe QDs forming an alloy of cadmium and tin with 

selenium.95a This can be due to the relatively large difference in the bind energy between 

cadmium selenide (310 kJ/mol) and tin selenide (410 kJ/mol) compared to indium selenide (247 

kJ/mol).  
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Figure 4.4 The TEM image of Ga-doped CdSe QDs.  (b) The absorption and 

photoluminescence spectra of doped CdSe QDs. (Reprinted with permission from ref. 131. 

Copyright © 2015 Electrochemical Society.) 

 

The construction of the P3HT/CdSe hybrid cell follows the preparation method described 

previously in the literature.129 Figure 4.5a shows the schematic diagram of doped CdSe/P3HT 

hybrid solar cells discussed in this work. The ITO (indium tin-oxide) electrode is coated with 

PEDOT:PSS, which acts as the anode buffer layer. Different doped CdSe QDs are used in 

conjunction with P3HT to create the type-II heterojunction. Flat-band alignment of the prepared 

hybrid solar cell is shown in Figure 4.5b. The doped CdSe QDs do not interact with the P3HT in 

the dichlorobenzene solution, however when the solvent is evaporated the photoluminescence of 

the P3HT is strongly quenched. The corresponding excitation spectra of the luminescence at 400 

nm of Ga-doped CdSe/P3HT in the solution and thin film form led to features that are in 

excellent agreement with the ground-state absorption features including a band gap onset at 600 

nm (Ga-doped CdSe QDs), shown in Figure 4.5c. The underlying quenching mechanism is in 

line with the fact that now the charge transfer within the CdSe/P3HT hybrid system dominates. 
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Figure 4.5 (a) The schematic image of doped CdSe/P3HT hybrid bi-layer solar cells. (b) 

The flat band diagram of type-II heterojunctions. (c) The photoluminescence spectra of 

Ga-doped CdSe/P3HT in solution and thin film form. (Reprinted with permission from ref. 

131. Copyright © 2015 Electrochemical Society.) 

 

As mentioned before, the electron mobility and charge carrier density depends on the 

dopant of the CdSe QDs. Therefore, the photovoltaic performance dependence on the doped 

CdSe is investigated. The current density/voltage characteristics of the photovoltaic cell are 

shown in Figure 4.6. Figure 4.6a shows the solar cell performance with different doped CdSe 

QDs layered with P3HT donor material. The current density of the cells significantly varies with 

doping. The lowest current density and open circuit voltage is observed in the case of 

photovoltaic cell constructed from undoped CdSe QDs. The cell constructed from tin-doped 

CdSe QDs exhibit very similar behavior to the undoped CdSe QDs. The performance of the 

gallium doped and indium doped samples exhibit appreciable performance increase in both open 

circuit voltage (Voc) and short circuit current density (Jsc). In case of Ga-doped CdSe/P3HT PV 

devices, the photocurrent increases from 1.6 mA/cm2 to 6 mA/cm2 compared to solar cells 

without dopant, which is about four fold increase. The Ga-doped CdSe/P3HT solar cell produces 

a power conversion efficiency of 1.2% under AM 1.5 (100 mW/cm2) solar illumination, which is 

approximately six times more compared to that undoped CdSe/P3HT cells (0.2% power 

conversion efficiency). This demonstrates that the doped CdSe QDs induced mobility and charge 

carrier density enhancement in QD solar cells can be used to effectively improve the 

photocurrent and photovoltage. The photoabsorption of the doped samples is slightly red shifted, 

in comparison to undoped CdSe QDs. The calculated change (bandgap shift and absorption cross 

section change) accounts for a maximum factor of 1.5 fold increase in performance. The 

observed increase in solar cell performance is almost 10 fold, therefore the size effect is not 

likely the major component of the observed difference for the photovoltaic cells between the 
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doped and undoped CdSe QDs. To verify that the photocurrent is the result of the absorption of 

both the P3HT and the doped CdSe, the external quantum efficiency of the device is plotted 

against the absorption spectrum of the photovoltaic cell in Figure 4.6b. The photocurrent 

contribution is from the absorption of the P3HT and the CdSe QDs. 

 

Figure 4.6 (a) The photovoltaic current density- voltage (J-V) characteristics of doped 

CdSe/P3HT hybrid bi-layer solar cells. (b) The photoabsorption (black curve) and external 

quantum efficiency (EQE, red curve) spectra of Ga-doped CdSe/P3HT bilayer solar cell. 

(Reprinted with permission from ref. 131. Copyright © 2015 Electrochemical Society.) 
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Figure 4.7 (a), (b), (c) and (d) The normalized electron conductivity of doped CdSe 

quantum dot (black curves) and doped CdSe/P3HT hybrid solar cell power conversion 

efficiency (PCE, red curves), undoped, Sn-doped, In-doped and Ga-doped CdSe shown 

respectively. Error bars represent the standard deviation. (Reprinted with permission from 

ref. 131. Copyright © 2015 Electrochemical Society.) 

 

 

Figure 4.8122j Ideal current-voltage curve of a photovoltaic device. Max: maximum; oc: 

open circuit; sc: short circuit. (Reprinted with permission from ref. 123j. Copyright © 2008 

Elsevier B.V.) 
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Although this study deals primarily with the effects of doping on the carrier density and 

conductivity, it is nevertheless important to discuss potential methods of optimization of its 

power conversion efficiency. As demonstrated in Figure 4.8, the power output of a photovoltaic 

device under illumination can be expressed as 𝑃 = 𝐼𝑉, where 𝐼 is the current and 𝑉 is the 

voltage. The power output is then represented as the area of the square formed by any point on 

the current-voltage curve and the x- and y-axis. Maximum power is achieved when this area is 

greatest, as noted by 𝑃𝑚𝑎𝑥. Our device showed acceptable open circuit and short circuit currents, 

which are important conditions for achieving high power output, but lacks in that the current-

voltage curve is almost linear. Improvements and tuning could be made so that the curve is more 

square-like. Efforts such as identifying possible leakage of current at the edges of the device122j, 

and direction of current flow through the layers of the device should be made to address this 

issue in further studies. 

Upon doping, traditional bulk semiconductors exhibit strong temperature dependent 

photoconductivity and power conversion efficiency due to the mobility change and the ionization 

of the dopants. To characterize the changes in doped CdSe QD conductivity upon thermal 

annealing, Schottky devices are prepared. The photovoltaic cells that contain doped QDs exhibit 

this strong temperature dependent behavior in their photoconductivity (Figure 4.7) and power 

conversion efficiency (PCE). There is a strong correlation between the temperature dependent 

photoconductivity of the doped CdSe QDs and the temperature dependent PCE of the hybrid 

photovoltaic cells. The highest power conversion efficiency is reached within the photovoltaic 

cell that contains the gallium doped CdSe QDs. The power conversion efficiency under AM 1.5 

illumination reaches 1.2% at room temperature and increases over 2% above 40 °C. The isolated 

ZnS coated gallium doped CdSe QDs exhibit significant photoluminescence quenching and 

shorter excitonic lifetime above room temperature range compared to the undoped CdSe dots due 

to Auger assisted recombination from the dopant ionization. The correlation between the 

photoluminescence quenching and the increase in efficiency suggests that the key reason of the 

efficiency increase may be the availability of electrons that can fill up some of the available trap 

sites. The current-voltage (I−V) characteristics of the cells at room temperature are ohmic for 

low voltages and turned to follow the dependence of I−Vu, with the exponent u less than 1. The 

power law dependence of I−V can be interpreted as a trap-controlled space charge-limited 

current. By adopting the model formulated by Lampert, the exponent u represents the trap 
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distribution, and less values of u correspond to a decreased number of traps.132  The shape of the 

conductivity curve of Figure 4.7 under different annealing temperatures, suggesting that the 

decrease in electronic coupling energy is driven by the dopant incorporation that decreased CdSe 

QD surface traps. To gain further insight, the I−V measurement of doped CdSe QDs/P3HT 

hybrid solar cells under annealing is performed based on the bi-layer heterojunction structure, 

and this device geometry verified that the current transport followed the temperature dependent 

CdSe conductivity enhancement by the dopant incorporation. The PCE of hybrid PV devices 

show a consistent behavior as the temperature dependent conductivity of doped CdSe QDs. 

There are two outcomes of different doped CdSe QDs: (1) increasing conductivity, and (2) 

reducing surface traps, thereby increasing the carrier density of QDs. The first outcome enhances 

device charge mobility, and the second improves the charge carrier density. Thus, thermal 

annealing alone cannot lead to device-applicable quality for CdSe QDs. To attain high 

conductivity, carrier density as well as long carrier lifetime, the development of a controllable 

doping scheme coupled with temperature annealing is key. In addition, the inverted temperature 

behavior of the photovoltaic cell characteristics is expected for the cell made of doped materials 

with low ionization energies. This inverted characteristic could be efficiently utilized in solar 

concentrators where the photovoltaic cell is expected to operate at elevated temperatures. 

  

4. Conclusions 

A simple method to dope and control the photoconductivity and charge carriers of CdSe 

QDs is described, leading to an efficient hybrid solar cell. The chemical dopants (Ga, In and Sn) 

of CdSe QDs not only results in a controllable photoconductivity, but also a stronger electronic 

interaction at elevated temperatures. The high conductivity and stronger electronic coupling of 

doped CdSe QDs can largely enhance charge separation and transport efficiency, which are 

essential for hybrid inorganic-organic solar cells. The results shown here represent a potentially 

powerful tactic for increasing the efficiency of hybrid solar cells via enhancing the 

photoconductivity and controlling electronic interaction between the organic and inorganic 

materials. 
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Chapter 5 - Induction and Microwave Heating in Syntheses of CdSe 

Quantum Dots: A Comparative Study of Effects of Extreme High 

Heating Rate on Their Nucleation and Growth 

1. Introduction 

Semiconducting nanoparticles have a great variety of unique properties that are different 

from their bulk material because of the quantum size effect and large surface to volume ratio. 

These properties give them interesting application potential in solar cells1, batteries, bio-imaging2, 

catalysis3 and data storage4. Due to the strong dependence of these properties on their crystalline 

size, controlling the size of these particles is crucial to tuning these characteristics5. CdSe quantum 

dots (QDs) have been studied extensively as a model system of such particles. The ability to 

manufacture mono-dispersed CdSe quantum dots in bulk is of critical interest since their 

photoelectronic properties are closely related to their size and low-cost fabrication make them 

desirable in application compared to conventional silicon-based solar cells. In order to study these 

properties with respect to the size variation, it is of great importance to be able to produce highly 

homogeneous, mono-dispersed nanoparticles in a bench-top synthetic route, with potential of 

scaling up to industrial production, which should also provide control over their surface chemistry, 

crystalline structure and shape5.  

Induction heating is a heating method that involves generating Eddy current in a conductor 

by applying rapidly alternating magnetic field, usually produced by an electromagnet, on the 

workpiece. The heat generated in the material through Joule heating is proportional to the 

resistance of the conductor. The increased temperature of the conductor results in increased 

resistance, which increases amount of heat generated, forming a positive feedback where the 

heating rate increases with time. In comparison, the heat generated by microwave heating, which 

is result of the thermal rotations of the dipoles in the workpiece, is linear with respect to time. Due 

to the different characteristics and mechanisms of the two heating method, it is reasonable to expect 

induction heating to be an interesting method to be applied to nanoparticle syntheses for its 

extremely high heating rate.  
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2. Experimental Section 

Materials: Cd(NO3)2·4H2O (99+%, ACROS), thiophenol (97%, Aldrich), triethylamine (≥99%, 

Sigma-Aldrich), lithium nitrate (Fisher), cadmium oxide (CdO) (≥99.0%, Fluka), tri-n-

octylphosphine (TOP) (97%, Strem), Se powder (≥99.5%, Aldrich), oleylamine (≥98%, Aldrich), 

oleic acid (≥97%, Fisher), and dodecylamine (DDA) (98%, Aldrich), are used in this synthesis. 

All chemicals are used as purchased except dodecylamine, which is degassed prior to use.  

Preparation of CdSe by [Cd10Se4(SPh)16]4-: The Li4[Cd10Se4(SPh)16] single-source precursor 

(SSP) is prepared as reported by Cumberland.26 (Li)2[Cd4(SPh)10] was first prepared by adding 

Cd(NO3)2·4H2O into thiophenol and triethylamine, followed by addition of lithium nitrate. 

Selenium metal is then added to the product to produce (Li)4[Cd10Se4(SPh)16]. In a typical 

induction heating synthesis, 2.41 g of dodecylamine and 0.03 g of precursor are mixed at 45 °C 

in a glass container (Figure 5.1 Top Right). An optical temperature probe is inserted and 

immersed in the solution. 26.13 g of steel beads are added together with the mixture into the 

reaction vessel, which is then purged with argon for 5 min. Under argon flow, a current of 0 to 

2.5A is applied for various durations. The temperature of the solution is then lowered to 45 °C 

and the samples are collected. The heating rate is controlled by the induction current. As shown 

on Figure 5.1 left, depending on the current used, induction heating rate can be as high as 110 

°C/s. For microwave syntheses, the precursor solution was prepared by adding 0.3 g of 

[Cd10Se4(SPh)16]
4- into 25 mL of dodecylamine (DDA). The mixture is stirred and 3 mL of the 

mixture was taken to perform the synthesis. The synthesis is carried out in a microwave reactor 

(Anton Paar Monowave 300) at 850W (Figure 5.1 Mid Right). Temperature is measured with an 

IR probe outside the reaction vessel. 

Preparation of CdSe by Cd(OA)2: The CdSe is prepared using Cd(OA)2, 1M TOPSe, TOP, and 

oleylamine. The Cd(OA)2 is prepared using CdO and oleic acid at 1:5 mole ratio using the 

schlenk line. The CdO and oleic acid mixture is heated to 100 °C under vacuum for 2 hours and 

heated to 280 °C for 1 hour under N2. The reaction is stopped after the color changed from 

red/brown to light yellow. 1M TOPSe is prepared by mixing 10 mL of TOP with 0.7896 g of Se 

powder. The mixture is sonicated until all Se powder has dissolved. Then 0.675 g of Cd(OA)2, 

5.5 mL of 1M TOPSe, 10 mL of TOP, and 2 mL of oleylamine are measured and stirred at 65 °C 

for 5 min in a 20 mL vial. For the microwave synthesis, 2 mL of the mixture is heated in an 
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Anton Paar Monowave 300 to prepare the CdSe nanocrystals.  The same amount of mixture is 

used in the magnetic heating as well. 

Characterization of CdSe Quantum Dots: For absorption and emission spectra measurements, 

the samples are diluted in toluene to equal concentrations. For Transmission Electron 

Microscopy, the imaging is done on Tecnai G2 Spirit BioTWIN. Samples are washed well in 

anhydrous methanol to remove excess ligands and then dispersed in toluene and dropped onto a 

Cu grid. The resolution of the instrument is 0.34 nm in TEM mode. 

 

Figure 5.1133 Left: Comparison of heating rate by induction heating, microwave, and 

heating mantle Right: Experimental setups. (Reprinted with permission from ref. 85. 

Copyright © 2016 Multidisciplinary Digital Publishing Institute.) 

 

3. Results and Discussion 

In nanoparticle synthesis, the rate of heating competes with the nucleation and growth rates 

that has important consequences for the final size and size distribution of the particles. With the 

experimental setup as shown here in Figure 5.1, the induction heating achieved a heating rate of 

110 °C/s. Such rapid heating rate has allowed us to successfully synthesize sub 2nm ultra-small 
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CdSe QDs with only two seconds of heating, as shown in Figure 5.2. Absorption and 

photoluminescence spectra indicate that our particles have relative narrow size distribution, and 

have average size of 1.8nm based on a sizing curve reported in literature73. Through numerous 

experiments we’ve established that a minimum heating time, generally around 2 seconds with our 

setup, is needed. This is explained firstly by the non-linear relation between heating rate and time 

caused by increase of resistance in steel balls as temperature rises. It becomes increasingly less 

effective to reduce heating time by applying higher currents. Secondly, the heat transfer rate 

between steel balls, solvent, and precursor molecules stay constant regardless of the current 

applied. At certain point it is not surprising that heat transfer rate also becomes a bottleneck for 

achieving even faster synthesis. Due to the mechanism of induction heating explained above, it is 

expected that by using ferromagnetic materials for the synthesis the material can generate heat on 

itself thus eliminating the steel balls and the heat transfer process. Even faster heating rate could 

be achieved this way so that particles can be produced with <2s heating, which could be 

unprecedented and greatly attractive to industrial applications. Although particles continue to grow 

during the cooling process after heating, in streamlined “flow-through” industrial manufacturing 

such process will not hinder the efficiency of production as heated material can move through the 

heating “chamber” and continue to cool while new cold material moves in. We show in a later 

section that quenching has interesting effects on different properties and characters of the particles 

produced. Accelerated cooling can be implemented in our experimental setup and also easily in a 

potential industrial process accordingly to suit various needs. Figure 5.3 shows the quantum dots 

obtained demonstrate excellent white light emitting characteristics compared to commercial white 

light LEDs out of the box. The emission spectra can be further optimized to mimic the solar output. 
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Figure 5.2 Photoluminescence and absorption spectra of 1.8 nm CdSe nanoparticles 

produced with magnetic heating. 

 

Figure 5.3 Emission spectra of obtained CdSe QDs compared with other light sources 

 

To demonstrate the novel properties and advantages of rapid induction heating synthesis, 

we obtained a set of data comparing induction heating versus regular synthesis in a heating mantle, 

which typically runs at the heating rate of 1 °C /min (Figure 5.1). As shown in Figure 5.4, with 2 
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seconds of induction heating the smallest sized particles were produced with absorption peak at 

around 437nm. 2 hours of normal heating produced slightly larger particles and the 2 seconds 

induction heating followed by 2 hours normal heating resulted in the largest particles. The results 

agree with our hypothesis that fastest heating rate produced the smallest particles. However, by 

continuing heating the reaction mixture under normal heating condition after the 2 seconds rapid 

heating, we allowed the particles to grow larger, a process primarily dominated by the Ostwald 

ripening process. FWHMs of the 2s MH and 2s MH + 2hr NH show that the size distribution did 

not change after prolonged heating, which agrees with our expectation that the final size 

distribution is determined in the nucleation stage and that the growth stage merely changes the size 

of the ensemble uniformly. Such fact reveals that the nucleation stage is critical in controlling the 

size distribution of an ensemble of particles. Our rapid heating rate is key in quickly raising the 

monomer concentration in reaction mixture above the nucleation threshold, producing a large 

number of uniformly sized nuclei, and then quickly dropping the monomer concentration back 

below nucleation threshold again. A simple calculation shows that by having a higher heating rate, 

we increase the ratio of nucleation rate versus growth rate during the nucleation stage and thus 

decrease the initial size distribution of nuclei and particles. On the other hand, our 2-hour normal 

heating only data shows much larger size distribution, which is in accordance with our theoretical 

expectation. 

 

Figure 5.4 Comparison of absorption spectra of CdSe quantum dots synthesized with 2 

seconds of magnetic heating (2s MH), 2 seconds magnetic heating followed by 2 hours 

normal heating (2s MH + 2hr NH), and 2 hours normal heating alone (2hr NH). 
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Figure 5.5 Comparison of photoluminescence of quenched and non-quenched CdSe 

quantum dots synthesized with magnetic heating 

To further investigate the effect of rapid nucleation and growth, we obtained spectral data 

of samples synthesized with induction heating followed by rapid quenching in liquid nitrogen so 

that the reaction mixture is cooled to 40 °C in 60 seconds. (Figure 5.5) Looking at the band edge 

emission below 475nm of the quenched data compared with that of the non-quenched, we see that 

the quenched particles have slightly smaller sizes, which is explained by the fact that the cooling 

stopped growth early. Also, the non-quenched sample peak has overall higher intensity, indicating 

higher concentration of particles produced. This is not surprising since the non-quenched reaction 

mixture stayed at a high temperature for a while even after the heating source is shut off. This 

allowed for a larger number of nuclei to be formed, resulting in larger number of particles produced 

eventually. However, the peaks between 500-600 nm of the two samples appeared identical in 

position, with the quenched sample having slightly higher intensity. We think that such peak arises 

from the trap state emissions in the particles, primarily in the defect sites usually located on the 

surface and sometimes inside the particle as well. The energies of these trap states are independent 

of particle size, therefore resulting in an identical peak position and shape. On the other hand, the 

slower cooling of the non-quenched synthesis after the nucleation and growth serves as an 

annealing process, which removes some of the defects in the CdSe crystal structure. A faster 

cooling rate deters such process and as expected leaves more defect sites giving higher trap state 
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emission intensity. On the other hand, the formation of CdS with thiolate ligands on the surface of 

the particles134 under different temperatures might also be a contributor to the difference of PL 

intensity, as CdS is also responsible for the trap state emissions.  

 

Figure 5.6 Comparison of photoluminescence spectra of CdSe quantum dots synthesized in 

oleylamine and dodecylamine with magnetic heating 

 

We also performed comparative syntheses of CdSe QDs in oleylamine and dodecylamine. 

Previous studies suggest a correlation between the viscosity of solvent and the rate of nucleation, 

as it is related to the rate of diffusion of monomers. Therefore, solvents with lower viscosity would 

result in higher nucleation rate and narrower size distribution. However, contrary to this theory, 

our data (Figure 5.6) shows no significant difference under solvents with different viscosity. We 

think that it is because such theory is made under the assumption of normal heating and stirring 

conditions. With rapid induction heating, the effect of viscosity of solvent and stirring become 

negligible. When the usual nucleation process that normally lasts several tens of minutes is done 

in 2 seconds, along with the fast self-stirring of solvent caused by thermal diffusion and 

degasification, the difference in diffusion rate of monomers caused by viscosity and stirring 

becomes irrelevant in such dimension. The slightly larger size of dodecylamine sample is 

explained by the higher heat capacity of the solvent, which allowed the reaction mixture to stay at 

the temperature where the particles can continue to grow for several minutes longer. And the lower 
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trap state emission intensity corresponds to the slower cooling rate, as explained in the quenching 

section. It is also expected that different ligand-particle structures formed by the two solvents, 

whose electronic properties are unknown, could also contribute to different levels of trap state 

emissions. This result revealed one of the unusual effects of extreme high heating rate, which is 

not predicted under current theories. Future work will be done so that appropriate modification, 

among many other, is made to properly model the kinetics of nucleation and growth under such 

conditions. 

 

Figure 5.7 Comparison of absorption and photoluminescence spectra obtained from single-

source precursor (Li)4[Cd10Se4(SPh)16] and Cd(OA)2 with magnetic heating 

 

It is important to note that the induction heating syntheses were done in a preliminary way 

to explore the various effects of high heating rate from a thermodynamics point of view, and has 

not been optimized in any way. Various optimizations could be done to achieve certain characters 

or properties such as smallest size of particles possible, shortest reaction time, enhanced 

photoluminescence in certain wavelengths for light-emitting functions, etc. Here we show a simple 

example through comparison of CdSe QDs synthesized from single-source precursor and Cd(OA)2 

(Figure 5.7) under identical conditions. Shorter wavelength of the absorption peak corresponds to 

smaller sized particles that are produced with Cd(OA)2 precursor compared to that of the SSP. A 

second peak of larger particles were also observed. The two distinct peaks are the result of the so-

called sequential growth of such type of particles, where distinct sizes of particles co-exist at early 

stages of growth and then coalesce to form larger particles later. Combined with the fact that the 

shorter peak wavelength corresponds to smaller particles produce than that from SSP, it clear that 
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the Cd(OA)2 precursor had slower reaction rate than SSP. Different reaction potentials of the 

precursor molecule can cause a difference in the nucleation rate, as it effects the rate at which 

monomers are provided. The Cd(OA)2 precursor provides monomers through combination of two 

components, whereas the SSP does so through self-decomposition of the precursor molecule, a 

process whose mechanism is not yet fully known. Although it is difficult to determine the energies 

involved in both two reactions, we do qualitatively show such an effect as an example of potential 

optimizations available for industrial applications. 

In this study, the effect of rapid quenching and different capping agents on the particles’ 

growth is also explored. We think that quenching would stop the growth of the nanoclusters early 

and result in even smaller overall sizes, and that different capping agents would modify the 

chemical potential involved in nucleation and growth, and possibly even the decomposition of 

precursor molecules, thus changing the overall kinetics as well. 

 

 

Figure 5.8 Heating temperatures (left) and PL (right) comparison of quenched, 

unquenched, and heating mantle synthesis 
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Table 5 Experimental parameters of the induction heating and quenching syntheses 

 

A set of experiments with varying parameters including induction heating current, 

heating time, and quenching were performed (Table 5). Emission spectra (Figure 5.8) taken of 

the sample indicate, for the quenched samples, that there’s an increase in the ratio between the 

PL intensity of the trap state emission at 500 – 600 nm and the band edge emission at 420 – 470 

nm, compared to the unquenched samples. We believe that it is plausible that such increase in 

trap state emission is caused by the larger number of particles. Such trap states emission arises 

from the surface interaction on the quantum dots, and is therefore independent of particle size. 

With rapid quenching, further growth and coalescence of particles were terminated at an early 

stage, leaving the solution with higher number of smaller particles. In addition, overall smaller 

sizes of particles also mean larger overall surface area for the same amount of particles, which 

contributes to the increased trap states emission. However, the increased intensity at 500 – 600 

nm could also be caused by white light emission of the magic-sized quantum dots. To determine 

the actual size distribution of these particles, techniques such as TEM imaging or size-selective 

precipitation is needed. Quantum yield measurements could provide insights to this information 

as well. 

We also see the band edge emission appear at a shorter wavelength for the quenched 

samples, which indicates smaller particle sizes. Interestingly, during tweaking of the 

experimental parameters, we discovered that there appears to be a minimum amount of heat 

needed to initiate growth. When the amount of heat applied is below such threshold, emission 

spectrum becomes identical to that of the complex, implying no significant growth was initiated. 

This could be understood by the fact that due to the heat capacity of the steel beads and solution, 
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and the heat transfer rate between interfaces, when heating time or current applied is below a 

certain value, there is not enough time or heat to effectively raise the temperature of the complex. 

 

Figure 5.9 Room temperature absorption, photoluminescence, and photoluminescence 

excitation spectra of ultra-small CdSe nanocrystals synthesized using the single source 

precursor Li4[Cd10Se4(SPh)16]. The CdSe synthesis was carried out in both glass vial 

(Black) and silicon carbide (SiC) vial (Red) in the microwave reactor (Anton Paar 

Monowave 300) at 200 °C and 850 W. The photoluminescence (PL) was obtained using 385 

nm excitation source while the photoluminescence excitation (PLE, dotted line) was 

obtained for the emission at 570 nm. The PLE shows the trap emission observed from the 

PL around 570 nm was from the nanocrystal. 

 

In previous studies, microwave synthesis has shown a rapid heating rate in comparison to 

the traditional heating method (such as oil bath heating). Even though the heating rate of 

microwave synthesis is faster than conventional method, magnetic heating has the highest heating 

rate when compared.  This rapid heating rate is achieved by using solutions that are polar or ionic, 

which the microwave radiation can interact directly with the molecules in the solution. For this 

comparative study, the synthesis of CdSe is studied using two different precursors. For the 

microwave synthesis, a Pyrex vial and a silicon carbide (SiC) vial were used to study the heating 

rate using the two precursors. The Pyrex vial transparent to microwave radiation which allows for 

direct interaction with the molecules, but SiC vial absorbs most of the microwave radiation and 

some pass through (depending on the thickness of the vial wall) which leads to a heat up method 

that is similar to traditional heating methods (such as oil bath) and allow for some direct heating 
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as well.135 The UV-Vis absorption and PL spectra of the CdSe NCs synthesized using the single 

source precursor Li4[Cd10Se4(SPh)16] in a Pyrex vial and SiC vial is shown in Figure 5.9. A red 

shift in both the absorption and emission peaks indicates a size increase of the CdSe NCs. The PL 

spectra show a band-edge emission peak centered at 475 nm (Pyrex vial) and 485 nm (SiC vial) 

and a trap emission peak around 570 nm. The PL spectra shows that the CdSe NCs have a narrow 

size distribution. The CdSe NCs were not washed after the synthesis because the emission goes 

away. The PLE spectra show a peak around 470 nm (570 nm detection), similar to the band-edge 

peak. This confirms the trap emission was from the NCs rather than impurities present in the 

solution. The small shift in the peak position of the PLE spectra from the absorbance is likely from 

ligands that are present in the solution.  

 

Figure 5.10 Temperature plot of the ultra-small CdSe nanocrystals synthesized using the 

single source precursor Li4[Cd10Se4(SPh)16] in glass vial (black) and SiC vial (red). The 

internal temperature (dashed) was measured using fiber optic (FO) probe with ruby crystal 

while the external temperature (solid) was measured using infrared (IR) probe. 

 

Overall, the CdSe NCs synthesized in the SiC vial were larger than those prepared in the 

Pyrex vessel. This is likely because the starting solution contains a non-microwave-absorbing 

material, which SiC vial can be used to solve the heating problem.135 The temperature plot (Figure 

5.10) shows the SiC vial having the shorter reaction time when compared to the Pyrex vial. The 

data collected from the heating profile of the two vials, the SiC vial had a faster heating rate. Also, 

it shows that the SiC vial temperature is much higher than the Pyrex vial. In previous studies, it 

has been found that increase in temperature leads to larger size NCs. The SiC vial absorbs some 

of the microwave radiation, which heats up the solution via convection method instead of a direct 
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heating method. For both vials, their internal temperature was recorded using fiber optic (FO) 

probe inserted into the solution with a glass tube and shows their internal temperature was much 

higher than the outside temperature, which was recorded using IR sensor. The outside temperature 

was used to control the reaction temperature. Based on the data collected, the larger sized CdSe 

was obtained from the SiC vial because of the higher heating rate and higher reaction temperature. 

 

Figure 5.11 Room temperature UV-vis spectra of ultra-small CdSe nanocrystals 

synthesized using Cd(OA)2, 1M TOPSe, TOP, and Oleylamine in the microwave at 150 °C 

and 850 W with a hold time of 0 second (black), 15 second (red), and 30 second (blue).  

In order to obtain the fastest heating rate when using the microwave synthesis, a better 

microwave absorbing material was used. The mixture contained Cd(OA)2, 1M TOPSe, TOP, and 

oleylamine. As shown in the experimental section the mixture was then heated to 150 °C and 850 

W with a hold time of 0, 15, and 30 seconds. Ultra-small CdSe NCs (below 2 nm)135 were 

synthesized successfully. The UV-vis absorption shows a slight red shift with a new peak 

appearing around 450 nm as the hold time increases (Figure 5.11). The new peak around 450 nm 

is a result of the size increase of the CdSe NCs from the magic-size to ultra-small NCs. From the 

absorption peaks their relative size were found to be 1.67 nm (0 seconds), 1.69 and 1.93 nm (15 

seconds), and 1.67 and 1.95 nm (30 seconds). Chikan et al. has shown that having tellurium-rich 

(selenium in this study) condition leads to the formation of magic-sized quantum dots.136 The 

absorption shows the CdSe size increases from magic-sized to ultra-small NCs follows a 

homogenous growth.67 One of the unique properties of ultra-small NCs is the presence of two 

emission peaks.67 The PL spectra show a red shift as the hold time increases and it also shows a 
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trap emission (Figure 5.12). The peak shift observed from the PL spectra (Figure 5.12) was from 

460 nm (0 seconds) to 472 nm (30 seconds). This proves that the CdSe NCs are increasing in size. 

Small sized nanocrystals are mostly dominated by trap emission due to the increase in the surface-

to-volume ratio of the nanocrystals.137 Therefore the trap emission observed from the PL spectra 

are from the NCs instead of impurities in the solution. To further investigate this, PLE spectra was 

recorded showing the trap emission seen from the PL spectra to be from the nanocrystal itself 

(Figure 5.12).  

 

Figure 5.12 Room temperature photoluminescence (PL) and photoluminescence excitation 

(PLE) spectra of ultra-small CdSe nanocrystals synthesized using Cd(OA)2, 1M TOPSe, 

TOP, and Oleylamine in the microwave at 150 °C and 850 W with a hold time of (A) 0 

second, (B) 15 second, and (C) 30 second. The PL spectra was obtained using 405 nm 

excitation source and the PLE spectra was obtained for the emission at 575 nm. The 

synthesis was carried out using a glass vial in a microwave reactor (Anton Paar Monowave 

300). 

The temperature and power plots for the reaction are shown in Figure 5.13 and Figure 5.14 

respectively. The temperature plot shows the internal temperature is higher than the external 

temperature. This result was as expected from our hypothesis. The solution mixture had TOP, 

which absorbs microwave radiation well, so the internal temperature would rise faster than the 

external temperature. For this reaction only Pyrex vial was used, since the mixture is better 

microwave-absorbing material the use of SiC vial will not be able to give us the fastest heating 
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rate. The heating profile recorded the heating rate is similar in all the reactions, which is seen on 

both the temperature plot and the power plot.   

 

Figure 5.13 Temperature plot for the CdSe synthesis using Cd(OA)2 in the microwave 

reactor that shows the internal temperature (dashed) and external temperature (solid) of 

the syntheses at 150 °C and 850 W. 

 

Figure 5.14 Power plot for the CdSe synthesis using Cd(OA)2 in the microwave reactor set 

at 150 °C and 850 W with different hold times. 
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Although faster heating rates (more than observed with this experiment) can be achieved 

by using the microwave synthesis there are some limitations that will affect the heating rate. The 

power the instrument applies towards heating the reactions is not similar to the reaction set-power. 

This is to prevent arching and over-heating, which will lead to reaction vessel explosion due to 

pressure build up. The reaction set-power for Figure 5.14 was 850 W but the power maximum was 

only around 450 W. Further modification of the microwave reactor will be able to provide faster 

heating rate. In addition, the use of better microwave-absorbing materials (such as ionic liquids) 

will be able to provide faster heating rate. 

 

4. Conclusions 

This study demonstrated a novel heating method for the colloidal synthesis of 

nanoparticles. Sub 2 nm ultra-small CdSe quantum dots were prepared and showed significant 

agreement of its emission profile compared with that of natural sunlight. The results were also 

compared with those from microwave synthesis and proved to be an effective method for better 

control of size distribution of the particles prepared. Rapid quenching was discovered to lead to 

smaller particles and increased trap state/bandedge emission ratio and provides insights towards 

fine-tuning of the photoluminescence output of these materials.  
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Chapter 6 - Blinking Behavior of CdSe Nanorod in Gradient Film 
 

1. Introduction 

The blinking behaviors of semiconducting nanocrystals is an area of interest that could 

reveal important characters and light emitting mechanisms inside these materials. The 

development of single molecule spectroscopy in the past decades has enabled investigation into 

this phenomenon that was previously considered rather erratic. It was discovered that the period 

of time during which the emitters are fluorescent or stay dark, or the “on” “off” states, follow 

power law, and could range from just a few microseconds to several minutes116. Such behavior 

has excited widespread interests and attempts at explaining the underneath mechanism. So far, 

all known types of fluorophore studied exhibit fluorescence intermittency including single 

molecules, fluorescent proteins, polymer segments, and semiconductor nanocrystals such as 

quantum dots, nanorods and nanowires. Experimentally, the on-off periods are collected by 

detection of fluorescence with a CCD camera or photon counting as a function of time. Analysis 

could be made by constructing a time series of integrated intensity. Numerous measurements 

have been made to establish that138 the off time follows:  

𝑃(𝑡𝑜𝑓𝑓) = 𝐴𝑡
𝑜𝑓𝑓

−𝑚𝑜𝑓𝑓
 

and that the on time follows: 

𝑃(𝑡𝑜𝑛) = 𝐴𝑡𝑜𝑛
−𝑚𝑜𝑛𝑒−𝑡𝑜𝑛/𝜏𝑜𝑛 

where 𝜏𝑜𝑛 is a variable dependent on parameters related to temperature, intensity and size of the 

nanocrystal, while the exponent 𝑚 is dependent on the shape139 of nanocrystal, wavelength140 

and intensity141 of excitation light, and other environmental factors142.  From the application 

point of view, the irregular fluorescence intermittency is unfavorable to development of NC-

based lasers, light-emitting diodes, and efficient photovoltaics as the stability and lifetime of 

exciton are reflected by intensity and frequency of blinking. Therefore, understanding and 

controlling of the blinking behaviors of these emitters are crucial to its application in the above-

mentioned areas. Many studies have been done for various nanocrystalline materials under 

different environments, but few explores those with the effects of polarity. In this study, focus is 

put on understanding how exciton lifetime of these fluorophores, in particular CdSe nanorods, is 

effected by polarity of its environment.  
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2. Experimental Section 

Preparation of CdSe nanorods with polar ligands: CdSe nanorods are synthesized as 

described in literature143. In a typical synthesis, 50 mg of CdO, 4.1 g of trioctylphosphine oxide 

and 305 mg of tetradecyl phosphonic acid are mixed under argon and heated to 120 °C and then 

vacuumed for 1 hour to further remove water and oxygen. A selenium trioctylphosphine solution 

was prepared under nitrogen by mixing 4 mL of trioctylphosphine and 42.0 mg of Se powder, 

which was then sonicated for 30−45 s to completely dissolve the Se powder. The solution was 

then purged with nitrogen and vacuumed several times. Another weak vacuum was applied at 

280 °C to the reaction mixture and stopped until its color changed to dark gold. 4.0 mL of the 

0.16 M SeTOP was then injected at 270 °C to the solution, and afterwards the temperature 

decreased to 230 °C. The nanorods were grown at 260 °C for 5 min and then cooled to room 

temperature. The product is then washed with methanol by centrifuging five times to remove 

other organics to obtain the final dark red nanorods. (3-Aminopropyl)triethoxysilane could then 

be added to nanorods dissolved in toluene heated to 120 °C for 3 hours to obtain the amino-

functionalized nanorods. 

Preparation of Tetramethoxysilane (TMOS)/Phenyltrimethoxysilane (PTMOS) Gradient 

Film: The tetramethoxysilane/phenyltrimethoxysilane gradient films were prepared by the 

infusion withdrawal dip coating technique described in Chapter 2 - 5.  

Collection of Blinking Image Series: The sample is observed with wide field microscope. As 

shown in Figure 6.1, a 532 nm laser is used for excitation of the samples. The laser source passes 

through a polarizer and onto a dichroic mirror and then shines on the objective of the 

microscope. The objective then focuses incoming light onto the observed sample. The emitted 

light from the sample is then passed through the dichroic mirror and reflected (M1) to pass 

through a notch filter and band pass filter to remove scattered laser light and select desired 

wavelength of fluorescence light to be measured by the CCD. The CCD takes a series of 300 

images at 4 frames per second of the incoming light.  
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Figure 6.1 Schematic diagram showing the wide field microscope set up 

 

3. Results and Discussion 

Figure 6.2 shows the blinking data of NRs for comparison of in pure TMOS vs. PTMOS 

and when they are vertically (parallel to gradient direction) vs horizontally (perpendicular to 

gradient direction) oriented, and when they’re bleached for 75s vs. unbleached. The combined 

statistics shows no significant difference in number of observed spots between samples in pure 

TMOS and pure PTMOS, and no significant difference between horizontal and vertically 

oriented NRs. There is however clearly lower number of spots observed for the bleached samples 

compared that with the unbleached. This result indicates that the excitation light induced certain 

types of chemical reaction of the NRs that permanently bleached the sample.   
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Figure 6.2 Fluorescence spot counts of NRs in different orientation and comparison of 

bleached vs. unbleached samples 

 

 

On time and off time analysis was also performed by counting the total frames of a spot 

fluorescing and staying dark with the results plotted in Figure 6.4. Again, no significant 

difference between NRs vertically vs. horizontally oriented and in pure TMOS vs. pure PTMOS 

was observed. Agreeing with the above observed number of spots statistics, there is a jump in off 

time reaching the end of the 300-frame series for the unbleached samples, which indicates that a 

part of unbleached samples were permanently bleached after the first time being exposed to the 

laser light and do not fluoresce anymore. However, similar pattern was not observed in the 
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already bleached samples, indicating that the chemical reactions that caused permanent bleaching 

happened within the first 300 frames. 

Since strong bleaching effect were observed, it is reasonable to postulate possible spectral 

shift corresponding to the chemical reactions involved. For this purpose, analyses of three 

randomly chosen spots on both TMOS and PTMOS films were made by plotting their spectral 

evolution over 300 frames, as shown in Figure 6.3. The spectra were recorded over 300 frames 

for the 6 spots and then plotted with color map indicating intensity in MATLAB. Aside from 

overall intensity differences of different spots which is expected, no significant intensity shift on 

the spectra of different wavelength were observed.   

 

 

Figure 6.3 Spectral shift of 3 random spots on TMOS and PTMOS films 
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Based on these results, it is conclusive that TMOS and PTMOS polar environment did 

not make any significant difference in the fluorescence intermittency of NRs oriented either 

vertically or horizontally. Then, analyses of fluorescence intensity were also done to 10 spots on 

a TMOS-PTMOS gradient film shown in Figure 6.5. The gradient of the film changes from 

TMOS from spot 1 to PTMOS to spot 10 and the max intensity distribution of the spots were 

plotted. Again, no significant pattern were observed of the gradual change of polar environment 

from TMOS to PTMOS for all 10 spots, a result in accordance with the pure TMOS and PTMOS 

comparison analyses above. Time sequence of mean fluorescence intensity change over 300 

frames for the 10 spots were also plotted in Figure 6.6. No significant difference were observed 

for the gradual change of polar environment from TMOS to PTMOS for all 10 spots. 

Figure 6.4 On time and off time analysis 

TOP: PTMOS, BOTTOM: TMOS; “1”: unbleached, “2”: bleached; “v”: vertical, 

“h”: horizontal 
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Figure 6.5 Fluorescence intensity analysis of 10 spots on the gradient film. From 1 (more 

TMOS) to 10 (more PTMOS). 

 

 
Figure 6.6 Mean intensity time sequence of 10 spots on the gradient film. From 1 (more 

TMOS) to 10 (more PTMOS). 
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4. Conclusions 

This study investigated the blinking behavior of CdSe nanorods under different polar 

environments, specifically TMOS and PTMOS, with consideration of different orientation of the 

nanorods with respect to the gradient. Raw count of number of blinking spots did not show 

significant variation relating to the polar environment or NR orientation. Previously bleached 

NRs however show reduced number of blinking spots, indicating possible chemical bleaching 

induced by the exciting laser light. Such permanent bleaching is confirmed by on-off time 

analysis of unbleached samples which showed significantly increased off time at the end of the 

first exposure. However, no spectral shift was observed throughout the bleaching process for 

NRs in both TMOS and PTMOS films. Fluorescence intensity analyses of 10 spots from the 

TMOS end to PTMOS end on the gradient film was also performed, confirming that such 

variation of polar environment did not impact the blinking behaviors of CdSe NRs in any 

conclusive way. Nevertheless, this study demonstrated successfully the incorporation of infusion 

withdrawal dip coating technique to provide a platform of studying fluorescence behaviors of 

nanocrystals under polar gradient, and has proven to be an effective method that could be readily 

employed in similar studies of other nanocrystals as well.  
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Chapter 7 - Summary 

In summary, this thesis presented investigations focusing on understanding and 

controlling defects in quantum confined systems, particularly CdSe quantum dots and nanorods.  

Syntheses and characterization of gallium doped CdSe quantum dots are discussed, 

including the preparation of gallium doped CdSe quantum dots, as well as important chemical, 

electrochemical and spectroscopic changes in the quantum dots induced by gallium doping. It 

was discovered that gallium doping could be an effective way to manipulate the electrical 

properties of quantum dot films and solar cells at near room temperature. 

Additionally indium and gallium doped CdSe quantum dot were studied for the purpose 

of  manufacturing hybrid solar cells. A method to dope and control the photoconductivity and 

charge carriers of CdSe QDs is described. Strong evidences are presented that the chemical 

dopants (Ga, In and Sn) of CdSe QDs not only results in a controllable photoconductivity, but 

also a stronger electronic interaction at elevated temperatures, and that the high conductivity and 

stronger electronic coupling of doped CdSe QDs can largely enhance charge separation and 

transport efficiency, which are essential for hybrid inorganic-organic solar cells.  

Then, induction and microwave heating syntheses of CdSe quantum dots are reported and 

the effects of extreme high heating rate on nucleation and growth of such nanocrystals are 

discussed. Experimental results and analyses show that induction heating not only has proven to 

be an effective way of achieving preparation of ultra-small sub-2 nm quantum dots, but could 

also provide a way of separating the nucleation and growth process, which could facilitate the 

development of a more accurate theory describing such processes. 

Finally, a method of utilizing infusion withdrawal dip coating to prepare a polarity 

gradient film to study the blinking behaviors of CdSe nanorods were reported. Although through 

various analyses of data including count of number of blinking spots, spectral shift over time, on-

off time frequency, spots intensity distribution and mean intensity time sequence, no conclusive 

variation was observed with respect to different polar environment and NR orientation, it did 

however point out a permanent bleaching process induced by the exciting light that resulted in 

significantly increased off time during the first exposure and reduced number of blinking spots 

during the second exposure. 
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