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EQUIVALENT LOW-PASS REPRESENTATION
FOR BANDPASS VOLTERRA SYSTEMS

I. INTRODUCTION

The attraction for the use of the Volterra series method in the
solution of nonlinear communications problems originates in the desire
for a straightforward, systematic tool that can be applied to a large
number of nonlinear problems. The Volterra series method supplies the
need for a systematic technique, but is genmerally avoided due to the
complexity of the solution.

Since the introduction of Volterra methods into nonlinear circuit
analysis by Wiener in 1942 [1], applications of the approach have
been numerous. In the early 1960's, Van Trees [2] used Volterra series
to define nonlinearities in the operation of phase locked loops. Short-
ly thereafter, Maurer and Narayanan [3] used this method to describe
the effect on noise-power ratio of a third order nonlinearity in a sin-
gle stage transistor amplifier. Later, Mircea and Sinnreich [4] applied
the series to distortion analysis. The early 1970's brought Bedrosian
and Rice's tutorial work [5] on applications to nonlinear systems with
memory. Later, Bzredetto, et al. [6] applied the Volterra approach to
baseband digital systems.

Even with these demonstrations of the wide range of applications
for the use of the Volterra series method, the approach has not gained
widespread use due to the enormous task of carrying out numerical eval-
uations of the resulting multiple sums. When only the first few terms of

the series are computed, the solutions are simplified but the problems



are thereby limited to the solution of some "better behaved'" nonlin-
earities such as might be described by a fourth or fifth order poly-
nomial.

The point of attack for this report is the simplification of the
task of carrying out solutions to these multiple sums. This simplifi-
cation is accomplished for a class of Volterra systems that include
linear zonal input and output filters such as the case of a T.W.T.
amplifier in a communications satellite transponder. The inherent sym-
metry in the Volterra kernels and certain observations concerning in-
termediate results will allow a significant simplification of the Vol-
terra method as the result of the development of a low-pass equivalent
Volterra kernel.

This report will approach the subject beginning in Section II
with a discussion of the general Volterra systems approach to the sol-
ution of nonlinear problems. Section III develops the model for the
general case of a nonlinear system with arbitrary input and output
filters. Section IV reviews the applications of equivalent low-pass
representations to linear bandpass systems. In Section V, techniques
similar to those described in Section IV are applied to the Volterra
system model developed in Section III. The intermediate results obtained
in Section V are simplified in two parts in Appendix A and Appendix B.
The combination and further simplification of these two parts are shown
in Section V. The final low-pass representation for the Volterra kernel
and output signal are presented at the end of Section V and are applied

to some simple examples in Section VI.



II. VOLTERRA SYSTEMS

An example used in Van Trees [l0] of a second order nonlinear
system with memory is shown in Figure 2.1. The output of the filter

can be represented by the convolution

y(e) = h,(0)@x(t) = _? by (1)x(t=1)dt . (2.1)
The system output is

2(t) = yo(O) . (2.2)
Substituting (2.1) into (2.2) and rearranging,

z(t) = [[ hy(rp)h (1) x(t-px(t-g)dy dp (2.3)

which appears much like a double convolution. This expression can be used

to define the second order Volterra kernel as
hZ(Tl!TZ) - hl{Tl)hl(TZ) . (2.-’!)
The output becomes

z(t) = [[ hp(ry,T0)x(t-mx(t-g)dr dT,. (2.5)
-
This result can be extended to higher’ orders of nonlinearity. If
f(y) is analytic in some region, the example may be extended to a case

for which z(t) is some power series with coefficients Y which shall be

considered real constants. Therefore, z(t) is given by

2(8) = E(3(E)) = 7vo + y1y(t) +uy2(e) + -ev . (2.6)



x(t) | y(t) . z(t)
h(e) | z(t) =y (o)

Figure 2.1. Second Order Nonlinearity With Memory

(t) |z, (t) (t)
‘“‘u‘*{ h(e) 'l RO -
——l[ Yzyz(t) 25kt)

zk(t)

Figure 2.2. General Volterra Series Nonlinear System With Memory



Using the procedure just outlined on each term of (2.6), the output

becomes

@ @ ™
z(t) = ) Y I'"ffhk(rl,---,Tk)x(t-rl)°'-x(t-rk)d11---di. {2.13
k=l - .=

This expression is a series of terms, each representing a separate
order of the nonlinearity and each contributing to the output z(t).
A helpful conceptual model representing (2.7) is shown in Figure 2.2.
This concept is important to the development of a general result for
the kth order Volterra kernel because it allows each order of non-
linearity to be treated in a separate expression as part of (2.7).

It can be seen even in these simpler models that the complexity
of a solution grows at an enormous rate with the addition of each

higher order of nonlinearity.



III. MODELING NONLINEAR CHANNELS WITH MEMORY

The basic model under consid;ration for the remainder of this
report will be termed a nonlinear communication channel with memory.
Although this model occurs more often in practice than the conceptual
model presented in the previous section, it is further complicated by the
addition of a second memory block in the form of an output linear filter.
A block diagram of the new model is shown in Figure 3.1.

The desired result is an expression for the Volterra kernel in
terms of the impulse response of the linear filters and the power series
describing the nonlinearities. By convolution, each order of nonlinearity

in the sum
Tk
v(e) = ] yu ()
k=1
contributes the amount
¥, (t) =d£h"(‘r)vk(t-‘t)d1’, (3.1)

to the output y(t), as implied by Figure 3.2.

The signal u(t) can also be obtained by convolving the input signal
with the impulse response of the input filter

u (t) = [h' (1t )x(t-T )dT . (3.2)

and, since

v (1) = a5(e=7) , (3.3)

T

it is necessary to form u(t-t). The result is

u (t-1) = [h'(7) x(t-1-u) du . (3.4)



linear no memory linear

filter nonlinearity filter
—Lﬂ)ﬂ h'(t) —UAELT,(t)a Z’quk(t) m h'(t) __Z_(_Q___
k=1

Figure 3.1. Nonlinear System With Memory

linear no memory linear
filter nonlinearity filter

x(t) u(t) 1 '
h' (t) { Y (t) h"(t) |
—xlﬁ quz(t) h" (t)

I

quk(t) i it " (t)
. ) .
1
i » -

Figure 3.2. Nonlinear System With Memory (Parallel Model)



& more convenient form is obtaimed by making the change of wvariables

T =T + u, yielding

u, (e-1) = fh‘(ri-t)x(t-ti)d'ri . (3.5)

-0

Substitution of (3.5) into (3.3) allows {(3.l) to be rewritten as

o @ k
y (t) = fh"(r)vk[fh'tri-t)xi(t-ri)dri ] dt (3.6)
or, finally
@ oo @ k k
yk(t) = ff---f[kah"(r)TTE'(ri-r)dtTTk(t-ti)]drl---dtk ‘ (3.7)
-m  —ol = i=1 i=1

The resulting Volterra kernel of this system is
= k
h (T1,0e0,1) = ijh"(r) TTh'QEfT)dT ‘ (3.8)
= i=1
Using (3.8) in (3.7)
® @ k
7, (E) = L{_a{ hk(i'l,---,‘rk)in(t-—ti)dTl---d'ri : (3.9)
Again, solution of this representation is time consuming and ex-
tremely involved, even with close attention to efficient programming
and simplified algorithms. Notice also that to this point no frequency
restrictions have been placed on the input and output filters or the
signal ipput. Later, the development of a bandpass model and its equiv-
alent low-pass representation will require these to be linear zonal
filters and narrowband bandpass signals. The development of a low-pass

representation will begin in the next section with a review of linear

bandpass systems.



IV. LOW-PASS EQUIVALENT REPRESENTATION OF LINEAR
BANDPASS SYSTEMS

One method of simplifying expressions for output signals for a
bandpass linear system is to reduce the entire system to an equival-
ent low-pass form by complex envelope representation of the narrow-
band bandpass signals. This method is used extensively in linear
systems and serves to simplify both the calculations and the state-
ment of the results. A typical transformation for the linear case
seen in Figure 4.1 if from Stein and Jones [7] .

The linear caée assumes a narrow-band bandpass signal input and
output with the unit impulse response of the system in terms of complex
equivalents. The linear bandpass system is described by its unit impulse

response g(t) and its frequency function G(f) by

g(t) = [ c(ped?tt

- OO0

df (4.1)

It can be shown [7] that for narrow-band systems where f; is the

band center frequency and

G(f)| = H(f=f,) and H(f-f3) = O £<0
>0
with H(E) a low-pass frequency function nonvanishing only near the

origin, the unit impulse response is given by
i27fqty §27A j27¢€
g(t) = 2Ret e?°"FOF[ H(M)eI ™M qAY = 2Re{ h(r)ed-TROF ) (4.2)
- @
where h(t)<===H(I). Thus, the linear bandpass system is described in
terms of its band center frequency f; and its equivalent low-pass system

given by H(f) and h(t) which are transform pairs.



4t} = Relult) @ 0%}

g

A(E) =%U(f-j@+%u¢f-’

Figure 4.la.

Jugt q(t) = RE£V(t)ejw0t}
g(t) = 2Re{h(t)e } II - a(:)@g(t)
g ; Q(E) = G(E)A(E)
G(f) = H(f-fp+ H(-f-fp = LV(f-f)+ st’(‘-f—g})
wg = ZTTfQ

Linear Bandpass Model.

u(t)

11I6D]

v(t) = h(eXQu(t)
h(t) 1]‘_
| V(f) = HOUK)
H(E)

Figure 4.1b.

Equivalent Low-Pass Model.

Figure 4.1. Complex Signal Representation of Narrow-band, Band-

pass Volterra Signals and Systems.

10
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In a linear system driven by a bandpass signal with carrier fre-
quency f; at the band center frequency of the system, the output q(t)

is also a bandpass signal which can be given as

q(t) = Re{ v(r)el?™foty (4.3)
or, as
q(t) = wr(e)ed 2ot %vft)éﬁ"f‘)t (4.4)

where v(t) is the complex envelope of q(t). The bandpass frequency spec-
trum Q(f) is related to V(f), the frequency spectrum of the complex

envelope by
QUE) = HV(E-£5) + SV(-E-£7) (4.5)

with the bandpass system as shown in Figure 4.la, the output q(t) is
related to the impulse response g(t) and the input signal a(t) by the

convolution

-]

q(t) = a(t)®@sg(t) = [ a(t)g(t-t)dr (4.6)

-l
and the product in the frequency domain is

Q(f) = G(f)a(f) . (4.7)

Expressing both A(f) and G(f) in their low-pass spectra forms

U(f) and H(f) , (4.7) becomes
QUf) = %(B(E-£9) + H(-£-£0)) (U(E-Fg) + Ul-£-£5)) (4.8)

Since U(f) and H(f) are nonoverlapping, the product terms involving

one conjugated term and one nonconjugated term from (4.8) are zero in
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in the resulting expression

QUE) = MH(E-fo)U(E-Fy) + H(=E-£q)Ul-E-£p) (4.9)
Comparision of (4.9) with (4.5) shows that

V(£) = H(E)U(E) . (4.10)

It follows that the complex envelcope of the output is the convol-
ution of the complex envelope of the input and the impulse response of

the equivalent low-pass system

-3

v(t) = [ u(t)h(t-1)dr, (4.11)

-

Substituting (4.11) into (4.3), the output bandpass signal becomes

jZﬂfgt} -

q(t) = Re{ v(t)e Re{ ejznfotf u(t)h(t-t) dr} . (4.12)

This relationship completely describes the signal shaping effects
of the system on the input signal. It also allows the removal of the

—— ejZHth

from the integral (4.12), simplifying calculation of the
result.

The application of this scheme to the Volterra system of Figure 3.2
will reduce the complexity of the solution for the output yk(t). This is
an advantage if it can be shown that the number of terms has not increased
in the process of introducing the complex envelope representations for
the signals and filters. Intuitively, the number of terms would seem to
increase as two complex terms are exchanged for each real term in the

original expression (3.7).

However, it will be seen that by considering each intermediate re-
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sult as they are derived in Section V and by taking advantage of the
symmetry inherent in these Volterra series representations, no addi-
tional terms will be involved in the soltuion and the indicated advan-

tage of suppression of the carrier term will be realized.
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V. EQUIVALENT LOW-PASS REPRESENTATION OF BANDPASS VOLTERRA SYSTEMS

A class of nonlinear systems which occurs frequently in com-
munication equipment consists of a bandpass filter input to a non-
linear element followed by a zonal output filter. The output filter
might be tuned to the same frequency or some integer multiple of the
input center frequency. Some examples of this type system are receiver
mixers or frequency converters and satellite communication channels
which use T.W.T. type amplifiers. If low-pass output filters are
allowed, then various signal detection schemes provide some addit-
ional examples.

The model developed in Section III and shown in Figure 3.1 will
be used to represent this class of systems. The impulse responses
of the input and output linear filters are h'(t) and h"(t) respec-
tively. The nonlinearity is assumed to be a no-memory nonlinear trans-
formation which can be represented by a power series expansion. Various
forms of this model have been used [2,6,8] to characterize Volterra

systems. The input-output relationship for this type systemr is known

[5,9] to be
y(e) = ]y (t) (5.1)
k=1
where
® e k
Yk(t) = ff---f hk(rl,Tz,---,rk) ‘T x{t—ti)dtlu--dtk . (3.9)
® @ i=1

Here, x(t) is the input signal, y(t) is the output signal, yk(t) is

the contribution from the kth order portion of the nonlinearity to
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the system output and hk(Tl,'°',Tk) for k =1, 2,-++ are the kernels
of the Volterra system. In the previous section it was shown that the

kernels for the system of Figure 3.1 are given by
® k
hk(rx,fz."',f )= v, [ n"(D) r[ h'(t, -1) dt (5.3)
¥ ks =1 1

where Y 1s the coefficient of the kth order term in the series ex-
pansion of the nonlinearity. The objective of this report is to present
a low-pass equivalent representation for the model of Figure 3.1.

The first step in the development of the low-pass representation
is the expression of x(t), h'(t) and h"(t) in terms of their complex
envelopes similar to the development in Section IV. For the bandpass

input signal x(t),
* -

x(t) = Re { x(£)ed¥0% } = 1z(r) 390% 4+ wx(e)e W0t (5.4)
where wg is the center frequency of x(t), X(t) is the slowly varying
complex envelope of x(t) and the symbol * denotes the complex conjugate.
Similarly, for h'(t) and h"(t)

h'(t) = 2Re { h'(t)ed®0f } = hr(r)ed¥0t 4+ pripye It (5.5)
and

h"(t) = 2Re { h"(£)ed™0%} = pr(r)ed™ot 4 pnfryeim@ot, (5.4

Note the notation in (5.6) indicates the zonal output filter is centered

on nwg, n =1, 2,++»+ ., The case n = 0 corresponds to a low-pass output
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filter resulting in a baseband output signal.
Using the complex equivalent forms (5.5) and (5.6).1in.equation (5.3)
for the Volterra kernels along with the form (5.4), substitution into

equation (5.2) for the kth output contribution yields the low-pass rep-

resentation
0 ©® © k k
- [N ) "w 1 - — e
Yk(t) _i _iYk{wh (T)Ejlh (Ti r)er];x(t Tm)dTl drk

= I--. ka (ﬂ"(r)ejnmor+ ﬂ"?r);jnmor]

-

k . - .
-TT( h'(ri-r)ejmo(ri-T)+ h'tri-r)Eon(Ti'T) Jdt
i=1

k -
“TT( i(t-tm)ejwo(t-Tm) + ift-rm)éjmo(t'Tm) )dtyeeedt

mn=1 k

(5.7

which appears rather cumbersome. However, most of the numerous products
implied do not contribute to the output of the system and may be screened
by inspection. For example, consider the product gimilar to the last term
in (5.7)

k

TTG%&(t—Tm)ejwoct_Tm) + %ift-rm)éjmo(t-Tm)] . (5.8)

m=1

Expanding (5.8) for arbitrary k, say k equal 3, a few of the resulting

terms are

—8];2(t-1'-1)2(t-T2)i(t-T3)ejwu(3t = Tl - '|.'2 - 13)

1 * 3 = 2
+ 3 R(t-t)E(E-Tp)R(e-15)eIW0UE ~ T1 = T2 ¥ T3)
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-jug{lt + t; - 13 - 73)

* *
+ Z(t-11)R(t-1)%(t-T3)e

&
8

& cum . (5.9)

A table of all such terms for k = 3 shows only terms with *3ugt

or *luwgt in the expoment, indicating possible contributions to the system
output can only be at center frequencies of 3wg or lwy . None of these
terms will survive the output filtering unless the narrow-band output
filter is centered at either 3wy or lwg. This same reasoning allows the
screening of terms for other resulting products for arbitrary choice of k.
After the selection of the output harmonic determined by n, the corres-
ponding nwy terms are retained and the remaining terms are . discarded.

It is observed from (5.9) that there is some relationship between
the number of conjugated terms and the resulting harmonic associated with
each of the products. A table may be constructed for a few values of k from
which this-relationship between the number of conjugated terms, the order

of nonlinearity k and the ocutput center frequency nwy may be determined as

- _rky _oky k!
A= N, k) [k_+n_] [u] kta], [ka], o
2 2 [ 2 |7 2 J'

where N(n,k) is the number of conjugate pairs of terms contributing to the
output at nwy. This scheme is developed more fully in Appendix A.
A similar method but different argument is used to screen terms from

the remaining product in the Tt integral

] ) B s

(8" (0)ed™0%% w00 T (0t (r =190 (T4 fr () EIH0 (55
i=1

(5.11)

from which the derivation of a complex kermel may be anticipated.
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Again, as for (5.8), (5.11) can be expanded for k = 3 and arbitrary
n to obtain expressions such as

B (1! (11-T)h' (15-1) B’ (15-1) I 90 ((B=3)T +T14T2473)

a"(r)ﬂ'(rl-r)ﬂ'(Tz—T)Q‘tra—r)ejwo((n-l)T tritra-Ts) (3ul2)

- It can be shown that there are a total of 24 possible terms like those

k+l terms for arbitrary orders of nonlinearities.

shown in (5.12) or 2
This number of terms is reduced considerably when the indicated inte-
gration with respect to T is carried out. The complex envelopes repre-
sented by ;'(T) and g"(r) are assumed to be slowly varying functions of t.
Thus, when they are used with factors such as exp(j(n-m)wgt) for which
(n-m) does not equal zero, the entire term will be insignificant. It is
not difficult to establish a method of determining the number of terms
for which (n-m) is zero (Appendix B). This requirement forces exp(j(n-m)wgt)
equal to one and allows the combination of these surviving terms from
(5.11) with the previous results from (5.8).

Tﬂe terms resulting from this combination are at frequency (n-m)wg
plus nwg or, for the simplifications indicated, nwy. Since these terms
are all at the center frequency of the output filter, they have the poten-
tial for being passed to the output. A few of the terms resulting from
this combination for the k=3 example are

B"(T)h' (11-1)h' (12-0)h' (13-T) R (£=1,)R(E-T2) R (t-13) eI 2¥0F |

ﬂ"(r)a'(tl—T)ﬂ'(TZ-T)Q'?T3-T)i(t—1l)i(t—rz)i?t—rg)ejlmot
and . - - % :
h"(T)h'(Tl—T)h'(Tz”T)h'f13—7)i(t-T1)itt—fz)i(t—Tg)éﬂmbtejmo(Tz-ra)-

(5.13)
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Again, since the complex envelopes ﬂ‘(r) and %(t) vary so much slower
than the carrier frequency terms like exp(jwg(t2-71)), the only terms
that will survive integration by t;,T; and T3 are terms like the first
and second terms inm (5.13), which do not involve 1;,7; or T3 in the expo-
nent. All terms like the third one in which the conjugated factors in
the signal part of the product do not "match" those in the input filter
product will not contribute to the final system output.

With a simple change of variables, it can be shown that all of the
terms with the same number of conjugated parts yield the same result
when the integrals with respect to T}, T3 and T3 are carried out. This
allows rearranging and matching of surviving terms in the general form
of the complex representation described by (5.7). The number of :terms
in this simplified form of (5.7) is given by the coefficient N(n,k) from
(5.10). Any one of the N number of terms could be used to describe all
the terms, but the notation here will associate all the lowest number

subscripts of t with the proper number of conjugated terms given by

NC = NC(m,k) = 555 (5.14)
Thus, if y(z)(t) denotes the kth order output at the nth harmonic,

then the result from (5.7) is the surprisingly more simple relationship

y(z)(t) = 2Re{2-kYkaf---fﬂ"(T)a'frl—t)---ﬂ'?tNC-T)ﬂ'(th+1-r)-'-

ﬁ'(Tk-T)dT i?t—tl)---i?t-TNc)i(t-T )---i(t—Tk)

NC+1

drldrz---drkejnmot} . 5.15)
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The definition of an equivalent low-pass Volterra kernel is seen to be

1

- (n) -k+ I - x
B (T1,T2,000T) = 2 YkN-ih"(T)h'(tl—r)---h'(TNC-r)

-

h'( -r)---ﬂ'(zk-r) dr . (5.16)

TNC+HL

Also, defining the kth order complex output envelope 7(:)(t) in
y(i)(t) = Re{ 7(2)(t)e3“”°t } , (5.17)

the desired result is obtained as

(n)

YR ©) = [l [0 (1 mRemty) ok lemry R (e, ) o

NC+1

Z(t- rk) dt; dtp e+ dr (5.18)

k°

The system output at nwg is the sum of the contributions from the

individual orders of nonlinearity given by
@ = Ty @Dy . (5.19)
k=1 &

This form demonstrates the desired similarity to the familiar linear

system output

y(t) = Re{ (t)edPot } . (5.20)



VI. APPLICATIONS: SQUARE LAW DEVICES

One possible application of this low-pass representation for a
Volterra system is the solution of a problem for which there is only
one order of nonlinearity present. The system considered here has an
input which may be represented as a bandpass signal. The nonlinear-
ity contains a square law device and some constant gain factor v,.
The entire system, including the output filter and input filter is
shown in Figure 6.1.

There are really two configurations for the output filter in
this system for which the output signal wili be of interest. One form
is for when the output filter is a low-pass filter and the other is
for when the output filter is centered at 2uw,. If the output filter

is at 2up, then equation (5.15) results in

y(g)(t) = 2Re{ 2-2kaff h"(1)h' (1;-1)h' (1p-1)dT& (=1 ) R (t=T5)

-dtldeejzmot } s (6.1)

for which N(n,k) is equal to one and NC(n,k) is equal to zero, in~
dicating no conjugate products are involved in this solution. If the
solution calls for the complex kernel representation, it is clear that

the kernel is

-

h(g)(T1:Tz) = lgy, I h"(t)h' (r;-t)h' (ry-1)dT . (6.2)
And, the output complex envelope is

§(§)(t) = [f i(g)(T1,Tz)i(t-tl)i(t~rz)d11drz . (6.3)
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The resulting output signal is
7P (e) = rel 72 (ned®0t

If the output of the system is desired at baseband as in Figure 6.lc,

then substitution of %h"(t) for h'"(r), because h'"(r) is real if n=0, yields

8D (ry,1) = h;Tzzﬂ"<r)i'frl-r)ﬂ'(rz-r)dr . (6.5)
Also,

7D = {Ii(g) (11,72)&(E-T))X(t-T5) dr; dTp (6.6)
and

y P = rel 3P el% 1 = ret 5V 1, 6.7)

which is the desired baseband result.
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VII. CONCLUSIONS

The result of this effort to manipulate the basic Volterra series
representation of bandpass nonlinear systems into the familiar low-pass
form is the presentation of a systematic and possibly more familiar
looking approach to the solution of a broad class of problems termed
here as nonlinear systems with memory. The enormous task of solving the
multiple integrals inherent in the Volterra series method is reduced by
removing the carrier dependence from the integrals representing the ker-
nels and system inputs and outputs, This simplification allows the inte-
gration to be carried out over the slowly varying envelopes rather than
a carrie¥ frequency modified by a signal or filter response. Since all
of the functions integrated involve only low~pass slowly varying func-
tions, fewer samples may be used to represent the function in a numerical
solution and a considerable reduction in computer time can result. The
bandpass répresentation is gsummarized in equations (5.10) and (5.14)
through (5.19).

The versitility of the approach is demonstrated in the two exam~
ples of Section VI, Each of the examples could have had identical input
and filter envelopes. If so, the only difference in the solutions would
have been multiplication by a conversion constant to adjust for a dif-
ferent number of terms at the second harmonic and a change of carrier
frequency in the final result. The shape of the output signals would

have been similar.
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APPENDIX A
COMPLEX MULTIPLICATION AND HARMONICS GENERATED EQUATION (5.8)

The intermediate result from Section V was given as a product of
terms such as

k
M (ex(e-r)e®0TD 4 aglenr pemIo0 Ty (A.1)
i=1
This expression is simplified by multiplying out a few terms and veri-~
fying that the result can be predicted by the application of some simple
mathematical expression. The object of this method is to determine the
number of terms that will result at a particular harmonic of wy and to
determine some relationship between the order k of nonlinearity and n,
the harmonic selected by the output filter.

For example, if a term is desired for the second order (k=2) and
the output filter center frequency is 2wp, multiplication of the expres-

sion (A.1) would result in the sum of four terms, two of which are

Jwp(2t=1, -1

% :‘c(t-‘rl)i(t-rz)e 1 2)

and

jmo (0t -TIHZ)

= x(e-t DRlE-t de :
The other two terms are simply the conjugates of these two terms. Of the
four terms, it is easily seen that only two of them are at the *2uwj
frequencies and two are at zero frequency. Since the only interesting
terms are those that will be passed by the narrow output filter centered
at 2wy, the zero frequency terms will be stopped and will not contribute

to the output of the system.
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Similarly, for k = 3 and n = 1, the terms after multiplication of

(A.l) are the four terms

S (E-T)R(E-T)R(e-13) el W0 GET17T27T8)
% = =
(e R (1) R (t-13) I (1ETT17T2HTD)

* — -
_;'i(t—r1)i(t-1’2)i(t-13)e~1‘”0(lt T +T2-73)

and

ST R(E-1p) R (t-15) I W0 TEFTLI7T27Ta)

The remaining four terms are of course the conjugates of the above terms.
The conjugates of the above will be the negative frequency terms at *3uwg
and tlwp. Some effort will be made to list only the positive frequency
terms and remember there will always be corresponding conjugates that are
so easily obtained that they need not be listed.

Using these and similar examples for higher orders of nonlinearities,
a table can be built using a simple shorthand notation to condense the
information. In this notation, a nonconjugated term such as x(t-ri) is
represented by a zero, while a conjugated term like x?t—ri) is a one.
Although there are 2k combinations of conjugated or nonconjugated parts,
half of the terms may be represented by a binary count from zero to anl.
The other half are the conjugates of the listed terms. To obtain the code
for any of the conjugate terms, the listed code is complimented.

Also listed in the table is the resulting coefficient of wgt in the

exponent also represented by each code. This listing represents the harmon-

ics generated and transmitted to the output filter by the nonlinearity.
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This harmonic indicator is determined by simply subtracting the number
of nonconjugated terms, zeros, from the number of conjugated terms, ones,
in each code listed. It cam also be seen at this point that the sign on

each of thety,12,+..7, terms in the exponent represented is dependent upon

k
which of the terms in the code are conjugates. A one code such as xft-;i)
indicates a +1i. A zero code indicates a -Ti. The codes for the k=3

example are, for instance
(000), (O001), (010) and (100)

Tabulating the first few columns and projecting the results to the
higher orders of nonlinearities, Table A represents a method of display-
ing the possible terms resulting from (A.l) for a few orders of nonliner-
ities.

It is desirable to represent only positive frequency terms in the
table. However, when a particular entry for a given k contains more con-
jugated than nonconjugated terms, this code would represent a negative
entry in the harmonic column. For these special cases, a correction code
is given as the code for the conjugate term representing a positive frequency
in these cases. The correction bits (5) and (6) are ones only for k=5 and
k=6 respectively.

This small table is enough to indicate a pattern of correspondence
between the number of entries in any one column at a particular harmonic n
and the order of nonlinearity k. This relationship is given by the ex~

pression

k ¥
N(n,k) = [km], (A.2)
V2



Table A

Complex Multiplication and
Harmonics Generated

Codes Harmonics generated by

Correction Count codes given
6 54321|654321 | ks2 k=3 k=t k=5 k=6
! 000000 3 | 4 | 5| 6
=1 - I RN O M W
g 000010 1| 2 | 3| 4
ee3| 41901009101 L | S T I
! 000100 2 | 3 | 4
| 0 0j0 1 0 1 o | 1 | 2
] 000110 o | 1 | 2
{_weel (31100000 010 L L1 ] 2 1 ]e]
! 010 1000 3| 4
| 010 1001 1 | 2
! 0!0 1010 1-| 2
110100 0i01011 1 | o
! 0'0 1100 1] 2
i1 0o|oio1 101 1 | o
B! 0l0 1110 1 0
T R EITE N
010000 4
0100011 2
010010 2
010011 0
010100 2
010101 0
010110 0
101000010111 2
011000 2
011001 0
011010 0
100100/C1 1011 2
011100 0
100 0jot11101 2
1 011110 2
t 4= |1 00O 0Jo11111 4
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where N(n,k) is the number of positive frequency terms at the nth
harmonic resulting from the kth order nonlinearity. Again, it is
understood that there is an equal number of negative frequency terms

at -nwg except for the case n = 0 which is a special case,
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AEPENDIX B
HARMONICS MODIFIED BY OUTPUT CENTER FREQUENCY
The second part of the intermediate result from Section V involves
the complex representations for the input and output filters in a product

such as

(ﬁ"(r)ejnmot+ ﬂ"tt)e—jnmor] f%'(ﬂ'(Ti—t)ejmo(ri-t)+i'?ri-r)e-jwo(ri_T)].

= (B.1)

The portion of (B.1l) involving only the input filter is very similar to
the signal portion described in Appendix A. In fact, a table can be built
from this product. In this case, a { 0 0 1 } code would indicate the term

ﬁ'(rl—T)ﬂ‘(rz-r)ﬂ'fra-r)ejmo(“f +T1+T2-T3)

It is noted that the only difference bet;;en this term and the one
that would result from Table A is the sign onm all the exponent terms. For
this reason, in the new table, the difference between the number of non-
conjugate and conjugate terms has the opposite sign of the harmonic indi-
cator listed in Table A.

Furthermore, Table B includes the additional combinations generated
by the multiplication of the remaining portiom of (A.l) involving the

output filter

Jowgt -jnwgT

a"(T)e + ﬂ"fr)e

This multiplication expands the original table to twice as many entries,

adding ome more column on the left of the counting and correction codes.
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Table B

Complex Multiplication Codes and Harmonics Generated by
Output Filter Center Frequency

QISR e

Codes Harmonics generated by
Correction Count codes given
¥é6 54 321|065 4321 k=2 k=3 k=4 k=5 k=6
! 0{0 0 0 0!0 0 |-2+n {=3+n |-4+n |-5+n |-6+n
§ 1{0 00 010 0 |[~2-n |-3-n |-4-n |-5-n |-6-a
! 0/0 00001 O0+n |-1+a |-2+n [-3+n |-4+n
| 10 00 0i0 bV | 0-n|=1-n|-2-n [-3-n |~4-n
--r ------- J-—----. ———————— P - em e - o o e e e - -
: 0/0 00010 ~1+n [=2+n |-3+n [=4+n
; 00 oio 1 0 -l-n |-2-n |~3-n |~4-n
11 00}0/000!011 -l1+n | O+n |~l+n |-2+n
0 i1 00 000i011 155 | B =g |~
SR -J ————— -l_-n- ——————— -l —————— P e s e
{ ojo 0lo 100 -2+n |[-3+n |-4+n
{ 1|0 oio 100 ST N
; 0jo 0lo 1L 01 O0+n |-1+n 1=2+n
i 1o oio 1 01 0-n j~1-n |-2-n
1
I 0j0 0j0 L 10 O+n |-1+n |-2+n
i 1|0 oio 110 0-n|-1-a |-2-n
G¥1L 000}0/00j01L1 11 -2+4n |[-1+n | O+n
of Gyl o0 o0}1lo0i01 11 -2-n|-1-n] O-n
T T PR a Y SR S S S, NI o —
: 0{0,0 1 000D ~3+n |-4+n |
| 1/010 1 000 N -
| ]
! 0{0j0 1 001 -1+n |-2+n
i 1 oio 1001 wlmg <25
; ojolot o110 -l+n |=2+n
E 1 oio 1010 T —
'L 0100}0/0;01l 011 -1+n | 0+n
0 El 1 1 oio 1011 —1=% | g#a
[ 0j0;0 1L 100 ~1l+n |-2+n
5 1 oio 1100 BT -
1 'l10010}0f0;01 101 i -l+n | 0+n
0 51 oot10}1 d?o 1101 -1-n| O-n
1| 'tooo1l1]ofojo1l1 110 -1+n | 0+n
0 i1 000 1]1 oio 1110 -l=n | 0-n
if6jrt o oo ofojojo 1111 -3+n |-2+n
ojé)L 0 oo 0ftforo 1 111 e Y
I O —1 _____ B - el
0lol 0000 -4+
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This multiplication also modifies the resulting harmonic columns for
different orders of nonlinearities by +n for a zero or nonconjugated
ﬂ"(t) and by -n for a one or conjugated ﬂ"?r).

The table as shown in Table B can only be completed upon the specific
choice of output center frequency nwy. Once n is determined, it is sub-
stituted into the relationship listed for the harmonic generated. Because
only odd values of n are allowed for odd orders of nonlinearity k, once n
is given, half of the columns in the table may be ignored. It is also noted
at this point that for the soltuion of the Volterra series problems as
stated in Section V, the only entries in the table that are of interest are
those that result in a zero harmonic. This is due to the fact that these
are the only terms that will combine with those obtained in Appendix A
to produce an output at the frequency nwg.

Product terms can be easily reconstructed from Table B. For example,

a code {0|0 0 1} represents the product term

- . . _y i
R (D) (t1-T)h' (To=1)h" (r3-1) J@0 (71T +T1FT2-T3)

Again, it can be seen from this example that the signs om T(,T3,°***, Tk
are the opposite of those indicated by a similar code in Table A. This
fact is important to a further simplification when the two product terms

(A.1) and (B.l) are combined in Section V.
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ABSTRACT

The complex envelope representation is used to describe a narrow-
band bandpass nonlinear communication channel with memory. The Volterra
series method is applied to determine the output of the bandpass system
at various harmonics of the input signal center frequency. The entire
system is reduced to its equivalent low=-pass form to simplify the Volterra

sclution by suppressing carrier frequency terms.



