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Abstract

Over the last decade, the Internet has become an involving medium and user-generated

content is continuously growing. Recommender systems that exploit user feedback are

widely used in e-commerce and quite necessary for business enhancement. To make use

of such user feedback, we propose a new content/collaborative hybrid approach, which is

built on top of the recently released hetrec2011-movielens-2k dataset and is an extension

of a previously proposed approach, called Weighted Tag Recommender (WTR). The WTR

approach makes use of tag information available in hetrec2011-movielens-2k, but it does not

use explicit ratings. As opposed to WTR, our modified approach can make use of ratings to

capture collaborative filtering and either user-tags, available in the hetrec2011-movielens-2k,

or movie keywords retrieved from IMDB, to capture movie content information. We call the

two versions of our approach Weighted Tag Rating Recommender (WTRR) and Weighted

Keyword Rating Recommender (WKRR), respectively. Movie keywords (which are not user

specific) allow us to use all ratings available in hetrec2011-movielens-2k, as WKKR associates

the content information from movies with the users, based on their ratings. On the other

hand, tags provide more specific information for a user, but limit the usage of the data to

the user-movie pairs that have tags (significantly smaller number compared with all pairs

that have ratings). Both our keyword and tag representations of users can help alleviate

the noise and semantic ambiguity problems inherent in information contributed by users of

social networks. Experiments using the WTRR approach on a subset of the dataset (which

contains both ratings and tags) show that it slightly outperforms the WKRR approach.

However, WKRR can be applied to the whole hetrec2011-movielens-2k dataset and results

show that the information from keywords can help build a movie recommender system

http://ir.ii.uam.es/hetrec2011/datasets/movielens/readme.txt
http://ir.ii.uam.es/hetrec2011/datasets/movielens/readme.txt
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competitive with other neighborhood based approaches and even with more sophisticated

state-of-the-art approaches.
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Chapter 1

Introduction

As Web 2.0 applications continue to proliferate, the overabundant unstructured data that

becomes available on the Internet contains great amounts of useful knowledge which con-

sequently entails for automated information sifting. Overwhelmed by the huge number of

options presented with, people rely more and more on the experiences of others for choosing

movies, books and other products.

Recommender systems emerged in the mid-90s in order to filter out irrelevant informa-

tion and select content that meets user needs. Burke [2002] has described recommendation

systems as “An information filtering technology, that produces individualized recommenda-

tions as output or have the effect of guiding the user in a personalized way to interesting or

useful objects in a large space of possible options”. These systems can be used for different

purposes in several domains from offering products to consumer in e-commerce to finding

proper information in research [Surowiecki and Silverman, 2007]. Surowiecki’s wisdom of

crowds (WOC) hypothesis states that when it comes to popular culture, among other do-

mains, averaging the opinions of a large group of people captures the reality more accurately

than legitimate experts. Such opinions are expressed online, and they constitute a great

source of raw data that Recommender Systems (RS) [Resnick and Varian, 1997] can process

in order to make suggestions for those who are seeking them.

An e-commerce recommender system will gather current customers information and past

purchases and correlate these customers to products. With the use of some standard rec-
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ommender algorithms, an e-commerce system provides customers with accurate recommen-

dations. There are recommendation systems in different domains such as films, television

programs, video, music, books, news, images, web pages [Adomavicius and Tuzhilin, 2005].

Many advanced systems try to help users to find right data according to their interest. Per-

sonalized recommendations are a key method for information retrieval. System like Amazon1

help customers to find the best products online. Pandora2 offers a wealth of information

and services related to many aspects of music. It also helps users to find songs that they

might be interested in by capturing the user behavior. MovieLens3 tries to guide users to

identify the movies they might like. YouTube4 is known as the biggest collection of online

videos and a system that can leverage the user browsing history for recommendation.

E-commerce websites utilize one or more recommender systems to suggests the best solu-

tion to their customers. Various movie businesses like Netfilx, IMDB, Hulu etc. recommend

the movies by creating a relationship with the customer. Customer retention is very im-

portant to such websites, this relationship will often be to the benefit of the customer as

well as the websites [Schafer et al., 1999]. Although there are several factors that influence

the quality of recommender system [Kostakos, 2009], recommendations based on common

viewpoints become more and more trustworthy and widely-used [Schafer et al., 1999].

The recommendation task is often times reduced to the problem of estimating what

rating a user would give for an unseen item, or to finding a list of items that the user is

most likely to enjoy. Movie recommendation is an open research area with unanswered

problems and with growing social networking data. There is need of solutions to those

problems to keep the customer en-tact.

Generally, recommendation systems can be categorized as content-based, collaborative

or hybrid [Balabanović and Shoham, 1997], as described below:

1http://ww.amazon.com
2http://www.pandora.com
3http://www.movielens.org/
4http://www.youtube.com
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• Content-Based Recommender (CBR) systems suggest items similar to the ones

that the user has preferred in the past. However, there are some limitations to the CB

technique, like the data scarcity problem. Modeling the user’s interest is limited to ex-

tracting features from their browsing or purchasing history [Balabanović and Shoham,

1997]. Another limitation is that CB systems cannot identify new and different items

that the user may enjoy, as it is prone to finding only those that are highly similar to

the items in the history of that user.

• Collaborative Filtering (CF) systems [Su and Khoshgoftaar, 2009] filter large data

sets in search for patterns and information of interest, by collecting preferences from

multiple users. Collaborative recommendations are based on the user-user similarity.

The system will recommend those items that are liked by users with matching taste.

Similarly to the CB approach, CF techniques have shortcomings as well: a new item

cannot be recommended until someone references it. Moreover, a user with unusual

preferences may not receive recommendations unless there are other users that exhibit

the same interests.

• A combination of the CBR and CF techniques, referred to as the hybrid approach,

can alleviate some of the problems that each approach encounters individually, and can

achieve superior results. Hybrid recommender system could offer good performance

even with little or no user data.

Given this background, in this work we address the problem with collaborative filtering

and content-based recommender. This work is an extension of prior work on hybrid systems

by Liang et al. [2010]. Specifically, an extension of the Weighted Tag Recommender (WTR)

and is meant to address the problem of tag synonym and semantic ambiguity. Their hybrid

approach is a combination of collaborative and content based techniques and creates users

and items profiles based on tags that are related with respect to an item. They manage to

overcome the problems of personal tagging by extending the pool of user tags to related tags
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that represent similar topics. Although the approach proved to be effective in improving the

predictions, it has some limitations. Firstly, the algorithm does not consider explicit ratings

while building a user or item profile, tags provided by the users are strictly considered as

features of interest. In domains (e.g. movies, books) where you have both tags and ratings,

it might be desirable to make use of the ratings of the users. It has been proven in the

past that systems that leverage either the explicit ratings provided by the users, or implicit

ratings inferred by the system have performed well (e.g. Netflix5 that makes predictions

based on user ratings and user habits). Secondly, no general item description is taken into

consideration. In the work by Liang et al. [2010] they only consider item description specific

to users. In case of movies, a more general description of the items can give more relevant

features. Thus, features from item description can be significant when analyzed with ratings

provided by users and can capture user behavior much accurately compared to user specific

tags.

To alleviate the limitations faced by the Weighted Tag Recommender System that uses

implicit ratings and only user specific tags, in this work we design an improved hybrid

algorithm that make use of keywords extracted from content of movie or user tags, for

user profiling and it also uses user ratings. Our recommender system constructs the topic

preference for each user using keywords or tags. Similar to [Liang et al., 2010], our ap-

proach expands the tag/keyword pool by incorporating related keywords to alleviate the

problem of synonymy and semantic ambiguity. We used a neighborhood approach to make

recommendation based on both content user profile and a collaborative user profile. Movie

recommender’s are highly dependent on the prediction scheme. To find the best prediction

scheme for our work, we study various prediction schemes.

5http://www.netflix.com
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1.1 Thesis Contributions

To alleviate the limitations of the Weighted Tag Recommender approach [Liang et al.,

2010], which does not incorporate user ratings, we consider a Weighted Tag/Keyword Rec-

ommender strategy that makes use of ratings, and thus exhibits a better way of generating

user profiles. We explore the applicability of the neighborhood approach to classify users

based on the properties of their closest neighbors in the feature space and use a hybrid

filtering technique to generate recommendations. The users are modeled in terms of their

preferences. The recommender system constructs the topic preference for each user based on

tag/keyword weights that together with ratings can denote the degree of importance of those

tags/keywords to that particular user. Then, by matching together users with similar opin-

ions based on their profiles, each member of the system becomes part of a “neighborhood”

of other like-minded users. Movie recommenders are highly dependent on their prediction

scheme. Therefore, in this work, we also study various prediction schemes in order to find

an optimal one for making recommendations in the movie context.

In summary, the main contribution of this thesis is improving the results of a hybrid

algorithm for movie recommendation. Injecting features from a consolidated movie con-

tent database (such as tags or IMDB keywords) and profiling based on ratings, is shown

to enhance recommendations. Our approach uses a technique similar to the one proposed

in [Liang et al., 2010] which expands the keyword/tag pool by incorporating related key-

words/tags to alleviates the problem of synonymy and semantic ambiguity.
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Chapter 2

Background on Recommender
Systems

E-commerce websites help consumers to discover products of interest from huge data avail-

able over the Internet. These websites use recommender systems to generate personalized

suggestions to consumers on how to find relevant items from the large number of choices. In

the past decade, lot of work has been done on recommender systems and various techniques

have been developed. This chapter aims to discuss general concepts and terminology on

recommendation techniques. We discuss, in more detail, major types of recommendation

techniques and algorithms, pointing out their advantages and disadvantages.

2.1 Recommender Systems

It is estimated that by the end of year 2012, one third of the world population will be

using the Internet and about 1.2 billion people will join social networking websites. People

spend 6.7 billion hours on social networking websites in a month, constantly pouring the

information on the web1. As a result, we are drowning in information, but continue to starve

for knowledge [Miller, 2007]. Thus, it is becoming difficult for people to pick the resources

of their interest. Many techniques and systems have been developed in the last decade to

help users to find the right information. One of the most successful technologies is known as

1http://www.internetworldstats.com/stats.htm
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Recommender Systems, which are based on personalized information filtering, and predict

relevant items for a particular user.

Recommender systems leverage the community opinions to identify content of interest to

an individual from an overwhelming set of choices [Resnick and Varian, 1997]. Recommender

systems generate item sets, that aim to be highly customized to specific users. Therefore,

it can be said that recommender systems perform a mapping between items of interest and

users [Mobasher et al., 2007].

Given the enormous amount of data and diverse users, recommender systems can not

simply rely on users or community for recommendations. Ideas from different areas such as

Natural Language Processing, Artificial Intelligence, Human-Computer Interaction, and In-

formation Retrieval are incorporated in advanced systems for better predictions. During the

past decade significant progress has been made in the field of recommender systems, though

this is still a very active and popular area, as there are many open ended problems that

need to be addressed. To choose the right recommendation algorithm for a problem, offline

experiments need to be conducted over the same set of real data. Typically, recommender

systems are broadly classified in three categories:

1. Content-based recommendations: Items recommended to the users, similar to the

ones the user preferred in the past;

2. Collaborative recommendations: Items recommended to the users, by opinion

from the people with similar tastes and preferences;

3. Hybrid approaches: Hybrid approaches combine one or more collaborative and

content-based techniques.

We will describe these methods in more details in the next sections.

7



2.2 Content Based Methods

Content-Based recommender (CBR) systems suggest items from huge available options

based on similarity between item features and user’s preference [Van Meteren and Van Someren,

2000]. Typically, these recommender systems suggest items similar to the items preferred

in the past by the user. In content-based systems, the items are represented by their asso-

ciated features. The algorithm compares the collective user information against the feature

content of a new item, and items with high similarity score are recommended. CBR ap-

proaches construct a user profile from the features used to describe the items that the user

has rated [Burke, 2002]. Decision trees, neural nets, and vector-based representations can

be used to construct the proof depending on the problem domain and dataset. CBR models

are ever evolving models which keep updating the user profile based on user item preference

and activity.

Sometimes, CBR approaches rely on users feedback to learn their (users) preference.

Typically, information about user choices or interaction with the recommendation system,

can be used to construct the user profile. User activity and user queries may help recom-

mender systems to filter out the items that are already viewed by the user. The information

needed to interpret user feedback can be learned in two ways, through implicit feedback or

through explicit feedback [Gauch et al., 2007].

Explicit feedback: On various websites, users are asked to provide general information

about themselves this type of information collected from users directly is considered to be

explicit ratings. Such information includes: age, gender, location, interests, etc. Another

option that most websites opt for is to ask feedback on a product. Users are suppose to pro-

vide feedback either in the form of surveys or general forms. This technique is bothering and

most of the time users are not interested in filling out the forms, thus the resulting profiles

are imprecise. Hence, nowadays e-commerce websites are requesting users to express their

opinions by selecting a value in a range of explicit ratings. This is usually less troublesome

to users than filling out the forms.

8



Implicit feedback: Monitoring the user activity over the web can provide implicit

feedback. Usually, users are not aware that they are providing feedback to the system. One

such example is YouTube, where direct relation between the amount of time spent on a

single video per session and user interest can be captured. This type of feedback may not

be as accurate as the feedback in the form of explicit ratings by users, but users are not

disturbed.

As discussed earlier, CBR systems work best when recommending mostly text-based

items, where the content is extracted in form of keywords. One such popular content-

based technique is the Fab system [Balabanović and Shoham, 1997], which is designed to

recommend the web pages to the users. In the Fab system about 100 most important

keywords are chosen to represent the web pages in the corpus. Similarly, documents are

represented by 128 most distinct and frequent words in [Pazzani and Billsus, 1997] and the

importance of each word in a document is measured by some weighting scheme.

There are many weighting schemes to calculate the importance of a keyword, but the

term frequency/inverse document frequency (TF-IDF) measure is one of the most popular

and known measures for specifying keyword weights. TF correlates to the term’s frequency,

defined as the number of times term t appears in the currently scored document d (TFt,d).

Documents that have more occurrences of a given term receive a higher score. Normalized

term frequency is introduced to capture more accurately the importance of a term t in

document d. Normalized TF is a ratio between the frequency of a terms occurring in a

document and the maximum term frequency in that document (tf -max(d)). Thus, nTFt,d

is normalized term frequency of a term t in a document d and is given by:

nTFt,d =
TFt,d

tf −max(d)
(2.1)

A high nTF weight does not always imply that the term or keyword is discriminative

for the document. However, IDF ensures that a high score is assigned to a term or keyword

which is discriminative for the document and a low score is assigned to a term or keyword

9



which is highly used in all the documents [Papineni, 2001]. Therefore, IDF is often used in

combination with nTF . The inverse document frequency for a term t is given as:

IDFt = log
N

nt
(2.2)

where N is the total number of documents in the corpus and nt is the number of documents

in which term t appears. TF-IDF weight for term t in document d is defined as:

wt,d = nTFt,d × IDFt (2.3)

To capture the TF-IDF in the content based component of our approach, we have used

the modified version of TF-IDF which moves one step further and eliminates the noise and

synonymy problems.

CBR techniques have been succesfully used in many areas, including in the field of

biological and medical sciences. PURE [Yoneya and Mamitsuka, 2007] is an article rec-

ommendation system, where a user has to feed initial preferred articles into the system,

which then iteratively captures the user preferences from their inputs. In machine learning

and information retrieval, VSM is generally used to create item and user profiles [Huang,

2008]. Rocchio [1971] proposes a VSM based technique, where performance of the system

improves over the time, as the system collects more and more knowledge from user feedback.

Advantages of content-based recommender systems:

• Implicit feedback from users is enough to construct the user profile and with increase

of database content over the time, performance of CBR gradually improves.

• CBR can help to recommend new or unpopular items to users based on their taste.

Hence, new items do not starve for users explicit feedback.

Disadvantages of content-based recommender systems:

• CBR systems are limited to features that are explicitly associated with items. For

better performance of the system, a sufficient set of features is required, so either

10



automatic feature extraction from content is needed or manually annotation of items

is required. Applications of feature extraction methods are somewhat limited to text

based approaches and harder to apply in domains such as image or video recom-

mendation. Also, it is impractical to identify features manually due to limitation of

resources [Shardanand and Maes, 1995].

• Another problem with CBR is that when items are represented by the same set of

features, they can be indistinguishable.

• CBR systems suffer from an insufficient number of ratings at very early steps.

• Over-specialization can occur when the CBR system only recommends items scoring

highly against a user’s profile. In such cases, the user is restricted to seeing items

similar to those already rated. Often this is addressed by injecting some randomness

in the predictions.

• New users may not be able to get accurate predictions according to their taste. For

better predictions, users need to have a sufficient number of ratings, which is not

always possible.

2.3 Collaborative Filtering

Collaborative filtering (CF) is a technique for producing personalized recommendations by

computing the similarity between the current user and other users with similar choices.

Thus, the current user choice is predicted by gathering choice information from other users

with similar preferences. If choices matched in the past, it is assumed that they will match

in future as well. For accomplishing this task, a large amount of data is processed [Schafer

et al., 2007].

Prediction and recommendation are the two main parts of a CF [Walia, 2008]. Collabora-

tive prediction uses the current preferences that are available and the other users preferences

11



relation to predict the current user preferences. Developing a set of items which are more

likely to be of interest to the current user is known as collaborative recommendation. For

example, CF uses item preference database to suggest items to new users. Typically, there

is a set of n users given by U = {u1, u2, ..., un} and set of m items given by I = {i1, i2, ..., in},

and each user uj ∈ U has a set of items Iuj that the user uj has rated. Usually, ratings

are in the range 1 to 5. CF leverages this user rating data and implicitly learns the user

preference [Miller et al., 2004]. A user-item ratings matrix is a list of users and the items

they like or dislike, specified using ratings. The CF task is to predict values in this matrix,

specially, predict values for which the user did not provide ratings and, then recommend

the items with high prediction scores.

2.3.1 Types of Collaborative Filtering Algorithms

Collaborative filtering algorithms can be divided into two groups [Shani et al., 2002]:

1. Memory-based collaborative filtering algorithms: Memory-based algorithms

exploit the entire item-user database. A set of similar users are identified for the cur-

rent user, and rating predictions are generated based on ratings in the neighborhood

of the current user. Memory-based CF is easy to implement and new data addition

is easy to add incrementally. In the memory-based category, the most popular non-

probabilistic approach is the k Nearest Neighbor algorithm (kNN). kNN can identify

user-based nearest neighborhoods and item-based nearest neighborhoods, where either

users or items are represented using ratings. The disadvantage of memory-based CF

techniques is that they solely depend on user ratings, and a decrease in performance

is observed when data is sparse, and also for new users/items, the prediction is diffi-

cult. Such techniques exhibits poor scalability for larger dataset. For sparse dataset,

dimensionality-reduction methods like SVD are recommended as they generate better

predictions.

2. Model-based collaborative filtering algorithms: Model-based CF algorithms
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use the pure rating dataset to construct a model to make prediction [Breese et al.,

1998]. Well known model-based techniques include Bayesian models which use the

naive Bayes strategy to make predictions. Clustering CF chunk the big dataset in

a set of clusters, then recommendations are made independently for each cluster to

achieve better scalability [Ungar and Foster, 1998]. Model-based CF methods can

deal with the sparsity, scalability and other problems in a better way than memory-

based methods. The prediction performance is improved and an intuitive rationale for

recommendations is given. Irrespective of several advantages, this technique also has

some shortcomings. Model building is usually expensive, furthermore model-based CF

performs a trade-off between scalability and performance prediction. At last, useful

information can be lost when dimensionality reduction techniques are employed.

2.3.2 Similarity Measures

Similarity computation is the backbone of collaborative filtering as neighborhood formation

is done based on these values. To evaluate the similarity between any two users or items,

cosine-based similarity is modified. In general, cosine similarity can estimate the similarity

between two documents, where each document is a vector of words and their weights (e.g.

TF-IDF weight). In recommender systems, instead of documents, we have users or items,

and instead of word frequencies we have ratings. Thus, cosine similarity is defined as:

sim(u, v) =

∑
i∈I

ru,i · rv,i√∑
i∈I

r2
u,i ·

√∑
i∈I

r2
v,i

(2.4)

where I is set of items that both users u and v have rated and ru,i is the rating given by

user u to the item i, otherwise it is zero. Computing similarity using basic cosine measure

in user-based case has one important drawback:- the differences in the rating scale between

different users are not taken into account [Sarwar et al., 2001]. To overcome their drawback

in cosine similarity, many researchers rely on Pearson Correlation Coefficient (PCC) and its
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variants to calculate the item-item and user-user similarity. PCC measures the degree to

which two vectors are linearly related with each other. User-user PCC is denoted as wu,v

and is given by:

wu,v =

∑
i∈I

(ru,i − r̄u)(rv,i − r̄v)√∑
i∈I

(ru,i − r̄u)2

√∑
i∈I

(rv,i − r̄v)2

(2.5)

where I is the set of items that both users u and v have rated; r̄u is the average rating

to items by user u. To calculate item-item PCC for items i and j, first, the set of common

users (users who rated both items) u ∈ U is found. Item-item PCC is denoted by wi,j and

given by:

wi,j =

∑
u∈U

(ru,i − r̄i)(ru,j − r̄j)√∑
u∈U

(ru,i − r̄i)2

√∑
u∈U

(ru,j − r̄j)2

(2.6)

where ru,i is the rating of user u on item i, and r̄i is average rating of item i by user u.

2.3.3 Prediction Computation

Rating prediction is the most important step in a collaborative filtering system. In the

nearest neighborhood techniques, the set of nearest (similar taste) neighbors of an active

user is determined based on similarity scores and weighted aggregate of neighbor ratings

used to predict the rating of the users.

Simple Weighted Average: This is a basic rating prediction scheme, which uses simple

weighted average to predict the rating [Sarwar et al., 2001]. Pu,i denotes the predicted rating

for user u on item i and is given by:

Pu,i =

∑
j∈N

ru,jwi,j∑
j∈N

|wi,j|
(2.7)

14



where N is the set of all items that the user has rated, other than item i, wi,j is the similarity

score between item i and item j, and ru,j is the rating for item j by user u.

Weighted Sum of Users Ratings: This prediction scheme is a modified version

of (2.7), which uses the mean weighted average of all the ratings on the active item. It is

defined as:

Pu,i = ru +

∑
v∈U

(rv,j − r̄v) · wu,v∑
v∈U

|wu,v|
(2.8)

where u is the active user and the rating calculation is for item i; v ∈ U represents users that

have rated item i, wu,v is the similarity score between user u and user v; rv,i is the rating

for item i by user v; r̄u and r̄v are the average rating for user u and user v, respectively.

Apart for these, many researchers have modified the prediction schemes or develop vari-

ants of the existing ones, but they all have the same purpose to rate predictions. In our

work, we use user-mean-centered rating scheme (2.9) which is the most reliable and effective

prediction scheme in the movie domain:

r̂(u,m) = r̄u + σu

∑
v∈U

wuv(rv,m − r̄v)
σv∑

v∈U

|wuv|
(2.9)

In Equation (2.9), r̄u is the average of the ratings given by user u, wuv is the similarity

value between user u and user v, σu is the standard deviation of ratings given by user u and

all the other users in the corpus.

Advantages of Collaborative Filtering Recommenders:

• Collaborative filtering can perform well in cases where there is not much data or

content associated with items. It also performs well in cases where the data associated

with items is hard to analyze or have inconsistencies, e.g. in ideas, opinions, etc.

• Recommender systems built solely on collaborative filtering approach have the ability

to provide recommendations that are relevant to the user, but do not contain content
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from the user’s profile.

Disadvantages of Collaborative Filtering Recommenders:

• New User: There needs to be enough other users already in the system to find a match

for a particular user.

• Sparsity: Most users do not rate most items and hence the user-item matrix is typically

very sparse. If there are many items to be recommended and even if there are many

users, because the user-ratings matrix is sparse, it is hard to find users that have rated

the same items.

• First Rater: It is not possible to recommend an item that has not been rated before.

This problem comes for new items mostly. An obscure item may also face this problem.

• Popularity Bias: Collaborative filtering cannot recommend items to someone with

unique taste. In general, there is a tendency to recommend the popular items.

2.4 Hybrid Techniques

In general, hybrid recommenders are systems that combine multiple recommendation tech-

niques together to achieve better performance and to eliminate disadvantages in recommen-

dation system. Hybrid systems aim to take advantage of all techniques (that are combined

together) and obtain more accurate predictions. Most popularly, researchers combine col-

laborative filtering with some technique to avoid new-user problem. Hybrid techniques

perform well in some domains but cannot be generalize for all recommendation problems.

Hybrid techniques mainly depend on the problem domain and data, as different types of

combinations produce different results. Some of the hybridization techniques are mentioned

below:
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2.4.1 Weighted Recommenders

A weighted hybrid recommender score for an item is computed of the output from all avail-

able recommendation techniques. For example Claypool et al. [1999] combine the outputs

or ratings obtained from content and collaborative filtering systems into one final (hybrid)

recommendation using linear combination of ratings. Equal weightage is given to both tech-

niques. Another popular recommender system in this category is [Pazzani, 1999] hybrid

combinator, which evaluates the output from each recommender as a set of votes (defined,

undefined and neutral), and then combines the sets to get general consensus.

2.4.2 Switching Recommenders

Switching hybrid systems incorporate the item level sensitivity into the hybridization strat-

egy. Based on some criteria the system switches between the recommendation techniques.

For example if the content-based system cannot generate a relevant result, then collabora-

tive filtering is attempted. However, finding the right criteria for switching adds additional

complexity to the process. Given that content and collaborative recommender systems can’t

deal with the new-user problem, it is obvious that switching systems also fail to address the

new-user problem. The benefit of such a system is that it can be sensitive to the strengths

and weaknesses of its constituent recommenders.

2.4.3 Mixed Recommenders

Mixed recommenders help to make a large number of recommendations in less time. This

type of recommenders take the consensus from two or more sources and ranks the items

using a complex combination technique. The advantage of using the mixed recommender

system is that it alleviates the new user problem.
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2.4.4 Cascaded Recommenders

Unlike other hybridization techniques, the cascade hybrid technique is a staged process. In

this technique, the first recommender technique generates a ranked candidate set and then

a second recommender refines the recommendations in the candidate set. The second step

in cascading is to identify poorly rated items and to focus only on those items for which

additional discrimination is needed. The cascade hybrid system works well, especially when

combining two components of differing strengths. Thus, it is more efficient than weighted

hybrid that employs all the techniques for all items.

2.4.5 Feature Augmentation Recommenders

In this technique, the first recommeder produces a rating or classification of the items and

this information is fed to the next recommender. In general, features extracted from the

first recommender is used by the next recommender. Augmentation is attractive because it

offers a way to improve the performance of a core system.
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Chapter 3

Related Work

This chapter discusses the related work relevant to the problem addressed in this thesis.

We focus on related work in the movie recommendation domain and point out advantages

and disadvantages of various methods. Specifically, we consider approaches using tags with

ratings, and keywords with ratings, in what follows.

The work on recommender systems has been expanding greatly and is constantly im-

proving. Such recommender systems are currently applied to a wide range of domains,

from entertainment items to scholarly articles, from products to friend suggestions in social

networks. The culminating point which attracted a lot of interest and also the attention

from the media was the announcement of the million-dollar prize from Netflix [Bell et al.,

2008], which required a 10% improvement over their best recommendation technique at that

time. For more comprehensive information on recommender systems, the reader is referred

to [Marinho L.B., 2011].

Tagging is a type of labeling, whose purpose is to assist users in the process of finding

content on the web. It has evolved considerably thanks to social networks and has become

a very popular concept. In 2004, Thomas Vander Wal assigned the name “folksonomy”1 to

the tag system developed by Web 2.0 consumers, as a derivation from the phrase “people’s

taxonomy”. Although the tagging terms are highly personalized, their aggregation conveys a

sound basis for prediction algorithms. For example, Said et al. [2012] propose a folksonomy-

1http://vanderwal.net/folksonomy.html
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based approach to personalize tags. For each user, each tag is assigned a value obtained

from averaging the ratings the user gave to the movies tagged with that particular tag.

Tagging data is used with existing CBR methods to improve the overall predictive ac-

curacy of the algorithm. The work by De Gemmis et al. [2008] capture the user preference

from both item description and tagging data. This approach profiles a user by considering

tag information as an additional source. Experimental results confirm the improvement in

prediction accuracy.

Recently, tagging data has also been exploited with traditional collaborative filtering

to enhance the performance. In [Wang et al., 2010], tags are used to build profiles for

users, then similarity scores are used to determine like-minded neighbors. This approach

uses implicit ratings to profile items or users. Explicit ratings are used only for predicting

missing ratings. The dataset used in this work is a subset of the MovieLens2 dataset.

Preprocessing was performed to remove noise and ambiguity from tags. But [Wang et al.,

2010] fail to handle the problem of tag synonymy and tag ambiguity. In reality, it is quite

impossible to manually remove such noise from data and tags considered as a noise in one

dataset can have great significance in some other dataset. Thus, methods that can handle

noise in the dataset by themselves are highly desirable.

Tags are free annotations and there are no constraints enforced, which makes tag-based

recommendations suffer from degraded performance because of semantic problems, like pol-

ysemy and synonymy [De Gemmis et al., 2008]. A hybrid system proposed by Liang et al.

[2010] that deals with these problems is based on weighted tags and was developed to recom-

mend books from the Amazon database. Liang et al. [2010] manage to overcome the problem

of personal tagging by extending the pool of user tags to related tags that represent similar

topics. Although the approach proved to be effective in improving the predictions, it has

some limitations. In the first place, while building the user and item profiles, the algorithm

does not consider explicit ratings, but implicit ratings: if a tag has been assigned, then it

2http://www.grouplens.org/node/12
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is inferred that the user is interested in the item. However, that may not always be the

case. Users may still tag movies that they do not like, in which case, the rating holds the

information about their true preference. For domains (e.g., movies, books, products) where

both tags and ratings are available, a recommender system should exploit all the information

available.

Systems that leverage ratings – which can be either explicitly provided by the users or

implicitly inferred by the system – are known to perform well, for example Netflix [Bell

et al., 2008]. By integrating a weighted combination of rating and tag information from

social networks can improve recommendations [Clements et al., 2010]. However, ratings are

not always noise free [Amatriain et al., 2009], therefore, we combine them with more solid

features (i.e., keywords) extracted from movie descriptions.

The following approaches make use of the hetrec2011-movielens-2k dataset, which we

also use in this paper:

The system proposed by Bothos et al. [2011] is an ensemble of various recommenders,

called Information Market Based recommender Fusion (IMBrf), primarily used for mining

and aggregating the information from various sources. This technique is inspired from the

market, where information from heterogeneous sources is incorporated to make predictions

about future events. We compare our results with the results of other approaches as re-

ported in [Bothos et al., 2011], including a pure collaborative filtering technique (CF) and a

content-based recommender system, called content analysis (CA). For CF, the authors used

the neighborhood based approach and set the size of the neighborhood to 30. We will pre-

serve these settings in our experimental setup, to be able to make fair comparisons. The CA

recommender is based on latent topic analysis, and movies are mapped to topics via tags.

The prediction is made by finding topics in new movies that are correlated to the user pro-

files. Another recommender, based on averaging the ratings (AVGR), is presented in [Bothos

et al., 2011], where an unrated item’s rating is estimated from the weighted average of other

ratings from other users. Finally, Linear Least Square (LLS) is proposed in [Bothos et al.,
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2011]. LLS is a linear combination of CF, CA and AVGR: RLS = αCF + βCA+ γAV GR,

where RLS denotes the predicted rating (the parameters α, β and γ are found by optimiza-

tion, for more details see [Bothos et al., 2011]). In [Jones et al., 2011], the authors propose

learning multiple models which can incorporate different types of inputs to predict the pref-

erences of diverse users. Probabilistic Matrix Factorization (PMF) is a variational Bayesian

inference technique, used to alleviate the overfitting problem in singular value decomposition

(SVD) approaches. Priors are introduced and parameters are estimated using variational

Bayesian inference [Nakajima and Sugiyama, 2007]. PMF models the user preference matrix

as a product between the lower-rank user and movie matrices [Jones et al., 2011].

k-NN is one of the most popular methods, and also a simple and easy to implement

approach. k-NN is computationally efficient and stable with the addition of new users or

items. Another important strength is its serendipity that gives users unexpected prediction,

yet interesting. k-NN cannot overcome the data sparsity problem. However, with the right

combination of models, this problem can be overcome. Also, various approaches strongly

advice not only to use content-based information to improve the active user knowledge, but

also leveraging the explicit feedback from users at collaborative level. This can be achieved

by hybrid models where all the components are represented under the same formalism.

Usually, at the feature level, implicit ratings are used to profile users or items which can

lead to the over-specialization problem. Data sparsity along with relations between features

is still an open problem in recommender systems. However, researchers still struggle to

discover a perfect way to incorporate the ratings with the tags or keywords.

In this thesis, we proposed a method that makes use of both tags and keywords along

with ratings. We study the behavior of the algorithm when applied to a movie dataset. Ex-

periments show that, recommendations made using the neighborhood approach are accurate

and comparable to state of the art results.
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Chapter 4

Problem Discussion and Approches

In this chapter, we first discuss the problems addressed by [Liang et al., 2010] in Section 4.1

and then we provide an overview of the Weighted Tag Recommender approach and of the

proposed approach Weighted Keyword Recommender (WKRR) and Weighted Tag Rating

Recommender (WTRR) algorithms and explain how we implemented these algorithms in

Section 4.2. Further in Section 4.3 the neighborhood formation and the hybrid recommen-

dation generation are discussed. Finally, we define efficient prediction scheme in Section

4.4.

4.1 Problem Addressed

The book recommender system proposed by Liang et al. [2010] is built from tag information

only. The authors state that tags can capture the content information of items. However,

tags are sometimes meaningful only to the users that assigned them. They can be ambiguous

and can also have a lot of synonyms. Liang et al. [2010] developed a way of addressing

these problems by expanding the tag set that is relevant to a user to include other related

tags. They construct user profiles from these weighted tags. Then, based on the same tag

expansion procedure, they build item preference profiles, which include other related tags

that are relevant for describing an item. In this approach, item recommendations are made

by combining a user based collaborative approach with a content based approach. However,

the user ratings are never explicitly used. Instead, implicit ratings are used. The implicit
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ratings are obtained by assuming that a user who tags a movie likes that movie.

We expand the idea of weighted tags in the context of movie recommendations. Given

that the hetrec2011-movielens-2k data shows that tags may not always capture the true

preferences of users, in our scenario, we incorporate the actual ratings. One main difference

in our approach is that, instead of simply counting the number of times a user ui has tagged

an item with the tag tx (as done in [Liang et al., 2010]), we add up the ratings that user ui

has assigned to the movies tagged with tx. Furthermore, we have observed that the number

of tagged movies is significantly smaller than the number of rated movies. To be able to

capture all rating information, we propose to use collective user keywords associated with a

movie, available at IMDB. IMDB allows users to provide keywords in a controlled manner,

thus keyword descriptions of movies can be considered as consolidated “word of mouth”. Our

intuition is that such information can produce better recommendations than ratings alone,

when tags are not available, as it can capture content features. Thus, our approach works

either with user-specific tags or collective user keywords, and actual ratings, as opposed to

the original approach that considers only user-specific tags and implicit ratings.

4.2 Approaches: WTRR and WKRR

Before describing our approaches, we introduce some notations. The user set U = {u1, u2, ..., u|U |}

contains all the users that tagged movies in hetrec2011-movielens-2k dataset. The movie set

M = {m1,m2, ...,m|M |} contains all movies from the corpus, the tag set T = {t1, t2, ..., t|T |}

contains all the tags used by the users in U to label movies in M . The keywords set

K = {k1, k2, ..., k|K|} contains all the keywords used to annotate movies. Finally, we denote

by R = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} the set of all possible ratings that users can give.

Our approach falls in the neighborhood category. To make recommendations, we rep-

resent user profiles using two components. First, we consider a movie tag/keyword based

component, denoted by uT and uK , respectively. The uT profile is a vector with T ele-

ments, while the uK profile is a vector with K elements. Both of them are meant to capture
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movie content, in other words topic preference. Second, we consider a movie rating based

component denoted by uM . The uM profile is a vector with M elements and captures the

collaborative filtering idea.

With these notations and preliminaries, we will present the details of our WTRR and

WKRR approaches in what follows. We start by showing how to construct the content and

collaborative profiles for a current user, followed by details about how to find the user’s

neighborhood using the profiles, and, finally, how to make predictions for the current user

based on the information in the neighborhood. To illustrate the concepts defined in our

approach we will use the user-movie-tag-rating graph in Figure 4.1 and the user-movie-

keyword-rating graph in Figure 4.2

Figure 4.1: Example of user-movie-tag-rating graph, used in WTR and WTRR approaches

Figure 4.1 shows a scenario where we have 2 users and 3 movies. In this example, user

1 has rated and tagged movies m1,m2 and m3 with ratings 4, 2 and 5, respectively. User

u2 has rated movies m2 and m4 with ratings 4 and 2. Edge from tag to movie is associated

with a rating which is inherited from the users to avoid any confusion.

Figure 4.2, shows the keyword based scenario, where our task is to construct the user

profile based on keywords and ratings. In this figure, movie m1 has keywords k1 and k4,
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Figure 4.2: Example of user-movie-keyword-rating graph, used in WKRR approach

movie m2 has keywords k2, k3 and k4 and lastly movie m3 contains keywords k3 and k4. For

better visualization of actual data, Figure 4.3 is a subgraph specific to user u2.

4.2.1 User Profiles

There are three steps that we need to consider in order to construct a tag/keyword user

profile. First, we calculate the relevance of a tag or keyword to a movie as a weight. Using

such weights, we next estimate relatedness between two tags/keywords, and finally use the

relatedness information to construct user profiles.

Relevance of a Tag/Keyword to a Movie

WTR: Before describing how tag/keyword relevance weights are calculated in our approach,

we first show how the movie tag relevance weight is calculated in the original WTR approach

[Liang et al., 2010]. Let mi be a movie from M and let Tmi
be the set of all tags used by

different users to describe the movie mi. For each tag tx from Tmi
, the movie tag relevance
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Figure 4.3: Simplified keyword graph of user u2 for WKRR approach

weight is defined as wmi
(tx) and is calculated using the equation:

WTR based: wmi
(tx) =

nmi,tx∑
ty∈Tmi

nmi,ty

(4.1)

where nmi,tx represents the number of times the tag tx has been used by the users in the

corpus to describe the movie mi. The value of wmi
(tx) signifies how popular the tag tx is

for the movie mi. This relevance metric reflects the wisdom of crowds. In other words, the

higher the value of wmi
(tx), the better the tag tx represents the topic of the movie mi.

With reference to Figure 4.1, we calculate the tag relevance metric for movie m3. In

general relevance weight is estimated for all the tags. For movie m3, only tags t2 and t3 are

used for tagging. Hence, we have nm3,t2 = 2 and nm3,t4 = 1 and nm3,t1 = nm3,t3 = 0. Hence,

wm3(t1) = 0
1+2

= 0, wm3(t2) = 2
1+2

= .667, wm3(t3) = 0
1+2

= 0, and wm3(t4) = 1
1+2

= .334

WTRR: As our goal in the WTRR approach is to capture ratings, in addition to tags.

The modified movie tag relevance weight Equation (4.1) is based on ratings rather than

simple counts. To be able to use both ratings and tags, we must ensure that the user who

tagged a movie, also rated that movie. In other words, a movie must be both tagged and

rated by a particular user. The adapted formula for calculating movie tag relevance weight
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using the WTRR approach is:

WTRR based: wmi
(tx) =

∑
uj∈Umi,tx

ruj ,tx(mi)∑
uj∈Umi ,ty∈Tmi

ruj ,ty(mi)
(4.2)

where the numerator is a summation of the ratings ruj ,tx(mi) assigned to the movie mi by

all the users uj who used tx to annotate it. The set of users who used tx to tag mi is denoted

by Umi,tx . The denominator represents a summation of all the ratings from the users who

tagged mi. The value of wmi
(tx) now captures the true popularity of the tag tx with respect

to a movie mi.

Based on the Equation (4.2) we calculate the relevance metric for movie m3 using WTRR

approach. For this instead of counting the occurrence of tags, we will incorporate the direct

user ratings. So,
∑

uj∈Um3,t2
ruj ,t2(m3) = 2 + 5 = 7 and

∑
uj∈Um3,t4

ruj ,t4(m3) = 5 and other

sums will be zero. Hence, wm3(t1) = 0
2+5+5

= 0, wm3(t2) = 2+5
2+5+5

= 0.5833, wm3(t3) =

0
2+5+5

= 0, wm3(t4) = 5
2+5+5

= 0.4166

WKRR: Similar to tags, we can also calculate the relevance of a keyword with respect

to a movie as a weight. However, as opposed to tags that are specific to users, keywords

are not associated with specific users. Here, we want to capture how relevant a keyword kx

with rating r is to a movie mi. For example, how relevant is “gun” as a preferred keyword

to the movie “Matrix”, as opposed to how relevant “gun” is as a disliked keyword to the

movie “Matrix”. Thus, this measure will capture the community’s amenity/approval of a

keyword toward a movie. The movie keyword relevance metric wmi
(ky, r) is given by:

WKRR based: wmi
(kx, r) =

nmi,kx,r∑
ky∈Kmi

nmi,ky ,r

(4.3)

where mi is a movie from M , Kmi
is the set of all the keywords used to represent movie mi,

nmi,ky ,r is the count of how many users rated the movie mi which contains keyword ky with

rating r. For example, if kx belongs to a movie that the user ui rated with 4.5, nui,kx,4.5 is

the count of movies sharing keyword kx which have been rated with 4.5.
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Now, we demonstrate the calculation of wm3(k4, 4) for user u2. First, we use Equa-

tion (4.3) to calculate the movie keyword relevance metric for movie m2. Practically, we

will be having 10 different matrices for a movie specific to each rating. We show the cal-

culation for wm2(k4, 4). For this, we calculate nm2,k4,4 = 1, nm2,k2,4 = 1 and nm2,k3,4 = 1.

Then, wm2(k4, 4) =
nm2,k4,4

nm2,k4,4
+nm2,k2,4

+nm2,k3,4
= 1

3
. Similarly, wm3(k4, 2) =

nm3,k3,2

nm3,k4,2
+nm3,k3,2

= 1
2
.

Tag Relatedness Metric for a User

Given the relevance of a tag or keyword with respect to a movie, we can calculate the relat-

edness of two tags or keywords with respect to a user, as explained below. The relatedness

metric is used when constructing the user profiles, in order to avoid semantic ambiguity.

WTR/WTRR: The relatedness metric between two tags is denoted by cui(tx, ty), and

represents the degree of correspondence (or connection) between tx and ty with respect to

user ui. It measures how similar tag ty is to a given tag tx, in the content of a user ui. The

equation to calculate the tag relatedness metric is given by:

cui(tx, ty) =
1

|Mui,tx|
∑

mj∈Mui,tx

wmj
(ty) (4.4)

where Mui,tx represents the set of movies that user ui has tagged with tag tx. We should

note that the tag relatedness metric is not symmetric, in the sense that cui(tx, ty) is not

always equal to cui(ty, tx), as the set Mui,tx can be different from the set Mui,ty .

For Figure 4.1 we calculate cu2(t2, t4). According to formula we find Mu2,t2 i.e. m2,m3.

So, 1
|Mui,tx |

∑
mj∈Mui,tx

wmj
(ty) =

1

2

(
wm2(t4) + wm3(t4)

)
=

1

2

(
0 +

5

2 + 5 + 5

)
= 0.2083. Simi-

larly, cu2(t2, t4) = 1
2

(
wm2(t2) + wm3(t2)

)
= 1

2

(
4

2+4+4
+ 2+5

2+5+5

)
= 0.4916.

WKRR: In the case of WKRR, the goal is to find the semantic sphere of each keyword

for all possible ratings for every users individually. The intuition behind this is that if a

user has rated a movie mi with a high value, the keywords associated to mi are important

to that user. To evaluate the importance of keyword kx for user ui who rated mi with r, we

aggregate the movies containing kx and having rating r together, to form a topic preference.
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Since the movie topic can be described by weighted keywords, keywords from all the movies

containing kx and rated with r can be used to describe the topic preference of user ui. By

this, we capture related keywords to calculate the topic preferences. We define cui,r(kx, ky)

to represent the degree of correspondence (or connectivity) between keywords kx and ky

with respect to user ui in the context of rating r:

cui,r(kx, ky) =
∑

mj∈Mui,kx

1

|Mui,kx,r|
· wmj

(ky, r) (4.5)

where |Mui,kx,r| is the number of movies containing keyword kx that user ui has rated with

rating r.

For Figure 4.3 we calculate cu2,4(k4, k3). According to formula we find Mu2,k4 i.e. m2,m3.

So, 1
|Mu2,k4

|

∑
mj∈Mu2,k4

wmj
(k3) =

1

2

(
wm2(k3, 4) + wm3(k3, 4)

)
=

1

2

( 1

1 + 1 + 1
+ 0
)

= 0.1667.

Similarly, cu2,4(k4, k4) = 1
2

(
wm2(k4) + wm3(k4)

)
= 1

2

(
1

1+1+1
+ 0
)

= 0.1667.

Tag/Keyword User Profiles

User Profile Generation From Tags: We are now ready to describe uTi in more detail. We

start with the original definition as presented by Liang et al. [2010]. Tags, assigned by users,

explicitly describe the preferences of the users who assigned them. The number of times a

tag is used by a user to describe a movie in the corpus, shows how popular the tag is for

that user. Therefore, it becomes necessary to capture the user tag preference (or user tag

relevance metric). The value of the user-tag relevance metric signifies how strongly the user

feels about a tag:

WTR based: wui(tx) =
nui,tx∑

ty∈Tui

nui,ty
(4.6)

where Tui is the tag set of the user ui and nui,tx is the number of movies that are collected

under the tag tx by user ui, in other words, how many times the user has used a certain tag.

For Figure 4.1 we calculate the user-tag relevance metric for user u2. Similar to movies

relevance weight, is estimated for all the tags. User u2 has used only tag t2 and tag t3 for
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tagging then nu2,t2 = 2 and nu2,t3 = 1 and nu2,t1 = nu2,t4 = 0. Hence, wu2(t1) = 0
1+2

=

0, wu2(t2) = 2
1+2

= .667, wu2(t3) = 1
1+2

= .334, and wu2(t4) = 0
1+2

= 0.

In our vision, uTi can be estimated more accurately from ratings. Since our dataset was

reduced to a subset of movies for which all users provided both tags and ratings, we are

able to refine the above formula, as follows:

WTRR based: wui(tx) =

∑
mj∈Mui,tx

ruj ,tx(mj)∑
mj∈Mui ,ty∈Tui

rui,ty(mj)
(4.7)

where the numerator is a summation of the ratings assigned to the movie mj by all the users

who used tx to annotate it, and the denominator is the summation over all ratings assigned

to the movie mj by all the users who tagged it.

We demonstrate how to calculate the user-tag relevance for the WTRR approach using

the example in Figure 4.1.We show the calculation for user u2. User u2 uses tag t2 and t3

to tag movies. So,
∑

mj∈Mu2,t2
ru2,t2(mj) = 4 + 2 = 6 and

∑
mj∈Mu2,t3

ru2,t3(mj) = 4 and the

rest will be zero. Hence, wu2(t1) = 0
4+2+4

= 0, wu2(t2) = 2+4
4+2+4

= 0.6, wu2(t3) = 4
4+2+4

=

0.4, wu2(t4) = 0
4+2+4

= 0.

As tags related to ty are believed to be representative for user ui, the weight (relevance)

of tag ty for a user ui is calculated as summation of relatedness between the tags used by

user ui (i.e., tx ∈ Tui) and target tag ty; Wui(ty) is the total relevance weight of ty for the

user ui and is given by:

Wui(ty) =
∑
tx∈Tui

wui(tx) · cui(tx, ty) (4.8)

For Figure 4.1, based on WTRR values, we build the profile for user u2 i.e. calculate

the weight for all the tags with respect to user. We need to calculate the set of tags

user assigned to movies Tui = {t2, t3}. We show the estimation of Wu2(t1). As there are

two tags that are used by user, we can expand the Equation (4.8) based on user tag set.

Wu2(t1) = wu2(t2) · cu2,t2(t1) + wu2(t3) · cu2,t3(t1) = 6
10
· 0.2+0

2
+ 4

10
· 0.2

1
= 0.14. Similarly,

Wu2(t2) = 0.45496,Wu2(t3) = 0.28,Wu2(t4) = 0.125.
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Similar to inverse document frequency in information retrieval, a tag’s occurrence for all

users must be taken into consideration in order to measure the general importance of a tag

in the topic preference identification of a user; iuf(ty) is the inverse user frequency of tag

ty and is given by:

iuf(ty) =
1

log(e+ |Uty |)
(4.9)

where |Uty | is the number of users that used ty and e is Euler’s number thus, 0 ≤ iuf(ty) ≤ 1.

For Figure 4.1, we calculate the value of iuf(ty) for all the tags in the corpus. For iuf(t1)

first we find the number of users that used tag t1 i.e. 1. Hence, iuf(ty) = 1
log(e+1)

= 0.6309.

Similarly, iuf(t1) = iuf(t3) = iuf(t4) = 0.6309 and iuf(t2) = 0.5. The tag representation

of each user is defined as:

uTi = {Wui(ty) · iuf(ty)|ty ∈ T} (4.10)

The weights in the tag user profile in Equation (4.14) capture the values of the tag topic

preference for each user ui. For Figure 4.1, uTi is given by:

∣∣∣∣∣∣
t1 t2 t3 t4

u1 .. .. .. ..
u2 0.14 · 0.63 0.45 · 0.5 0.28 · 0.63 0.125 · 0.63

∣∣∣∣∣∣ =

∣∣∣∣∣∣
t1 t2 t3 t4
.. .. .. ..

0.088 0.227 0.176 0.078

∣∣∣∣∣∣
User Profile Generation From Keywords: Similar to the tag user profile, we calculate a

keyword user profile which captures the keyword topic preference for each user ui. Here,

the goal is to estimate the importance of a keyword to a user, given a particular rating.

First, we calculate the user-keyword relevance metric which shows how strong a keyword kx

is relevant to a user ui when the movies that have kx as a keyword are rated with r. We

have:

wui(kx, r) =
nui,kx,r∑

ky∈Kui

nui,ky ,r
(4.11)

where nui,kx,r is the number of movies that share the keyword kx and are rated by user ui

with a rating value r, in other words, how many times the user has rated a movie containing

keyword kx with a rating value equal to r.
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Figure 4.3, we show the calculation for user-keyword relevance estimation. User u2 sub-

graph contains keywords k2, k3 and k4. For wu2(k3, 4), we first find nu2,k2,4 = 1, nu2,k2,4 = 1

and nu2,k2,4 = 1; the rest will be zero for rating 4. Hence, wu2(k1, 4) = 0
1+1+1

= 0, wu2(k2, 4) =

1
1+1+1

= 0.33, wu2(k3, 4) = 1
1+1+1

= 0.33, wu2(k4, 4) = 1
1+1+1

= 0.33.

Let Kui be the keyword set of the user ui. The total relevance weight of a keyword for

a user ui is given by:

Wui(ky) =
∑

kx∈Kui ,r∈R

wui(kx, r) · cui,r(kx, ky) · iuf(ky, r) (4.12)

where iuf(kx, r) is the inverse user frequency of keyword kx rated with a rating r. A

keyword’s occurrence within movies rated by all users must be taken into consideration in

order to measure the general importance of a keyword in the topic preference of a user. This

is how we calculate the inverse user frequency:

iuf(ky, r) =
1

log(e+ |Uky ,r|)
(4.13)

where |Uky ,r| is the number of users that rated movies which contain ky with a rating value

r and e is Euler’s number.

Thus, the keyword representation of each user is defined as below:

uKi (r) = {Wui,r(ky)|ky ∈ K} (4.14)

For Figure 4.2, we calculate the value of iuf(ky, r) for all the possible ratings. For iuf(k4, 2),

we find the number of users that have keywords k4 with rating 2, i.e. 2. Hence, iuf(k4, 2) =

1
log(e+2)

= 0.5. For iuf(k4, 4), there are 2 users that have keyword k4 with rating 4 thus,

iuf(k4, 4) = 1
log(e+2)

= 0.5.

We calculate Wu2(k1) based on Figure 4.3. Ku2 contains keywords k2, k3 and k4 and

although R has 10 distinct values for this particular case, except rating 4 and rating 2, rest

can be discarded (as they are not used by user u2, thus values will add up to zero). We

expand Wu2(k4) = wu2(k2, 2) · cu2,2(k2, k4) · iuf(k4, 2) +wu2(k3, 2) · cu2,2(k3, k4) · iuf(k4, 2) +

wu2(k4, 2)·cu2,2(k4, k4)·iuf(k4, 2)+wu2(k2, 4)·cu2,4(k2, k4)·iuf(k4, 4)+wu2(k3, 4)·cu2,4(k3, k4)·
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iuf(k4, 4) + wu2(k4, 4) · cu2,4(k4, k4) · iuf(k4, 4) = 0 · 1
1

(
1
3

)
· 1

2
+ 1

2
· 1

2

(
1
3

+ 1
2

)
· 1

2
+ 1

2
· 1

2

(
1
3

+

1
2

)
· 1

2
+ 1

3
· 1

1

(
1
3

)
· 1

2
+ 1

3
· 1

2

(
1
3

+ 1
2

)
· 1

2
+ 1

3
· 1

2

(
1
3

+ 1
2

)
· 1

2
= 0.4027. Similarly, the rest of the

values can be computed.

Movie Preference Profile

As mentioned in Section 4.2, a user profile is two-faceted, comprising of the movie

tag/keyword member (uT/uK) and of the movie rating based constituent (uM). Using

tags and keywords, we capture the content-based quality of our approach. To acquire the

collaborative filtering idea into our system, we use the ratings again, but in a straightforward

manner: uM is a vector with M elements, each corresponding to a movie in the corpus. The

values of the elements are either 0 or 1, depending on whether or not the user has rated the

movie.

4.3 Neighborhood Formation

In order to predict how much a user will enjoy an unseen movie, in other words to predict

their rating for it, we first set out to find the community of users sharing similar taste, aka the

N nearest neighbors. The main goal is to identify for each user u, an ordered list of N most

similar users, U = {u1, u2, ..., uN} such that u ∈ U and sim(u, u1) is maximum, sim(u, u2) is

the second highest and so on. The N -nearest users are selected based on the similarity value.

The similarity values play a double role in neighborhood-based recommendation methods:

• they allow the selection of trusted neighbors whose ratings are used in the prediction,

and

• they provide the means to give more or less importance to these neighbors in the

prediction

The selection of the similarity measure is one of the most critical aspects of building a

neighborhood-based recommender system, as it can have a significant impact on both its

accuracy and its performance. Thus, for computing the similarity between user profiles, the
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cosine similarity measure is used (in other words, the similarity between two users measures

the cosine of the angle between the profile vectors representing them).

As discussed in Section 4.2.1, each user is encoded with their own topic preferences

(captured by tags or keywords) and movie preferences (captured by ratings). The similarity

between two users based on user topic preference is denoted as simT
u (ui, uj) or simK

u (ui, uj),

where T and K are the sets of tags and keywords, respectively.

We use cosine similarity to compute the angle between the two user vectors, which are

represented by the set of all tags with weights representing them. Let ui and uj be the two

weighted tag vector, then simT
u (ui, uj) is given by:

simT
u (ui, uj) =

|T |∑
y=1

ui,y.uj,y√√√√( |T |∑
y=1

ui,y
2
)
.
( |T |∑
y=1

uj,y
2
) (4.15)

Similarly, for simK
u (ui, uj) estimation we use following formula

simK
u (ui, uj) =

|K|∑
k=1

ui,k.uj,k√√√√( |K|∑
k=1

ui,k
2
)
.
( |K|∑
k=1

uj,k
2
) (4.16)

Whereas, the similarity between two users based on user movie preference is denoted as

simM
u (ui, uj) where M is the set of all movies. User movie preference takes the popularity

of movie into the consideration for two users and is given by:

simM(ui, uj) =

∑
mk∈Mui∩Muj

iuf(mk)√
|Muj | · |Muj |

(4.17)

where |Mui | is number of movies user ui has tagged, iuf(mk) is the inverse user frequency

of movie mk and is defined as iuf(mk) = 1
log(e+|Umk

|) , where |Umk
| is the number of users

that have tagged movie mk.
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Given the topic and movie profiles, the similarity between two users is given by:

sim(ui, uj) = ω · simT (uTi , u
T
j ) + (1− ω) · simM(uMi , u

M
j ) (4.18)

in the case of tags, and

sim(ui, uj) = ω · simT (uKi , u
K
j ) + (1− ω) · simM(uMi , u

M
j ) (4.19)

in the case of keywords.

In both cases, ω is a weighting parameter such that 0 ≤ ω ≤ 1. This parameter omega

controls the extent of the collaborative dimension of the algorithm. As we decrease the

value of ω, the algorithm will be predominantly collaborative, as the contribution of the

users movie preferences will dominate. During the experimental phase, we kept omega

ω = 0.9.

Since we have the similarities between different users, a set of similar neighbors can be

identified. The traditional Top N algorithms choose the Top N most similar neighbors to

predict the missing value, which in our case is a prediction for a movie which is not yet

watched by a user. Specifically, to predict a missing value r(u,m) in the movie-user matrix,

a set of users similar to u, specifically N(u), is denoted by:

N(u) = {v|v ∈ T (u), u ∈ U} (4.20)

where T (u) is the set of N most similar users to user u.

4.4 Rating Prediction Formula

To calculate the missing ratings, we used a popular user-based prediction formula described

by Herlocker et al. [1999]. The intuition behind this prediction scheme is that user rating

distributions spread around different points. For example, one user rates a good movie

with 4 and a bad movie with 2, whereas others users are using 1 for bad movies and 3

for good movies. Intuitively, different users judge movies differently, thus user ratings are
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inconsistent. This prediction scheme normalizes the rating r(um) by dividing the user-mean-

centered rating by the standard deviation σu of the ratings given by user u.

r̂(u,m) = r̄u + σu

∑
v∈N(u)

wuv(rv,m−r̄v)

σv∑
v∈N(u) |wuv|

(4.21)

Following the notation from [Herlocker et al., 1999], r̄u is the average of the ratings given by

user u, wuv is the similarity value between user u and user v, σu is the standard deviation

of ratings given by user u and finally, N(u) is set of most similar users to user u.
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Chapter 5

Experimental Setup

This chapter presents the experiments conducted to evaluate the performance of our pro-

posed approaches, WTRR and WKRR. First, we provide some statistical information on

the dataset that we used. Then, we specify the metrics used for evaluation and we give

an overview of how we split the data during the training and testing phases. Finally, we

present the experiments designed to investigate the performance of both WTRR and WKRR

algorithms with respect to predicting movie ratings.

5.1 Dataset

The data set used in our experiments, hetrec2011-movielens-2k dated May 2011, is made

available to the public by Cantador et al. [2011]. It is based on the original MovieLens10M

dataset, published by the GroupLens1 research group. The movies in this data set are also

referencing their corresponding web pages at the IMDB website. Information about the

format as well as statistics regarding the data are available at the hetrec2011-movielens-2k

website.

As shown in Table 5.1, there are 2,113 users, 10,197 movies and a total of 13,222 unique

tags that fall into 47,957 tag assignment tuples of the form [user, tag, movie]. There are also

855,598 user ratings ranging from 0.5 to 5.0, in increments of 0.5, thus a total of 10 distinct

rating values. There is an average of 405 ratings per user, and 85 per movie. This data set

1http://www.grouplens.org
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Table 5.1: Statistics about hetrec2011-movielens-2k and our reduced dataset
Movielens Dataset Reduced Dataset

# users 2113 1097

movies 10197 2655

tags 13222 8288

tag assignment 47899 36855

ratings 855598 762238

has been previously used in [Bothos et al., 2011], [Said et al., 2012] and [Jones et al., 2011].

Figure 5.1: Venn diagram for MovieLens

Our experimental setup requires some pre-processing of the data. For comparing WTRR

and WKRR, we used movies that users have both tagged and rated. Figure 5.1 shows that,

after taking the intersection between movies that are rated and movies that are tagged by

users, we obtain a subset of 4,655 movies for which every user provided a tag as well as a

rating. As shown in Table 5.1, this subset contains 762,238 tag/rating assignments from

1,097 users. A number of 8,288 unique tags were used to make 36885 tag assignments. The

density of this dataset is 14.93%, which is satisfying.

Figure 5.2, shows that almost half of the ratings are 4. The mean of the ratings is

3.4379 with a standard deviation of 1.0025. It is also worth mentioning that the hetrec2011-
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movielens-2k dataset is relatively dense (3.97 %) as compared to the Netflix Prize dataset

whose density is less than 2 %. In addition to the hetrec2011-movielens-2k dataset, for our

WKRR aproach we also used content information about the movies from IMDB.

Figure 5.2: MovieLens rating distribution

5.2 Evaluation Metrics

Evaluating a recommender system and determining the accuracy of an algorithm is difficult

for several reasons. First, algorithms behave differently on different datasets. Second,

the goals of the recommenders may vary and evaluation will be based on fulfilling unique

criteria. Thus, according to Herlocker et al. [2004], accuracy measures for recommendation

systems can be classified into the following categories: predictive accuracy metrics, such

as Root Mean Squared Error (RMSE) or Mean Absolute Error (MAE) and its variations;

classification accuracy metrics, such as precision, recall, F1-measure and ROC sensitivity;

rank accuracy metrics, such as Mean Average Precision (MAP), normalized distance-based

performance metric (NDPM), etc.

We can state that simply measuring classification accuracy, the results will be biased for
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our dataset, given the skewed distribution of the ratings, as shown in Figure 5.2. As almost

half of the ratings are 4 in the dataset and getting a threshold below or above the rating

4 will not serve the purpose, for evaluation of our work, we used two widely forms of error

measures. In a survey about collaborative filtering Su and Khoshgoftaar [2009], provided

a detailed analysis of evaluation metrics for rating prediction algorithms. The very general

form is the average absolute deviation of the predicted rating and actual rating for the

movies.

Mean Absolute Error (MAE)

The most widely used metric in CF research literature is Mean Absolute Error (MAE),

which computes the average of the absolute difference between the predictions and true

ratings.

MAE =

∑
i,j |pu,i − ru,i|

N
(5.1)

where N is the total number of ratings over all users, pu,i is the predicted rating for user

u on movie i, and ru,i is the actual rating for movie i. The lower the MAE, the better the

prediction.

Some studies on recommender system show that MAE is not an effective measure for

evaluation when the data is sparse. Thus, we also use Root Mean Squared Error (RMSE)

as an accuracy measure for comparing the results of various recommenders with the result

of our proposed method. RMSE puts more emphasis on larger absolute errors, and is given

by:

RMSE =

√
1

N

∑
u,i

(pu,i − ru,i)2 (5.2)

where N is the total number of ratings over all users, pu,i is the predicted rating for user u

on movie i, and ru,i is the actual rating for movie i. RMSE amplifies the contributions of

the absolute errors between the predictions and the true values.
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5.3 Experimental Setup

For evaluation of our proposed algorithms we need to split the original rating data into two

sets: a training set and test set. We ensure that these two subsets are disjoint. For the test,

we simply ignore 20% of the ratings, and we run our algorithms to measure the deviation

from predicted to actual rating value. Using Equation (4.21), we utilize the training set to

predict all the hidden ratings in the test set. We use the 5-fold cross validation technique,

to eliminate any fortunate or unfortunate cases, while evaluating the performance of our

algorithms, so we split the dataset 5 times, into pairs of disjoint training/test subsets. Thus,

we use 5 splits of the hetrec2011-movielens-2k dataset and for each split we kept 80% of

users in the training set, while 20% of users are in the test set. For each test user, we hide

20% of movie ratings while the remaining 80% of movie ratings are used as training set for

a user. We intentionally hide the ratings so that we can objectively evaluate our models.

Given the topic and movie profiles, the similarity between two users is given by:

sim(ui, uj) = ω · simT (uTi , u
T
j ) + (1− ω) · simM(uMi , u

M
j ) (5.3)

in the case of tags, and

sim(ui, uj) = ω · simT (uKi , u
K
j ) + (1− ω) · simM(uMi , u

M
j ) (5.4)

in the case of keywords. In both cases, ω is a weighting parameter such that 0 ≤ ω ≤ 1.

This parameter controls the contribution of the collaborative dimension of the algorithm

vs. content based recommender. As we decrease the value of ω, the algorithm will be pre-

dominantly collaborative, as the contribution of the users movie preferences will dominate.

We believe our algorithm can also be helpful in alleviating the problem of cold start. As for

new users similarity score from collaborative filtering will be zero or near to zero. Thus, for

such user the prediction will solely depends on user topic preference. User topic preference

consider the related tags/keywords, so user will have the profile which can be used to predict

the rating of unseen movies. We tested the algorithm on various omega ω values, we found
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value between 0.85 - 0.90 algorithm perform best. Thus, during the experimental phase, we

kept omega ω = 0.9.

5.4 Research Questions

We address the following research questions in this work:

1. How can we use the information represented by IMDB for movies, to support and

improve the recommendation performance for a sparse dataset?

2. How can we use the user tags and ratings available in social networking systems to

provide more accurate recommendations to users and can we improve performance by

combining the ratings with tags?

3. Which result in better performance, keywords or tags?

During our experimentation, we used user-mean center method for prediction computation.

We perform 2 experiments in this thesis.

• Experiment performed to compare WKRR (Weighted Keyword based Recommender)

with state-of-art methods. WKRR is described in Chapter 4 where we calculated the

weight of each keyword (from IMDB) for all the users based on explicit ratings. For

neighborhood formation, we applied cosine similarity metrics to calculate the similarity

score among users. We used hetrec2011-movielens-2k dataset for experiment.

• Experiment performed to compare WTR (Weighted Tag based Recommender), WTRR

(Weighted Tag Rating Recommender) and WKRR (Weighted Keyword Rating Rec-

ommender), as described in Chapter 4 where we calculated the weight of each tag or

keyword for users based on implicit or explicit ratings. According to the requirements

of our approaches, we perform this experiment on reduced hetrec2011-movielens-2k

dataset.
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5.5 System Architecture for WKRR and WTRR

This section provides an overview of the system architecture of our hybrid recommender

systems. Figures 5.4 and 5.3 show the main elements of our design, and also illustrate the

workflow of our system.

Figure 5.3: System overview of Weighted Tag Rating Recommender

Figure 5.3 shows the architecture design of WTRR, which is performed on hetrec2011-

movielens-2k reduce dataset. Instead of keywords from IMDB, user-tags are used as features

to represent users. Explicit ratings from users are combined with user-tags to form a single

weighted user-tag feature matrix. Topic preference for each user is calculated based on

association of user-tags and their ratings. WTRR has a user movie preference module,

where the movie preference is a binary vector obtained using the tag information. If a

user tagged a movie, it is assumed that the user liked the movie; otherwise, the user didn’t

like the movie. Later, these two matrices are combined linearly and go through similarity

estimation process, to determine the neighborhood of the most similar users. Ultimately, to

predict the missing ratings for users, user-mean center prediction scheme is used.

One main observation from Figure 5.4 is that the MovieLens and IMDB Keyword data
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Figure 5.4: System overview of Weighted Keyword Rating Recommender

are joined through a Linker written in Java programming language. This linker retrieves the

content feature from the IMDB for all the movies in the hetrec2011-movielens-2k dataset and

also retains the rating history from the hetrec2011-movielens-2k before they are combined

to a single weighted matrix.

Then, based on the content features and all the user ratings, each user topic preference

is calculated. We also calculate the user movie rating preference. Then, we linearly combine

these two matrices. This extended weighted matrix will go through a similarity calculation

process, which transforms this user feature matrix into a user-user matrix. The user-user

matrix provides information about the closeness among some subset of users. Finally, we

form the neighborhood of the most similar users, based on values from the user-user matrix.

Ultimately, we use the user-mean center method to predict missing ratings.
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Chapter 6

Results

In this chapter, we discuss the performance of our proposed algorithm based on the exper-

iments described in Section 5.3. The experiments were designed to investigate the effec-

tiveness of using ratings along with tags or keywords versus using just tags when building

the preference profiles for the users. To test these approaches, we conducted our experi-

ments on the hetrec2011-movielens-2k dataset. First, we discuss the performances of the

WTR, WTRR and WKRR approaches on a subset of the hetrec2011-movielens-2k. Next,

we show results for the WKRR when applied to the the whole dataset, in order to compare

its performance with other algorithms proposed in the recent literature.

6.1 WTR, WTRR and WKRR

We hypothesized that user profiles based on features captured from movie descriptions, such

as tags or keywords, are likely to improve the accuracy of the prediction task when used

with explicit ratings, as opposed to using only tags and implicit ratings. To verify this

intuition, we ran experiments with WTR, WTRR and WKRR. To objectively compare the

results of these approaches, we had to resort to a filtered subset of the hetrec2011-movielens-

2k dataset, which had to contain only those users that both tagged and rated the movies

they have watched. For the WTR approach [Liang et al., 2010], we only considered the

tags assigned by users to the movies. For the WTRR approach, we incorporated tags and

ratings, while for WKRR approach we used keywords along with ratings, as described in
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Table 6.1: Performance values in terms of RMSE and MAE, based on experiments run
with an increasing number (N) of users in the neighborhood formation.

N WTR WTRR WKRR WTR WTRR WKRR

RMSE MAE

75 0.84601 0.83410 0.84014 0.58827 0.58268 0.58085

50 0.85196 0.83796 0.84533 0.59513 0.57994 0.58210

30 0.86570 0.84821 0.85937 0.60014 0.58461 0.59207

20 0.87815 0.85594 0.87103 0.61129 0.59410 0.60842

10 0.89840 0.87917 0.89005 0.63146 0.61198 0.62372

Section 4.2.

To study the impact of the neighborhood size, we ran experiments with k ∈ {10, 20, 30, 50, 75}

for all three approaches and compared the results in terms RMSE and MAE. The values

are displayed in Table 6.1. The prediction quality improves with the increase in the neigh-

borhood size for all three cases (WTR, WTRR and WKKR). However, the numbers show

a trend of convergence, in the sense that given a larger size of the neighborhood, the pre-

dictions are likely to resemble each other.

The values from Table 6.1 show that tags along with implicit ratings are outperformed

by the schemes which incorporate the explicit ratings provided by the users. This supports

the original intuition about ratings being capable of capturing the real user preferences. The

best results on the filtered dataset are obtained with WTRR, and one possible explanation

could come from the fact that combining user specific features like the tags, which they

personally assign, with user specific ratings, which denote the exact preference, brings more

accurate information in the building of the profiles. Thirdly, while keywords are movie

dependent rather than user specific, it is not very surprising that WKRR lies in the middle

between WTR and WTRR.
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6.2 WKRR versus Prior Approaches

For many real world datasets, a lot of movies don’t have user tags. This fact makes the

tag-based approaches impractical. Instead of using the exact tag, we use keywords, which

represent a collective categorization of movies. Results from Table 6.1 reinforce our intuition

that assigning different weights to keywords based on explicit rating information is useful. To

evaluate the performance of our algorithm we compare it against other recommenders avail-

able in recent literature. Therefore, we applied WKRR to the whole hetrec2011-movielens-2k

dataset, and ran it with a neighborhood size of 30, to maintain the trend from other pa-

pers and do a fair evaluation. We collected previous results reported on the same complete

hetrec2011-movielens-2k dataset and show a comparison in Table 6.1. The system proposed

by Bothos et al. [2011] is an ensemble of various recommenders, called Information Market

Based recommender Fusion (IMBrf), primarily used for mining and aggregating the infor-

mation from various sources. This technique is inspired from the market, where information

from heterogeneous sources is incorporated to make predictions about future events. We

compare our results with the results of other approaches as reported by Bothos et al. [2011],

including a pure collaborative filtering technique (CF) and a content-based recommender

system, called content analysis (CA). For CF, the authors used the neighborhood based

approach and set the size of the neighborhood to 30. We will preserve these settings in

our experimental setup, to be able to make realistic comparisons. The CA recommender is

based on latent topic analysis, and movies are mapped to topics via tags. The prediction

is made by finding topics in new movies that are correlated to the user profiles. Another

recommender based on averaging the ratings (AVGR) is presented in [Bothos et al., 2011],

where an unrated item’s rating is estimated from the weighted average of other ratings from

other users. Finally, Linear Least Square (LLS) is proposed in [Bothos et al., 2011]. LLS

is a linear combination of CF, CA and AVGR: RLS = αCF + βCA + γAV GR, where RLS

denotes the predicted rating (the parameters α, β and γ are found by optimization, for

more details see [Bothos et al., 2011]). In [Jones et al., 2011], the authors propose learning
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Table 6.2: Performance of our proposed approach, WKRR, compared with other results
from recent work reported in the literature, on the complete hetrec2011-movielens-2k dataset.
Performances for IMBrf, pure CF, CA, LLS and AVGR were obtained from [Bothos et al.,
2011], while the PMF value is from [Jones et al., 2011].

WKRR IMBrf CF CA AVGR LLS PMF

0.8304 0.8797 0.8876 0.9436 1.088 0.8758 0.8367

multiple models which can incorporate different types of inputs to predict the preferences of

diverse users. Probabilistic Matrix Factorization (PMF) is a variational Bayesian inference

technique, used to alleviate the overfitting problem in singular value decomposition (SVD)

approaches. Priors are introduced and parameters are estimated using variational Bayesian

inference [Nakajima and Sugiyama, 2007]. PMF models the user preference matrix as a

product between the lower-rank user and movie matrices [Jones et al., 2011].

Based on the results from Table 6.2, we can conclude that WKRR outperforms other

approaches in the neighborhood category and is very useful in capturing the user preferences

from relatively large datasets. WKRR features are generated from the movies descriptions

along with users ratings when the user profiling is done, and they outnumber the features

available to the WTR strategy, which uses just tags. WKRR allows us to use the hetrec2011-

movielens-2k dataset in its entirety. We observed from Table 6.2 that the movie keyword

analysis is, in this context, more effective than the user tag analysis. One possible explana-

tion for such behavior might be that there is a difference in the sparsity levels of the two

feature spaces.
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Chapter 7

Conclusions and Future Work

In this chapter, we will discuss the questions raised in this thesis, using the results reported in

Chapter 6. Some improvements and new directions for this work are proposed in Section 7.2.

7.1 Conclusions

In this work, we propose a novel hybrid recommendation technique WKRR (Weighted Key-

word Rating Recommender) and WTRR (Weighted Tag Rating Recommender) for combin-

ing the collaborative filtering and the content based recommendation algorithms and show

that WTRR/WKRR algorithms outperform other approaches in the neighborhood category.

Our proposed WKRR was built using the hetrec2011-movielens-2k dataset, supplemented

with extra movie information from the IMDB online archive. We alleviate the noise and

synonymy of keywords by considering a pool of related terms when constructing the profiles.

We also modified the WTR (Weighted Tag Recommender) by Liang et al. [2010] to leverage

the rating information from the users along with tags. WThis approach, called Weighted

Tag Rating Recommender (WTRR), uses users explicit ratings to calculate the users topic

preferences. Problem of synonymy and tag ambiguity is addressed by considering the pool

of related tags. Secondly, to use the collaborative based filtering, user-user similarities are

calculated for both the approaches. Using the similarity estimation approach, k-nearest

neighbors are found and based on their relatedness, we determine ratings for unseen movies.

The experiments described in Section 5.3 are designed to answer the research questions
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raised in Section 5.4. We briefly explain them in the following paragraphs. The results of our

experiments show that the performance of WKRR exceeds the other approaches. Our re-

sults demonstrate that for datasets in which relevant tag information is scarce, extending the

features from tags to movie keywords and ratings boosts the performance. Explicit ratings

improve the recommendations over the implicit ratings (inferred from the presence/absence

of tags) as well. Since tags and ratings are user-specific, it is not surprising that using

them improves the recommender. The quality of the training data is crucial in building any

information filtering frameworks. Between keywords (representing the collective user infor-

mation) and tags (which are specific to each user) we observed that both give comparable

results, with a slight increase in the tag-based approach.

The idea for the work presented in this thesis originates from [Liang et al., 2010]. How-

ever, our adaptation and proposed approach are applicable to any domain that has item

descriptions and users willing to rate the items.

7.2 Future Work

As a next step into our future research, we will start by tweaking the algorithm we proposed.

For example, we could tune the user movie preference profile by incorporating actual rating

values into the representation of the uM vector. (See Section 4.2.1). This modification would

also help us use other similarity measurements, such as Pearson Correlation Coefficient.

This work focuses on profiling each user based on ratings, but we can also profile movies

in same feature space so that similarity between user and movies can be determined. Ap-

plying an improved customized prediction scheme would also be a good addition. Using

our approach on clusters of users with similar taste may also increase the relevance of the

predictions.

A dataset close to 10M ratings is 10% of what present recommendation systems are

required to handle (for example hetrec2011-movielens-2k). In future work, we plan on
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using larger versions of the MovieLens1 datasets, for example MovieLens1M, consisting of

1 million ratings from 6000 users on 4000 movies, or even MovieLens10M which comprises

10 million ratings and 100,000 tag applications applied to 10,000 movies by 72,000 users.

Therefore, the amount of time required for processing such a large dataset is considerably

greater. WKRR/WTRR have high time complexity and even though most of the processing

can be done offline, calculating weights for a huge feature space is expensive. A time-saving

implementation would be to port our hybrid approach in a Map-Reduce framework. Another

avenue we can consider would be to reduce the dimension of matrices by means of singular

value decomposition. Moreover, it would be interesting to study another dataset from a

different domain.

1http://www.grouplens.org/node/12

52



Bibliography

G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A

survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge

and Data Engineering, 17(6):734–749, 2005.

X. Amatriain, J. Pujol, and N. Oliver. I like it... i like it not: Evaluating user ratings noise

in recommender systems. In User Modeling, Adaptation, and Personalization, Lecture

Notes in Computer Science. 2009.
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