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Abstract 

The study of buckling behavior of tubular and cellular structures has been an intriguing 

area of research in the field of solid mechanics. Unlike the global Euler buckling of slender 

structures under compressive loads, tubular and cellular structures deform with their walls 

buckling as individual supported plates. The aspect ratio and the dimensional characteristics of 

the tube define the buckling behavior of any tube structure. In this thesis, a thorough study on the 

buckling of polygon tubular structures with different cross sections is discussed. 

In the first study, the theoretical buckling formulation of a square tube using the energy 

method is reviewed from existing solutions in literature. The elastic critical load of a square tube 

derived from the theoretical solution is then compared with results of finite element elastic 

buckling simulations. The formation of lobes along the height of the walls at different aspect 

ratios of the tube is investigated and compared to theory. Also, the buckling behavior of multi-

wall structures is studied and the relationship between these structures and a rectangular simply 

supported plate is established. A brief study on the buckling behavior of rhombic tubes is also 

performed. The results of the simulation match closely with the theoretical predictions. 

The study is then extended to quadrilateral tubes with cross-sections in the shape of 

square, rectangle, rhombus and parallelogram. The theory of buckling of these tubes is explicitly 

defined using classical plate mechanics based on the previous works presented in literature. Also, 

the possibility of global Euler buckling in the tubular structures after a certain critical height is 

discussed. The prediction from the theory is validated using extensive finite element elastic 

buckling simulations and experimental tests on square and rhombic tube specimens. The results 

of the simulations and experiments are observed to be consistent with the theory. 

Using the formulation of plate buckling under different boundary conditions, the buckling 

behavior of triangular tubes is also determined. A theoretical formulation for calculating the 

critical load of triangular tubes is derived. The theoretical critical loads for a range of aspect 

ratios are compared with corresponding finite element simulation results. The comparisons 

reveal high degree of similarity of the theoretical predictions with the simulations. 
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Chapter 1 - Introduction 

 1.1 Thesis Format 
In this Thesis, the technical work is presented in three chapters following this 

introductory chapter. The following chapters are in the form of accepted publications or 

manuscripts of publications to be submitted in Scientific Journals. Chapter 2 is the draft of an 

accepted article which is to be published in the proceedings of ASME Manufacturing Science 

and Engineering Conference 2011. Chapters 3 and 4 are the manuscript versions of journal 

articles which are in the process of being submitted to Elsevier-Thin wall Structures. In this 

thesis, each chapter is included with a separate abstract, literature review and conclusions. The 

overall conclusions and the scope of future work are discussed in the final chapter of the thesis. 

 1.2 Overview of the Thesis 
Buckling of plates and shells has been an important area of research in the area of solid 

mechanics. The major fields of applications of supported plates and tubular structures as 

structural members include aeronautical, marine and civil engineering. In this study, the buckling 

characteristics of plates and polygon tubular structures are investigated using theoretical methods 

and compared with computational simulation and experimental results. 

In the second chapter of this thesis, the buckling properties of plates, multi-wall 

structures and square tubes are discussed. Also, the buckling behavior of rhombic tubes is briefly 

looked into using finite element simulation results. Study of the critical load of buckling of plates 

and tubes under uni-axial loading using energy method is reviewed from the existing study 

presented by Timoshenko and Gere [1]. These theories are used to predict the buckling 

characteristics of multi-wall structures with simply supported boundary conditions along the 

open edges. Also, a series of finite element simulations are performed on different plate, multi-

wall and tube geometries to compare it with the theory. It is observed from the simulation results 

that the critical load of a multi-wall structure is equal to the critical load of a single simply 

supported rectangular plate times the number of walls in the multi-wall structure. It the case of a 

polygon tube, the critical load of the tube is observed to be equal to the number of sides of the 

polygon times the critical load of each wall of the tube. This agrees with the theory suggested by 
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Timoshonko and Gere [1] for the case of square tubes. It is also observed that the critical load of 

buckling of the multi-wall structures does not depend on the angle between the adjacent walls of 

the structures. Similarly, it is observed that the critical load of a rhombic tube is equal to the 

critical load of the corresponding square tube. Based on these theoretical and simulation results, 

it is inferred that the critical load of a square cell honeycomb structure can be calculated by 

calculating the critical load of individual cell walls behaving as simply supported rectangular 

plates. 

The study on the square and rhombic tubes presented in the second chapter is then 

extended to quadrilateral tubes with cross sections in the shapes of rectangular and parallelogram 

tubes. This study is presented in Chapter 3 of this thesis. The theoretical buckling critical loads 

of all the tubes are derived from the buckling behavior of each wall of the tube. General equation 

of buckling of a rectangular plate elastically restrained along the vertical edges is derived 

explicitly using classical mechanics. The derivation process is based on plate and tube buckling 

theories presented in literature [1-3]. Also, the possibility of Euler buckling of the tubes is 

investigated and the expression for the Euler buckling critical height of a rhombic or 

parallelogram tube with a certain angle is derived. A tube of height greater than the critical 

height under uni-axial load is predicted to buckle in global Euler mode. The proposed theories 

are compared with extensive finite element simulations. The critical aspects of buckling, 

including the formation of lobes (half waves) along the height of the tube are closely examined. 

The results of simulations exhibit good consistency with the theoretical predictions. Also, 

experiments to observe the behavior of square and rhombic tubes under compressive loading are 

carried out on tube specimens. The specimens are made of Acrylonitrile Butadiene Styrene 

(ABS) plastic. The results from the experiments are observed to be in agreement with the 

theoretical and simulation results. 

The following chapter presents the study of the buckling behavior of triangular tubes. The 

study involves the theoretical derivation of the critical loads of triangular tubes as a function of 

dimension and aspect ratio of the tube. The theory is derived by the assumption of the behavior 

of walls of an isosceles triangle under buckling loads. The buckling expression of the critical 

wall of the tube is derived using a process similar to the derivation process of the walls of a 

rectangular tube. The results predicted from the theoretical procedure are compared with an 
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extensive finite element study on models of triangular tubes. The comparison reveals good 

agreement of the results of simulations with the theory. 

Extensive literature review and elaborate introduction to each study is presented in the 

respective chapters of this thesis. This chapter was intended to provide a brief overview of the 

work accomplished in this thesis. 

 1.3 References 
[1] Timoshenko S. P, Gere J. M, (1961), Theory of elastic stability, New York, McGraw-Hill, 

1969 
[2] Bulson P. S., (1969), Stability of Flat Plates. American Elsevier Publication Company, 

New York, pp. 27, 295. 
[3] Bleich F., (1952), Buckling Strength of Metal Structures. McGraw-Hill New York, pp. 302 
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Chapter 2 - Effects of aspect ratios and side constraints on elastic 

buckling of multi-wall structures and tubes 

 2.1 Abstract 
Buckling of plates and tubes plays an important role in structural safety and energy 

absorption. Although buckling of plates and tubes has been studied theoretically and 

experimentally in the past, the effects of aspect ratio and side constraint on buckling of multi-

wall structures and tubes has not been investigated systematically. In this work, finite element 

simulations have been carried out to investigate the buckling behavior of multi-wall structures 

and tubes. A series of one- to three-panel walls and square tubes with various aspect ratios were 

simulated. The critical aspect ratios causing buckling mode transition were obtained and 

compared with theoretical predictions available in the literature. Effects of wall angle and side 

constraint on buckling behavior were investigated. The relevance of research findings to 

honeycomb-like structures was discussed. 

 2.2 Introduction 
The study of buckling of tubes and plates has been an important area of research for 

researchers for a long time because of their extensive use in various fields like marine 

applications, aeronautics, automobiles, etc. Structures like supported plates with stiffeners, tubes 

and honeycombs offer high strength-to-weight ratios. Plate structures are widely used in the 

design of ship hulls, aeronautical structures and other structural members, whereas tubes under 

compression play a major role in the design of energy absorbing structures [1–3]. Soden et al [4] 

and Johnson et al [5] studied the energy absorbing capacity of circular tubes by the formation of 

traveling plastic hinges. Apart from circular tubes, square and rectangular tubes also play a major 

role in energy absorbing structures. Work in [1–3, 6, and 7] investigated the crashworthiness of 

square and rectangular sections under static and impact loading and their effectiveness in 

vehicular safety designs. 

Elastic buckling of plates with varying edge conditions with extension to the buckling of 

square tubes was carried out by Timoshenko and Gere [8]. Their work established that when a 

simply supported plate buckles elastically under a uniform compressive in-plane load, the out-of-
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plane displacement profile forms sinusoidal waves along the length and width of the plate. 

Subsequent research on the elastic buckling and post buckling of plates were carried out by 

different researchers [9–12] for various boundary conditions of non-loading edges such as fixed 

along both edges, fixed along one edge and elastically restrained along other edge, simply 

supported along both edges, and elastically restrained about one edge and free on other end. Von 

Karman et al [9] extended the theory of buckling of a plate with simply supported conditions to 

post buckling analysis. Bradford and Azhari [13] studied the buckling behavior of plates using 

finite strip method for various end conditions of the non-loading edges. The buckling 

characteristics of plates were investigated using the finite element method in [14–16]. Swartz and 

O’Neill [14] developed a finite element code to find the lowest critical load of a plate under 

various end conditions with combined loading conditions. Elgaaly [17] presented a non-linear 

finite element analysis on the post-buckling behavior of plates with simply supported edges and 

stiffened edges.  

It was postulated in [8] that a square tube behaves as four simply supported independent 

plates joined together and a uniformly applied load acting on it is equally shared by all of the 

plates. All plates buckle simultaneously while the angles between adjacent walls remain 

unchanged before and after buckling. Based on this postulation, the study of various square and 

rectangular tubes in elastic and post buckling has been conducted by researchers [10, 11, 18–22]. 

The values of buckling factor ‘k’ for rectangular tubes with simply supported end conditions 

were calculated by Lundquist [18] and Bulson [10]. Kandil and Calladine [23] suggested more 

realistic values of buckling factors for rectangular tubes.  

When a simply supported plate undergoes elastic buckling, the critical load and mode of 

buckling depend on the aspect ratio of the plate. The aspect ratio of the plate determines the 

number of folds or lobes formed at buckling. For simply supported plates, the number of half 

sine waves is equal to the aspect ratio if the ratio is an integer. This phenomenon was confirmed 

experimentally on a steel plate by Rasmussen et al [24]. Meng et al [25] performed buckling 

experiments on polyvinylchloride tubes of different aspect ratios. The formation of elastic folds 

or lobes was clearly visible in their experiments. Along with experimental studies, finite element 

analysis of elastic and post buckling study of plates and tubes under different boundary 

conditions has also been performed [26, 27].  
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In this paper, a systematic study of the elastic buckling of plates and tubes using finite 

element analysis has been carried out. The buckling characteristics and critical loads for different 

kinds of thin wall structures including single plate, multi-wall structures, and square and rhombic 

tubes were investigated. A series of simulations for a single, simply supported wall with various 

aspect ratios was carried out and compared with theoretical predictions from literature. The 

transition of number of waves formed was clearly observed in the buckled profile. The 

simulations were then extended to multi-wall structures and the relation between the buckling 

characteristics of single plate and multi-wall structures were investigated. The buckling 

characteristics of rhombic tubes were investigated and compared with those of square tubes, and 

the effect of wall angle on critical loads was studied. 

 2.3 A brief review of buckling theory of simply supported plates and square 

tubes 

 2.3.1 Buckling of plates 

Theory of plate buckling is well established in literature [8, 10, 11, and 15]. According to 

the theory, a plate acted upon by a vertical in-plane buckling load results in the formation of 

lobes along the height and width of the plate. These lobes are in the form of sinusoidal waves 

and are generally called half sine waves because each lobe looks like a sine wave in the period of 

0 to π. This phenomenon is illustrated in Figure 2.1. 

In this section, the theoretical formulation of the buckling of a plate simply supported or 

hinged along all the edges is reviewed in brief.  

Figure 2.1(a) shows an example of a simply supported plate of width ‘l’, height ‘h’, and 

thickness ‘t’. Figure 2.1(b) and 2.1(c) show, respectively, the finite element model of the plate 

with loads and restraints and the buckled profile of the plate with two half sine waves. 
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 (a) (b) (c) 

Figure 2.1: The rectangular plate (a) with the coordinate axis and dimensions, (b) as a 

model with restraints and load, and (c) deformed model of the plate from simulation result 

Using a coordinate system as defined in Figure 2.1(a), the out-of-plane displacement ‘w’ 

of a rectangular plate can be expressed in a double trigonometric series as [8] 

 
1 1

sin sinmn
m n

m x n yw a
h l
π π∞ ∞

= =
= ∑ ∑  (2.1) 

where, m and n are the number of half waves in x and y directions respectively, for the m-n 

buckling mode. The critical load is obtained by equating the work done by the compressive load 

and the strain energy of the plate at buckling as, [8] 
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∑ ∑
⎠  (2.2) 

where, Fx is the critical value of compressive load per unit width of the plate and D is the flexural 

stiffness of the plate. It can be shown that for Fx to be minimum in Eqn. (2.2), all the values of 

coefficient amn, except one, are equal to zero [8]. For the lowest value of critical load, number of 

half waves along the width of the plate n is one, while the number of half waves formed along 

the height of the plate is governed by the aspect ratio of the plate. This leads to, 
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From this expression of the critical load per unit width of the plate, the total critical load of the 

plate of width l is equal to l times Fx and is expressed as, 

 
2 3

212(1 )cr
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π
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 (2.4)  

where, E is the Young’s modulus and ν is the Poisson’s ratio of the material, t is the thickness of 

the plate, and k is known as the buckling factor of the plate defined as, 

 
2mk

m
φ

φ
⎛

= +⎜
⎝ ⎠

⎞
⎟  (2.5)  

where φ  = h/l is the aspect ratio. The value of k depends on the number of half waves m and the 

aspect ratio φ, as graphed in Figure 2.2. 
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Figure 2.2: Variation of k with the change in aspect ratio of a simply supported rectangular 

tube under uni-axial loading 

The value of k is minimal at the integer values of aspect ratio for which the number of 

half waves is equal to the aspect ratio as seen in Figure 2.2. This condition is theoretically 
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derived from the expression of k. The value of (m/φ + φ/m)2 is minimum and equal to 4 when φ = 

m. For example, a square plate (φ  = 1) will have lowest critical load when only one half wave is 

formed along the height direction. At the aspect ratio of the plate more than the transitional value 

of φ for m = 1 to m = 2, the number of half waves formed will change to 2 to maintain the lowest 

value of k. Derivation of the values of transitional aspect ratios is discussed in the following 

section.  

 2.3.2 Transition of number of half waves in plate buckling 

According to Eqn. (2.4), at the lowest critical load or the least energy mode of buckling, 

the value of k should be minimal. Using Figure 2.2, the transitional aspect ratios at which the k-

curve for m number of half waves and the k-curve for m+1 number of half waves intersect is 

determined by: 
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 (2.6) 

where φt, the transitional aspect ratio, is equal to  

 ( 1t m mφ )= +  (2.7) 

From Eqn. (2.7), the transitional aspect ratios is √2 for m = 1 to m = 2, √6 for m = 2 to m = 3, √12 

for m = 3 to m = 4 and so on.  

The critical load predicted by Eqn. (2.4) is only accurate when the buckled mode is a pure 

sine wave with m extrema. Such a pure sine wave mode occurs at the minima of the k-φ curves 

shown in Figure 2.2. Near m to m+1 wave transition, however, the buckled mode is no longer a 

pure sine wave, and more than one non-zero amn exist in Eqn. (2.2). Therefore, prediction by 

Eqn. (2.4) becomes approximate. However, FEM simulations, as presented in the later sections 

of this work, show that errors caused by the pure sine wave assumption are negligible and 

predictions from Eqn. (2.4) and Eqn. (2.7) agree very well with FEM results. 

 2.3.3 Buckling of square tubes 

The buckling characteristics of a square tube or any even sided equilateral polygon tube 

is the simplest case of polygon tube buckling where each wall behaves as a simply supported 

plate. For a square tube under an axial compressive force with the top and bottom edges hinged 

or simply supported, the load is equally distributed on all of the plates. As all the walls are 
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identical in geometry and load, each plate has the same individual critical load, and therefore 

each wall reaches instability simultaneously. The waves on adjacent walls are formed in such a 

way that the common edges do not buckle, both walls rotate the same amount and in the same 

direction about the common edge, and therefore the wall angle remains unchanged before and 

after buckling [11]. This results in zero restraining moments at the common edges for the walls 

and the tube behaves as four independent simply supported plates put together with common 

edges. The critical load of the tube is therefore four times the critical load of the single plate [8], 

i.e., 
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π
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 (2.8) 

The value of k is decided by the aspect ratio of the tube and the number of half sine waves 

formed, as described in the preceding section for the single plate. The theoretical buckling load is 

minimal for the tube when the aspect ratio of the tube has integer values for which the factor k is 

minimal.  

Until the point of elastic buckling of a supported plate, multi-wall or a tubular structure, 

the buckling occurs with the buckling of the walls only. In the elastic-plastic buckling regime, 

the walls lose the load carrying capacity and the load is carried by the vertical edges of the 

structure. In a supported plate structure, part of the plate near the vertical edges acts as the load 

carrier whereas, in tubular and multi wall structures, the common vertical edges start to buckle in 

the post buckling range thus providing post-buckling strength to the structure. A review on the 

elastic-plastic buckling and post buckling analysis of plate and tube structures is presented in 

[21]. 

 2.4 Computational model of single plate, multi-wall structures, square tubes 

and rhombic tubes 
In this section, finite element modeling and simulations of a simply supported plate, 

multi-wall structures, square tubes and rhombic tubes are presented. For the finite element 

simulations, a commercial software package, SolidWorks Simulation (http://solidworks.com/), 

was used. SolidWorks uses linearized Eigenvalue method to solve the elastic buckling problem. 
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 2.4.1 Buckling of a simply supported plate 

A plate simply supported about all of its edges was simulated for buckling using 

SolidWorks Simulation. The plate dimensions were l = 3.175 mm, t = 0.025 mm, and the height 

of the plate was varied to obtain the required aspect ratio from 0.25 to 4. For the thin wall 

structures simulated in this work, the height to thickness ratio of the plates had a range of 30 to 

1000, and shell mesh was used for meshing the geometries. The present study was performed 

with a future goal of investigating the behavior of cells of a square cell honeycomb structure. 

Hence, the dimensions of the walls of all geometries used in this study were selected as that of 

the wall dimensions of each cell of the honeycomb. 

Triangular shell elements with three vertex nodes and three mid-edge nodes per element 

were used. Every node of the elements had six degrees of freedom. Figure 2.3 shows a typical 

meshed model of the single plate with an aspect ratio of two under simply supported conditions 

along all edges. The mesh had a total of 4920 triangular elements with 10,055 nodes. The 

material has E = 100 GPa and ν = 0.3. The material properties used in the simulation study 

represents a titanium alloy. Type of simulation was purely elastic buckling and thus, value of 

yield strength was not required in the simulation. 

Bottom edge of the plate was restrained as hinged, that is, translational degrees of 

freedom for all nodes along the edge were blocked but rotation about the edge was allowed. The 

top edge was free to move only in the vertically downward direction and was free to rotate about 

the edge. The non-loading vertical edges were restrained from moving in the direction 

perpendicular to the plate. In Figure 2.3, a short, green arrow indicates that the degree of freedom 

in the arrow direction is restrained. The force was applied on the top edge in vertically 

downward direction, represented by long, purple arrows in the figure.  

Critical buckling loads for all the simulations were recorded and plotted against the 

aspect ratios. These are shown in following sections.  
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Figure 2.3: The meshed model of a single rectangular plate with aspect ratio two with the 

simply supported boundary conditions and loads on it 

According to the plate buckling theory, the transitions of number of half waves take place 

at certain values of aspect ratios to maintain the lowest value of buckling factor k, as expressed 

by Eqn. (2.7). From the equation, the transition of number of half waves from m = 1 to m = 2 

takes place at an aspect ratio of √2. To observe this phenomenon, a plate was simulated under 

buckling load with a series of aspect ratios around √2 at small intervals. From the results of the 

simulation, the transition of the number of half waves was clearly observed. Figure 2.4 shows the 

transition of number of half waves m from 1 to 2.  

The figure shows that the transition of number of half waves from 1 to 2 took place at an 

aspect ratio of 1.414 (or √2) which agrees with the theoretical expectation. Further transitions 

of number of half waves to 3, 4 and 5 were observed in the simulation at aspect ratios of 2.449 

( ≈√6), 3.464 ( √12) and 4.47 ( √20) respectively, in agreement with plate buckling theory.  

≈

≈ ≈
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 (a) (b) (c) (d) (e) (f) 

Figure 2.4: Buckling of a single plate with aspect ratio of (a) 1.2, (b) 1.4, (c) 1.41, (d) 1.414, 

(e) 1.417 and (f) 1.45 

 2.4.2 Buckling of multi-wall structures 

Finite element simulations were also performed for multi-wall structures including joint 

walls with a wall angle of 90 degrees and three joint walls (U-section) also having 90 degrees 

angle between the adjacent walls. The walls had following dimensions: l = 3.175 mm and t = 

0.025 mm. Figure 2.5 shows the models of these structures. Similar element type and material 

properties were used for these models as were used for the single plate.  The open vertical edges 

were constrained from moving in their respective out-of-plane direction and the top and bottom 

edges were restrained as hinged. Hinged condition of the top edges allowed motion of the edge 

only in vertically downward direction and rotation about the edge. Figure 2.6 shows the 

boundary conditions applied to the edges of two joint plates shown in Figure 2.5(a).  

Aspect ratios of the thin wall structures were varied, similar to the single plate, and the 

lowest critical buckling loads were noted. The transition of number of half waves took place in 

the expected manner as was observed in the case of single plate. The results are discussed in the 

Results and Discussion section where they are compared with the critical loads for a single plate 
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and for other thin wall structures. These results confirm that the multiple plate structure behaves 

as a set of individual simply supported plates. 

   
 (a) (b) 

Figure 2.5: The finite element models of (a) two joint walls and (b) three joint walls 

 
Figure 2.6: The model of the geometry in Figure 2.5(a) with applied boundary conditions 

and loads 
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 2.4.3 Buckling of square tubes 

It was postulated in [8] that a square tube under a uniformly distributed buckling load 

behaves as four individual simply supported plates. Critical load of the tube is thus four times the 

critical load of a simply supported plate. To confirm this postulation, critical load and buckling 

behavior of simply supported tubes were compared with the total critical buckling load of four 

separate simply supported single plates. Figure 2.7 shows the buckling simulation results of the 

square tube and four single rectangular plates simply supported about all its edges. Walls of the 

square tube and the multi-wall sections were modeled with a width of 3.175 mm and a height of 

6.35 mm, similar to that of the model of the simply supported plate. Each wall and plate had a 

uniform thickness of 0.025 mm. The four plates in Figure 2.7(b) were placed together in the form 

of a square tube. Each plate was independent of its adjacent plates. The material used in this 

simulation had a Young’s modulus of 100 GPa and Poisson’s ratio of 0.3. Triangular shell 

elements with six nodes were used to model the square tube as well as the four separate plates. 

Total number of elements in the square tube was 5,184 in the square tube with each element of 

size 0.18 mm. 

Critical loads of the two different structures were found to match very well, as shown in 

Table 2.1. Square tubes obey the condition that after buckling, the buckled profile maintains the 

initial wall corner angle of 90 degrees between adjacent plates. This is evident by the 

deformation profile which shows alternate inward and outward folds in adjacent plates as shown 

in Figure 2.7(a). However, when the four independent rectangular plates are placed in the form 

of square tube (Figure 2.7(b)), the adjacent plates have no relation with each other. The buckled 

profile exhibits outward or inwards folds independent of adjacent plates (Figure 2.7(c)). 

Subsequent FEM simulations were performed on square tubes of the same width and thickness of 

walls by gradually varying the height starting from an aspect ratio of 0.25 to 4.4. The results of 

these simulations are discussed in the Results and Discussion section where the critical loads of 

the square tubes are compared with those of other structures. 
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 (a) (b) (c) 

Figure 2.7: (a) The buckled profiles of a square tube with the simply supported conditions 

applied to the top and bottom edges, (b) four individual plates with simply supported 

conditions applied to all their edges put together in the shape of square tube and (c) 

buckled profile of Figure 2.7(b) exhibiting outward or inwards folds independent of 

adjacent plates 

 

Table 2.1 Critical load comparison of a square tube and four independent simply 

supported plates put together in the form of a tube 

Geometry Critical load [N] Critical load per plate [N]

Square tube 6.953 1.738 

Four independent simply supported plates 6.954 1.739 

 2.5 Results and discussion 

 2.5.1Comparisons of critical loads of single plate, multi-wall structures and square 

tubes  

The results of a series of simulations performed on the multi-wall structures starting from 

the single plate were recorded and the critical loads per plate were compared for some aspect 

ratios. Table 2.2 lists the critical loads for a single plate, two walls, three walls and a square tube 

for certain aspect ratios. The critical load per wall of each structure was compared at respective 
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values of aspect ratios. Critical load per wall was determined by dividing the total critical load of 

the structure by the total number of walls or plates present in the structure,  

 
N
Pwall/P cr

cr =  (2.9) 

where ‘N’ is the number of walls of the geometry. 

The results in this table reveal that the critical loads reach a local maximum at the 

transition aspect ratios on the k versus φ curve as predicted by Eqn. (2.7). It is also observed that 

the critical loads reach a minimum at the integer aspect ratios and then increase monotonically 

till the transitional aspect ratio. At transition, the change of number of half waves takes place and 

the critical load decreases with increasing aspect ratio until the next integer aspect ratio. This 

cycle continues with increasing aspect ratio. 

The data in Table 2.2 is plotted in Figure 2.8 which shows the variation of the critical 

load per wall of the different structures with the change of aspect ratio. Theory suggests that a 

multi-wall structure under buckling loads behaves as multiple simply supported plates and that 

the critical load of the structure is number of walls times the critical load of each wall 

(considered as a simply supported plate). This was verified as the results of critical load per wall 

for all simulated structures were virtually indistinguishable. The theoretical values of critical 

loads were also plotted in the figure using the values of k from Eqn. (2.5) and the critical load 

values using Eqn. (2.4). The aspect ratio at which transition of number of half waves takes place 

is in good agreement with theoretical prediction. It was found that the critical loads from the 

simulations of all structures investigated had a maximum discrepancy of 5% with the theoretical 

result. 

Table 2.2: The critical load data for the series of simulations performed on multi-walled 

structures for various aspect ratios 

Critical load per wall (Pcr/Number of Plates) [N] Aspect ratio 
One plate Two plates Three plates Square tube 

0.25 7.838 7.840 7.842 7.845 
0.75 1.825 1.825 1.825 1.825 

1 1.699 1.699 1.699 1.699 
1.4 1.931 1.931 1.931 1.930 
1.41 1.936 1.936 1.936 1.936 

1.414 (≈√2) 1.936 1.936 1.936 1.936 

 17



1.417 1.935 1.935 1.935 1.935 
1.42 1.934 1.933 1.933 1.933 
1.8 1.754 1.754 1.754 1.754 
2 1.739 1.739 1.738 1.738 

2.2 1.758 1.758 1.758 1.758 
2.445 1.815 1.815 1.815 1.815 

2.449 (≈√6) 1.815 1.815 1.815 1.815 
2.45 1.815 1.815 1.815 1.815 
2.455 1.815 1.814 1.814 1.815 
2.8 1.758 1.758 1.758 1.758 
3 1.751 1.751 1.751 1.751 

3.2 1.760 1.760 1.760 1.760 
3.45 1.787 1.787 1.787 1.787 

3.464 (≈√12) 1.788 1.788 1.788 1.788 
3.47 1.788 1.788 1.788 1.788 
3.48 1.787 1.787 1.787 1.787 
3.8 1.761 1.761 1.761 1.761 
4 1.757 1.757 1.757 1.757 

4.4 1.774 1.774 1.774 1.774 

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4
φ  

Pc
rit

ic
al
 / 

Pl
at

e 
[N

]

Theoretical critical load of single
plate

Pcr/Plate for one plate, two plates,
three plates and square tube from
simulation results

 
Figure 2.8: Plot of critical loads against the aspect ratios for the various geometries 
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Based on simulation results from this work, it was inferred that the critical load of open 

wall structures with any number of walls with simply supported open edges and closed tube 

structures with even number of walls is equal to the critical load of a single simply supported 

plate multiplied by the number of walls in the structure. For regular closed wall structures or 

tubes, the statement holds true only for tubes with even number of sides. For regular tubes with 

odd number of walls, the buckling mode tends to form double half waves in the non-loading 

direction to maintain same wall angles before and after buckling. To test this inference, a few 

simulations were performed on a hexagonal tube and a five wall open section with simply 

supported open edges (l = 3.175 mm, t = 0.025 mm, and at some selected aspect ratios). Table 

2.3 shows the results of critical loads per wall for these simulations. It was observed that the 

critical load pattern and the change of number of half waves were the same as the behavior of the 

single simply supported plate. 

Table 2.3: The critical load per wall data of a simply supported hexagonal tube and the 

corresponding 5-wall open section 

Critical load per wall Pcr/wall 
Aspect ratio 

Hexagonal tube 5-wall open section 

1 1.699 1.699 

1.414 (≈√2) 1.936 1.936 

2 1.738 1.7385 

2.449 (≈√6) 1.822 1.815 

3 1.751 1.751 

 2.5.2 Effects of wall angle in multi-wall structures  

The elastic buckling theory of plates postulates that a square tube is essentially four 

simply supported plates put together. From the simulation results in the previous sections, it was 

seen that the two-, three- and four-wall structures have the critical loads of twice, thrice and four 

times the critical load of a simply supported single plate respectively. This implies that each wall 

of a square tube behaves as an independent plate under the action of a critical buckling load. The 

only relation obeyed by the adjacent walls of a multi-wall structure is that the walls rotate by the 

same amount about the common edge and the wall angle remains same before and after buckling. 

Work in [8, 28] have proposed theoretically that the elastic buckling critical load of a rhombic 
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tube and a square tube will be the same. From this postulates, it is therefore proposed in this 

work that the value of the wall angle should not have any effect on the critical load of the 

geometry as long as the open edges are subjected to the simply supported condition and the angle 

between the plates is maintained before and after buckling.  

To verify the above proposal, simulations were performed on some two-plate geometries 

and rhombic tubes having dimensions similar to the previous geometries with l = 3.175 mm, t = 

0.025 mm and h = 6.35 mm to keep the aspect ratio of 2. The wall angle was varied and critical 

loads in each case were noted. Figure 2.9 shows the deflected profiles of different wall angles. 

Except for the case in which the angle between the two plates was 180 degrees (which means the 

two plates are in fact a single plate of twice the width), all the plates had almost the same critical 

load value. Table 2.4 summarizes the values of wall angle used in the simulation and their 

corresponding critical loads.  

      
 (a) (b) (c) (d) (e) 

Figure 2.9: The buckled shapes of two joint plate geometry with the angle of (a) 175 (b) 135 

(c) 90 (d) 45 and (e) 10 degrees between the plates 
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Table 2.4: The critical loads of the two-wall structure geometry with different wall angles 

and a single plate from simulation 

Wall Angle 

[degrees] 
Critical load Pcr [N] 

Critical load per plate 

Pcr/plate [N] 

Critical load of a 

single plate [N] 

175 3.4661 1.7330 

135 3.4769 1.7384 

90 3.4770 1.7385 

45 3.4749 1.7374 

10 3.4254 1.7127 

1.7387 

The results in the table reveal that the critical load of the two-wall structure is practically 

independent of the wall angle and the value of critical load of a two wall structure with any wall 

angle is the same as that of the wall angle of 90o.  

 2.5.3 Effects of wall angle of rhombic tubes 

The previous subsection establishes that the wall angle of a two-wall structure does not 

affect the critical load of the structure. It follows logically that the critical loads of rhombic tubes 

with different wall angles should be the same. To verify this inference, FEM simulations were 

performed on different rhombic tubes. Figure 2.10 shows the buckled geometry of different 

rhombic tubes. The tubes used here had wall angles of 10, 45 and 90 degrees. Table 2.5 shows 

the critical load data obtained from the simulation results.  

 

    
 (a) (b) (c) 

Figure 2.10: The rhombic tubes with the acute angle between the walls as (a) 10, (b) 45 and 

(c) 90 degrees showing the buckled shapes after simulation 
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 The simulation results in Table 2.5 reveal that the critical buckling load of a rhombic 

tube is practically independent of wall angle. This implies that a tube with a wall angle of 10o has 

the same elastic buckling critical load as that of a square tube. However, it is noted that for very 

small wall angles (<10o) and above a certain height of the tube, the Euler buckling mode prevails 

in which the tube buckles as a uniform column instead of four related buckling plates, resulting 

in a lower critical load than the total critical load of four walls. Euler buckling of rectangular and 

square tubes in plastic phase was observed experimentally in [29]. 

Table 2.5: The critical loads of the rhombic tubes with different acute angles between the 

walls and a square tube from the results of simulation 

Acute angle between the plates in 

degrees 
Critical load Pcr  for the structure [N] 

10 6.8484 

45 6.9496 

90 (Square tube) 6.9528 

 2.6 Implications for structural properties of honeycomb 
Theory of buckling of plate and tubes can be applied to the study of elastic buckling of 

honeycomb structures. Structures of honeycombs are in the form of square or hexagonal cells. 

For each of these cells, represented as a square or hexagonal tube, the critical load can be 

represented as 
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Here, N is the number of walls in each cell which depends on the shape of the honeycomb cells. 

Estimation of critical load of a square cell honeycomb based on this approach has been presented 

in [30].  

 2.7 Summary and conclusions 
Elastic buckling of thin plates, multi-walls, and tubes was studied theoretically and 

computationally using the finite element analysis. The theoretical predictions were compared 

with finite element simulation results, and the agreement was excellent. The postulation in [8] 

that each wall of a square tube under uniform buckling load behaves as a simply supported plate 
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was confirmed by the finite element simulations. It was shown that the critical load of buckling 

of a square tube is equal to four times the critical load of an individual simply supported plate. 

The occurrence of transition of number of half waves was observed in the simulation results at 

the values of transitional aspect ratios defined by the theory. The effect of wall angle of a multi-

wall structure or a rhombic tube on the critical buckling load was investigated. It was found that 

the critical load of a multi-wall structure or rhombic tube is independent of the wall angle unless 

the wall angle is very small (<10
o
), and that the elastic buckling critical load of a rhombic tube of 

any angle will be equal to the critical load of a square tube of the same wall geometry. The 

extension of theory of buckling of plates and tubes to honeycombs was discussed. 
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Chapter 3 - Elastic Buckling Characteristics of Quadrilateral Tubes 

under Uni-Axial Compressive Loads 

 3.1 Abstract 
Plate and tubular structures constitute of an important segment in the design of various 

structural members in automobile, aeronautical and civil applications. Properties of these 

structures in elastic buckling and post-buckling are well established in various studies existing in 

literature. In this study, the theoretical formulation of the critical load calculations of 

quadrilateral tubes was explicitly reviewed and some important aspects of buckling of rhombic 

and parallelogram tubes were introduced. Also, the possibility of Euler buckling of tubular 

structures after certain aspect ratio was investigated for any generalized rhombic and 

parallelogram tube. Following the theoretical study, a systematic process of analyzing the elastic 

buckling characteristics of tubes having square, rectangular, rhombic and parallelogram cross-

sections was approached using finite element simulation. The simulation results were compared 

with the expected predictions from the theory of buckling of plates and tubes. Also, some 

experimental tests were carried out on some square and rhombic tubes of certain aspect ratios. 

The goal of these experiments was to validate the theoretical and computational results of the 

buckling critical load and buckling mode shape of the square and rhombic tubes. 

 3.2 Introduction 
Elastic buckling behavior of simply supported plates was first studied theoretically by 

Bryan [1] in 1891. Since then, the investigation of buckling behavior of supported plate 

structures and polygon tubular structures has emerged as one of the important fields of research 

of structural mechanics. Supported plates and tubular structures have evolved to be widely 

applied in various applications in aeronautical, marine and civil applications. The plate, tube and 

cellular structures have an excellent strength-to-weight ratio. These are also widely used as 

crash-safety structures in various impact scenarios because of their energy absorbing properties 

in post-buckling. In this study, the elastic buckling properties of square and rectangular tubes are 

revisited with the use of theoretical, computational and experimental studies. Also, a study on 
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rhombic and parallelogram tubes was carried out with the use of theory of buckling of plates and 

finite element method (FEM) studies. 

Early studies on buckling behavior of polygon tubes by Timoshenko and Gere [2] 

postulated that the buckling behavior of any polygon tubular structure depends on the behavior 

of walls of the tube. According to this theory, the simplest case of tube buckling is a case of a 

regular polygon tube with even number of walls. In this case, all the walls start buckling as 

simply supported plates in wall buckling mode at a same load with the formation of lobes in the 

shape of sine waves along the height of the walls. Thus, the critical load of a square tube is 

derived as four times the critical load of each wall in simply supported condition. In the case of 

rectangular tubes however, the critical load of the longer walls is lower compared to the critical 

load of the shorter walls. This makes the shorter walls restrain the longer walls from buckling 

thus pushing the critical load to a higher value. This study was first performed by Lundquist in 

[3] and later presented in [4-6]. Some of the recent theoretical works discussing on stability of 

plates are presented in [7- 9]. Following the theoretical work, numerous studies have presented 

computational and experimental studies to investigate the buckling characteristics of plate 

structures and square and rectangular tube structures. Some of the works on computational and 

experimental studies of buckling of plates and tubes are presented in [10-12]. 

Also, an extensive research on the post-buckling of polygon tubular structures following 

the buckling behavior has been performed in the past. The post-buckling behavior of tubular 

structures is an important field of research due to the extensive use of polygon tubes, along with 

circular tubes in the crash safety structures in automobiles. The post-buckling strength of 

supported plates and polygon tubes depend on the history of elastic buckling behavior of the tube 

and the load carrying capacity of the vertical edges of the structure in post-buckling. After the 

first elastic buckling point, the walls lose the load carrying capacity. At this state, the un-

deformed vertical edges act as the load carrying members of the structure.  Works on the post-

buckling strength of a supported plate has been illustrated in [13-15]. Relating to the buckling 

and post-buckling properties of plates and their behavior in the quadrilateral tube structure, the 

energy absorbing characteristics of square and rectangular tubes has been discussed by many 

researchers. Some of the work on these studies is presented in [16-18]. Apart from the theoretical 

work, considerable amount of experimental and computational work has been presented in many 

articles. Some of the important works are shown in [16, 19-22]. A review on the theoretical 
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works on the buckling and post buckling of plate and quadrilateral tubular structures has been 

presented in [23]. 

In the present study, the first section discusses the elastic buckling properties of square 

and rectangular tubes.  The discussion presented in this study is based on the previous works 

presented in various studies on the tube buckling properties. The buckling of supported plates 

was reviewed and explicitly discussed by elaborating the method used in [4]. The buckling 

behavior of square and rectangular tubes of various length ratios was derived by considering 

different cases of the supported plate structures representing walls of the tube. A plot of values of 

the buckling factor k with varying aspect ratios of different tubes is presented with the use of this 

theory. Also, studies on the behavior of rhombic and parallelogram tubes under buckling loads 

were carried out. Theory of multi walled structures postulates from [2] states that the angle 

between the walls of a structure buckling in wall buckling mode does not affect the overall 

critical load of the structure. This implies that the behavior of rhombic and parallelogram tubes is 

expected to be similar to the behavior of corresponding square and rectangular tube respectively. 

This theory was verified in [24] for the case of rhombic tubes, using finite element simulation 

results. In the present study, the possibility of Euler buckling was also considered for tubes and 

an equation to derive the critical height of the tube was formulated. The equation calculates the 

critical height after which the tube buckles in Euler mode instead of the walls buckling in plate 

buckling mode. The study of Euler buckling of square tubes was previously discussed in [16,25]. 

Abramowicz et al [25] derived the equation of critical aspect ratio of the square tube considering 

the top and bottom faces of the tube as fixed faces. The present study presents a more realistic 

case for both rhombic and parallelogram tubes by considering the Euler buckling of the tubes 

along the minimum inertia axis. The top and bottom faces of the tubes were considered as hinged 

along the minimum inertia axis and the equation was derived for a hinged condition which is 

more practical in a real scenario. With these considerations, a MATLAB program was coded to 

calculate the critical load at any given height of a tube by considering both the wall buckling 

mode and Euler buckling mode. The program was coded to decide the buckling mode by 

comparing the critical load in each mode of buckling.  

Following the theoretical studies, an extensive finite element simulation study was 

performed on each of the tube geometries discussed theoretically. The phenomenon of transition 

of number of half-waves formed along the height of the tube was observed in the simulation 
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results of all the tubes. This was examined by critically studying the tube behavior at the 

transition aspect ratios. Also, the Euler buckling of the rhombic and parallelogram tubes were 

studied using finite element models of the tubes with angles of 450 and 600 respectively. The next 

section discusses the procedure of the experimental method performed on some of the tubes 

made of Acrylonitrile Butadiene Styrene (ABS) plastic. A total of twelve tubes were tested, out 

of which, two tubes were made of rhombic cross-section with an angle of 45o and an aspect ratio 

of 1. The remaining ten tubes had a square cross section and were made of heights corresponding 

to the aspect ratios of first three minima of the buckling factor and first two transitional aspect 

ratios. The tubes were tested under uniform compressive loads and the elastic buckling critical 

loads were calculated from the test data. 

Finally, the theoretical predictions were compared to simulation and experimental results 

to validate the studies. Good accuracies were observed with agreement of the three results. The 

critical load data comparisons of the respective tubes are presented in graphical forms.  

 3.3 Elastic Buckling of Quadrilateral Tubes 
Elastic buckling principles of a quadrilateral tube (with each wall of the tube buckling 

individually) depends on the buckling characteristics of each wall. For the critical load 

formulation of tubes, the walls of a tube are assumed to behave as independent supported plates 

under the action of uni-axial load along the top and bottom edges and the non-loading edges 

subjected to different boundary conditions. The boundary conditions of the walls depend on the 

geometry of the walls of the tube. The simplest case of quadrilateral tube buckling is a case of a 

square tube under uniform uni-axial loading and the most complicated case is of an irregular 

quadrilateral cross-section. In the case of a square tube, all of the individual walls have the same 

value of critical load in the lowest energy buckling mode. This results in the simultaneous 

buckling of all of the walls of the square tube with the value of critical load equal to four times 

the critical load of each wall. In the case of a rectangular tube, however, the critical load of the 

longer walls (hereafter referred to as buckling walls) is lower than the shorter walls (hereafter 

referred to as restraining walls). This causes the buckling walls to reach their instability point 

before the restraining walls under the application of a uniform load. As a result of this, a 

restraining moment provided by the restraining walls acts on the buckling walls, which tries to 

restrain the bending of buckling walls. Based on this explanation and earlier studies [3,4], the 
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buckling theory of square and rectangular tubes is reviewed and discussed elaborately in the 

following sub-sections. A generalized condition of buckling of the buckling wall is discussed and 

the dependency of the critical load on the dimensions of restraining walls is derived. This theory 

is then extended to rhombic and parallelogram tubes and the transition from wall buckling to 

global Euler buckling of the tubes is investigated.  

 3.3.1 Buckling Condition of Buckling Walls Based on the Theory of Supported 

Rectangular Plates 

The theory of plate buckling is well established in numerous works in the past. Some of 

the works illustrating the theory of elastic buckling of plates are presented in [2, 4, 5]. According 

to this theory, a plate acted upon by a vertical in-plane buckling load results in the formation of 

lobes along the height and width of the plate. These lobes are in the form of sinusoidal waves 

and are generally called half-sine waves or half-waves because each lobe resembles a sine wave 

in the period of 0 to π. This phenomenon, as exhibited in a plate simply supported along all the 

edges is illustrated in Figure 3.1. Figure 3.1(a) shows an example of a supported plate of width 

‘l’, height ‘h’, and thickness ‘t’. Figure 3.1(b) and 3.1(c) show the finite element model of the 

plate with loads and restraints and the exaggerated buckled profile of the plate with two half-

waves, respectively. 

    

 (a) (b) (c) 

Figure 3.1 The rectangular plate (a) with the coordinate axis and dimensions, (b) as a 

model with restraints and load, and (c) deformed model of the plate from simulation result 
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In the buckling phenomenon of a rectangular tube, as discussed earlier, the buckling wall 

behaves as a plate torsionally or elastically restrained along the vertical edges. In this sub-

section, the general theoretical condition of the buckling of a plate equally elastically supported 

along both of the vertical edges is discussed. The work presented in this section is a discussion of 

rectangular tube buckling, based on the derivation of the elastic buckling of a rectangular plate 

elastically restrained along the edges, presented in [4] 

In the derivation process, the buckling walls of a rectangular tube are considered as 

supported plates under the action of uni-axial in-plane force acting parallel to the tube axis. The 

general equation of bending for such a plate with the dimension notations as in Figure 3.1(a) is 

represented as, [4] 
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where, w is the out-of-plane displacement of the plate, σx is the stress in the plate due to the force 

in x direction and D is the flexural stiffness of the plate , which is expressed as, 
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where, E is the Young’s Modulus and ν is the Poisson’s ratio of the material of the plate. Using a 

coordinate system as defined in Figure 3.1(a), the boundary conditions for the present equation 

are represented as, 

at x = 0 and x = h, 

 0w =  (3.3) 

 0xM =  (3.4) 

and, at y = ± l/2, 

 0w =   (3.5) 

 yM Mζ θ= − × =  (3.6) 

where, Mx and My are the moments along the edges about the x and y directions respectively.  

The moment acting along the vertical edges is assumed to be proportional to the angle of 

deflection of the shorter restraining walls and ζ  is the proportionality constant representing the 

stiffness of the system. A term ζ, referred to as the restraint coefficient and corresponding to the 

compliance of the common edge is introduced into the derivation and is represented as, 
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With the use of boundary conditions from Eqns. (3.3), (3.4), (3.5) and (3.6) and the 

introduction of restraint coefficient from Eqn. (3.7), the buckling condition of the buckling wall 

is derived as, 

 1 tanh 1 1 tan 1 0
2 2

m mπ πμ μ μ μ ζπμ
φ φ

⎛ ⎞ ⎛ ⎞
+ + + − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

m
φ

=  (3.8) 

where, m is the number of half-waves formed along the height of the wall, φ is the aspect ratio of 

the wall represented by φ  = h/l, and μ  is a term defining the critical load of the buckling wall 

and is defined as, 
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where σc represents the buckling critical stress of the buckling wall. Eqn. (3.8) represents the 

condition of buckling of any general rectangular plate equally restrained along the vertical edges. 

Using this condition, the values of μ  were plotted against various values of ζ for different values 

of the m/φ ratio. An example of this plot at m/φ = 1 is shown in Figure 3.2.  
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Figure 3.2 Plot of μ  versus ζ for m/φ = 1 

In the case of a rectangular tube, the buckling behavior of the buckling wall is defined by 

the condition from Eqn. (3.8) and the relation of the buckling wall with the restraining walls is 
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established by the term ζ. Calculation of the restraint coefficient is executed by studying the 

bending of the restraining walls of the tube. This is presented in the following sub-section in this 

study.  

A specific case of Eqn. (3.8) is the condition corresponding to the conditionζ = ∞ , which 

represents the condition of buckling a plate simply supported along the vertical edges. 

Substitution of this condition in Eqn. (3.8) yields the result 
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where k is the buckling factor of the plate and is expressed as, 
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This result of the critical load of the plate is considered over the unit width of the plate. Thus, the 

critical load of the whole plate is, 
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Eqn. (3.12) represents the buckling critical load expression of a simply supported plate.  

Now focusing back on the general case of a rectangular plate with elastically restrained 

end conditions, the buckling condition of the plate depends on the value of the restraint 

coefficient of the common edges. The calculation of the restraint coefficient based on the 

deflection equation of the restraining wall is explained in the following sub-section.  

 3.3.2 Bending equation of the restraining walls 

In this sub-section, the value of the restraint coefficient for a given tube is calculated 

based on the interaction of the buckling wall and the restraining wall along the common edge. 

This depends on the dimensional relation of the buckling and restraining walls. Figure 3.3 shows 

a representation of the restraining wall with dimensions and coordinate system used for the 

derivation process. The length and thickness of the restraining wall are considered as lr and t′. 

The height of the restraining wall is equal to the height of the buckling wall h as these are the 

walls of the same tube. The ratio of the lengths of restraining wall and buckling wall (lr/l) is 

termed as length ratio for further reference in this study. 
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Figure 3.3 Schematic representation of one of the restraining walls of the tube with 

coordinate system and dimensions 

With the buckling of the buckling wall of a rectangular tube, bending moments are 

induced on the restraining walls, resulting in the bending of the restraining walls. The restraining 

walls represent rectangular plates simply supported along all of the edges with a certain bending 

moment along the vertical edges. This implies that the bending of the restraining walls can be 

presented in the form of Eqn. (3.1). As the restraining wall does not buckle due to the 

longitudinal force, the longitudinal force acts as a compressive load and its effect is negligible on 

bending. With this reasoning, the terms associated with the acting loads are neglected from the 

plate bending equation. This modifies the plate bending equation of the restraining wall as, 
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where w is the out-of-plane deflection of the restraining wall. The boundary conditions of the 

above system are,  

at x = 0 and x = h, 

 0w =  (3.14) 

 0xM =  (3.15) 

and, at y = 0 and y = lr, 

 0w =  (3.16) 

 yM M=  (3.17) 

Solving Eqn. (3.13) using the boundary conditions from Eqns. (3.14), (3.15), (3.16) and 

(3.17), the expression of the out-of-plane deflection of the plate is obtained as, (the details of this 

solution are shown in Appendix A) 
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The angle of deflection of the wall at the edge is calculated by differentiating Eqn. (3.18) 

at y = 0. With the comparison of the expression of the angle of deflection with Eqn. (3.6) and 

Eqn. (3.7), the expression for the restraint coefficient on the buckling wall due to the restraining 

wall was derived as, 
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Using this equation, the restraint coefficients of a given tube with fixed lr/l ratio were 

calculated for different values of m/φ. The values of k of the buckling wall at different aspect 

ratios were then calculated using the values of restraint coefficient and Eqn. (3.8) for different 

m/φ ratio. Figure 3.4 shows the plot of k for an elastically restrained plate with the restraining 

wall having a lr/l ratio of 0.5. The plate represents one of the two buckling walls of a rectangular 

tube with the restraining walls of half the length of the buckling wall. The plot was constructed 

using different m/φ ratios for different m values. 
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Figure 3.4 The plots of k for a wall with lr/l ratio 0.5 

The figure shows curves of the buckling factor k for four values of m. The intersection 

points of the curves of k for different m values are called transitional aspect ratios. More 

discussion on translational aspect ratios is discussed in the following sub-section. 

 3.3.3 Transition of Number of Half-Waves in Plate Buckling 

In the elastic buckling phenomenon of any plate structure, the plate buckles with the 

formation of sinusoidal waves along the height and width direction. For the lowest energy mode 

of buckling, thus corresponding to the minimum buckling critical load, the number of half-waves 

formed along the width of the plate is always equal to 1. However, the number of half-waves 

formed along the height of the plate depends on the aspect ratio of the plate. For maintaining the 

lowest critical load, the plate may undergo buckling with more than one half-wave. This 

phenomenon is more clearly evident from the case of a simply supported plate. The expression of 

k for the simply supported plate presented in Eqn. (3.11) obtains a minimum value for certain 

aspect ratio. Thereafter, the value of k begins to increase for a constant m value. To maintain the 

lowest value of k, the plate transforms the buckling mode to form m+1 half-waves, thus 

maintaining the minimum possible buckling factor and critical load of buckling. This 
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phenomenon is also observed in supported plates representing buckling walls of a rectangular 

tube. This is obvious from the curves of k in Figure 3.4. It is observed that the value of k on the 

line of m =1 is higher that the corresponding values of k on the curve of m = 2 after a certain 

aspect ratio. This aspect ratio is called transitional aspect ratio. The buckled shape of a plate 

structure changes from m to m+1 number of half-waves after the transitional aspect ratio. For the 

case of the elastically restrained plate studied in the previous sub-section, the values of 

transitional aspect ratios for transitions from m = 1 to m = 2, m = 2 to m = 3, m = 3 to m = 4 were 

calculated as approximately 1.16, 2 and 2.82 respectively. The transitional aspect ratios of the 

buckling walls of a tube vary as the lr/l ratio of the tube is varied. It was observed that the first 

transition occurs at a lower aspect ratio as the lr/l ratio of the tube increases. For example, the 

transitional aspect ratio for transition from m = 1 to m = 2 is lowest for a plate built in along both 

vertical edges, at approximately 0.94 and highest for a simply supported plate, at the value of √2. 

For a simply supported plate, the transition aspect ratio is defined as, [2] 

 ( )1t m mφ = +  (3.20) 

The value of k for simply supported plate is minimal at the integer values of aspect ratio, for 

which the number of half-waves is equal to the aspect ratio. 

 3.3.4 Buckling of square tubes 

The buckling characteristic of a square tube is the simplest case of polygon tube 

buckling, where each wall buckles as a simply supported plate. For a square tube under a 

uniform axial compressive force with the top and bottom edges hinged or simply supported, the 

load is equally distributed on all of the walls. As all of the walls are identical in geometry and 

load, each plate has the same individual critical load, and the restraint coefficient along the 

common edges is ∞ . Therefore, each of the walls reaches instability simultaneously. The half-

waves on adjacent walls are formed in such a way that the common edges do not buckle. Walls 

rotate by the same amount and in the same direction about the common edge, and therefore the 

wall angle remains unchanged before and after buckling [4]. This results in zero restraining 

moments at the common edges for the walls and the tube behaves as four independent simply 

supported plates put together with common edges. The critical load of a square tube is therefore 

four times the value of the critical load of a single wall behaving as simply supported plate. From 
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the critical load expression of a simply supported plate presented in Eqn. (3.12), the critical load 

expression of the square tube is obtained as, [2] 
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The value of k is determined by the aspect ratio of the tube and the number of half-waves 

formed, as was explained in the preceding section for the single simply supported plate. The 

values of k for each wall of a square tube or any simply supported plate with varying aspect ratio 

are represented in Figure 3.5. The intersection points of curves of certain number of half-waves 

m and m +1 represent the transitional aspect ratios. 
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Figure 3.5 Plot of the values of k with varying aspect ratios of the walls of a square tube 

 3.3.5 Buckling of Rectangular Tubes 

Apart from the dependency of the critical load of a given rectangular tube on the aspect 

ratio of the tube, the ratio of the lengths of the buckling wall and restraining walls also plays a 

role in the buckling behavior of the tube. At a given aspect ratio, the value of k of the buckling 

walls is higher for low lr/l ratio and lowest for buckling and restraining walls of equal length, 
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representing a square tube. The values of k were calculated using the procedure presented in the 

preceding section for calculating the k values of the particular case with lr/l ratio of 0.5. 

It was observed that the values of k obtained from this procedure were accurate for low 

lr/l ratios. For higher  lr/l ratios (ratios more than 0.5), however, the values of k were observed 

not to be accurate. This is assumed to be because of the effect of the longitudinal force on the 

stiffness of the restraining wall. To correct this error, Bleich [4] suggested an approximate 

correction method for the calculation of restraint coefficient ζ. The correction was expressed as, 

 2
1

1
corrected

rtl
t l

ζ ζ=
⎛ ⎞− ⎜ ⎟′⎝ ⎠

 (3.22) 

where, ζcorrected is the corrected value of restraint coefficient considering the effect of load on the 

resisting wall and ζ is the value of restraint coefficient obtained from Eqn. (3.19). The procedure 

of calculating the buckling factor of buckling walls was repeated as was performed previously, 

but, with the use of corrected values of restraint coefficients in Eqn. (3.8). Figure 3.6 shows the 

plot of k for different rectangular tubes of length ratios of the rectangle as 0.1, 0.3, 0.5, 0.7 and 

0.9 (at each of three constant values of m - m = 1, m = 2, m = 3) with this corrected procedure.  
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Figure 3.6 Plots of k of different rectangular tubes varying with aspect ratio 
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The minimum values of k with different length ratios are presented in Figure 3.7. The 

extremes lr/l = 0 and lr/l = 1 were considered as a plate fixed on both sides and simply supported 

plate respectively. 
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Figure 3.7 Minimum values of k for different lr/l ratios 

The critical load of the rectangular tube is expressed in the terms of the length ratio of the 

buckling wall and restraining wall of the rectangular tube as, 

 2 1 r
rect cr

lP
l

⎛ ⎞= +⎜ ⎟
⎝ ⎠

P  (3.23) 

where, Prect is the critical load of the rectangular tube and Pcr is the critical load of the buckling 

wall using the specific k value (for a given lr/l ratio) and Eqn. (3.12). The results of the critical 

load of certain rectangular tubes obtained from this theory were compared to computational 

results from finite element simulations. The comparisons are presented in following sections. 

 3.3.6 Buckling of Rhombic and Parallelogram Tubes 

According to the theory of buckling of square and rectangular tubes, the angle between 

the walls of a quadrilateral tube does not affect the critical load of the tube if it is maintained in 

the buckled structure. This statement follows logically that the critical load of buckling of 

rhombic and parallelogram tubes would be same as that of square and rectangular tubes, 

respectively, with the same dimensions. Thus the critical loads of rhombic and parallelogram 
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tubes can be derived from the theory of square and rectangular tube buckling as explained in the 

preceding sections. For a rhombic tube, the critical load would be the load value calculated from 

Eqn. (3.21). For a parallelogram tube, the critical load would be the load value obtained from 

Eqn. (3.23) with the walls on the longer sides of the parallelogram considered as the buckling 

walls. However, in both rhombic and parallelogram tubes with very small angles, there exists a 

possibility of Euler buckling. A discussion on the Euler buckling of rhombic and parallelogram 

tubes is presented in the following sections. Finite element simulation results of rhombic and 

parallelogram tubes were compared with the theoretical results of respective square and 

rectangular tubes. Also, a few experiments were performed on rhombic tubes to compare the 

critical loads with the simulation models and corresponding square tubes. These results are 

presented in the section Results of this chapter.  

 3.3.6 Euler Buckling of Rhombic and Parallelogram Tubes 

As mentioned in the previous section, the rhombic and parallelogram tubes have a 

possibility of buckling as a single structure in Euler mode. Some of the studies presented in 

[16,25] have discussed the possibility of Euler buckling in square and rectangular tubes. In this 

section, the Euler buckling of any generalized rhombic and parallelogram tubes are discussed. 

An equation for finding out the minimum height of a given tube to buckle in wall buckling mode 

is derived based on the lowest critical load. This study is important for post-buckling studies of 

tubes. Tubular structures have effective load carrying capacity in post-buckling. This is 

accounted to the load carrying capacity of the vertical edges of the tube when the tube buckles as 

four individual walls. For a tube buckling in Euler mode, the tube is ineffective as a post-

buckling crash member as the load carrying capacity of a tube buckling in Euler mode decreases 

drastically in post-buckling regime. This makes the study of Euler buckling of the tubes an 

important aspect for effective design of structures which are designed to function in post-

buckling.  

The minimum height for a rhombic tube, over which the tube will buckle in Euler mode, 

was calculated by comparing the critical loads of the tube in Euler mode and wall buckling 

mode. Figure 3.8 shows the schematic representation of a general rhombic tube used in this 

derivation. 

 40



 
Figure 3.8 The representation of the cross-section of a general rhombic tube of each wall of 

width l, wall thickness of t and acute angle of rhombus as θ 

The Euler buckling of a structure occurs along the axis with minimum moment of inertia 

and the critical load of buckling in Euler mode is expressed as, 
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π
=  (3.24) 

where Imin is the minimum moment of inertia and h is the height of the body. The term C 

is a constant which depends on the end boundary conditions of the tube. For the hinged-hinged 

condition, the value of C is 1. In the case of a rhombic tube, the longer diagonal is always the 

axis of minimum moment of inertia. With the substitution of the expression for minimum inertia 

of the section, the expression for critical load of the tube in Euler mode with hinged-hinged 

condition along the longer diagonal is, 
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Comparing this to the critical load of the tube buckling in wall buckling mode expressed in Eqn. 

(3.21), the expression of the critical height is, 
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The critical height of the tube depends on the dimensions of the tube and the value of k of the 

tube at the particular height. The value of k of the tube is generally assumed to be 4 for aspect 

ratios greater than 5. This modifies the expression of the critical height of the equal-sided tubes 

with high aspect ratios to, 

 
( )

2
2 2 2

2

1 1 sin
1
2 cos

2

cr

ll
t

h
ν θ

θ

⎛ ⎞⎛ ⎞− +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝= ⎠  (3.27) 

Based on this principle, the theoretical buckling behavior of a tube of a given angle was 

predicted with relation to various heights h of the tube. Figure 3.9 shows the critical loads of a 

tube with walls of width 2 in, angle θ = 60o and wall thickness of 0.08 in. Material properties of 

ABS plastic were used for the tube material, having a Young’s Modulus of 236000 psi and 

Poisson’s ratio of 0.39. This was because of the tube specimens made of ABS plastic which were 

used for experimental studies. 
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Figure 3.9 The critical load of a rhombic tube with l = 2 in, θ = 60o in and t = 0.08 in 

The figure shows initial critical load similar to the form of the k curve for a rectangular 

plate, but with a steep fall in the critical load after a certain height, which is due to Euler 
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buckling. This plot was created using a MATLAB program which calculated the critical load of 

the tube in both modes and selected the lower load as the critical load of the tube. From this 

method, the rhombic tube under study is expected to buckle in Euler mode at a height of 23 in. 

Investigation of Euler buckling of square tubes was also performed using this method by 

substituting the angle of the tube as 90o. The value of critical height for the square tube with 

similar dimensions and material properties of the rhombic tube studied in this sub-section was 

obtained as 32.5 in. 

Similar study on parallelogram tubes was conducted by considering a parallelogram tube 

with dimensions as shown in Figure 3.10. The lengths of the sides of the parallelogram were 

considered similar to the dimensions in the wall-buckling analysis of the rectangular tubes. 

 
Figure 3.10 The representation of the cross-section of a general parallelogram tube with 

longer walls of length l, shorter walls of length lr, wall thickness of t and angle of θ 

The expression for the critical height of a tube with dimensions as shown in the figure 

was calculated in a similar fashion as was calculated for a square tube. The minimum moment of 

inertia of the cross-section was calculated using the principal moments. The expression of the 

critical height of Euler buckling of a parallelogram tube by comparing the two critical loads was 

obtained as, 
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where, α is the ratio of the length of the sides (lr/l) and Imin is the minimum moment of inertia of 

the parallelogram section. The derivation of the minimum moment of inertia is presented in 

Appendix B. The value of k is considered as the minimum value of k for the given lr/l. This was 
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done as the value of k becomes almost constant after an aspect ratio of 3. Using this equation, the 

critical loads of a given tube were plotted by varying heights. The parallelogram tube for this 

theoretical analysis was chosen with the length of longer sides of 2 in and shorter sides 1 in. The 

value of k was considered to be constant and equal to the minimum value of k for a tube of lr/l 

ratio of 0.5. The material of the tube was assigned a Young’s Modulus of 236000 psi and a 

Poisson’s ratio of 0.39, representing the properties of ABS plastic. The graph of critical loads is 

presented in Figure 3.11. 
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Figure 3.11  The critical load plot with different aspect ratios of a parallelogram tube with l 

= 2 in, lr = 1 in, θ = 60o and t = 0.08 in 
The figure reveals that the tube under study is expected to buckle in Euler mode beyond 

an aspect ratio of approximately 5. The theoretical predictions explained in this section were 

compared with finite element elastic buckling simulations. The results of the simulations and 

their comparison with the theoretical results are presented in the following section.  

 3.4 Finite Element Buckling Simulations of Plate and Tubular Geometries  
According to the theoretical prediction, a single, simply supported plate under 

compressive load buckles with the formation of single or multiple lobes along the height of the 

plate, called half-waves. The number of half-waves depends on the aspect ratio of the tube and 
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the dimension ratio of the walls. It is also predicted from the theory that open multi-wall 

structures with the open edges subjected to simply supported conditions (i.e. regular polygon 

tubes) have a critical load equal to the number of walls times the critical load of a single simply 

supported plate. The study of these structures using finite element simulation on certain 

geometries has been elaborately discussed and presented in [24]. In the present study, square, 

rhombus, rectangular and parallelogram tubes over a range of aspect ratios are simulated under 

elastic buckling conditions using SolidWorks simulations. Some important results are discussed 

in this section and the comparison of computational critical loads with the theoretical and 

experimental results are discussed in the section Results of this paper. The geometries used for 

simulations were modeled with the dimensions of the experimental specimens and were assigned 

material properties representing the properties of ABS plastic, which was used for fabricating the 

specimens.  

 3.4.1 Elastic Buckling Simulations of a Square Tube 
It was postulated in [2] that a square tube under a uniformly distributed buckling load 

behaves as four individual simply supported plates. The theoretical critical load of a square tube 

is calculated based on this theory as was explained in the earlier sections. In this sub-section, the 

procedure of simulating the elastic buckling phenomenon using finite element method is 

presented. The square tube was modeled with sides of length 2 in and uniform wall thickness of 

0.08 in. Simulations were performed on models of tubes over a range of heights, thus observing 

the behavior of the tube at different aspect ratios. The model of the tube with lowest height had 

an aspect ratio of 0.5 and the tallest tube had an aspect ratio of 3. The aspect ratios were chosen 

with special focus on the transitional aspect ratios and the aspect ratios corresponding to minima 

of k to observe the theoretically predictions at these ratios. The value of Young’s Modulus of the 

tubes and the Poisson’s ratio were assigned as 236,000 psi and 0.39, respectively. The models of 

the tubes were meshed using triangular shell elements. Each element had a total of six nodes 

with three on the vertices and three mid-edge nodes. The size of the elements ranged from 0.05 

to 0.06 in. For the simulations, the bottom edges were subjected to simply supported restraint, 

thus restricting translation in all directions and allowing rotation along the edges. The top edges 

were subjected to restraints which only allowed vertical translation and rotation along the edges. 
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A parametric uniform compressive force was applied to the top edges of the geometries. Figure 

3.12 shows the exaggerated buckled profile of the finite element model with an aspect ratio of 1.  

 
Figure 3.12 Finite element model of a square tube with sides of length 2 in and aspect ratio 

of 1, with exaggerated deformation 

Using this method for simulations, the critical load readings for the tubes of different 

aspect ratios were recorded. The results of critical loads from simulations are presented and 

compared with theoretical and experimental results in the Results section of this paper. Also, the 

finite element simulation models were used to critically investigate the transitional aspect ratios 

by capturing the transition of half-waves in the tube. Figure 3.13 shows the first transition in the 

tube (m = 1 to 2). 
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 (a) b) c) 

   

 (d) (e) 

Figure 3.13 Front view of the buckled profile of finite element model of the tube at an 

aspect ratio of (a) 1.4, (b) 1.41, (c) 1.414, (d) 1.417 and (e) 1.45 

The figure shows the initiation of the second wave at an aspect ratio of 1.414. This 

matches with the theory which predicts the transition to occur at an aspect ratio of √2. 

Subsequent transitions of number of half-waves were observed at the theoretically expected 

aspect ratios. 

 3.4.2 Finite Element Elastic Buckling Simulations of Rectangular Tubes 

Similar to the method of finite element simulations of the square tubes, elastic buckling 

simulations were performed for a set of rectangular tubes. The tubes were modeled with l = 2 in, 

lr = 1 in (lr/l ratio = 0.5) and a uniform wall thickness of 0.08 in. The tubes were modeled over a 

range of heights for the aspect ratios ranging from 0.5 to 3 with special focus on minima and 

transitional aspect ratios. Triangular shell elements having six nodes each, similar to elements 

used in square tubes, were used to mesh the tubes with an average element size of 0.06 in. The 
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material of the tube was assigned a Young’s Modulus of 236,000 psi and Poisson’s ratio of 0.39. 

Similar boundary conditions and forces as applied to square tubes were applied on the 

rectangular tubes and the elastic buckling critical loads were recorded. Figure 3.14 shows the 

meshed model of the rectangular tube with an aspect ratio of the longer walls as 1. 

 
Figure 3.14 Isometric view of the buckled shape from the simulation of the rectangular 

tube model (l = 2 in, lr = 1 in) of aspect ratio 1 with boundary conditions, applied forces, in 

an exaggerated scale 

The critical load data of the simulations was compared to the theoretical results and the 

comparison of results is presented in the Results section. Similar to the investigation in square 

tubes, the transitional aspect ratios were critically examined in the rectangular tube under study 

using the finite element models. Figure 3.15 shows the simulation result at different aspect ratios 

showing the transition from m = 1 to 2. 
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 (a) (b) (c) 

   

 (d) (e) 

Figure 3.15 The exaggerated buckled shapes from the elastic buckling simulations at aspect 

ratios of (a) 1.18, (b) 1.19, (c) 1.2, (d) 1.21 and (e) 1.3 

The transition of the number of half-waves in the buckling wall was observed at an aspect 

ratio of 1.19, which matches closely with the theory which predicts the first transition at aspect 

ratio of 1.2. Subsequent transitions of the number of half-waves were observed at the aspect 
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ratios of 2.05 and 3 for the transitions m = 2 to 3 and m =3 to 4 respectively. These match closely 

with the theoretically predicted values of transitional aspect ratios. 

 3.4.3 Finite Element Simulations of Rhombic and Parallelogram Tubes 

The next set of simulations was performed on a few rhombic and parallelogram tubes to 

see the critical load behavior of these tubes. The goal of these simulations was to show that the 

critical load behavior was similar to that of the corresponding square and rectangular tubes. The 

geometries were selected with similar dimensions as that of the square and rectangular tubes. 

Figure 3.16 shows the buckled shapes of the finite element models of a rhombic and a 

parallelogram tube with θ = 45o. The rhombic tube had dimensions l = 2 in and h = 2 in. The 

parallelogram tube had dimensions lr = 1 in, l = 2 in and h = 2 in. The parallelogram considered 

in the study was modeled with θ = 60o. Both tubes were modeled with t = 0.08 in. With the use 

of similar material properties and mesh parameters, buckling simulations were performed on 

these tubes for different heights. The critical loads of these tubes were compared at minima of k 

and the transition aspect ratios.  

 

  
 (a) (b) 

Figure 3.16 Exaggerated buckled shapes from the finite element simulation of (a) a 

rhombic tube of aspect ratio 1 with θ = 45° and l = 2 in and (b) a parallelogram tube of 

aspect ratio of longer walls equal to 1 with θ = 60°, l = 2 and lr/l = 0.5 
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According to the theory of tube buckling, the critical load and the buckling behavior of 

the tubes are independent on the angle of the tube. This means that the minimum values of k and 

the transition of half-waves are expected at the same aspect ratio as that expected from the theory 

of square or rectangular tubes. This theory was confirmed as the simulation results revealed that 

the buckling behavior of these tubes is similar to their corresponding 90° counterparts. From the 

simulations, transition of half-waves from m = 1 to 2 was observed at an aspect ratio of 1.41 for a 

rhombic tube and 1.2 for a parallelogram tube which matches well with the theoretically 

expected transitional aspect ratios. To properly achieve Euler buckling, the buckling simulations 

of rhombic and parallelogram tubes were performed in two parallel simulation models of the 

tubes. First model was subjected to boundary conditions representing simply supported 

conditions for the top and bottom edges of the tube. The other model was subjected to boundary 

conditions representing hinged-hinged condition, which relaxes the restraint and allows Euler 

buckling to occur. This was achieved by restraining the vertical translation of the ends of 

minimum moment axis of the bottom plane and allowing all other points of the top and bottom 

surface of vertical translation. With these considerations, restraints applied similar to the square 

tube were applied on the first model of rhombic tube. The second model was restrained by 

restricting the ends of the longer diagonals of the rhombus section at the non-loading end of tube 

in all directions. All of the top and bottom edges were restrained from motion along the 

horizontal plane only. In the case of parallelogram tubes, the first model of the tube was 

subjected to the boundary conditions used on the rectangular tubes. In the second model of the 

tube, the ends of the minimum moment axis were subjected to boundary conditions resembling 

the restraint applied to the end of longer diagonal of the rhombic tube. The edges of the tube 

were restrained from translation along the horizontal plane. The heights of the tubes were 

increased for each simulation and the critical loads of the tubes were recorded. Figure 3.17 

shows the Euler buckling of the rhombic and parallelogram tubes after a height which matches 

well with the theoretically predicted critical heights. The results of critical load were compared 

with the theoretical prediction in Figure 3.9 and Figure 3.11 for the corresponding rhombic and 

parallelogram tube, respectively. This comparison is presented in the Results section of this 

paper. 
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 (a) (b) 

Figure 3.17 Initiation of Euler buckling in a (a) rhombic tube with l = 2 in, t = 0.08 in and θ 

= 60o at h = 23.5 in and (b) parallelogram tube with l = 2 in, lr = 1 in, t = 0.08 in and θ = 45o 

at h = 9.5 in 

The Euler buckling of the rhombic tube was observed at h = 23.5 in in the hinged-hinged 

model of the tube. In the parallelogram tube, the Euler buckling phenomenon was observed in 

the hinged-hinged model of the tube with h = 9.5 in. These heights match well with the 

theoretically predicted values of the critical heights for Euler buckling as were observed in 

Figure 3.9 and Figure 3.11. The results of the simulation were compared to the theory. These 
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comparisons of critical loads from the simulation of both of simply supported case and hinged-

hinged case are presented in the Results section of this paper. 

3.5. Buckling experiments in ABS plastic tube specimens 
Following the theoretical and simulation studies of the various tubes, some square and 

rhombic tubes were tested experimentally. The goal of the experiments was to verify the 

theoretical and computational predictions of critical loads and number of half-waves. The tube 

specimens were made of ABS plastic with a Young’s Modulus of 236,000 psi and Poisson’s ratio 

of 0.39. All of the specimens were manufactured with l = 2 in and t = 0.08 in with variable height 

depending on the desired aspect ratio. Also, two rhombic tubes were manufactured with an 

aspect ratio of 1 and θ = 45o. The square tubes were manufactured to aspect ratios of 1, 1.41, 2, 

2.44 and 3. The tube specimens with integer aspect ratios were expected to show the minimum 

critical loads and the non-integer aspect ratios were expected to exhibit the transition of half-

waves. 

The tubes were compressed in an Instron 8516 servo-hydraulic test frame with a 

maximum capacity of 50,000 lbs. The machine was connected to a digital data acquisition 

system recording load, LVDT displacement and time, simultaneously, at a rate of 3 Hz. All of the 

tubes were compressed at a uniform rate of 0.05 in/min. The critical loads of the tubes were 

calculated from the load-displacement plots of the tubes by determining the first non-linear point 

in the plots. The results of the measured critical load were compared with the theoretical and 

computational data. These comparisons are shown in the following section. 

The tubes having integer aspect ratios exhibited formation of a number of half-waves 

equal to the aspect ratio of the given tube in order to maintain lowest critical load as expected 

theoretically. At the non-integer aspect ratios, the transition of half-waves was clearly observed. 

The buckled profiles of one specimen of each height are presented in Figure 3.18. The gridlines 

were drawn on the surfaces (at 0.5 in spacing) to make the deflections clear. The half-waves 

formed along the height of the tubes were clearly visible in the buckled tubes.  
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 (a) (b) (c) 

  (d)  (e) 

Figure 3.18 The buckled profile of the ABS square tubes with  aspect ratios (a) 1, (b) 2, (c) 

3, (d) 1.41 and (e) 2.44 

Similar tests on rhombic tubes of 45o revealed the similarities between the rhombic tube 

and square tube. The half-wave form exhibited in the rhombic tube was observed similar to that 

of the square tube of same aspect ratio. Figure 3.19 shows the buckled profile of one of a 

rhombic tube tested, corresponding to the aspect ratio of the square tube in Figure 3.18(a).  
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Figure 3.19 Buckled shape of a rhombic tube with aspect ratio of 1 and angle of 45o with 

the cross section dimensions similar to that of the square tubes presented in Figure 3.18(a) 

The experiments revealed that the critical load of the rhombic tubes were similar to that 

of the square tube data. The complete comparison of the results of the critical loads of the 

experiments is presented in the following section. 

 3.6 Results 
In this section of the paper, the results of the theoretical expectations of all the tubes 

studied are compared with the simulation results. Also, the experimental results from the tests 

performed on certain tubes are compared with the theoretical and experimental results. The 

results of each of the tube geometries have been discussed separately in the following sub-

sections.  

 3.6.1 Comparison of results for square tubes 

In this sub-section, the theoretical critical load data of the square tubes was compared 

with the simulation and experimental results. The results from theory and experiments were 
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calculated using the material properties of the ABS plastic used for the experiments. The results 

of the critical loads of the tube were compared to each other by plotting the values of critical load 

against the aspect ratio of the tubes. The comparison is shown in Figure 3.20. The figure reveals 

the match of the data of the simulation and experiments from the theory.  
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Figure 3.20 Comparison of theoretical, computational and experimental critical load 

variance with aspect ratio of a square tube with l = 2 in and t = 0.08 in 

The comparison shows good match of all of the three results. The maximum discrepancy 

of the simulation results with theory was of 6 % at low aspect ratios. Similarly, maximum 

discrepancy between the experimental and theoretical data was of 8.7 % at the aspect ratio of 

1.41 representing the transition of the number of half-waves from m = 1 to 2. The comparison 

shows good match of the theory and simulations.  

 3.6.2 Comparison of Results for Rectangular Tubes 

The theoretical formulation of the curves of k and therefore the critical loads of a tube 

with the lr/l ratio as 0.5 were compared with the simulation results. This comparison is presented 

in Figure 3.21. The model of the tube had l = 2 in, lr = 1 in and t = 0.08 in. 
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Figure 3.21 The comparison of theoretical expectations and simulation results of the 

buckling critical loads of a rectangular tube with l = 2 in, lr = 1 in and t = 0.08 in, over 

different aspect ratios 

The comparison revealed good agreement of the theoretical results with the 

computational plots. However, at the second transition, the transition was observed in simulation 

ratio which was off from the theoretically expected aspect ratio. The theoretical ratio is expected 

to be 2.1 but the simulation model exhibited the transition at 2.05. These aspect ratios are very 

close to each other and can be considered comparable. The reason for the small offset is 

unknown and is expected to be because of simulation errors. Transitions are difficult to match 

exactly. 

 3.6.3 Comparison of results of Rhombic and Parallelogram tubes 

The theoretical results of rhombic and parallelogram tube buckling loads were compared 

to the data from the simulations. The theory postulates that the critical load behavior of rhombic 

and parallelogram tubes is the same as the corresponding square and rectangular tubes and thus 

the theoretical critical load values of the rhombic and parallelogram tubes are expected to be the 

same as that of the theoretical square and rectangular tubes prediction presented in Figure 3.20 
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and Figure 3.21, respectively. It was observed from the simulation results that the critical load 

data of a rhombic tube with l = 2 in, t = 0.08 in and θ = 45o was the same as that of the critical 

load data of a square tube with same dimensions and the plot of critical loads was 

indistinguishable when compared to the plot of square tube shown in Figure 3.20. Similar results 

were observed in a parallelogram tube with l = 2 in, lr = 1 in, t = 0.08 in and θ = 60o. Thus, the 

assumption of similar buckling behavior of the tubes of any angle buckling in wall buckling 

mode was verified. Also, experiments were performed on two rhombic tubes with the 

dimensions of the simulation models and an aspect ratio of 1. Table 3.1 shows the experimental 

critical load comparison of these tubes with the theoretical and simulation loads.  

Table 3.1. The critical load data of a rhombic tube with l = 2 in, t = 0.08 in and θ = 45o, 

from theoretical, computational and simulation methods 

Experimental result [lbs] 
Theoretical result [lbs] Computational result [lbs] 

Tube 1 Tube 2 

1003.5 1150.6 
936.6 868.7 

Average = 1077 

The comparison revealed that the Tube 1 closely matched the theoretical result but the 

result of the Tube 2 had a larger error in comparison to theoretical load than Tube 1 (18 % 

approximately).  

Apart from the study of wall buckling of the tube, the Euler buckling behavior of a 

rhombic tube of same dimensions as the previous models with an angle of 60o was also studied 

using simulations. The critical loads of the tubes were compared to the theoretically expected 

critical load curve, which was presented in Figure 3.9. The comparison is presented in Figure 

3.22. 
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Figure 3.22. The critical load behavior of a rhombic tube with angle 60o
 with the 

consideration of Euler buckling after the critical height of the tube 

The study revealed an excellent match with the theoretical expectation with the 

observation of Euler buckling after the critical height of the tube. The beginning of the Euler 

buckling mode was observed at the height of 23.5 as was presented in Figure 3.17(a). A similar 

simulation study was performed on the parallelogram tube model studied theoretically. The 

comparison of the critical loads by considering the Euler buckling is presented in Figure 3.23. 
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Figure 3.23 The critical load behavior of the parallelogram tube with the consideration of 

Euler buckling after the critical height of the tube 
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The simulation results show good comparison between the critical loads, however, the 

aspect ratio at which the Euler buckling is expected to begin was observed to be lower than the 

theoretical prediction. A possible reason for this is the localized effects on the finite element 

simulation model from the end conditions, which resulted in higher load in wall buckling mode 

thus resulting in the Euler buckling of the tube.  

 3.7 Conclusions 
The present study was intended to study the buckling behavior of different kinds of 

quadrilateral tubes. Finite element simulations of elastic buckling were performed on different 

tubes and these were compared with existing theory on the buckling of tubes to critically 

examine the elastic buckling phenomenon of these tubes. Also, the possibility of Euler buckling 

in different rhombus and parallelogram tubes and good agreement with the theoretical 

predictions were observed from simulation results. Apart from finite element simulations, some 

experiments were carried out on square and rhombic tubes with tube specimens made of ABS 

plastic. The experimental results of the tubes exhibited good match with the theoretical and 

simulation results with some minor exceptions. 
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Chapter 4 - Elastic Buckling Characteristics of Triangular Tubes 

under Uni-Axial Loading 

 4.1 Abstract  
Tubular structures play an important role in energy absorbing components and structural 

members requiring high strength-to-weight ratio. The theory of buckling of circular, square, and 

rectangular tubes is relatively well established in the literature. The study of buckling of 

triangular tubes, however, has not been researched as extensively. In this paper, an analytical 

solution for the elastic buckling of isosceles triangular tubes was obtained by considering the 

buckling characteristics of individual walls of the triangular tube, with appropriate edge 

conditions. The results from this analytical solution were compared with previously published 

work in literature and finite element simulations and good agreement was found. 

 4.2 Introduction 
The buckling behavior of plate, tubular and cellular structures has been an important area 

of study in the field of solid mechanics. This is mainly because of their widespread application in 

various fields including aeronautical, marine and civil applications. The load carrying properties 

of plate structures make them useful in construction of structures like ship hulls, whereas the 

high strength to weight ratio of cellular structures like honeycombs make them a very efficient 

design in aviation industry. On the other hand, the post buckling properties of tubes to form 

plastic folds and absorb the kinetic energy in a crash, plays an important role in the design of 

crash safety structures in automobiles. Buckling of plate and tubular structures has been 

extensively studied in the past. The following sub-sections present a brief review on the buckling 

of the plate and tubular structures of different shapes and discuss the goals of the present study. 

 4.2.1 Buckling of plate structures 

The walls of any polygon tubular structure behave as supported plates under buckling 

loads, with different boundary conditions along the edges of the structure. The boundary 

conditions of the walls depend on the geometry of the structure, and these conditions determine 

the behavior of the wall under the compressive loads. The simplest case of buckling of a 
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supported plate is the condition of a plate simply supported along all of the edges with uniform 

loads acting along the opposite edges. Study of this kind of plate was first performed by Bryan 

[1]. The study of the plate buckling problem has intrigued many researchers since then. 

Subsequent works on elastic buckling of plates with different kinds of edge conditions have been 

presented in [2-4]. Studies of the supported plates revealed that the addition of support along the 

vertical edges of a plate structure enhances the load carrying capacity in comparison to that of an 

unsupported plate buckling in simple Euler buckling. Following the analysis of elastic buckling 

of a plate, significant work on post buckling behavior of plates have been undertaken by various 

researchers. Some of the important theoretical studies on post-buckling behavior of plates have 

been presented in [5-7]. Some of the recent theoretical studies on the elastic buckling of plates 

are presented in [8-10]. Methods like the Ritz Method and the Boundary Element Method were 

employed in these studies. Apart from theoretical solutions, extensive research has been 

performed on the plate buckling problem using experimental methods and computational 

methods using finite element solutions. Some of the works illustrating experimental and 

computational work has been presented in [11-14]. Bambach and Rasmussen [13] have provided 

an efficient design description of a test rig to test a plate under uniform compressive load for 

buckling and post-buckling analysis.  

Despite extensive research on the plate buckling, the case of plate buckling under uni-

axial force with one of the vertical non-loading edges under a restraining moment and the other 

simply supported has not been studied in the past. In the present study, this case of elastic 

buckling has been studied on account of its direct relation with the triangular tube buckling 

problem. The solution of buckling of this plate was derived using classical plate mechanics. 

 4.2.2 Buckling of square and rectangular tubes 

Based on the study of plates under various conditions, extensive research has been carried 

out on the buckling of square and rectangular tubes. Solution of the elastic buckling of square 

tubes was presented by Timoshenko and Gere [2] based on the direct relation of tube buckling 

with the buckling of simply supported plates. It was postulated that, in the buckling of a square 

tube, each wall of the tube behaves as a simply supported plate. This proposition reduced the 

study of the whole square tubular structure to the study of buckling of four individual walls and 

simplified the critical load of the tube being four times of the critical load of the single wall. 
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Using a similar procedure, the buckling characteristics of rectangular tubes were studied by 

imposing proper boundary conditions on the longer walls of the rectangle. It was proposed in 

[15] that the longer walls of the rectangular section buckle while the smaller walls try to restrain 

the longer walls from buckling. Based on this proposition, the theory of elastic buckling of 

rectangular tubes was later studied and presented in [4] and further modified in [16]. A review of 

various theoretical solutions on the elastic buckling and post buckling of supported plates and 

rectangular tube structures has been presented in [17].  

Apart from quasi-static loading of square and rectangular tubes, the behavior of these 

tubes in post buckling under impact loading has been studied by various researchers. The study 

of response of tubular structures to impact loading is an important aspect due to their 

applications in vehicular safety. Studies [18-22] show some of the theoretical, experimental and 

computational work on dynamic behavior of square and rectangular tubes. 

 4.2.3 Buckling behavior of circular tubes 

Apart from box-columns, circular tubes are also used widely used in the design of energy 

absorbing structures in vehicular safety. The structural behavior of circular tubes in buckling and 

post-buckling conditions has been studied extensively in the past. The elastic buckling behavior 

of circular tubes has been presented in [2]. Post-buckling behaviors of circular tubes under quasi-

static and impact loading has been studied subsequently. Some of the work on the crushing 

characteristics of circular tubes is presented in [23-25]. 

 4.2.4 Buckling of triangular tubes 

Despite of exhaustive research of the buckling properties of square, rectangular and 

circular tubes, the study on the behavior of triangular tubes has not been extensive in literature. 

Early theoretical works on triangular tubes were presented in [4, 26-28], which provided the 

solution of the buckling of a triangular tube using general plate mechanics. Also, some 

experimental and finite element method studies on the investigation of triangular tube buckling 

and post bucking have been presented in literature [29-30]. It was proposed by Wittrick and 

Curzon [28] that in the buckling of an equilateral triangular tube, the lowest critical load may 

result in two different mode shapes of buckling. In this paper, one of the two modes was used to 

produce explicit solutions of the buckling problem of an equilateral triangle, using classical plate 

mechanics. This theory was extended to any isosceles triangular tube with the length of the third 
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side equal to or less that the other two equal sides. The study was based on the formulation of 

buckling of the critical walls of the tube and establishing the relation between the main walls and 

the restraining wall at the common edges. The theoretical results were compared with results of 

finite element simulations in the present study. Certain special cases were compared with 

published results from literature. Theoretical predictions of the number of half waves formed 

along the height of the tube and the transition of the number of half waves were critically 

examined and compared with the computational results. The comparisons revealed excellent 

agreement of the theoretical results with the results of simulations. 

 4.3 Theoretical Buckling phenomenon of Triangular Tubes 
General buckling of a tubular structure occurs by the buckling of the individual walls of 

the tube. The conditions for the buckling of each wall are defined by the shape of the tube and 

dimensional relations between the walls in the tube. In a square tube or other regular polygon 

tubes with an even number of sides, all of the walls reach instability at the same load in the 

lowest energy mode. As a result, alternating inward and outward lobes are formed in the adjacent 

walls of the buckled structure. Such an alternating pattern of inward-outward lobes enables the 

angles between the adjacent walls to remain unchanged before and after buckling. The lobes are 

generally referred to as half sine waves because of their shape closely resembling a sine wave 

between 0 and π. The buckling analysis of evenly-sided regular polygon tubes is therefore 

reduced to that of a single wall [2], and the total critical bucking load for the tube is the critical 

load of a single wall times the total number of walls. In the case of an even-sided polygon tube 

with walls of unequal length such as a rectangular tube, the longer walls of the tube have lower 

critical load compared to the shorter walls. Thus, under the application of a uniform distributed 

load, the longer walls buckle first while the shorter walls act as restraining walls.  

However, this buckling-restraining phenomenon is possible only in the case of a polygon 

tube with an even number of walls. When the polygon has an odd number of sides, the 

alternating pattern of an entirely inward lobe of one wall followed by an entirely outward lobe in 

the next wall results in change of at least one original angle and is therefore energetically 

unfavorable. This phenomenon is illustrated schematically in Figure 4.1 using an even-sided 

(hexagonal) tube and an odd-sided (pentagonal) tube. The angle θf represents the angle between 
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the walls in the buckled structure. In the regular pentagonal tube, the buckling of the bottom wall 

in a complete inward or outward lobe changes the initial wall angle of 72o to a new value. 

 
Figure 4.1 The schematic representation showing the formation of single lobe in all the 

walls violating the initial angle between the walls of the tube 

To avoid this high energy configuration, one wall is expected to form an inward lobe on 

half of the wall and an outward lobe on the other half. This inward-outward lobe on the same 

wall is expected in any regular odd-sided polygon tube.  

It was suggested in [28] that in the buckling of an equilateral triangular tube (hereafter 

referred to as an equilateral tube), the lowest critical load can possibly form two different mode 

shapes as are illustrated in Figure 4.2. In the present study, the formulation of critical load of 

equilateral tubes was derived based on the mode shape presented in Figure 4.2(a). It was also 

proposed that any isosceles tube with the unequal side shorter than the equal sides (hereafter 

referred to as a short-sided isosceles tube) will buckle as in illustrated in Figure 4.2(a). On the 
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other hand, an isosceles triangular tube with third side longer than the equal sides (hereafter 

referred to as a long-sided isosceles tube) will buckle as illustrated in Figure 4.2(b). 

The theoretical critical load formulation of equilateral tubes presented in this paper was 

then used to determine the theoretical behavior of short-sided isosceles tubes, with this 

proposition.  

 
 (a) (b) 

Figure 4.2 Schematic representation of the top views of possible lowest critical load 

buckling patterns of an equilateral triangular tube. The dotted lines represent the original 

shape and solid lines represent the assumed buckled shape (for the present theoretical 

study, shape (a) was considered) 

For the theoretical determination of the critical buckling load of a triangular tube, the 

tube was divided into two equal half-tube sections with one long wall and one short wall 

(hereafter referred to as an angle section). Figure 4.3 shows the top view of the two angle 

sections. The total critical load of the triangular tube was assumed to be the sum of the critical 

loads of the two identical angle sections under proper boundary conditions for the open edges. 
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Figure 4.3 Division of the triangular tube into two half triangular tube sections called as 

angle sections 

As the direction of the lobe formation at buckling changes along the centerline of the 

bottom wall of the triangular tube as shown in Figure 4.2(a), the moment and out-of-plane 

deflection along this line are zero. This makes the open edges of the smaller walls of the angle 

sections behave as a hinged (or simply supported) end. For deciding the boundary conditions of 

the other open edge of the angle section, conditions of this edge in the complete tube section 

were considered. The walls adjacent to this common edge in the tube are of same length, which 

results in equal critical loads of both of these walls. According to the theoretical prediction, one 

wall is expected to bulge inwardly and the other outwardly in the buckled shape to maintain the 

original wall angle. This results in a zero moment and a zero out-of-plane deflection at common 

edge. Therefore, both of the open vertical edges of the angle sections are considered to be 

hinged. The solution of the critical load of buckling for the angle sections was carried out with 

these boundary conditions. In the following section, the critical load formulation of an angle 

section is presented. This formulation is then applied to equilateral and short-sided isosceles 

tubes under elastic buckling in subsequent sections.  
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 4.4 Critical Load of Buckling of an Angle Section  
The critical load equation of a plate equally restrained along both of the edges has been 

presented in [3]. In this study, critical load formulation of a plate elastically restrained along one 

non-loading edge and simply supported along the other the other non-loading edge is derived and 

is extended to critical load formulation of an angle section. The expression for the buckling 

critical load of the longer wall of the section (hereafter referred to as the main wall) was derived 

in terms of an elastic restraint coefficient. The value of elastic restraint coefficient defines the 

amount of restraint provided by the shorter wall (hereafter referred to as the restraining wall) on 

the main wall and depends on the length ratio of main wall and restraining wall. The derivation 

process of the critical load of main wall of the angle section is shown in the following sub-

section.  

 4.4.1 Equation of Deflection of the Main Wall  

The theory of buckling for the angle section of an equilateral tube was derived 

considering the condition that the main wall buckles and the restraining wall acts as a restraint, 

thus inducing a resisting or restraining moment along the common edge. This makes the main 

wall behave as a plate simply supported along the loading edges and one of the vertical edges, 

and elastically restrained along the other vertical edge. A schematic representation of the angle 

section is presented in Figure 4.4. The problem to be solved is therefore transformed into the 

case of a supported plate as shown in Figure 4.5. 

 
Figure 4.4 Schematic representation of the angle section with illustration of main wall and 

restraining wall 
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Based on the classical plate theory [2,3] for a unit length of a plate, the out of plane 

deflection w along the z-axis follows the condition.  
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where, E is the Young’s Modulus of the material of the plate, ν is the Poisson’s ratio, I is the 

moment of inertia of the cross-section about the bending axis and t is the thickness of the plate. 

The equation is considered over unit length of the plate. Here σx, σy  are the normal in-plane 

stresses in x and y directions acting on the top and side edges of  the plate due to the applied load 

respectively and τxy is the shear stress in the xy direction, acting along the edges of the plate. In 

the present case, all of the stresses other than σx are zero as a uniform in-plane force is applied 

only on the top edges of the angle section.  

 
Figure 4.5. Representation of the main wall with coordinate axes and dimensions, showing 

the simply supported condition along one vertical edge and elastically restrained condition 

along the other vertical edge 

The term EI/(1 - ν)2 is called the flexural stiffness of a wall. By considering the cross 

section of the geometry, the flexural stiffness of the plate over unit length is expressed as, 
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Substituting Eqn. (4.2) in Eqn. (4.1),  
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The boundary conditions of the top and bottom edges of this wall, with reference to Figure 4.5 

are, 

at x = 0 and h, 

 0w =   (4.4) 

and, 

 0xM =  (4.5) 

Using Eqn. (4.3) and the boundary conditions from Eqn. (4.4) and Eqn. (4.5), the general 

solution of the out-of-plane deflection of a supported plate with hinged top and bottom edges is, 

(the details of this solution are shown in Appendix C) 
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Here, m is the number of half sine waves formed along the height of the plate. The terms k1 and 

k2 are defined as 
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where μ is a parameter expressed as 
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Here, σc is the critical buckling stress of the plate. The constants A1, A2, A3, A4 are calculated 

using the boundary conditions of the main walls, which are, 

at y = l, 

 0w =  (4.9) 

 0yM =  (4.10) 

and, at y = 0, 
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 0w =  (4.11) 

 yM ζθ= −  (4.12) 

In Eqn. (4.12), ζ was assumed to be the proportionality constant between the resisting 

moment and the angle of rotation of the walls at the common edge. The parameter corresponds to 

the stiffness of the restraining wall against bending at the buckling point of the main wall. At this 

buckling point, the main wall bends due to buckling and tries to bend the un-buckled restraining 

wall by the same amount to maintain the angle between the walls at the edge. The restraining 

wall tries to resist against bending from the main wall, thus offering stiffness to the structure 

against bending. This phenomenon results in an increase in the critical load of the structure in 

comparison to a simply supported plate. The assumption of the introduction of the parameter 

ζ  was considered in accordance with the work presented in [3].  

The moment acting along the y-axis at any point is given by, [2] 
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Along the vertical edges, the term 
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is zero due to zero out-of-plane displacement. Therefore,  
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Using Eqn. (4.12) and Eqn. (4.14), in the expression for defining the angle of rotation at y=0, 

expressed as ( ) 0
/

y
w y

=
∂ ∂ , the boundary condition at y = 0 is restated as, 
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For simplicity of the derivation, a term ζ, referred to as the restraint coefficient [3], was 

introduced, which is defined as, 

 1 D
l

ζ
ζ

=  (4.16) 

The restraint coefficient in this equation corresponds to the compliance of the structure at the 

common edge between the main wall and the restraining wall. Using Eqn. (4.16), Eqn. (4.15) is 

modified as, 
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By applying the boundary conditions from Eqns. (4.9), (4.10), (4.11) and (4.17), along with the 

use of Eqn (4.7) to re-substitute expressions for k1 and k2, the non-trivial solution of the equation 

of deflection is: (the details of this are shown in Appendix D): 
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The above characteristic equation represents the buckling condition of the main wall of 

the angle section under study. This equation shows that the value of  μ 2 defining the critical load 

of the wall varies with ζ. The values of  μ 2 were plotted with respect to the various restraint 

coefficients ζ at different values of m/φ of the angle section. Figure 4.6 shows the variation of μ 2 

with ζ when the ratio m/φ was set as 1. 
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Figure 4.6 Variation of  μ 2 with ζ when m/φ is 1 

The simplest case of a plate buckling corresponds to a plate with all four edges simply 

supported. From Eqn. (4.12) and Eqn. (4.16), this is represented by ζ approaching ∞ . At this 

condition, the curve approaches asymptotically to the line y = 2 in Figure 4.6. Therefore, using 

Eqn. (4.8), 

 73



 
2

2 4 ct h
D m

σμ
π

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

or 
224

c
D m

t l
πσ

φ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (4.19) 

Substituting the value of m/φ as 1 and the expression for D from Eqn. (4.2) into Eqn. (4.19), the 

expression of critical stress becomes, 
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From the established equation of critical stress of a plate under any general boundary 

condition, the critical stress takes the form, [3] 

 ( )
22

212 1c
k E t

l
πσ

ν
⎛ ⎞= ⎜ ⎟− ⎝ ⎠

 (4.21)  

Comparing Eqn. (4.20) and Eqn. (4.21), the value of k for a plate simply supported along both of 

its edges is observed as 4 from the present study, which is in agreement with many previously 

published works [2-4]. Substituting the value of ζ as approaching ∞ in Eqn. (4.18),  

 1m nπ μ π
φ

− =  n=0,1,2,.. 

 (4.22a) 

Neglecting the trivial solution of n = 0 which gives μ = 1 the next smallest value of n in this 

solution gives, 
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Substituting this into Eqn. (4.8) leads to: 
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The force acting over the cross-section of the plate of length l and thickness t is therefore, 
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Comparing this with the general expression for the critical load of a plate with any edge 

conditions represented as: 

 ( )
2 3

212 1cr
k E tP

l
π

ν
⎛ ⎞

= ⎜ ⎟− ⎝ ⎠
 (4.25) 

the expression of k is, 
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The expression of k obtained here is in agreement with the expression presented in 

literature [2].  In the general case of the angle sections of different equilateral tubes, different 

values of ζ affect the values of k. The value of ζ as a function of φ/m was calculated using the 

equation of deflection of the restraining wall. This is discussed in following sub-section. 

 4.4.2 Calculation of Restraint Coefficient using the Deflection Equation of the 

Restraining Wall 

The equation of bending of the restraining wall has the same form as that of the main 

wall, which was expressed in Eqn. (4.1). A schematic representation of the dimensions and 

coordinate system of the restraining wall used for the derivation is presented in Figure 4.7.  

 
Figure 4.7 Geometry of the restraining wall with a diagrammatic representation of bending 

moment acting along the common edge due to buckling of main wall 
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Since the buckling load for the main wall is lower than that of the restraining wall, under 

the action of a uniformly distributed load, the restraining wall remains unbuckled at the point of 

buckling of the main wall. Thus, the in-plane load acting on the top edges causes negligible 

effect on the bending of the restraining wall. The bending of the restraining wall occurs only due 

to the bending moment exerted along the common edge by the lobe formation of the main wall. 

Therefore, in the equation of bending of the plate shown in Eqn. (4.1), the terms consisting of the 

longitudinal, transverse and shear forces are neglected. Therefore, the expression of deflection of 

the restraining wall is expressed as, 

 
4 4 4

4 2 2 4 0w w w
x x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 (4.27) 

where w is the out-of-plate deflection of the restraining wall. The displacement and moment 

along the bottom and top edges (x = 0 and x = h, respectively) are zero because the plate is 

simply supported along the top and bottom edges. With these conditions, using the similar 

process used to derive Eqn. (4.6), the solution for the deflection of the plate is, 

 1 2 3 4sin sinh cosh sinh coshm x m m m mw C y C y C y y C y y
h h h h h
π π π π⎛ ⎞= + + +⎜ ⎟

⎝ ⎠

π  (4.28) 

where, C1 to C4 are constants which depend on the boundary conditions of the restraining wall. 

These boundary conditions are,  

at y = 0, lr, 

 w = 0 (4.29) 

At the open vertical edge of the restraining wall, the moment along the y-axis is zero. Therefore, 

using the equation of moment along the vertical edges of a plate under bending as explained in 

Eqn. (4.14), the condition obtained at y = 0 is, 
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At the common edge, the moment acting on the restraining wall is due to the bending of the main 

wall. The magnitude of this moment is equal to the restraining moment offered by the restraining 

wall. Therefore, at y = lr, 
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where, My is the moment at the common edge as was presented in Eqn. (4.12), which is 

considered constant for an angle section at a given height and D′ is the flexural stiffness of the 

restraining wall. Solving Eqn. (4.28) with the boundary conditions from Eqns. (4.29), (4.30) and 

(4.31), the solution of the deflection of the restraining wall was derived as, (the details of this 

solution are shown in Appendix E) 
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 (4.32) 

The angle of rotation at the common edge of the two walls with respect to the coordinate system 

of the restraining wall is given by, 
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Therefore, the angle of rotation obtained by substituting the expression of w from Eqn. (4.32) in 

Eqn. (4.33) is, 
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The relation between the angle of rotation and the moment at the common edge was 

assumed in Eqn (4.12) as, 

 1
yMθ

ζ
= −  (4.35) 

It follows from comparison of Eqn. (4.34) and Eqn. (4.35),  
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Substituting Eqn. (4.36) in Eqn. (4.16), 
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Equation (4.37) defines the dependence of ζ  on the ratios lr/l and m/φ . For a given angle 

section or triangular tube, the ratio lr/l is constant, and the value of the restraint coefficient ζ  

depends only on the value of m/φ. In the present case of study of an equilateral triangular tube, 
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the ratio lr/l is 0.5. A graph showing the different values of the restraint coefficient for different 

values of m/φ with lr/l = 0.5 is shown in Figure 4.8. From this plot, the values of ζ varying with 

m/φ ratios were calculated. 
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Figure 4.8 Plot showing the variation of coefficient ζ with the change of ratio m/φ for lr/l = 

0.5 

Substitution of the expression of flexural stiffness D in Eqn. (4.8) and expressing it in the form 

of Eqn. (4.21) leads to the relation, 
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2 mk μ
φ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (4.38) 

Using Eqn. (4.38), the values of buckling factor k of the main wall of the angle section of 

an equilateral tube were calculated for the different values of aspect ratios. The values of ζ were 

calculated at different values of the ratio m/φ  from Eqn. (4.37). With these values of ζ, the 

values of μ were calculated for these values of the ratio m/φ  using Eqn. (4.18). The aspect ratios 

at these values of m/φ  were calculated, by substituting the number of half waves as 1, 2, 3 and so 

on. Table 4.1 shows the values of k calculated for a main wall using this procedure for m = 1. 

 78



Table 4.1 Theoretical calculation of the values of k for different values aspect ratios for 

m=1 

m/φ φ ζ μ 
2

2 mk μ
φ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

0.5 2.00 0.154 6.02 9.06 

0.6 1.67 0.149 4.48 7.21 

0.8 1.25 0.138 2.91 5.42 

0.9 1.11 0.132 2.49 5.04 

1 1.00 0.126 2.20 4.85 

1.1 0.91 0.121 1.98 4.76 

1.15 0.87 0.118 1.90 4.75 

1.2 0.83 0.114 1.82 4.77 

1.25 0.80 0.112 1.75 4.78 

1.3 0.77 0.109 1.69 4.84 

1.4 0.71 0.103 1.59 4.98 

1.6 0.63 0.094 1.45 5.36 

2 0.50 0.078 1.28 6.56 

2.5 0.40 0.063 1.18 8.64 

3 0.33 0.053 1.12 11.31 

3.5 0.29 0.046 1.09 14.50 

4 0.25 0.040 1.07 18.21 

Using a similar calculation as shown in Table 4.1 for different number of half waves 

generates the set of curves of k for different number of half waves formed along the height of the 

main wall. Figure 4.9 shows the set of k curves for m equal to 1, 2, 3 and 4. 
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Figure 4.9 Plot showing the curves of k for different number of half sine waves varying 

with the values of aspect ratios 

It is observed from Eqn. (4.25) that the critical load of bucking of a plate is directly 

proportional to the buckling factor k. Looking at the plot of k in Figure 4.9, this relationship 

implies that the number of half waves formed along the height of the wall is transformed to n +1 

from n after a certain aspect ratio to maintain the minimum value of the buckling factor k. This is 

a phenomenon which is observed in any plate structure under buckling action. This phenomenon 

suggests that the minimum value of k of any supported plate, multi-walled and tubular structure 

recurs at certain aspect ratios of the structure. For the calculation of the critical load of the main 

wall with a certain aspect ratio, the value of k is read from the curve with the m value 

corresponding to the least value of k at that aspect ratio.  

As the load acting upon the angle section was considered to be uniform, the critical load 

of the angle section becomes, 

 
sec

1.5
half tioncr crP

−
P=  (4.39) 

where Pcr is the elastic buckling critical load of the main wall and was calculated using Eqn. 

(4.25). Similarly, the total critical load of an equilateral tube is,  
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equilateralcr crP P=  (4.40)  

The obtained theoretical values of k of the main wall at different aspect ratios of an angle 

section corresponding to an equilateral tube were compared to finite element simulation results. 

These comparisons are presented in the following sections. 

 4.5 Critical Load Derivation of an Isosceles Tube 
The derivation of the critical load solution presented in the previous section can be easily 

extended to the case of an isosceles tube. The only difference between an isosceles tube and an 

equilateral tube lies in the difference in lr/l ratio of the corresponding angle section. For an 

isosceles tube, this ratio lies between 0 and 1. However, the present study is confined to the 

short-sided isosceles tubes. In the case of a long-sided isosceles tube, the buckling mode shape 

will follow the pattern illustrated in Figure 4.2(b). In this deformation mode, the long wall acts as 

the buckling main wall and the equal shorter walls act as restraining walls. The common edge 

between the short walls does not undergo any rotation to maintain the initial wall-angle. Edges 

between the shorter walls and the long wall act as elastically restrained joints providing equal 

restraint on both of the edges during buckling. This proposition was verified computationally by 

performing a finite element simulation on a long-sided isosceles tube. The lowest critical load 

mode shape for this tube was recorded from the simulation results. Figure 4.10 shows the model 

of the buckled shape on an exaggerated scale from simulation result, which appears similar to 

Figure 4.2(b).  

 
Figure 4.10 Simulation result of buckling of a long-sided isosceles tube showing the 

buckling of the walls at an exaggerated scale 

The critical load of long-sided isosceles tubes can be derived by considering the main 

wall as an equally restrained plate and defining the relation of the main wall with the restraining 
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walls. This is not considered in this study, as the derivation of the critical load of a plate equally 

restrained along both the edges exists in the literature [2-4].  

In the present study, the values of k for short-sided isosceles tubes were derived in the 

same fashion, as was carried out for the equilateral tube. Using Eqn. (4.37), the values of ζ were 

calculated for various angle sections corresponding to different short-sided isosceles tubes. The 

values of lr/l ratios of the studied angle sections were 0.01, 0.1, 0.3 and 0.5. With the values of 

restraint coefficients of these sections at different m/φ ratios, the curves of k of the main wall 

were plotted against the aspect ratios. In this study, the values of m/φ were selected to critically 

examine the important points of the k curves like the transition of m and the minima of k. These 

plots are presented in Figure 4.11. 
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Figure 4.11 Plots of k curves for various lr/l ratios varying with aspect ratio φ 

The case lr/l = 0.01 closely resembles the case of a plate fixed on one side and simply 

supported on other side. From a previous study in [4], the buckling factor k for such a plate has 

been presented in an empirical form as, 

 2
2

1 2.5 2.25k φ
φ

= + +  (4.41) 
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Equation (4.41) predicts k to be 5.75 for an aspect ratio of 1. From the curves of k in 

Figure 4.11, the value of k on the curve for length ratio lr/l = 0.01, at an aspect ratio of 1 is 5.7. 

This is comparable to value of k of 5.75 obtained from the equation. Also, it was observed in 

Figure 4.11 that k reaches a minimum of 5.37 for this angle section at an aspect ratio of 0.8. 

Equation (4.41) generates a k value of 5.41 at this aspect ratio. These results verify the validity of 

the solution obtained in the current study for the angle section of any ratio of lr/l less than 0.5. 

Based on results from Figure 4.11, the minimum values of k as a function of lr/l are plotted in 

Figure 4.12. 
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Figure 4.12 Curve showing the minimum values of buckling factor k of the main wall of an 

angle section for different length ratios lr/l 

Since the applied load was considered uniformly distributed along the length of the walls 

of the angle section, the critical buckling load of the whole isosceles tube is expressed as,  

 2 1
isoscles

r
cr cr

lP l
⎛ ⎞= +⎜ ⎟
⎝ ⎠

P  (4.42) 

where lr/l is the length ratio of the sides of the angle section corresponding to the isosceles tube 

and Pcr  is the critical load of the main wall of the angle section, calculated using Eqn. (4.25).  

Theoretical values of k of the main wall of a few different angle sections corresponding to 
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various short-sided isosceles tubes were compared with FEM simulation results. These 

comparisons are presented in the following section.  

 4.6 Finite Element Simulation of Buckling of Different Triangular Tubes 
In this section, results of finite element simulations for buckling of angular sections and 

triangular tubes are presented. The first pair of simulations was performed on an equilateral tube 

and its corresponding angle section. This was carried out to confirm the assumption that the 

angle sections with simply supported boundary conditions along the open vertical edges, behave 

as half of the whole triangular tube. Following this, buckling simulations of angle sections of 

equilateral and isosceles tubes were performed over a range of aspect ratios, to verify the 

postulates of the derived theory. 

 4.6.1 Finite Element Simulations of an Equilateral Tube and Corresponding Angle 

Section 

The goal of these simulations was to show that the critical load of the triangular tube is 

twice that of the corresponding angle section. Simulations were performed on an equilateral tube 

and its corresponding angle section. The triangular tube was modeled with walls of length 5 mm 

and wall thickness of 0.1 mm. The height of the tube was chosen to be 10 mm to produce an 

aspect ratio of 2. The angle section was created with the longer side of length 5 mm and shorter 

side of length 2.5 mm, with the same wall thickness and height. Figure 4.13 shows the shapes of 

the structures after a buckling simulation in an exaggerated scale. Material properties were 

assigned to the geometries with Young’s Modulus E of 100 GPa and Poisson’s ratio ν of 0.3, for 

all FEM simulations. SolidWorks Simulation software was used for performing the simulations, 

which uses linearized Eigen value problem to solve for the buckling critical loads. The models of 

both of the geometries were meshed using a shell mesh. A total of 9408 triangular elements, each 

of size approximately 0.18 mm were used in the mesh of the equilateral tube. Each element had 

three corner nodes and three mid-edge nodes making a total of six nodes per element. The angle 

section was meshed using a total of 4704 triangular elements having a similar size as that of the 

elements used in the tube. The open edges of the angle section were restricted from translatory 

motion in the out-of-plane direction. However, rotation was allowed along the vertical open 

edges. The top and bottom edges were subjected to zero translation restraint with rotations 

allowed about the edges.  
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 (a) (b) (c) 

Figure 4.13 Finite element simulation results showing top views of the buckled shapes of (a) 

a triangular tube, (b) corresponding angle section and (c) trimetric view of the angle 

section at an exaggerated scale 

This figure shows the formation of two lobes in one of the plates of a triangular tube with 

zero deflection along the centerline of the plate. The critical load and the buckling mode shape 

results from the simulation confirmed the assumption of the hinged support of the open edges in 

the angle section. Table 4.2 shows the critical load data from the simulation results of the two 

structures. It was observed from the results that the critical load of the whole tube was twice the 

critical load of the half tube or angle section. 

Table 4.2 Critical loads of the two sections from the result of FEM simulations 

Section Critical load Pcr [N] 

Equilateral tube 252.24 

Corresponding angle section 125.89 

The results support the initial assumption that the angle section behaves as half of the 

whole tube structure under similar loading conditions. This simulation thus verifies the assumed 

boundary conditions of the open edges used in the theoretical derivation process. Based on this 

result, all further simulation for testing triangular tubes were performed on their corresponding 

angle sections with the explained boundary conditions. 
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 4.6.3 Simulation Results of the Angle Section of an Equilateral Tube 

The next set of simulations was performed on a series of angle structures representing the 

angle sections of equilateral tubes. The length l of the main wall was chosen as 3.175 mm thus 

making the length of the restraining wall lr equal to 1.5875 mm to maintain the ratio lr/l as 0.5. 

The height h was changed for different simulations in order to vary the aspect ratios from 0.25 to 

3. The thickness t was set to 0.025 mm. Meshing of the geometries was performed using 

triangular shell mesh elements of sizes ranging from 0.15 mm to 0.2 mm. As an example, Figure 

4.14 shows the top and trimetric views of the exaggerated buckled shape of a model which has 

an aspect ratio of 1.  

  
 (a) (b) 

Figure 4.14 (a) Top view and (b) trimetric view of the deformed model of a two legged 

angle section with aspect ratio of 1, at an exaggerated scale after buckling simulation 

The total critical load of the section from the simulation of this case was 3.02 N. The 

critical load of the structure was calculated theoretically using Eqn. (4.25) and Eqn. (4.39) as 

3.23 N.  This shows good agreement between the simulation and theoretical results with a 

discrepancy of approximately 6.5 % for this aspect ratio. Table 4.3 shows the values of k from 

the results of simulations and the corresponding theoretical values at certain aspect ratios of the 

angle section of an equilateral tube with sides equal to 3.175 mm.  
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Table 4.3 Theoretical and simulation results of k of the angle section of equilateral tube, 

with main wall of length 3.175 mm and restraining wall of length 1.5875 mm 

Aspect ratio 

φ 

Total critical 

load [N] 

Critical load 

of the main 

wall [N] 

Buckling 

factor k 

(simulation 

result) 

Buckling 

factor k 

(theoretical 

result) 

% Error 

0.25 11.29 7.52 16.92 18.21 7.08 

0.29 9.12 6.08 13.66 14.50 5.79 

0.40 5.47 3.65 8.20 8.64 5.09 

0.50 4.10 2.74 6.15 6.56 6.25 

0.63 3.31 2.21 4.97 5.36 7.28 

0.71 3.09 2.06 4.63 4.98 7.03 

0.77 3.00 2.00 4.50 4.84 7.02 

0.80 2.98 1.98 4.46 4.78 6.69 

0.83 2.96 1.97 4.44 4.77 6.92 

0.87 2.95 1.97 4.43 4.75 6.74 

0.91 2.96 1.97 4.44 4.76 6.72 

1.00 3.02 2.02 4.53 4.85 6.60 

1.11 3.16 2.11 4.74 5.04 5.95 

1.25 3.40 2.27 5.10 5.36 4.85 

1.67 3.05 2.03 4.57 4.77 4.19 

2 3.11 2.07 4.65 4.85 4.12 

Theoretical and computational values of k of the angle section were plotted against the 

aspect ratio of the section. These graphs are presented in Figure 4.15. The figure shows good 

agreement between theoretical results and the results of the finite element simulations with a 

maximum discrepancy of approximately 7 %.  
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Figure 4.15 Comparison of the k curves obtained from theoretical and computational 

results over different aspect ratios 

Apart from good agreement between the theoretical and computational k values, the 

transition of the number of half waves in the simulation results was observed at the theoretically 

expected aspect ratios. As an example, Figure 4.16 shows the change of the number of half 

waves from 1 to 2 in the main wall of the angle section plotted in an exaggerated scale buckled 

shape of the section. The transition was observed to start at an aspect ratio of 1.25 and the 

formation of two waves in the main wall was observed to begin at an aspect ratio of 1.26. This 

agrees with the theoretical results derived. At the aspect ratio of 1.29, two fully developed half 

waves were observed in the simulation results presented. 
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 (a) (b) (c) 

     
  (d)  (e) 

Figure 4.16 Exaggerated scale simulation results of the angle section of an equilateral tube 

at aspect ratio of (a) 1.23, (b) 1.24, (c) 1.25, (d) 1.26 and (e) 1.29 

Similarly, the transition of number of half waves in the main wall, from 2 to 3, was observed at 

an aspect ratio of approximately 2.48.   

 4.6.3 Simulations on Angle Section of Short-Sided Isosceles Tubes  

The expected theoretical results of short-sided isosceles tubes were verified using finite 

element simulations on a few different isosceles triangular tube geometries at certain aspect 

ratios. The simulations were performed on the angle sections of short-sided isosceles tubes with 
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the main wall representing one of the two long walls of the tube. Similar boundary conditions as 

those applied to the angle section of the equilateral tubes were applied to these geometries. 

Simulations were performed on three different angle sections, each having a longer wall of 

length of 3.175 mm. The geometries were modeled with the length of the restraining walls lr 

representing lr/l ratios of 0.01, 0.1 and 0.3. As an example of these simulations, Figure 4.17 

shows the exaggerated scale deformed shapes of the structures after buckling at an aspect ratio of 

1.  

   
 (a) (b) (c) 

Figure 4.17 An exaggerated scale deformed shape of angle sections with lr/l ratios as (a) 

0.01, (b) 0.1 and (c) 0.3 after buckling simulation at aspect ratio of 1 

It was observed from the simulation results that the common edge between the main wall 

and restraining wall did not remain unbuckled for angle section with the length ratio of 0.01. 

This implies that the buckling of the angled section with lr/l ratio of 0.01 in the finite element 

simulation occurred in a mixed mode of wall buckling and global Euler buckling under hinged-

hinged condition. This was not considered in the present theory and hence, the values of the 

buckling factor obtained from simulation for this angle section did not match the expected results 

from the tube buckling theory. In the other two angle sections, the values of k were close to the 

theoretical expectations. Table 4.4 shows the theoretical and simulation results of the critical 

loads and the buckling factors of the angle sections shown in Figure 4.17, at two different aspect 

ratios of each of the geometries. First aspect ratio of the angle sections was selected as 1 and the 

second ratio corresponding to first minimum of k curve. 
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Table 4.4 Simulation results of the buckling analysis on the sections shown in Figure 4.17 

lr/l φ 
Pcr [N] 

Total 

Pcr [N] 

Main wall 

k 

(simulation)

k 

(theoretical) 
% Error 

1 1.91 1.90 4.26 5.69 25.13 
0.01 

0.8 1.95 1.93 4.34 5.37 19.18 

1 2.47 2.25 5.05 5.37 5.96 
0.1 

0.82 2.35 2.13 4.80 5.13 6.43 

1 2.72 2.09 4.70 4.99 5.81 
0.3 

0.83 2.63 2.02 4.55 4.86 6.38 

The values of k obtained from simulations were in good agreement with the theoretical 

values thus supporting the derived theory for the case of short-sided isosceles tubes. However, 

for a very short unequal side, the present theory is invalid after certain heights, due to the mixed 

mode of buckling of the tube. In the present study, the mixed mode of buckling observed in the 

angle section with lr/l ratio = 0.01 lowered the critical load of the structure. This resulted in a 

larger error between the theoretical and simulation results.  

 4.7 Discussion of Results 
The theoretical solution presented in this paper was obtained by simplifying the problem 

of buckling of the whole triangular tube sections into the corresponding angle sections. Buckling 

behavior of the walls of the tubes was identified and, appropriate boundary conditions were 

applied to the end edges of the angle sections. Results from the theoretical formulations were 

compared with finite element simulations. Values of k of the critical wall (main wall) of any 

angle section and therefore, of the corresponding equilateral or short-sided isosceles tube, had a 

constant discrepancy or a shift of approximately 5-6 % with the simulation results. Also, a 

special case of the angle section was considered in the present study having the restraining wall 

of length 0.01 times the main wall. This section was expected to behave similar to a plate with 

one vertical edge simply supported and the other vertical edge fixed. The theoretical values of k 

for this case, over certain aspect ratios were calculated. These values were compared with the 

values of k obtained from an existing theoretical equation for a plate simply supported along one 

vertical edge and fixed along the other edge, available in the literature. The values of buckling 

factor obtained from these two methods had a discrepancy of less than 1% which can be 
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considered as an excellent match. However, the simulation result of this geometry did not match 

well with the theoretical prediction due to a mixed mode of individual wall buckling and global 

Euler buckling, observed in simulation result. Also, using the present form of the theoretical 

formulation, the critical load of triangular tubes with different wall thickness ratios can be 

calculated by setting different values of the thickness ratio in the equation for calculating ζ. 

 4.8 Conclusion 
An analytical solution to find the critical load of isosceles triangular tubes with the base 

side not exceeding the equal length sides was derived. This was performed by dividing the 

triangular tube into two halves, each called as an angle section. The buckling behavior of each of 

the angle sections was studied by identifying the behavior of each of the walls of the section and 

applying appropriate boundary conditions to the edges. The results from the theoretical 

derivation from this study were compared with the existing theoretical formulas for some 

particular cases from literature. The theoretical solutions were also compared to a series of 

systematic finite element simulations. The comparisons showed good agreement of the 

theoretical predictions with the finite element simulation results.  
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Chapter 5 - Conclusions and Scope of Future work 

The goal of the study presented in this thesis was to review some of the existing theories 

and establish some new theoretical solutions on the elastic buckling of supported plate and 

tubular structures, and compare it with computational and experimental results. In this chapter, 

the final conclusions from the study are presented. Also, the scope of future work based on the 

present study is discussed.  

In the second chapter of this thesis, the solution of buckling of a simply supported plate 

using energy method was reviewed from literature. This theory was extended to square tubes and 

multi-wall open structures. The theoretical predictions were then compared with finite element 

simulation results. The aspects of number of lobes formed along the height of the walls of a 

buckled structure and the buckling load of the structure were critically investigated and 

compared to the theory. It was observed that the simulation results were highly consistent with 

the theoretical predictions. The transitions of number of half waves in a plate were observed at 

theoretically expected aspect ratios and the critical load of the plate was in good agreement with 

the theoretically expected values. It was observed from the simulations that the critical load of 

multi-wall structures is equal to the critical load of a single simply supported plate times the 

number of walls in the structure. Also, the critical loads of these structures were observed to be 

independent of the angle between the walls of the structure. This was supported by the critical 

load results of a rhombic tube, which was equal as the critical load of the corresponding square 

tube. 

The studies on square tube were then extended to various quadrilateral tube sections in 

Chapter 3. The buckling behavior of square, rectangular, rhombus and parallelogram tubes were 

explicitly studied. The critical load derivation of the tubes was illustrated using the classical plate 

bending mechanics. Also, the Euler buckling mode of the tubes was investigated. The theoretical 

results obtained were compared with finite element simulation results and experimental 

observations. The comparisons revealed good consistency of the simulation and experimental 

results with the theoretical predictions. 

Following the study of square and rectangular tubes, the buckling behavior of isosceles 

triangular tubes was also studied. The critical load of triangular tubes was calculated by 
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assuming a possible buckling shape of the tube and deriving the theoretical critical load of the 

tube by considering the boundary conditions of the assumed shape. The assumed buckling shape, 

however, holds true only for isosceles tubes with the third side shorter than the equal sides and 

thus, the study was limited to these tubes. The predicted theories were validated using 

computation results from extensive finite element simulations. The observations from 

simulations proved that the buckled profile of the tubes considered in the study follows the 

assumed buckling shape. Also, the critical load comparison of the tubes from simulations 

matched well with the theoretical predictions. The transition of number of half waves was 

observed at the theoretically expected aspect ratios. These comparisons validated the consistency 

of the theoretical and simulation results. 

Based on the explained theoretical methods, the study of any isosceles tubes can be 

derived using the similar procedures in future. Also, the buckling properties of a pseudo-square 

honeycomb structures can be derived by studying the behavior of walls of the cells of the 

structure under the buckling action. The future goals of this project are to derive the solution of 

buckling of any isosceles tube and the pseudo-square honeycomb structures. The theoretical 

solution would then be compared with finite element simulations. Also, short term goals include 

the experimental validation of the theory of the triangular tube buckling presented in this thesis. 
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Appendix A - Deflection Equation of the Restraining Walls of a 

Rectangular Tube 

Out-of-plane deflection of the restraining wall takes place due to the bending moment 

imparted on the restraining wall by of the buckling of the buckling wall. As the width of 

restraining plate is very small compared to the buckling wall, effect of the compressive forces are 

negligible on the bending.  

 
4 4 4

4 2 2 4 0w w w
x x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 (A.1) 

The boundary conditions of the to and bottom edges are, 

at x = 0, h 

 0w =  (A.2) 

and 

 0xM =  (A.3) 

Solving the differential equation with these boundary conditions, the equation of deflection of 

the restraining wall is obtained as, 

 1 2 3 4sin sinh cosh sinh coshm x m m m mw C y C y C y y C y y
h h h h h
π π π π⎛ ⎞= + + +⎜ ⎟

⎝ ⎠

π  (A.4) 

C1 to C4 were calculated using the boundary conditions for the vertical edges. Using the 

expressions of moments on a plate under bending, the boundary conditions presented in Eqn. 

(3.15) and (3.17) were modified. The modified boundary conditions of the restraining walls were 

reframed as, 

 [ ] 0,
0

ry l
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and, 
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and, 
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Differentiating Eqn. (A.4) wrt y twice, 
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and, 
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The value is substituted as N for ease of solving. Solving these equations with the 

boundary conditions, the expressions C1 to 4 were obtained as, 
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Therefore, the equation of deflection of the plate is, 
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Appendix B - Minimum Moment of Inertia of a Parallelogram Tube 

Cross-Section 

The minimum moment of inertia of a section is expressed as, 

 
2

2
min 2 2

x y x y
xy

I I I I
I I

+ −⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (B.1) 

where, Ix, Iy and Ixy are the moment of inertia about x and y axis and the product of inertia, 

respectively, with respect to the coordinate axes which pass through the centroid of the 

geometry. For a parallelogram section, the expressions of moment of inertia and product of 

inertia are expressed as, 
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and, 
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For the hollow parallelogram tube cross-section illustrated in Figure 3.10,  
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2
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where, lout and lin and lrout and lrin are the lengths of outer and inner surface of the buckling and 

restraining walls respectively. The moment of inertia of the parallelogram tube cross-section is 

calculated as, 

 
net out inx x xI I I= −  (B.9) 
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net out iny y yI I I= −  (B.10) 

 
net out inxy xy xyI I I= −  (B.11) 

where, Iout and Iin are the moment of inertias of the outer and inner parallelograms. These are 

calculated by substituting the dimensions of outer and inner parallelograms from Eqns. (B.5), 

(B.6), (B.7) and (B.8) in (B.2), (B.3) and (B.4). The minimum moment of inertia of the 

parallelogram section is given as, 
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This value of Imin was used in Eqn. (3.28) to calculate the buckling critical height of a 

parallelogram tube. 
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Appendix C - General Deflection Equation of the Main Wall of a 

Triangular Tube 

The general equation of deflection of the bending of plate is,  
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The boundary conditions of top and bottom edges are, at x = 0 and x = h, w = 0 and M = 0. 

The moment along x on the plate is given by,  
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The edge of the wall under consideration does not undergo any deformation along the edges with 

respect to y. Therefore, = 0. This modifies the boundary conditions along the horizontal 

edges of the plate as, 
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The solution of the Eqn. (C.1) obeying these conditions was assumed as, 

 sin m xw Y
h
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⎝ ⎠
⎞
⎟  (C.4) 

In this equation, Y is a function varying with y values only. Substituting this condition into Eqn. 

(C.1), the differential equation of deflection takes the form of, 
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Substituting the expression, 
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and solving the differential equation, the solution of the equation is obtained as, 
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Replacing the expressions 1m
h
π μ⎛ ⎞+⎜ ⎟

⎝ ⎠
 and 1m

h
π μ⎛ ⎞−⎜

⎝ ⎠
⎟ as k1 and k2 respectively in Eqn. (C.7) 

and substituting the expression of Y into Eqn. (C.4), the deflection equation of the main wall was 

obtained as Eqn. (4.6) 

 102



Appendix D - Buckling Condition of the Main Wall of a Triangular 

Tube 

Along the vertical edges,
2

2 0w
x

∂
=

∂
. This makes the boundary conditions as, 
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and, at y = l, 
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Substitution of these boundary conditions in the equation of deflection yields, 

  (D.3) 1 2 1 1 2 3
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Solution of determinant, |Det| = 0 gives the non trivial buckling condition of the main wall of the 

angle section of a triangular tube. This condition is presented in Eqn. (4.18). 
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Appendix E - Out-of-plane Deflection Equation of the Restraining 

Wall of an Angle Section 

The expression of the out-of-plane deflection of the restraining wall is, 

 1 2 3 4sinh cosh sinh coshm m mw C y C y C y y C y y
h h h

m
h

π π π
= + + +

π  (E.1) 

C1 to C4 are calculated using the boundary conditions for the vertical edges. The boundary 

conditions are: 

At y = 0, 
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With these boundary conditions 

From Eqn. (E.2) 

 2 0C =  (E.6) 

From Eqn. (E.3) 

 3 0C =  (E.7) 

From Eqn. (E.4)  
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From Eqn. (E.5) 

 
2 2

1 4 42 sinh cosh y
r r r

Mm m m m mC C l C l l
h h h h h
π π π π π⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ D

= −  (E.9) 

Solving Eqn. (E.8) and Eqn. (E.9) 
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Therefore, 
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This is the expression of the deflection of the restraining wall in the out-of-plane 

direction. 
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