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We generalize the time-variable dark energy scalar field � model (�CDM) to nonflat space. We show

that even in the space-curvature-dominated epoch the scalar field solution is a time-dependent fixed point

or attractor, with scalar field energy density that grows relative to the energy density in spatial curvature.

This is the first example of a physically consistent and complete model of dynamical dark energy in a

nonflat geometry.
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I. INTRODUCTION

When measurements of the cosmic microwave back-
ground (CMB) anisotropy are examined in the context of
the current standard model of cosmology, the �CDM
model,1 they indicate that the cosmological spatial hyper-
surfaces are close to flat [4]. On the other hand, under
the assumption of flat spatial geometry the data favor
time-independent dark energy (DE). However, it has been
known for a while now that if a spatially curved time-
variable DE model is used to analyze the CMB anisotropy
measurements there is a degeneracy between spatial cur-
vature and the parameter that governs the DE time vari-
ability, and this results in significantly weaker constraints
on both parameters compared to the cases when only
either nonzero spatial curvature or DE time variability is
assumed [5].

Most of these analyses are based on the XCDM parame-
trization or generalizations thereof. In the XCDM parame-
trization time-evolving DE is taken to be an X fluid with
equation of state pX ¼ wX�X, where �X and pX are the
X-fluid energy density and pressure and the equation of
state parameter wX <�1=3 is a constant. This is an in-
complete model of time-variable DE since, unless ex-
tended, it cannot consistently describe the evolution of
spatial inhomogeneities [6].

The�CDMmodel [7,8] is the simplest consistent model
of time-variable DE. In this model a scalar field � with
potential energy density Vð�Þ is the DE; Vð�Þ / ���,

where constant �> 0, is a widely used example.2 The
original �CDM model assumed flat spatial sections. In
this paper we develop the curved space extension of the
�CDM model. Related models have been previously
considered, see Ref. [10]. However, as far as we are aware,
we are the first to establish that the scalar field solution in
the curvature-dominated epoch is a time-dependent fixed
point or attractor, and that in the curvature-dominated
epoch the scalar field energy density grows relative to
that of space curvature, generalizing the results of [7,8] to
curved space.
Our paper is organized as follows. In the next section we

describe the curved-space �CDM model we study. In this
section and in the Appendix we show that this model has a
time-dependent fixed point scalar field solution in the
curvature-dominated epoch. In Sec. III we compute some
observable cosmological-test predictions for thismodel as a
function of the three cosmological parameters of themodel.
Then we discuss these results by comparing those for flat
and nonflat geometries as well as for open and closed
geometries. In the final section we provide conclusions.

II. THE MODEL

The original �CDM model of [7] was designed to
describe the late-time consequences of an inflationary
scalar field � model in which the scalar field potential
energy density Vð�Þ has an inverse power-law tail at large
�. This form of Vð�Þ was chosen because it provides a
self-consistent phenomenological description of DE whose
density decreases as the Universe expands, but decreases
less rapidly than the nonrelativistic (cold dark and bar-
yonic) matter density in a spatially flat universe. This
eventually results in the expansion reaching a point at
which the densities of nonrelativistic matter and DE have
the same value and the decelerating cosmological expan-
sion of the matter-dominated epoch switches to the accel-
erating expansion of the DE-dominated epoch that is
currently observed [11].
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1In this model [1], the current cosmological energy budget is

dominated by a cosmological constant �, with nonrelativistic
cold dark matter (CDM) being the next largest contributor. For
some time now most observations have been reasonably consis-
tent with the predictions of the spatially flat �CDM model; see
for example [2]. Note that there are tentative observational
indications that the standard CDM structure formation model,
assumed in the �CDM cosmological model, might need to be
improved upon [3]. 2See Ref. [9] for more general examples.
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In spacetime coordinates x� (� ¼ 0, 1, 2, 3), with units
chosen so that ℏ ¼ c ¼ 1, the late-time action of the model
we consider is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
mp

2

16�

�
�Rþ 1

2
g��@��@��

� �

2
mp

2���

�
þL

�
: (1)

Here the Planck mass mp ¼ G�1=2 where G is the gravi-

tational constant and L is the Lagrangian density of
ordinary matter. The constants � and � are positive real
numbers and we adopt

� ¼ 8

3

�
�þ 4

�þ 2

��
2

3
�ð�þ 2Þ

�
�=2

: (2)

With this choice for �, our results in the limit of zero space
curvature reduce to those of Ref. [7].

Applying the variational principle with respect to the
metric to the action (1) gives the Einstein equations,

R�� � 1

2
Rg�� ¼ 8�

mp
2
ðT�� þQ��Þ: (3)

Here R�� and R are the Ricci tensor and scalar and T�� is

the stress-energy tensor of ordinary matter whileQ�� is the

stress-energy tensor of the � field and has the form

Q�� ¼ mp
2

32�
½2@��@��� ðg��@��@��� ����Þg���:

(4)

Assuming the cosmological principle of large-scale spa-
tial homogeneity, the Friedmann metrics in coordinates
ðt; r; 	; ’Þ are

ds2 ¼ dt2 � a2
�

dr2

1� kr2
þ r2d	2 þ r2sin 2	d’2

�
: (5)

Here a is the scale factor and k is the curvature parameter
that takes values �1, 0, 1 for open, flat, and closed spatial
geometry. References [7,8] consider only the k ¼ 0 case.

The equation of motion for the scale factor a can be
obtained by substituting the metric of Eq. (5) into the
Einstein equations (3). The equation of motion for the
scalar field � can be derived by either applying the varia-
tional principle with respect to the� field to the scalar field
part of the action (1), or from the continuity conditions on
the scalar field stress-energy tensor Q�� given in Eq. (4),

and then using the metrics of Eq. (5).

The complete system of equations of motion is

€�þ 3
_a

a
_�� ��

2
mp

2��ð�þ1Þ ¼ 0;�
_a

a

�
2 ¼ 8�

3mp
2
ð�þ ��Þ � k

a2
;

�� ¼ mp
2

32�
ð _�2 þ �mp

2���Þ:

(6)

Here an overdot denotes a derivative with respect to time,
and � is the energy density of ordinary matter while �� is
that of the dark energy scalar field �. It is also useful to
introduce the density of spatial curvature,

�k ¼ � 3mp
2

8�

k

a2
: (7)

In this convention the spatially open model has �k > 0.
DE cannot have a significant effect at early times, so we

assume �� � � at aðtÞ � a0, where a0 is the current
value of the scale factor. Neither can space curvature
play a significant role in the early nonrelativistic matter-
dominated epoch, so �k � � for aðtÞ � a0. Under these
assumptions the Einstein–de Sitter model provides an ac-
curate description of the nonrelativistic matter-dominated
epoch and so can be used to derive initial conditions for the
scalar field � identical to these in the original flat-space
case of Ref. [7]. Of course, since the solution is a time-
dependent fixed point or attractor, as shown here and in
Refs. [7,8], it is not sensitive to the precise initial condi-
tions adopted: a large range of initial conditions results in
the same scalar field fixed point or attractor solution.

A. Solution for the curvature-dominated epoch

In order to find whether the system (6) has an attractor
solution in a certain epoch (i.e. matter dominated, radiation
dominated, or curvature dominated), we use a perturbation
theory approach in which we treat the energy density of the
scalar field � as a perturbation. Therefore, we neglect all
terms in the right-hand side of the second equation of the
system (6) (i.e. the Friedmann equation) except the energy
density which dominates at the epoch of interest. When the
energy budget of the Universe is dominated by radiation,
ordinary matter or curvature, the solution of the Friedmann
equation for the scale factor a varies as a power of time,
a / tn (which in general is not true in a quintessence-
dominated epoch), where the index n is determined for
each epoch (as discussed in more detail later in this sec-
tion). By substituting this power-law solution for the scale
factor a / tn into the system (6), the equation of motion for
the scalar field is

€�þ 3n

t
_�� ��

2
mp

2��ð�þ1Þ ¼ 0: (8)

Equation (8) has a special power-law solution,

PAVLOV et al. PHYSICAL REVIEW D 88, 123513 (2013)

123513-2



�eðtÞ ¼ At2=ð�þ2Þ; (9)

where the label e denotes that this is an unperturbed,
exact, spatially homogeneous solution. The value of the
constant A is

A ¼
�
��mp

2ð�þ 2Þ2
4½3nð�þ 2Þ � ��

�
1=ð�þ2Þ

: (10)

We now show that, for the range of � and n values that
we are interested in, the special solution (9) is an inwardly
spiraling attractor in the phase space of solutions to (8).
This means, for example, that in a curvature-dominated
epoch (which has n ¼ 1), the scalar field will approach the
special solution (9) for a wide range of initial conditions.
In order to show this we follow the methods of Sec. V of
Ref. [8], and make the change of variables ð�; tÞ � ðu; 
Þ
where

�ðtÞ ¼ �eðtÞuðtÞ; t ¼ e
: (11)

Substituting (11) into (8) and using (9) for�eðtÞ we derive
the equation for perturbation uðtÞ of the scalar field �ðtÞ,

u00 �
�
1� 3n� 4

�þ 2

�
u0

þ
�
6nð�þ 2Þ � 2�

ð�þ 2Þ2
�
ðu� u�ð�þ1ÞÞ ¼ 0: (12)

Here primes denote derivatives with respect to 
. Finally
we switch to the phase space of solutions of the system (8)
by rewriting (12) as the system

u0 ¼p;

p0 ¼
�
1�3n� 4

�þ2

�
p�

�
6nð�þ2Þ�2�

ð�þ2Þ2
�
ðu�u�ð�þ1ÞÞ:

(13)

The critical point ðu0; p0Þ ¼ ð1; 0Þ corresponds to the
special solution (9). Although there exist, in general, other
critical points at p ¼ 0, these involve complex roots of
unity for u, which are not physically relevant in this case.

Taking the linearization of (13) about the critical point,
one obtains the eigenvalues

�1;2 ¼ fð�; nÞ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�; nÞ

q
; (14)

where

fð�;nÞ ¼ �� 2� 3nð�þ 2Þ
2ð�þ 2Þ ;

gð�;nÞ ¼ 6nð�þ 2Þð5�þ 6Þ � 9n2ð�þ 2Þ2 � ð3�þ 2Þ2
4ð2þ�Þ2 :

(15)

For fð�; nÞ< 0 and gð�; nÞ> 0, the eigenvalues �1 and �2

show that the critical point is an inwardly spiraling
attractor in the phase space. The cases n ¼ 1=2

(radiation-dominated epoch) and n ¼ 2=3 (matter-
dominated epoch) were previously studied in Ref. [8].
Note that for the case n ¼ 1 (curvature-dominated epoch)
our critical point is an inwardly spiraling attractor if

�>�2þ 2=
ffiffiffi
3

p
or if �<�4. In the �CDM model we

are specifically interested in the range �> 0. So the criti-
cal point is an attractor for all � values of interest.
The above analysis ignores spatial inhomogeneities in the

gravitational field. In the Appendix we show that the time-
dependent fixed point solution found above remains stable in
the presence of gravitational field inhomogeneities.
We can use our results to show how this model partially

resolves the ‘‘coincidence’’ puzzle. From the last equation
of the system (6) it follows that in the curvature-dominated
epoch

��ðtÞ / t�2�=ð�þ2Þ; (16)

while �kðtÞ / 1=t2 and �mðtÞ / 1=t3. The exponent in
Eq. (16) varies from �2 to 0 as � varies from 1 to 0,
thus for �<1 ��ðtÞ decays at a slower rate than �k in the
curvature-dominated epoch and eventually comes to domi-
nate. This is consistent with the results of similar analyses
in the radiation-dominated and matter-dominated epochs
given in Ref. [8].

III. SOME OBSERVATIONAL PREDICTIONS

To gain some insight into the effects space curvature has
on the �CDM model, we compute predictions for some
cosmological tests in this section. To make these predic-
tions we first numerically integrate the equations of motion
(6) with initial condition of the form (9) taken in the
matter-dominated epoch, where n ¼ 2=3 with the usual
expression for the scale factor in the matter-dominated
epoch, see Ref. [7]. Instead of �, �� and �k we use
dimensionless density parameters such as

�m ¼ 8��

3mp
2H2

¼ �

�þ �k þ ��

; (17)

where H ¼ _a=a is the Hubble parameter. We present the
predictions as isocontours in the space of model parame-
ters ð�m0; �Þ for a number of different values of the spatial
curvature density parameter �k0. (Here the subscript 0
refers to the value at the current epoch. For the open model
�k0 > 0.) For our illustrative purposes here we consider
the same four cosmological tests studied in Ref. [7]. For a
discussion of these and other cosmological tests see
Ref. [12]. While it is of great interest to determine con-
strains on the three cosmological parameters of the
model—�m0, �k0, and �—using various cosmological
observables, in this paper we restrict ourselves to some
qualitative remarks; a detailed quantitative comparison
between the predictions of the model and observations is
given in Ref. [13], where it is found that observational data
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less tightly constrains space curvature in a dynamical dark
energy matter of the type we study here.

A. The time parameter H0t0

The dimensionless time parameter is

H0t0 ¼ H0

Z a0

0

da

_aðtÞ ; (18)

where t0 is the age of the Universe and H0 and a0 are the
present values of the Hubble parameter and scale factor.
Figure 1 shows contours of constant H0t0 as a function of
�m0 and � for a series of fixed values of �k0. A recent
summary estimate of H0 ¼ 68� 2:8 km s�1 Mpc�1 [14]
and the Planck (with WMAP polarization) estimate of
t0 ¼ 13:824�0:041

0:055 Gyr [4] gives, for the 2� range,

0:88 � H0t0 � 1:04, where we have added the 1� errors
in quadrature and doubled to get the 2� range. From Fig. 1
we see that �m0 ¼ 0:27 and � ¼ 3 is reasonably consis-
tent with these constraints for a range of �k0.

In the limit � ! 0 this model reduces to the constant �
one (but not necessarily with zero space curvature), while
the limit � ! 1 corresponds to the open, closed, or flat
(Einstein–de Sitter) model with � ¼ 0, depending on the
value of space curvature. At fixed�m0 (and�k0), or in the
flat-space case [7], the effect of increasing � is to reduce
the value of H0t0, making the Universe younger at fixed
H0, since � ¼ 0 corresponds to a constant � and so the
oldest Universe for given �m0 and�k0. However, nonzero
space curvature brings interesting new effects. At � ¼ 0
the�CDM model reduces to the �CDM one and here it is
well known that to hold H0t0 constant in the open case as
�m0 is reduced and�k0 is increased requires a decrease in
�� (to compensate for the increase of t0 at constant H0 as
�m0 is reduced and�k0 is increased). The converse is true
in the closed case. Studying the � ¼ 0 intercepts of the
H0t0 isocontours in both panels of Fig. 1 confirms these
arguments. That is, for a fixed value of H0t0 at smaller �
(i.e. � & 4) the contours corresponding to open geometry
shift to the left of the flat geometry, i.e. to lower�m0, while
the contours corresponding to closed geometry shift to the
right of the flat case.

At higher � the DE density deceases more rapidly with
the expansion (unlike the � ¼ 0 case where � remains
constant), and the contours switch around. Here to hold
H0t0 constant in the open case as�k0 is increased requires
that �m0 increase and��0 decrease to compensate. In the
closed case as �k0 is increased, �m0 must decrease and
��0 must also decrease. Thus, as evident from Fig. 1, for a
givenH0t0 value there is a point in ð�m0; �Þ space at which
contours corresponding to different space curvatures cross.
The intersection point moves to larger � as �m0 is de-
creased. This is because the Universe is older (at fixed H0)
at smaller �m0 so even DE with larger � now has more
time to come to dominate the energy budget (and so behave
more like DE with a constant DE density).

B. The distance modulus difference �mðzÞ
We next consider the difference in bolometric dis-

tance moduli, at redshift z ¼ 1:5, of the �CDM model
and the Einstein–de Sitter model. The coordinate dis-
tance r is

r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi��k0

p sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffi��k0

p Z t0

tem

dt

aðtÞ
�
: (19)

FIG. 1 (color online). Contours of fixed time parameter H0t0,
as a function of the present value of the nonrelativistic matter
density parameter �m0 and scalar field potential power-law
index �, at various values of the current value of the space-
curvature density parameter �k0 (as listed in the inset legend
boxes). The upper panel shows a larger part of ð�m0; �Þ space
for a larger range of �k0 values [for H0t0 ¼ 0:7, 0.75, 0.8, 0.85,
0.95, 1.05 and 1.15, from right to left], while the lower panel
focuses on a smaller range of the three parameters [forH0t0 from
0.8 to 1.15 in steps of 0.05, from right to left].
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Here tem and t0 are the times when the signal was
emitted and received. Thus the difference in the dis-
tance moduli of the two models is

�mðzÞ ¼ 5log 10

�
r

rEdS

�
; (20)

where rEdS is the coordinate distance in the Einstein–de
Sitter model.
Figure 2 shows contours of constant �mðz ¼ 1:5Þ as a

function of�m0 and � for some values of�k0. Comparing
Figs. 1 and 2, we see that near � ¼ 0, where the DE
behaves like constant �, �mðz ¼ 1:5Þ is less sensitive to
the value of�k0 than isH0t0. However at larger ��mðz ¼
1:5Þ is more sensitive to spatial curvature than is H0t0.
Clearly, extending the �CDM model to include space
curvature as a free parameter broadens the range of
allowed parameter values. As in the H0t0 case, for a given
value of �mðz ¼ 1:5Þ there is a point in ð�m0; �Þ space at
which all contours intersect.

FIG. 2 (color online). Contours of fixed bolometric distance
modulus relative to the Einstein–de Sitter model, �mðz ¼ 1:5Þ,
as a function of the matter density parameter �m0 and scalar
field potential power-law index �, and various values of the
space curvature density parameter �k0 (as listed in the inset
legend boxes). The upper panel shows a larger part of ð�m0; �Þ
space for a larger range of �k0 values [for �mðz ¼ 1:5Þ ¼ 0:1,
0.2, 0.3, 0.4, 0.5, 0.6, and 0.8 from right to left], while the lower
panel focuses on a smaller range of the three parameters [for
�mðz ¼ 1:5Þ from 0.3 to 0.8 in steps of 0.1, from right to left].
In the upper panel there is no �k0 ¼ 0:2 contour for �mðz ¼
1:5Þ ¼ 0:1 since in this case the model is too open for such a
small distance modulus difference.

FIG. 3 (color online). Contours of fixed Aðz ¼ 0:7Þ as a func-
tion of �m0 and � at various values of �k0 (as listed in the inset
legend boxes). The upper panel shows a larger part of the
parameter space for Aðz ¼ 0:7Þ ¼ 0:25, 0.3, 0.35 and 0.45
from right to left. The lower panel shows a smaller range of
the three parameters for Aðz ¼ 0:7Þ ¼ 0:3, 0.35, 0.4 and 0.45
from right to left.
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C. Number counts

The count per unit increment of redshift for conserved
objects is3

dN

dz
/ z2AðzÞ; AðzÞ ¼ H0

3a0
2r2

z2
a

_a
: (21)

Isocontours of fixed Aðz ¼ 0:7Þ are shown in Fig. 3. The
general features are similar to those shown in Figs. 1 and 2
for H0t0 and �mðz ¼ 1:5Þ.

D. The growth of structure

Finally, we consider the growth of large-scale structure
of the Universe which started as small primordial density
inhomogeneities in the early Universe [16]. Within the
framework of linear perturbation theory the scalar filed
stays homogeneous as we show in the Appendix on the
scales of matter perturbations and the density contrast in
ordinary matter, 
 ¼ 
�=�, satisfies

€
þ 2
_a

a
_
� 4�

mp
2
�
 ¼ 0: (22)

Following Ref. [7] the cosmological test parameter we
consider is

�ð�m0;�k0; �Þ ¼ 
ðt0Þ
ð1þ ziÞ
ðtiÞ ; (23)

where t0 denotes the current epoch while ti is the time
when the scale factor ai � a0, well within the matter-
dominated epoch when the Einstein–de Sitter model was

a good approximation. Thus the factor � is the ratio by
which the growth of linear fluctuations in density have
declined below that of the Einstein–de Sitter model pre-
diction. We graph contours of � in Fig. 4.
There are two interesting facts about the � contours

shown in Fig. 4. First, the growth rate is quite sensitive to
the value of �k0, much more so than any of the other
parameters we have considered. (This is not unexpected,
as it is well known in more conventional models that the
growth factor is much more sensitive to �m0 when �k0

is nonzero.) Second, the curvature dependence of the
isocontours is the opposite of that for the other three
parameters. So a joint analysis of growth factor and
geometry measurements would seem to be a very good
way to constrain �k0.

IV. CONCLUSION

We have extended the �CDM model to nonflat geome-
tries and shown that in the curvature-dominated epoch the
solution is also an attractor or time-dependent fixed point
(see Sec. II A and the Appendix). We have computed
predictions of the model for an illustrative set of cosmo-
logical tests and shown that the presence of space curvature
will broaden the allowed range of model parameters.
Spatial curvature should be considered as a free parameter
when observational data are analyzed. The nonflat�CDM
model we have developed here is the only consistent non-
flat time-variable DE model to date and can be used as a
fiducial model for such analyses.
Our computations have shown that for a single cosmo-

logical test there is a degeneracy point in parameter space
for each fixed value of the cosmological observable of the

FIG. 4 (color online). Contours of the factor by which the growth of ordinary matter perturbations falls below that of the Einstein–de
Sitter model, �ð�m0;�k0; �Þ, as a function of the matter density parameter �m0 and scalar field potential power-law index �, and
various values of the space curvature density parameter �k0 (as listed in the inset legend boxes). The left panel shows a larger part of
ð�m0; �Þ space for a larger range of �k0 values [for �ð�m0;�k0; �Þ ¼ 0:3, 0.5, 0.7 and 0.9 from left to right], while the right panel
focuses on a smaller range of the three parameters [for �ð�m0;�k0; �Þ from 0.2 to 0.8 in steps of 0.1, from left to right]. In the left
panel there is no �k0 ¼ 0:2 contour for � ¼ 0:9 since in this case the model is too open to allow such a large growth factor.

3See Sec. IV.B.5 of Refs. [12,15] for discussions of this test.
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test. At this point one cannot differentiate between contours
corresponding to different values of spatial curvature.
However, these points of degeneracy do not coincide in
ð�m0; �Þ parameter space for the different cosmological
tests. Hence it is important to usemultiple cosmological tests
in order to determine spatial curvature from observations.

We have noted that a joint analysis of geometry and
growth factor measurements appears to be a fruitful way to
constrain space curvature. CMB anisotropy data will also
likely provide useful constraints on space curvature. This
will first require accounting for spatial curvature effects on
the quantum-mechanical zero-point fluctuations generated
during inflation, which will affect the primordial density
perturbations power spectrum [17]. While the curved-
space computation is more involved than the correspond-
ing flat-space one, the resulting constraints from CMB
anisotropy data on space curvature in the presence of
dynamical dark energy are likely to prove quite interesting.
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APPENDIX

In Sec. II A we showed that the special time-dependent
fixed point solution for the scalar field in the curvature-
dominated epoch is stable if we ignore spatial inhomoge-
neities in the gravitational field. In this Appendix we show
that gravitational spatial inhomogeneities do not spoil this
property of the solution, thus preserving the inclination of
the scalar field DE density to always want to try to domi-
nate over the dominant energy density source [7,8].

Inhomogeneities in the scalar field will induce inhomo-
geneities in the metric, and vice versa. We show that, in the
curvature-dominated epoch, any slight inhomogeneities
will die out. (This generalizes the flat-space results of
Sec. IX of Ref. [8].)

We linearize the disturbances in the metric about a
curved Friedmann background metric in synchronous
gauge. To this end, we write the line element as

ds2 ¼ ~g��dx
�dx� ¼ ðg�� þ 
g��Þdx�dx�: (A1)

We work in time-orthogonal coordinates ðt; r; 	; ’Þ with
g�� given in Eq. (5) and the perturbations


g�� ¼ aðtÞ2
0 0 0 0

0 fðrÞhrr hr	 hr’

0 hr	 r2h		 h	’

0 hr’ h	’ r2sin 2ð	Þh’’

0
BBBBB@

1
CCCCCA;

(A2)

where fðrÞ ¼ 1=ð1� kr2Þ, jhijj � 1, and each hij is a

function of t, r, 	, and ’.
The scalar field equation of motion in a space-time with

cometric ~g�� reads

~r�ð~g��@��Þ þ V0ð�Þ ¼ 0: (A3)

The perturbed scalar field is written

�ðx�Þ ¼ �0ðtÞ þ�ðx�Þ; (A4)

where � is a small perturbation, j�j � j�0j, and �0 is a
solution to the scalar field equation of motion in the
unperturbed homogeneous Friedmann background,

€�0 þ 3
_a

a
_�0 �

��m2
p

2
��ð�þ1Þ

0 ¼ 0: (A5)

Plugging (A4) into (A5) gives, to first order in �,

€�þ 3 _a

a
_�� 1

a2
r2�þ V 00ð�0Þ�� 1

2
_h _�0 ¼ 0; (A6)

where h ¼ hrr þ h		 þ h’’ ¼ �g��
g��, and r2 is the

Laplacian for the three-dimensional spacelike hypersur-
face of constant t in the unperturbed Friedman geometry,

r2 ¼ 1

r2
@

@r

�
ðr2 � kr4Þ @

@r

�
þ kr

@

@r
þ 1

r2 sin ð	Þ
� @

@	

�
sin ð	Þ @

@	

�
þ 1

r2sin 2ð	Þ
@2

@’2
: (A7)

When k ¼ 0 r2 is the usual three-dimensional flat-space
Laplacian in spherical coordinates.
The tt component of the stress-energy tensor Q�� for

� ¼ �0 þ�, to first order in �, is

Qtt ¼
m2

p

32�
½ _�2

0 þ 2Vð�0Þ� þ
m2

p

16�
½ _�0

_�þ V 0ð�0Þ��;
(A8)

and the trace Q ¼ ~g��Q�� is, to first order,

Q ¼ m2
p

16�
½4Vð�0Þ � _�2

0� þ
m2

p

8�
½2�V 0ð�0Þ � _�0

_��:
(A9)

As for the Ricci tensor R��, we will also only require the tt

component. To first order it is

Rtt ¼ � 3 €a

a
þ

�
_a

a
_hþ 1

2
€h

�
: (A10)

By the Einstein field equations (3) we therefore get the
first-order perturbation equation,

€hþ 2 _a

a
_h ¼ 2 _�0

_�� V 0ð�0Þ�: (A11)

This corresponds to Eq. (3.14) of Ref. [18].
We now take a ¼ a0t for the curvature-dominated

epoch, where a0 is a constant of integration and we
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consider times t > 0. Thus, the system we need to
analyze is

€�þ 3

t
_�� L2

a20t
2
�þ V 00ð�0Þ� ¼ 1

2
_h _�0; (A12)

€hþ 2

t
_h ¼ 2 _�0

_�� V 0ð�0Þ�: (A13)

Here we have made a hyperspherical harmonic transforma-
tion, the variables � and h are now harmonic mode ampli-
tudes, and L2 is the eigenvalue of the Laplacian operator
(A8) (see Ref. [18] and Sec. II of Ref. [19]). One has
L2 ! �1 (respectively L2 ! �1) in the limit of long
wavelength (short wavelength) modes for the negative
curvature case.

The field�0 is the special solution obtained in Sec. II A,
Eq. (9). We here write it as

�0 ¼ Atm; (A14)

where

m ¼ 2

�þ 2
; (A15)

and A is, by (10) with n ¼ 1,

A ¼
�
��m2

pð�þ 2Þ
8�þ 24

�
1=ð�þ2Þ

: (A16)

Defining

B ¼ ��

2
m2

p; (A17)

Eqs. (A12) and (A13) can be rewritten as

€�þ 3

t
_�þ J

t2
� ¼ mA

2
_htm�1; (A18)

€hþ 2

t
_h ¼ 2mAtm�1 _�þ BA�ð�þ1Þtm�2�; (A19)

where J ¼ ð�þ 1Þðm2 þ 2mÞ � L2=a20. As mentioned

previously, L2 ! �1 in the case that we are presently
interested in (long-wavelength perturbations and negative
curvature), so the constant J is a positive real number >3.

For the curvature-dominated case �k / t�2 and so

C2 ��

�k

¼ t2m; (A20)

where C is a constant of integration. Thus, Eqs. (A18) and
(A19) can be written as

€�þ 3

t
_�þ J

t2
� ¼ mAC

2

_h

t

ffiffiffiffiffiffiffi
��

�k

s
; (A21)

€hþ 2

t
_h ¼ 2mBC

t

ffiffiffiffiffiffiffi
��

�k

s
_�þ BA�ð�þ1ÞC

t2

ffiffiffiffiffiffiffi
��

�k

s
�: (A22)

Following Ref. [8] we solve these equations by using a
linear perturbation technique. Since we are in the

curvature-dominated epoch and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=�k

p
is small, we be-

gin by searching for approximate solutions to (A21) and
(A22) where the source terms on the right-hand side are
neglected. That is, we first solve the homogeneous equa-

tions (to get zeroth order solutions for � and _h),

€�0 þ 3

t
_�0 þ J

t2
�0 ¼ 0; (A23)

€h0 þ 2

t
_h0 ¼ 0; (A24)

where subscript 0 now denotes solutions in zeroth order of
the perturbation approach. Oncewe have these zeroth order
solutions, we will plug them into the right-hand side of
Eqs. (A18) and (A19) in order to obtain new differential
equations which can then be used to derive correction

terms of order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=�k

p
. If our solutions with orderffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��=�k

p
corrections are still decaying then it means that

the stability result is established at least in the first-order
perturbation analysis.
The zeroth order solution to (A23) is

�0ðtÞ ¼ C1

t
cos

h ffiffiffiffiffiffiffiffiffiffiffiffi
J � 1

p
ln ðtÞ

i
þ C2

t
sin

h ffiffiffiffiffiffiffiffiffiffiffiffi
J � 1

p
ln ðtÞ

i
;

(A25)

where C1 and C2 are constants of integration, and the
zeroth order solution to (A24) is

h0ðtÞ ¼ C3

t
þ C4; (A26)

where C3 and C4 are constants of integration. Note that,

up to oscillatory bounded functions of time, �0=�0 /
t�ð�þ4Þ=ð�þ2Þ 2 ðt�2; t�1Þ, so we confirm the result of
Sec. II A that if we ignore the effect of metric perturbations
the time-dependent fixed-point solution is stable.
Writing � ¼ �0 þ�1 and h ¼ h0 þ h1, and plugging

(A26) into Eq. (A18), we get for the first order�1 equation

€�1 þ 3

t
_�1 þ J

t2
�1 ¼ mA

2
_h0t

m�1: (A27)

(We shall not need the h1 differential equation.) Solving
this differential equation for �1 we find

�1ðtÞ ¼ � mAC3t
m�1

2ðm2 � 1þ JÞ : (A28)

From this solution and that in (A25), we find, up to

oscillatory bounded functions of time, �1ðtÞ=�0ðtÞ /ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=�k

p
, so in the curvature-dominated epoch, where

�� � �k, the correction to the scalar field solution from
the metric inhomogeneity is small.
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