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Abstract

The zero-inflated Poisson (ZIP) model consists of a Poisson model and a degenerate

distribution at zero. Under this model, zero counts are generated from two sources, repre-

senting a heterogeneity in the population. In practice, it is often interested to evaluate this

heterogeneity is consistent with the observed data or not. Most of the existing methodolo-

gies to examine this heterogeneity are often assuming that the Poisson mean is a function of

nuisance parameters which are simply the coefficients associated with covariates. However,

these nuisance parameters can be misspecified when performing these methodologies. As a

result, the validity and the power of the test may be affected. Such impact of misspecification

has not been discussed in the literature. This report primarily focuses on investigating the

impact of misspecification on the performance of score test for homogeneity in ZIP models.

Through an intensive simulation study, we find that: 1) under misspecification, the limiting

distribution of the score test statistic under the null no longer follows a chi-squared distribu-

tion. A parametric bootstrap methodology is suggested to use to find the true null limiting

distribution of the score test statistic; 2) the power of the test decreases as the number of

covariates in the Poisson mean increases. The test with a constant Poisson mean has the

highest power, even compared to the test with a well-specified mean. At last, simulation

results are applied to the Wuhan Inpatient Care Insurance data which contain excess zeros.

Key words: zero-inflated Poisson model, score test, misspecification, nuisance parameter
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Chapter 1

Introduction

In China, with an increasing number of people purchasing the health insurance products,

especially the Inpatient Care Insurance, the insurance companies have begun to pay more

attention to the number of claims. Poisson regression model is the most popular model

to analyze these count data. However, claim data usually contain excess zeros and the

standard Poisson regression model may fit inadequately. Instead, the zero-inflated Poisson

(ZIP) regression can be used to handle excess zeros, see Lambert (1992). The ZIP model

consists of a Poisson model and a degenerate distribution at zero. In this model, both the

Poisson mean and the mixing weight can depend on covariates, where the mixing weight

is a probability of an excess zero. This is a very attractive feature because the number of

claims is often assumed to be affected by some potential factors, for example, age, gender,

occupation and living habits.

Under the ZIP model, zero counts are generated from the Poisson component and the

degenerated distribution at zero. Thus a heterogeneity is present in the population. In

practice, it is often interested to evaluate this heterogeneity is consistent with the observed

data or not. In the literature, there are several tests can be used to evaluate this heterogene-

ity. For example, a score test proposed by van den Broek (1995), can be used to examine

heterogeneity in ZIP models by testing whether the mixing weight equals zero or not, where
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he assumed a constant mixing weight under the alternative. Jansakul and Hinde (2002)

extended his test to allow that the mixing weight can depend on covariates via an iden-

tity link function under the alternative. However, the identity link function in Jansakul’s

methodology may need to be constrained when fit the model and it is rarely used. Todem

and Hsu (2012) developed a score test for homogeneity in a more general way via a novel

transformation where mixing weight also depends on covariates under the alternative. Most

of the existing methodologies for evaluating heterogeneity in ZIP models are often assum-

ing that the Poisson mean is a function of nuisance parameters which are the coefficients

associated with covariates. However, these nuisance parameters can be misspecified when

performing these methodologies. As a result, the validity and the power of the test may be

affected. Many papers have mentioned this type of issue under several settings. For exam-

ple, Godfrey (1988) pointed out that the misspecification may affect the Lagrange multiplier

test in regression models. Bera and Yoon (1993) showed that the score test is not robust

when nuisance parameter is locally misspecified (which assumes that the misspecification

occurs from the local data generating process). Liang and Self (1996) also indicated that

the nuisance parameter may be misspecified in likelihood functions, which could affect both

the validity and the power of the likelihood ratio test. Aerts et al.(1999) mentioned the

impact of likelihood misspecification on the robustness of lack-of-fit tests. These authors

mentioned that the misspecification could affect both the validity and the power of the test.

For tests of homogeneity in ZIP models, the misspecification of nuisance parameters may

also have an impact on the test and it is unclear in the literature.

In this report, we focus on how the misspecification of nuisance parameters— in our case

is the misspecification of the Poisson mean— could affect the power of the homogeneity test

for ZIP models. The homogeneity test in this study is simply testing whether the mixing

weight equals to zero or not. We use the score test in this study rather than the likelihood

ratio test and the Wald test, because the score test doesn’t require the model under the

alternative hypothesis to be estimated. However, this doesn’t mean that the score test is
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better. These three tests are asymptotically equivalent, for example see Molenberghs and

Verbeke (2007), and ones may choose one of these three tests based on the difficulty of

computations in their particular problems. Through an intensive simulation study, we find

that under the misspecification of the Poisson mean, the limiting distribution of the score

test statistic under the null no longer follows a χ2 distribution. By using a parametric

bootstrap methodology to find the true null limiting distribution, the test with a constant

Poisson mean outperforms the other tests with the means that depends on corvariates. The

power decreases as the number of covariates in the Poisson mean increases.

The application is implemented to study the Wuhan Inpatient Care Insurance data which

we mentioned at the beginning of this chapter. We want to investigate whether a standard

Poisson regression fit the data adequately and what factors affect the number of claims

significantly. The test results show that the data are not in flavor of Poisson regression

model. Instead, we use ZIP model to fit the data and we find 6 significant factors affecting

the number of claims: age, marital status, monthly income, BMI, smoking and drinking

habit.

The layout of this report is as follows. In chapter 2, we present a brief review of the

ZIP regression model and a general score test. In chapter 3, we discuss three types of

misspecification of nuisance parameters and present the parametric bootstrap methodology.

An intensive simulation study and an application of the Wuhan Inpatient Care Insurance

data are present in chapter 4. Some discussions and conclusions are provided in the last

chapter.
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Chapter 2

Models and Test Statistics

2.1 Zero-Inflated Poisson distribution

Consider independent descrete random variables Yi with a zero-inflated Poisson distribution,

the probability mass function is given by

Pr(Yi = yi) =

 ωi + (1− ωi)e−λi , yi = 0,

(1− ωi) e
−λiλi

yi

yi!
, yi = 1, 2, ....

(2.1)

where ωi is the mixing weight and 0 6 ωi 6 1. We denote this by Yi ∼ ZIP (λi, ωi).

The ZIP model can be regarded as a simple two-component mixture model with a

Poisson(λi) component and a degenerate component putting all its mass at zero with a

probability ωi. It is obvious that the ZIP model reduces to the standard Poisson model

when ωi = 0. For positive values of ωi we have zero-inflation, however, it is possible for

ωi < 0 under the marginal ZIP model and to still obtain a valid probability distribution

which leads to the zero-deflated Poisson model. An extended mixture model in which ωi

is not constrained to be a non-negative is commonly referred to as a zero-modified model.

Details of these are given in Dietz and Böhning (2000).
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For observations y1, ..., yn, the log-likelihood function of the ZIP model is given by

l = l(λ,ω; y)

=
n∑
i=0

[
Iyi=0 log[ωi + (1− ωi)e−λi ] + Iyi>0[log(1− ωi)− λi + yi log λi − log(yi!)]

]
,

(2.2)

where y = (y1, y2, ...yn)T , λ = (λ1, λ2, ...λn)T , ω = (ω1, ω2, ...ωn)T and I(·) is the indicator

function for the specified event, i.e. equals to 1 if the event is true and 0 otherwise;

To apply the zero-inflated Poisson model in practical modeling situations, Lambert

(1992) suggested to use the following joint models for λ and ω

log(λ) = Xβ and log
( ω

1− ω

)
= Gγ, (2.3)

where X and G are covariate matrices and β, γ are p × 1 and q × 1 vectors of unknown

parameters. It may be also useful to apply a identity link function for ω,

log(λ) = Xβ and ω = Gγ, (2.4)

Maximum likelihood estimates for β and γ can be obtained by standard approaches for

mixture models: the EM-algorithm or Newton-Raphson. However, some disadvantages

with the identity link are that the model fitting may need to be constrained and it is rarely

used. To overcome such limitations, Todem and Hsu (2012) developed a score test where

ω depends on covariates in a more general way through a novel transmation, for details see

Todem and Hsu (2012).
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2.2 Test statistics for homogeneity

The homogeneity test conducted in our report is just testing the mixing weight ω

H0 : ω = 0 vs H1 : ω > 0,

There are 3 tests can be used for testing the homogeneity in the ZIP model: the likelihood

ratio test, the Wald test and score test. However, the score test statistic has an advantage

over the likelihood ratio test and the Wald test, for it only requires the parameter estimates

under the null hypothesis. Because of this attracting advantage, we use score test rather

than the likelihood ratio test and the Wald test. Here we briefly present a general form

of the score test statistic proposed by Jansakul and Hinde (2002). More details about the

likelihood ratio test and the Wald test see Appendix A.

2.2.1 A score test for homogeneity in ZIP models

We use the score test proposed by van den Broek (1995), which is a special case of Jansakul’s

general score test by assuming a constant model for ω—taking G in (2.4) to be a n×1 matrix

of 1’s. In this report, we use Jansakul’s expressions to introduce the score test statistic. In

our study, we assume that ω = γ0, then testing ω = 0 is equivalent to testing γ0 = 0 in the

complex model.

Since the score test only requires the maximum likelihood estimates of the parameters

under the null hypothesis, we just need to fit the standard Poisson model. Based on the

log-likelihood function given in (2.2) and the general model equations (2.4), the score test

statistic under the null hypothesis is (details of the derivation of the score test statistic are

in Appendix B):

Sω = Sγ
T (β̂0, 0)C−1Sγ(β̂0, 0),

6



where β̂0 is the maximum likelihood estimate under the Poisson model and

Sγ(β̂0, 0) = GT
[Iyi=0 − e−

ˆλ0

e−
ˆλ0

]
,

C = Jγ(β̂0, 0)− Jβγ(β̂0, 0)
T
Jβ(β̂0, 0)

−1
Jβγ(β̂0, 0),

with

Jβ(β̂0, 0) = XTdiag(λ̂0)X,

Jγ(β̂0, 0) = GTdiag(
1− e−

ˆλ0

e−
ˆλ0

)G,

and

Jγβ(β̂0, 0) = GTdiag(−λ̂0)X,

As Sω is a quadratic form, from standard statistical theory it has an asymptotic χ2
q distri-

bution, where q= dim(γ), the dimension of γ. In the case of a constant model for ω, this

test reduces to that given by van den Broek (1995), more details see Appendix B. In our

study, as we assume that ω = γ0, q=1.
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Chapter 3

Misspecification of Nuisance

Parameters

3.1 Misspecification

As many authors pointed out, both the validity and the power of the test may be affected

when the nuisance parameter is misspecified. In this report, we studied the impact of

misspecifications of nuisance parameter, which can be described as below.

Consider a general statistical model represented by the log-likelihood function L(γ∗,β∗),

where γ∗ and β∗ are q × 1 and p × 1 vectors of parameters, respectively. Suppose β∗ =

(β∗
1 , β

∗
2 , ...β

∗
p)
T , and β̃ = (β̃1, β̃2, ...β̃k)

T , where β∗ is a vector of true parameters and β̃ is

a k × 1 vector of parameters other than β∗. Then under the alternative, three types of

misspecification of β are given as follows,

(1) β is a subset of the true parameters β∗.

β ⊂ (β∗
1 , β

∗
2 , ...β

∗
p)
T ,

(2) β is contaminated. For example, β = (β∗
1 , β

∗
2 , β̃1, β̃2), which means that β includes

8



the parameters that should not be included.

(3) β is totally misspecified.

β ⊆ (β̃1, β̃2, ...β̃k)
T ,

In this report, we focus on these 3 types of misspecification and study the impact of

misspecification of the Poisson mean on the power of score test for homogeneity in ZIP

models.

3.2 Limiting distribution of Sω under misspecification

The score test statistic Sω is a quadratic form and from standard statistical theory it has an

asymptotic χq
2 distribution under the null hypothesis, see Jansakul and Hinde (2002). In

order to investigate its null limiting distribution under misspecifications, we first conducted

a simulation study using the score test proposed by van den Broek (1995).

The explanatory variables are: x1, a continuous variable with truncated normal N(0,1)

distributed values on (-1,1); x2, a two level factor with two-fifths of the observations in

the first group; x3, a continuous variable with truncated normal N(1,1.5) distributed values

on (0,2). We generated x1 and x3 from a multivariate normal distribution to make them

orthogonal by setting the covariance between x1 and x3 equals zero. The true Poisson mean

model is λ∗ = exp(0.8− 0.1x1 + 0.3x3) and the working models are specified in Table 3.1.

As shown in Table 3.1, when the Poisson mean is misspecified, the score test doesn’t

maintain the size as sample size increasing, i.e. n=800 and 1000, which indicates that the

limiting distribution of the test statistics under the null no longer follows a χ2 distribution.
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Table 3.1: The empirical sizes of Sω at χ2
1;0.05 based on 1000 samples when the Poisson

model is misspecified

Working Poisson λ∗ = exp(0.8− 0.1x1 + 0.3x3)

mean model ω∗ n=50 n=200 n=800 n=1000

λ β0 + β1x1 + β3x3 ω∗ = 0 0.038 0.047 0.047 0.048

misspecified λ β0 ω∗ = 0 0.053 0.054 0.110 0.146

β0 + β1x1 ω∗ = 0 0.053 0.059 0.104 0.117

β0 + β3x3 ω∗ = 0 0.043 0.051 0.068 0.123

β0 + β1x1 + β2x2 ω∗ = 0 0.051 0.049 0.118 0.124

1 x1 ∼ N(0, 1) and x1 ∈ [−1, 1], x2 ∼ Bin(1, 0.6), x3 ∼ N(1, 1.5) and x3 ∈ [0, 2].

3.3 Parametric bootstrap

In practice, it is difficult to derive the true null limiting distribution of the score test statistic

under the misspecification. However, a parametric bootstrap resampling method, which was

first proposed by Efron (1979), can be used to find the true null limiting distribution. The

bootstrap resampling method is often used to estimate distributions which are difficult to

obtain analytically. It consists of 3 steps: (i) an estimation step, estimate the parameters

of null model from the observed data; (ii) a Monte Carlo step, generate M pseudo-data sets

from the fitted model and calculate the associate test statistics; finally, (iii) constructing

distribution, construct the bootstrap distribution for a sufficient large value of M. Here we

give the details of how we use this methodology to generate the large sample distribution

of the score test statistic Sω.

(1) Estimation step: compute the estimator β̂ of β∗ under the null model for the given

observed data (yi, xi)
n
i=1, where yi are count outcome and xi are covariates.

(2) Monte Carlo step: for each m, generate the Monte Carlo sample (y
(m)
i )ni=1 from the

null model where β fixed at β̂, assign each generated data point y
(m)
i to xi. Then for each

10



Monte Carlo sample (y
(m)
i , xi)

n
i=1, calculate the score test statistic

S
(m)
ωn = Sγ

T (β̂
(m)

0 , 0)Ĉ−1Sγ(β̂
(m)

0 , 0),

where

Ĉ = Jγ(β̂
(m)

0 , 0)− Jβγ(β̂
(m)

0 , 0)TJβ(β̂
(m)

0 , 0)−1Jβγ(β̂
(m)

0 , 0),

and β̂
(m)

0 is the estimate of β̂ under the null hypothesis using each generated data (y
(m)
i , xi),

i=1,2...,n.

(3) Repeat step 2 for m=1,2...,M.

As M going large, an approximate p-value of score test can be calculated as

PB = M−1

M∑
m=1

I(S
(m)
ωn ≥ Sobs), (3.1)

which is the proportion that the number of S
(m)
ωn greater than Sobs. We reject H0 when PB

is smaller than the nominal value. In our simulation studies, we set M equal to 1000 and

nominal value=0.05.

11



Chapter 4

Numeric Study

4.1 Simulation study

In the previous section 3.3, we mentioned that a bootstrap resampling method can be used

to find the true null limiting distribution of the score test statistic when nuisance parameter

is misspecified. In this section, by using this methodology, we investigated the effect of

misspecified nuisance parameter on the power of the score test, specially the impact of

misspecification of the Poisson mean. An intensive simulation study was carried out using

R. In our simulations, we generated various samples of size n=25, 50, 100 and 200. For each

data generating mechanisms and working models, we simulated 1000 sets of data from the

true models. For each data set, we first calculated the observed Sobs values for some assumed

working models by using the estimates from fitting the null model and then constructed its

bootstrap distribution. The true models and various working models that we studied in

this report are given in Table 4.1. In our simulations, we assume working ω is constant.

The explanatory variables are: x1, a continuous variable with truncated normal N(0,1)

distributed values on (-1,1); x2, a two level factor with two-fifths of the observations in the

first group; x3, a continuous variable with truncated normal N(1,1.5) distributed values on

(0,2); x4, a continuous variable with uniformly distributed values on (1,2). We generate

12



x1 and x3 from a multivariate normal distribution to make them orthogonal by setting the

covariance between x1 and x3 equals zero.

Table 4.1: Data generating mechanisms and working models

True Models Working Models for λ

log(λ∗) ω∗ λ depends on log(λ)

0.7 0 constant β0

0.1 1 covariate β0 + β1x1

0.15− 0.1x1 β0 + β3x3

0.8− 0.1x3 0 2 covariates β0 + β1x1 + β2x2

0.1 β0 + β1x1 + β3x3

0.15− 0.1x1 β0 + β2x2 + β3x3

0.8− 0.1x1 + 0.3x3 0 β0 + β2x2 + β4x4

0.1 3 covariates β0 + β1x1 + β2x2 + β3x3

0.15− 0.1x1 4 covariates β0 + β1x1 + β2x2 + β3x3 + β4x4
1 x1 ∼ N(0, 1) and x1 ∈ [−1, 1], x2 ∼ Bin(1, 0.6),
x3 ∼ N(1, 1.5) and x3 ∈ [0, 2], x4 ∼ U(1, 2).

In order to check the size of Sω, 1000 sets of data were generated from the null model

Yi ∼ Pois(λi), i=1,...n, where λ depends on the same covariates in the working models. For

each data set, we first calculated the observed Sobs values by using the estimates from fitting

the null model and constructed its bootstrap distribution. Then we calculated its p-value

using equation (3.1). Finally, we calculated the proportion of times the p-value smaller than

the critical value α, it can be written as

∑1000
m=1 I(P

(m)
B < α)

1000
, (4.1)

In our simulation, we set α=0.05.

Similarly, to investigate the impact of misspecification of the Poisson mean on the power

of the test, we simulated 1000 sets of data from the true model Y ∼ ZIP (λ, ω). For

13



each data set, we calculated the each observed Sobs value and its bootstrap distribution

by using estimates from fitting the working models. Then we calculated p-value for each

data set by using equation (3.1) and computed the power of the test using equation (4.1).

For example, to investigate the power of the test under the true model ZIP(λ, ω), where

λ∗ = exp(0.8 − 0.1x1 + 0.3x3) and ω∗ = 0.15 − 0.1x1, we first generated 1000 sets of data

from this true model. Then for each data set, we calculated the each observed Sobs value

and its bootstrap distribution by using estimates from fitting the assumed working models

which are described in Table 4.1. Finally, we calculated the p-value by using equation (3.1)

and computed the power of the test using equation (4.1).

4.2 Score test statistic under misspecification of Pois-

son mean

The results are presented in Tables 4.2, 4.3 and 4.4. From these tables we can see that,

(1) In Table 4.2, the sizes of the tests are all around 0.05. When the Poisson mean is

misspecified (where the true Poisson mean is a constant), the power of the test decreases

as more covariates are incorporated into the Poisson mean, where those covariates actually

should not be included. Similarly, when ω∗ depends on covariates, the power of the test

also declines when more covariates are added into the Poisson mean, for example, when

ω∗ = 0.15 − 0.1x1 and n=50, the power decreases from 0.425 to 0.291 with the number

of covariates in the Poisson mean increasing. However, the misspecification of the Poisson

mean tends to have less impact on the power when sample size is large, for example, when

ω∗ = 0.15− 0.1x1 and n=200, the power declines slightly from 0.949 to 0.920 as the number

of covariates in the Poisson mean increases.

(2) In Table 4.3 and Table 4.4, we have three types of misspecification of the Poisson

mean: 1) excluding the covariates that should be included, which refers to the first type

that we mention in chapter 3; 2) including the covariates that should not be included, which

14



Table 4.2: The empirical sizes and powers for Sω at α = 0.05 based on 1000 samples when
λ∗ = exp(0.7)

λ∗ = exp(0.7)
log λ ω∗ n=25 n=50 n=100 n=200

β0 ω∗ = 0 0.045 0.053 0.054 0.049
ω∗ = 0.1 0.171 0.252 0.451 0.767
ω∗ = 0.15− 0.1x1 0.246 0.425 0.739 0.949

β0 + β1x1 ω∗ = 0 0.050 0.052 0.055 0.051
ω∗ = 0.1 0.149 0.225 0.446 0.738
ω∗ = 0.15− 0.1x1 0.205 0.406 0.700 0.931

β0 + β3x3 ω∗ = 0 0.054 0.043 0.040 0.047
ω∗ = 0.1 0.134 0.243 0.426 0.726
ω∗ = 0.15− 0.1x1 0.223 0.392 0.713 0.944

β0 + β1x1 + β2x2 ω∗ = 0 0.053 0.050 0.052 0.051
ω∗ = 0.1 0.114 0.213 0.406 0.710
ω∗ = 0.15− 0.1x1 0.188 0.379 0.650 0.938

β0 + β1x1 + β3x3 ω∗ = 0 0.055 0.041 0.057 0.051
ω∗ = 0.1 0.120 0.211 0.386 0.710
ω∗ = 0.15− 0.1x1 0.178 0.358 0.643 0.940

β0 + β2x2 + β3x3 ω∗ = 0 0.057 0.050 0.052 0.052
ω∗ = 0.1 0.121 0.209 0.413 0.714
ω∗ = 0.15− 0.1x1 0.202 0.383 0.676 0.940

β0 + β1x1 + β2x2 ω∗ = 0 0.056 0.048 0.054 0.049
+β3x3 ω∗ = 0.1 0.112 0.191 0.377 0.706

ω∗ = 0.15− 0.1x1 0.167 0.309 0.633 0.921

β0 + β1x1 + β2x2 ω∗ = 0 0.051 0.048 0.053 0.051
+β3x3 + β4x4 ω∗ = 0.1 0.095 0.173 0.362 0.675

ω∗ = 0.15− 0.1x1 0.128 0.291 0.593 0.920

1 x1 ∼ N(0, 1) and x1 ∈ [−1, 1], x2 ∼ Bin(1, 0.6),
x3 ∼ N(1, 1.5) and x3 ∈ [0, 2], x4 ∼ U(1, 2).

refers to the second type; 3) totally misspecified, which refers to the third type. Both of the

tables showed that the sizes of the tests are stable and around the nominal level α = 0.05.

For the first type of misspecification, the test with a constant Poisson mean has a better

power, even though the Poisson mean truly depend on covariates. For example, in Table 4.3

the true λ∗ = exp(0.8− 0.1x3), ω
∗ = 0.15− 0.1x1 and n=50, the test gains the power from

0.384 to 0.438 when the Poisson mean leaves out the covariate x3, which should be included.
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Table 4.3: The empirical sizes and powers for Sω at α = 0.05 based on 1000 samples when
λ∗ = exp(0.8− 0.1x3)

λ∗ = exp(0.8− 0.1x3)
log λ ω∗ n=25 n=50 n=100 n=200

β0 ω∗ = 0 0.040 0.050 0.045 0.050
ω∗ = 0.1 0.170 0.260 0.484 0.756
ω∗ = 0.15− 0.1x1 0.235 0.438 0.716 0.937

β0 + β1x1 ω∗ = 0 0.053 0.049 0.048 0.047
ω∗ = 0.1 0.139 0.239 0.447 0.742
ω∗ = 0.15− 0.1x1 0.177 0.355 0.651 0.923

β0 + β3x3 ω∗ = 0 0.055 0.054 0.050 0.049
ω∗ = 0.1 0.135 0.235 0.459 0.724
ω∗ = 0.15− 0.1x1 0.195 0.384 0.673 0.932

β0 + β1x1 + β2x2 ω∗ = 0 0.053 0.055 0.049 0.048
ω∗ = 0.1 0.113 0.212 0.416 0.708
ω∗ = 0.15− 0.1x1 0.167 0.302 0.623 0.914

β0 + β1x1 + β3x3 ω∗ = 0 0.050 0.049 0.045 0.044
ω∗ = 0.1 0.123 0.215 0.416 0.710
ω∗ = 0.15− 0.1x1 0.169 0.331 0.623 0.904

β0 + β2x2 + β3x3 ω∗ = 0 0.050 0.051 0.052 0.048
ω∗ = 0.1 0.121 0.222 0.396 0.719
ω∗ = 0.15− 0.1x1 0.166 0.332 0.633 0.916

β0 + β1x1 + β2x2 ω∗ = 0 0.051 0.051 0.050 0.053
+β3x3 ω∗ = 0.1 0.109 0.180 0.379 0.701

ω∗ = 0.15− 0.1x1 0.142 0.278 0.552 0.894

β0 + β1x1 + β2x2 ω∗ = 0 0.054 0.053 0.054 0.041
+β3x3 + β4x4 ω∗ = 0.1 0.097 0.168 0.348 0.681

ω∗ = 0.15− 0.1x1 0.136 0.229 0.539 0.882
1 x1 ∼ N(0, 1) and x1 ∈ [−1, 1], x2 ∼ Bin(1, 0.6),
x3 ∼ N(1, 1.5) and x3 ∈ [0, 2], x4 ∼ U(1, 2).

However, when the second type of misspecification occurs, the power of the test decreases

with the number of covariates in the Poisson mean increasing. For example, in Table 4.3,

when ω∗ = 0.15−0.1x1 and n=50, the power decreases from 0.384 to 0.229 when the Poisson

mean incorporates additional covariates that should not be included, such as x1, x2 and x4.

Under the third type of misspecification, the performance of the test only depends on the

number of covariates in the Poisson mean model, even when the mean is misspecified. For
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Table 4.4: The empirical sizes and powers for Sω at α = 0.05 based on 1000 samples when
λ∗ = exp(0.8− 0.1x1 + 0.3x3)

λ∗ = exp(0.8− 0.1x1 + 0.3x3)
log λ ω∗ n=25 n=50 n=100 n=200
β0 ω∗ = 0 0.057 0.049 0.048 0.047

ω∗ = 0.1 0.474 0.703 0.915 0.994
ω∗ = 0.15− 0.1x1 0.704 0.900 0.993 1.000

β0 + β1x1 ω∗ = 0 0.051 0.054 0.049 0.052
ω∗ = 0.1 0.433 0.660 0.912 0.993
ω∗ = 0.15− 0.1x1 0.614 0.851 0.991 1.000

β0 + β3x3 ω∗ = 0 0.055 0.055 0.047 0.049
ω∗ = 0.1 0.423 0.645 0.878 0.989
ω∗ = 0.15− 0.1x1 0.580 0.845 0.990 1.000

β0 + β1x1 + β2x2 ω∗ = 0 0.055 0.046 0.053 0.048
ω∗ = 0.1 0.392 0.639 0.879 0.993
ω∗ = 0.15− 0.1x1 0.526 0.820 0.989 1.000

β0 + β1x1 + β3x3 ω∗ = 0 0.049 0.049 0.049 0.050
ω∗ = 0.1 0.351 0.607 0.862 0.987
ω∗ = 0.15− 0.1x1 0.538 0.801 0.971 1.000

β0 + β2x2 + β3x3 ω∗ = 0 0.042 0.056 0.052 0.051
ω∗ = 0.1 0.364 0.594 0.876 0.988
ω∗ = 0.15− 0.1x1 0.538 0.825 0.987 1.000

β0 + β2x2 + β4x4 ω∗ = 0 0.057 0.050 0.053 0.054
ω∗ = 0.1 0.408 0.614 0.879 0.987
ω∗ = 0.15− 0.1x1 0.557 0.835 0.990 1.000

β0 + β1x1 + β2x2 ω∗ = 0 0.043 0.054 0.049 0.051
+β3x3 ω∗ = 0.1 0.336 0.573 0.862 0.983

ω∗ = 0.15− 0.1x1 0.475 0.787 0.972 1.000

β0 + β1x1 + β2x2 ω∗ = 0 0.048 0.051 0.047 0.053
+β3x3 + β4x4 ω∗ = 0.1 0.297 0.539 0.831 0.979

ω∗ = 0.15− 0.1x1 0.414 0.768 0.966 1.000
1 x1 ∼ N(0, 1) and x1 ∈ [−1, 1], x2 ∼ Bin(1, 0.6),
x3 ∼ N(1, 1.5) and x3 ∈ [0, 2], x4 ∼ U(1, 2).

example, in Table 4.4, the true Poisson mean is λ∗ = exp(0.8− 0.1x1 + 0.3x3) and when λ∗

is totally misspecified as λ = exp(β0 + β2x2 + β4x4), with ω∗ = 0.15− 0.1x1 and n=50, the

power of the test is equal to 0.835, which is slightly higher than the power that is obtained

under the well-specified model, which equals 0.801. We can also see this interesting result

in Table 4.3 where the true λ∗ = exp(0.8 − 0.1x3). When λ∗ is totally misspecified as

λ = exp(β0 + β1x1), with ω∗ = 0.15 − 0.1x1 and n=50, the power of the test is equal to

0.355 which is also slightly higher than the power that is obtained under the well-specified
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model, which equals 0.384. This result gives us a strong evidence that the power of the

test is only affected by the number of the covariates in the Poisson mean, regardless of the

misspecification.

In sum, when the Poisson mean is misspecified, the power of the test decreases as the

number of covariates in the Poisson mean increases. When sample size is large, the power

of the test decreases slightly as the number of the covariates in the Poisson mean increases.

However, no matter the Poisson mean is specified or not, the test with a constant Poisson

mean is more powerful than other tests assumed the Poisson mean depends on covariates.

This interesting finding gives us a suggestion that we can conduct the test by assuming

a constant Poisson mean when evaluating homogeneity in ZIP models, in other words, we

assume the Poisson mean model doesn’t depend on any covariates. Besides, it is surprising

that the power of the test is only affected by the number of the covariates in the Poisson

mean.

4.3 Applications to Wuhan Inpatient Care Insurance

data

We now illustrate the use of these findings with Wuhan Inpatient Care Insurance example.

4.3.1 Wuhan Inpatient Care Insurance data

The data in this study is obtained from Dongxihu District, Wuhan, the China Life Insurance

Company. These data were collected by insurance salesmen and claims staff of this company

between 1 July 2012 and 30 June 2013. The sample size is n=1562.

The outcome variable is the number of claims (NC) (ranges from 0 to 6). The distribution

of NC for 1562 observations is given in Figure 4.1. Here, the ’zeros’ constituted 90.01% of

the observations.
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Figure 4.1: Histogram of the number of claims

Generally, NC usually contains excess zeros and is potentially affected by the factors

of insured person’s demographic characteristics (gender, age, marital status, education,

monthly income, height, weight), occupation (labor or non-labor), living habits (smoking,

drinking) and others (BMI, hereditary disease). Only hereditary disease is excluded since

all the 1562 observations have no hereditary disease, thus eleven potential factors are used

in our study. The details of these potential factors are:

Gender (=0 for male, and 1 for female), Age (ranges from 2 to 70 years old), Education

(categorized as 0=none, junior high school and below, 1=senior high school including sec-

ondary and vocational school, 2=junior college, and 3=undergraduate, graduate and above),

Occupation (dichotomized as 0=non-labor type, consisting of manager, doctor and nurse,

teacher, civil, financial professionals, IT professionals, technician, business staff, administra-

tive staff, self employed households, and others; and 1=labor type, including driver and con-

ductor, construction site foreman, and worker), Marital status (dichotomized as 0=single,

consisting of separated, divorced, widowed and never married person; and 1=currently mar-

ried), Monthly income (in Chinese Yuan (RMB), categorized as 0=no income, 1=1-2,000

RMB, 2=2,001-5,000 RMB, 3=5,001-10,000 RMB, 4=10,001-20,000 RMB, 5=more than
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20,000 RMB), Height (in centimeter (cm), ranges from 90 to 190), Weight (in kilogram (kg),

ranges from 12 to 125), BMI (body mass index, calculated by BMI=Weight(kg)/Height(m)2

and Smoking (=0 for nonsmokers and 1 for smokers), Drinking (=0 for nondrinkers and 1

for drinkers).

4.3.2 Testing result

First, we conducted a set of score tests to test whether the homogeneous Poisson regression

is adequate or not for these data, see Table 4.5.

Table 4.5: The score test statistics under different working models

log λ Sobs p− value

β0 751.64 < 0.001

β0 + β1 ∗ Gender 655.65 < 0.001

β0 + β5 ∗ Marital status 593.34 < 0.001

β0 + β2 ∗ Age 592.77 < 0.001

β0 + β1 ∗ Gender + β5 ∗ Marital status 512.41 < 0.001

β0 + β2 ∗ Age + β5 ∗ Marital status 410.85 < 0.001

β0 + β1 ∗ Gender + β2 ∗ Age + β5 ∗ Marital status 360.87 < 0.001

β0 + β1 ∗ Gender + β2 ∗ Age + β4 ∗ Occupation 359.57 < 0.001

+β5 ∗ Marital status + β7 ∗ Height + β9 ∗ BMI

Full model1 356.09 < 0.001

β0 + β1 ∗ Gender + β2 ∗ Age + β5 ∗ Marital status + β9 ∗ BMI 356.08 < 0.001

β0 + β1 ∗ Gender + β2 ∗ Age 345.93 < 0.001

β0 + β1 ∗ Gender + β2 ∗ Age + β4 ∗ Occupation 342.67 < 0.001

+β5 ∗ Marital status + β9 ∗ BMI

1 Full model = β0+β1∗Gender+β2∗Age+β3∗Education+β4∗Occupation+β5∗Marital status+
β6 ∗ Monthly income + β7 ∗ Height + β8 ∗ Weight + β9 ∗ BMI + β10 ∗ Smoking + β11 ∗ Drinking.

Table 4.5 suggests that the homogeneous Poisson regression is not adequate no matter
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how the Poisson mean is specified, for these test statistics have significant p-values, which

are less than 0.001.

4.3.3 Modeling results

Table 4.6: Results of fitting a full ZIP model with ICI data

Poisson component coefficients (Poisson with log link)
Estimate Standard Error p-value

Intercept 2.6771 14.1539 0.8500
Gender 0.6139 0.4329 0.1562
Age -0.0225 0.0096 0.0193 *

Education -0.0513 0.1148 0.6548
Occupation 0.0717 0.3170 0.8212

Marital status 0.3031 0.2599 0.2435
Monthly income -0.2369 0.1201 0.0486 *

Height -0.0104 0.0867 0.9045
Weight 0.0549 0.1592 0.7302
BMI -0.1308 0.4340 0.7630

Smoking -0.6567 0.3092 0.0337 *
Drinking 0.3837 0.2195 0.0805

Zero component coefficients (binomial with logit link)
Estimate Standard Error p-value

Intercept -6.0471 11.6604 0.6040
Gender -0.0719 0.4941 0.8843
Age -0.1043 0.0170 < 0.001 **

Education -0.0467 0.1456 0.7483
Occupation 0.0415 0.3111 0.8939

Marital status -0.1791 0.2999 0.5503
Monthly income -0.3450 0.1778 0.0523

Height 0.0650 0.0714 0.3626
Weight -0.0433 0.1314 0.7416
BMI 0.2093 0.3642 0.5655

Smoking -0.9155 0.4190 0.0289 *
Drinking 0.4182 0.3058 0.1714

1 **:p-value< 0.01, *:p-value< 0.05.

The testing results in previous section 4.3.2 showed that the homogeneous Poisson model

doesn’t fit the ICI data adequately. In order to investigate which covariates affect the number

of claims significantly, we use the ZIP model to analyze the Inpatient Care Insurance data
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in our study. The ZIP model we used is introduced in chapter 2 with the link function

log(λ) = Xβ and log
(
ω

1−ω

)
= Gγ, where X and G are covariate matrices and β, γ are

vectors of parameters. We first fit a full ZIP model using all covariates. The results are

shown in Table 4.6, it is clear that many covariates are not significant. So we go on to

fit several ZIP models using different combinations of the 11 covariates to find out which

factors have the most impact on the number of claims, see Table 4.7.

Table 4.7: Fits of the different ZIP models

No. model AIC

1 log(λ) All covariates 1338.8
ω All covariates

2 log(λ) Gender + Age + Education + Occupation + Marital status 1328
+Monthly income + Height + Weight + BMI + Smoking + Drinking

ω Gender + Age + Marital status + Monthly income + BMI

+Smoking + Drinking

3 log(λ) Age + Marital status + Monthly income 1326.4
+Marital status*Monthly income + Smoking + Drinking

ω Age + BMI + Smoking + Drinking

4 log(λ) Age + Marital status + Monthly income + Smoking + Drinking 1326.27

ω Age + Monthly income + BMI + Smoking + Drinking

5 log(λ) Gender + Age + Marital status + Monthly income + Smoking 1325.4
+Drinking

ω Gender + Age + Monthly income + BMI + Smoking + Drinking

6 log(λ) Age + Marital status + Monthly income + Age*Marital status 1325.4
+Marital status*Monthly income + Smoking + Drinking

ω Age + BMI + Smoking + Drinking

1 All covariates = Gender + Age + Education + Occupation + Marital status + Monthly income +
Height + Weight + BMI + Smoking + Drinking.

Here we consider the well-known AIC (Akaike information criterion) as a model selection

criterion. In general, AIC is

AIC = 2k − 2 logL,

where k is the number of parameters in the model and L is the maximized value of the
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likelihood function for the estimated model.

From Table 4.7, it is easy to see that AIC suggests the models 5 and 6 to be the

most appropriate model with the smallest AIC value=1325.4. We choose model 6 as the

final model because it is less complicated than the model 5. The estimated coefficients

for model 6 are given in Table 4.8. Clearly, the Poisson mean λ depends significantly on

Age, Marital status, Monthly income, Smoking and Drinking and the mixing weight ω

depends significantly on Age, BMI, Smoking and Drinking. Note that the final model is

selected based on AIC criterion, but we can not grantee the model 6 is the best model for

the data.

Table 4.8: Results of fitting the chosen ZIP model with ICI data

Poisson component coefficients (Poisson with log link)

Estimate Standard Error p-value

Intercept 1.2453 0.5714 0.0293 *

Age -0.0664 0.0268 0.0132 *

Marital status 0.4990 0.7546 0.5084

Monthly income 0.3386 0.2063 0.1007

Age*Marital status 0.0494 0.0282 0.0805

Marital status*Monthly income -0.5485 0.2268 0.0156 *

Smoking -0.8789 0.2893 0.0023 **

Drinking 0.3710 0.1618 0.0218 *

Zero component model coefficients (binomial with logit link)

Estimate Standard Error p-value

Intercept 3.0758 0.9086 0.0007 **

Age -0.1065 0.0133 < 0.001 **

BMI 0.1076 0.0427 0.0118 *

Smoking -1.0819 0.4095 0.0082 **

Drinking 0.7094 0.2498 0.0045 **

1 **:p-value< 0.01, *:p-value< 0.05.
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In Table 4.8, from the Poisson component we can see that for those married persons,

as the monthly income increases, they tend to have less claims. Moreover, people who like

to drink are seem to claim more times than those nondrinkers. In addition, both the age

and smoking habit have negative effect on the NC, which means that the elder people and

smokers tend to have less number of claims.
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Chapter 5

Discussions

Through an intensive simulation study, we show that when the Poisson mean is misspecified,

the limiting distribution of the score test statistic under the null is not a χ2 distribution. This

may be due to the violation of the regularity assumptions for score test. Moreover, the power

of the test decreases as the number of covariates in the Poisson mean increases, regardless

the mean is well specified or not. And the test for homogeneity has the better power when

the working Poisson mean model doesn’t depend on any covariates. This interesting finding

suggests that we can conduct a test for homogeneity in ZIP models by assuming a constant

Poisson mean, in other words, assuming the Poisson mean doesn’t depend on any covariates.

In the real data analysis we have two main goals: 1) to evaluate that whether a standard

Poisson can fit the Wuhan Inpatient Care Insurance data adequately; 2) to determine what

covariates affect the number of claims significantly. For the first one, the test result shows

that the standard Poisson regression doesn’t fit the data well because of excess zeros. For the

second one, we select a final model from several ZIP models with different sets of covariates

by using the well-known AIC as a model selection criterion. The final model suggests that

there are six factors affecting the number of claims significantly: age, marital status, monthly

income, BMI, smoking and drinking habit.

There are some open questions that are subject to future research. For example, the find-
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ings in this report are all obtained by simulation studies. The rigorous analytical evidences

are still needed to support these findings. Another example is that we only investigate

the impact of misspecification on the performance of score test for the homogeneity in ZIP

models, ones can examine the same issue in other zero-inflated models, for example, the

zero-inflated binomial (ZIB) model and the zero-inflated negative binomial (ZINB) model.
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Appendix A

Likelihood Ratio Test and Wald Test

Within the family of ZIP models, testing whether a Poisson model is adequate or not

corresponds to testing the mixing weight ω

H0 : ω = 0 vs H1 : ω > 0, (A.1)

where possible test statistics are the likelihood ratio test (LRT), the Wald test and the score

test. However, the LRT and the Wald test statistics require the model under the alternative

hypothesis to be estimated. For a general ZIP regression model, the LRT for zero-inflation

is given by

LRTω = −2× [l(λ0)− l(λ,ω)],

where l(λ0) and l(λ0,ω) are the maximized log-likelihoods under the Poisson regression and

the ZIP regression models, respectively. The corresponding Wald test statistic is

Wω = ωT
[
Cov(ω)

]−1

ω,
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which, in the case of single constant ω parameter, simplifies to

Wω =
ω2

V ar(ω)
,

Standard asymptotic theory would suggest that under H0 both LRTω and Wω are χ2
1 dis-

tributed. However, for the ZIP model, the null hypothesis corresponds to ω being on the

boundary of the parameter space and the appropriate reference distribution is a mixture

of χ2 distributions, see Liang and Self (1987) and Feng and McCulloch (1992). For the

simple constant ω model, the appropriate reference distribution is an equal mixture of a χ2
0

(a constant at zero) and a χ2
1 distribution, with p-value given by 1

2
[Pr(χ2

1 > Wω)], etc.

A.1 Reference

Feng, Z., McCulloch, C.E. (1992). Statistical inference using maximum likelihood esti-

mation and the generalized likelihood ratio when the true parameter is on the boundary of

the parameter space. Statistic Probability Letter, 13, 325-332.

Self, S.G., Liang, K.Y. (1987). Asymptotic properties of the maximum likelihood estima-

tors and likelihood ratio test under nonstandard conditions. Journal of American Statistic

Association, 82, 605-610.
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Appendix B

Jansakul and Hinde’s General Score

Test Statistics

Based on the log-likelihood function given in (2.3) and the general model equations (2.5),

the score vector is:

S(β;γ) =

 Sβ(β,γ)

Sγ(β,γ)

 =

 ∂l(λ,ω)

∂β
∂l(λ,ω)
∂γ


where,

∂l

∂βj
=

∂l

∂λi

∂λi
∂βj

=
n∑
i=1

[I(yi = 0)[
−(1− ω)e−λi

ωi + (1− ωi)e−λi
]λi + I(yi > 0)(yi − λi)]xij, j = 1, 2, ..., p

and

∂l

∂γr
=

∂l

∂ωi

∂ωi
∂γr

=
n∑
i=1

[I(yi = 0)
(1− e−λi)

ωi + (1− ωi)e−λi
+ I(yi > 0)(

−1

1− ωi
)]gir, r = 1, 2, ..., q
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The expected information matrix J(β,γ) can be partitioned as

J(β;γ) =

 Jβ(β,γ) Jβγ(β,γ)

Jγβ(β,γ) Jγ(β,γ)


where the element Jβ, Jβγ = Jγβ

T and Jγ are, respectively

−E
[∂2l(γ,ω)

∂β∂βT

]
,−E

[∂2l(γ,ω)

∂β∂γ

]
, and− E

[∂2l(γ,ω)

∂γ∂γT

]
,

with

∂2l

∂βj∂βk
=

n∑
i=1

{
I(yi=0)

[
−e−λi

[
(1− λi)ωi + (1− ωi)e−λi

]
(1− ωi)λi

[ωi + (1− ωi)e−λi ]2

]

+ I(yi>0)(−λi)
}
xijxik, j, k = 1, 2, . . . , p,

∂2l

∂γr∂γs
=

n∑
i=1

{
I(yi=0)

[
−(1− e−λi)2

[ωi + (1− ωi)e−λi ]2

]
+ I(yi>0)

[
−1

(1− ωi)2

]}
girgis,

r, s = 1, 2, . . . , q

and
∂2l

∂γr∂γs
=

n∑
i=1

[I(yi = 0)[
−1− e−λi2

ωi + (1− ωi)e−λi2
]]xijgir,

Under the null hypothesis, the general score test is then

Sω = Sγ
T (β̂0, 0)C−1Sγ(β̂0, 0), (B.1)
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where β0 is the maximum likelihood estimate under the Poisson model and

Sγ(β̂0, 0) = GT
[Iyi=0 − e−

ˆλ0

e−
ˆλ0

]
, (B.2)

C = Jγ(β̂0, 0)− Jβγ(β̂0, 0)
T
Jβ(β̂0, 0)

−1
Jβγ(β̂0, 0), (B.3)

with

Jβ(β̂0, 0) = XTdiag(λ̂0)X, (B.4)

Jγ(β̂0, 0) = GTdiag(
1− e−

ˆλ0

e−
ˆλ0

)G, (B.5)

and

Jγβ(β̂0, 0) = GTdiag(−λ̂0)X, (B.6)

In the case of a constant model for ω this test reduces to that given by van den Broek

(1995), i.e. if G is taken to be an n× 1 matrix of 1’s, then

Sγ(β̂0, 0) =
n∑
i=1

[Iyi=0 − e−λ̂0i

e−λ̂0i

]
,

Jγ(β̂0, 0) =
n∑
i=1

[1− e−λ̂0i

e−λ̂0i

]
,

and

Jγβ(β̂0, 0) = −λ̂
T

oX,

The score test for a ZIP model with constant ω is then

[∑n
i=0

(
Iyi=0−exp(−λ̂0i)

exp(−λ̂0i)

)]2
[∑n

i=0

(
1−exp(−λ̂0i)
exp(−λ̂0i)

)]
− λ̂

T

0X
[
XTdiag(λ̂0)X

]−1

XT λ̂0

,

which is equivalent to expression (3) in van den Broek (1995). Note that in this simple case,
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the score statistics simply compare the observed zero frequency with the expected value

under the Poisson model with appropriate weights.
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Appendix C

R Code Example

library(truncnorm)

library(tmvtnorm)

ZIP=function(n0,p2,a,a0,b1,b2,b3,b4,b5,b6)

{

#initialize i,seq,x1,x2,x4,x5

i=0

seq=numeric(0)

mvn=rtmvt(1,c(0,1),diag(c(1,1)),lower=c(-1,1),upper=c(1,2))

x1=c(mvn[,1])

x2=rbinom(1,n0,p2)

x3=c(mvn[,2])

x4=runif(1,1,2)

x5=rbinom(1,n0,p2)

#p depend on covariate

p=a0

#u depend on covariate

u=exp(b3)

#generate 1 count

cp=p+(1-p)*exp(-u)*(u^0)/(factorial(0))

x=runif(1,0,1)

while(cp<=x){

py=(1-p)*exp(-u)*(u^(i+1))/(factorial(i+1))
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cp=cp+py

i=i+1

}

seq=c(seq,i,p,u,x1,x2,x3,x5)

return(seq)

}

#generate ZIP of size n

ZIPR=function(n,n0,p2,a,a0,b1,b2,b3,b4,b5,b6)

{

i=1

seq1=numeric(0)

while(i<=n){

z=c(ZIP(n0,p2,a,a0,b1,b2,b3,b4,b5,b6))

seq1=c(seq1,z)

i=i+1

mat=matrix(seq1,7)

}

return(mat)

}

test=function(M,n,n0,p2,a,a0,b1,b2,b3,b4,b5,b6)

{

#initialize dataset, covariate

a=ZIPR(n,n0,p2,a,a0,b1,b2,b3,b4,b5,b6)

x=cbind(matrix(1,n,1))

g=cbind(matrix(1,n,1))

y=t(t(a[1,]))

x40=t(t(a[4,]))

x50=t(t(a[5,]))

x60=t(t(a[6,]))

seq2=matrix(,1,M)

#estimated beta0

m=glm(y~1, family="poisson")

b0=m$coef

#lamda

lamda=exp(x%*%b0)

#diagnal matrix of lamda
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D=diag(c(lamda))

#score

s1=t(g)%*%(((y==0)*1-exp(-lamda))/exp(-lamda))

#information matrix

J11=t(x)%*%D%*%x

J22=t(g)%*%diag(c(((1-exp(-lamda))/exp(-lamda))))%*%g

J21=t(g)%*%diag(c(-lamda))%*%x

J12=t(J21)

C=J22-J21%*%solve(J11)%*%J12

#test statistics

sobs=t(s1)%*%solve(C)%*%s1

sobs=c(sobs)

for(jj in 1:M){

#bootstrap

y1=rpois(n,exp(x%*%b0))

m=glm(y1~1, family="poisson")

b=m$coef

#lamda

lamda=exp(x%*%b)

#diagnal matrix of lamda

D=diag(c(lamda))

#score

s1=t(g)%*%(((y1==0)*1-exp(-lamda))/exp(-lamda))

#information matrix

J11=t(x)%*%D%*%x

J22=t(g)%*%diag(c(((1-exp(-lamda))/exp(-lamda))))%*%g

J21=t(g)%*%diag(c(-lamda))%*%x

J12=t(J21)

C=J22-J21%*%solve(J11)%*%J12

#test statistics

s=t(s1)%*%solve(C)%*%s1

s=c(s)

seq2[1,jj]=s

}

s95=quantile(seq2,c(0.95))

S0=(sobs>s95)*1
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return(S0)

}

#calculate N test statistics and proportion

testR=function(N,M,n,n0,p2,a,a0,b1,b2,b3,b4,b5,b6,alpha,q)

{

i=1

seq3=numeric(0)

while(i<=N){

z1=c(test(M,n,n0,p2,a,a0,b1,b2,b3,b4,b5,b6))

seq3=c(seq3,z1)

i=i+1

}

P=mean(seq3)

return(P)

}

#b0,0.05

testR(1000,1000,50,1,0.6,1,0,0,0,0.7,0,0,0,0.05,1)

testR(1000,1000,50,1,0.6,1,0.1,0,0,0.7,0,0,0,0.05,1)
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Appendix D
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