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Abstract

LetMd(n) be the configuration space of n distinct, labeled points in Rd. We can impose

a non-k-equal condition on the configurations that no k points coincide. Denote this space by

M(k)
d (n). One closely related space is the kth-component of the little discs operad, denoted

by Bd(n), it is the configuration space of n open, labeled, distinct discs in the unit disc.

Similarly, we can impose a non-k-overlapping condition such that no k discs share a common

point. Let this space be denoted B(k)
d (n).

The homology of the little discs operad and the homology of the non-k-equal configuration

spaces have both been known for several decades. Dobrinskaya and Turchin gave a geometric

description of H∗B(k)
d (n) using the operadic interpretation that is extensively used throughout

the first four chapters.

The first two chapters of this dissertation give the needed background on operads, mod-

ules, and bimodules, in general, and then more details about the little discs operad. There

is also information given about symmetric sequences, including the homology of the non-

k-overlapping discs. This leads to the third chapter where we give an explicit formula to

compute the traces (or characters) of the symmetric group action on H∗M(k)
d (n). This yields

a generating function of these characters that is called the Cycle Index Sum. The fourth

chapter defines the operad of overlapping discs, which is a filtered operad. The culmination

of this chapter is a theorem that gives a description of an element in H∗B(k)
d (n) that occurs

when braces are composed with braces. In the final chapter of this dissertation, we define

a cosimplicial model for the limit of the Taylor tower associated to the homotopy fiber of

non-k-equal spaces of immersions of D1 → Dn over the space of all immersions D1 → Dn.
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Chapter 1

Operads, Modules and Bimodules

1.1 Operads

Definition 1.1.1. Define an operad {O(n), n ≥ 0} to be a sequence of k that has the

following structure data:

1. An action of the symmetric group Σn, for n ≥ 0.

2. Composition maps µk(m1,m2,..,mk) : O(k)⊗ (O(m1)⊗O(m2⊗· · ·⊗O(mk))→ O(m1 +m2 +

· · ·+mk), where k,m1,m2, ...,mk ≥ 0.

If the mi’s are understood, then we will abbreviate µk(m1,m2,..,mk) by µk. For x ∈ O(k) and

yi ∈ O(mi), we will write µk(x, y1, ..., yk) = x(y1, ..., yk).

3. An element id ∈ O(1) that will be a unital element or identity.

An operad O(n) is also required to satisfy associative, unital and a compatibility with the

symmetric group action axions:

1. The composition maps will satisfy the following commutative square diagram:

1



z(1,1) · · · z(1,n1) z(2,1) · · · z(2,n2) z(k,1) · · · z(k,nk)

y1 y2 yk· · ·

x

z(1,1) · · · z(1,n1) · · · z(k,1) · · · z(k,nk)

x(y1, y2, yk)
µk ⊗ id~z

idx ⊗
(

k⊗
i=1

µni

)
x

y1(z(1,1), .., z(1,n1)) yk(z(k,1), .., z(k,nk))· · ·

µn1+n2+...+nk

x(y1(z(1,1), ..., z(1,n1)), .., yk(z(k,1), ..., z(k,nk))

µk

2. An operad satisfies the unital property: x(id, .., id) = x = id(x).

3. An operad satisfies two symmetric properties. First,

x(y1 · σ1, y2 · σ2, ..., yk · σk) = x(y1, y2, ..., yk) · ~σ,

where ~σ = (σ1, σ2, ..., σk) ∈ Σn1+...+nk . Here the inputs of the yi’s are permuted.

Second, a block permutation action where the yi’s are permuted and their corresponding

zi,j’s move with them.

x(y1, y2, ..., yk) · σ(~n) = (x · σ)(yσ−1
1
, yσ−1

2
, .., yσ−1

k
)

where σ(~n) = (σ1, σ2, ..., σk) ∈ Σn1+...+nk is the permutation of blocks obtained from σ ∈ Σk

1.2 Examples

1. For any vector space A, let EndA be the operad of endomorphisms on A where EndA(k) =

Hom(A⊗k, A). The composition maps on EndA(k) are

x(y1, ..., yk) = x ◦ (y1 ⊗ y2 ⊗ yk) ∈ Hom(A⊗(n1+···+nk), A).

2



where A⊗(n1+···+nk) = A⊗n1 ⊗ · · · ⊗ A⊗nk .

y1 ⊗ y2 ⊗ · · · ⊗ yk : A⊗n1 ⊗ · · · ⊗ A⊗nk → A⊗ A⊗ · · · ⊗ A = Ak,

and x : Ak → A.

The identity, id ∈ EndA(1) = Hom(A,A) and the identity map is id : A → A. The Σn

action of EndA(n) = Hom(A⊗n, A) permutes the factors in A⊗n.

Definition 1.2.1. For an operad O, a vector space A is an O-algebra is one is given a

map of operads f : O → EndA.

An operad O describes all natural multi-linear n-arity operations of a given algebra struc-

ture. We will look at classical algebra structures such as commutative, associative, and

Lie algebras as well as Poisson algebras and see how they arise from looking at such maps

in small arities of the corresponding operads.

2. The commutative unital operad Com:

Com(n) = k = k〈x1·x2 · · ·xn〉 for all n ≥ 0, the one dimensional vector space of monomials

in n commutative variables. The identity element is x1 ∈ Com(1). The symmetric group

actions of Σn is trivial. All compositions are induced by the k ⊗ k ' k, using the usual

multiplication. A map Com→ EndA gives the structure of a commutative algebra on A.

Pictorially, the symmetric group action can be described as tree diagrams. This is shown

below in the case that n = 2:

(x1 · x2) (x2 · x1) (x1 · x2)

2 1 1 2 1 2

= =

Now let us look at a few of the small arities of Com:

Com(0) = k = k〈1〉.

3



Com(1) = k since the only map from A to A is the identity map id : A → A mapping

x1 7→ x1, including scalar multiples of the map. Thus Com(1) = k〈x1〉 = k.

For Com(2) we look at the possible maps A⊗2 → A that come from a commutative algebra

structure. Given two elements x1, x2 ∈ A the only possible operation is commutative

multiplication. This implies all maps of A⊗2 → A are equivalent to scalar multiples of

the map (x1, x2) 7→ x1 · x2. Therefore Com(2) = k〈x1 · x2〉 = k.

For Com(3) we look at the possible maps A⊗3 → A that arise from a commutative

algebra structure. Given three elements x1, x2, x3 ∈ A the only possible operation is

multiplication. Since we are in a commutative setting, all maps of A⊗3 → A are equivalent

to scalar multiples of the map (x1, x2, x3) 7→ x1 · x2 · x3. Therefore Com(3) = k〈x1 · x2 ·

x3〉 = k.

There are two versions of a commutative algebra structure, either unital or non-unital.

Above we have described the unital case. The non-unital version is governed by how

Com(0) is defined. We denote the non-unital commutative operad by Com>0 and we

define Com>0(0) = 0.

3. The associative unital operad Assoc:

Assoc(n) is the subspace of a free associative algebra on n generators, x1, .., xn, spanned

by monomials where every generator is used exactly once. The symmetric group action

of Σn on Assoc(n) is renumeration of the generators. Thus Assoc(n) = kn! = k[Σn]. The

identity element is x1 ∈ Assoc(1). Since Assoc is unital, Assoc(0) = k〈1〉.

As with commutative algebras, there are two versions of an associative algebra, either

unital or non-unital. The non-unital version is governed by how Assoc(0) is defined. We

will denote the non-unital version by Assoc>0 and we define Assoc>0(0) = 0.

Pictorially, we can represent the composition maps of Assoc as a tree diagram. Example

of such diagram for Assoc(4) is shown below.
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x1 · x2 ((x1, x2)x3)x4 x1 · x2 · x3 · x4= =

x1 · x2 4

x1 · x2 3

1 2

1 2 3 4 1 2 3 4

An example of composition in Asocc(3) is shown below:

x2 · x3 · x1 = (x3)(1)(x2 · x1) = x3 · x2 · x1

x2 · x1 x1 1

1 2 3

4. The Lie operad Lie:

Recall that a Lie algebra is a vector space g with a Lie bracket [·, ·] : g ⊗ g → g. This

bracket is a bilinear operation with an anti-symmetric relation, [x, y] = −[y, x], and obeys

the Jacobi relation: [[x, y], z] + [[z, x], y] + [[y, z], x] = 0.

Now we define Lie(n) as the subspace of a free Lie algebra on n generators x1, .., xn,

spanned by the Lie bracket where every generator is used exactly once. The identity

element is x1 ∈ Lie(1). The symmetric group action of Σn on Lie(n) is renumeration of

the generators.

It is a known fact that Lie(n)= k(n−1)! = k〈[...[[x1, xσ(2)], xσ(3)], ..., xσ(n)]〉. The first gener-

ator, x1, can always be moved to the front by the anti-symmetry relation and the bracket

can be made linear by the Jacobi relation. We say that a Lie bracket is linear if it is of

the form [...[[xσ(1), xσ(2)], xσ(3)], ..., xσ(n)].

Remark: We have an inclusion of operads: Lie ↪→ Assoc. The Lie bracket can be

interpreted as [x1, x2] = x1 · x2 − x2 · x1 in Assoc.

Pictorially, we can represent composition maps in Lie(3) as follows:
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[x1, x2] = [[x1, x2], x3]

[x1, x2] 3

1 2

1 2 3

Now we look at a few small arities of Lie:

Lie(0) = 0 as there is no natural map k→ g that arises from the Lie algebra structure.

Lie(1) = k = k〈x1〉 as the only map from g → g is the identity map and its scalar

multiples.

For Lie(2) we look at the possible maps g⊗2 → g that come from a Lie algebra structure.

Given two elements x1, x2 ∈ g, the only operation we can apply is the Lie bracket. By

the anti-symmetry property, all maps of g⊗2 → g are equivalent to scalar multiples of the

map (x1, x2) 7→ [x1, x2]. Thus Lie(2) = k = k〈[x1, x2]〉.

For Lie(3) we look at the possible maps g⊗3 → g that arise from a Lie algebra structure.

Given three elements x1, x2, x3 ∈ g, the only operation we can apply is the Lie bracket

iteratively. Up to the Jacobi relation, all maps of g⊗3 → g are equivalent to either scalar

multiples of (x1, x2, x3) 7→ [[x1, x2], x3] or scalar multiples of (x1, x2, x3) 7→ [[x1, x3], x2].

Thus Lie(3) = k2 = k〈[[x1, x2], x3], [[x1, x3], x2]〉.

5. The unital Poisson operad Pois:

Recall the notion of a Poisson algebra which is both a commutative algebra and a Lie

algebra so it has a commutative multiplication and a Lie bracket. The two operations are

related by the Leibniz relation: [a, bc] = [a, b]c+ b[a, c].

Pois(n) is the subspace of a free Poisson algebra on n generators x1, .., xn, spanned by

products of iterated brackets where every generator is used exactly once. It is a known

fact that Pois(n) = kn!. The identity element is x1 ∈ Pois(1). The symmetric group

action of Σn on Pois(n) is renumeration of the generators.

Next we look at small arities of Pois:
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Pois(0) = k = k〈1〉

Pois(1) = k〈x1〉 as there is only the identity map from A→ A and its scalar multiples.

For Pois(2) we look at the possible maps A⊗2 → A that arise from a Poisson algebra

structure. Given two elements x1, x2 ∈ A, there are two possible operations, either

commutative multiplication or the Lie bracket. The commutative multiplication gives a

map (x1, x2) 7→ x1 · x2 with scalar multiples. The Lie bracket, up to the anti-symmetry

property and scalar multiples, gives the map (x1, x2) 7→ [x1, x2]. Therefore Pois(2) =

k2 = k〈x1 · x2, [x1, x2]〉.

For Pois(3) we look at the possible maps A⊗3 → A that arise from a Poisson algebra

structure. Given three elements x1, x2, x3 ∈ A, there are two possible operations, ei-

ther commutative multiplication or Lie bracket. Up to the Jacobi, anti-symmetry and

Leibniz relations and commutativity, there are six possible maps and their scalar mul-

tiples: (x1, x2, x3) 7→ x1 · x2 · x3, (x1, x2, x3) 7→ [x1, x2] · x3, (x1, x2, x3) 7→ [x1, x3] · x2,

(x1, x2, x3) 7→ [x2, x3] · x1 (x1, x2, x3) 7→ [[x1, x2], x3], and (x1, x2, x3) 7→ [[x1, x3], x2]. So

Pois(3) = k6 = k〈x1 · x2 · x3, [x1, x2] · x3, [x1, x3] · x2, [x2, x3] · x1, [[x1, x2], x3], [[x1, x3], x2]〉.

There are two versions of a Poisson algebra, either unital or non-unital. The unital version

is described above. The non-unital version is governed by how Pois(0) is defined. We

will denote the non-unital version by Pois>0 and define Pois>0(0) = 0.

6. Graded unital Poisson Operad:

There is also a graded version of Pois(n), which we denote Poisd−1(n), where the Poisson

bracket has a grading of degree (d−1). This is an example of an operad in the category of

graded vector spaces. We will use this graded version of Pois(n) below in Theorem 2.1.1.

The grading of the bracket does not affect the identity or the identity axiom. However the

structure data for the composition maps and the symmetric group action as well as the

associativity and symmetry axioms are affected by the grading with the appearance of a

sign that depends on the grading of the bracket. In example, [x1, x2] = (−1)d−1[x2, x1].

The grading corresponds to the central symmetry of Sd−1. The algebra over Poisd−1 is a

7



(d− 1)-graded Poisson algebra.

1.3 Modules over an Operad

Definition 1.3.1. A left module over an operad O is a sequence of vector spaces M =

{M(n), n ≥ 0}, with a Σn-action, together with maps

λk(,m1,m2,...,mk) = O(k)⊗ (M(m1)⊗M(m2)⊗ ...⊗M(mk))→M(m1 + ...+mk)

for any k,m1, ...,mk ≥ 0, satisfying similar associative, unital and symmetric group action

axioms as in Definition 1.1.1. That is, there is a similar commutative square to the one

in Axiom 1, Definition 1.1.1 where the x and yi’s are in O and the zi,j’s are in M . The

condition id(x) = x, for x ∈ M, id ∈ O(1) is satisfied. There is also similar symmetric

group action conditions to Axiom 3 in Definition 1.1.1 where x is in O and the yi’s are in

M .

Definition 1.3.2. Similarly, a right module over an operad O is a sequence of vector spaces,

M = {M(n), n ≥ 0}, with a Σn-action, together with maps:

ρk(m1,...,mk) = M(k)⊗O(m1)⊗ ...⊗O(mk)→M(m1 + ...+mk)

for any k,m1, ...,mk ≥ 0. Just as will the left module over O(k), there are analogous axioms

to Axioms 1-3 in Definition 1.1.1. For the associative axiom, there is similar commutative

square where x ∈ M and the yi’s and the zi,j’s are in O. The condition x(id, ..., id) = x,

for x ∈ M, id ∈ O(1) is satisfied. For the symmetric group action axiom, there are similar

conditions where x is in M and the yi’s are in O.

Definition 1.3.3. Define a sequence of vector spaces M = {M(n), n ≥ 0} with a Σn-action,

to be a bimodule over an operad O if it is both a left and a right module over O. There is

also a compatibility condition that can be expressed as a commutative square, as in Axiom 1

of Definition 1.1.1, where the x and zi,j’s are in O and the yi’s are in M .
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1.4 Categorical Definitions of Operads and Modules

Definition 1.4.1. Let CΣ denote the category of symmetric sequences in C. Objects in CΣ

are sequences X = {X(n), n ≥ 0} of objects X(n), n ≥ 0, each endowed with a Σn-action.

A morphism f : X → Y is a collection of Σn-equivariant maps fn : X(n)→ Y (n), n ≥ 0.

Operads can also be defined categorically. In order to do so, we define two monoidal

structure on the category of symmetric sequences. Let C be a symmetric monoidal category

with monoidal product ⊗: C × C → C, and unit object I. Assume also the category C has

limits and colimits where colimits are preserved by the monoidal structure. In particular, C

has an initial element ∅.

The category C has two monoidal structures. For two objects M and N in C

(M ⊗N)(k) =
⊔

k1+k2+...+kr=k

IndΣk
Σk1
×Σk2

M(k1)⊗N(k2)

The identity is given by:

1(n) =


I, n = 0;

∅ n 6= 0.

Definition 1.4.2. [17, Section 2.2.2] For two symmetric sequences M and N in a symmetric

monoidal category C, we can define their composition sequence:

M ◦N =
∞⊔
r=0

(
M(r)⊗N⊗r

)
Σr

(1.4.1)

where N⊗r is the r-th symmetric sequence given by explicitly:

N⊗r(k) =
⊔

k1+k2+...+kr=k

IndΣk
Σk1
×Σk2

×...×Σkr
N(k1)⊗N(k2)...⊗N(kr) (1.4.2)

and the Σr denotes quotienting by the symmetric action of Σr.

The operation (1.4.1) endows C with monoidal structure. We will denote this monoidal
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category by (CΣ, ◦, 1) where ◦ is the monoidal product as in (1.4.1), and 1 is the unit defined

as

1(n) =


I, n = 1;

∅ n 6= 1.

Definition 1.4.3. An operad O is a monoid in (CΣ, ◦, 1).

Definition 1.4.4. [26, Section 5.2.1] Recall that the structure of a monoid is given by the

following data:

1. There is a unit map η : 1→ O(1).

2. Compositions maps O ◦ O → O.

As well as satisfying the following associativity and unitary axioms:

1. It satisfies the following commutative diagram for associativity:

'(O ◦ O) ◦ O O ◦ (O ◦ O)

O ◦ O O ◦ O

O

µ ◦ id id ◦ µ

' '

2. It satisfies the following commutative diagram for the unitary axiom:

1 ◦ O O ◦ O O ◦ 1

O

η ◦ id id ◦ η
µ' '

The composition map of O ∈ (CΣ, ◦, 1) encodes the composition map µk(m1,...,mk) given

in Definition 1.1.1. Similarly, the identity map id ∈ O(1) from Definition 1.1.1 is encoded

by the map η : 1→ O.

Definition 1.4.5. [16, Section 2.1.6] Let (M,µ, η) be a monoid in any category. Define X

to be a left module over M if it satisfies the following relations for the composition morphism

λx : M ◦X → X so that the following diagrams commute:

10



M ◦M ◦X M ◦X

M ◦X X

idM ◦ λx

λx

µ ◦ idX λX

and

I ◦X M ◦X

X

η ◦ idX

λX'

Definition 1.4.6. [16, Section 2.1.5] Let (M,µ, η) be a monoid in any category. Define X to

be a right module over M if it satisfies the following relations for the composition morphism

ρx : X ◦M → X so that the following diagrams commute:

X ◦M ◦M X ◦M

X ◦M X

idX ◦ µ

ρX

ρX ◦ idM ρX

and

X ◦ I X ◦M

X

idX ◦ η

ρX'

Definition 1.4.7. Define X to be a bimodule of (M,µ, η), a monoid in any category, if it is

both a left and a right module of M and satisfies the following compatibility between left and

right actions:

M ◦X ◦M M ◦X

X ◦M X

idM ◦ ρX

ρX

λX ◦ idM λX

11



Definition 1.4.8. For an operad O ∈ (CΣ, ◦, 1), a left module L (respectively, right module

R) over O is a Σ-sequence in (CΣ, ◦, 1) endowed with a left action λL : O ◦ L → L (re-

spectively, a right action ρR : R ◦ O → R) from Definition 1.4.5 (respectively, Definition

1.4.6). Then define X to be a bimodule of O to be a Σ-sequence in (CΣ, ◦, 1) that is both a

left and right module over O and satisfies the compatibility between left and right actions in

Definition 1.4.7.
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Chapter 2

Operads and Bimodules of Little Discs

2.1 The Little d-discs Operad Bd

This is an example of a topological operad which will be essential to this paper. Topolog-

ical operads are defined in an analogous way as operads of (graded) vector spaces where

{O(n), n ≥ 0} is now a sequence of topological spaces with the same set of structure data as

given in Definition 1.1.1 with the exception one uses ×, the product of spaces, in place of ⊗.

Define Bd(k) to be the configuration space of k disjoint, open, labeled discs in the unit disc:

Bd(k) = sEmb

(⊔
k

Dd, Dd

)
, the space of special embeddings,

⊔
k

Dd 7→ Dd given on each

component by translation and rescaling only. Composition maps in Bd(k) can be viewed

similarly to composition maps in EndA(k). Geometrically, the composition maps in Bd(k)

are given by insertion of discs. The identity is the configuration of one disc that encompasses

the entire unit disc. The symmetric group action is renumeration of the discs.

An example of a composition map µ2 : Bd(2) × (Bd(1)× Bd(2)) → Bd(3) would be as

follows:

1

2 1
2

1
1

3

2
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The dotted circles do not actually appear in Bd(3) but are shown to help the reader visualize

how the second and third disc compose into the first disc. The actual result of µ2 in Bd(3)

is:

1

3

2

Theorem 2.1.1 (F. Cohen, [11]). The homology operad H∗Bd is the operad Assoc of as-

sociative unital algebras in d = 1 and the operad Poisd−1 of graded unital Poisson algebras

with bracket of degree (d− 1) in the case d ≥ 2.

We will not prove this theorem but will show that it is true for some small arities.

Note that the space is torsion free so we use integral homology. We can define operads in

the category of Z − modules rather than vector spaces with no changes to the definition.

Therefore, we use Z instead of k below.

Case d=1: It is easy to see B1(n) has n! contractible components. Then H∗B1(n) =

H0B1(n) = Zn!. As seen above Assoc(n) = Zn! = Z〈xσ1 · xσ2 · ... · xσn , σ ∈ Σn〉.

Case d ≥ 2: We will look at small arities of H∗Bd(n) to see that they agree with the

(graded) Poisson operad of the same arity above. Since Bd(0) = ∗, H0Bd(0) = Z and

H>0Bd(0) = 0. Thus H∗Bd(0) = Z〈1〉.

Similarly Bd(1) ∼= ∗, H0Bd(1) = Z and H>0Bd(1) = 0. Thus H∗Bd(1) = Z〈x1〉.

For d ≥ 2, Bd(2) = Sd−1, so H∗Bd(2) = H∗S
d−1. One has H∗S

d−1 = Z when ∗ = 0 or d−1,

and H∗S
d−1 = 0 otherwise. Hence H∗S

d−1 = 〈x1 ·x2, [x1, x2]〉, where x1 ·x2 generates H0S
d−1

and [x1, x2] generates Hd−1S
d−1. This matches with what we have above when describing

the first few arities of Pois(n).

These generators in H∗Bd(n) have nice geometric interpretations by thinking about the

xi’s as planets and the brackets giving the orbits relating the planets to one another. Looking

at the generators of Pois(3)=H∗Bd(3), the generator x1 · x2 · x3 is the only one where the

xi’s do not interact with one another. Geometrically this generator is just a point. For
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generators of the form [[xi, xj], xk], here xi and xj orbit closely around each other like a

binary star system and xk orbits around the pair of them. Geometrically this generator

corresponds to a map Sd−1 × Sd−1 → Bd(3).

xk

xi

xj

For the generators of the form [xi, xj] · xk, again xi and xj orbit closely around each other.

However, unlike the previous generator, xk does not interact with the other two generators.

Geometrically this generator corresponds to the map Sd−1 → Bd(3).

xk

xi

xj

2.2 Bimodule of Overlapping Discs B(k)
d

Below we describe a bimodule over Bd, the little d-discs operad, but first recall the configu-

ration space.

Definition 2.2.1. 1. Let Md(n) be the configuration space of n distinct, labeled points

in Rd, equivalently:

Md(n) = {(x1, x2, ..., xn) ∈ Rd | xi 6= xj if i 6= j}.

2. We can impose a non − k − equal condition on the configurations of {x1, x2, ..., xn} :

no k points coincide. We will denote the configuration space of n labeled points with

the non-k-equal condition by M(k)
d (n).
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Notice thatMd(n) is homotopy equivalent to Bd(n) by contracting each disc of Bd(n) to

its center.

Similarly we can impose a non−k− overlapping condition on the configurations of discs

where no k discs share a common point. We will denote this space as B(k)
d (n). One can view

B(k)
d (n) as a space sImmk

(⊔
n

Dd, Dd

)
, the space of special immersions,

⊔
n

Dd 7→ Dd given

on each component by translation and rescaling only.

The sequence B(k)
d is a bimodule over Bd. The right action

B(k)
d (n)× Bd(m1)× Bd(m2)× ...× Bd(mn)→ B(k)

d (m1 +m2 + ...+mn) (2.2.1)

and the left action

Bd(n)× B(k)
d (m1)× B(k)

d (m2)× ...× B(k)
d (mn)→ B(k)

d (m1 +m2 + ...+mn) (2.2.2)

are given by composition of disc maps.

The composition maps of B(k)
d are well-defined as resulting configuration in B(k)

d (m1 +

m2 + ...+mk) will satisfy the non-k-overlapping condition.

In [12], the authors give a geometrical description of H∗B(k)
d as a pointed left module

under H∗Bd in Theorem 3.4 and Theorem 3.6 of their paper. We will include these theorems

below for completeness. However, first we will need three more definitions.

Definition 2.2.2. Define M to be a left module (respectively, bimodule) under an operad

O if it is a left module (respectively, bimodule) over O and is endowed with a map of left

modules (respectively, bimodules) O →M .

Definition 2.2.3. An operad O in graded Z-modules is called augmented if it is endowed

with a surjective map of operads O → Com.

Definition 2.2.4. Define M to be a pointed left module (respectively, bimodule) under an

augmented operad O if M is a left module (respectively, bimodule) under O, the structure

map O →M factors through Com, and the map Com→M is an inclusion.
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Theorem 2.2.5 (N. Dobrinskaya and V. Turchin, [12]). For k ≥ 3, the pointed left module

H∗B(k)
d under H∗Bd is generated by a single element {x1, ..., xk} ∈ H(k−1)d−1B(k)

d (k) which is

symmetric or skew symmetric depending on the parity of d:

{xσ1 ...xσk} = (−1)|σ|d{x1, ..., xk}, σ ∈ Σk. (2.2.3)

The only relation of the left action is the generalized Jacobi:

k+1∑
i=1

(−1)(i−1)d[xi, {x1, ..., x̂i, ..., xk+1}] = 0. (2.2.4)

Theorem 2.2.6 (N. Dobrinskaya and V. Turchin, [12]). For k ≥ 3, the pointed bimodule

H∗B(k)
d under H∗Bd is generated by a single element {x1, ..., xk} ∈ H(k−1)d−1B(k)

d (k) satisfying

the symmetry (2.2.3), generalized Jacobi (2.2.4), and Leibniz relations with respect to the

right action:

{x1, ..., xk−1, xk · xk+1} = xk · {x1, ..., xk−1, xk+1}+ {x1, ..., xk} · xk+1; (2.2.5)

{x1, ..., xk−1, [xk, xk+1]} = (−1)d[{x1, ..., xk−1, xk+1}, xk] + [{x1, ..., xk}, xk+1]. (2.2.6)

As a pointed left module (respectively, bimodule) H∗B(k)
d (k) has only one generator, given

by {x1, ..., xk}. Below we give a geometrical description of {x1, ..., xk}. We know

B(k)
d (k) 'M(k)

d (k) = {(x1, ..., xk) ∈ (Rd)k| exclude x1 = x2 = ... = xk} = Rdk−Rd ' S(k−1)d−1.

This implies that the element {x1, ..., xk} ∈ H(k−1)d−1B(k)
d (k) can geometrically be realized

as a [(k − 1)d− 1]-sphere:

|x1|2 + |x2|2 + ...+ |xk|2 = ε2

k∑
i=1

xi = 0 (2.2.7)

Each of the xi’s represents the center of the ith disc or the ith point in the configuration.
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Example: Let d = 1, k = 3 then {x1, x2, x3} ∈ H(3−1)1−1B(3)
1 (3) = H1B(3)

1 (3) = H1S
1.

Geometrically we can see this as follows:

x1 x2 x3 x3 x1 x2 x2 x3 x1
−→ −→

The above example is for the case d = 1. Theorem 2.2.5 and Theorem 2.2.6 still hold for

d = 1. However the bracket [x1, x2] should be understood as x1x2−x2x1 so the only operation

is multiplication, which implies that the underlying operad is Assoc, the associative operad.

In this case (2.2.5) implies (2.2.6). The relation (2.2.4) is instead equivalently written as

k+1∑
i=1

(xi · {x1, ..., x̂i, ..., xk+1} − {x1, ..., x̂i, ..., xk+1} · xi) .

Example: Let us look at an example of an element in H(k−1)d−1B(k)
d (n) for k = 3,

n = 5. Let us examine the element x2 · [{x1, x3, x4}, x5]. Here x1, x3, x4 orbit closely around

each other making a spherical class as in the previous example. The disc x5 orbits around

x1, x3, x4. Lastly, x2 does not interact with the other discs and stays still far away from the

other points.

2 1 3 4 5• • • • •

Elements in H(k−1)d−1B(k)
d (n), d ≥ 2 can be thought as products of iterated brackets.

Formally, one can have a bracket, [·, ·], or multiplication inside of a brace, however by the

two Leibniz relations (2.2.5) and (2.2.6), they can be pulled outside of the brace. This means

the left action on the two generators span all of the homology and nothing new comes from

the right action. All braces must be of the same length and braces cannot be inside of other

braces. As seen in the example above, singletons are allowed in the products of brackets. One

must have at least one brace inside a bracket, that is, [[x1, x3], x2] is zero as an element. It is

possible to have two or more braces inside a bracket, for example [{x1, x3, x5}, {x2, x4, x6}].
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Other examples of possible forms of elements inH∗B(k)
d (n) for k = 3, n = 7 are x1 ·

[{x5, x4, x2}, {x3, x6, x7}] and {x2, x4, x6} · [{x1, x3, x5}, x7]. The degree of these elements is

2[(k−1)d−1]+(d−1) = 2(kd−d−1)+d−1 = 2kd−2d−2+d−1 = 2kd−d−3 = (2k−1)d−3.

Initially, we have 2[(k − 1)d− 1] since we have two braces and then add d− 1 for the single

bracket. Both of the elements can be seen as a map: S(k−1)d−1×S(k−1)d−1×Sd−1 → B(3)
d (7).

The element x1 · [{x5, x4, x2}, {x3, x6, x7}] can be seen geometrically as:

21 345 76• • ••• • •

Here x3, x6, x7 are close together and orbit around each other and x5, x4, x2 are also closely

orbiting around one another, as shown by the solid ellipses. The generators x3, x6, x7 also

orbit around x5, x4, x2, as represented by the dotted ellipse. Finally, x1 says far away from

all the others and stays still.

Geometrically, {x2, x4, x6} · [{x1, x3, x5}, x7] can be seen as:

2 1 34 5 76• • • • • • •

As just left modules (respectively, bimodules), H∗B(k)
d (n) has two generators: x1 ∈

H0B(k)
d (1) and {x1, x2, ..., xk} ∈ H(k−1)d−1B(k)

d (n). There is an additional left action rela-

tion given by the following diagram:

[x1, x2]

x1 x1

1 2

= 0Lie(2) 3

generators

There is also an additional right action relation:
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x1

[x1, x2]

1 2

= 0

Lie(2) 3

generator

In other words, the action of x1 by Poisd−1 only gives Com.

Finally, there is also a relation between the left and right action relations given by the

following diagram:

x1

x1 · x2

1 2

Com(2) 3

generator

=

x1 · x2

x1 x1

1 2

∈ Com(2)

generators

2.3 Homotopy Equivalence B(k)
d (n) 'M(k)

d (n)

Recall part 2 of Definition 2.2.1 of non-k-equal configuration spaces. For completion we will

prove the following proposition.

Proposition 2.3.1. The spaces B(k)
d (n) and M(k)

d (n) are homotopy equivalent.

Proof. Define M̊(k)
d (n) :=M(k)

d (n)∩ (D̊d)×n, where D̊d is the open unit ball in Rd. Then the

inclusion M̊(k)
d (n) ↪→M(k)

d (n) is homotopy equivalent since D̊d ⊂ Rd is isotopic to Rd.

There is a natural map f : B(k)
d (n) → M(k)

d (n) that factors through M̊(k)
d (n) and is

given by taking the centers of the discs and forgetting their radii. Next, we will construct

a map g : M̊(k)
d (n) → B(k)

d (n) that is the homotopy inverse of f̊ , where f̊ : B(k)
d (n) →

M̊(k)
d (n). Let (x1, ..., xn) be the n points in a configuration P in M̊(k)

d (n). We will use

−→
i to denote (i1, ..., ik). Next, define ε(x1, ..., xn) = 1√

k
min

1≤i1<...<ik≤n

√
k∑
j=1

|xij − x̄−→i |2, where

x̄−→
i

= 1
k
(xi1 + ...+ xik). Finally, define r(x1, ..., xn) = min(ε(x1, ..., xn), 1− |x1|, ..., 1− |xn|).

This is a continuous, strictly positive map r : M̊(k)
d (n) → R>0 that gives each disc xi the

same radius r. The (1 − |xi|)’s guarantee that all the discs are completely contained inside
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of the unit disc. The ε(x1, ..., xn) guarantees that no k discs overlap. To see this, assume

by contradiction that k discs overlap, which implies that there is some y in D̊d such that

d(xj, y) < r for j = i1, ..., ik, where d(xj, y) is the usual distance function for Rd. This implies

that
k∑
j=1

|xij − y|2 < kr2. This gives the following string of inequalities:

kr2 >
k∑
j=1

|xij − y|2 ≥
k∑
j=1

|xij − x̄−→i |
2 ≥ kε2

This implies that ε2 < r2. However by the definition of r, r ≤ ε, thus giving a contradiction

and proving that no k discs overlap.

One has that f̊ ◦ g = id. Now we will prove g ◦ f̊ ' id. Let P be a point (i.e. a

configuration of discs) in B(k)
d (n). For i = 1, ..., n, let (xi, ri) be the i-th disc where xi is the

center of the disc and ri is the radius of the disc. Let (xi, r) denote the i-th disc of (g◦ f̊)(P ).

Define H : B(k)
d (n)× [0, 1]→ B(k)

d (n) as follows: subdivide [0, 1] into 2 subintervals. On the

first subinterval, shrink continuously all radii ri > r to r. We want to do this first to avoid

any issues with the number of overlaps. Then on the second subinterval, continuously enlarge

all radii ri < r to r. This homotopy H proves that the identity map is homotopic to the

composition g ◦ f̊ .

2.4 Homology of Overlapping Discs as a Symmetric

Sequence

Björner and Welker in [6] first computed the homology ofM(k)
d (n) for k ≥ 3. Sundaram and

Wachs in [30] later computed the symmetric group action on the homology of the intersection

lattice corresponding to M(k)
d (n); their computations imply the following isomorphism of

symmetric sequences:

Theorem 2.4.1. There is a natural isomorphism of symmetric sequences
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H∗B(k)
d ' Com ◦

(
1⊕ (Lie ◦ H(k)

1 ){d− 1}
)
. (2.4.1)

The isomorphism (2.4.1) holds integrally for d ≥ 2, k ≥ 3 and rationally for d ≥ 1, k ≥ 2.

Explicitly, with an independent proof, this formula appears in [12, Theorem 10.3]. In the

above isomorphism (2.4.1), ◦ is the graded composition product for symmetric sequences as

defined in (1.4.1). Com and Lie are the underlying symmetric sequences of the commutative

and Lie operads and H(k)
1 is the symmetric sequence of hook representations which we de-

scribe below in Section 3.3. The notation {d−1} is the operadic degree (d−1) suspension of

symmetric sequences. The symmetric sequence 1 is the unit with respect to the composition

product. It is a one dimensional space concentrated in arity 1. In section 3.4, we give an

explicit formula formula for the cycle index sum of the symmetric sequences obtained in

(2.4.1).

The space H(k)
1 (n) is the natural subspace of Hk−2M(k)

1 (n), spanned by iterated brackets

having exactly one brace. That is, for k = 3, n = 4, elements are of the form [{x1, x4, x3}, x2].

Composing Lie and H(k)
1 implies that elements can have any positive number of braces. For

example, for k = 3, n = 7, [[{x1, x4, x3}, x2], {x5, x7, x6}] is a possible element. This can be

represented as the following tree diagram:

[x1, x2]

[{x1, x2, x3}, x4] {x1, x2, x3}

1 4 3 2 5 7 6

Lie

H(k)
1

[[{x1, x4, x3}, x2], {x5, x7, x6}] =

As another example is [x1, [{x2, x3, x4}, {x5, x6, x7}]] ∈ H∗B(3)
d (7). By applying the

Jacobi relation, one gets [x1, [{x2, x3, x4}, {x5, x6, x7}]] = [{x5, x6, x7}, [{x2, x3, x4}, x1]] +

[[{x5, x6, x7}, x1], {x2, x3, x4}]. Both of the summands are in Lie ◦ H(k)
1 and thus so is

[x1, [{x2, x3, x4}, {x5, x6, x7}]].

The (d−1) suspension distributes over the composition so (Lie◦H(k)
1 ){d−1} = Lie{d−

1}◦H(k)
1 {d−1} whereH(k)

1 {d−1}(n) = H(k)
d (n) as a subspace of H(k−2)+(n−1)(d−1)B(k)

d (n). The
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composition with Com means we can multiply. Then we can have elements like {x1, x4, x3} ·

[{x2, x5, x8}, {x6, x7, x9}]. We can represent this element by the following tree diagram:

x1 · x2

x1 [x1, x2]

{x1, x2, x3} {x1, x2, x3} {x1, x2, x3}

1 4 3 2 5 8 6 7 9

Com

Lie

H(k)
1

{x1, x4, x3} · [{x2, x5, x8}, {x6, x7, x9}] =

The 1 means that we can have singletons. Hence we can have elements like x8 ·

[[{x1, x4, x3}, x2], {x5, x7, x6}], where x8 is an example which we will refer to as a single-

ton. This element can be represented as the following tree diagram:

x1 · x2

x1 [x1, x2]

[{x1, x2, x3}, x4] {x1, x2, x3}

8 1 4 3 2 5 7 6

Com

Lie1

H(k)
1

x8 · [[{x1, x4, x3}, x2], {x5, x7, x6}] =

2.5 Symmetric Sequence H(k)
1

Recall from the above section thatH(k)
1 (n) is the subspace of Hk−2B(k)

d (n) spanned by iterated

brackets that have exactly one brace. The space is non-trivial for n ≥ k and it is trivial

when n < k. The dimension of this subspace is
(
n−1
k−1

)
. The basis of H(k)

1 (n) is:

[...[{x1, xi2 , ..., xik}, xj1 ], ..., xjn−k ],

1 < i2 < ... < ik, j1 < j2 < ... < jn−k.

Below we explain why this set spans H(k)
1 (n). Recall first from Section 1.2 in the example

Lie(n), the basis of Lie(n) is k〈[...[[x1, xσ(2)], xσ(3)], ..., xσ(n)]〉, the generator x1 can always
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be moved to the front of the iterated brackets by the anti-symmetry property and the Lie

bracket can always be made linear by the Jacobi relation.

Now let us look at H(k)
1 (n). First, using the anti-symmetric property of the Lie bracket

and the fact that if an element contains [xi, xj] then the element is 0, all elements of H(k)
1 (n)

are either equal, up to a sign, to an element of the form [...[{xi1 , xi2 , ..., xik}, xj1 ], ..., xjn−k ],

where the xi’s are in any order and xj’s are in any order, or the element contains [xi, xj]

and therefore is 0. Then the xi’s inside the brace can be ordered i1 < i2 < ... < ik by

the skew symmetric property (2.2.3) and the xj’s can also be ordered j1 < j2 < ... <

jn−k. Changing the order of the xj’s gives just a sign change. This can be seen in the

following example for k = 3, n = 5: By the usual Jacobi relation [[{x1, x2, x5}, x4], x3] =

(−1)d−1[[{x1, x2, x5}, x3], x4] + [{x1, x2, x5}, [x3, x4]]. The second summand of the right hand

side is 0, thus [[{x1, x2, x5}, x4], x3] = (−1)d−1[[{x1, x2, x5}, x3], x4]. The group Σk acts on

the im’s and the group Σn−k acts on the jm’s. If d is even, then Σk acts trivially on the

im’s and Σn−k acts by the sign representation on the jm’s. Conversely if d is odd, then Σk

acts on the im’s by the sign representation and Σn−k acts trivially on the jm’s. Finally,

using the generalized Jacobi (2.2.4), we can make i1 = 1. Therefore any element of the

form [...[{xi1 , xi2 , ..., xik}, xj1 ], ..., xjn−k ] is a linear combination of elements from the basis

[...[{x1, xi2 , ..., xik}, xj1 ], ..., xjn−k ].

Next we give small arities of the basis of H(k)
1 : For H(k)

1 (k), that is, n = k, the dimension

is 1 and the only element is {x1, ..., xk}.

For H(k)
1 (k+ 1), n− k = 1, the dimension of this space is

(
k+1−1
k−1

)
=
(
k
k−1

)
= k. The basis

of H(k)
1 (k + 1) is

[{x1, ..., x̂i, ..., xk+1}, xi], i > 1.

For H(k)
1 (k + 2), n− k = 2, the dimension of this space is

(
k+2−1
k−1

)
=
(
k+1
k−1

)
= (k+1)k

2
. The

basis of H(k)
1 (k + 2) is

[[{x1, ..., x̂i, ..., x̂j, ..., xk+2}, xi], xj], 1 < i < j.
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Chapter 3

Cycle Index Sum of Non-k-equal

Configurations

The main result of this section is an explicit formula for the trace of the symmetric group

action on the homology of overlapping discs. The formula is obtained from (2.4.1) and given

in Section 3.4 and then proved in Section 3.5. This result appeared in publication [24] by

the Ph.D candidate and V. Turchin.

3.1 Cycle Index Sum: Definitions and Formulas

We will use the variable q for the formal variable responsible for the homological degree. For

σ ∈ Σn we will denote the number of its cycles of length j by ij(σ). Let ρ : Σn → GL(V )

be a representation of the symmetric group Σn, where V is a graded vector space, and let

(p1, p2, p3, ...) be a family of infinite commuting variables. Then the cycle index sum of ρ,

denoted ZV (q; p1, p2, p3, ...), is defined by

ZV (q; p1, p2, p3, ....) =
1

|Σn|
∑
σ∈Σn

tr(ρ(σ))
∏
j

p
ij(σ)
j , (3.1.1)
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where tr(ρ(σ)) is the graded trace that is a polynomial of q obtained as the generating

function of traces on each component. We also define an auxiliary cardinality degree given

by pi’s where each pi is said to have cardinality degree i.

Let V be a Σk-module and W be a Σn-module. Then from [4, 5, 27, section 6.1; section

3.1, proposition 8, part c; 7.3, respectively],

Z
Ind

Σk+n
Σk×Σn

(V⊗W )
= ZV · ZW . (3.1.2)

For a symmetric sequence M(•) = {M(n), n ≥ 0}, one defines its cycle index sum as

ZM(q; p1, p2, p3, ...) =
∞∑
n=0

ZM(n)(q; p1, p2, p3, ...). (3.1.3)

We will need the following formulas later in this section. The cycle index sum of the

composition of two symmetric sequences is given by the graded plethysm formula:

ZM◦N = ZM ∗ ZN = ZM(q; pi 7→ pi ∗ ZN), (3.1.4)

where

pi ∗ ZN = ZN(q 7→ (−1)i−1qi; pj 7→ pij). (3.1.5)

The usual plethysm without the grading can be found in [4, 5, 27, equation 3.25, section

3.8; definition 3, section 1.4; equation 8.1-8.2, section 8, respectively]. For the graded case, it

is done when q = −1 in [20, section 7.20]. Unfortunately, the graded version of this formula

doesn’t seem to appear in the literature, though it is known to experts [10, 28]. To prove

our formula, we notice that the sign convention is correct and holds when q = −1 and the

q-grading contribution is correct by the same argument as in [13, Section 3.5, definition 3].

To recall the operadic suspension M{1} of the symmetric sequence M is defined as

M{1}(n) = sn−1M(n)⊗ V(1n),
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where sn−1 is the degree (n − 1) suspension and V(1n) is the sign representation. One can

easily see that

ZM{1} =
1

q
ZM(q; pi 7→ (−1)i−1qipi).

We will use the formula for the {d − 1} operadic suspension, which is an easy formula to

obtain from the above:

ZM{d−1} = (q)1−dZM(q; pi 7→ (−1)(i−1)(d−1)qi(d−1)pi). (3.1.6)

Lastly, we will need the cycle index sums of Com and Lie. From [13, 20], the cycle index

sum for Com is

ZCom = exp

(
∞∑
i=1

pi
i

)
; (3.1.7)

and from [7, 13, 20], the cycle index sum for Lie is

ZLie =
∞∑
i=1

−µ(i) ln(1− pi)
i

, (3.1.8)

where, here and throughout this paper, µ(i) is the usual Möbius function.

We will also use the notation Vλ to denote the irreducible Σn-representation corresponding

to the partition λ, see [19].

3.2 Cycle Index Sum for H∗Bd

From [11], H∗Bd = Poisd−1 = Com ◦ Lie{d− 1}. Below we give an independent proof of the

following well-known result.

Theorem 3.2.1. [25, Lehrer] For d ≥ 1,

ZH∗Bd = ZCom◦Lie{d−1}(q; p1, p2, p3, ...) =
∞∏
m=1

(
1 + (−1)d(−q)m(d−1)pm

)(−1)dEm( 1

(−q)d−1 )

(3.2.1)

where Em(y) = 1
m

∑
i|m µ(i)y

m
i .
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Proof. To show this, first we apply the {d− 1}-suspension (3.1.6) to Lie (3.1.8) to get:

ZLie{d−1}(q; p1, p2, p3, ...) = q1−d
∞∑
i=1

−µ(i)

i
ln
(
1− (−1)(i−1)(d−1)(q)i(d−1)pi

)
.

= q1−d
∞∑
i=1

−µ(i)

i
ln
(
1 + (−1)d(−q)i(d−1)pi

)
.

Next use (3.1.4) and(3.1.5) to compute the graded composition of Com and the above

equation:

ZCom◦Lie{d−1}(q; p1, p2, p3, ...) =

exp

(
∞∑
j=1

1

j

(
(−1)d−1(−q)j(1−d)

∞∑
i=1

−µ(i)

i
ln
(

1 + (−1)d(−q)ij(d−1)pij

)))
.

Let m = ij

= exp

 ∞∑
m=1

1

m

(
(−1)d

∑
i|m

(−q)
m
i

(1−d)µ(i) ln
(
1 + (−1)d(−q)m(d−1)pm

))

= exp

(
∞∑
m=1

ln
(
1 + (−1)d(−q)m(d−1)pm

)) (−1)d

m

∑
i|m(−q)

m
i (1−d)

Using the fact that exponential functions and logarithm functions are inverses to one

another and Em(y) = 1
m

∑
i|m µ(i)y

m
i that we get the result.
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3.3 Cycle Index Sum for H(k)
1

By [30],

H(k)
1 (n) ∼=Q


0, n < k;

sk−2V(n−k+1,1k−1) n ≥ k,

where V(n−k+1,1k−1) is the hook representation corresponding to the partition λ = (n − k +

1, 1k−1) and sk−2 is the (k − 2)-suspension. The space H(k)
1 (n) is some natural subspace of

Hk−2M(k)
1 (n), in turn it lies in degree k − 2, see [12].

Proposition 3.3.1. For k ≥ 2,

ZH(k)
1

(q; p1, p2, p3, ...) = (−q)k−2 − (−q)k−2

(
exp

(
−
∞∑
i=1

pi
i

))
≤k−1

(
exp

(
∞∑
i=1

pi
i

))
,

(3.3.1)

where ≤ k − 1 is the truncation with respect to the cardinality degree.

We will prove this proposition with the following well-known facts and lemmas. First, let

Wn = Q[n], where n = {1, 2, ..., n}, be the canonical n-dimensional representation of Σn.

Then Wn can be decomposed in the following way: Wn = V(n−1,1)⊕V(n) where V(n−1,1) is the

(n−1) dimensional representation and V(n) = Q is the one-dimensional trivial representation.

Lemma 3.3.2. For n ≥ k ≥ 0, ∧kWn = IndΣn
Σk×Σn−k

V(1k) ⊗ V(n−k).

Proof. First recall that V(1k) is the sign representation of Σk and that V(n−k) is the trivial

representation of Σn−k. Also, note that ∧kW and IndΣn
Σk×Σn−k

V(1k) ⊗ V(n−k) have the same

dimension, namely
(
n
k

)
. To start, let e1, e2, ..., en be the usual basis of Wn. Now examine

how Σn acts on a vector ei1 ∧ ei2 ∧ ...∧ eik ∈ Wn. For σ ∈ Σn, σ(ei1 ∧ ei2 ∧ ...∧ eik) = eσ(i1) ∧

eσ(i2) ∧ ... ∧ eσ(ik). By definition, IndΣn
Σk×Σn−k

V(1k) ⊗ V(n−k) = Q[Σn]⊗Q[Σk×Σn−k] V(1k) ⊗ V(n−k).

Define

I(k,n−k) : Q[Σn]⊗Q[Σk×Σn−k] V(1k) ⊗ V(n−k) → ∧kWn

by I(k,n−k)(σ ⊗ 1) 7→ σ(e1 ∧ ... ∧ ek) = eσ(1) ∧ eσ(2) ∧ ... ∧ eσ(k). We claim this is the desired

isomorphism. First, we will show that it is well defined. Let (α, β) ∈ Σk × Σn−k. Then
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I(k,n−k)(σ · (α, β) ⊗ 1) = eσ(α(1)) ∧ eσ(α(2)) ∧ ... ∧ eσ(α(k)) = (−1)|α|eσ(1) ∧ eσ(2) ∧ .... ∧ eσ(k) =

(−1)|α|σ ⊗ 1. On the other hand, I(σ ⊗ (α, β) · 1) = σ ⊗ (−1)|α|1 = (−1)|α|σ ⊗ 1. Therefore

I is well defined. As previously mentioned, these two spaces have the same dimension and

by construction I(k,n−k) is surjective and therefore I(k,n−k) is bijective.

Lemma 3.3.3. For n > k, one has an isomorphism of Σn-modules: V(n−k,1k) = ∧kV(n−1,1).

This lemma is a standard exercise in representation theory [19, Exercise 4.6].

Corollary 3.3.4. One has an isomorphism of Σn-modules: ∧kWn = ∧kV(n−1,1) ⊕

∧k−1V(n−1,1).

Proof. ∧kWn = ∧k(V(n−1,1) ⊕ V(n)) = ∧k(V(n−1,1)) ⊕ ∧k−1(V(n−1,1)) ⊗ V(n), where V(n) is just

the trivial representation and thus we have our desired isomorphism.

Corollary 3.3.5. One has an isomorphism of virtual Σn-modules: ∧kV(n−1,1) =∑k
i=0(−1)i ∧k−iWn

Proof. ∧kV(n−1,1) = ∧kWn − ∧k−1V(n−1,1) by Corollary 3.3.4. We apply the same corollary

to ∧k−1V(n−1,1) again and we have ∧kV(n−1,1) = ∧kWn − ∧k−1V(n−1,1) = ∧kWn − ∧k−1Wn +

∧k−2V(n−1,1). We can apply Corollary 3.3.4 iteratively to obtain the desired isomorphism.

Now we are ready to prove Proposition 3.3.1.

Proof of Propsition 3.3.1. Let

H(n) =


0, n < k;

V(n−k+1,1k−1), otherwise.

In order to prove Proposition 3.3.1, it is sufficient to show that

ZH(p1, p2, p3, ...) = (−1)k−2 − (−1)k−2

(
exp

(
−
∞∑
i=1

pi
i

))
≤k−1

(
exp

(
∞∑
i=1

pi
i

))
. (3.3.2)
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For n ≥ k, one has

H(n) = V(n−k+1,1k−1) (by definition)

= ∧k−1V(n−1,1) (by Lemma 3.3.3)

=
k−1∑
i=0

(−1)i ∧k−1−iWn (by Corollary 3.3.5)

=
k−1∑
i=0

(−1)iIndΣn
Σk−1−i×Σn−k+1+i

V(1k−1−i) ⊗ V(n−k+1+i) (by Lemma 3.3.2)

= (−1)k−1

k−1∑
j=0

(−1)jIndΣn
Σj×Σn−j

V(1)j ⊗ V(n−j). (by taking j = k − i− 1)

Next we apply (3.1.2).

ZH(n) = ZV
(n−k+1,1k−1)

= (−1)k−1

k−1∑
j=0

(−1)jZV
(1j)
· ZV(n−j) . (3.3.3)

Thus,

ZH = (−1)k−1
∑
n≥k

k−1∑
j=0

(−1)jZV
(1j)
· ZV(n−j) . (3.3.4)

Note that ZV
(1j)

is the cycle index sum for the sign representation and ZV(n−j) is the cycle

index sum for the trivial representation. We claim that (3.3.4) is equal to (3.3.2). We will

prove this claim in two cases: when cardinality n < k and when cardinality n ≥ k.

We will first do the case when n < k. Clearly (3.3.4) is equal to 0 when n < k as the

sum starts when n ≥ k and thus has no terms. When n < k, (3.3.2) is also 0 since the

exponentials are inverses to one another:

(−1)k−2 − (−1)k−2

(
exp

(
−
∞∑
i=1

pi
i

))
≤k−1

(
exp

(
∞∑
i=1

pi
i

))
=≤k−1

(−1)k−2 − (−1)k−2

(
exp

(
−
∞∑
i=1

pi
i

))(
exp

(
∞∑
i=1

pi
i

))
= 0.
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Now we look at the case when the cardinality degree n ≥ k. It follows from (3.1.7) that

∞∑
n=0

ZV(1n)
= exp

(
∞∑
i=0

(−1)i−1pi
i

)
.

By replacing pi 7→ (−1)ipi, we get

∞∑
n=0

(−1)nZV(1n)
= exp

(
∞∑
i=0

−pi
i

)
.

Then,
k−1∑
n=0

(−1)nZV(1n)
=

(
exp
( ∞∑
i=0

−pi
i

))
≤k−1

.

We also know that
∞∑
n=0

ZV(n)
= exp

(
∞∑
i=0

pi
i

)
.

From these formulas, one can easily see that in cardinality n ≥ k, (3.3.2) and (3.3.4) are

both equal to (3.3.3). Thus in arity n, (3.3.2) is equal to (3.3.4), completing the proof.

3.4 Cycle Index Sum of H∗B(k)
d

The cycle index sum of the symmetric group action on H∗B(2)
d , the usual configuration space,

was computed in [2, 25] to be, also see Theorem 3.2.1:

Z
H∗B(2)

d
=

∞∏
m=1

(
1 + (−1)d(−q)m(d−1)pm

)(−1)dEm
(

1

(−q)d−1

)
. (3.4.1)

From (2.4.1), in [12] the exponential generating function of Poncairé polynomials for the
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sequence H∗B(k)
d is computed to be:

F
H∗B(k)

d
(x) =

∞∑
n=0

P
H∗B(k)

d (n)
(q)

xn

n!
=

ex

(
1− (−q)k−2 + (−q)k−2

(
k−1∑
j=0

(−qd−1x)j

j!

)
eq
d−1x

)− 1

qd−1

. (3.4.2)

The main result of this section describes the cycle index sum of the symmetric sequence

H∗B(k)
d obtained from the isomorphism (2.4.1).

Theorem 3.4.1. For k ≥ 2, d ≥ 1

Z
H∗B(k)

d
(q; p1, p2, p3, ...) =

e(
∑∞
l=1

pl
l

)

∞∏
m=1

(
1− (−q)m(k−2)+

(−q)m(k−2)
(
e−

∑∞
j=1

(−1)d−1(−q)mj(d−1)pmj
j

)
≤m(k−1)

(
e
∑∞
j=1

(−1)d−1(−q)mj(d−1)pmj
j

))(−1)dEm

(
1

(−q)d−1

)
,

(3.4.3)

where ≤ m(k− 1) denotes the truncation with respect to the cardinality degree (|pi| = i) and

Em(y) = 1
m

∑
i|m µ(i)y

m
i , where µ(i) is the usual Möbius function.

Most of the computations are straightforward. The main difficult part is computing the

cycle index sum for H(k)
1 , which is done above in Section 3.3.

We also establish a refinement of Theorem 3.4.1. The homology groups of H∗B(k)
d can be

described as linear combinations of products of iterated brackets as seen in Section 2.2. The

number of braces and the number of brackets represent two additional gradings on the space.

The cycle index sum of H∗B(k)
d can be adjusted with the use of two additional variables to

account for these two additional gradings. See Section 3.6.

It is easy to see that from (3.4.3) one can recover (3.4.1) by setting k = 2.
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Proof. Begin with (3.4.3) and set k = 2:

Z
H∗B(2)

d
(q; p1, p2, p3, ...) = exp

(
∞∑
l=1

pl
l

)
∞∏
m=1

(
1− (−q)0 + (−q)0

exp

(
−
∞∑
j=1

(−1)d−1(−q)mj(d−1)pmj
j

)
≤m

exp

(
∞∑
j=1

(−1)d−1(−q)mj(d−1)pmj
j

))(−1)dEm

(
1

(−q)d−1

)

= exp

(
∞∑
l=1

pl
l

)
∞∏
m=1

(
1− 1 + 1 exp

(
−(−1)1−d(−q)m(d−1)pm

)
≤m

exp

(
∞∑
j=1

(−1)1−d(−q)mj(d−1)pmj
j

))(−1)dEm

(
1

(−q)d−1

)

= exp

(
∞∑
l=1

pl
l

)
∞∏
m=1

(
1− (−1)1−d(−q)m(d−1)pm

)(−1)dEm

(
1

(−q)d−1

)

∞∏
m=1

∞∏
j=1

(
exp

(−1)dEm

(
(−q)1−d

)
(−1)1−d(−q)mj(d−1)pmj

j

)

= exp

(
∞∑
l=1

pl
l

)
∞∏
m=1

(
1− (−1)1−d(−q)m(d−1)pm

)(−1)dEm

(
1

(−q)d−1

)
∞∏
m=1

∞∏
j=1

exp

(
1

j
(−1)dEm

(
(−q)1−d

)
(−1)1−d(−q)mj(d−1)pmj

)
(3.4.4)

Notice that in (3.4.4) we have the formula we want as the first factor exp
(∑∞

l=1
pl
l

)
cancels

out with the factor on the second line:

∞∏
m=1

(
1− (−1)1−d(−q)m(d−1)pm

)(−1)dEm

(
1

(−q)d−1

)
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So let us look at the factor from the second line in (3.4.4):

∞∏
m=1

∞∏
j=1

exp

(
1

j
(−1)dEm

(
(−q)1−d

)
(−1)1−d(−q)mj(d−1)pmj

)
(3.4.5)

Let l = mj in (3.4.5):

∞∏
l=1

∏
m|l

exp
(m
l

(−1)dEm

(
(−q)1−d

)
(−1)1−d(−q)l(d−1)pl

)

=
∞∏
l=1

exp

pl
l

(−1)(−q)l(d−1)
∑
m|l

mEm
(
(−q)1−d)

Recall Em(y) = 1
m

∑
i|m µ(i)y

m
i .

=
∞∏
l=1

exp

−pl
l

(−q)l(d−1)
∑
m|l

∑
k|m

µ(k)
(
(−q)1−d)m/k

= exp

 ∞∑
l=1

−pl
l

(−q)l(d−1)
∑
m|l

∑
k|m

µ(k)
(
(−q)1−d)m/k (3.4.6)

Let us examine ∑
m|l

∑
k|m

µ(k)
(
(−q)1−d)m/k

In the space of R-valued fucntions on N (excluding 0), let ∗ denote the Dirichlet convolution

operator where

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
.

Let 1 be the constant function where 1(n) = 1 for all n and let µ be the usual Möbius

function. It is a known fact that 1 ∗ µ = ε, where ε is the multiplicative identity (or unit)

function, that is,

ε =


1 if n = 1;

0 if n > 1,
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and (ε∗g) = (g∗ε) = g for any function g. Then
∑

m|l
∑

k|m µ(k)
(
(−q)1−d)m/k = (1∗µ∗f)(l)

where f(l) = ((−q)1−d)l. Using the above fact, (1∗µ∗f)(l) = (ε∗f)(l) = f(l), which implies∑
m|l
∑

k|m µ(k)
(
(−q)1−d)m/k = f(l) = ((−q)1−d)l.

Substituting this into (3.4.6), we have

exp

(
∞∑
l=1

−pl
l

(−q)l(d−1) · ((−q)1−d)l

)
= exp

(
∞∑
l=1

−pl
l

)
(3.4.7)

Now substitute (3.4.7) back into (3.4.4):

exp

(
∞∑
l=1

pl
l

)
∞∏
m=1

(
1− (−1)1−d(−q)m(d−1)pm

)(−1)dEm

(
1

(−q)d−1

)
exp

(
∞∑
l=1

−pl
l

)
(3.4.8)

The first term in the product

exp

(
∞∑
l=1

pl
l

)
and the last term in the product

exp

(
∞∑
l=1

−pl
l

)
are inverses of each other, completely the proof.

Similarly, (3.4.2) can be recovered from (3.4.3) by setting p1 = x and pi = 0 for i ≥ 2.

Proof. If we want to set p1 = x and pi = 0 for i ≥ 2 in (3.4.3), this is only possible if

l = m = j = 1. This yields

ex

(
1− (−q)k−2 + (−q)k−2 exp

(
(−1)d−1(−q)d−1x

)
≤k−1

exp
(
(−1)d−1(−q)d−1x

))(−1)d(−q)1−d

= ex

(
1− (−q)k−2 + (−q)k−2 exp

(
−qd−1x

)
≤(k−1)

exp
(
(−1)d−1(−q)d−1x

)) −1

−qd−1
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Recall ex = 1 + x+ x2

2!
+ x3

3!
+ .... Then

exp
(
−qd−1x

)
≤(k−1)

=
k−1∑
j=0

(−qd−1x)j

j!
.

This gives us the result we desire:

= ex

(
1− (−q)k−2 + (−q)k−2

(
k−1∑
j=0

(−qd−1x)j

j!

)
eq
d−1x

)− 1

qd−1

.

3.5 Proof of Theorem 3.4.1

First we compute the plethsym of Lie and H(k)
1 using (3.1.4) and (3.1.5).

ZLie◦H(k)
1

(q; p1, p2, p3, ...) =

∞∑
i=1

−µ(i)

i
ln

1−
(
(−1)iqi

)k−2
+
(
(−1)iqi

)k−2

[
exp

(
−
∞∑
j=1

pij
j

)]
≤i(k−1)

[
exp

(
∞∑
j=1

pij
j

)]

=
∞∑
i=1

−µ(i)

i
ln

(
1−(−q)i(k−2)+(−q)i(k−2)

[
exp

(
−
∞∑
j=1

pij
j

)]
≤i(k−1)

[
exp

(
∞∑
j=1

pij
j

)])
.

Next we use (3.1.6) to compute the {d− 1} suspension of the above equation:

Z
(Lie◦H(k)

1 ){d−1}(q; p1, p2, p3, ...) =

q1−d
∞∑
i=1

−µ(i)

i
ln

(
1− (−q)i(k−2) + (−q)i(k−2)×

×

[
exp

(
−
∞∑
i=1

(−1)(ij−1)(d−1)qij(d−1)pij
j

)]
≤i(k−1)

[
exp

(
∞∑
i=1

(−1)(ij−1)(d−1)qij(d−1)pij
j

)])
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= q1−d
∞∑
i=1

−µ(i)

i
ln

(
1− (−q)i(k−2)+

+ (−q)i(k−2)

[
e−

∑∞
j=1

(−1)d−1(−q)ij(d−1)pij
j

]
≤i(k−1)

[
e
∑∞
j=1

(−1)d−1(−q)ij(d−1)pij
j

])
.

Now we will simply add the 1, the trivial representation of Σ1, to the equation above:

Z
1⊕(Lie◦H(k)

1 ){d−1}(q; p1, p2, p3, ...) =

p1 + q1−d
∞∑
i=1

−µ(i)

i
ln

(
1− (−q)i(k−2)+

+ (−q)i(k−2)

[
e−

∑∞
i=1

(−1)d−1(−q)ij(d−1)pij
j

]
≤i(k−1)

[
e
∑∞
i=1

(−1)d−1(−q)ij(d−1)pij
j

])
.

Finally, we again use (3.1.4) and (3.1.5) to compute the graded composition product of

Com with the above equation to get an explicit formula.

Z
Com◦(1⊕(Lie◦H(k)

1 ){d−1})(q; p1, p2, p3, ...) =

exp

(
∞∑
l=1

1

l

[
pl +

(
(−1)l−1ql

)1−d ∞∑
i=1

−µ(i)

i
ln

(
1−

(
(−1)lql

)i(k−2)

+
(

(−1)lql
)i(k−2)

×

× exp

(
−
∞∑
j=1

(−1)1−d
(

(−1)lql
)ij(d−1)

pijl

j

)
≤il(k−1)

×

× exp

(
∞∑
j=1

(−1)1−d
(

(−1)lql
)ij(d−1)

pijl

j

))])

= exp

(
∞∑
l=1

1

l

[
pl + (−1)(l−1)(1−d)ql(1−d)

∞∑
i=1

−µ(i)

i
ln

(
1− (−1)li(k−2)qli(k−2)+

+ (−1)li(k−2)qli(k−2) exp

(
−
∞∑
j=1

(−1)1−d(−1)lij(d−1)(q)lij(d−1)pijl
j

)
≤il(k−1)

×

× exp

(
∞∑
j=1

(−1)1−d(−1)lij(d−1)(q)lij(d−1)pijl
j

))])
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= exp

(
∞∑
l=1

1

l

[
pl + (−1)(l−1)(1−d)ql(1−d)

∞∑
i=1

−µ(i)

i
ln

(
1− (−q)li(k−2) + (−q)li(k−2)

exp

(
−
∞∑
j=1

(−1)1−d(−q)lij(d−1)pijl
j

)
≤il(k−1)

exp

(
∞∑
j=1

(−1)1−d(−q)lij(d−1)pijl
j

))])

= exp

( ∞∑
l=1

pl
l

)
exp

(
∞∑
l=1

(−1)d−1(−q)l(1−d)

∞∑
i=1

µ(i)

li
ln

[
1− (−q)li(k−2) + (−q)li(k−2)×

× exp

(
−
∞∑
j=1

(−1)1−d(−q)lij(d−1)pijl
j

)
≤il(k−1)

exp

(
∞∑
j=1

(−1)1−d(−q)lij(d−1)pijl
j

)])

Let m = il, then

Z
Com◦(1⊕(Lie◦H(k)

1 ){d−1})(q; p1, p2, p3, ...) =

exp

( ∞∑
l=1

pl
l

)
exp

(
∞∑
m=1

(−1)d−1

m

∑
i|m

q
m
i

(d−1)µ(i) ln

[
1− (−q)m(k−2) + (−q)m(k−2)×

× exp

(
−
∞∑
j=1

(−1)1−d(−q)mj(d−1)pmj
j

)
≤m(k−1)

exp

(
∞∑
j=1

(−1)1−d(−q)mj(d−1)pmj
j

)])

= exp

( ∞∑
l=1

pl
l

) ∞∏
m=1

(
1− (−q)m(k−2) + (−q)m(k−2)×

× exp

[
−
∞∑
j=1

(−1)1−d(−q)mj(d−1)pmj
j

]
≤m(k−1)

×

× exp

[
∞∑
j=1

(−1)1−d(−q)mj(d−1)pmj
j

]) (−1)d−1

m

∑
i|m q

m
i (d−1)µ(i)
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Recall that Em(y) = 1
m

∑
i|m
(
µ(i)y

m
i

)
.

= exp

( ∞∑
l=1

pl
l

) ∞∏
m=1

(
1− (−q)m(k−2) + (−q)m(k−2)×

× exp

[
−
∞∑
j=1

(−1)1−d(−q)mj(d−1)pmj
j

]
≤m(k−1)

×

× exp

[
∞∑
j=1

(−1)1−d(−q)mj(d−1)pmj
j

])(−1)dEm

(
1

(−q)d−1

)

3.6 Refinement

Recall from Section 2.2 that elements in H∗B(k)
d (n) are described as linear combinations of

certain products of iterated brackets, where there are two types of brackets, long and short,

or braces and brackets respectively.

The number of long and short brackets are additional gradings that we consider on

H∗B(k)
d (n). We add the variable u to be responsible for the number of short brackets grading

and the variable w to be responsible for the number of long brackets grading in the graded

trace used for the cycle index sum (3.1.1). The sequence Com does not contribute to these

additional gradings and thus (3.1.7) remains unchanged in the refinement. The graded

suspension does not interact with the long and short brackets and thus (3.1.6) also remains

unchanged. However, there are short brackets in Lie. In cardinality k, there are always

k − 1 (short) brackets, which is why we divide by u and replace pi by uipi in the formula

below. By abuse of notation, we also denote by ZLie the cycle index sum of Lie with this

refinement:

ZLie(u, q; p1, p2, p3, ...) =
∞∑
i=1

−µ(i)

u

ln(1− uipi)
i

. (3.6.1)

Recall from Section 2.5 the space H(k)
1 (n) is a subspace of Hk−2B(k)

1 (n), defined as a

subspace spanned by iterated brackets that have exactly one long bracket [12]. This explains

why we multiply by w in the formula below. The iterated brackets of H(k)
1 (n) have exactly
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n− k short brackets, which explains in the formula below why we divide by uk and replace

pi by uipi in the refinement. Similarly we abuse notation to denote the cycle index sum of

H(k)
1 (n) with the refinement as before by ZH(k)

1
.

ZH(k)
1

(u,w, q; p1, p2, p3, ...) =

w

uk

(
(−q)k−2 − (−q)k−2

(
exp

(
−
∞∑
i=1

uipi
i

))
≤k−1

(
exp

(
∞∑
i=1

uipi
i

)))
. (3.6.2)

The plethysm also affects the long and short brackets and is now defined as:

ZM◦N = ZM ∗ ZN = ZM(u;w; q; pi 7→ pi ∗ ZN), (3.6.3)

where

pi ∗ ZN = ZN(u 7→ ui; w 7→ wi; q 7→ (−1)i−1qi; pj 7→ pij). (3.6.4)

Theorem 3.6.1. For k ≥ 3 and d ≥ 2,

Z
H∗M(k)

d
(u,w, q; p1, p2, p3, ...) =

e(
∑∞
l=1

pl
l

)

∞∏
m=1

(
1− (−q)m(k−2)wm

um(k−1)

[
1−

(
e−

∑∞
j=1

(−1)d−1(−q)mj(d−1)umjpmj
j

)
≤m(k−1)

(
e
∑∞
j=1

(−1)d−1(−q)mj(d−1)umjpmj
j

)])(−1)dEm
(

1

(−q)d−1u

)
.

(3.6.5)

Proof. The proof for this theorem follows the same steps as the proof for 3.4.1.

First we compose the refinements of Lie (3.6.1) and H(k)
1 (3.6.2) now using (3.6.3) and

42



(3.6.4):

ZLie◦H(k)
1

(u,w, q; p1, p2, p3...) =

∞∑
i=1

−µ(i)

u · i
ln

(
1− wi

ui(k−1)

(
(−q)i(k−2)−

− (−q)i(k−2) exp

(
−
∞∑
j=1

uijpij
j

)
≤i(k−1)

exp

(
∞∑
j=1

uijpij
j

)))
.

Next compute the {d− 1}-suspension still using (3.1.6):

Z
(Lie◦H(k)

1 ){d−1}(u,w, q; p1, p2, p3...) =

(q)1−d
∞∑
i=1

−µ(i)

u · i
ln

(
1− wi

ui(k−1)

(
(−q)i(k−2) − (−q)i(k−2)×

× exp

(
−
∞∑
j=1

uij(−1)1−d(−q)ij(d−1)pij
j

)
≤i(k−1)

exp

(
∞∑
j=1

uij(−1)1−d(−q)ij(d−1)pij
j

)))
.

Now add 1 to the above equation:

Z
1⊕(Lie◦H(k)

1 ){d−1}(u,w, q; p1, p2, p3...) =

p1 + (q)1−d
∞∑
i=1

−µ(i)

u · i
ln

(
1− wi

ui(k−1)

(
(−q)i(k−2) − (−q)i(k−2)×

× exp

(
−
∞∑
j=1

uij(−1)1−d(−q)ij(d−1)pij
j

)
≤i(k−1)

exp

(
∞∑
j=1

uij(−1)1−d(−q)ij(d−1)pij
j

)))
.

Finally, use (3.6.3) and (3.6.4) again to compute the graded composition with Com with
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the above equation:

exp

(
∞∑
l=1

p1

l

)
exp

(
∞∑
l=1

−µ(i)

ul · l · i
(−1)d(−q)l(1−d) ln

(
1− wli

uli(k−1)

[
(−q)li(k−2) − (−q)li(k−2)×

× exp

(
−
∞∑
j=1

uijl(−1)1−d(−q)ijl(d−1)pijl
j

)
≤i(k−1)

×

× exp

(
∞∑
j=1

uijl(−1)1−d(−q)ijl(d−1)pijl
j

)
≤i(k−1)

]))

Let m = li and recall Em(y) = 1
m

∑
i|m
(
µ(i)y

m
i

)
. This, along with the fact that the

exponential function and natural logarithms are inverses, gives the desired result (3.6.5).

3.7 First Approach

When first attempting to find (and verify in small arities) a general formula for the cycle

index sum of H(k)
1 , we began by using the Frobenius Formula for Characters of Symmetric

Groups.

We will use the following notation: Let µ be a partition of n and cµ be the corresponding

conjugacy class in Σn. We can write µ = 1i1 · 2i2 · 3i3 · ..., where ij is the number of

cycles of length j. For convenience we can also write cµ = (i1, i2, i3, ...) and will denote

the order of the conjugacy class by |cµ|. For another partition λ = (λ1, λ2, ..., λm) of n,

where λ1 ≥ λ2 ≥ ... ≥ λm, one has the corresponding irreducible representation Vλ. Define

`j = λj + m− j. Next we introduce variables x1, x2, ..., xm, where m is the number of rows

in the Young diagram corresponding to the partition λ. The jth-power sum in variables

x1, x2, ..., xm is given by Pj(x) = xj1 + xj2 + ... + xjm. The Vandermonde determinant is

denoted ∆(x) =
∏

i<j(xi − xj).

The Frobenius Formula for Characters of Vλ is given by:

trλ(cµ) =

[
∆(x)

∏
j

Pj(x)ij

]
`1,`2,...,`m

, (3.7.1)
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that is, we are looking for the coefficient of x`11 · x`22 · ... · x`mm in [∆(x)
∏

j Pj(x)ij ]. Note,

in the literature usually the letter X is used to denote characters in Representation theory.

To better match our notation for the cycle index sum formula, we instead use the trace

notation. If the λ is understood, we can instead denote the left hand side simply by tr(cµ).

The Vandermonde determinant ∆(x) and the coefficient that we are looking for do not change

within each conjugacy class cµ. The only term in the formula (3.7.1) that depends on the

conjugacy class is
∏

j Pj(x)ij .

Lastly, we introduce an infinite family of commuting variables p1, p2, p3, ... where the

cardinality degree of each pi is i. Then the Cycle Index Sum of Vλ is given by:

ZVλ =
1

n!

∑
µ`n

trλ(µ) · |cµ| ·
∏
j

p
ij(µ)
j . (3.7.2)

This formula also appears as (3.1.1) in Section 3.1 with slightly different notation. Recall

that ij(µ) denotes the number of cycles of µ that have length j, which means the ij(µ)’s are

equivalent to the ij’s when we write the conjugacy class as cµ = (i1, i2, i3, ...).

To begin, note that when λ = (n), the corresponding representation V(n) is just the trivial

representation on Σn. Note when n = 0 in this case, the cycle index sum for ZV(0)
= 1. The

partition λ = (n) corresponds to the following Young diagram:
n

· · ·

It is clear then that tr(cµ) = 1, however we will verify this with the Frobenius formula.

As stated above, λ = (n) corresponds to the representatiosn of Σn and `1 = n. That implies

the we are looking for the coefficient to xn1 . The Vandermonde determinant is 1. The power
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sum is
∏

j Pj(x)ij = (x1)n. Finally,

tr(cµ) = [(1)
∏
j

Pj(x)ij ]xn1

= [
∏
j

Pj(x)ij ]xn1

= [x
∑
j·ij

1 ]xn1

= [xn1 ]xn1

= 1.

Then

∞∑
n=1

ZV(n)
=

1

n!

∑
µ`n+1

(
[(1)

∏
j≥1

Pj(x)ij ]xn1 ×
n!

1i1i1! · 2i2i2! · 3i3i3! · · ·
∏
j

p
ij
j

)

=
∑
ij

(∏
j≥1

p
ij
j

(j)ij(ij)!

)

=
∏
j≥1

∑
i

(
pj
j

)i
i!

=
∏
j≥1

exp

(
pj
j

)

= exp

(∑
j≥1

pj
j

)

Next, we look at hooks of the form (n,1), with n ≥ 1. This corresponds to Young

diagrams with n boxes in the first row and one box in the second row. In this case, we will

only need two variables x1 and x2. Hence we will be looking for the coefficient to x`11 x
`2
2 ,

even further `1 = n+ 2− 1 = n+ 1 and `2 = 1 + 2− 2 = 1. The Vandermonde Determinant

will always be (x1 − x2) for n ≥ 1.

We looked at small arities of n. First we examine the hook diagram corresponding to the
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partition λ = (1, 1), that is the Young diagram is as follows:

This partition corresponds to the 1-dimensional sign representation. We know that the

characters are 1 and -1, corresponding to the identity conjugacy class and the conjugacy

represented by a transposition, respectively. We will confirm this below with the Frobenius

formula.

Since λ = (1, 1), then `1 = 1 + 1 = 2 and `2 = 1 and we are looking for the coefficient to

x2
1x2. This λ corresponds to representations of Σ2. There are two conjugacy classes of Σ2:

the identity conjugacy class, which we denote (id) and the other conjugacy class we denote

by (12). Note that |(id)| = 1 = |(12)|.

We can equivalently write (id) = (12), so i1 = 2. Then the power sum for this conjugacy

class is given by
∏

j Pj(x)ij = (x1 + x2)2. Combining this with what we already found,

tr((id)) = [(x1 − x2)(x1 + x2)2]x2
1x2

= 1.

We can equivalently write (12) = (1021) = (21), so i1 = 0 and i2 = 1. Then for this

conjugacy class
∏

j Pj(x)ij = (x2
1 + x2

2). Now we can calculate

tr((12)) = [(x1 − x2)(x2
1 + x2

2)]x2
1x2

= −1.

Now that the traces have been found we can calculate the cycle index sum of V(1,1):

ZV(1,1)
=

1

2!
((1)(1)p2

1 + (−1)(1)p1
2) =

1

2

(
p2

1 − p2

)
.

The two previous examples are known without using the Frobenius formula. Now we will

look at two examples where the Frobenius formula is needed.

The Young diagram corresponding to λ = (2, 1) is:
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Since λ = (2, 1), `1 = 2 + 1 = 3 and `2 = 1. Hence we are looking for the coefficient

of x3
1x2. This λ corresponds to representations of Σ3. There are three conjugacy classes

of Σ3: again we denote the conjugacy class corresponding to the identity in Σ3 by (id) and

|(id)| = 1. The conjugacy with one transposition we will denote by (12)(3) and |(12)(3)| = 3.

The last conjugacy we denote by (123) and |(123)| = 2.

We can equivalently write (id) = (13) and hence i1 = 3. Then for this conjugacy class∏
j Pj(x)ij = (x1 + x2)3. Therefore:

tr(id) = [(x1 − x2)(x1 + x2)3]x3
1x2

= 2.

The conjugacy class (12)(3) can equivalently be written as (1121), so i1 = 1 = i2. Then

for this conjugacy class
∏

j Pj(x)ij = (x1 + x2)(x2
1x

2
2). Therefore:

tr((12)(3)) = [(x1 − x2)(x1 + x2)(x2
1x

2
2)]x3

1x2
= 0.

We can equivalently write the conjugacy class (123) as (102031) = (31), so i1 = 0, i2 = 0

and i3 = 1. Then for this conjugacy class
∏

j Pj(x)ij = (x3
1 + x3

2). Therefore:

tr((123)) = [(x1 − x2)(x3
1 + x3

2)]x3
1x2

= −1.

The cycle index sum for V(2,1) is given by

ZV(2,1)
=

1

3!

(
(1)(2)p3

1 + (3)(0)p1p2 + (2)(−1)p3

)
=

1

6
(2p3

1 − 2p3) =
p3

1 − p3

3
.

The partition λ = (3, 1) given by the Young diagram

This λ corresponds to representations of Σ4. Since λ = (3, 1) then `1 = 3 + 1 = 4 and

`2 = 1. Hence we are looking for the coefficient of x4
1x2. There are five conjugacy classes

of Σ4 which we denote by (id), (12)(3)(4), (123)(4), (12)(34), and (1234). The orders of
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these conjugacy classes are |id| = 1, |(12)(3)(4)| = 6, |(123)(4)| = 8, |(12)(34)| = 3, and

|(1234)| = 6.

For the (id) conjugacy class, i1 = 4. This implies
∏

j Pj(x)ij = (x1 + x2)4. Then

tr(id) = [(x1 − x2)(x1 + x2)4]x4
1x2

= 3.

For the conjugacy class of (12)(3)(4), i1 = 2 and i2 = 1. This gives
∏

j Pj(x)ij =

(x1 + x2)2(x2
1 + x2

2). Then

tr((12)(3)(4)) = [(x1 − x2)(x1 + x2)2(x2
1 + x2

2)]x4
1x2

= 1.

For the conjugacy class of (123)(4), i1 = 1 and i3 = 1. This implies that
∏

j Pj(x)ij =

(x1 + x2)(x3
1 + x3

2). Then

tr((123)(4)) = [(x1 − x2)(x1 + x2)(x3
1 + x3

2)]x4
1x2

= 0.

For the conjugacy class of (12)(34), i2 = 2. This gives
∏

j Pj(x)ij = (x2
1 + x2

2)2. Then

tr((12)(34)) = [(x1 − x2)(x2
1 + x2

2)2]x4
1x2

= −1.

For the conjugacy class of (1234), i4 = 1. This gives that
∏

j Pj(x)ij = (x4
1 + x4

2). Then

tr((1234)) = [(x1 − x2)(x4
1 + x4

2)]x4
1x2

= −1.

Therefore the cycle index sum for the hook (3,1) is given by

ZV(3,1)
=

1

4!
((1)(3)p4

1 + (6)(1)p2
1p2 + (8)(0)p1p3 + (3)(−1)p2

2 + (6)(−1)p4)

=
1

24
(3p4

1 + 6p2
1p2 − 3p2

2 − 6p4)
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=
1

8
p4

1 +
1

4
p2

1p2 −
1

8
p2

2 −
1

4
p4.

From the Frobenius formula we can write the cycle index sum for each V(n,1) where n ≥ 1,

as

ZV(n,1)
=

1

n!

∑
µ`n+1

([
(x1 − x2)

∏
j

(xj1 + xj2)ij
]
xn+1

1 x2

×

× n!

1i1i1! · 2i2i2! · 3i3i3! · · ·
∏
j

p
ij
j

)
. (3.7.3)

where ij is the number of cycles of length j in partition µ of Σn+1.

We can rewrite (3.7.3) in the following way:

∞∑
n=1

ZV(n,1)
=

∂

∂x2

(∑
ij

(
(x1−x2)

∏
j

(xj1 + xj2)ijp
ij
j

(j)ij(ij)!

)
−P0(x1, x2)0p0

0−P1(x1, x2)1p1
1

)∣∣∣∣∣
x1=1,x2=0

The last two terms in the above equation correspond to the cardinality degree 0 and 1,

respectively. Since V(n,1) begins in cardinality degree 2, we want to subtract off anything in

degree 0 or 1 so that they do not contribute anything.

=
∂

∂x2

(
(x1 − x2)

∏
j

∑
i

(( (xj1+xj2)pj
j

)i
i!

)
− 1− (x1 + x2)p1

)∣∣∣∣∣
x1=1,x2=0

=
∂

∂x2

(
(x1 − x2)

∏
j

exp

(
(xj1 + xj2)pj

j

)
− 1− (x1 + x2)p1

)∣∣∣∣∣
x1=1,x2=0

=
∂

∂x2

(
(x1 − x2) exp

(∑
j

(xj1 + xj2)pj
j

)
− 1− (x1 + x2)p1

)∣∣∣∣∣
x1=1,x2=0
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Next take the derivative of the above equation with respect to x2:

=

[
(−1)

(
exp

(∑
ij

(xj1 + xj2)pj
j

)
− 1− (x1 + x2)p1

)
+

+ (x1 − x2)
(

exp

(∑
ij

(xj1 + xj2)pj
j

)(∑
ij

xj−1
2 pj

)
− p1

)]∣∣∣∣∣
x1=1,x2=0

=

[
(x1 − x2)

(
exp

(∑
ij

(xj1 + xj2)pj
j

)(∑
ij

xj−1
2 pj

)
− p1

)
−

−
(

exp

(∑
ij

(xj1 + xj2)pj
j

)
− 1− (x1 + x2)p1

)]∣∣∣∣∣
x1=1,x2=0

=

[
(x1 − x2)

(
exp

(∑
ij

(xj1 + xj2)pj
j

)(∑
ij

xj−1
2 pj

)
− p1

)
−

− exp

(∑
ij

(xj1 + xj2)pj
j

)
+ 1 + (x1 + x2)p1

]∣∣∣∣∣
x1=1,x2=0

Now evaluate the x1 7→ 1 and x2 7→ 0:

= exp

∑
ij

1

j
pj

p1 − p1 − exp

∑
ij

1

j
pj

+ 1 + p1

Finally, we get a nicer formula for the cycle index sum of partitions (n,1) for all n:

(p1 − 1) exp

∑
ij

1

j
pj

+ 1

Next we tried to apply this same approach to partitions (n,1,1), that is, hooks with n

boxes in the first row and 1 box in the second and in the third row. This requires another

variable, x3. While find the cycle index sum for representations V(n,1,1) for small n was
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attainable, as a whole, the process was not replicable. A formula similar to (3.7.3) was

found:

ZV(n,1,1)
=

1

n!

∑
µ`n+1

[
(x1 − x2)(x1 − x3)(x2 − x3)

∏
j

(xj1 + xj2 + xj3)ij

]
xn+2

1 x2
2x3

×

× n!

1i1i1! · 2i2i2! · 3i3i3! · · ·
∏
j

p
ij
j

)∣∣∣∣∣
x1=1,x2=x3=0

. (3.7.4)

We can rewrite (3.7.4) in the following way:

∞∑
n=1

ZV(n,1,1)
=

1

2

∂

∂x2

∂

∂x2

∂

∂x3

(F (x1, x2, x3; p1, p2, ...))

∣∣∣∣∣
x1=1,x2=x3=0

where

F (x1, x2, x3; p1, p2, ...) =
∑
ij

(
(x1 − x2)(x1 − x3)(x2 − x3)

∏
j

(xj1 + xj2 + xj3)ijp
ij
j

(j)ij(ij)!

)
−

− P0(x1, x2)0p0
0 − P1(x1, x2)1p1

1 −
1

2
(P1(x1, x2, x3)2p2

1 + P2(x1, x2, x3)p2)

Similarly to (n,1), we subtract off the terms of cardinality degree less than 3, which is

done in the second line of the above equation. Although the process was not complete, some

work was done to replicate the process above:

F (x1, x2, x3; p1, p2, ...) = (x1 − x2)(x1 − x3)(x2 − x3)

(∏
j

∑
i

(( (xj1+xj2+xj3)pj
j

)i
i!

)
−

− 1− p1 −
1

2
((x1 + x2 + x3)2p2

1 + (x2
1 + x2

2 + x2
3)p2)

= (x1 − x2)(x1 − x3)(x2 − x3)

(∏
j

exp

(
(xj1 + xj2 + xj3)pj

j

))
−

− 1− p1 −
1

2
((x1 + x2 + x3)2p2

1 + (x2
1 + x2

2 + x2
3)p2)
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(x1 − x2)(x1 − x3)(x2 − x3)

(
exp

(∑
j

(xj1 + xj2)pj
j

)
−

− 1− p1 −
1

2
((x1 + x2 + x3)2p2

1 + (x2
1 + x2

2 + x2
3)p2)

Hence,

∞∑
n=1

ZV(n,1,1)
=

=
1

2

∂

∂x2

∂

∂x2

∂

∂x3

(
(x1 − x2)(x1 − x3)(x2 − x3)

(
exp

(∑
j

(xj1 + xj2)pj
j

)
−

− 1− p1 −
1

2
((x1 + x2 + x3)2p2

1 + (x2
1 + x2

2 + x2
3)p2)

)∣∣∣∣∣
x1=1,x2=x3=0

The difficulty lies in the next steps, namely taking the derivatives and mapping x1 7→ 1,

x2 7→ 0 and x3 7→ 0. An attempt was made at these next steps and although done with

minor errors, the formula (3.7.5) found still proved helpful.

1

2
exp

∑
ij

1

j
pj

(2(p1 + 1)− p2
1p2)− 1− 2p1 − p2

1 +
1

2
p2 (3.7.5)

This difficulty would continue grow with more variables (and more derivatives) for

(n,1,1,1), (n,1,1,1,1), (n,1,1,1,1,1) and so on. If these formulas had been easier to obtain,

the idea would be to use them to find (and check) a more general formula for a hook of the

form (n, 1n−k), that is ones given by the following Young diagram for any 0 ≤ k ≤ n− 1:
n

n− k − 1

· · ·

...

However, from (3.7.3) and (3.7.5) we were able to make a guess as to what the cycle index

sum should be for H(k)
1 , which we then verified using induced representations. See Section
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3.3.
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Chapter 4

Overlapping Discs Filtration in the

Commutative Operad

The goal of this chapter is to define the operad of overlapping discs. This new operad

will contain information on both the operad Bd and all the bimodules B(k)
d . This operad is

endowed with a natural filtration by the degree of the overlap.

4.1 Filtered Operads of Overlapping Discs

An operad O is filtered if there is a filtration in each component of F0O(n) ⊂ F1O(n) ⊂

F2O(n) ⊂ ... compatible with the composition maps:

◦i : Fk1O(n1)× Fk2O(n2)→ Fk1+k2O(n1 + n2 − 1). (4.1.1)

We assume that id ∈ F0O(1). Note that F0O is a suboperad of O.

The filtration of the operad induces a sequence of maps in homology:

H∗F0O(n)→ H∗F1O(n)→ H∗F2O(n)→ ... (4.1.2)
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and the composition maps:

◦i : H∗Fk1O(n1)⊗H∗Fk2O(n2)→ H∗Fk1+k2O(n1 + n2 − 1). (4.1.3)

One has the inclusion B(k)
d (n) ⊂ B(k+1)

d (n) since the non-k-overlapping condition is stricter

than the non-(k+ 1)-overlapping condition. Now define FiO(n) := B(i+2)
d (n), where O(n) :=

B(∞)
d (n) :=

∞⋃
i=2

B(i)
d (n). Just as with Bd, here composition (4.1.1) is inserting a configuration

of n2 discs from B(k2)
d (n2) into the i-th disc of B(k1)

d (n1). When k1 = k2 = 2 we get the

usual operadic composition in Bd. Note that B(2)
d is the usual little discs operad Bd. When

k1 = 2 we get the infinitesimal version of the left action (2.2.2) and when k2 = 2 we get the

infinitesimal version of the right action (2.2.1). Note that B(∞)
d (n) = (Bd(1))n and therefore

is contractible. Thus B(∞)
d is equivalent to the commutative operad.

From [12], we already know the homology groups of H∗B(k)
d (n), k ≥ 2, and how the

composition maps work when either k1 or k2 is 2. Now we want to understand the maps

in the sequence (4.1.2) as well as the composition maps from (4.1.3), for k1, k2 > 2. To

understand the sequence (4.1.2) we will need the following lemma, which will also be useful

when understanding the composition maps (4.1.3).

Lemma 4.1.1. For all d ≥ 1, k ≥ 2 and n ≥ 0, the inclusion B(k)
d (n) ⊂ B(k+1)

d (n) is

null-homotopic.

Proof. Define a homotopy H : B
(k)
d (n) × [0, 1] → B

(k+1)
d (n). Subdivide [0, 1] into n + 1

subintervals. Recall that a point in B(k)
d (n) is a configuration of n-discs in the unit disc with

the condition that the intersection of any k of them is empty. Fix a point in B(k+1)
d (n) where

all the discs, labeled 1′, 2′, ..., n′, are disjoint. We will call this configuration the standard

position for the discs. Now take any point P ∈ B(k)
d (n), discs labeled 1, 2, ..., n. Recall that

P lies inside of a unit disc. We can smoothly rescale and translate this unit disc so that it

is disjoint from the 1′, ..., n′ discs in the standard configuration. This homotopy is done on

the first subinterval
[
0, 1

n+1

]
.

Next, we can smoothly rescale and translate the disc labeled 1 in P to the disc labeled
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1′ in the standard position during the second interval of H. Then we can smoothly rescale

and translate the disc labeled 2 in P to the disc labeled 2′ in the standard position during

the third interval of H. We can iteratively do this for all n discs in P until each disc is in

the standard position in B(k+1)
d (n). In the i-th interval of H, rescale and translate the disc

labeled (i− 1) to the standard position, for i ≥ 2.

Note when moving the discs, up to k overlaps can occur. However since the k overlaps

are allowed in B
(k+1)
d (n), the homotopy is well-defined.

We show the idea of the above proof below pictorially for B(2)
d (3) ⊂ B(3)

d (3).

B(2)
d (3) 3

3

2

1 →
3′ 2′ 1′

3

2
1

→
3′ 2′ 1′

3

2
1

→
3′ 2′ 1

3

2

3′ 2 1

3

→
3 2 1

∈ B(3)
d (3)→

Notice that when disc 2 is moved to 2′, it overlaps with disc 3. However since the movement

occurs in B
(3)
d (n), it does not cause any issues.

As an immediate consequence of Lemma 4.1.1, we get the following corollary:

Corollary 4.1.2. For d ≥ 1, the sequence of inclusions B(2)
d ⊂ B

(3)
d ⊂ B

(4)
d ⊂ . . . induces

maps in the homology with each map factoring through Com.

H∗B(2)
d H∗B(3)

d H∗B(4)
d

Com Com Com

· · ·

· · ·

For d ≥ 2 or k ≥ 3, the map H0B(k)
d → Com is just the projection to H0B(k)

d = Com.

For d = 1, k = 2, H∗B(2)
1 = Assoc. The map H∗B(2)

1 → Com is the natural projection
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Assoc → Com. The map Com ↪→ H∗B(k)
d is always the inclusion H0B(k)

d → H∗B(k)
d , as

H0B(k)
d = Com for k ≥ 3.

4.2 Compositions in H∗B(•)
d

In the previous Section 4.1 we understood the sequence of maps (4.1.2), now we want to

understand the compositions maps (4.1.3). Corollary 4.1.2 tells us that the map H∗B(k)
d →

H∗B(k+1)
d can be factored through Com. The spherical cycle {x1, ..., xk} is the boundary of the

chain (disc) c(x1, ..., xk) : {x1, ..., xk} = ∂(c(x1, ..., xk)) in B(k+1)
d (k). Hence {x1, ..., xk} = 0 in

H∗B(k+1)
d (k), by Corollary 4.1.2. The chain c(x1, ..., xk) can be explictly described as follows:

|x1|2 + |x2|2 + ...+ |xk|2 ≤ ε2

k∑
i=1

xi = 0 (4.2.1)

where xi represents the center of the i-th disc.

4.2.1 Examples

We want to explicitly describe the composition maps

◦i : H∗Fk1O(n1)⊗H∗Fk2O(n2)→ H∗Fk1+k2O(n1 + n2 − 1).

Before describing the general case of composition, let us examine some examples of the

composition maps on the level of homology.

Let k1 = k2 = 3, n1 = 5, and n2 = 3:

◦i : H∗B(3)
d (5)⊗H∗B(3)

d (3)→ H∗B(4)
d (7).

Let us examine the composition when i = 5:

[{x1, x2, x3}, x4]·x5◦5{x1, x2, x3} = [{x1, x2, x3}, x4]·{x5, x6, x7} ∈ Im(H∗B(3)
d (7)) ⊂ H∗B(4)

d (7).
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Here we insert the second brace in x5. This element is in the image of H∗B(3)
d (7). By the

Corollary 4.1.2, [{x1, x2, x3}, x4] · {x5, x6, x7} = 0. Explicitly this element is the boundary of

the chain [{x1, x2, x3}, x4] · c(x5, x6, x7).

Now let us look at the composition when i = 4:

[{x1, x2, x3}, x4] · x5 ◦4 {x1, x2, x3} = [{x1, x2, x3}, {x4, x5, x6}] · x7.

Note that

[{x1, x2, x3}, {x4, x5, x6}] · x7 = ∂([{x1, x2, x3}, c(x4, x5, x6)] · x7).

This element is also zero by the same argument as above.

Lastly, let us look at the composition for i = 3:

[{x1, x2, x3}, x4] · x5 ◦3 {x1, x2, x3} = [{x1, x2, {x3, x4, x5}}, x6] · x7.

Note that compositions ◦1 and ◦2 give similar results to ◦3. We claim that resulting

element [{x1, x2, {x3, x4, x5}}, x6] · x7 ∈ H∗B(4)
d (7) is non-trivial. To show this, we must

understand the composition of braces, that is, {x1, x2, {x3, x4, x5}}, which can be realized as

a map S2d−1 × S2d−1 → B(4)
d (7). We can geometrically see {x1, x2, {x3, x4, x5}} as follows:

1 2 3 4 5• • • • •

Here x3, x4, x5 orbit closely around each other while at the same time they collectively

as a cluster closely orbit with x1 and x2.

4.2.2 Sign Conventions

We choose our sign convention so that it agrees with that of the Dobrinskaya-Turchin paper

[12]. When we describe elements in the homology of B
(k)
d in terms of products of iterated
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brackets, cycles are realized as products of chains (usually spheres). We read the ordering of

the factors (spheres) from the way the product of iterated brackets is written. We follow the

rule that the spherical cycle corresponding to the brace is taken into account in the ordering

by the left brace. Similarly, the spherical cycle corresponding to the bracket is taken into

account by the comma. Non-spherical cycles are represented by letters (such as Y and Z)

and are taken into account in the ordering when they appear.

Example:

{x1, ..., xk−1, [Y,Z]} corresponds to a cycle realized by the product S(k−1)d−1×Y ×Sd−1×

Z. First we get S(k−1)d−1 due to the brace since the sign contribution is placed on the left

most brace. Then we have all of the xi’s which do not contribute to the sign. Next we have

the contribution from Y and then Sd−1, the contribution from the bracket, recall that it is

taken into account by the comma. Lastly, we have the contribution from Z.

4.2.3 Compositions

From the examples in Section 4.2.1 one can see that many compositions will be trivial. In

fact, all non-trivial elements come from either composing braces inside of braces, or from

degree 0 classes. We can categorize elements in H∗B(k)
d into 3 different types:

I) H0B(k)
d (n) = Com(n).

II) Products with exactly one iterated bracket (the other factors singletons) that contain

exactly one brace.

III) The space spanned by all the other products of iterated brackets. In particular, elements

of this type will have at least two braces.

For all i, I ◦i I 6= 0 as these are just compositions in Com. Compositions of the form II ◦i

II 6= 0 if and only if i is inside of the brace. We claim all the other compositions are trivial.

Proposition 4.2.1. Assume both k1 and k2 are greater than 2. Then the composition maps

◦i : H∗B(k1)
d (n1)⊗H∗B(k2)

d (n2)→ H∗B(k1+k2−2)
d (n1 + n2 − 1) (4.2.2)
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are trivial restricted on I ◦i II, I ◦i III, II ◦i I, II ◦i III, III ◦i I, III ◦i II, III ◦i III for all i

and on II ◦i II if i is outside of the brace.

Proof. Cases I◦iII and I◦iIII: Let x1 ·...·xn1 ∈ H0B(k1)
d (n1) be of type I and β(x1, ..., xn2) ∈

H∗B(k2)
d (n2) be of type II or III. Compositions in these cases are as follows:

x1 · ... · xn1 ◦i β(x1, ..., xn2) = x1 · ... · xi−1 · β(xi, ..., xi+n2−1) · ... · xn1+n2−1.

The result of this composition is in Im(H>0B(k2)
d (n1+n2−1)) ⊂ H>0B(k1+k2−2)

d (n1+n2−1).

Since k1 is assumed to be greater than 2, by Lemma 4.1.1, the compositions of these forms

are trivial.

Cases II ◦i I and III ◦i I: Let α(x1, ..., xn1) ∈ H∗B(k1)
d (n1) be of type II or III and

x1 · ... · xn2 ∈ H0B(k2)
d (n2) be of type I. Compositions in these cases are as follows:

α(x1, ..., xn1) ◦i x1 · ... · xn1 = α(x1, ..., xi−1, xi · ... · xi+n2−1, xi+n2 , ..., xn1+n2−1).

If i is not in the brace of α(x1, ..., xn1) then the result of the composition is clearly in

Im(H>0B(k1)
d (n1 + n2 − 1)) ⊂ H>0B(k1+k2−2)

d (n1 + n2 − 1). Since k2 is assumed to be greater

than 2, by Lemma 4.1.1, the compositions of these forms are trivial.

Case II ◦i II: Let α(x1, ..., xn1) ∈ H∗B(k1)
d (n1) be an element of type II and let

β(x1, ..., xn2) ∈ H∗B(k2)
d (n2) be another element of type II.

Compositions are as follows:

α(x1, ..., xn1) ◦i β(x1, ..., xn2) = α(x1, ..., xi−1, β(xi, .., xi+n2−1), xi+n2 , ..., xn1+n2−1).

Since i is not inside the brace, the result of the composition is in Im(H>0B(k′)
d (n1 + n2− 1)),

where k′ = max(k1, k2). Then Im(H>0B(k′)
d (n1 +n2−1)) ⊂ H>0B(k1+k2−2)

d (n1 +n2−1). Since

k1 and k2 are assumed to be greater than 2, by Lemma 4.1.1, any composition of this form

is trivial.

Cases III ◦i II and III ◦i III: Let α(x1, ..., xn1) ∈ H∗B(k1)
d (n1) be an element of type
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III and let β(x1, ..., xn2) ∈ H∗B(k2)
d (n2) be an element of type II or III. Compositions are as

follows:

α(x1, ..., xn1) ◦i β(x1, ..., xn2) = α(x1, ..., xi−1, β(xi, ..., xi+n2−1), ..., xn1+n2−1).

Since α(x1, ..., xn1) is of type III, it has at least two braces. Therefore for any i, there is

at least one brace of α(x1, ..., xn1) that is unaffected by the composition. That brace is of

length k1 and is the boundary of the chain c(x1, ..., xk1). Therefore the composition is trivial.

Example : For k1 = 3, k2 = 4, n1 = 6, n2 = 4, we get a map ◦2 : B(3)
d (6) × B(4)

d (4) →

B(5)
d (9). Let α = [{x1, x2, x3}, {x4, x5, x6}] and β = {x1, x2, x3, x4}. The composite cycle

α ◦2 β can be realized as a product of spheres S2d−1 × S3d−1 × Sd−1 × S2d−1, which is a

boundary ∂(S2d−1 × S3d−1 × Sd−1 ×D2d):

[{x1, x2, x3}, {x4, x5, x6}] ◦2 {x1, x2, x3, x4} = [{x1, {x2, x3, x4, x5}, x6}, {x7, x8, x9}]

= ∂[{x1, {x2, x3, x4, x5}, x6}, c(x7, x8, x9)]

= 0.

For the inner brace, {x2, x3, x4, x5}, any three of the discs 2, 3, 4, and 5 can overlap. If we

replace {x2, x3, x4, x5} with Y in the brace {x1, {x2, x3, x4, x5}, x6}, we have {x1, Y, x6} and

any two of the discs 1, Y , and 6 can overlap. Therefore if Y overlaps with either 1 or 6 there

is at most four discs overlapping, so the result is indeed in B(5)
d (9). However since {x7, x8, x9}

bounds a disc, as seen above, the result of the composition is zero in B(5)
d (9).

The remaining case II ◦i III is the most difficult and we will need the following lemma:

Lemma 4.2.2. Let {x1, ..., xk1} ∈ H(k1−1)d−1B(k1)
d (k1) and let β(x1, ..., xn2) ∈ H∗B(k2)

d (n2) be

an element of type III.

We can either write β = Y · Z or β = [Y, Z] for some Y and Z. When β = Y · Z, then

{x1, ..., xk1−1, (Y ·Z)} = (−1)|Y |((k1−1)d−1)Y · {x1, ..., xk1−1, Z}+{x1, ..., xk1−1, Y } ·Z, (4.2.3)
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and when β = [Y, Z], then

{x1, ..., xk1−1, [Y, Z]} = (−1)(|Y |+d−1)((k1−1)d−1)[Y, {x1, ..., xk1−1, Z}] + [{x1, ..., xk1−1, Y }, Z].

(4.2.4)

Proof. The formulas (4.2.3) and (4.2.4) do not follow from (2.2.5) and (2.2.6), but are proved

by a similar argument as in [12, Examples 5.2 and 5.3], which was inspired from [3]. Consider

the cycle {x1, ..., xk1−1, (Y · Z)}. When we pull Z far away, it forms a chain, which might

have a forbidden (k1 + k2 − 1)-overlap. This could only happen near the plane

x1 = ... = xk1−1 = Z,

where abusing notation, Z denotes the center of mass of points appearing in the chain

Z. We remove a small tubular neighborhood of this forbidden plane and this produces

the cycle Y · {x1, ..., xk1−1, Z}. On the other hand when Z is far away we get the cycle

{x1, ..., xk1−1, Y } · Z. This proves the relation (4.2.3).

Geometrically we can see the chain C below.

•

{x1, ..., xk1−1, (Y · Z)} Y · {x1, ..., xk1−1, Z} {x1, ..., xk1−1, Y } · Z

Now consider the cycle {x1, ..., xk1−1, [Y, Z]}. We pull [Y, Z] together far away. This

produces a chain that intersects forbidden strata. Notice Y and Z rotate around one another

and thus never meet. This chain meets the plane

x1 = x2 = ... = xk1−1 = Z.

By removing a tubular neighborhood of this intersection with the chain we get the cycle
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{x1, ..., xk1−1, Z} at the boundary near every point of intersection. Simultaneously this cycle

rotates around Y since x1, ..., xk1−1 have collided with Z. Hence we have [Y, {x1, ..., xk1−1, Z}]

as part of the boundary of our chain. Similarly the intersection with the plane

x1 = x2 = ... = xk1−1 = Y

produces the cycle [{x1, ..., xk1−1, Y }, Z]. On the other end of the cylinder, the boundary

is given by {x1, ..., xk1−1, 1} · [Y, Z] and is 0 in the homology as {x1, ..., xk1−1, 1} = 0 in

H>0B(k1)
d (k1− 1) = 0. There are no other forbidden planes to contribute and thus we obtain

(4.2.4). Geometrically we can see the chain C below.

• •

{x1, ..., xk1−1, [Y, Z]}
[Y, {x1, ..., xk1−1, Z}][{x1, ..., xk1−1, Y }, Z]

{x1, ..., xk1−1, 1} · [Y, Z]

Case II ◦i III: Let α(x1, ..., xn1) ∈ H∗B(k1)
d (n1) be an element of type II and let

β(x1, ..., xn2) ∈ H∗B(k2)
d (n2) be an element of type III. Compositions are as follows:

α(x1, ..., xn1) ◦i β(x1, ..., xn2) = α(x1, ..., xi−1, β(xi, .., xi+n2−1), xi+n2 , ..., xn1+n2−1)

If i is not in the brace of α(x1, ..., xn1) then the brace of α(x1, ..., xn1) bounds a disc, that is,

{xi1 , ..., xik1
} = ∂c(xi1 , ..., xik1

), similar to the example above.

If i is in the brace of α(x1, ..., xn1) then we can apply Lemma 4.2.2. After iteratively

applying (4.2.3) and (4.2.4), although there can be braces inside of braces, each summand

in the result must also have {xi1 , ..., xik2
} outside of the brace. Indeed, since β(x1, ..., xn2)

is of type III, and thus has at least two braces. Then {xi1 , ..., xik2
} = ∂c(xi1 , ..., xik2

). Since

the brace {xi1 , ..., xik2
}, is the boundary of a disc, composition is trivial.

64



Theorem 4.2.3. The composition of braces inside of other braces has a new relation:

{x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}} = −(−1)(k1−1)d

k1−1∑
i=1

(−1)(i−1)d[xi, {x1, ..., x̂i, ..., xk1+k2−1}]

(4.2.5)

= (−1)(k1−1)d

k1+k2−1∑
i=k1

(−1)(i−1)d[xi, {x1, ..., x̂i, ..., xk1+k2−1}]

(4.2.6)

Note that the difference of (4.2.5) and (4.2.6) is exactly the generalized Jacobi relation

(2.2.4).

Proof. We can see the above relation geometrically as follows:

{x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}}

Consider the intersection of the space M(k1+k2−2)
d (k1 + k2 − 1) with the sphere given by

k1+k2−1∑
i=1

xi = 0 and
k1+k2−1∑
i=1

x2
i = 1. This space is homotopy equivalent toM(k1+k2−2)

d (k1 +k2−

1), where translations and rescaling have been killed. The obtained space is S(k1+k2−2)d−1

with several subspheres removed. Each removed subsphere is given by the intersection of

S(k1+k2−2)d−1 with the plane x1 = ... = x̂i = ... = xk1+k2−1 = 0 for 1 ≤ i ≤ k1 +k2−1. All the

removed subspheres are disjoint. We can take tubular neighborhoods around each subsphere,

which are also all disjoint. Each tubular neighborhood has boundary which is exactly the

cycle [xi, {x1, ..., x̂i, ..., xk1+k2−1}]. After removing these tubular neighborhoods we are left

with a manifold with boundary that we denote X
(k1+k2−2)
d (k1 + k2 − 1). The boundary of
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X
(k1+k2−2)
d (k1 + k2 − 1) is exactly the generalized Jacobi relation (2.2.4) for k = k1 + k2 − 2.

Then {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}} is a submanifold of X
(k1+k2−2)
d (k1 + k2 − 1) that is of

codimension 1. Thus {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}} splits X
(k1+k2−2)
d (k1 +k2− 1) into two

parts where one part is given by the right hand side of (4.2.5) and the other is given by

(4.2.6).

The cycle {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}} can be realized as a product of spheres:

S(k1−1)d−1×S(k2−1)d−1. We can describe the first sphere S(k1−1)d−1 by the following equations:

x1 + · · ·+ xk1−1 + Y = 0 x2
1 + · · ·+ x2

k1−1 + Y 2 = c2 · k1(k1 − 1) (4.2.7)

where Y = 1
k1−1

(xk1+1 + ...+ xk1+k2−1).

Define xk1 = xk1 − Y , xk1+1 = xk1+1 − Y ,..., xk1+k2−1 = xk1+k2−1 − Y . Then we can

describe the second sphere by the following equations:

xk1 + · · ·+ xk1+k2−1 = 0 x2
k1

+ · · ·+ x2
k1+k2−1 = ε2 · k2(k2− 1), ε2 << c2. (4.2.8)

Next we define a chain one dimension bigger by pulling only one point, xk1 , in the direction

of (1, 0, ..., 0). As we pull xk1 it can collide with xk1+1, ..., xk1+k2−1 only when it intersects

with (k1 − 1) forbidden strata each given by the following set of equations:

x1 = · · · = x̂i = · · · = xk1+k2−1, 1 ≤ i ≤ k1 − 1. (4.2.9)

Note that xj = xi if and only if xj = xi. The obtained chain is a cylinder S(k1−1)d−1 ×

S(k2−1)d−1 × [0, N ], where N >> 0. This cylinder intersects the (k1 − 1)-forbidden strata

(4.2.9) transversely and disjointly.
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• • •· · · · · ·

{x1, ..., xk1−1{xk1 , .., xk1+k2−1}} xk1 · {x1, ..., xk1−1{1, xk1+1, ...xk1+k2−1}}
[xi, {x1, ..., x̂i, ..., xk1+k2−1}]

To get an actual chain in M(k1+k2−2)
d (k1 + k2 − 1), we remove disjoint tubular neighbor-

hoods of each intersection with the forbidden strata.

As an example, consider the intersection with the stratum x2 = · · · = xk1+k2−1. It

happens when the initial position of xk1 = (−(k1 − 1)ε, 0, ..., 0) and the position of xj =

(ε, 0, ..., 0) for j = k1+1, ..., k1+k2−1. Indeed, when xk1 is pulled in the direction of (1,0,...,0),

the same happens with xk1 and it hits all the other xj, j = k1+1, ..., k1+k2−1 only if xk1+1 =

· · · = xk1+k2−1 and are in the position (ε, 0, .., 0). Now since Y = 1
k1−1

(xk1+1 + ...+ xk1+k2−1)

and all xj, j = k1 + 1, ..., k1 + k2− 1 are equal, we get Y = xj, j = k1 + 1, ..., k1 + k2− 1. We

also need Y to coincide with x2, ..., xk1−1, this reduces (4.2.7) to the following equations:

x1 + (k1 − 1)Y = 0 (4.2.10)

x2
1 + (k1 − 1)Y 2 = c2k1(k1 − 1). (4.2.11)

The first equation (4.2.10) kills translations and the second equation (4.2.11) kills rescal-

ing. Thus we get a sphere Sd−1, which corresponds to [x1, Y ]. However since Y has collided

with x2, ..., xk1+k2−1, we remove from the attained chain a tubular neighborhood of its in-

tersection with the forbidden stratum x2 = · · · = xk1+k2−1. This gives us exactly the cycle

[x1, {x2, ..., xk1+k2−1}].

Therefore, in general, if Y has collided with x1, ..., x̂i, .., xk1+k2−1, for i = i, ..., k1−1, then
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we get similarly

xi + (k1 − 1)Y = 0

x2
i + (k1 − 1)Y 2 = c2k1(k1 − 1).

This gives a sphere Sd−1 corresponding to [xi, Y ]. We remove from the cylinder

S(k1−1)d−1 × S(k2−1)d−1 × [0, N ] a tubular neighborhood of its intersection with the for-

bidden strata x1 = · · · = x̂i = · · · = xk1+k2−1, which yields the boundary cycle

[xi, {x1, ..., x̂i, .., xk1+k2−1}].

At the right end of the cylinder, S(k1−1)d−1 × S(k2−1)d−1 × [0, N ], we get a cycle xk1 ·

{x1, ..., xk1−1{1, xk1+1, ...xk1+k2−1}} which is homologously trivial since {1, x1, ...xk2−1} = 0 ∈

H≥0M(k2)
d (k2−1) = 0. All together, this gives us the relation (4.2.5). Note that (4.2.6) minus

(4.2.5) is the generalized Jacobi (2.2.4) and therefore (4.2.6) is a consequence of (4.2.5).

We explain how the sign in front of the sum (4.2.6) is found in the next section. It is

enough to understand the sign in front of only one of the summands in (4.2.6) (We do it for

the very last one). This is due to the argument made at the beginning of the proof.

4.3 Signs in Theorem 4.2.3

In [12, Section 6], the authors describe the cohomology groups H∗M(k)
d (n) as spaces of certain

admissible k-forests, where the k-forests have two types of vertices square and round. If a

k-forest has only one component, we call it a k-tree. Every square vertex contains a (k− 1)-

elements subset of {1, ..., n} and every round vertex contains just one element. Each round

vertex must be connected by an edge to a single square vertex, or completely disconnected

from all other vertices. Square vertices must be connected to at least one round vertex. One

orients all the given edges between the vertices. Each k-forest has an orientation set, which

consists of all the edges and square vertices. The order of the orientation set encodes the

coorientations of the corresponding chains. The degree of a square vertex is (k − 2)d and
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the degree of an edge is d−1. The cocycles in H∗M(k)
d (n) corresponding to the k-forests are

geometrically realized as an intersection number with cooriented chains in M(k)
d (n), which

are defined by a set of (in)equalities as follows. If i and j are in the same square vertex,

then xi = xj. The authors give a projection p1 : Rd → Rd−1 where (x1, ..., xd) 7→ (x2, ..., xd).

For two vertices A and B in a forest that are connected by an edge oriented from A to B,

they require that B is “above” A. Explicitly, for all i ∈ A and all j ∈ B, x1
i ≤ x1

j and

p1(xi) = p1(xj).

In [12, Section 8], the authors define a map Ψ, which describes the intersection be-

tween cycles given as products of iterated brackets (and geometrically realized as products

of spheres) with the k-forests cocycles.

As an example,

Ψ({x1, ..., xk}) =
k∑
`=1

(−1)(`−1)d

1 1, ..., ˆ̀, ..., k

`

2 (4.3.1)

The formula (4.3.1) means that the intersection of the cycle {x1, ..., xk} and the cocycle

1 1, ..., ˆ̀, ..., k

`

2 is (−1)(`−1)d, i.e. {x1, ..., xk}
⋂ 1 1, ..., ˆ̀, ..., k

`

2 = (−1)(`−1)d. For this, one

needs that the sphere {x1, ..., xk} given by the equations (2.2.7) should be oriented as follows.

One projects this sphere to (x1, ..., xk−1). We get an ellipsoid whose orientation is such that

the outside normal vector taken as a first one, union the oriented tangent frame gives (−1)kd

times the standard orientation of R(k−1)d.1

Now to determine the sign in front of (4.2.6) in Theorem 4.2.3, we consider the intersection

of the cocycle
1 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1 k1 + k2 − 1

2 3
with {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}} and with

the right hand side of (4.2.6). The corresponding cochain intersects only the last summand

1We do not actually need it, but it is worth mentioning as in the original paper [12], the orientation of
{x1, ..., xk} has not been determined. It was just said that the orientation of {x1, ..., xk} is such that the
pairing (4.3.1) works, see [12, footnote 3].
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of (4.2.6), [xk1+k2−1, {x1, ..., xk1+k2−2}]. The latter intersection is obtained by computing

Ψ([xk1+k2−1, {x1, ..., xk1+k2−2}]) =

1, ..., k̂1 − 1, ..., k1 + k2 − 2 2

k1 − 1

k1 + k2 − 1
1

3

+ · · ·(−1)(k1−2)d

See Section 8 in [12], in particular Example 8.1(a). The other summands are (k1 + k2 − 2)-

trees of different shapes (and thus do not contribute). The sign in front comes from (4.3.1).

To get the desired intersection, first we reverse the arrow between the square vertex and the

round vertex labeled k1 + k2 − 1. This gives the sign (−1)d. After reversing the arrow, we

have the following (k1 + k2 − 2)-tree:

2 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1k1 + k2 − 1

1 3

(−1)(k1−1)d

.

Next, we change the order of the elements 1, 2 and 3 in the orientation set by pulling

2 in front and pushing 1 to the end. The degree of 1 and 3 is d − 1. The degree of 2 is

(k1+k2−4)d. So the obtained sign from reordering the orientation set is (−1)(d−1)(k1+k2−4)d×

(−1)(d−1)(d−1) = (−1)d−1. After this change, we now have the (k1 +k2−2)-tree that we want:

1 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1 k1 + k2 − 1

2 3

(−1)k1d−1

.

Finally, we computed the intersection

[xk1+k2−1, {x1, ..., xk1+k2−2}]
⋂ 1 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1 k1 + k2 − 1

2 3 = (−1)k1d−1. (4.3.2)
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The sign in front of the last summand of (4.2.6) is (−1)(k1−1)d × (−1)(k1+k2−2)d =

(−1)(k2−1)d. In conclusion, we obtained that the intersection with the right hand side of

(4.2.6) is

(−1)k1d−1 × (−1)(k2−1)d = (−1)(k1+k2−1)d−1. (4.3.3)

Next we want to check that this is the same sign that we get on the left hand side

for {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}}. This cycle is the product of two spheres S(k1−1)d ×

S(k2−1)d−1.

The chain
1 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1 k1 + k2 − 1

2 3 is the transverse intersection of the fol-

lowing two chains:
1 1, ..., k1 − 2, k1

k1 − 1

2 and
1 k1, ..., k1 + k2 − 2

k1 + k2 − 1

2 . The coorientation of

1 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1 k1 + k2 − 1

2 3 is equivalent to the coorientation obtained by concatenat-

ing the coorientations of the chains corresponding to the k1-tree
1 1, ..., k1 − 2, k1

k1 − 1

2 and

the k2-tree
1 k1, ..., k1 + k2 − 2

k1 + k2 − 1

2 . Indeed, the difference in sign is obtained by pulling

the square vertex k1, ..., k1 + k2 − 2 through the edge of
1 1, ..., k1 − 2, k1

k1 − 1

2 . This pulling

does not affect the sign since the degree of k1, ..., k1 + k2 − 2 is a multiple of d and

the degree of the edge is d − 1. By (4.3.1), the intersection of S(k1−1)d−1 (the first

factor of {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}}) with
1 1, ..., k1 − 2, k1

k1 − 1

2 is (−1)(k1−1−1)d−1 =

(−1)k1d−1. Similarly by (4.3.1), the intersection of S(k2−1)d−1 (the second factor of
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{x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}}) and
1 k1, ..., k1 + k2 − 2

k1 + k2 − 1

2 is (−1)k2d−d−1. So the total sign

is (−1)(k1+k2−1)d−1, which is exactly the same as (4.3.3). Therefore, the sign (−1)(k1−1)d in

front of (4.2.6) is correct.
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Chapter 5

A Cosimplicial Model for

Imm
(k)
∂ (D1, Dn)

5.1 Spaces of Non-k-Equal Immersions of Discs

Let Imm
(k)
∂ (Dm, Dn) be the space of smooth immersions Dm ↪→ Dn of discs that are the

standard inclusion in a neighborhood of the boundary and satisfy the condition that the

image of any k-element subset has more than one point. Such spaces are called non-k-equal

immersions. The bimodules of non-k-overlapping discs naturally appear in the study of

these spaces [12, Section 11]. Note that Emb∂(D
m, Dn) = Imm∂

(2)(Dm, Dn) is the space

of smooth disc embeddings. We also consider the homotopy fiber space over the standard

inclusion: Dm ⊂ Dn

Imm∂
(k)(Dm, Dn) = hofib

(
Imm

(k)
∂ (Dm, Dn)→ Imm∂(D

m, Dn)
)
. (5.1.1)

One has a natural sequence of inclusions:

Emb∂(D
m, Dn) = Imm∂

(2)(Dm, Dn) ⊂ Imm∂
(3)(Dm, Dn) ⊂ · · · ⊂ Imm∂

(∞)(Dm, Dn)

(5.1.2)
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Note that Imm∂
(∞)(Dm, Dn) = Imm∂(D

m, Dn) ' ∗.

The spaces Emb∂(D
m, Dn), often called “spaces of embeddings modulo immersions,”

have been studied intensively, see [1] and references in within. Each space Imm∂
(k)(Dm, Dn)

is naturally a Bm-algebra. Moreover Imm∂
(2)(Dm, Dn) = Emb∂(D

m, Dn) is a Bm+1-algebra

[8, 9, 29]. One dimension higher little discs action comes from the fact that embeddings can

be pulled through each other. This means, in particular, there is a Browder operation:

[·, ·] : HiEmb∂(D
m, Dn)×HjEmb∂(D

m, Dn)→ Hi+j+mEmb∂(D
m, Dn). (5.1.3)

Exactly the same construction (the idea of pulling immersions through immersions) endows

(5.1.2) with a structure of a filtered Bm+1 − algebra. Then again, one has a Browder

operation:

[·, ·] : HiImm∂
(k1)(Dm, Dn)×HjImm∂

(k2)(Dm, Dn)→ Hi+j+mImm∂
(k1+k2−2)(Dm, Dn).

(5.1.4)

We believe that the computations done in chapter 4 will be helpful in understanding

these Browder operationss.

5.2 Goodwillie-Taylor Tower

Goodwillie and Weiss, in [21, 23], developed a powerful method to study spaces of embed-

dings, which is called Goodwillie-Weiss manifold calculus of functors. This method provides

spaces T∞Imm∂
(k)(Dm, Dn), which are conjectured to be equivalent to their corresponding

spaces Imm∂
(k)(Dm, Dn) for n−m ≥ 2 and k ≥ 3. One says that T∞Imm∂

(k)(Dm, Dn) is the

limit of the Goodwillie-Weiss Taylor tower associated to Imm∂
(k)(Dm, Dn). For the spaces
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of embeddings, this convergence of the Goodwillie-Weiss Taylor tower has been proven to

take place for codimension n−m ≥ 3, [22]:

T∞Emb∂(D
m, Dn) ' Emb∂(D

m, Dn). (5.2.1)

The advantage of T∞Imm∂
(k)(Dm, Dn) is that it has a description in operadic terms [1]. It

has been conjectured that for n−m ≥ 0 and k ≥ 2:

T∞Imm∂
(k)(Dm, Dn) ' Ibimodh

Bm
(Bm,B(k)

n ), (5.2.2)

where Ibimodh
Bm

(Bm,B(k)
n ), is the derived mapping space of infinitesimal bimodules over the

operad Bm.

The goal of this chapter is to use this operadic approach to obtain a cosimplicial model

for the space T∞Imm∂
(k)(D1, Dn) corresponding to 1-dimensional immersions. Thanks to

the natural projection,

π0 : B1 → Assoc, (5.2.3)

which is an equivalence of operads, we get an adjunction:

π!
0 : Ibimod

B1

� Ibimod
Assoc

: π∗0. (5.2.4)

Both categories are endowed with the Reedy model structure[15], and moreover (5.2.4)

is a Quillen equivalence by [15, Theorem 2.8]. We will describe the Reedy model structure

in section 5.3. Then in section 5.4, we describe a cofibrant replacement QB1(B(k)
n ) of B(k)

n in

Ibimod
B1

, so then one has an equivalence of spaces:

Ibimod
B1

h(B1,B(k)
n ) ' Ibimod

Assoc
h(Assoc, π!

0(QB1(B(k)
n ))). (5.2.5)

On the other hand, an infinitesimal bimodule over Assoc, when we forget the Σ-action, is

nothing but a cosimplicial object and the right hand side is exactly the homotopy totalization
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of this object. Therefore, we get

T∞Imm∂
(k)(Dm, Dn) ' Tothπ!(QB1(B(k)

n ))(•) (5.2.6)

In this chapter we give an explicit description of this cosimplicial space π!(QB1(B(k)
n ))(•).

5.3 Reedy Model Structure

We say an operad O is reduced if O(0) = ∗; it is well-pointed if the unit map ∗ → O(1)

is a cofibration. All operads in the chapter are reduced, well-pointed and Σ-cofibrant. All

infinitesimal bimodules M in this chapter will be Σ-cofibrant. Let IbimodO be the category

of infinitesimal bimodules over an operadO. We can describe IbimodO as a diagram category

TopΓ̃(O), where Γ̃(O) is a topologically enriched category assigned to O [1, 15] and Top is

the category of topological spaces. We will be using the Reedy model structure on QO(M),

defined in [1] and further described in section 5.4.

Let Λ be the category with objects finite sets, n = {1, ..., n} for all n ≥ 0, and morphisms

injective maps between them. Note that for a map α : k → n to be a morphism in Λ, k must

be less than or equal to n. Then we can form the category of Λ-sequences (denoted ΛSeq),

whose objects are functors Λop → Top. So then, we can say that ΛSeq= TopΛop .

The category ΛSeq has a Reedy model structure[18]. It can be transfered to IbimodO

via the following adjunction:

FΛ
Ib : ΛSeq � IbimodO : UΛ, (5.3.1)

where UΛ is the forgetful functor and FΛ
Ib is its left adjoint. This means a map in IbimodO

is a weak equivalence (or fibration) if and only if it is a weak equivalence (or fibration) in

ΛSeq. The obtained structure is called the Reedy model structure on IbimodO.
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5.4 Cofibrant Replacements

Now, we describe a cofibrant replacement QO(M) for an O − Ibimodule M over operad

O. We will need the language of trees for the construction of the Boardman-Vogt type

resolution, which is a functorial way of constructing cofibrant replacements [14]. We mostly

follow the notation of the previous reference.

� Let T be a planar tree that is oriented from top to bottom. There are input edges on

top and only 1 output edge on the bottom.

� Denote the vertex connected to the output edge by r, which is the root of T . The

output edge of the root vertex is called the root edge.

� Using the orientation of T , the vertex of an edge towards the root edge is the target

vertex, denoted t(e) and the other vertex is the source vertex, denoted s(e).

� Input edges have target vertices but not source vertices.

� The output edge has a source vertex but not a target vertex.

� Let V (T ) denote the set of vertices and E(T ) denote the set of edges.

� If an edge has both a source and a target vertex then it is an internal edge. The set of

all internal edges is denoted Eint(T ).

� The input edges are also called leaves and are ordered left to right and |T | is the number

of leaves.

� The ordered set of leaves are denoted in(T ) := {`1, ..., `|T |}

� Let the number of incoming edges of a vertex be denoted |v| and referred to as arity.

� The set of incoming edges of a vertex, denoted in(v) := {e1(v), ..., e|v|(v)}. This is also

ordered left to right.

� The unique output edge of a vertex is denoted e0(v).
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The following tree gives an example of the notation and vocabulary.

•

•

e1(r) = `1

v1

e1(v1) = `2 e2(v1) = `3

r

e0

e2(r) = e0(v1)

E(T ) = {e0, e2(r), `1, `2, `3}

EInt(T ) = {e2(r)}

V (T ) = {r, v1}

in(T ) = {`1, `2, `3, }

in(v1) = {`1, `2}

in(r) = {e1(r), e2(r)}

Let σ : {1, ..., |T |} → in(T ) be a bijection labeling the leaves of T and is an element of

Σ|T |. Then a tree is a pair (T, σ), where T is a planar tree. The set of trees with k-leaves is

denoted by Tk.

The planar trees described above can be used to describe cofibrant replacements for

operads. However, we want to describe cofibrant replacements for infinitesimal bimodules

over an operad. Instead, we will need pearled trees.

Definition 5.4.1. A pearled tree is a pair (T, p) where T ∈ Tk and p is a unique vertex

called the pearl and is represented as a white vertex in a tree. We denote the set of pearled

trees with k-leaves and satisfies the following restrictions by PTk:

� The pearl can be of any arity.

� All internal vertices are of arity strictly greater than zero.

•

•

•

•

1 3 4 2 56
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We construct a cofibrant replacement. This construction was first introduced in [15]

and is given here for completion. Given an operad O and an O-Ibimodule M, the cofibrant

replacement is denoted QO(M), where the points are pearled trees (T, p) from PTk with the

following data:

� All internal edges are oriented towards the pearl.

� The pearl p is labeled by an element of M .

� Every internal vertex is labeled by an element of the operad O.

� Every internal vertex is indexed with a real number in the interval [0,1].

� For an internal edge e, s(e) ≥ t(e), that is, vertices closer to the pearl are labeled with

numbers smaller than those farther away from the pearl.

•

•

•

•

1 3 4 2 56 7

(a1, t1) (a4, t4)

(a3, t3)

(a2, t2)

ap

a1, a2, a3 ∈ O(2)

a4 ∈ O(3)

ap ∈M(2)

0 ≤ t2 ≤ t3 ≤ t4 ≤ 1

0 ≤ t1 ≤ 1

The space IbO(M) is the quotient of the subspace of

∐
T∈PTk

M(|p|)×
∏

v∈V (T )\{p}

[O(|v|)× [0, 1]]

 (5.4.1)

where the equivalence relation is given by the following axioms:

1. If a vertex is labeled by ∗1 ∈ O(1), then one has the identification:
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∼•(∗1, t)

2. If a vertex is indexed by a · σ, with σ ∈ Σ, then

∼T1 Tn· · ·

`1
1 `1

m1· · · `n1 `nmn· · ·

•
(a · σ, t)

Tσ−1(n)Tσ−1(1) · · ·

`
σ−1(n)
mσ−1(n)`

σ−1(n)
1 · · ·`

σ−1(1)
mσ−1(1)`

σ−1(1)
1 · · ·

•
(a, t)

3. For an internal edge e connecting two vertices (neither of which is the pearl), if the two

vertices are indexed by the same real number t ∈ [0, 1], then e is contracted via the

operadic structure (recalled that vertices other than the pearl are labeled by points in

the operad O). The obtained vertex after the contraction is then indexed by t.

•
•(a1, t)

(a2, t)

ap

2 41 3

∼ •

2 41 3

(a2 ◦ a1, t)

ap

•

• (a1, t1)

(a2, t2)

ap

2 41 3

•(a3, t2) ∼
•

• (a1, t1)

(a2 ◦ a3, t2)

ap

2 41 3
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4. For a vertex that is indexed by 0, then the output edge (by the orientation towards the

pearl) is contracted via the infinitesimal bimodule structure and the obtained vertex

becomes the pearl.

•
•(a1, t)

(a2, 0)

ap

2 41 3

∼
•(a1, t)

2 41 3

ap ◦2 a2

•

•(a1, t1)

(a2, 0)

ap•(a3, t3)

2 41 3

∼ •(a3, t3)
•(a1, t1)

2 41 3

ap ◦2 a2

Let us now describe the composition structure of IbO(M). Let a be a point of positive

arity in O and M a module in IbO(M). The composition M ◦i a consists of grafting the

n-corolla

(
· · ·i i+ n

)
labeled by (a, 1) to the i-th incoming edge of M . Similarly the

composition a ◦iM consists of grafting M to the i-th leaf of the n-corolla labeled by (a, 1).

By [15, Theorem 3.10], QO(M) is a cofibrant replacement of M in the category IbimodO.

When a has arity zero, the right action of a ◦i ∗0 is shown by Figure 5.7:
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1 2 3

• (a, t) ◦3

•

=

∗0

• (a ◦2 ∗0, t)

m m

1 2

1 2 3

m

• (a, t) ◦1

•

=

∗0
1 2

•

m ◦1 ∗0

(a, t)

Figure 5.7: Right action

5.5 A Cosimplicial Model

5.5.1 Restriction-Induction Adjunction

Let φ : P → Q be a map of operads. Then there is an adjunction:

φ! : IbimodP � IbimodQ : φ∗ (5.5.1)

where φ∗ is the restriction functor and φ! is the left adjoint functor. The functor φ∗ is easy

to be defined. In particular, for any Q− Ibimod N , one has that φ∗(N)(k) = N(k).

Let M be an infinitesimal bimodule over P . Below, we describe φ!(M), which is a quotient

bimodule of the free Q-Ibimodule generated by M . Typical elements look like the following

trees where each qi ∈ Q, and m ∈M :
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· · · · · · · · ·

m

q1 qi qn

q0

· · · · · ·

Figure 5.8: Typical Element of φ!(M)

Note that some of the qi’s may be id ∈ Q(1) and thus they can simply be omitted.

If qi = φ(pi) ◦j q’
i for i ≥ 1, the relation with respect to the right action is as follows:

m

qi

=

m

φ(pi)

q’
i

∼

m

pi

qi

Figure 5.9: Relation with respect to the right action

The dashed circle on the left represents the operadic composition while the right circle

is for the infinitesimal right action.
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qi

m

=

q’
0

φ(p0)

m

∼

q’
0

p0

m

Figure 5.10: Relation with respect to the left action

Similarly, if q0 = q’
0 ◦j φ(p0), the dashed circle on the left represents the operadic compo-

sition while the right circle is for the infinitesimal left action.

5.5.2 Induction Applied to the Boardman-Vogt Resolution

Next we want to examine φ!(IbP (M)). Recall that IbP (M) is the Boardman-Vogt resolution

for M in IbimodP , which was described in the section 5.4 using the language of pearled trees.

For a pearled tree (T, p), the pearl is labeled by an element of M and the internal vertices

are labeled by the operad P and indexed by a real number in [0, 1]. Now we apply φ! to

Ibp(M). The elements of φ!(Ibp(M)) can also be viewed as pearled trees.

The nodes labeled by the qi’s are attached to some of the leaves. If a vertex in IbP (M)

is labeled (p, 1), then one can use the relations shown in Figures 5.9 and 5.10 to contract the

edge. That is, if a vertex of the pearled tree in φ!(Ibp(M)) is indexed by 1, then we label it

by q rather than by p.
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m

•(p1, t1) • (p2, t2) • (p3, t3)

•(p0, 1) ∼ (φ(p0), 1)

•

(q1, 1) •

(p4, t4) • (q2, 1)

5.5.3 A Cosimplicial Model

In this section we give an explicit description of the cosimplicial model for

T∞Imm
(k)

∂ (D1, Dn). This model is obtained as π!
0

(
QB1(B(k)

n )
)

where QB1(B(k)
n ) is a cofibrant

replacement of B(k)
n as a B1-Ibimodule. However, there is a slight issue because B(k)

n is not Σ-

cofibrant. Indeed, the Σ`-action on B(k)
n (`) is not free for k ≥ 3, ` ≥ 2. Therefore we cannot

apply the Boardman-Vogt resolution directly to B(k)
n . This can be corrected by crossing B(k)

n

with B∞ =
⋃
n

Bn. There is a sequence of inclusions: B0 ⊂ B1 ⊂ B2 ⊂ · · · and each Bn ⊂ B∞.

Note also that B∞ ' ∗ for all ` and is an infinitesimal bimodule over B1 thanks to the inclu-

sion of operads B1 ↪→ B∞. Then (B(k)
n ×B∞)(`) = B(k)

n (`)×B∞(`) is now Σ`-cofibrant. Now

we can apply the Boardman-Vogt resolution to get QB1(B(k)
n ) = IbB1(B(k)

n × B∞). Finally,

the cosimplicial model for T∞Imm∂
(k)(Dm, Dn) is π!

0(IbB1(B(k)
n × B∞)).
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