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Abstract 

Much research has shown that experts possess superior memory in their field of expertise. This 

memory benefit has been proposed to be the result of various encoding mechanisms, such as 

chunking and differentiation. Another potential encoding mechanism that is associated with 

memory is event segmentation, which is the process by which individuals parse continuous 

information into meaningful, discrete units. Event Segmentation Theory proposes that 

segmentation is influenced by perceptual (e.g., motion) and conceptual (e.g. semantic 

knowledge) cues. Previous research has found evidence supporting the influence of knowledge 

on segmentation, specifically through the manipulation of goals and familiarity for everyday 

activities. To date, few studies have investigated the influence of expertise on segmentation, and 

questions about expertise, segmentation ability, and their impact on memory still remain. The 

goal of the current study was to investigate the influence of expertise on segmentation and 

memory ability for two different domains: basketball and Overwatch. Participants with high and 

low knowledge for basketball viewed and segmented basketball and Overwatch videos at coarse 

and fine grains, then completed memory tests. Differences in segmentation ability and memory 

were present between experts and novices, specifically for the basketball videos; however, 

segmentation only predicted memory for activities for which knowledge was lacking, for experts. 

Overall, this research suggests that experts’ superior memory is not due to their segmentation 

ability and contributes to a growing body of literature showing evidence supporting conceptual 

effects on segmentation. 
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Chapter 1 - Introduction 

Decades of work on expertise have shown that experts possess superior memory for 

information in their field of expertise. This memory benefit has been explained by various 

encoding mechanisms, including chunking (combining meaningful information into larger units; 

Chase & Simon, 1973), differentiation (distinguishing between features) and unitization (holistic 

processing; Herzmann & Curran, 2011). Recently, another encoding mechanism has been 

suggested to influence memory for event information; event segmentation (Bailey et al., 2013; 

Flores, Bailey, Eisenberg, & Zacks, 2017; Newberry & Bailey, under review; Sargent et al., 

2013; Zacks et al., 2006). Event segmentation is an encoding mechanism in which individuals 

parse continuous event information into meaningful, discrete units. How individuals segment an 

event influences how they perceive, comprehend, and remember events. This process may be 

influenced by both perceptual (e.g, motion) and conceptual (e.g., knowledge) factors, which 

suggests that prior knowledge or experience, such as expertise, may affect how an individual 

perceives and segments an event, which in turn may influence memory. To date, few studies 

have investigated the influence of expertise on segmentation (Blasing, 2015; Levine, Hirsh-

Pasek, Pace, & Michnick Golinkoff, 2017; Zacks & Tversky, 2003) and questions remain about 

the extent to which expertise influences segmentation and memory. For example, to what extent 

do experts and novices agree as to how activities are segmented within and outside of one’s 

expert domain? Does the way in which experts organize events at encoding differ from that of 

novices? What are the possible effects on memory? Additionally, the activities that have been 

investigated thus far (dance and figure skating) are what the motor-skill literature call closed 

skills, or skills “displayed by performance in a consistent, typically stationary, environment,” 

(Ericsson & Smith, 1991, p. 126). It is unclear whether segmentation differences only arise in 
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closed skill activities or whether the effects may extend to open skills, or performance in a 

moving, dynamic environment, such as team sports and video games.  

To resolve these issues, the current study investigated the influence of expert knowledge 

on the segmentation and memory of basketball and Overwatch games. To lay the foundation, two 

theories of event cognition, Event Segmentation Theory and the Event Horizon Model, will be 

outlined, followed by the relationship between segmentation and knowledge. Afterwards, the 

literature on expertise will be described and integrated with event segmentation, and finally, 

general predictions about the current study will be outlined.  

 Event Segmentation Theory 

One theory of event cognition that proposes an explicit role of knowledge in the 

perception and comprehension of events is Event Segmentation Theory (EST; Kurby & Zacks, 

2008; Zacks, Speer, Swallow, Braver, & Reynolds, 2007). According to EST, individuals 

construct mental representations of incoming activity in the form of a mental model (e.g., event 

model for visual events; situation model for text; Radvansky & Zacks, 2014, 2017). Individuals 

use perceptual and conceptual information to generate this mental representation in the event 

model. Perceptual cues are information from the environmental about the event itself, such as 

motion and body position (e.g., Zacks, 2004), while conceptual cues refer to long-term memory 

features, such as familiarity and goals (Radvansky & Zacks, 2014, 2017; Zacks, 2004). The 

representation of the current event is held in working memory and is updated to reflect changes 

that occur in the real-life event. That is, when one event ends and another begins, working 

memory is “reset” so that a new representation, or event model, can be constructed to reflect the 

new event that is unfolding. It is at these points in time when individuals typically perceive event 

boundaries (i.e., the breaks between events). 
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Research has suggested that events are hierarchically structured, such that larger, coarse-

grain events are made up of smaller, fine-grain events (Tversky, Zacks, & Martin, 2008; Zacks & 

Swallow, 2007; Zacks, Tversky, & Iyer, 2001). For instance, coarse-grain events, such as making 

breakfast, consists of smaller sub-events, such as taking the frying pan out of the cupboard, 

taking the eggs out of the refrigerator, and turning on the stove. Previous work has found 

individual differences in the extent to which people perceive alignment between the fine-grain 

and coarse-grain events (e.g., Hard, Lozano, & Tversky, 2006; Kurby & Zacks, 2011; Sargent et 

al., 2013; Zacks, Braver, et al., 2001), and there is evidence to suggest that this hierarchical 

encoding may be important for memory (Kurby & Zacks, 2011).  

Additionally, individuals tend to agree on the locations of perceived event boundaries, for 

both fine and coarse event boundaries, and show good inter-subject reliability (Bower, Black, & 

Turner, 1979; Hard, Tversky, & Lang, 2006; Newtson, 1973; Speer, Swallow, & Zacks, 2003; 

Zacks et al., 2001). It is quite impressive that of all the possible locations at which people can 

segment, they tend to agree on similar locations. For example, they can agree with themselves 

even up to one year later (e.g., test-retest; Speer, Swallow, & Zacks, 2003). Importantly, the 

extent to which people demonstrate normative segmentation (i.e., they agree on locations of 

event boundaries) predicts how well they remember the activity at a later time (Bailey et al., 

2013; Flores et al., 2017; Newberry & Bailey, under review; Sargent et al., 2013; Zacks et al., 

2006). 

 Event Horizon Model 

 One model that provides a mechanism for why segmentation ability influences episodic 

long-term memory is the Event Horizon Model (EHM; Radvansky, 2012). The EHM is 

comprised of five principles that describe how event representations are developed, changed, and 
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remembered over time (Radvansky & Zacks, 2017). The first principle describes an event 

segmentation mechanism (similar to the segmentation mechanism proposed in EST) and the 

second principle states that the current event model is solely contained in working memory. The 

third principle describes how causal connectivity is the main organizational tool, creating 

relations between events. The fourth principle describes how memory benefits from event 

boundaries when the goal is to remember as much as possible about an event, and finally, the 

fifth principle describes how memory can be impaired when similar information competes across 

multiple event models. 

 Of the five principles of EHM, the first and fourth are the most relevant to the current 

study. Specifically, one of the main goals of the current study was to evaluate the effects of 

knowledge on segmentation and their potential effects on memory. According to the fourth 

principle of EHM, event boundaries are important for memory because they reduce retroactive 

interference by separating information into different event models, which leads to better overall 

memory for the activity (Radvansky & Zacks, 2017). In the current study, individuals who 

segment more effectively should experience less retroactive interference and have better memory 

for the activities. This effect should be especially strong for those who have expertise in a 

domain. That is, if knowledge enhances segmentation ability, memory may show an even 

stronger benefit. 

 Perceptual and Conceptual Influences on Segmentation 

As mentioned above, two types of factors have been suggested to influence segmentation: 

perceptual and conceptual (e.g., EST; Zacks et al., 2007). Much of the research on event 

segmentation has focused on the influence of perceptual cues. Prior research has shown that 

perceived event boundaries tend to align with moments in which a greater number of feature 
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changes, such as changes in body position (Newtson, Engquist, & Bois, 1977) and spatial 

location (Magliano, Miller, & Zwaan, 2001).  

For instance, Zacks et al. (2001) investigated the hierarchical structure of events by 

having participants watch, segment, and verbally describe videos depicting everyday activities 

(e.g., washing dishes, making the bed). Participants segmented at both coarse and fine units and 

demonstrated hierarchical alignment, such that the coarse units tended to line up with the final 

segments of finer units, more often than chance. In addition to this, the results suggested that the 

participants’ event segmentation was driven by motion associated with action, thus providing 

some support for perceptual cues guiding event structure perception.  

Relatedly, Hard et al., (2006) investigated whether the hierarchical perception of events 

depends on prior knowledge of intentions by having participants watch abstract and schematic 

films. They found that regardless of familiarity, movement features predicted segmentation and 

that perceived event boundaries corresponded to bursts of perceptual change, particularly in line 

with coarser units. Furthermore, neuroimaging studies have found increased neural activity in 

motion processing areas of the brain, such as the extrastriate motion complex (MT+), when event 

boundaries are perceived during an event (Speer et al., 2003; Zacks, Braver et al., 2001). Such 

results suggest that motion is a strong predictor for the perception of event boundaries. 

In contrast to perceptual features, conceptual factors are semantic knowledge structures 

from long-term memory that aid in interpreting perceived events based on previous experiences 

(Zacks, 2004). There are a variety of conceptual features that may influence moment-to-moment 

event perception, such as context and perspective (Newberry & Bailey, under review), schema 

and scripts (Bartlett, 1932; Newberry, Smith, & Bailey, in prep; Schank & Abelson, 1977), 

intentions (Hard et al., 2006) and goals (Baldwin, Baird, Saylor & Clark; 2001; Wilder, 1978a; 



 

6 

Wilder, 1978b; Zacks 2004). Much of the research that has investigated the influence of 

conceptual factors has focused on the roles of intentions and goals. For example, Wilder (1978a, 

1978b) showed that the frequency of segmenting a movie, in which an actor performed goal-

directed activities, changes based on the predictability of an event. Specifically, participants 

segmented more often when the goals of the actor were unclear and less often when the activity 

was goal-directed and predictable. Relatedly, evidence from infant studies supports the use of 

goals in parsing event-related information. Baldwin et al. (2001) assessed looking time in infants 

aged 10-11 months as they viewed short-sequence movies depicting goal-directed activities. 

When important information related to goal completion was obscured, looking time increased, 

suggesting that the infants used goal-related activity to parse incoming information. 

Additional findings support the influence of conceptual factors on segmentation. Zacks 

(2004) conducted a series of experiments in which movement features and goal-related 

inferences were manipulated while participants viewed simple animations. Movement certainly 

predicted segmentation; however, the strength of its prediction depended on the saliency of the 

goal-directed activity. When the movements in the animations were random, the relationship 

between movement and segmentation was stronger than when the animations depicted goal-

directed activity. Similarly, Zacks, Speer, and Reynolds (2009) found that changes in situational 

features, such as character, location, and object interaction changes corresponded to points in 

time when individuals perceive event boundaries, in both text and film. These results suggest that 

when goal related knowledge is present, individuals rely less on perceptual cues while perceiving 

an event. 
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 Knowledge and Segmentation 

Though the aforementioned studies have provided some support for the influence of 

conceptual factors on segmentation within individuals, they have not directly manipulated 

semantic knowledge or investigated the relationship between semantic knowledge, segmentation 

agreement, and memory across individuals. However, recent studies have begun to explore this 

relationship (for a quick overview see Table 1 below). 

Table 1. Brief Overview of Knowledge and Segmentation Studies 

Influences of Knowledge on Different Measures of Segmentation 

IV Study DV 

Context   

 Loschky, Larson, Magliano, & Smith (2015)  

  Segmentation Agreement 
 Newberry & Bailey (under review)  

  Segmentation Frequency 
  Segmentation Agreement 

Expertise   

 Blasing (2015)  

  Segmentation Frequency 
 Levine et al., (2017)  

  Segmentation Frequency 
  Sub-event Agreement 
  Sub-event Alignment 
 Zacks & Tversky (2003)  

  Hierarchical Alignment 

Perspective   

 Newberry & Bailey (under review)  

  Segmentation Frequency 
  Segmentation Agreement 

Scripts   

 Newberry, Smith, & Bailey (in prep)  

  Segmentation Frequency 
  Segmentation Agreement 
 Smith, Newberry, & Bailey (in prep)  

  Dwell Time 
  Segmentation Frequency 
  Segmentation Agreement 

Note: Independent variable (IV); Dependent variable (DV).  
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Newberry and Bailey (under review) investigated the influence of context (Experiment 

1a) and perspective (Experiment 1b) on segmentation and recall, using methods borrowed from 

Bransford and Johnson (1972) and Anderson and Pichert (1978). In Experiment 1a, participants 

were presented with a series of ambiguous passages and were either presented with a title 

(context) or no title (no context) for each. In Experiment 1b, participants were presented with a 

longer story describing the events of two boys playing hooky from school. Participants were 

randomly assigned to read the story from the perspective of either a burglar or a homebuyer. 

Across both experiments, the participants were asked to read each passage, recall as much 

information as possible from each, and segment each passage. Individuals given context 

correctly recalled more idea units from the passages, replicating Bransford and Johnson (1972) 

and recalled more information that aligned with their perspective, replicating Anderson and 

Pichert (1978). Importantly, these conceptual manipulations influenced segmentation such that 

agreement was higher for individuals given context and for individuals within the same 

perspective group, albeit the effect sizes were modest to small. However, segmentation only 

predicted memory in Experiment 1b. These findings suggest that semantic knowledge can 

influence the amount of information remembered about an event and how that event is 

segmented, but the relationship between knowledge, segmentation, and memory remains unclear. 

Moving from text to video, Loschky, Larson, Magliano, and Smith (2015) adopted a 

different manipulation of prior knowledge, using a jumped-in-the-middle context paradigm, to 

investigate conceptual effects on comprehension, segmentation, and eye-movements in film. 

Participants were asked to watch a film clip, but the points at which they started watching the 

film clip varied. Half of the participants saw extra frames in the beginning that provided 

important contextual information for comprehending the entire clip, whereas the other half of 
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participants did not. Loschky et al. (2015) found that participants’ segmentation of the film clip 

was different depending upon whether they saw the extra footage or not, suggesting that prior 

knowledge or context can influence how people segment and perceive the event structure of film. 

A series of newer studies from Newberry, Smith, and Bailey (in prep) and Smith, 

Newberry, and Bailey (in prep) recently investigated the influence of age and knowledge on 

segmentation, dwell time, and memory for everyday activities (e.g., laundry, gardening, 

shopping). In these studies, knowledge was manipulated as the extent to which the different age 

groups produced normative scripts for the activity (Rosen et al., 2003) and was termed 

familiarity. For example, the older adults produced more normative scripts for activities such as 

gardening and balancing a checkbook, whereas the younger adults produced more normative 

scripts for activities such as grocery shopping and laundry. Though preliminary results suggest 

that familiarity did not influence event segmentation as measured by the unitization task, it did 

influence dwell time. Specifically, younger and older adults spent more time viewing 

information at boundaries, compared to non-boundaries, but this effect was much larger when 

they were viewing familiar activities. Further, memory was better for familiar activities in both 

age groups. Altogether, this study provides preliminary evidence in support of conceptual effects 

on covert measures of segmentation.  

 Expertise and Segmentation 

Other work has adopted a different approach to evaluating knowledge effects on 

segmentation and hierarchical organization of information at encoding by focusing on expertise. 

Zacks and Tversky (2003) manipulated task instructions (structured or unstructured) and 

interface of instructions (text and pictures vs. text and video) to investigate the influence of 

structure and interface on task performance (reconstructing an object) and memory. Participants 
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familiarized themselves using their assigned instructions, then attempted to reconstruct a 

saxophone (Experiment 1) or a mechanical bug (Experiment 2), and then recalled the steps of 

assembly. The results demonstrated that hierarchical organization at encoding is more likely to 

affect memory than object reconstruction and is more beneficial when used to convey order, as 

opposed to when order is not constrained. The results also suggested a trade-off between the 

usefulness of perceptual and conceptual influences in interfaces, such that perceptual factors 

facilitate assembly better when there are limited orders of assembly, and that conceptual factors 

facilitate assembly better when there are multiple correct orders of assembly. Ultimately, 

however, Zacks and Tversky (2003) concluded that conceptual factors are generally not 

sufficient in guiding performance, but that more research spanning different types of tasks is 

needed. 

In the domain of dance, Blasing (2015) investigated the influence of domain expertise 

and movement-specific familiarity on the segmentation of a dance phrase. Dancers and non-

dancers watched and segmented videos of a dancer completing a choreographed phrase. Blasing 

(2015) found that dancers segmented less often compared to non-dancers, suggesting that 

expertise reduces the number of perceived event boundaries for events within one’s area of 

expertise. In this quasi-experiment, differences in segmentation behavior were observed between 

naturally occurring groups (experts and novices), but in another experiment, Blasing evaluated 

the causal role of knowledge on segmentation by manipulating familiarity with the activity.  

Intermediate dancers watched and segmented a dance phrase, then learned and practiced these 

motor movements, and finally segmented the dance phrase again. Results replicated the first 

study in that increased familiarity with the dance phrase and motor-experience with the 

movement caused dancers to segment less often. 



 

11 

Relatedly, in a series of studies, Levine et al., (2017) investigated the influence of prior 

knowledge on event boundary identification in Olympic figure-skating, using an expert-novice 

paradigm. Experts as well as novices who were familiarized with the skating sequence and 

unfamiliarized novices were asked to mark boundaries as a video of the skating routine 

progressed. Levine et al. (2017) found that experts identified more similar coarse-grain events 

compared to the novices, suggesting that experts have more normative event boundary 

perception. While they found that familiarized novices showed better alignment compared to true 

novices, they found that experts showed even better alignment of coarse-grain events, suggesting 

that the structure of events may be influenced by expertise, and not just familiarity. 

Altogether, these studies have provided initial evidence supporting the influence of 

semantic knowledge on segmentation behavior; however, several gaps and limitations remain. 

For example, in the context and perspective study by Newberry and Bailey (under review), 

segmentation was restricted to the sentence level, rather than the idea unit level. One sentence 

could contain multiple idea units, which means that specific idea units could have been recalled, 

rather than entire sentences. This is relevant to segmentation because it is unclear whether, if 

given the opportunity, people would have identified event boundaries that would have coincided 

with specific idea units, for example, in sentences containing more than one idea unit. Thus, this 

discrepancy could have masked the influence of knowledge on segmentation count as well as 

influenced the relationship between segmentation and memory. Additionally, familiarity for the 

events described in the passages was not considered.  

In the studies investigating age and knowledge, Newberry, Smith, and Bailey (in prep), 

and Smith, Newberry, and Bailey (in prep), used activities that are supposed to vary in 

familiarity by age. However, many of the younger adult activities (e.g., grocery shopping, 
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laundry, getting ready for work) are activities that older adults still engage in, and, in some 

instances, may technically have more years of experience completing. Thus, it is uncertain 

whether their operational definition of familiarity is a strong enough manipulation of knowledge, 

given that it is difficult to control people’s prior experiences with such every day activities. 

As for Blasing (2015), this research evaluated segmentation frequency (i.e., how often 

people segment), not segmentation agreement, or memory for the activity. Though Levine et al., 

(2017) did investigate a coarse-grain segmentation agreement and found higher agreement 

among experts, hierarchical alignment of coarse and fine boundaries, as well as memory, were 

still not investigated; thus, the relationships between expertise, segmentation agreement, 

alignment among coarse and fine boundaries, and memory is still unknown. Additionally, one 

could argue that dance and figure skating are physical activities that share similar features (e.g., 

closed skills, Ericsson & Smith, 1991), thus it is also unclear whether results from these studies 

would replicate using different activities, especially open-skill activities such as sports and video 

games. Importantly, neither Blasing (2015) nor Levine et al., (2017) investigated experts’ 

segmentation ability in a domain outside their expertise. That is, both studies used a quasi-

experimental design in which participants could not be randomly assigned to the expert and 

novice groups; therefore, neither can rule out whether differences in segmentation ability can be 

explained by other potential differences in cognitive ability. 

Given that effective segmentation has been found to predict better memory for events 

(Bailey et al., 2013; Flores et al., 2017; Zacks et al., 2006), it is possible that the superior 

memory of experts may be due to more efficient segmentation (evidenced by higher 

segmentation agreement or better hierarchical structure of coarse and fine boundaries; 

Radvansky & Zacks, 2017). If this were the case, one would expect individuals with more versus 
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less knowledge for the same event to segment and remember the event differently. Likewise, one 

might expect this benefit to only be present within the expert’s field of expertise and not due to 

some general superior segmentation ability. 

 Expertise 

 The term expert refers to those individuals who display outstanding behavior in or 

superior knowledge for a given domain. Much of the work on expert knowledge has shown that 

it facilitates memory for domain-relevant information (e.g., dance - Allard & Starkes, 1991; 

chess - Chase & Simon, 1973; baseball – Chiesi, Spilich, & Voss, 1979; bridge - Engle & 

Bukstel, 1978; maps – Gilhooly, Wood, Kinnear, & Green, 1988; music - Meinz & Salthouse, 

1998). Expertise also facilitates problem-solving (e.g., baseball – McPherson, 1993; Voss, 

Greene, Post, & Penner, 1983) and comprehension for domain-relevant information in text (e.g., 

Spilich, Vesonder, Chiesi, & Voss, 1979; Recht & Leslie, 1988; Walker, 1987). 

 Of all the areas in which expertise has been studied, chess has been the most heavily 

investigated. Early studies using chess experts showed that experts’ experience facilitated better 

performance on various memory measures, including free recall (e.g., Chase & Simon, 1973; De 

Groot, 1966) and recognition (Goldin, 1979). However, the memory benefit was only present 

when meaningful (realistic) plays were set up on the board. The results from these studies 

suggested that better memory performance was a product of increased familiarity with perceptual 

chess patterns and greater knowledge about the specific strategies and terms corresponding to 

those patterns rather than a domain-general superior memory ability. 

 Many different theories have been put forward to try to account for the superior memory 

benefit exhibited by experts (particularly chess experts, Herzmann & Curran, 2011), including  

chunking theory (pairing perceptual patterns with actions to create productions - Chase & Simon, 
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1973), template theory (more complex chunks - Gobet & Simon, 1996), and intuition theory 

(template theory combined with intuition – Gobet & Chassy, 2008).  

Previous work has suggested that the memorial benefits of expertise are a result of more 

effective perceptual processing (Herzmann & Curran, 2011). For example, experts are more 

likely to identify domain-relevant objects at the subordinate level, whereas novices tend to 

categorize objects at the basic level (e.g., Bukach, Gauthier, & Tarr, 2006; Tanaka & Curran, 

2001). Additionally, Goldstone (1998) proposes that two mechanisms are involved in perceptual 

learning: differentiation and unitization. Differentiation refers to the ability to separate initially-

fused categories from one another and unitization refers to the ability to integrate individual parts 

into functional wholes. Both of these mechanisms may support the efficient processing of 

expertise, such that experts better judge when to engage in each process (Herzmann & Curran, 

2011).  

These enhanced perceptual processing abilities suggest that while encoding dynamic 

activity, experts might be better able to identify or agree on conceptual units of information and 

distinguish between fine details for events within their area of expertise. For example, when 

prompted to identify fine grain events of an activity in their field of expertise, experts may 

engage in differentiation, or be better able to distinguish between fine details of activities, 

compared to novices who might only be able to distinguish between a subset of the events. For 

example, a basketball expert may be better able to identify the components of a pick and roll 

while a novice might perceive that move as one unit or not at all. When prompted to identify 

coarse grain, perhaps conceptual, events, experts might engage in unitization, or be better able to 

combine smaller units of activity into cohesive, meaningful wholes. For example, a basketball 

expert might identify a rebound as part of an entire play whereas a novice might identify a 
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rebound as its own separate event. If the boundaries that experts identify are meaningful and 

based on a shared knowledge base for the activity, one might expect experts to also agree more 

on the boundaries or units that are identified. 

In addition to these types of superior perceptual processing abilities, experts also engage 

in strategic adaptations to task demands or processing constraints (Ericsson & Smith, 1991; 

Gobet & Simon, 1996). For example, in terms of superior memory, experts use specific chunking 

strategies to increase the number of items they can store in working memory (Ericsson et al., 

2004, Thompson et al., 1993). Relatedly, Rawson and Van Overschelde (2008) found that 

experts use their knowledge to improve their organizational processing. They proposed that 

experts’ superior memory is a result of specific encoding processes that allow experts to structure 

the incoming information in an efficient way. Taken together, the research on expertise suggests 

that experts’ improved memory is a result of efficient encoding processes that integrate 

perceptual and conceptual information.  

 It is possible that experts may segment information in their domain differently than do 

novices. For example, in a visual search study evaluating differences in eye-movements in expert 

volleyball players compared to novices (Piras, Lobietti, & Squatrito, 2010), it was found that 

experts made fewer fixations with longer durations, specifically looking at the setter’s hands, 

whereas novices spent more time fixating the ball trajectory. Overall, this study suggested that 

experts extract more task-relevant information than do novices. It is possible, then, that experts 

may agree more with other experts on the locations of perceived boundaries if they agree on the 

relevant task-information. 

 In a similar vein, experts might also exhibit better hierarchical alignment of coarse and 

fine events. The eye-movement differences between experts and novices in the volleyball study 
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hint at the idea that experts pay more attention to more task-relevant, arguably meaningful or 

conceptual, information, while novices pay more attention to frequent perceptual changes (Piras 

et al., 2010). Such a result would align well with that of Zacks (2004) who found that perceptual 

changes more strongly guided segmentation when the activity was random (i.e., unpredictable). 

Sargent et al. (2013) specifically investigated the influence of event knowledge on 

segmentation, including hierarchical alignment, and memory for everyday events. They found 

that segmentation and event knowledge uniquely predicted memory; however, hierarchical 

alignment was not affected by knowledge and did not predict memory. Though initially this 

suggests that hierarchical alignment differences may not be found between groups with different 

levels of knowledge, it is possible that the measure of event knowledge used in Sargent et al., 

(2013) was subject to too much variability. For example, most people are familiar with everyday 

tasks, such as making breakfast. Yet, how one person makes breakfast does not necessarily map 

on to how you or anyone else makes breakfast, which could have led to idiosyncrasies in the 

identification of coarse and fine boundaries. Thus, a stronger manipulation of knowledge, such as 

expert knowledge for specific activities, might be more sensitive to potential differences in 

hierarchical alignment and its influences on memory. 

Importantly, segmentation ability is a unique predictor of memory above and beyond 

other cognitive abilities (Sargent et al., 2013). It is possible then that segmentation may partially 

explain experts’ superior understanding and memory for domain-relevant information. However, 

as previously stated, neither Blasing (2015) or Levine et al., (2017) investigated the effects of 

expertise and segmentation on memory. Though Zacks and Tversky (2003) did include memory, 

they suggested investigating these relationships in other domains, as familiarity with general 

object assembly may have influenced their results. Additionally, neither Blasing (2015) nor 
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Levine et al., (2017) included an activity outside the expertise domain of their experts, so it is 

unclear whether experts’ seemingly more efficient segmentation ability is domain specific or a 

general processing ability that extends to other domains as well. The current study expanded 

upon Blasing (2015) and Levine et al., (2017) by directly investigating segmentation behavior 

and its relationship to memory performance in experts and novices, across two domains, both of 

which are different from dance and figure skating; specifically, basketball (sport) and Overwatch 

(video game). In Experiment 1, an Overwatch knowledge survey was developed for use in 

Experiment 2, in which experts and novices were identified using the knowledge surveys and 

completed segmentation and memory tasks for basketball and Overwatch videos. 

Basketball and Overwatch were chosen as the activities of interest in this study for a few 

reasons. First, the inclusion of two activities makes the current study unique in that experts were 

tested on activities both within and outside their field of expertise. Second, basketball and 

Overwatch are open skills (dynamic) whereas dance and figure skating are closed skills 

(constrained; Ericsson & Smith, 1991). Evaluating segmentation ability for open skills would 

allow generalizations to be made across activity types. Relatedly, basketball and Overwatch are 

very different from one another, which allows for segmentation to be tested across very different 

domains. Basketball is a limited-contact, team-based sport that involves players working together 

to achieve a common goal (i.e., shooting the ball through the hoop to earn points). Overwatch, 

though also team-based, is a multiplayer first-person shooter video game that is played on the 

computer. Game objectives, such as defending a specific location or escorting an object to a 

location, differ depending on the game map chosen. Third, availability of participants was also a 

relevant factor for activity choice. Basketball is commonly played and watched in the Mid-

Western United States. Similarly, Overwatch is a very popular video game (Ranker, 2018), and 
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is routinely played in eSports organizations on college campuses (including Kansas State 

University) for sport and scholarship (Bauer-Wolf, 2017). 
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Chapter 2 - Research Questions and Hypotheses 

Unless otherwise stated, the predictions presented below apply to both the between- and 

within-subjects relationships. 

 Does Expert Knowledge Influence Event Segmentation? 

 The Conceptual Hypothesis 

Based on the results of Blasing (2015) and Levine et al., (2017), we hypothesized that 

experts would segment less often (segmentation count), regardless of segmentation grain, and 

agree more on boundary locations (segmentation agreement), for activities within their field of 

expertise. We also hypothesized that experts would show greater hierarchical alignment of 

coarse and fine boundaries for activities within their area of expertise (hierarchical alignment). 

Evidence for these hypotheses would suggest that experts engage in more efficient chunking 

strategies and use their long-term knowledge stores to guide similar and more efficient encoding 

of the incoming information. 

 The differentiation hypothesis. It is possible that experts may segment more often than 

novices during activities in their field of expertise. If this were the case, this would suggest that 

experts engage in more differentiation while encoding within-domain information than do 

novices. This hypothesis still supports a conceptual influence of knowledge on segmentation, but 

in the opposite direction of what has been found.  

 The Perceptual Hypothesis  

Evidence against the conceptual hypotheses would suggest that segmentation processes 

are influenced primarily by perceptual factors, such as movement, because perceptual 

information would be equally available to both experts and novices. In this case, segmentation 
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behavior (frequency, agreement, and hierarchical alignment) exhibited by experts and novices 

would be similar, regardless of activity. 

 Does Expert Knowledge Influence Memory? 

 The Expertise Hypothesis 

Based on the significant body of expertise literature (for review see Ericsson & Smith, 

1991), we hypothesized that experts would show better recognition and order memory 

performance for activities within their field of expertise. Evidence for this hypothesis would 

suggest that expert knowledge positively influences memory for expert domain information.  

 The Surprising Hypothesis 

An alternative hypothesis would be that knowledge is not found to influence recognition 

and order memory for activities within the field of expertise. However, this would be surprising 

given the decades of prior work (for review, e.g., Ericsson & Smith, 1991) and might instead 

suggest a methodological issue with the tasks. 

 Does Segmentation Ability Predict Memory and Is This Relationship 

Moderated by Expert Knowledge? 

 The Segmentation Benefit Hypothesis 

Previous work suggests that normative segmentation is associated with better memory for 

events (Bailey et al., 2013; Flores et al., 2017; Sargent et al., 2013; Zacks et al., 2006). 

Segmentation uniquely predicts memory above and beyond many other cognitive abilities 

(Sargent et al., 2013) and this relationship lasts for up to one month (Flores et al., 2017), 

indicating that it is an important process for event comprehension and memory. Based on this 

work, we hypothesized that segmentation ability (both agreement and hierarchical alignment) 

would predict memory performance, regardless of activity or expert knowledge. If experts and 
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novices show similar relationships between segmentation and memory, this would suggest that 

conceptual influences on segmentation only minimally improve memory above and beyond 

segmentation based on perceptual cues. 

The rich-get-richer hypothesis. Further, we predicted that this relationship would be 

stronger for those with expert knowledge in their area of expertise. This would be a “rich-get-

richer” hypothesis (Hambrick & Engle, 2002), because those who have expertise should segment 

more effectively and have even better memory.  

The poor-get-richer hypothesis. It is possible that novices may show a stronger 

relationship between segmentation and memory compared to experts. This would suggest that 

segmentation ability may be particularly important for memory when one lacks knowledge, or 

has impoverished schemata to rely on, for the activity. If novices show a relationship between 

segmentation agreement and memory and experts do not, this would suggest that expertise might 

influence memory through mechanisms other than segmentation. 

 The Null Hypothesis 

It is possible that segmentation may not benefit memory, regardless of knowledge. Such 

an effect would be surprising given prior research.  
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Chapter 3 - Experiment 1: Overwatch Knowledge Survey 

Development 

The purpose of Experiment 1 was to develop a survey that could differentiate between 

individuals with high and low knowledge for the video game, Overwatch. A battery of questions 

was presented online to participants with the intent of narrowing down the top questions for use 

in Experiment 2. To date, no research has developed an Overwatch knowledge survey for 

research purposes, thus the parameters of the survey in the current study were based on previous 

research that used knowledge surveys for football (Rawson & van Overschelde, 2008) and 

basketball (Feller, Schwan, Wiemer, & Magliano, in prep, adapted from French & Thomas, 

1987). 

 Method 

 Participants 

A total of 142 individuals (Final N = 102; 12 Experts, 71 Novices, 19 Intermediates) were 

recruited online from Amazon Mechanical Turk (M-Turk). M-Turk is an online server through 

which individuals can earn money for completing online experiments, usually surveys and 

questionnaires. Incomplete surveys were excluded from data analysis (n = 40). On average, 

participants took approximately 5 minutes and 30 seconds to complete the survey and were paid 

$.50 for their time. 

 Materials 

A questionnaire consisting of 38 multiple-choice questions was created using Qualtrics 

software to assess general knowledge of Overwatch (for the final version of the Overwatch 

survey, see Appendix A). The goal was to identify the top 23 questions for use in Experiment 2, 



 

23 

which was based on predicted time and survey length restrictions imposed by the pre-screen 

requirements through the SONA experiment server implemented by Kansas State University. 

Each question had 1 correct answer out of 5 total answer options, with the fifth option (e) always 

stating “I don’t know,” (Rawson & van Overschelde, 2008). The content of these questions 

concerned various aspects of Overwatch, including development (e.g., Which company 

developed Overwatch?), game rules (e.g., Which of the following is not a method of earning in-

round fire points?), characters (e.g., Which character role forms choke points for enemies?), 

plays or strategies (e.g., A “critical hit” is synonymous with which of the following?), and 

storyline (e.g., What are the names of the two characters who were in charge of Overwatch?). All 

the information used to generate these questions came from personal research on Overwatch wiki 

sites (https://overwatch.gamepedia.com/Overwatch_Wiki) and the company  (Blizzard 

Entertainment ©) website (https://www.blizzard.com/en-us/).  

Seven self-report questions were included after the general knowledge portion of the 

survey. These items assessed self-reported familiarity and expertise for Overwatch and 6 of the 7 

questions had 5 answer options (Table 2). The remaining question asked participants to manually 

enter in their Skill Rating (SR; ranges 1-5000). SR is a measure of skill used to determine 

Overwatch players’ experience in competitive play. Participants were instructed to enter “0” if 

they did not play Overwatch (i.e., were novices).  

 Design and Procedure 

A within-subjects design was used, such that all participants saw all questions, in the 

same order. The experiment was posted to M-Turk. Once participants clicked on the link to 

participate, they were directed to the Overwatch survey, which was hosted online through 

Qualtrics. Participants indicated their consent to participate by clicking a button on the informed 

https://www.blizzard.com/en-us/
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consent form screen. After giving consent, instructions appeared on screen, informing 

participants that they would be answering questions about a specific activity and that they should 

rely on their own knowledge, not outside resources, to answer each question. Next,  
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Table 2. Self-Report Questions and Answers for Overwatch Survey 

Overwatch Self-Report Survey Questions and Answer Options 

Question Option A Option B Option C Option D Option E 

I have a high level of Overwatch 
knowledge. 

Strongly 
disagree. 

Somewhat 
disagree. 

Neither agree 
nor disagree. 

Somewhat 
agree. 

Strongly 
agree. 

      

Please choose the option that best 
describes your involvement with 

Overwatch. 
I currently 

play 

Overwatch. 

I used to play 
often, but not 

anymore. 

I used to play 
a little, but not 

anymore. 

I have seen 

people play 
Overwatch, 

but I have 

never played. 

I have never 
seen people 

play 

Overwatch 
and I have 

never played. 

      

How often do you play Overwatch? Daily Weekly Monthly Yearly Never 

      

If you do play, please select the 
approximate number of hours per 

week that you spend playing 

Overwatch. If you do not play, 

please choose 0. 

0 1-5 6-10 11-15 16 or more 

      

I consider myself an Overwatch 

expert. 

Strongly 

disagree. 

Somewhat 

disagree. 

Neither agree 

nor disagree. 

Somewhat 

agree. 

Strongly 

agree. 
      

Overwatch is hard for me to 

understand. 

Strongly 

disagree. 

Somewhat 

disagree. 

Neither agree 

nor disagree. 

Somewhat 

agree. 

Strongly 

agree. 
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the content questions appeared. Once all the content questions were answered, participants 

responded to the self-report items. Afterwards, a debriefing form appeared on screen, and 

participants received an M-Turk code, which they then used to receive their compensation 

through M-Turk. 

 Results 

 Data Preparation 

As mentioned above, only completed surveys were included in the data analysis. Forty-

two participants did not finish the survey; therefore, any answers they may have indicated were 

not included in data analysis. Thresholds for “expert” and “novice” categorization were based on 

percentage cutoffs used by Rawson & van Overschelde (2008). In their study, novices scored 10 

or less correct out of 28 items (.36), whereas experts scored 20 or more correct (.71). In the 

current study, participants categorized as novices scored 13 or less out of 38 items (.34) and 

participants categorized as experts scored 27 out of 38 (.71). Table 3 presents SR and Knowledge 

scores for the survey. Experts had significantly higher SR scores compared to novices and 

intermediates (p < .001). Experts also had significantly higher knowledge scores compared to 

novices and intermediates (p < .001). The correlation between SR and Knowledge was r = .71. 

Table 3. Skill Rating and Knowledge Scores by Expertise Group 

Skill Rating and Knowledge Scores by Expertise Group 
 

Novice Intermediate Expert 

Skill Rating (SR) 9.69 (7.08) 258.47 (228.38) 2134.67 (340.13) 

Knowledge Score 7.59 (.45) 17.16 (.74) 31.83 (1.49) 

Note: Standard error in parentheses. Skill rating ranges from 0 – 5000. Knowledge scores range from 0 – 38. 
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 Self-Report Questions 

All participants answered self-report questions asking about their familiarity with and 

expertise for Overwatch. Experts significantly differed on self-reports of high knowledge in 

Overwatch (M = 3.83, SE = .37) from novices (M = 2.65, SE = .15), p = .01, and intermediates 

(M = 2.37, SE = .30), p = .01, such that they reported having more knowledge for the game. 

Novices disagreed more often with such statements. Experts also significantly differed on self-

reported involvement (i.e., regularity (hours, days, etc.) of Overwatch game play; M = 1.67, SE = 

.37) from novices (M = 3.07, SE = .15), p = .002, and intermediates (M = 3.11, SE = .30), p  = 

.01, such that they currently play or used to play often, either daily or weekly, while Novices 

reported either playing the game infrequently or never playing but watching others play the 

game. Overall, experts reported having higher knowledge and expertise in Overwatch compared 

to novices and intermediates. Experts also reported spending more time playing the game. 

 General Knowledge Questions  

A series of independent samples t-tests using expertise (expert or novice) to predict the 

outcome of each question were used to determined which questions best discriminated between 

experts and novices. We corrected for familywise error by adjusting the alpha level from .05 to 

.0013 (.05/38; 38 questions). The top 23 questions were the questions that best discriminated 

between experts and novices at alpha .0013 (see Appendix A). Cronbach’s alpha for the original 

38 items was .96. Cronbach’s alpha for the 23 items was .95, suggesting high internal 

consistency. 

 Discussion 

 The goal of this experiment was to determine which questions to include on an 

Overwatch knowledge survey that would discriminate between Overwatch experts and novices 
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in Experiment 2. We created a battery of 38 questions using online resources specific to 

Overwatch game play, including rules, strategies, character information, and storyline. 

Overwatch experts and novices answered the questions and reported their familiarity with the 

game. Overall, experts reported higher familiarity and involvement with Overwatch. Experts also 

scored the highest on the questionnaire. Of those 38 questions, the top 23 were chosen for use in 

Experiment 2. These final questions were the items that best discriminated between Overwatch 

experts and novices. 
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Chapter 4 - Experiment 2: Expertise, Segmentation, and Memory 

The purpose of Experiment 2 was to investigate the relationship between expert 

knowledge, segmentation ability, and memory for events within and outside of one’s area of 

expertise. Previous work has observed effects of expertise on the segmentation of dance phrases 

(Blasing, 2015) and a figure skating routine (Levine et al., 2017); however, these studies have 

only evaluated experts’ segmentation behavior for events within their field of expertise. 

Additionally, the hierarchical alignment of different segmentation grains and its effects on 

memory have yet to be evaluated in this context. In Experiment 2, basketball and Overwatch 

experts and control novices viewed and segmented videos of basketball and Overwatch. 

Unfortunately, due to high attrition and recruitment issues, only a very small sample of 

Overwatch experts were identified and participated in the study (see Method). This group’s data 

were excluded from the main analyses and only included in exploratory analyses where expert 

knowledge was treated as a continuous variable. Thus, the current experiment ultimately focused 

on a within-subjects comparison of basketball experts’ segmentation and memory for basketball 

(area of expertise) and for Overwatch (area outside of expertise) videos as well as a between-

subjects comparison of segmentation and memory for basketball activities between basketball 

experts and novices. We predicted that basketball experts’ segmentation ability and memory 

would be better for basketball videos compared to Overwatch, and that their segmentation and 

memory for basketball would be better compared to that of the novices. We also predicted that 

segmentation ability would predict memory for everyone, but that this relationship would be 

stronger for experts for the basketball videos. 
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 Method 

 Participants 

A total of 164 participants (69% female, M age = 18.80, SD = .10) were recruited from 

Kansas State University (KSU). Participants were recruited from the Department of 

Psychological Science’s SONA participant pool, as well as from organizations across campus. 

Specifically, to increase recruitment of Overwatch experts, the study was advertised with the 

eSports Club at KSU. Participants were compensated with course credit or entered into a gift 

card raffle depending on the organization from which they were recruited. 

 Recruitment. In the first round of recruitment, participants completed an online pre-

screen survey about basketball and Overwatch knowledge so that experts and novices in each 

area could be identified prior to returning for the lab-based study. Seven basketball experts 

(Overwatch novices) and 2 Overwatch experts (who unfortunately were not basketball novices) 

were recruited in this manner, such that they were identified as experts or novices prior to 

completing the lab-based experiment. Unfortunately, this method of recruitment yielded high 

attrition of experts who did not return to the lab-based segmentation experiment. Additionally, 

Overwatch experts were proving extremely difficult to find, despite the popularity of the game 

(Ranker, 2018). For these reasons, in the second round of recruitment, the survey and lab-based 

portions were combined into one session, thus opening the experiment up to individuals who 

would have been excluded based on their scores on the knowledge survey. This meant that the 

expert and novice groups for both activities were not identified until after data collection. This 

round of recruitment yielded 33 basketball experts (Overwatch novices), 12 Overwatch experts 

(3 of which were basketball novices, 9 of which had “intermediate” or expert basketball score), 

59 controls (novices in both areas), and 53 “intermediate” individuals who scored above the 
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novice but below the expert thresholds in either area. As stated previously, recruitment of 

Overwatch experts proved difficult, even after using the new recruitment method. Therefore, due 

to the low sample size, the main analyses of the current experiment exclude this group. For a 

visual depiction of the recruitment process, see Figure 1. For descriptive information on all 

expertise groups, see Table 4. 

 
 

Figure 1. Flow-chart depicting recruitment process 
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Table 4. Demographic Information by Expertise Group 

Demographic Information by Expertise Group 
 

  

Overall 

 (N = 164) 

Basketball 
Experts 

 (N = 33) 

Overwatch 
Experts 

 (N = 12) 

Controls 
(Novices) 

(N = 59) 

Intermediates 

(N = 55) 

Age 
      

 
Myears 18.80 (.10) 18.66 (.12) 18.75 (.33) 18.82 (.18) 18.82 (.19) 

Education 
     

 
Myears 12.47 (.08) 12.23 (.09) 12.50 (.26) 12.60 (.16) 12.47 (.13) 

Gender 
      

 
Female 113 18 0 55 40  

Male 51 17 12 6 15 

Race 
      

 
White 138 32 10 48 47  

Black/African 

American 

7 2 0 3 2 

 
Asian 11 0 1 6 4  

American Indian 6 1 1 3 1 

Hispanic/Latino 
     

 
No 148 32 11 53 52  

Yes 16 3 1 8 3 

Note: Standard error in parentheses.  

 

 Materials 

The survey, videos, segmentation, memory, and cognitive tasks used in this experiment 

are described in detail below. 

 Knowledge survey. As described in Experiment 1, knowledge surveys were used to 

identify experts and novices in 2 activities: basketball and Overwatch. The basketball portion of 

the survey was a modified version of Feller et al., (in prep, adapted from French & Thomas, 

1987), such that it was reduced to 23 questions to match the Overwatch survey, which was 

developed (Experiment 1) for use in the current study. Both the basketball and Overwatch 

surveys included 23 questions each about general information regarding each activity as well as 
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7 self-report familiarity and expertise questions. All questions had 5 answer options, with the 5th 

option (e) always stating “I don’t know.” Both surveys are included in Appendix A.  

 Videos. Five videos were used in this experiment (1 practice; 4 experimental). The 

practice video depicted a man using Legos to build a ship (155 s). Two of the experimental 

videos were college basketball games; specifically, Memphis vs. UCLA (153 s) and Montana vs. 

Weber State (130; Feller et al., in prep). The other two experimental videos were Overwatch 

tournament matches; specifically, Houston vs. Boston (144 s) and London vs. Florida (135 s). 

The Overwatch videos were chosen because they were professionally recorded games played by 

Overwatch experts. Participants viewed all of the experimental videos twice (once per 

segmentation grain). 

 Unitization task. The unitization task (Newtson, 1973) was used as an overt measure of 

participants’ perception of event boundaries in each of the videos. While watching the videos, 

participants were asked to press the spacebar each time “one meaningful unit of activity ends and 

another begins.” Participants were shaped on this task using a practice video. Participants were 

instructed to identify larger or smaller units of meaningful activity by pressing the spacebar 

(Mann, Williams, Ward, & Janelle, 2007). Participants had to identify at least 3 larger (coarser) 

units or 6 smaller (finer) units in order to move on to the experimental trials. If this threshold was 

not met, participants received feedback stating that other individuals typically identify more 

units; however, they were not given explicit examples of how the activities in the video could be 

broken down into segments. After receiving this message, participants repeated the shaping 

procedure until they passed the threshold. 
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 Distractor tasks. Four, 5-minute distractor tasks were used to reduce recency effects on 

the memory tasks. A demographics questionnaire was used as one of the filler tasks. The rest of 

the tasks were measures of different cognitive abilities. 

 Semantic knowledge. The following measures were used to assess individual differences 

in general knowledge. 

 Object naming test. Participants completed a computerized version of the object-naming 

task. They were presented with black and white drawings of objects from Snodgrass and 

Vanderwart (1980), one at a time, and were instructed to type out the name of each object into a 

text box. If they were not able to name the object, they had the option of clicking on one of three 

answer options which included “Don’t Know Name,” “Don’t Know Object,” and “Tip of 

Tongue.” Participants were given 5 minutes to name as many pictures as possible. Participants 

were given 1 point for each correct response. 

 Shipley-Hartford vocabulary test. Participants were given 5 minutes to complete a 

computerized version of the synonyms vocabulary test (Salthouse, 1993). On each trial, a bolded, 

underlined (target) word was presented at the top of the screen. Five multiple-choice answers (A 

through E) were presented below the target word. Participants were asked to click on the letter of 

the answer option that was synonymous, or most close in meaning, to the target word. 

Participants were asked to complete this task as quickly and as accurately as possible and 

received 1 point for each correct answer. 

 Processing speed. The following measures were used to assess individual differences in 

processing speed. 

 Letter comparison (LC). Pairs of letter strings were presented on screen. Participants 

indicated with a button press whether the pairs of letters were the same or different. They were 
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instructed to respond quickly and accurately to as many pairs as possible in 60 seconds. Letter 

strings consisted of randomly selected consonants and ranged in length from 3 to 9 letters 

(Salthouse & Babcock, 1991). Participants received 1 point for each correct response. 

 Pattern comparison (PC). Pairs of patterns were presented on screen, and participants 

indicated with a button press whether the pairs of patterns were the same or different. Again, 

they were asked to respond quickly and as accurately to as many pairs as possible in 60 seconds. 

The patterns were made of connected lines in an invisible 4 x 4 matrix, with 3, 6, or 9 line-

segments in each member of the pair (Salthouse & Babcock, 1991). Participants received 1 point 

for each correct response. 

 Event memory measures. Two tasks were used to assess memory for the activities in 

each video. 

 Recognition. Recognition memory was assessed using a two-alternative forced-choice 

test (see Appendix A for example trial). There were 20 trials per video, each containing 1 target 

and 1 distractor image, presented side-by-side. Target images always came from the videos that 

participants watched, and distractor images always came from portions of the same video that 

participants did not see. Presentation order of the image pairs was the same for each participant. 

Participants received 1 point for each correctly identified image (up to 20 total points). 

Participants’ scores were reported as total count. 

 Order memory. Order memory was assessed using a two-alternative forced-choice test 

(see Appendix A for example trial), based on the measure used by Dubrow & Davachi (2014). 

For each video, participants were presented with 8 image pairs on the computer. All the images 

came from the videos participants watched. A prompt appeared on screen stating, “more recent?” 

and participants were instructed to choose the image depicting the more recent action. 
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Participants received 1 point for each correctly identified image (up to 8 total points). 

Participants’ scores were reported as total count. 

 Working memory task. Each participant’s working memory ability was assessed. 

 Reading span (RSPAN). The RSPAN task required participants to recall letters while 

completing a secondary task of reading sentences (Bailey, 2012; Kane et al., 2004). Participants 

were presented with a sentence (e.g., “We were fifty lawns out at sea before we lost sight of land. 

? K”), followed by a letter. They were given 4 seconds to indicate whether the sentence made 

sense or not, by choosing a “correct” or “incorrect” button with the computer mouse. After a 

decision was made, a letter appeared on screen for 1 second. This process repeated for an entire 

set. At the end of a set, participants saw a recall screen and were asked to type the letters in the 

order in which they were presented. Set sizes ranged from 3 to 7 sentence-letter problems per 

trial, for 15 trials total. Nonsense sentences were created by changing 1 word, which appeared 

equally often in the beginning, middle, and end of the sentences. Each sentence consisted of 10 

to 15 words. For each trial, each participant received a proportion value, ranging from 0 to 1, 

(number of letters correctly recalled in order divided by the total number of to be recalled items 

for that trial). Next, each participant’s proportion values were averaged across all 15 trials to 

obtain an overall proportion correct score. 

 Design and Procedure 

 Expertise was treated as a between-subjects variable such that participants (NBasketballExperts 

= 33, NControlNovices = 59) were grouped based on their scores from the knowledge survey about 

basketball and Overwatch (novice ≤ 7; expert ≥ 17; Table 5). To be clear, all individuals in the 

basketball expert group were also novices in Overwatch, separate from individuals in the control 

group, who were identified as novices in both activities. Activity (basketball and Overwatch) 
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was treated as within-subjects, such that all participants viewed and segmented videos of each 

activity. Participants were asked to segment each video twice: once per grain (Coarse vs. Fine). 

Video and distractor task were counterbalanced across participants. Segmentation grain was 

counterbalanced, such that participants segmented all the videos at one grain, then after 

completing the last block of tasks for the last video, they segmented all the videos again at the 

other grain, in the same order. 

Table 5. Knowledge Scores by Expertise Group 

Knowledge Scores by Expertise Group 

  Basketball Experts Controls (Novices) 

Overwatch  1.29 (.38) 1.34 (.28) 

Basketball  20.06 (.27) 4.51 (.29) 

Note: Standard error in parentheses. Novice ≤ 7; Expert ≥ 17. 

 

 

 All participants (except nine participants from the first round of recruitment; see 

Recruitment section above) entered the lab in small groups of 3 or 4 and were seated at a 

computer. They first filled out an informed consent form and then completed the knowledge 

survey. After completing the survey, they were given a demographics form and instructed not to 

fill it out until the experimental program on the computer told them to do so. Each participant 

was then presented with the practice video, which shaped each participant’s segmentation 

behavior and was tailored to whichever segmentation grain order each participant was assigned 

(i.e., at least 3 button presses for coarse grain; at least 6 for fine grain). Once each participant 

completed the shaping procedure, the experimental trials began. The experimental trials 

consisted of 4 blocks. In each block, the experimental video was presented, and participants were 

instructed to “press the spacebar any time they felt a meaningful unit of activity ended and a new 

one began.” After each video, participants completed a distractor task, and then moved on to the 

recognition and order memory tasks. Memory task order was not counterbalanced because the 
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viewing of target images in the order memory task could have aided participants on the 

recognition task. After the order memory task for the last video of the last block, participants 

were shown the practice video again and trained on the segmentation task for the alternative 

grain. Participants then re-segmented each video at this new grain in the same order in which the 

videos were originally presented. At the end of the experiment, participants completed the 

working memory task. Finally, they were debriefed, thanked, and compensated for their time 

(see Figure 2). 

 
 

Figure 2. Flow-chart of Experiment 2 procedure 
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Results 

 Data Preparation  

As stated previously, attrition and recruitment issues focused the analyses of the current 

experiment to basketball experts and control novices. No outliers were identified; however, all 

data from 8 participants were missing due to technological issues and therefore not included in 

any analyses. 

 Approach 

The main analyses were conducted using generalized multilevel modeling techniques. 

These techniques were used to account for non-normal error distributions (e.g., Poisson for count 

data, logistic for binomial) of the various dependent measures, as well as error variance 

associated with random effects, such as inherent differences across individual participants and 

videos. To encourage convergence of the models, predictors such as recruitment phase, activity 

order, and grain order were not included in the models reported below; however, preliminary 

models including those variables indicated that none of those variables were significant 

predictors and they did not interact with any of the other variables (all p > .05). To ease 

comparisons, group means for the various measures are presented in tables corresponding to each 

section. All error bars indicate standard error of the mean and the colored areas surrounding lines 

of best fit indicate confidence of the fit of the line. We first assessed whether basketball experts 

and controls were similar in their general cognitive ability, in addition to how well each of the 

encoding and retrieval tasks correlated with measures of cognitive ability. We then evaluated 

encoding processes, including segmentation frequency, agreement, and hierarchical alignment, 

and then evaluated retrieval processes, including recognition and order memory. Next, we 

assessed the extent to which encoding predicted retrieval. Finally, we end with an exploratory 
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section in which knowledge was treated as a continuous variable and all participants’ (n = 164) 

data were used. Two tables summarizing all of the analyses and effects are provided at the end of 

the results section (Tables 11 and 12). Additionally, tables reporting task performance 

(knowledge, segmentation, and memory) differences for all groups can be found in Appendix B. 

 Cognitive Battery 

Given that participants were not randomly assigned to groups, all participants completed 

a series of cognitive measures (processing speed, vocabulary, semantic knowledge, and working 

memory) to assess baseline differences between groups that may have otherwise explained any 

possible segmentation and memory effects. A series of t-tests confirmed that basketball experts 

and control novices did not differ on any of the cognitive measures (all p > .05; Table 6). Bayes 

factors of less than 1 also suggested substantial evidence for the null (i.e., no differences; 

Wetzels & Wagenmakers, 2012). This suggests that any significant effects found on 

segmentation and memory are most likely due to differences in knowledge for the two activities 

rather differences in some pre-existing cognitive ability. Relationships between measures of 

cognitive ability, encoding, and retrieval are provided in Table 7. 

Table 6. Performance on Cognitive Battery 

Performance on Cognitive Battery by Expertise Group   

  
Basketball Experts Controls (Novices) t p BF10 

Letter Comparison 16.38 (.38) 16.08 (.34) 0.56 0.58 0.26 

Pattern Comparison 21.17 (.63) 20.28 (.60) 0.96 0.34 0.34 

Object Naming 56.12 (1.45) 53.44 (1.47) 1.20 0.23 0.42 

Vocabulary Knowledge 14.03 (.48) 13.48 (.49) 0.73 0.47 0.28 

R-SPAN 0.80 (.02) 0.77 (.02) 1.08 0.28 0.39 

Note: Standard error of the mean in parentheses. Letter comparison and pattern comparison were 

both measures of processing speed. Object naming and vocabulary were both measures of semantic 

knowledge. R-SPAN was a measure of working memory capacity. BF = Bayes Factor, evidence for 
the null. 
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Table 7. Cognitive Battery Correlations 

Correlations between Cognitive Battery, Encoding, and Retrieval Measures for Basketball Experts and Control Novices  

Measures  
Cognitive 
Battery     Encoding    Retrieval 

  LC PC V NT R-SPAN CSC FSC CSA FSA TD E R OM 

Cognitive 

Battery Letter Comparison (LC) 1             

 Pattern Comparison (PC) .42 1            

 Vocabulary (V) .20 .12 1           

 Naming Test (NT) .41 .39 .40 1           

R-SPAN .30 .23 .37 .39 1         
Encoding Coarse Segmentation 

Count (CSC) -.10 -.07 -.19 -.09 -.14 1        

 

Fine Segmentation Count 
(FSC) .13 .16 -.04 .16 .04 .59 1       

 

Coarse Segmentation 

Agreement (CSA) .23 .21 .11 .16 .17 -.10 .10 1      

 

Fine Segmentation 

Agreement (FSA) .17 .12 -.00 .10 .15 -.01 .02 .43 1     

 Temporal Distance (TD) .19 .14 .12 .19 .10 -.16 -.08 .51 .42 1    

 Enclosure (E) .09 .15 .16 .05 .21 -.21 .14 .34 .46 .36 1   

Retrieval Recognition (R) .24 .17 .19 .17 .16 -.04 .15 .26 .13 .16 .28 1  
 Order Memory (OM) -.27 -.19 .08 -.23 -.17 -.01 -.05 -.01 -.02 -.02 -.03 .02 1 
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 Encoding Measures 

 Unitization. Two measures of unitization were used to assess how well individuals 

identified and agreed on the locations of boundaries in each video. 

Segmentation frequency. Segmentation frequency was scored as the total number of 

button presses (i.e., total number of perceived event boundaries) per video. Blasing (2015) found 

that experts identified fewer event boundaries compared to novices; therefore, we predicted a 

within-subjects difference such that basketball experts would segment less often, regardless of 

grain, during basketball videos, compared to Overwatch videos. We also expected to find a 

between-subjects difference such that basketball experts would segment less often compared to 

the control novices, for the basketball videos. Additionally, we expected participants to segment 

less often at the coarse grain compared to the fine grain, regardless of expert knowledge and 

activity.  

To investigate these hypotheses, a generalized Poisson multilevel model was used to 

predict segmentation frequency from the full factorial of the fixed effects of group (experts vs. 

control novices), activity, and segmentation grain, and the random effects of participant and 

video (Table 7; Figure 3). A significant main effect of grain was present (z = -49.63, p < .001) 

such that everyone identified fewer coarse boundaries than fine boundaries, regardless of 

knowledge or activity. The main effects of group and activity were not significant, indicating that 

there were no baseline differences in the number of perceived events between groups or between 

activities; however, these fixed effects did interact with grain. A significant 2-way interaction 

between group and grain was present (z = -11.11, p < .001) such that control novices identified 

fewer fine boundaries compared to basketball experts, regardless of activity, but no group 

differences were present at the coarse grain. These results were qualified by a significant 3-way 
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interaction between group, activity, and segmentation grain (z = -3.17, p = .002), such that 

participants identified significantly more fine boundaries than coarse boundaries for the 

basketball videos, compared to Overwatch, and this difference was greater for basketball experts 

compared to control novices. No other effects were present (all p > .05).  

These results did not support our conceptual hypothesis in the way it was presented, such 

that experts would segment less often compared to novices, particularly for activities in their 

field of expertise. Instead, results suggest that experts and novices identified a similar number of 

coarse boundaries, regardless of activity, and that experts identified more fine boundaries for 

activities within their field of expertise, which supports the differentiation hypothesis. 

 

Figure 3. Number of boundaries identified for each activity. 
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Segmentation agreement. Segmentation agreement refers to how well individuals agree 

with others on the locations of perceived event boundaries. Higher segmentation agreement 

corresponds to more normative segmentation. To calculate agreement, each participant’s 

segmentation data was smoothed by fitting a Gaussian kernel density function around each event 

boundary (button press), for each video. Each frame of each video received a value ranging from 

0 to 1, indicating the probability or likelihood that the frame was an event boundary. A 

bandwidth of 25 (i.e., 25 frames per second) was used to correspond to 1 second time bins, such 

that frames closer to where the participant identified an event boundary received a larger value, 

compared to frames farther away. Next, the probability associated with each frame or button 

press was averaged across participants to create normative event boundaries. Finally, each 

participant’s segmentation probability at each frame was correlated with the normative 

boundaries1. Based on Levine et al. (2017), we predicted a significant between-subjects effect 

such that basketball experts’ segmentation agreement would be higher than novices’ for 

basketball videos compared to Overwatch videos, regardless of grain. However, we also 

expected to observe a within-subjects effect such that basketball experts’ segmentation 

agreement would be higher for basketball videos compared to Overwatch videos, regardless of 

grain.  

To evaluate these hypotheses, a generalized linear multilevel model was used to predict 

segmentation agreement from the full factorial of the fixed effects of group, activity, and 

                                                

1 Each participant received 1 correlation score for each of the 8 videos (i.e., 4 videos x 2 grains). This entire process 

was repeated 3 times, using everyone, domain experts, and one’s own group as the different comparison groups for 

generating the normative boundaries. The main analyses presented used everyone as the comparison (normative) 

group to increase power; however, results based on segmentation agreement scores using the other comparison 

groups can be found in Appendix B. 
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segmentation grain, and the random effects of participant and video (Table 8; Figure 4). A 

significant main effect of grain was present (t = -4.05, p < .001) such that agreement of fine 

Table 8. Segmentation Ability by Expertise Group 

Segmentation Ability by Expertise Group    

 Activity Video Grain 
Segmentation 

Count 

Segmentation 
Agreement 

(Everyone) 

Basketball  

Experts     

 Overwatch HOUvBOS Coarse 16.81 (2.27) .28 (.02) 

   Fine 41.64 (6.41) .34 (.03) 

  LONvFLA Coarse 18.36 (2.61) .16 (.02) 

   Fine 42.36 (5.75) .19 (.02) 

 Basketball MEMvUCLA Coarse 23.33 (2.77) .35 (.03) 

   Fine 59.30 (6.45) .37 (.04) 

  MTvWS Coarse 16.58 (2.16) .37 (.03) 

   Fine 47.09 (5.66) .39 (.04) 
Controls 

 (Novices)     

 Overwatch HOUvBOS Coarse 17.80 (2.85) .27 (.02) 

   Fine 29.84 (3.45) .31 (.02) 

  LONvFLA Coarse 17.12 (2.47) .14 (.02) 

   Fine 34.71 (4.76) .14 (.01) 

 Basketball MEMvUCLA Coarse 28.64 (5.94) .28 (.02) 

   Fine 39.96 (3.65) .38 (.03) 

  MTvWS Coarse 17.24 (2.10) .30 (.02) 

   Fine 34.89 (3.24) .40 (.03) 

Note: Standard error in parentheses.    

 

boundaries was higher than agreement of coarse boundaries. However, this effect was qualified 

by a significant 3-way interaction between group, activity, and grain (t = 2.29, p = .02). All 

participants showed higher agreement for the basketball videos (M = .35; SE = .01) compared to 

the Overwatch videos (M = .22; SE = .01), but experts (M = .36; SE = .02) showed a significantly 

larger effect than did the novices (M = .29; SE = .02), only at the coarse grain. The within-

subjects effect (d = .96) was larger than the between-subjects effect (d = .42). No other effects 

were significant (all p > .05).  
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Figure 4. Segmentation agreement for each activity 

 

These results partially support our hypothesis in that experts showed better segmentation 

agreement, compared to control novices, for activities within their expert domain, but only at the 

coarse grain. However, recall that experts did not identify significantly more coarse boundaries 

than control novices (see Figure 3). Altogether, this suggests that experts’ better coarse 

segmentation agreement was not due to identifying more coarse boundaries, but rather 

identifying more similar coarse boundaries likely due to their shared knowledge for basketball. 

Hierarchical alignment. Hierarchical alignment is the extent to which each identified 

coarse boundary temporally corresponds with an identified fine boundary (Kurby & Zacks, 2011; 

Sargent et al., 2013; Zacks et al., 2001). It is a measure of the encoding structure or organization 
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of one’s segmentation, or the degree to which each participant’s coarse events comprise groups 

of related fine events (Sargent et al., 2013). Alignment was calculated in two ways: Temporal 

distance and Enclosure (described below). Across both measures, we predicted a between-

subjects effect such that basketball experts, compared to control novices, would exhibit better 

alignment of coarse and fine boundaries for basketball videos, compared to Overwatch. We also 

predicted a within-subjects effect such that basketball experts themselves would exhibit better 

alignment of coarse and fine boundaries for basketball videos, compared to Overwatch, since 

they themselves were novices in Overwatch. 

Temporal distance. For each coarse boundary, the temporal distance to the closest fine 

boundary was calculated, for each video, for each participant (Sargent et al., 2013). All of the 

temporal distances were then averaged within participants for each video and adjusted for 

expected average distance due to chance given the number of coarse and fine boundaries 

participants identified. Based on this calculation, higher scores mean “further from chance” and 

thus are better than lower scores. A generalized linear multilevel model was used to predict 

temporal distance from the fixed effects of group, activity, and their interaction, and the random 

effects of participant and video. A significant main effect of activity was present (t = 3.99, p = 

.05), such that temporal distance alignment of coarse and fine boundaries was better for 

basketball compared to Overwatch (Table 9; Figure 5). No other effects were significant (all p > 

.05). This result does not support our hypothesis and instead suggests that the structure of 

basketball may be inherently easier to identify than the structure of Overwatch, or that basketball 

is a more hierarchically organized activity than is Overwatch. 
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Table 9. Hierarchical Alignment by Expertise Group 

Hierarchical Alignment by Expertise Group 
  

 
Activity Video Temporal Distance Enclosure 

Basketball Experts 
   

 
Overwatch HOUvBOS .11 (.04) .47 (.18)   

LONvFLA .12 (.03) .47 (.19)  
Basketball MEMvUCLA .22 (.03) .56 (.03)   

MTvWS .26 (.04) .57 (.04) 

Controls (Novices) 
   

 
Overwatch HOUvBOS .11 (.04) .41 (.03)   

LONvFLA .05 (.03) .45 (.03)  
Basketball MEMvUCLA .23 (.03) .45 (.03)   

MTvWS .31 (.04) .49 (.03) 

Note: Means are presented in the table and standard error in parentheses. 

 

 

 

Figure 5. Temporal distance scores for each activity 

 



 

49 

Enclosure. Enclosure refers to the degree to which groups of related fine events are 

enclosed, or contained, within coarse events (Hard et al., 2011; Sargent et al., 2013). Each 

participant’s coarse boundaries were scored based on whether they followed or preceded the 

closest fine boundary, for each video. Each participant’s enclosure score was then the proportion 

of coarse boundaries that followed (rather than preceded) the closest fine boundary, accounting 

for expected enclosure due to chance. Again, higher values indicate better alignment. A 

generalized linear multilevel model was used to predict enclosure from the fixed effects of 

group, activity, and their interaction, and the random effects of participant and video. A 

significant main effect of group (t = 2.07, p = .04) and a marginally significant main effect of 

activity (t = 3.27, p = .07) were present; however, these effects were qualified by a significant 

interaction between group and activity (t = 2.03, p = .04). Basketball experts exhibited better 

enclosure for basketball compared to Overwatch, whereas control novices did not differ in their 

enclosure ability across the two activities (Table 9; Figure 6). This result supports our hypothesis 

in that experts showed better encoding organization of activities within their expert domain, 

when measured as enclosure. 
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Figure 6. Enclosure scores for each activity 

 

 Retrieval Measures 

Memory ability was assessed using two different measures: recognition and order. The 

majority of work done with experts has shown that experts possess better memory for 

information within their field of expertise (for review, see Ericsson & Smith, 1991). Based on 

this, we hypothesized to find a within-subjects effect such that basketball experts would exhibit 

better recognition and order memory for basketball videos compared to Overwatch videos. We 

also hypothesized to find a group x activity interaction such that experts would remember more 

than control novices for the basketball videos, but they would not differ in their recognition and 

order memory performance for the Overwatch videos. 

Recognition. A generalized logistic multilevel model was used to predict recognition 

performance from the fixed effects of group, activity, and their interaction, and the random 
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effects of participant and video. A significant interaction between group and activity was present 

(z = 5.05, p < .001) such that basketball experts exhibited significantly better recognition 

performance for basketball, compared to Overwatch, whereas control novices did not differ in 

their recognition performance across activities (Table 10; Figure 7). No other effects were 

present (all p > .05). This result supports our expertise hypothesis and replicates the benefit 

effect of expertise on memory for information in one’s expert domain. 

 

 
Figure 7. Recognition performance for each activity 
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Table 10. Average Memory Performance by Expertise Group 

 
Average Memory Performance by Expertise Group 

  

 
Activity Video Recognition Order 

Basketball Experts 
   

 
Overwatch HOUvBOS 11.68 (.52) 4.41 (.26) 

  
LONvFLA 12.03 (.51) 4.41 (.27) 

 
Basketball MEMvUCLA 12.53 (.51) 3.94 (.22)   

MTvWS 14.65 (.55) 4.21 (.28) 

Controls (Novices) 
   

 
Overwatch HOUvBOS 11.00 (.30) 4.58 (.18) 

  
LONvFLA 12.62 (.31) 4.33 (.17) 

 
Basketball MEMvUCLA 10.57 (.23) 4.35 (.18) 

  
MTvWS 11.72 (.38) 3.95 (.23) 

Note: Means reported with standard error in parentheses.   

 

 

 Order memory. A generalized logistic multilevel model was used to predict order 

memory performance from the fixed effects of group, activity, and their interaction, and the 

random effects of participant and video. A significant main effect of activity was present (z = -

2.08, p = .04) such that order memory was better for Overwatch, regardless of knowledge for the 

activity (Table 10; Figure 8). However, this effect should be interpreted with caution because it 

was likely the result of an overpowered analysis. Additionally, everyone performed close to 

chance (chance = 4/8), which suggests that either the task instructions were not clear or the task 

itself was extremely difficult. A Cronbach’s alpha of .22 indicated that the internal consistency 

of this task was poor. For these reasons, any following analyses involving memory only include 

the recognition data. No other effects for order memory were present (all p > .05).  
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Figure 8. Order memory performance for each activity 

 

 Segmentation and Memory 

Prior work has shown a positive relationship between segmentation agreement and 

memory for events (e.g., Bailey et al., 2013; Flores et al., 2017; Sargent et al., 2013). In the 

current experiment, we hypothesized that segmentation agreement would predict memory, such 

that basketball experts and control novices with higher agreement would also have better 

memory, regardless of activity. Additionally, we predicted that segmentation agreement would 

interact with group such that basketball experts would show an even stronger relationship 

between agreement and memory as compared to the novices for basketball videos. This 

prediction is based on the idea that knowledge would improve segmentation agreement, which 

would in turn improve memory. 
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Coarse segmentation agreement. A generalized Poisson multilevel model was used to 

predict recognition performance from the full factorial of the fixed effects of coarse 

segmentation agreement, group, and activity and the random effects of participant and video. A 

significant main effect of coarse segmentation agreement (z = 1.96, p = .05) indicated that 

recognition was indeed better for individuals with higher coarse segmentation agreement. A 

significant 2-way interaction between knowledge and activity was present (z = -2.97, p = .003), 

such that basketball experts’ recognition was better for basketball videos, compared to 

Overwatch but novices’ recognition did not differ by activity. A significant 2-way interaction 

between coarse segmentation agreement and activity (z = -2.23, p = .03) indicated that 

segmentation agreement more strongly predicted recognition for Overwatch than for basketball. 

Most interestingly, a 3-way interaction between segmentation agreement, group, and activity was 

marginally significant (z = 1.90, p = .06). Segmentation agreement only predicted recognition 

performance for those in the expert group and only for the Overwatch videos (Figure 9). No 

other effects were present (all p > .05).  

These results partially supported our segmentation benefit hypothesis in that we predicted 

segmentation agreement would be associated with better memory; however, this relationship was 

not stronger overall for experts. In fact, experts’ segmentation agreement did not explain their 

improved memory performance in their expert domain. Rather experts’ segmentation agreement 

only predicted their memory performance for the unfamiliar activity, providing some initial 

support for the poor-get-richer hypothesis, suggesting that segmentation may benefit memory 

more when individuals need to rely on encoding efficiency and not semantic knowledge for an 

activity. 



 

55 

 
 

Figure 9. Coarse segmentation agreement predicting recognition performance 

 

Fine segmentation agreement. A generalized Poisson multilevel model was used to 

predict recognition performance from the full factorial of the fixed effects of fine segmentation 

agreement, group, and activity and the random effects of participant and video. Significant 2-way 

interactions between group and activity (z = -3.26, p = .001) as well as activity and fine 

segmentation agreement (z = -2.31, p = .02) were found using fine segmentation agreement, 

replicating the effects found using coarse segmentation agreement above. Additionally, the same 

3-way interaction of segmentation agreement, group, and activity on recognition was found here 

(z = 1.87, p = .06; Figure 10). No other effects were present (all p > .05). Similar conclusions 
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drawn from the coarse segmentation agreement analysis were drawn here and are discussed in 

the general discussion. 

 
 

Figure 10. Fine segmentation agreement predicting recognition performance 

 

Hierarchical alignment and memory. Like the set of analyses reported in the 

Segmentation and Memory section above, we conducted another set of analyses evaluating the 

influence of hierarchical alignment on recognition memory. Since alignment differences were 

only found when measured as enclosure (Encoding section above), we report only those analyses 

here. A generalized Poisson multilevel model was used to predict recognition performance from 

the full factorial of the fixed effects of enclosure, group, and activity and the random effects of 
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participant and video. A marginal main effect of enclosure (t = 1.77, p = .08) suggests that better 

enclosure may be related to better memory. However, none of the effects were significant (all p > 

.05). Figure 11 depicts a pattern very similar to that found when using segmentation agreement 

to predict recognition (see Figures 9 and 10 above), cautiously suggesting that, in some cases, 

encoding efficiency may be important for memory when knowledge is lacking. However, this 

conclusion must be tentatively inferred, as the novices had no knowledge for basketball but 

agreement and enclosure did not predict memory. 

 
 

Figure 11. Enclosure predicting recognition performance 
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 Exploratory Analyses  

The exploratory analyses presented in this section included all participants’ data (N = 

164). For the following analyses, knowledge was treated as a continuous variable, using 

participants’ scores earned on their basketball and Overwatch surveys. Results are organized in 

the same way as above (encoding measures, retrieval measures and then encoding predicting 

retrieval), and we made the same predictions as stated above. 

Segmentation frequency. A general Poisson regression was used to predict 

segmentation count from the full factorial of the fixed effects of knowledge score, activity, and 

segmentation grain (Figure 12). Random effects were not included because the model would not 

converge (i.e., too complex). Significant main effects of knowledge score (z = 14.41, p < .001), 

activity (z = 5.70, p < .001), and grain (z = 14.57, p < .001) were present. A significant 2-way 

interaction between knowledge and activity (z = 7.55, p < .001) was present, such that more 

boundaries were identified for basketball, but not for Overwatch, as knowledge increased. A 

significant 2-way interaction between knowledge and grain (z = 19.35, p < .001) was present, 

such that more boundaries were identified at the fine, but not coarse, grain as knowledge 

increased. Additionally, a significant 2-way interaction between activity and grain (z = -10.15, p 

< .001) was present, such that more boundaries were identified at the fine grain for basketball, 

but not for Overwatch. However, the 3-way interaction between knowledge, activity, and grain 

was not significant (z = 1.61, p = .11).  
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Figure 12. Exploratory Analysis: Number of boundaries identified by activity 

  

 

 Segmentation agreement. A generalized linear multilevel model was used to predict 

segmentation agreement (scored using everyone as the comparison group) from the full factorial 

of the fixed effects of knowledge score, activity, and grain and the random effects of participant 

and video (Figure 13). A significant main effect of grain was present (t = -6.13, p < .001) such 

that segmentation agreement of fine boundaries was better than segmentation agreement of 

coarse boundaries. A significant 2-way interaction between knowledge and activity was present 

(t = 2.53, p = .01), but these effects were qualified by a significant 3-way interaction between 
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knowledge, activity, and grain (t = 3.22, p = .001). Fine segmentation agreement did not differ 

across levels of knowledge or activity, but coarse segmentation agreement did differ, such that 

agreement for basketball increased as knowledge increased and agreement decreased for 

Overwatch as knowledge increased. No other effects were present (all p > .05). These results 

suggest that more knowledge is associated with more normative segmentation agreement at the 

coarse grain, and replicates the effect found using separate expert and novice groups in the main 

analyses above, as well as previous work (e.g., Levine et al., 2017). 

 

 
 

Figure 13. Exploratory Analysis: Segmentation agreement 
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 Hierarchical alignment. Both measures of hierarchical alignment (temporal distance and 

enclosure) were evaluated. 

 Temporal distance. A generalized linear multilevel model was used to predict temporal 

distance alignment from the fixed effects of knowledge, activity, and their interaction, and the 

random effects of participant and video (Figure 14). A marginally significant main effect of 

activity was present (t = 3.24, p = .05) such that alignment was better for basketball videos 

compared to Overwatch, regardless of knowledge for the activity. The main effect of knowledge 

was not significant (p = .25). However, a significant interaction between knowledge and activity 

was present (t = -2.14, p = .03) such that alignment did not improve as knowledge for basketball 

increased but alignment did improve as knowledge for Overwatch increased. This result suggests 

that basketball may have been perceived as inherently more structured (replicating effects of 

enclosure in the main analyses) and knowledge was helpful in identifying event structure for 

Overwatch. 
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Figure 14. Exploratory Analysis: Knowledge predicting temporal distance 

 

Enclosure. A generalized linear multilevel model was used to predict enclosure from the 

fixed effects of knowledge, activity, and their interaction, and the random effects of participant 

and video (Figure 15). This time, a significant main effect of knowledge was present (t = 2.52, p 

= .01) such that enclosure increased as knowledge increased, but the main effect of activity was 

not significant (p = .31). However, a significant interaction between knowledge and activity was 

present (t = 2.33, p = .02) such that knowledge predicted enclosure more so for basketball than 

for Overwatch. In contrast to the effects found using temporal distance, this result suggests that 

knowledge was associated with better identification of event structure, but this relationship was 

stronger for basketball. 
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Figure 15. Exploratory Analysis: Knowledge predicting enclosure 

 

 Memory. As mentioned above, because the order memory test showed extremely poor 

internal consistency, only recognition performance was evaluated. 

 Recognition. A generalized Poisson multilevel model was used to predict recognition 

performance from the fixed effects of knowledge score, activity, and their interaction, and the 

random effects of participant and video (Figure 16). A significant main effect of knowledge was 

present (z = 8.81, p < .001) such that as knowledge increased, recognition performance also 

increased. No other effects were present (all p > .05).  

 



 

64 

 
 

Figure 16. Exploratory Analysis: Knowledge predicting recognition performance 

. 

 

Segmentation and recognition. 

 Coarse segmentation. A generalized Poisson multilevel model was used to predict 

recognition performance from the full factorial of the fixed effects of coarse segmentation 

agreement, knowledge score, and activity and the random effects of participant and video (Figure 

17). Aside from the main effect of knowledge reported above, no other effects were significant 

(all p > .05). This result does not replicate results from the main analyses such that effects of 

segmentation agreement on memory were not present here. One explanation could be the 

restricted range in the knowledge score for Overwatch.  
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Figure 17. Exploratory Analysis: Coarse segmentation agreement and knowledge predicting 

recognition performance 

 

Fine segmentation. A generalized Poisson multilevel model was used to predict 

recognition performance from the full factorial of the fixed effects of fine segmentation 

agreement, knowledge score, and activity and the random effect of participant (Figure 18). Video 

was not included in the random effects structure because the model was unable to converge.  As 

with coarse segmentation agreement, only the main effect of knowledge score was present (z = 

4.83, p < .001; all other effects, p > .05). 
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Figure 18. Exploratory Analysis: Fine segmentation agreement and knowledge predicting 

recognition performance 

 

 Hierarchical alignment and recognition. A generalized Poisson multilevel model was 

used to predict recognition performance from the full factorial of the fixed effects of temporal 

distance, knowledge score, and activity and the random effect of participant. Video was not 

included as a random effect because the model would not converge. As was found using 

segmentation agreement, only a significant main effect of knowledge score was present (z = 

5.54, p < .001; Figure 19), suggesting that encoding organization as measured by temporal 

distance did not influence recognition, regardless of activity.  
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The same model was conducted using enclosure as the measure of alignment, rather than 

temporal distance. Again, only a significant main effect of knowledge was present (z = 3.00, p = 

.003; Figure 20). No other effects were significant (all p > .05). Altogether, these results 

replicated the lack of effects of hierarchical alignment on recognition, as was found in the results 

of the main analyses. 

 

 
 

Figure 19. Exploratory Analysis: Temporal distance, knowledge, and activity predicting 

recognition performance 
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Figure 20. Exploratory Analysis: Enclosure, knowledge, and activity predicting recognition 

performance 

. 
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Table 11. Summary of Main Analyses 

Summary of Main Analyses    

Measure DV IV(s) t or z Hypothesis Supported 

Segmentation Segmentation Frequency       

  Group 1.28 - 

  Activity 1.77 - 

  Grain * -49.63 - 

  Group x Activity -1.10 - 

  Group x Grain * -11.11 - 

  Activity x Grain -.50 - 

  Group x Activity x Grain * -3.17 Differentiation 

 Segmentation Agreement       

  Group 1.23 - 

  Activity 1.78 - 

  Grain * -4.05 - 

  Group x Activity .18 - 

  Group x Grain 1.16 - 

  Activity x Grain -1.44 - 

  Group x Activity x Grain * 2.29 Conceptual 

Hierarchical Alignment Temporal Distance       

  Group .22 - 

  Activity * 3.99 Perceptual 

  Group x Activity -1.62 - 

 Enclosure       

  Group * 2.07 - 

  Activity 3.27 - 

  Group x Activity * 2.03 Conceptual 

Memory Recognition        

  Group * 3.52 - 
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  Activity .89 - 

  Group x Activity * 5.05 Expertise 

 Temporal Order       

 
 Group -.38 - 

 
 Activity * -2.08 - 

 
 Group x Activity -.15 - 

Coarse Segmentation & Memory       

 Recognition       

  Group -.98 - 

  Activity * 2.51 - 

  Coarse Segmentation Agreement * 1.96 Segmentation Benefit 

  Group x Activity * -2.97 Expertise 

  Group x Coarse Segmentation Agreement -.79 - 

  

Activity x Coarse Segmentation 

Agreement 
* -2.23 Segmentation Benefit 

  

Group x Activity x Coarse Segmentation 

Agreement 
Ɨ 1.90 Poor-get-richer 

Fine Segmentation & Memory       

 Recognition       

 
 Group -1.13 - 

 
 Activity * 2.76 - 

 
 Fine Segmentation Agreement 1.48 - 

 
 Group x Activity * -3.26 Expertise 

 
 Group x Fine Segmentation Agreement -.77 - 

 
 Activity x Fine Segmentation Agreement * -2.31 Segmentation Benefit 

 

 Group x Activity x Fine Segmentation 

Agreement 
Ɨ 1.87 Poor-get-richer 

Enclosure & Memory         

 Recognition       
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  Group .02 - 

  Activity 1.72 - 

  Enclosure 1.77 - 

  Group x Activity -1.44 - 

 
 Group x Enclosure -1.14 - 

  Activity x Enclosure -1.02 - 

    Group x Activity x Enclosure .43 Null 

Note: * indicates significance of p ≤ .05. Ɨ indicates significance of p = .06. Hypotheses reported if predictions were made for those specific variables. 
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Table 12. Summary of Exploratory Analyses 

Summary of Exploratory Analyses    

Measure DV IV(s) t or z Hypothesis Supported 

Segmentation     

 Segmentation Frequency    

  Knowledge * -14.41 Conceptual 

  Activity * 5.70 - 

  Grain * 14.57 - 

  Knowledge x Activity * 7.55 Conceptual 

  Knowledge x Grain * 19.33 Conceptual 

  Activity x Grain * -10.15 - 

  Knowledge x Activity x Grain 1.61 Perceptual 

 Segmentation Agreement    

  Knowledge -1.53 - 

  Activity 1.87 - 

  Grain * -6.13 - 

  Knowledge x Activity * 2.53 Conceptual 

  Knowledge x Grain -.59 - 

  Activity x Grain -1.04 - 

  Knowledge x Activity x Grain * 3.22 Conceptual 

Hierarchical Alignment     

 Temporal Distance    

  Knowledge 1.16 - 

  Activity * 3.24 Perceptual 

  Knowledge x Activity * -2.14 Conceptual 

 Enclosure    

  Knowledge * 2.52 Conceptual 

  Activity 1.20 - 
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  Knowledge x Activity * 2.33 Conceptual 

Memory     

 Recognition    

  Knowledge * 8.81 Expertise 

  Activity -1.66 - 

  Knowledge x Activity -.85 - 

Coarse Segmentation & Memory    

 Recognition    

  Knowledge * 5.22 Expertise 

  Activity -1.10 - 

  Coarse Segmentation Agreement 1.68 - 

  Knowledge x Activity -.22 - 

  Knowledge x Coarse Segmentation Agreement -.85 - 

  Activity x Coarse Segmentation Agreement -.23 - 

  

Knowledge x Activity x Coarse Segmentation 

Agreement 
-.18 Null 

Fine Segmentation & Memory    

 Recognition    

 
 Knowledge * 4.83 Expertise 

 
 Activity -1.67 - 

 
 Fine Segmentation Agreement .82 - 

 
 Knowledge x Activity -.54 - 

 
 Knowledge x Fine Segmentation Agreement -.63 - 

 
 Activity x Fine Segmentation Agreement .16 - 

 

 Knowledge x Activity x Fine Segmentation 
Agreement 

.18 Null 

Enclosure & Memory     

 Recognition    

  Knowledge * 3.00 Expertise 
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  Activity .17 - 

  Enclosure .66 - 

  Knowledge x Activity -1.70 - 

 
 Knowledge x Enclosure -.17 - 

  Activity x Enclosure -1.20 - 

  Knowledge x Activity x Enclosure 1.46 Null 

Temporal Distance & Memory    

 Recognition    

  Knowledge * 5.54 Expertise 

  Activity -1.51 - 

  Temporal Distance .60 - 

  Knowledge x Activity -1.36 - 

 
 Knowledge x Temporal Distance .51 - 

  Activity x Temporal Distance -.93 - 

  Knowledge x Activity x Temporal Distance 1.26 Null 

Note: * indicates significance of p ≤ .05.    
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 Discussion 

 Overall, the results of Experiment 2 replicated the effect of expertise on memory, 

specifically recognition, and suggested that experts segment information in their expert domain 

differently than information outside their domain. Specifically, experts segmented as often as 

novices at the coarse grain, regardless of activity; however, experts segmented more often than 

novices at the fine grain, particularly for events within their area of expertise. These results did 

not replicate previous findings that have suggested familiarity leads to the identification of fewer 

event boundaries (e.g., Blasing, 2015). Interestingly, experts showed better coarse segmentation 

agreement in their field of expertise despite the fact that they did not segment more often than 

novices. These results indicate that basketball experts share a similar understanding of the event 

and identify similar coarse event boundaries. It is also possible that experts’ timing is more 

precise than novices’ at identifying important changes in an event within one’s field of expertise; 

however, this possibility cannot be evaluated in the current study. Importantly, experts’ superior 

memory for information in their expert domain did not appear to result from better segmentation 

ability. Rather, segmentation seemed to aid experts’ memory when they lacked knowledge for an 

activity. Interestingly, the effects of segmentation on memory disappeared when knowledge was 

treated as a continuous predictor in the exploratory analyses, rather than categorical in the main 

analyses. Altogether, there is initial evidence to suggest that knowledge and segmentation 

influence memory independently.  
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Chapter 5 - General Discussion 

The current study aimed to replicate and extend the literature on expertise and event 

cognition by evaluating whether expertise influences segmentation and memory for events 

within and outside of one’s area of expertise. In Experiment 1, an Overwatch knowledge survey 

was developed and validated so that we could identify experts and novices in Experiment 2. In 

Experiment 2, basketball experts and novices segmented videos of basketball and Overwatch, 

then had their memory assessed for the videos. Overall, experts’ segmentation and memory 

ability for activities within their area of expertise differed from that of the novices (between-

groups comparison) and also differed from their own segmentation and memory ability for 

activities outside their area of expertise (within-subjects comparison). Importantly, however, 

experts’ superior memory was not a product of their more efficient segmentation ability, 

suggesting that effects of knowledge and segmentation may influence memory independently. 

Explanations for these findings are outlined below. 

 Differences at Encoding? Check! 

 Identifying Boundaries 

Previous work evaluating the influence of expertise and familiarity on segmentation has 

found that fewer meaningful subevents are identified as individuals gain knowledge for, or 

familiarity with, an activity (e.g., Blasing, 2015; Hard et al., 2006; Levine et al., 2017). The 

current study did not replicate these findings. In fact, we found the opposite, depending on which 

grain of segmentation individuals were using. At the coarse level, basketball experts did not 

differ from novices on the number of perceived event boundaries. However, at the fine level, 

experts identified more event boundaries, particularly for the activity in which they had expert 
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knowledge. Neither Blasing (2015) nor Levine et al. (2017) distinguished between coarse and 

fine boundary identification. 

One explanation for the current finding comes from Hard et al., (2006). Specifically, they 

found that the identification of boundaries decreased when individuals were presumably 

“confused (overwhelmed)” (Hard et al., 2006; pg. 1228). It is possible that the lack of a 

difference in coarse boundary identification between experts and novices may have been due to 

novices’ “confusion” regarding the activities, which may have led them to segment less often. 

Another explanation comes from the literature on experts’ perceptual processing abilities 

suggesting that experts are better at differentiating between information in their field of expertise 

(Herzmann & Curran, 2011). Evaluation of experts’ superior differentiation abilities has been 

restricted to object categorization and feature processing, as opposed to perception of dynamic 

events. However, based on the evidence found in the current study, experts may be engaging in 

differentiation processing when identifying fine subevents for dynamic activities within their 

field of expertise. Future studies ought to further evaluate the influence of knowledge on coarse 

and fine segmentation to better understand how experts perceive event structure within their 

domain of expertise. 

 Agreeing on Boundaries 

Levine et al., (2017) found that experts in figure skating agreed on the major subevents 

within the figure skating routine. The current study replicated this effect at the coarse grain level. 

Interestingly, this higher agreement among experts at the coarse grain was not due to their 

identifying more coarse-grain boundaries because they identified a similar number of coarse 

boundaries as the novices. Of the coarse boundaries identified by experts and novices, experts 

identified more similar boundaries, for basketball, whereas novices displayed more idiosyncratic 
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coarse boundary identification (lower agreement). Experts seem to use their similar knowledge 

base to guide their segmentation. It is also possible that experts may be more precise in their 

timing when identifying boundaries, compared to novices who may be slower to notice important 

changes. Research from the motor perception literature suggests that motor expertise modulates 

action anticipation (basketball - Aglioti, Cesari, Romani, & Urgesi, 2008; music - Wollner & 

Canal-Bruland, 2010), such that observers are better at anticipating the actions of others when 

they themselves have experience performing the same action.  

Interestingly, segmentation agreement of fine boundaries for experts and novices did not 

differ, despite experts identifying more fine boundaries for basketball. This finding suggests that 

identification of fine boundaries may be driven more by changes in perceptual cues, such as 

motion. Though previous work from the perceptual processing literature has shown that experts 

are better at engaging in differentiation for information in their expert domain (e.g., Herzmann & 

Curran, 2011), this explains why experts identified more fine boundaries, but does not 

necessarily explain the similarity between experts’ and novices’ fine segmentation agreement. 

Perceptual cues are available to both experts and novices during the entire time they are 

encoding the information. If experts and novices were both relying on the same perceptual cues 

to guide their segmentation, they could have identified more similar boundaries, which could 

increase the likelihood of similar agreement among identified boundaries; however, this does not 

explain why experts identified more boundaries in the first place. 

 Organization of Boundaries 

Previous research has found no influence of knowledge on hierarchical alignment 

differences (Sargent et al., 2013). The current study found mixed results. Experts showed better 

enclosure of coarse and fine boundaries for basketball; however, all participants, regardless of 
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knowledge, perceived basketball as more structured than Overwatch, when measured as temporal 

distance. Additionally, hierarchical alignment did not predict recognition performance. These 

findings seem to suggest that hierarchical alignment of coarse and fine events is minimally 

affected by knowledge and not as important to retrieval as segmentation agreement. Future 

research could include recall measures to assess whether effects of knowledge on hierarchical 

alignment are more evident depending on the way in which memory for activities is measured. 

One explanation for the mixed results concerning hierarchical alignment could be the 

potential structural differences between basketball and Overwatch, which would have been more 

important if Overwatch experts were included in the analyses. Perhaps hierarchical alignment 

differences are more evident when the activity does not have an overarching goal or has more of 

a linear or sequential structure (Trabasso & Suh, 1993). For example, in text comprehension, 

causal relatedness between sentences can influence online comprehension of the text (Trabasso 

& Suh, 1993). Unfortunately, due to recruitment issues, Overwatch experts were few and far 

between; thus, their encoding organization could not be compared to novices’ encoding 

organization for Overwatch specifically (and everyone included in the main analyses for the 

current study were novices in Overwatch). It is possible that experts in Overwatch would have 

been better able to organize coarse and fine events at encoding for Overwatch, compared to 

novices. Interestingly, however, Feller et al., (in prep) found that basketball experts perceived 

structure of basketball games better compared to novices, conceptually replicating the encoding 

organization effects found with basketball experts in the current study. Future research should 

continue to investigate effects of event structure on segmentation. 

 Altogether, experts and novices showed differences on a majority of the dependent 

measures of encoding, suggesting that experts encode dynamic information within their field of 
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expertise differently than information outside their field of expertise. These findings support 

EST, such that expert knowledge was found to influence segmentation ability. It is important to 

note that the current findings may not have been present had grain size (coarse and fine) not been 

included. Including this manipulation allowed us to further investigate the levels of encoding or 

online event processing on which knowledge may have an effect, which is important for revising 

EST or translating these effects to applied scenarios, such as education. 

 Differences at Retrieval? Check! 

The current study replicated decades of research demonstrating experts’ superior memory 

for information within their field of expertise. Here, basketball experts exhibited more accurate 

recognition performance compared to novices, particularly for basketball videos, suggesting that 

knowledge facilitated memory. Unfortunately, due to poor internal consistency (Cronbach’s 

alpha = .22), the order memory results were not interpretable. The task itself was quite difficult 

in that participants were presented with two images depicting events taken from the videos they 

watched. Participants were asked to choose which of those images depicted the action that 

occurred more recently. Relatedly, there were only 8 trials per video, which likely limited the 

amount of variability to discriminate group differences in order memory. It is possible that 

another measure of order memory would be more sensitive to group differences in memory for 

temporal order.  

 Does Encoding Predict Retrieval? It Depends. 

 A major goal of the current study was to evaluate whether experts’ superior memory for 

events within their field of expertise was due to more efficient segmentation. Importantly, 

experts had more knowledge for basketball and this knowledge led to better segmentation ability.  

The between subjects effect of knowledge on segmentation for basketball at the coarse grain was 
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moderate (d = .42) and the within-subjects effect was large (d = .96), thus showing comparable 

effect sizes to prior work showing moderate (e.g., d = .33, Newberry & Bailey, under review) 

and large (e.g., ƞ2 = .26, Levine et al., 2017) effects of knowledge and expertise on segmentation, 

respectively. Further, segmentation ability predicted recognition, which replicated previous work 

showing better segmentation agreement was related to better memory (e.g., Bailey et al., 2013; 

Flores et al., 2017; Sargent et al., 2013) and generally supports the fourth principle of EHM. 

Interestingly, however, this relationship was only present when experts lacked knowledge for the 

activity, suggesting that experts’ superior memory in their domain of expertise was not due to 

better segmentation of the event information. 

 One explanation for this effect is that segmentation helps individuals understand what is 

going on in the moment, but when knowledge is present for an activity, semantic knowledge 

structures (e.g., schemas, scripts) may be more important in guiding memory for the activity. 

When knowledge for the event is lacking, presumably a schema for the information does not 

exist or is impoverished; therefore, a schema will not effectively guide memory. In this case, 

reliance on a more efficient encoding mechanism, such as segmentation (e.g., event models), 

might prove more useful in guiding memory. This would suggest that both segmentation and 

knowledge influence memory, but they do so independently of one another. Relatedly, 

segmentation is not the only encoding mechanism that might benefit memory. The basketball 

experts in the current study could have engaged in other encoding mechanisms or strategies (e.g., 

semantic chunking or elaboration) to guide their encoding and later retrieval of the basketball 

events. Future research should attempt to tease apart experts’ and novices’ reliance on schema 

and event structure when trying to remember information from events within and outside of 

one’s expert area. 
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 Alternatively, segmentation may benefit memory for event boundary (compared to non-

boundary) information. According to EHM, segmentation guides memory because event 

boundaries serve as anchors that help differentiate between events (Radvansky & Zacks, 2017). 

The current study did not dissociate between event boundary and non-boundary information 

during the recognition task; therefore, we could not discern whether segmentation would predict 

memory for event boundary information or whether knowledge would influence that particular 

relationship. A future study could evaluate whether memory for event boundary information 

would benefit from efficient segmentation and whether this relationship would be influenced by 

knowledge. 

 An important note to mention is that the measure of memory in the current study was 

recognition2. Previous work investigating the relationship between segmentation and memory 

has used measures of recall (e.g., Flores et al., 2017; Sargent et al., 2013). It is possible that 

effects of knowledge on segmentation and memory may be more prominent through recall. 

Research suggests that recognition is easier than recall because it provides relevant cues to the 

individual and allows individuals to rely on retrieval and feelings of familiarity (Schwartz, 

2018). Recall, on the other hand, does not use (or uses limited) cues, and requires that the 

individual retrieve the information rather than identify the information. The differences in 

memory in the current study may not have been large enough to see a benefit of knowledge on 

segmentation predicting memory due to the relative “easiness” of the task. 

                                                

2 Order memory was also assessed; however, the order memory task employed here was unreliable (alpha = .22). 
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 Limitations 

 The current study was subject to a few limitations. First, the largest issue was participant 

recruitment. Recruitment of Overwatch experts was particularly difficult, even after targeting a 

group on campus comprised of individuals who play Overwatch regularly. Ultimately, this group 

of participants was dropped from the main analyses of the current study. Part of this difficulty 

may have been due to unfortunate timing with the release of a new, more popular video game, 

Fortnite (Ranker, 2018). Future work may have more success by recruiting experts online 

through sites such as MTurk. 

 Despite losing that group, it should be noted that the merit of the current work remains 

significant. Both between and within-subject comparisons were conducted, which sets this work 

apart from previous work (e.g., Blasing, 2015; Levine et al., 2017), and most importantly, the 

control novices did not show the same segmentation benefit as the experts for basketball, 

suggesting that the effects shown were due to differences in knowledge, not stimulus. 

 A second limitation was the unreliability of the order memory task. Performance on this 

task was at chance, suggesting that the instructions were not clear or that the task itself was too 

difficult. Ultimately, the results from this task were inconclusive. Due to this, the current study 

was only able to investigate the effect of knowledge and segmentation on one memory measure: 

a forced-choice recognition task. Moving forward, pilot studies testing different instructions or 

target images for the order memory task should be conducted before use in an experiment. 

 Finally, as previously stated, recall was not assessed in the current study. This choice was 

made due to the possibility of inherent vocabulary differences that could have put novices at a 

disadvantage when trying to describe the events of basketball and Overwatch. Future studies 

investigating this topic ought to consider including a measure of recall, as recall may be more 
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sensitive to influences of knowledge (e.g., Anderson & Pichert, 1978; Bransford & Johnson, 

1972). 

 Conclusions 

 Ultimately, support for EHM and EST were found, suggesting that knowledge aids 

memory and that knowledge influences segmentation ability. The current study found that 

expertise did improve event segmentation ability, but experts’ superior memory for events within 

their field of expertise was not due to better segmentation ability. Evidence was present for both 

encoding and retrieval differences between experts and novices; however, preliminary evidence 

suggests that segmentation and knowledge appear to influence memory independently of one 

another. 
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Appendix A - Stimuli Examples 

 

Overwatch Survey 

 

The following questions assess your knowledge about the video game Overwatch. For each 

question, mark your answer by clicking on the appropriate response. If you do not know the 

answer to a question, you may choose “I don’t know.” Please do not use outside sources to 

answer the questions. 

 

1. What type of game is Overwatch? 

a. Team-based multiplayer online first-person shooter 

b. Massive multiplayer online roleplay 

c. Team-based multiplayer online roleplay 

d. Massive multiplayer online first-person shooter 

e. I don’t know 

2. Which company developed Overwatch? 

a. Valve 

b. Twitch 

c. Cloud Imperium 

d. Blizzard Entertainment 

e. I don’t know 

3. What are the characters in the game called? 

a. Heroes 

b. Villains 

c. Sims 

d. Avatars 

e. I don’t know 

4. Which of the following is not a character role in Overwatch? 

a. Offense 

b. Midfield 

c. Defense 

d. Support 

e. I don’t know 

5. How many players are on a team? 

a. 6 

b. 5 

c. 3 

d. 7 

e. I don’t know 

6. How many teams play during a game? 

a. 4 

b. 3 

c. 2 

d. 5 

e. I don’t know 
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7. Which character role has high speed and attack but low defense? 

a. Offense 

b. Defense 

c. Support 

d. Tank 

e. I don’t know 

8. Which character role forms choke points for enemies? 

a. Offense 

b. Support 

c. Defense 

d. Tank 

e. I don’t know 

9. Which of the following is a way that players can switch characters during a match? 

a. Anytime they want to switch they can 

b. Reaching their opponents base 

c. Returning to their home base 

d. They can’t switch characters during a match 

e. I don’t know 

10. Which of the following is not a method of earning in-round fire points? 

a. Killing or assisting in killing 

b. Providing team defense or healing 

c. Scoring objective points 

d. Leading a team 

e. I don’t know 

11. Which of the following is not a type of map? 

a. Assault 

b. Escort 

c. Competitive 

d. Hybrid 

e. I don’t know 

12. Which of the following is the name of the map that is based on London? 

a. King’s Row 

b. King’s Cross 

c. King’s Station 

d. King’s Throne 

e. I don’t know 

13. Which of the following is the name of the map that is based on Egypt? 

a. Pyramids of Giza 

b. Temple of Anubis 

c. Temple of Osiris 

d. Pyramids of Khufu 

e. I don’t know 

 

 

 

 



 

96 

14. Which of the following is not an offense hero? 

a. Hanzo 

b. Doomfist 

c. Genji 

d. McCree 

e. I don’t know 

15. Which of the following is not a defense hero? 

a. Bastion 

b. Junkrat 

c. Orisa 

d. Hanzo 

e. I don’t know 

16. Which of the following is a support hero? 

a. Mercy 

b. Reinhardt 

c. D.Va 

d. Bastion 

e. I don’t know 

17. Which of the following is a tank hero? 

a. Junkrat 

b. D.Va 

c. Lucio 

d. Ana 

e. I don’t know 

18. Which of the following ultimates allows you to fly? 

a. Coalescence 

b. Blizzard 

c. Tactical Visor 

d. Valkyrie 

e. I don’t know 

19. Which of the following ultimates allows Zenyatta to restore health? 

a. Transcendence 

b. Coalescence 

c. Super charger 

d. Shield generator 

e. I don’t know 

20. Which of the following is not a method of filling the Ultimate Meter? 

a. Dealing damage to enemy heroes 

b. Healing 

c. Damage boosting 

d. Completing an objective 

e. I don’t know 
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21. In which game mode is the only objective to move the payload to a delivery point, while 

the defense halts the attacker’s progress? 

a. Assault 

b. Escort 

c. Hybrid 

d. Control 

e. I don’t know 

22. Which of the following offense heroes relies more on team coordination? 

a. McCree 

b. Reaper 

c. Pharah 

d. Sombra 

e. I don’t know 

23. Which of the following support heroes is most useful when used as a defensive hero with 

supportive ultimates? 

a. Ana 

b. Mercy 

c. Symmetra 

d. Moira 

e. I don’t know 

24. I have a high level of Overwatch knowledge. 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

25. Please choose the option that best describes your involvement with Overwatch. 

a. I currently play Overwatch. 

b. I used to play often, but not anymore. 

c. I used to play a little, but not anymore. 

d. I have seen people play Overwatch, but I have never played. 

e. I have never seen people play Overwatch and I have never played. 

26. How often do you play Overwatch? 

a. Daily 

b. Weekly 

c. Monthly 

d. Yearly 

e. Never 

27. If you do play, please select the approximate number of hours per week that you spend 

playing Overwatch. If you do not play, please choose 0. 

a. 0 

b. 1-5 

c. 6-10 

d. 11-15 

e. 16 or more 
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28. Please enter the SR (rank) for your main account in the text field below. If you do not 

play, please enter 0. 

29. I consider myself an Overwatch expert 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

 

Basketball Survey 

 

The following questions assess your knowledge about Basketball. For each question, mark your 

answer by clicking on the appropriate response. If you do not know the answer to a question, you 

may choose “I don’t know.” Please do not use outside sources to answer the questions. 

 

1. Which of the following is not the name of a basketball violation? 

a. Traveling 

b. Lane Violation 

c. Technical Foul 

d. Pass Interference 

e. I don’t know 

2. Not inbounding the ball quickly enough results in a: 

a. 3-second violation 

b. 4-second violation 

c. 5-second violation 

d. 10-second violation 

e. I don’t know 

3. If two opposing players are holding the ball simultaneously, the referee will call: 

a. A toss-up 

b. A jump-ball 

c. A scrum 

d. A dead-ball 

e. I don’t know 

4. One and one is: 

a. A term for a one point shot 

b. A term for a team’s last warning 

c. A term for a free-throw penalty situation 

d. A term for a play design to free up a player 

e. I don’t know 

5. What is the maximum amount of time an offensive player can be in the paint? 

a. 3 seconds 

b. 5 seconds 

c. 10 seconds 

d. 24 seconds 

e. I don’t know 
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6. How many fouls can an NBA player get before they foul out? 

a. 4 

b. 5 

c. 6 

d. 7 

e. I don’t know 

7. Taking more than one step without dribbling is called: 

a. Scooting 

b. Sliding 

c. Double-dribbling 

d. Traveling 

e. I don’t know 

8. How long is the shot clock in the NBA? 

a. 12 seconds 

b. 20 seconds 

c. 24 seconds 

d. 35 seconds 

e. I don’t know 

9. In basketball, “goal-tending” is best defined as” 

a. Standing too close to the rim for too long 

b. Interfering with a shot on its downward trajectory 

c. Impeding the goal of an opposing player at an illegal time 

d. Rebounding the ball after a miss by the opposing team 

e. I don’t know 

10. In basketball, what does “in-the-paint” mean? 

a. The area inside the free-throw lane 

b. The area outside the 3-point line 

c. The circular area near center court 

d. The location where players wait to enter the game 

e. I don’t know 

11. Which of the following is not a position in basketball? 

a. A stretch 4 

b. Point-guard 

c. Tight-end 

d. Power-forward 

e. I don’t know 

12. When can the inbounds passer run along the baseline to help get the ball inbound? 

a. Only after the opposing team scores 

b. Only in the 4th quarter 

c. Only when being defended 

d. Anytime 

e. I don’t know 

13. When can the rebounders enter the lane on a free-throw? 

a. As soon as the ball leaves the shooter’s hand 

b. When the ball is halfway to the basket 

c. As soon as the ball hits the rim 



 

100 

d. As soon as the ref blows the whistle 

e. I don’t know 

14. True or False: Each personal foul also counts as a team foul. 

a. True 

b. False 

c. I don’t know 

15. How far from the basket is the free-throw line? 

a. 10 feet 

b. 15 feet 

c. 20 feet 

d. 25 feet 

e. I don’t know 

16. When is a team allowed to make a substitution? 

a. Only during a dead-ball 

b. At any point throughout the game 

c. Only during a time-out 

d. Only after a basket is made 

e. I don’t know 

17. Which positioned players typically have the lowest free-throw percentage? 

a. Point-guards 

b. Forwards 

c. Shooting-guards 

d. Centers 

e. I don’t know 

18. What is an “alley-oop”? 

a. A bounce pass to a teammate 

b. When a player from the opposing team steals the ball 

c. A pass to a teammate who catches the ball in the air for a dunk 

d. A shot that goes off the back-board and into the hoop 

e. I don’t know 

19. How long is a quarter in the NBA? 

a. 10 minutes 

b. 12 minutes 

c. 15 minutes 

d. 25 minutes 

e. I don’t know 

20. When a player is in a triple threat position, he/she can do all of the following except: 

a. Shoot 

b. Dribble 

c. Pass 

d. Set a screen 

e. I don’t know 
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21. Which of the following is not a type of defense commonly used in basketball? 

a. Man to man 

b. Full coverage 

c. Zone 

d. Box and one 

e. I don’t know 

22. On defense, if you are screened by an offensive player, you should: 

a. Go in front of the player screening you 

b. Switch offensive players with a teammate 

c. Run toward the goal to rebound 

d. Either A or B are correct 

e. I don’t know 

23. When a player sets a screen or pick, he/she should: 

a. Roll to the basket with the front part of the body facing the teammate with the ball 

b. Roll to the basket with the back to the teammate with the ball 

c. Make sure to stick a knee out to block the defensive player 

d. None of the above 

e. I don’t know 

24. I have a high level of basketball knowledge. 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

25. Please choose the option that best describes your involvement with basketball. 

a. I currently play basketball. 

b. I used to play often, but not anymore. 

c. I used to play a little, but not anymore. 

d. I have seen people play basketball, but I have never played. 

e. I have never seen people play basketball and I have never played. 

26. How often do you play basketball? 

a. Daily 

b. Weekly 

c. Monthly 

d. Yearly 

e. Never 

27. If you do play, please select the approximate number of hours per week that you spend 

playing basketball. If you do not play, please choose 0. 

a. 0 

b. 1-5 

c. 6-10 

d. 11-15 

e. 16 or more 
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28. Please choose the highest level of basketball you have ever played. 

a. Never played 

b. Pick-up games 

c. Rec leagues 

d. High School 

e. College or Professional 

29. I consider myself a basketball expert. 

a. Strongly disagree 

b. Somewhat disagree 

c. Neither agree nor disagree 

d. Somewhat agree 

e. Strongly agree 

30. How often do you watch basketball during the season? 

a. Everyday 

b. At least once a week 

c. Once a month 

d. Once a year 

e. Never 

 

Recognition Task: Example Trial 

 

“Please choose the image that came from the video you just watched.” 

 

           
 

Order Memory Task: Example Trial 

 

“Which of these images depicts the more recent action?” 
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Appendix B - Task Performance for All Expertise Groups 

Table 13. Knowledge Scores by All Groups 

Knowledge Scores by Expertise Group      

  
Basketball Experts 

Overwatch Experts 
(Basketball Novices) 

Overwatch Experts (Any 
Basketball Score) 

Overwatch Experts 
(Combined) 

Controls 
(Novices) 

Intermediates 

Overwatch  1.29 (.38) 19.67 (.67) 20.78 (.52) 20.50 (.44) 1.34 (.28) 3.15 (.64) 

Basketball  20.06 (.27) 4.00 (.58) 16.56 (1.50) 13.42 (1.98) 4.51 (.29) 11.89 (.45) 

Note: Standard error in parentheses.  Novice ≤ 7; Expert ≥ 17.    

 

 

Table 14. Cognitive Battery by All Groups 

Cognitive Battery by Expertise Groups 
     

  
Basketball 

Experts 

Overwatch Experts 

(Basketball Novices) 

Overwatch Experts (Any 

Basketball Score) 

Overwatch Experts 

(Combined) 

Controls 

(Novices) 
Intermediates 

Letter Comparison 16.38 (.38) 16.33 (1.76) 17.44 (1.08) 17.17 (.89) 16.08 (.34) 16.74 (.38) 

Pattern Comparison 21.17 (.63) 24.33 (1.20) 21.56 (1.64) 22.25 (1.29) 20.28 (.60) 20.56 (.62) 

Semantic Knowledge 56.12 (1.45) 67.00 (2.65) 55.11 (4.88) 58.08 (3.97) 53.44 (1.47) 54.96 (1.56) 

Vocabulary 14.03 (.48) 17.67 (1.20) 16.78 (1.62) 17.00 (1.23) 13.48 (.49) 13.74 (.43) 

R-SPAN 
 

0.8 (.02) 0.98 (.02) 0.83 (.06) 0.86 (.05) 0.77 (.02) 0.74 (.02) 

Note: Standard error in parentheses.     
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Table 15. Segmentation Abilities by All Groups 

Segmentation Abilities by Expertise Group 
     

 Activity Video Grain 
Segmentation 

Count 

Segmentation 

Agreement 

(Own) 

Segmentation 

Agreement 

(Expert) 

Segmentation 

Agreement 

(Everyone) 

Basketball Experts 
      

 
Overwatch HOUvBOS Coarse 16.81 (2.27) .24 (.02) .20 (.02) .28 (.02) 

   
Fine 41.64 (6.41) .29 (.02) .28 (.03) .34 (.03) 

  
LONvFLA Coarse 18.36 (2.61) .14 (.02) .09 (.02) .16 (.02) 

   
Fine 42.36 (5.75) .14 (.02) .10 (.02) .19 (.02) 

 
Basketball MEMvUCLA Coarse 23.33 (2.77) .35 (.03) .35 (.03) .35 (.03) 

   
Fine 59.30 (6.45) .37 (.04) .37 (.04) .37 (.04) 

  
MTvWS Coarse 16.58 (2.16) .36 (.03) .36 (.03) .37 (.03) 

   
Fine 47.09 (5.66) .34 (.04) .34 (.04) .39 (.04) 

Overwatch  

(Basketball Novices) 

      

 
Overwatch HOUvBOS Coarse 7.33 (1.33) .05 (.03) .05 (.03) .18 (.02) 

   
Fine 38.67 (16.29) .14 (.01) .14 (.01) .41 (.02) 

  
LONvFLA Coarse 10.33 (3.93) .12 (.03) .12 (.03) .13 (.03) 

   
Fine 25.67 (7.31) .03 (.02) .03 (.02) .17 (.01) 

 
Basketball MEMvUCLA Coarse 13.67 (1.33) 0.31 (.09) .31 (.07) .32 (.06) 

   
Fine 53.67 (13.12) .32 (.03) .44 (.03) .44 (.01) 

  
MTvWS Coarse 12.33 (3.93) .21 (.06) .39 (.10) .38 (.09) 

   
Fine 53.00 (14.42) .32 (.05) .42 (.09) .48 (.09) 

Overwatch  

(Any Basketball Score) 

      

 
Overwatch HOUvBOS Coarse 13.56 (3.76) .11 (.04) .11 (.04) .21 (.06) 

   
Fine 30.56 (6.75) .28 (.04) .28 (.04) .35 (.03) 

  
LONvFLA Coarse 10.63 (4.24) .07 (.04) .07 (.04) .10 (.05) 

   
Fine 36.00 (11.16) .22 (.04) .22 (.04) .19 (.03) 

 
Basketball MEMvUCLA Coarse 23.33 (7.17) .36 (.05) .42 (.03) .43 (.03) 

   
Fine 60.78 (17.39) .23 (.07) .36 (.08) .37 (.09) 

  
MTvWS Coarse 19.00 (6.32) .36 (.05) .47 (.04) .45 (.05) 

   
Fine 41.56 (9.51) .33 (.09) .34 (.07) .42 (.10) 

Overwatch (Combined) 
      

 
Overwatch HOUvBOS Coarse 12.00 (2.91) .09 (.03) .09 (.03) .20 (.05) 

   
Fine 32.58 (6.17) .25 (.03) .25 (.03) .36 (.02) 

  
LONvFLA Coarse 10.55 (3.16) .09 (.03) .09 (.03) .11 (.03) 

   
Fine 33.42 (8.50) .17 (.04) .17 (.04) .19 (.02) 

 
Basketball MEMvUCLA Coarse 20.92 (5.45) .35 (.04) .39 (.03) .40 (.03) 

   
Fine 59.00 (13.18) .26 (.05) .38 (.06) .39 (.07) 

  
MTvWS Coarse 17.33 (4.82) .32 (.04) .45 (.04) .43 (.04) 

   
Fine 44.42 (7.81) .33 (.06) .36 (.06) .43 (.08) 

Controls (Novices) 
      

 
Overwatch HOUvBOS Coarse 17.80 (2.85) .24 (.02) .19 (.02) .27 (.02) 

   
Fine 29.84 (3.45) .30 (.02) .25 (.02) .31 (.02) 

  
LONvFLA Coarse 17.12 (2.47) .12 (.02) .07 (.01) .14 (.02) 

   
Fine 34.71 (4.76) .12 (.01) .10 (.01) .14 (.01) 

 
Basketball MEMvUCLA Coarse 28.64 (5.94) .23 (.02) .27 (.02) .28 (.02) 

   
Fine 39.96 (3.65) .40 (.03) .34 (.03) .38 (.03) 

  
MTvWS Coarse 17.24 (2.10) .28 (.02) .29 (.02) .30 (.02) 

   
Fine 34.89 (3.24) .40 (.03) .31 (.03) .40 (.03) 

Intermediates 
       

 
Overwatch HOUvBOS Coarse 15.98 (1.93) 

 
.16 (.02) .26 (.02) 

   
Fine 36.92 (6.77) 

 
.23 (.02) .29 (.02) 
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LONvFLA Coarse 17.75 (3.48) 

 
.07 (.01) .15 (.02) 

   
Fine 41.79 (6.80) 

 
.11 (.02) .15 (.02) 

 
Basketball MEMvUCLA Coarse 21.42 (2.70) 

 
.28 (.02) .29 (.02) 

   
Fine 53.94 (6.12) 

 
.31 (.03) .32 (.03) 

  
MTvWS Coarse 18.90 (4.71) 

 
.28 (.03) .28 (.03) 

   
Fine 35.66 (4.09) 

 
.26 (.03) .33 (.03) 

Note: Standard error in parentheses. With respect to Segmentation Agreement: Own = Compared to own group; Expert = Compared to expert group; 

Everyone = Compared to everyone. 
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Table 16. Hierarchical Alignment by All Groups 

Hierarchical Alignment by Expertise Group 
  

 
Activity Video Temporal Distance Enclosure 

Basketball Experts 
   

 
Overwatch HOUvBOS .11 (.04) .47 (.18) 

  
LONvFLA .12 (.03) .47 (.19) 

 
Basketball MEMvUCLA .22 (.03) .56 (.03) 

  
MTvWS .26 (.04) .57 (.04) 

Overwatch  

(Basketball Novices) 

  

 
Overwatch HOUvBOS .26 (.16) .58 (.13) 

  
LONvFLA .09 (.02) .51(.20) 

 
Basketball MEMvUCLA .27 (.08) .57 (.15) 

  
MTvWS .30 (.16) .56 (.09) 

Overwatch  

(Any Basketball Score) 

  

 
Overwatch HOUvBOS .37 (.15) .46 (.04) 

  
LONvFLA .31 (.09) .43 (.07) 

 
Basketball MEMvUCLA .38 (.06) .61 (.08) 

  
MTvWS .57 (.12) .64 (.08) 

Controls (Novices) 
   

 
Overwatch HOUvBOS .11 (.04) .41 (.03) 

  
LONvFLA .05 (.03) .45 (.03) 

 
Basketball MEMvUCLA .23 (.03) .45 (.03) 

  
MTvWS .31 (.04) .49 (.03) 

     

Intermediates 
    

 
Overwatch HOUvBOS .12 (.05) .43 (.03) 

  
LONvFLA .14 (.04) .51 (.03) 

 
Basketball MEMvUCLA .19 (.03) .51 (.03) 

  
MTvWS .22 (.05) .49 (.03) 

Note: Standard error in parentheses.   
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Table 17. Memory Performance by All Groups 

Memory Performance by Expertise Group 
   

 
Activity Video Recognition Order 

Basketball Experts     
 

Overwatch HOUvBOS 11.68 (.52) 4.41 (.26) 
  

LONvFLA 12.03 (.51) 4.41 (.27) 
 

Basketball MEMvUCLA 12.53 (.51) 3.94 (.22) 
  

MTvWS 14.65 (.55) 4.21 (.28) 

Overwatch  

(Basketball Novices) 

   

 
Overwatch HOUvBOS 16.33 (2.33) 6.00 (.00) 

  
LONvFLA 15.00 (1.15) 4.67 (1.20) 

 
Basketball MEMvUCLA 11.00 (1.15) 4.00 (1.00) 

  
MTvWS 8.67 (2.19) 3.33 (.67) 

Overwatch  

(Any Basketball Score) 

   

 
Overwatch HOUvBOS 16.67 (1.05) 5.67 (.65) 

  
LONvFLA 15.44 (.85) 6.33 (.47) 

 
Basketball MEMvUCLA 11.22 (1.21) 3.56 (.38) 

  
MTvWS 15.56 (.82) 3.78 (.76) 

Overwatch  

(Combined) 

    

 
Overwatch HOUvBOS 16.58 (.92) 5.75 (.48) 

  
LONvFLA 15.33 (.68) 5.92 (.48) 

 
Basketball MEMvUCLA 11.17 (.93) 3.67 (.36) 

  
MTvWS 13.83 (1.18) 3.67 (.58) 

Controls  

(Novices) 

    

 
Overwatch HOUvBOS 11.00 (.30) 4.58 (.18) 

  
LONvFLA 12.62 (.31) 4.33 (.17) 

 
Basketball MEMvUCLA 10.57 (.23) 4.35 (.18) 

  
MTvWS 11.72 (.38) 3.95 (.23) 

Intermediates 
    

 
Overwatch HOUvBOS 12.02 (.40) 4.32 (.20) 
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LONvFLA 12.89 (.41) 4.67 (.22) 

 
Basketball MEMvUCLA 11.69 (.30) 4.27 (.22) 

  
MTvWS 13.43 (.38) 3.67 (.21) 

Note: Standard error in parentheses.   

 


