
TRANSLATIONS IN LATTICES

by

DON F. HUNZIKER

B.S., Kansas State University, 1965

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mathematics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1968

Approved by:

Major Professor
L^



LD

Ri
r

4-1 79^ TABLE OF CONTENTS

INTRODUCTION 1

DEFINITION OF A LATTICE 2

TRANSLATIONS IN LATTICES ..." 9

TRANSLATIONAL DIMENSION AND ITS PROPERTIES 12

ADAPTING THE PROBLEM TO THE COMPUTER 16

THE PROGRAM 19

SOME SPECIFIC PROBLEMS 25

ACKNOWLEDGEMENTS 28

BIBLIOGRAPHY 29



INTRODUCTION

The study of translations in lattices has been used in the study of

congruences on a non-distributive lattice. There is a connection with Che

translational dimension of a lattice and the congruences on the lattice.

There have been no attempts to adapt the problem of computing the

translational dimension of a lattice to the computer, as far as is known.

This is the problem which will be considered in the following sections.



II. Definition of a Lattice

A partially ordered set S is an algebraic system in which a binary rela-

tion xj<y (read: y includes x) is defined, which satisfies the following

postulates.

P^ For all x, x<x. (reflexive property)

P 2 : If x<y and y<x, then x = y. (antisymmetric property)

P
3

: If x<y and y<z, then x<z. (transitive property)

A binary relation which satisfied P ls P 2 , ?
3 , is called an inclusion

relation or an order relation. Associated with the relation < we can conven-

iently introduce the relations >, <, >, defined as follows.

x<y^—^ x<y and x ^ y;

x>y <fa
*> y<x.

It should be observed that the inclusion need not be defined for each

pair of elements of the set. It is sufficient that it be defined for some

pairs of elements. It should be emphasized that x£y does not necessarily imply

x>y (1,1).* An example of a partially ordered set is the set S of all positive

integers; where x<y means that y has x as a factor.

A partially ordered set S is said to be totally ordered and is a chain if

Pi+: For any x and y is S, x<y or y<x. That is, every two elements of the set

are related.

In this report the first number of the ordered pair will be used to
indicate the reference and the second number will indicate the page, with
the references numbered in the bibliography.



Let Q bo a subset of the elements of a partially ordered set S. We call

an element x of S an upper bound (lower bound) of if y<_x (*<y) for all yeQ.

An upper bound (lower bound) x of Q is said to be the least upper bound

(greatest lower bound) of Q if every upper (lower) bound x' of Q satisfies

x<x' (x'<x). If any element y of Q is an upper (lower) bound of Q, it must be

the least upper bound (greatest lower bound), since for any other upper (lower)

bound x 1

,
y<x' (x'<y) is satisfied. The least upper bound (greatest lower

bound) of Q need not exist. If Q has at least one upper (lower) bound, Q is

called a subset of S bounded above (bounded below) ; a subset which is bounded

both above and below is called a bounded subset. If Q = S, we shall speak of

a set bounded above or bounded below, respectively.

Definition: A lattice L is a partially ordered set S such that any two

elements of S possess both a least upper bound (denoted by V) and a greatest

lower bound (denoted by A)

.

Definition: A sublattice M of a lattice L is a subset such that,

xeM and yeM implies xAyeM and xVyeM.

Let (S, _£) be a partially ordered set. Then the partially ordered set

(S, Z) is tne dual of the partially ordered set (S, <) . We have a partially

ordered set in both cases, but the second has been obtained from the first by

replacing <_ with >_« Any statement which was made about the first set can also

be made about the second set by replacing <, with >, in the statement.

Since a lattice is a partially ordered set with the two operations A, V,

by the Principle of Duality: Any statement which has been deduced from the

axioms of a lattice for A, remains valid if A and V are interchanged in the

statement.



Some fundamental identities for lattices:

Lj: xAy - yAX

liO • xVy = yVX

L
3

; xA(yAz) = (xAy)Az

L,: xV(yVz) = (xVy)Vz

L5 : xA(xVy) = x

V xV(xAy) x

Commutative law

Associative law

Absorption law

Proof of L
3

: Write p = yAz and q = xAp = xA(yAz). Then p<y, p<z,

q<_x, q<p, and by P
3 , q<y and q<z. Thus q is a lower bound for the subset x,

y, z. If r is any other lower bound of this subset, then r<x, r<y, r<z, and

so r is a lower bound of y and z. But p is the greatest lower bound of y and

z and consequently r<p. This shows that r is a lower bound of x and p. But

q is the greatest lower bound of x and p, from which we conclude that r<q. It

follows that q, or xA(yAz), is the greatest lower bound of the subset x, y, z.

In a similar manner we can show that (xAy)Az is also the greatest lower bound

of the subset x, y, z. Consequently

xA(yAz) = (xAy)Az,

which is L
3 . The other associative law is dual.

Proof of L 5 : Write p = xVy, q = xAp = xA(xVy), then p>x, p>y, q<x, and

q<p. Since x<x, it follows that x is a lower bound of x and p, but q is the

greatest lower bound of x and p, consequently x<q. Since we know q<_x, it

follows from antisymmetric law that x = q = xA(xVy). The other absorption law

is dual.

We obtain another important formula by replacing y in L 5 by xAy.

x = xA(xV( xAy)) but xV(xAy) » >:, hence x = xAx and dually we can



obtain x = xVx. Hence we have the idempotent laws,

Ly : x = xax

Lg : x = xVx.

If y<x, then y is a lower bound for x and y. It is also the greatest

lower bound for x and y, since any other lower bound must be included by y.

A finite lattice is one with a finite number of elements. Any finite

lattice, being a partially ordered set, can be represented by a Kasse diagram.

For example a five element lattice L defined by I = aVb = aVc, b<c, and

= aAb = aAc is represented by

Fig. 1

Another example of a lattice is the set N of positive integers. Let aAb

and aVb(a, b £N) denote the greatest common divisor and the least common multi-

ple, respectively, of the numbers a and b. With respect to these two operations,

N is a lattice.

Theorem 2.1: In a lattice L

(1) a<b^aAb = a (a, beL) . (7,38)



Proof: a<b =^ a is a lower bound for (a, b) =^ a = a,\b.

Conversly, a = aAb =^ afb.

If a lattice L has an element (I) such that every element x of L satis-

fies the inequality OfxCxjfl), then (I) is called the least or null (greatest

or universal) element of L. These elements will also be called the bound

elements of L. In a lattice the terms "minimal element" and "least element"

(similarly "maximal element" and "greatest element") mean the same thing.

Definition: A distributive lattice is a lattice for which L9 and L10 hold,

where

L9 : For any triplet of elements a, b, c of the lattice,

aA(bVc) = (aAb)V(aAc);

L1Q : For any triplet of elements a, b, c of the lattice,

aV(bAc) = (aVb)A(aVc).

Theorem 2.2. A lattice L for which either Lg or L10 is satisfied is

distributive (7, 79).

Proof: If, say, L9 holds for a lattice L, then for any triplet a, b, c

of L, (aVb)A(aVc) = ((aVb)Aa) V ((aVb)Ac) - aV((aAb)Ac). But (aVb)Ac =

cA(aVb) and, since L
9
holds cA(aVb) (cAa) V (cAb). Hence a V((aVb)Ac) =

a V((aAc) V (bAc)) = (aV(aAc)) V (bAc) = a V(bAc) and, hence, L 10 also holds.

L
9
follows from L 10 by the dual of the above argument.

Theorem 2.3. A lattice L is distributive, if, and only if, it has no

sublattice S isomorphic with either one of the lattices shown in Figures 1

and 2.



Fig. 1 Fig. 2

Proof: Assume we have a sublattice S which is isomorphic to Figure 1;

there exist elements a, b, ceS as shown. Hence b<c and bV(aAc)^(bVa)A (bVc)

since bV(aAc) = bVO = b and (bVa)A(bVc) = lAc = c, which implies L is not

distributive.

Assume we have a sublattice S which is isomorphic to Figure 2; then

there exists elements a, b, c of L such that

a V (bAc) i (aVb)A(aVc) since a V (bAc) = aVO = a and

(aVb)A(aVc) = IA1 = I, which implies L is not distributive.

The converse can be shown to be true. (7, 91)

Definition: A modular lattice is a lattice L in which the following

identity holds

:

L
x i : For any triplet of elements a, b, c of a lattice satisfying a<c

the identity a V (bAc) = (aVb)Ac holds.

It is clear that any distributive lattice is modular. (6, 13)



Theorem 2.4. A lattice is modular if, and only if, it contains no sub-

lattice isomorphic to the pentagonal lattice of Figure 1. (6, 13)

Proof: The lattice of Figure 1 is non-modular since b<c and

bV(aAc) = bVO = b<c = (bVa)Ac = lAc, hence the modular identity fails to hold.

The converse can be shown to be true. (6, 13)

Theorem 2.5. If aAb = aAc and, aVb = aVc and b<_c implies b = c for any

choice of elements a, b, c, then the lattice is modular.

Proof: If it were nonmodular, it would contain a pentagonal sublattice

such as Figure 1 in which b ^ c although aAb = aAc and, aVb = aVc and b<c.



III. Translations in Lattices

In any lattice L we shall denote the elementary translations defined by

a e L by p : x -> x/la and a : x -» xVa. A translation is then the composition
a a r

of finitely many such mappings. We shall write all translations as operators

on the right.

Since p^p^ = p a
a
a
h

= a
vb

identically > any finite product of elemen-

tary translations can be reduced to one of the following forms:

(A) p a p a
Cl C2 C3 Clt

(3) p a p a
Cl C2 C3 Cl*

(C) a p o p
Cl C2 C3 Ctt

(D) a p p
ci C2 03 ci+

- -P o l <n, n even;
c , c — •

n-1 n

p , l<n, n odd;
c . c — "

n-1 n

- -a P , l<n, n even;
c . c —
n-1 n

- -P o l<n, n odd.
c , c —
n-1 n

The reduction is unique, although the translation itself can be written in

possibly more than one of the forms above.

For any positive integer n, we denote by R (L) the set of all translations

which can be expressed under the form (A) or (3) (with the same n) ; S (L) is
n

the set of ail translations which can be expressed under the form (C) or (D)

(with the same n) . We set T (L) = R (L) U S (L) , so that the set T(L) of ailn n n

translations of L is the union of all T (L) . We shall write these sets R .n n'

s
n > T

n>
and T as if there is only one lattice under consideration.

The order of a translation t is the smallest integer n such that T £T .

n

It is also the smallest integer p such that t can be written as a product of

p elementary translations. For example, for any aeL, the constant mapping

K : x -» a can be written as K = p a = a p (which is the absorption law)
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and is a translation of order two unless a is a maximum or minimum of element

of L.

The translations of Lare order-preserving, since: if x<y, then xp— a

xAa - xAyAa<yAa yp (since x = x/\y by Theorem 2.1. Then xo <y<j by the
a a-* a

dual. The composition of order preserving maps is also order preserving,

hence all translations are order preserving.

The translations are also bounded except possibly for the elementary

translations. If, for instance, t = x'p a where x'eT, or it may be the

identity translation (which implies the order of x>2), then xt = xx'p a =— c d

(xT'Ac)Vd and d<_xT <_cVd for all xeL since

(1) (xx T Ac)<c because if coct ' implies xx'Ac - c and if xt'<c implies

xt' Ac = xx'<c. Hence (xx' Ac)Vd<cVd or xt<cVd.

(2) d<_(xx'Ac)Vd since d<least upper bound of (xx'Ac, d) .

Combining the two results we have d<xx<cVd, for all xe'f except possibly when

x is an elementary translation. The elementary translations of R
x
are bounded

above (xp^ = xAa<xVa, xV aeL for all xeL) , but are bounded below if, and only

if, L has a least element. The elementary translations of S
l
are bounded

below (xa^ = xVa>_xAa, xAaeL for all xeL), but are bounded above if, and only

if, L has a greatest element.

Theorem 3.1. For any n>2, R£ R and SS S .. , so that T£ T ,. The- n n+1 n n+1 n n+1

corresponding inclusions for n = 1 hold if, and only if, L is bounded. In this

CaSe
'

T£ R
n+1

n S
n+ 1

for a11 n -

Proof: Take TeR , and assume that n>_2 or that L is bounded. From above,

if n^_2 or if the translation is bounded, then we can find a, be L such that

a£xT <b for all xeL. Now x = xp, = xa for all xe L and either T p, or Ta is inba K b a
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R ... This implies R£ R +1 . In the case when L is bounded, with minimum
n+1 n n '

element 0, we also have x = a xe S ... which implies Re: S ,.. Dually,
o n+1 n~" n+1 J

S £ R
,

, , hence T £ r f\ S .n~ n+1 n n+1 n+1

If conversely Tjc 'i'2, then every elementary translation is bounded, since

every x e T2 is bounded and every x' e T\ is equal to some x e T2, this implies

x' is bounded. Hence L is bounded.

Theorem 3.2. If L is distributive, then R2 = S2, so that T = Tj \J T2.

Proof: The identity (xAa)Vb = (xVb) A (aVb) shows R2 £ S2, since

xp a, = xa, p ,., . Dually we show So £ R?, since we have the identity
a b b aVb * *'

(xVa) A b = (xAb) V (aAb) which implies xa p. = xp, a .. . From this follows
a b b aAb

inductively that T £ T2 for all n>2. Indeed it holds for n = 2, and if

T £ T 2 , where p>2, then R . = Rj S c R L R2c r2 . Since R ,
- Rj S and

S £ R2, this implies R^ S £ Rj R2 , but Rj R2 = p p.a = p , a cR2 , dually

S L , fi T2 . Therefore T = T, U T2 .

p+1
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IV. Translational Dimension and Its Properties

If a lattice L is such that T(L) = T, (L) U T (L) for some n, then the
1 n

smallest such integer is, by definition, the translational dimension of L,

tr. dim L. If no such n exists, we define tr. dim L = «> . If the tr. dim of

L is finite, it is also the smallest integer n such that any translation of L

can be written as a product of at most n elementary translations.

For example a distributive lattice has tr. dim 1 or 2, by Theorem 3.2.

Any finite lattice has a finite translational dimension.

Theorem 4.1. Tr. dim L < n if, and only if, T
, . (L) £ T (L)

.

— n+1 n

Proof: Take a lattice L and suppose first that tr. dim L = m < n. Then

T = Ti U T £ Ti U T by Theorem 3.1 and T
,

, c T from the definition ofm n n+1 —

translational dimension. If n = 1 , then T ,. cT since T
,

. <= T = Ti U T .

n+1 — n n+1 ~~
n

If L is bounded, then T c T = T, (J T = T since L is bounded, hencen+l v m a

T . c T . Otherwise the translations of Tj which are bounded are in T2 , hence

in T the translations of T which are not bounded are not in any T except Tj

,

so that T ,. c= T .

n+1 — n

Conversely if T
,

, £ T , then T ,
<=, T for all p, by induction; indeedn+l n n+p n

it holds for p = 1, and if T
,
£ I , then T

, L , £ T . T, c: T T, c I ,cl,
n+p n n+p+1 ~ n+p l ~ n l ~ n+1 n

Therefore, T « Tj
{J

T , and tr. dim 1 <_ n.

Theorem 4.2. (a) If R (L) = S (L) , then tr. dim L < n: (b) if tr. dimn n — '

L < n and if L is bounded, then R
, , (L) = S , (L)

.

— n+1 n+1

Proof: (a) Assume that R = S . Then R ,, = Ri S =RiRcR and
n n n+1 l n x n ~ n

dually S . =S
1
R=S

1
S £S . Therefore, T J_ 1

c T and tr. dim L < n byn+1 x n x n n n+1 n — J

Theorem 4.1.
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Proof: (b) If tr. dim L <_ n and L is bounded, Chen by Theorem 4.1

T . , C T and by Theorem 3.1 R
,

. S T cS ,,C1 cR n v/hich implies
n+1 — n ' n+1 n n+1 n n+1 '

R = S
n+1 n+1

•

Theorem 4.3. Let f be a lattice homorphism of the lattice L onto the

lattice L'. Then the translational dimension of L' is less than or equal to

the translational dimension of L.

Proof: Let tr. dim L = n. If n = », there is nothing to prove. If

n ^ », let x' e T .(L 1

). Then t' is the product of n+1 elementary transla-

tions defined, say by sl[ , , a' £ L' . For each i we can find a. e L

such that f(a.) = a{ , since f is surjective; then the translation x £ T
, , (L)

similarly defined by ai , , a ,
. is such that f(xx) = (f(x)) t' for all

n+i

x £ L. But T
+1

(L) £ 1 (L) by Theorem 4.1, so that T is the product of n

elementary translations defined, say by bi, , b . Since f is onto, x 1 may

now be written as the product of n elementary translations defined by f(bi),

, f(b ), therefore, T ' £ T (L'). This shows that T ^(L 1 )^ T (L) and by
n n n+1 n

Theorem 4.1 tr. dim L
1

< n = tr. dim L.

Theorem 4.4. For any lattice L, tr. dim L = 1 if, and only if, L has

one or two elements

.

Proof: If L has more than two elements, then there is a constant transla-

tion K = p a = a p which is not elementary; hance tr. dim > 2.
a a a a a —

Conversely, it is readily verified that, if L has one or two elements

(either and I, or just one element), every translation is elementary.

Theorem 4.5. A lattice L is distributive if, and only if, tr. dim L<, 2.

Proof: If L is distributive, then tr. dim L £ 2 by Theorem 3.2.
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Conversely, assume that L is not distributive. Then L contains a five

element non-distributive sublattice which is isomorphic to one of the lattices

shown in Figure 1 or Figure 2.

If L contains a sublattice {0, a, b, c, 1} isomorphic to Figure 1, where

aAb=aAc=0,aVb=aVc=I,b<c, then the translation

:: -> ((x A a) V b) A c has order 3. Indeed, assume that ((xAa)Vb)Ac =

(x A d) V e for all x e L. Letting x = b A d A e, we obtain

C((b A d A e) A a) V b) A c = ((b A d A e) A d) V e

((b A d A e A a) V b) A c = (b A d A e A d) V e

(((d A e A a) A b) V b) A c = ((b A d A d) A e) V e

b (b A c) = e.

Letting x = a, we obtain, c = (a V b) A c = (a A d) V e = (a A d) V b.

Therefore a A d <_ c. Since a A d < a, also aAd<_aAc = 0<b and c

(a A d) V b = b, hence c = b, a contradiction.

Assume that ((x A a) V- b) A c = (x V d) A e for all x e L. Letting

x = a V e, we obtain c = (((a V e) A a) V b) A c (a V b) A c =

((a V e) V d) A e = e or c = (a V b) A c = e. Letting x = c thus yields

b = ((c A a) V b) A c = (c V d) A e = (c V d) A c c, another contradiction.

Similarly, if L contains a sublattice {0, a, b, c, 1} isomorphic to

Figure 2 , where aAb = aAc = bAc = and aVb=aVc=bVc=I, then

the translation x->-((xAa)Vb)Ac has order 3. Indeed, assume that

((x a a) V b) A c = (x A d) V e for all x e L. Letting x = b A e, we obtain

(((b A e) A a) V b) A c = ((b A e) Ad) V e

(((a A e) A b) V b) A c = ((b A d) A e) V e

= b A c = e.

Letting x = a now yields

c = ((a A a) V b) A c = (a A d) V e = (a A d) V < a



Lch La Impossible, hence a contradiction.

Similarly, assume that ((x A a) V b) A c •=• (x V d) A e for all x e. L.

Letting x a a V e, we obtain

c = (((a V e) A a) V b) A c = (a V b) A c = ((a V e) V d) A e = e.

batting x = c, wo obtain

C(c A a )
'•' b) a c (c V d). V e (c V d) A c c

which is a contradiction.

In either case, L has a translation of order 3, which completes the

proof.

Theorem 4.6. If tr. dim L < 3 and if L is modular, then L is distributive.

Proof: This theorem was proven by P. A. Grillet in a paper published by

him (3, 13).

Theorem 4.7. If L is modular, then tr. dim L r 3.

Proof: If L is modular with tr. dim L = 3, then L is distributive by

Theorem 4.6, hence tr. dim < 2, a contradiction.

Theorem 4.8. A modular lattice L generated by 3 elements has trans lational

dimension of 2 or 4.

Proof: Since L has at least 3 elements, tr. dim L > 2 by Theorem 4.3.

Also L is the homorphic image of the free modular lattice L' on 3 generators

whose tr. dim is 4 (see Example 7.5); therefore, tr. dim L <_ 4 since if f is a

lattice hoaorphism of L' onto L, then tr. dim L < tr. dim L' = 4. Finally, tr,

L f 3 by Thei i 4.7.
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V. Adapting the Problem to the Computer

From what has been presented so far, it appears that one might benefit

from looking at the translational dimension and the cardinal number of T.

Some facts have been shown about the translational dimension of the lattice

L under homomorphic images and it is also known: (i) a lattice L is distribu-

tive if, and only if, the translational dimension L <_ 2 ; (ii) if the transla-

tional dimension L <_ 3 and if L is modular, then L is distributive; (iii) a

modular lattice L generated by three elements has a translational dimension of

two or four. The translational dimension was introduced principally to help

characterize finite simple lattices.

The development of a computer method by which the computation of the

translational dimension of a lattice can be carried out with the minimum of

time and work is the objective. The computation of the translational dimension

is not a difficult problem, but by straight-forward, hand methods it requires

a great amount of work and there is considerable chance for errors.

The problem of computing the translational dimension of Figure 1 is a

fairly simple, but long problem. To compute the translations of R^ alone

requires twenty-five separate calculations, for example:

A a b c I

GLB(x, 0)

GLB(x, a) a a
GLB(x, b) b b b

GLB(x, c) b c c

GL3(x, I) a b c I

This gives all the translations associated with Rj . The translations for S,

must be computed in a similar manner. After the translations for Rj and S^

have been computed, the different translations are grouped in a set T. The
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translations in R. and S^ arc computed next. In a five element lattice, such

as the one that is being considered, it requires 5 3 separate computations for

both R^ and S_ , respectively, since t e ^ is written as Xx = Xp a- = (X A a,Vb,

and x ' c St is written as Xx ' = Xa o. = (x V a)Ab, where X varies over all of
fi a b

the elements of tie lattice, while a and b remain fixed. After X has taken on

the value of eacli of the elements of the lattice, b is held fixed and a takes

on another value. Then X is allowed to vary over all the elements of the

lattice. The process is continued until a has taken on the value of each

element of the lattice, and then one allows b to vary and the process is con-

tinued in the same manner until b has taken on the value of each element of

the lattice.

Either after all the translations of R2 and S2 have been computed, or as

they are being computed, each new translation must be added to the set T.

This is quite a task in itself, as one can see, since, if we have an N element

lattice, the number of possible new translations which are contained in, say,

R
3

is N3 or 125 in the case being considered. The number of computations

required to compute the translations of R
3

is iSf* or, in the case being con-

sidered, is 625.

The computer will lend itself readily to this type of problem. The com-

puter can compute the translations and sort out all the different translations

much more quickly than the same job could be done by hand. The computer does

not make errors, which is another important factor.

Since one is now interested only in finite lattices, we know that our

computations are bounded. This is known because by Theorem 4.1, the transla-

tional dimension L <_ n if, and only if, T . (L) £ T (L) . This says that Tj (L)
,

T2 (L) , , T
,

, (L) can be computed and all of the new translations from T, (L)

,

n+i *
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T?(L) , , T (L) can be added Co the set T. If I , . (L) is the first set of
n n+l

translations which contributes no new translations, the translational dimen-

sion of L is equal to n.



Vi

VI . The Program

The program which is of interest here is one which, for a finite lattice,

will allow the computation of the translational dimension, will give a list of

the different translations, and the number of new translations that are picked

up at R and S for each value of n respectively, plus the total number of

different translations. In the process of computing the translational dimen-

tion, the solutions to the other problems are answered, so one can concentrate

on the problem of computing the translational dimension of the lattice.

One of the first steps which should be taken when attempting to program

a problem on the computer is to define the problem, which is as stated above.

The program which has been developed to handle this problem, will handle any

n-element lattice which has a translational dimension of seven or less, since

only lattices of a small translational dimension are of interest.

The first item which should be considered is how to define the relations

of GLB and LUB for each pair of elements of the lattice L. The elements of a

lattice can be represented by numbers, instead of non-numeric characters; this

allows the elements to be handled more readily by the computer. The GLB and

LU3 can be defined for each ordered pair (x,y) e LxL. These ordered pairs can

be read into the computer, so the computer will have a basis for its calcula-

tions. After these ordered pairs have been read into the computer, one can

set up the equations to compute each translation and, if the translation is

new, add it to the set T, which is the set of all the different translations

computed.

The program which follows will produce all the results that were set up

as objectives. Some results of the program are listed in Section VII.
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IMPLICIT INTEGER (/L-Z)

DIMENSION 1(625, 32) , GLB(32,32), LU3(32,32)
DIMENSION NS(32, 32)

1 FORMAT(3212)

2 FORMAT

(

OTRANSLATIONS
'
,3213)

3 FORMAT

(

M_ 1— l\ — ,10X,I10)
4 FORMAT

(

1AT END OF R1,N= ,110)

5 FORMAT( -AT END OF S1,N= ,110)

6 FORMAT

(

-AT END OF R2,N= ,110)

7 FORMAT

(

-AT END OF S2,N= ,110)

S FORMAT

(

-AT END OF R3,N= ,110)

9 FORMAT

<

-AT END OF S3,N= ,110)
10 FORMAT

(

-AT END OF R4,N= ,110)

11 FORMAT

<

-AT END OF S4,N= ,110)
12 FORMAT

(

-AT END OF R5,N= ,110)
13 FORMAT

(

-AT END OF S5,N= ',110)

14 FORMAT

(

-AT END OF R6,N= ,110)
15 FORMAT

(

'-AT END OF 56,N= ,110)
16 FORMAT

(

-AT END OF R7,N= ',110)

17 FORMAT

(

1 -AT END OF S7,N= ,110)
IS FORMAT

(

-AT END OF R8,N- ,110)

19 FORMAT

(

'-AT END OF So ,.\=2 ',110)

20 FORMAT

(

-AT END OF R9,N- ,110)
21 FORMAT

(

-AT END OF S9,N- ',110)

25 FORMAT

C

[5)

READ(1,25)(R)

READ(1,1)((GL3)A,B),B=1,R),A=1,R),((LUB(A,B),B=1,R,)A=1,R)
WRITE(3,2) ((GLB(A.B) ,B=1,R) ,A=1,R) , ((LUB(A.B) ,B=1,R) ,A=i,R)
DO 30 A=1,R
DO 30 B=1,R

30 NS(A,B)=GLB(A,B)
GO TO 500

31 DO 32 A=1,R
DO 32 B=1,R

32 NS(A,3)=LUB(A,B)
GO TO 510

40 DO 49 RR1=1,R1
DO 49 J=1,R
DO 45 B=1,R
m:'1=t(rri,b)

45 ns(1,b)=lub(mm,j)
KK=1
GO TO 530

49 CONTINUE
R2=N
WRITE(3,6)(R2)
Q=R1+1

50 DO 59 SS1=Q,S1
DO 59 J=1,R
DO 55 3=1,

R

MM=T(SS1,B)
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55 NS(1,B)-GLB(MM,J)
KK=2
GO TO 530

59 CONTINUE
S2=N
•;xITK(3,7)(S2)

IF(S2-S1) 999,999,60
60 Q-Sl+1
61 DO 69 RR2-Q.R2

Y)0 69 J=1,R
DO 65 13=1,

R

MM=»T(RR2,B)

65NS(1,B)=»GLB(MM,J)
KK=3
GO TO 530

69 CONTINUE
R3=N
WRITE (3, 8) (R3)

Q=R2+1
70 DO 79 SS2=Q,S2

DO 79 J»1,R
DO 75 3=1,

R

MM=T(SS2,B)
75 NS(1,B)-LUB(MM,J)

KK-4
GO TO 530

79 CONTINUE
S3=N
WRITE(3,9)(S3)
IF(S3-S2) 999,999,80

80 Q=S2+1
81 DO 89 RR3=Q,R3

DO 89 J=i,R
DO 35 B=1,R
MM-T(RR3,B)

85 NS(l,B)-LDB(MM,J)
KK=5
GO TO 530

39 CONTINUE
R4=N
WRITE(3,10)(R4)
Q=R3+1

90 DO 99 SS3=Q,S3
DO 99 J=1,R
DO 95 B=1,R
MM=T(SS3,3)

95 NS(1,B)-GLB(MM,J)
KK=6
CO TO 530

99 CONTINUE
S4=N
WRITE(3,11)(S4)



IF(S4-S3) 999,999,100
100 Q-S3+1
101 DO 109 RR4=Q,R4

DO 109 J=1,R
DO 105 B=1,R
MM-T(RR4,B)

105 NS(1,B)-GLB(MM,J)
KK-7
CO TO 530

109 CONTINUE
R5»N
WRITE(3,12)(R5)
Q=R4+1

110 DO 119 SS4=Q,S4
DO 119 J-l.R
DO 115 B-1,R
MM»T(SS4,B)

115 NS(1,B)=LUB(MM,J)
KK=8
GO TO 530

119 CONTINUE
S5=N
WRITE(3,13)(S5)
IF(S5-S4) 999,999,120

120 Q=S4 +1

121 DO 129 RR5=Q,R5
DO 129 J-1,R
DO 125 B=1,R
MM=»T(RR5,B)

125 NS(1,B-LUB(MM,J)
kk=9
GO TO 530

129 CONTINUE
R6-N
WRITE (3, 14) (R6)

Q=R5+1
130 DO 139 SS5=Q,S5

DO 139 J=1,R
DO 135 B=1,R
>21=T(SS5,3)

135 NS(1,B)=GLB(MM,J)
KK»10
GO TO 530

139 CONTINUE
S6=N
WRITE(3,15)(S6)
I7(S6=S4) 999,999,140

• Q=S5+1
141 DO 149 RR6=Q,R6

DO 149 J-1,R
DO 145 3=1,

R

. -T(RR6,B)

22
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145 NS(1,B)«GLB(MM,J)
KK-11
GO TO 530

149 CONTINUE
R7-N
WRITE(3,16)(R7)
Q=R6+1

150 UO 159 SS6=Q,S6
DO 159 J-l.R
DO 155 B-1,R
MM«T(SS6,B)

155 NS(1,B)-LUB(MM,J)
KK-12
GO TO 530

159 CONTINUE
S7=N
WRITE(3,17)(S7)
IF(S7-S6) 999,999,160

160 Q=S6+1
161 DO 169 RR7=Q,R7

DO 169 J=1,R
DO 165 B-l.R
>Ci=T(RR7,E)

165 NS(1,B)-LUB(MM,J)
KK=13
GO TO 530

169 CONTINUE
R8-N
WRITE (3, 18) (R8)
Q=R7-rl

170 DO 179 SS7=Q,S7
DO 179 J-1,R
DO 175 B=1,R
MM»T(SS7,B)

175 NS(l,B)«GLB(MM fJ)

KK=14
GO TO 530

179 CONTINUE
S8=N
WRITE (3, 17) (S8)

GO TO 999

500 N=0
DO 502 A-1,R
N=N+1
DO 502 B-l.R

502 T(N,B)=NS(A,B)
R1=N
WRITE(3,4)(R1)
GO TO 31

510 A=l
512 W=0
513 W=W+1
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CO TO 516
515 A=A+1

W-l
516 B=0
517 B=B+1

IF(W-N) 519,519,523
519 IF(B-R) 520,520,515
520 IF(A-R) 521,521,526
521 IF(T(W,B)-NS(A,B)) 513,517,513
523 N=N+1

DO 525 B=1,R
525 T(N,3)=NS(A,B)

GO TO 512
526 S1=N

WRITE(3,5)(S1)
GO TO 40

530 W-0
531 W-W+l

IF (WON) 532,532,537
532 IF(T(W,32)-NS(1,32)) 531,533,531
533 3=0

534 B=B+1
535 IF(B-R) 536,536,539
536 IF(T(W

> 3)-NS(1,B)) 531,534,531
537 N=N+1

DO 538 3=1,

R

538 T(N,B)=NS(1,3)
539 GO TO (49, 59, 69, 79, 89, 99, 109, 110, 129, 139, 149, 159, 169, 179, KK
999 WRITE(3,2)((T(W,3),3=1,R),W=1,N)

WRITE(3,3)(X)
STOP
EXD
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VII. Some Specific Problems

Some results which have been produced by the computer program will be

presented at this time.

Example 7.1. The non-modular five-element lattice of Figure 1 has

Card T = IS and a translational dimension of L = 3.

Example 7.2. The modular, non-distributive five-element lattice of

Figure 2 has Cart T 42 and a translational dimension of L = 4.

Example 7.3. The modular, non-distributive lattice of Figure 3, which

is generated by three elements, has a Card T = 62 and a translational dimen-

sion of L = 4.

Fig. 3 Fig. 4

Example 7.4. The non-modular lattice of Figure 5 has a Card T = 83 and

a translational dimension of L = 7.

Example 7.5. The free modular lattice with three generators of Figure

& has a Card I = 445 and a translational dimension of L = 4.
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Example 7.6. The modular, non-distributive lattice with four generators

of Figure 4 has a Card T = 136 and a translational dimension of L => 6.
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PLATE I

Fig. 5

Fig. 6
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Some introductory statements are made about partially ordered sets and

the ordering relations which they possess. From the definition of a partially

ordered set, the idea of a lattice is introduced.

The concepts of distributive and modular lattices are discussed. These

are the two types of lattices which are of interest in the main portion of the

paper. Some of the properties of the two operations in the distributive and

modular lattices are described in the same section.

The paper then deals with the idea of translations in a lattice L. The

translations of a lattice L are studied to find the smallest n such that any

translation of L is the product of at most n elementary translations. The

number n is called the trans lational dimension of L.

Some theorems are presented regarding the connection of the translational

dimension of a lattice and whether the lattice is distributive or modular.

The main portion of the paper is dedicated to the adaptation of the pro-

blem of finding the translational dimension of a lattice to the computer. The

program which has been developed will calculate the translational dimension of

lattices with a small number of elements, say twenty-five, and a translation

dimension of seven or less. A very definite time factor is involved if the

lattice has more elements than twenty-five.

Included in the paper are several lattices which have been processed by

the program. The translational dimension and the number of translations which

are computed from each different lattice are noted. • These results agree with

those results computed by hand methods for the same lattices by Dr. Grillet,

except that a few translations were picked up which had been omitted in the

hand computations.


