COMPARATIVE MICROSCOFIC STUDY OF THE PROVENTRICULUS AND DUDDENUM OF THE MOURNING DOVE, RED-HEADVD WOODPECKER AND MEADOWLARK

by

LEON GEORGE LUNGSTROM

B. S., Bethany College, 1940

A THESIS

submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Department of Zoology

KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE

		cu- en ¹		
	L	D 361	28	
TABLE OF CONTENTS		с.		
			1	page
INTRODUCTION				1
MATERIALS AND METHODS				1
DISCUSSION AND PRESENTATION OF DATA				3
Histology of Proventriculus				3
Histology of Duodenum				10
Diets of Birds Studied				14
Tabulated Information and Statistical Treatment of Data				15
Method of Statistical Analysis				15
Discussion of Statistical Interpre	tat	:101	n.,	16
SUMMARY				33
ACKN OW LEDGMENT				35
LITERATURE CITED				36
PLATES				38

INTRODUCTION

In making the study of the proventriculus and duodenum of the mourning dove, red-headed woodpecker, and meadowlark,¹ the approach was a comparative microscopic study in an attempt to correlate data obtained with the feeding habits. These three species were chosen because of their comparative similarity in size and because of the known diversity of the feeding habits.

The literature pertaining to the histology of the digestive tract of birds is widely scattered and much is contributed by foreign authors. Standard texts on mammalian histology are rather difficult to use when making application to the histology of the digestive tracts of birds because of the differences in general structure and cell structure. The mammal has nothing comparable to the gizzard in organological or histological makeup. Certain types of cells found in the mammalian stomach have not been found in the proventriculus of the bird. The submucess, when present, is not necessarily identical with the submuces of the mammal. Certain parts may be missing, for example, no Brunner's glands were observed in the birds studied.

MATERIALS AND METEODS

" Freeze

In collecting the specimens upon whose tissues this study was based, all necessary equipment was carried in the field at all times so that specimens could be dissected and tissues fixed The technical names of these forms, as given by Chapman (1932) are: Zenaldura macroure (Linn.); Melanerpes crythrocephalus (Linn.), respectively.

immediately. Resemberg (1940) found that the ducdenal tube cut open and washed eroded in 10 minutes. Sections not cut open eroded in still shorter time. The tissues desired were removed and washed. Three sections within the central area of the proventriculus and one section between the bend of the ducdenal loop and gizzard were removed. Each section of tissue was then placed in the fixative as rapidly as possible to prevent disintegration. Sections from the proventriculus were found not to disintegrate as rapidly as sections from the ducdenum. Sections fixed within four minutes after shooting the specimen were satisfactory.

Piero-formal-acetic acid was used as the fixative. Following fixation the sections were washed in 70 percent alcohol. The tissues were transferred to paraffin by gradual changes in dioxan. The tissues were cut seven to eight microns thick and stained with Delafield's haematoxylin and ecsin.

Bouin's pioro-formal-acetic acid is an excellent fixative for tissues of the digestive tract of birds. It gives a delicate fixation and seldom gives poor results. Dioxan is soluble in water, alcohol and paraffin. It eliminates unnecessary steps, thereby saves time and prevents further hardening of the tissues. Tissues can be transferred from water to paraffin through dioxan. Delafield's haematoxylin is a good all around nuclear stain and works well with eosin, a cytoplasmic stain. These two stains work well for most of the general histological work; however, they can be supplemented by more specific stains if necessary.

In making a study of the sections a Zeiss microscope equipped with 16 mm, 8.5 mm, 4 mm apochromat and 2 mm apochromat objectives

was used. SO X, 10 X, and 7 X oculars were used interchangeably as the need required. Each ocular contained an ocular micrometer which was calibrated for taking measurements.

All highly magnified drawings were made by using the camera lucida. The entire cross sections of the digestive tract were drawn by using a projector which magnified the sections about 41 times.

Three birds of each species were used for the study. For each measurement five readings were taken from each slide (representing a series of sections from one bird), making a total of 15 measurements to the species.

All measurements were treated by analysis of variance which determined the significance by comparing the differences within birds and differences among individuals of a species with the differences between species.

DISCUSSION AND PRESENTATION OF DATA Histology of Proventriculus

The proventriculus or the fore-stomach in each of the three species of birds studied had the same general shape. It could be differentiated from the esophagus by its somewhat larger diameter. The proventriculus preceded the gissard and was marked from the latter by a slight constriction. The proventriculus, according to Bradley (1915), consists of the same layers as the esophagus. Elias (1945) found that by using selective stains with the method of Van Gieson it was possible to show that Cazin's determination of the layers was correct.

In general the proventriculus was composed of four major layers, the mucosa, submucosa, muscularis and serosa. The mucosa (Figs. 1-6, A; Figs. 22-27, A, B) was composed of the epithelial covering which lines the folds or wrinkles in the lumen, the tunica propria and the muscularis mucosa. The submucosa (Figs. 1-6, B, C; Figs 7-9, B) included the parietal glands, the connective tissue surrounding the glands and the connective tissue or membrane separating the submucosa from the tunica muscularis. The tunica muscularis (Figs. 1-6, D, E; Figs 7-9, C) was composed of an inner longitudinal layer, a thick circular layer and an outer longitudinal layer. The serosa was composed of connective tissue, blood vessels, nerve fibers and epithelium.

The lumen of the proventriculus was very narrow. In cross sections of the stomachs of the birds studied the concentrically circular folds surrounding the opening of each parietal gland appeared as finger-like projections in the lumen (Figs. 1-6, A). These projections were more prominent in the woodpecker and meadowlark than in the dove. The folds were tallest in the meadowlark. Kaupp (1921) states that the proventriculus produces the digestive juices. Elias (1945) found that the wall of the lumen contained two layers of glands.

The mucosa as mentioned by Elias (1945) consists of the epithelium and tunica propria. The tunica propria (Figs. 22, 24, 26, B) extends up into the center of the folds of the mucosa and supports the layer of simple columnar epithelium. The high folds are called plicae proventriculi by Elias (1945). Some authors describe the deep, narrow depressions between the folds as having simple, short, tubular glands. Batt (1925) found no well marked

erypts as is the case in the mammalian stomach. Elias describes the plicae proventriculi as surrounding the opening of the parietal gland in a circular fashion. He disagrees with some previous authors by saying that, with the exception of a few short tubules to be found at the bottom of the furrows in the pigeon, the depressions between the folds are furrows, clefts or wrinkles but not tubules. The furrows between the plicae proventriculi are described by Elias (1945) as glandular in function. He terms these furrows sulci proventriculi. It was observed in acctions from each of the three species that tubules composed of a single layer of epithelium were cut obliquely, thus showing them in an oblong form, isolated in the tunica propris.

The cells at the ridge of the plicae proventriculi of all three species studied were tall and became lower and more cuboidal in the sulei proventriculi (cf. Figs. 24 and 25). The nuclei appeared to stain more intensely in the furrows than at the tips of the plicae. The stain appeared to scatter throughout the cytoplasm in the region of the sulci proventriculi. The nuclei in the bottom of the sulci were less clear cut than those found closer to the lumen.

Elias (1945) states that the secretory material produced by the epithelial cells of the ridges and furrows can be stained with thionin and Delafield's haematoxylin. Thionin is said to stain musin but also stains other substances. He describes the secretion as being composed possibly of granules and not droplets. In the species studied the secretion in the lumen took the cytoplasmic stain readily while the nuclear stain was almost entirely absent. The secretion appeared to be faintly streaked and granular. It

conformed to the general outline of the lumen.

The submuces extended from the inner longitudinal layer of the tunica muscularis to the muscularis in the tunica propria. According to Batt (1925), the submuces is a narrow zone of white fibrous connective tissue where fibere run longitudinally. Elias (1945) states that the submuces consists of loose fibrous connective tissue and contains the parietal glands.

Kaupp (1921) found that the gastric follicles are simple in the majority of birds, having neither internal cells, dilated fundus nor constricted neck (Fig. 1-6). From the distal extremity the opening of the follicle proceeded with a uniform diameter until the orifice of the lumen was reached. This form he found in scophagous and convivorous birds. He observed that the gastric glands were variously arranged among birds, being broad compact belts in Falconiformes, a continuous sone eround the proventriculus in perching birds (Fasseriformes) in general, scoular and of simple structure in pigeons, each gland of pyramidal form with the apex towards the gizzard in the woodpecker.

In each of the three species studied the individual follicular (parietal) glands drained toward the center of the lobule and then directly to the surface of the lumen (Fig. 1, E).

The cells of the parietal glands were attached to the septum (Fig. 13-21). The cells were generally hemispherical in shape and frequently the cell-axis was directed toward the lumen. The distal end of each cell was free from its neighbor and quite frequently in all three species the separation extended almost to the basement membrane. Batt (1925) and Elias (1045) found these

cells to be of one type and by staining reactions indicated the resemblance of the cells to the parietal cells of mammalian stomachs.

The nuclei of the parietal gland cells stained deeply with the nuclear stains (Fig. 7-10 and 15-21). The chromatin material was most prominent around the periphery of the nucleus with one or two irregularly shaped masses of chromatin material in or near the center. The nuclei of the parietal gland cells of the three species studied were very much alike in morphology and general appearance. The cytoplasm of the cell took the cytoplasmic stain readily, thereby forming a sharp contrast to the nucleus. It stained uniformly throughout with the exception of being faintly granular.

The ducts of the parietal glands were lined with cells which had a clear cytoplasm. These cells merged gradually with the gland cells.

The stroma or septum between the glands and surrounding the gland lobule showed connective tissue cells and blood vessels (Fig. 24, B). According to Batt (1925) the septum is merely a basement membrane with a few connective tissue cells, blood vessels, and nerve fibers. It was observed in the three species studied that the connective tissue of the septum extended around the lobule and formed a thin membrane which separated the tunica muscularis from the submucesa (Figs. 7-9 B, C). Occasionally it extended through the first layer of the tunica muscularis, the inner longitudinal layer. It extended up to the lumen side of the parietal glands and merged with the muscularis mucesa.

Elias (1945) does not agree with several previous authors as

to the arrangement of the muscular layer. He states that the muscularis consists of a thin external longitudinal layer, thick middle circular layer, and an inner longitudinal layer, and that the muscularis mucosa is on the lumen side of the parietal glands. In the three species studied the muscularis mucosa could be followed only with difficulty. The muscle nuclei indicated the location of the muscle elements. The musculature conformed to the general cutline of the lumen side of the parietal glands.

The layers of the tunica muscularis could be clearly differentiated one from the other in all three species studied. The inner longitudinal layer, the innermost layer of the muscularis. was bordered on the lumen side by a membrane separating it from the parietal glands. It was bordered on the outside by the circular layer of the muscularis (Figs. 1-6, D, E). Inside it conformed quite closely with the lower border of the glandular follicles. Therefore, its thickness was much greater under the septa separating the follicles of the parietal glands than midway under the follicle. The muscle cells and nuclei of this layer appeared to run parallel to the direction of the intestine, suggesting a longitudinal arrangement of the fibers. The circular muscle layer or middle layer was the thickest of the three layers. Its cells and nuclei encircled the lumen. The outer longitudinal layer was thin and irregular, suggesting isolated bundles at times. It was interposed with nerve fibers and blood vessels, and was covered on the outside by the serosa. The muscular layers of the proventriculus and duodenum of the dove were thinner than in these of the other two birds (cf. Fig. 1 with 3 and 5).

The boundaries of the muscle cells were difficult, and at most sites impossible, to distinguish. The nuclei were clearly outlined (Figs. 10-12, C, I). The nuclei of the muscle cells of the three species could not be distinguished one from the other. In cross sections the nuclei of the circular layer appeared long and wavy. Occasionally they were shorter and broader. The nuclear membrane was clearly marked. Scattered throughout the nucleus were small patches of chromatic material. In the inner and outer longitudinal muscles the nuclei frequently were cut in cross section, and appeared oval in form. No attempt was made to make a comparison of the seroma.

Desselberger (1931) reported that birds living on flowers and berries have a digestive tract well adapted for that kind of food. Flower peckers (Dicasidae) from New Guinea and Celebes show two steps in specialization. <u>Pristorhampnus</u> and <u>Urocharis</u> have short and wide intestines with a lumen densely covered by wide villi. In <u>Dicaeum</u> and <u>Acmonorhynchus</u> the muscular stomach is taken out of the direct digestive tract and transferred into an appendix. Berries go directly from the glandular stomach into the duodenum, while insects go into the muscular stomach.

Browne (1922) reported that granivorous birds have a small, straight proventriculus which appears as a dilation of the esophagus. In carnivorous birds the proventriculus is but faintly distinguished from the giszard. In certain Galliformes, according to Kaupp (1921), it is larger in diameter than the esophagus and smaller than the giszard. In cong birds (Passeres), it forms almost the entire stomach, the giszard being ministure, while in "Alcedo perching birds" opposite proportions prevail. In birds

with wide esophagi only the greater vascularity and the difference of lining membrane and stratum of glands which open on the inner surface identify the proventriculus. Desselberger (1932) quite definitely states that birds with similar food habits show great similarity in the structure of the intestinal tract.

Histology of Duodenum

The duodenum was a U-shaped portion of the small intestine, following the gizzard and embracing the pancreas. The mucosa, the innermost layer, included the epithelium and the tunica propria (Figs. 28-33, B, C). Whether the muscular tissue in its tunica proprise corresponds to the muscular tissue in the tunica propria of the proventriculi was not determined.

The presence of a submucesa was uncertain. Resenberg (1941) stated that in general a submucesa is not present but that a submucesa is indicated in the heavy folds. Eatt (1925) described the submucesa as a narrow zone of dense white fibreus tissue. It is altogether possible that remnants of a submucesa may be present in the birds studied although none was located in this work.

The muscularis included an inner longitudinal (muscularis mucosa), middle circular, and an outer longitudinal muscle layer (Figs. 34-36, F). The circular muscle was much thicker than the other two muscular layers. The serosa, the fourth layer, erclosed and covered the intestine.

The epithelium was thrown into numerous long folds by the underlying tunica propria. These folds may appear rather wide if out at an angle rather than in cross section (Fig. 34, D).

Rosenberg (1941) found duodenal columnar cells of three types, the chief cells, goblet cells, and basal granular cells. In the birds studied the chief cells (Figs. 28-35, B) were most numerous. The goblet cells (Figs. 29, 32, unlabeled) were fairly numerous but no basal granular cells were observed.

The chief cells (absorptive cells) were found on the villi and extended into the crypts of Lieberkühn. They were simple and columnar in shape, being tallest at the tip of the villus and shortest in the crypt of Lieberkühn (Figs. 28, 31). The nuclei were eval to nearly ameboid in shape with irregularly scattered chromatin. Resenberg (1941) illustrated in most nuclei two clearsut nucleoli, which were only infrequently observed in the dove, woodpecker and meadowlark. The cytoplasm was definitely acidophilie with basephilic granules. These granules increased in number and in density toward the fundus of the crypts. The chief cells resembled closely the epithelial cells of the proventriculi.

Goblet cells were found throughout the epithelial covering. The nuclei were similar to those of the chief cells but are considerably smaller. The nuclei (Fig. 31, unlabeled) lay closer to the cell base than did the nuclei of the chief cells. Frequently the goblet cells could be located by the nuclei alone (Fig. 33). The nuclei stained more deeply than did the nuclei of the chief cells.

Rosenberg (1941), quoting Tang, while discussing basal granular cells and Faneth cells, states that when one is present in large numbers the other is ebsent. The granules of the Faneth cells are soluble in other alcohol or dilute acids. Therefore, by the technic used for this study the Paneth cells, if present, could not be identified.

The cuticle covering the spithelial cells was interrupted by the opening of the goblet cells (Fig. 30). The thickness of the cuticle of the three species studied was not carefully compared. However, the cuticle in the meadowlark was somewhat thinner than that found in the other two species studied (Figs. 28, 29, and 30).

The tunica propria formed the core or support for the epithelial covering (Figs. 28-30, C) and extended down to the inner longitudinal muscle layer which is called the muscularis mucosae. It contained many lymphatic cells, and a number of muscle fibere (Fig. 32, C).

Macklin and Macklin (1928) mentioned that certain histological practices cause the tunica propria to shrink away from the epithelium and that certain reagents as Eanvier's alcohol and dilute acetic acid readily dissolve the cell cement.

Whether the muscle cells of the tunica propria are a continuation of the muscularis muscoses or inner longitudinal muscle was not determined.

In the tunica propria of the turkey Resemberg (1941) found fibroblasts with strands of white collagenous connective tissue, lymphocytes of various types, plasma cells and two types of eosinophiles. Ho comparison was made of the tunica propria of the duodenum among the species studied.

The crypts of Lieberkühn (Figs. 34-36, E) were situated at the base of the villi. The stratum of crypts in the meadowlark

was much thicker than those of the dove and woodpecker (Figs. 34, 35, and 36). The crypts in the meadowlark were stratified, whereas in the dove and woodpecker they were generally single and sometimes isolated. Resemberg (1941) states that the goblet cells are more numerous in the crypt than at the villus tip. Batt (1925) found the crypts shorter and more coiled in fowls than in mammals.

Several authors speak of the muscular layer as being composed of an inner longitudinal layer called muscularis muccase, a middle layer called the circular layer and an outer longitudinal layer. Recemberg (1941) states that the circular muscle in the turkey was composed of a wide outer layer and a thin inner accessory layer. The inner longitudinal muscle in each of the three species studied was very narrow, thickest in the woodpecker and thinnest in the dove, and formed a sheath around the crypts of Lieberkühn. The circular muscle was much thicker than the other two layers. It encircled the inner longitudinal layer, and appeared wavy. The outer longitudinal muscle layer was similar in appearance to the inner longitudinal muscle layer. The circular muscle was thickest in the meadowlark and thinnest in the dove. The outer longitudinal layer was thickest in the woodpecker and thinnest in the dove.

The cells of the muscle elements were spindle shaped and their nuclei, as in the muscle cells of the proventriculus, were clearly outlined. Among the species studied the nuclei appeared to be identical in shape and form. The cell, exclusive of the nucleus, stained intensely with the cytoplasmic stain. The muscle tissue formed a wavy pattern. Electic fibers accompanied

the muscle cells and were usually orientated in the same direction as the muscle fibers, among which they were found.

The seross and subseross encircled the intestine and as far as could be determined these layers were identical in the species studied.

Diets of Birds Studied

According to Forbush and May (1939), animal matter constitutes one-third of the food of the red-headed woodpecker, and vegetable matter constitutes two-thirds of its food. The animal diet consists largely of adult beetles, wasps, grasshoppers, predaceous ground beetles and tiger beetles. The vegetable food consists largely of small fruit and berries (Beal 1807, 1942). In addition to the food already mentioned, Bent (1939) adds ants, bugs, crickets, moths, caterpillars, spiders, myriopods, corn, dogwood, huckleberries, strawberries, respherries, mulberries, elderberries, wild black cherries, choke cherries, cultivated cherries, wild grapes, apples, pears, various seeds, acorns and beechnuts to the diet of the red-headed woodpecker.

The food of the meadowlark consists mostly of insects which constitute 74 percent of its diet (Deal, McAtee, and Kalmback, 1941), (Beal, 1942). Vegetable matter makes up 26 percent of its diet. Beetles, bugs, grasshoppers, a few flies, wasps, spiders, and myriopeds are also eaten. Meadowlarks go to great effort to obtain insects even under adverse conditions. Grasshoppers and crickets constitute 27 percent of its yearly diet. Beetles are next in importance and constitute 16 percent of the annual food

of the meadowlark.

Of the vegetable food fruit constitutes two percent of the meadowlark's diet. Corn, wheat and oats make up nine percent of its diet and are taken mostly during winter. Common weed seeds taken are ragweed, barngrass, smartweed, sorrel, mustard, armaranth and gramwell.

Doves live largely on a grain diet. Insects are apparently not a part of the dove's diet (Jennings, 1941). Their diet consists of 99 percent vegetable matter and less than one percent animal food (Bent, 1952). Wheat, oats, rye, corn, barley and buckwheat constitute 32 percent of the total food. Wheat is the favorite. Weed seeds are eaten at all seasons of the year.

Tabulated Information and Statistical Treatment of Data

Nethod of Statistical Analysis. In all analyses the estimate of population variance (e^2) obtained from the variability among birds of the same species was used as the error variance in the F test.

P is the probability that F would be at least as large as that F observed if there were no differences among the species in regard to the feature which was measured. It is customary to consider the observed differences among the species means as being statistically significant if P is .05 or smaller. If P is greater than .05 this does not mean that the species are not different in the features measured; it only indicates that in view of the variability observed among birds of the same species, the observed differences among species reasonably could be attributed to sampling. If a larger number of birds of each species had been used it is possible that the P would have been smaller in certain instances.

The results obtained are put in chart form with the P indicated together with a statement indicating significance of the differences obtained.

<u>Discussion of Statistical Interpretation</u>. The ends in view for making measurements of histological aspects of the proventrisuli and ducdeni of the dove, meadowlark and red-headed woodpecker and treating them statistically were:

- To ascertain if the food habits are paralleled by histological differences.
- (2) If mean measurements suggest differences in food habits are paralleled by histological variation, then;
- (3) To treat data statistically to note if species differences are significant.

If the analysis of variance proves significant it would appear that food habits are paralleled by a certain histological picture.

Though analysis of variance demonstrated significant differences in:

- Width of nuclei of the chief cells of the sulci proventriculi
- (2) Length of nuclei of parietal gland cells
- (3) Height of plicae proventriculi and thickness of tunica propria
- (4) Measurements of thickness of the inner longitudinal

EXPLANATION OF TABLE 1.

A study of the size of the chief cell nuclei in the proventriculi was made. Fifteen readings were recorded for each species studied. Readings were obtained at the tip of the plicae proventriculi and in the region of the sulei proventriculi. Table 1. Length and width of the nuclei of chief cells near the tip of plices proventriculi and in the region of the sulci proventriculi measured in microns.

"Birds in species" used as error variance

EXPLANATION OF TABLE 2.

On examining the parietal gland cell, it was found difficult to make a morphological differentiation between the three species studied. The cells and nuclei of the species were measured to determine the difference in size. Fifteen measurements were taken on each species within the central portion of the proventriculus. Five measurements were taken on each of three separate individuals within the same species.

	Pa	rie	Parietal		gland r	ont	nuclei			••	14	Parietal	tal	gland	and	d cells	10				
H	Dove	-	WOO	dp	Woodpecker		Mead	Tow	Meadowlark	8	Dove	0	s We	boo	bed	Woodpecker	44	Meadowlark	dow	lan	rk
5		.0	4.6		4.1		4.4	N	3.8	6.9		6.5	8			6.9		6.9	×	.9	0
4.		0	4.8		4.6		4.6	H	4.2	11.5		8.0	9			6.0		7.2			-
0.			5.1		4.1		5.0	H	3.3	10.9		8.0	0			10		7.4		6	- 00
5.3	x 3.4	-	4.8	×	4.3		5.3	H	4.5	7.7	N	6.9	10		H	7.8		6.9	M	.9	0
.6		5	5.5		5.2		4.4	н	3.2	9.2		9.2	8.0			8.0		9.8		5	02
5.3		63	4.8		3.9		4.6			9.2	×	8.0	10			8.0		9.2		.9	0
9.	50	-					4.6		4.6	9.2	H	8.6	11			9.2		7.4		.0	2
-4	N 3.	6	5.7	M	5.5		4.6	H	4.6	14.9	N	7.4	0			8.0		9.2	H	5.	02
1.	4	9					4.9			10.3	H	6.3	6			9.2		7.4		.9	0
F	4	Q					4.8			9.2	H	8.0	11.5		K	8.0		6.0		6.0	0
5.	-	4	5.7		4.6		4.6		4°2	10.9		8.0	00			7.4		8.6		8	0
5.	4	9	5.4		3.7		4.2		4.2	12.6		6.9	0			6.0		9.2		.9	2
9.	x 4.4	-	6.0	H	4.3		4.6	H	4.6	8.0	H	6.9	TT		K	6.9		7.7	×	.9	0.
5.5	4	0	5.5		4.8		4.6		3.4	8.0		9.2	10			8.6	-	1.5		.9	10
.0	50	2	5.7		4.6		4.6		4.4	9.8		6.9	13.2			0.0	-	1.5		ŝ	-
									Table	of	Means										
										Dove	60 (D)		Woodpecker	cke		: Meadowlark	dow	lar	•• 14		*4
ene		F I	of nuclei	61	c	iri.	parietal	and it	gland	5.1	e		5.3	10			4.	9	1		•04
width cell	dth of cells	I	Ieronu	H		10	parietal	80	grand	4.	02		4.	60			4.	H		•	14
eng	Length of parietal	f l	aria	ete	1 gland	put	Cells	138		9.9	0		9.8	0 0			8.4	4.5		•	.10

Tohla 9

EXPLANATION OF TABLE 3.

The gland lobules of the three species showed a morphological difference. The dove seemed to have much finer detail and more delicate structure than the other two species. The lobules were measured by using a low magnification. Table 5. Average height and width of the gland lobule of each of the three apecies studied. The measurements are recorded in microns.

	Height		8	Width	
Dove	: Woodpeaker :	Meadowlark	a Dove	: Woodpacker	: Meadowlark
12	1024 439	854 878	517 463	459	219
921 954 959	756 658 976	976 878	268	200 258 258	536 536 590
1268 1561	683 707 658	1244 1196 1075	585 341 195	317 195 341	780 634 561
88	634 239	905	707 685	268	565
95	561 878	1122 780	317 585	244 219	561 292
1244 976	561 1146 585	1517 414 1049	841 818 541	268 219 268	536 219 685
		Table	Table of Keans		
			: Dove :	Dove : Woodpecker : Met	Meadowlark : Pe
Helght Width o	of parietal	gland lobule	1081	700 289	964 .09 479 .06

w"Birds in species" used as error variance

EXPLANATION OF TABLE 4.

The height of the portion of the proventriculus between the parietal glands and its lumen showed considerable difference among the species studied. The region in the dove was much narrower than in the other two species. The measurements were made between the tip of the plicae proventriculi and the deepest part of the tunica propria. Table 4. Height of the proventriculus between the tip of the place proven-tricult and the depest part of the tunica propris. The messurements are re-corded in microns.

Woodpecker * Meado 512 512 51 512 512 55 512 512 55 512 512 55 512 512 55 512 512 55 512 539 55 530 541 46 541 465 46 530 541 46 543 541 46 465 465 46 414 53 45 454 45 45 455 45 45 456 54 53 456 54 53 456 54 53 456 54 53 456 54 53 456 54 53 456 54 53 456 56 54 456 56 54 45	Height		
512 536 488 535 536 53 531 546 548 548 531 546 531 548 533 548 468 468 468 468 468 468 468 4	64		
488 432 432 453 453 550 553 554 553 554 554 555 555 455 455 455		512 561	
459 06 341 46 341 46 350 56 350 56 465 56 465 46 465 46 465 46 465 46 465 46 465 46 465 46 465 46 466 33 464 33 460 1000 1000 1000 1000 1000 1000 1000 1		518	
341 46 46 350 56 56 341 46 46 350 46 46 468 414 45 456 45 44 456 45 43 456 45 53 456 45 53 456 53 54 456 54 53 456 54 54 456 54 54 54 55 54 456 54 54 55 54 54 55 54 54 55 54 54 55 54 54 55 54 54 55 54 54 55 54 55 56 54 55 56 54 56 56 54 56 56 56		561	
317 55 341 46 350 46 463 46 463 46 463 51 486 45 454 53 454 53 454 53 456 10 1000 1000 1000 1000 1000 1000 1000		463	
341 48 350 48 463 48 463 43 454 53 455 53 456 53 456 53 456 53 456 54 53 54 456 54 456 53 456 54 54 53 456 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54<		536	
465 48 488 48 414 53 854 53 439 439 53 439 6ens rable of Neens ; Dove ; Woodpecker :		488	
414 45 864 45 864 53 459 34 459 10eans 1 Dove : Woodpecker :		488	
854 53 439 34 Table of Neens : Dove : Woodpecker :		439	
Table of Means ; Dove ; Woodpecker ;		341 341	
: Dove : Woodpecker :	Table of	Means	
		* Woodpecker	k : P#
172 462	1 and		•003

EXPLANATION OF TABLE 5.

The size of the nuclei of the inner longitudinal and circular layer of the muscular coat of the proventriculus were measured and the average determined to see if the nuclear size of the muscle cells differed greatly in the species studied. Table 5. Longth and width of nuclei of the muscle cells of the innermost longi-tudinal layer widthe circular layer of the muscularie. The measurements are re-conved in miscrema.

	Nucle1	10 Ta		circular		muscle	10		-		Nuclei	_	Jo	Inner		long1 tudinal	tradi	Inal	muscle	
D	Dove :	Woodpeeker	bed		t Mee	ndo	Meadowlark	The	-	A	Duve	**		Woodpecker	ec's		*	pado	Meadowlark	
0.55					-			5	03			-	03			19.	CN			
17.8	X 2.5	19.5	N G	5.3 3	15.5			2.1	02	8.0	X 1.	1.6	03	2.1	H	1.4	03	2.5 ×	2.1	
10.4								2.0	03			-	C4			0.	03			
17.2								20	Cł			-	63			1.0	01			
17.2								L	63			4	43				03			
17.2	K 2.5						X	2.0	03	10	H H	10	60	10		5.0	2			
17.2								10.	03			2	00	5		2.00	03			
17.2	× 2.5		3	2.9			T N	1.7	-	1.7	X J	1.7	6.3	3.3	K CO	2.3	01	2.6 ×	1.9	
17.2								03	CV			10	6.3	-		10°5	03			
13.8		1 16.1			19.5			1.0	CS			5-	63	10		0.	03	14		
2.2	X 2.5			-				10	03			10	C/3	10		03	03			
20.7				0				5.0	03			-	C.S	-		5.0	03			
19.5	x 1.1	19.5	N	C 2.2	15.8		CV H	2.8	03	5	X 2	2.5	63	2.7	N	02.02	03	2.6 ×	2.1	
17.8	X 2.8			-				-	00			10	24	2.0		5° 3	Cũ.			
13.8				03				20	63			-	6.0	0.		0.0	03			
									Table		Jo I	Ne ans	9							
											-	Dove	0		pod	Woodpecker	-	head	Mandowlark	a pu
Length of	Length of n	r nuclei	1 of	of cir	circular muscle	La La	me	f circular muscle layer	layer	6		17.6	00		20	19.5		1	17.1	.58
nal nal	nal muscle		layer	layer	TO T	2 OFFET	2011	HOT	G. tu			2.4	-		Ca	8.8			0° 0	• 50
222	IT WIGCLG		layer	TOTOT	IO	T TOTAL		-TIMA TRUOT	7 2 100			1.9	0		68	2.0			2.1	.50

EXPLANATION OF TABLE 6.

To determine the relative thickness of the muscular layers the measurements were taken at scattered locations to get the best possible average. The inner longitudinal muscle layer extended up between the septum which separated the gland lobules. It was therefore very irregular in thickness. The muscles may have been in different stages of contraction, which may have an important bearing on the results obtained. Therefore, at best the measurements of the muscles were not too meaningful. Table 6. Thiskness of the inner longitudinal layer under the parietal giand lobule and under the septum between the gland lobules. The messure-monts are recorded in microms.

Dove z Wondpreter z Mendom/arkit z Mendom/arkit z Mendom/arkit z Mendom/arkit 25 62 62 50 57 55 <td< th=""><th></th><th>Below lobule</th><th></th><th>89</th><th>Under septum</th><th>ptum</th><th></th></td<>		Below lobule		89	Under septum	ptum	
50 57 125 55 55 55 57 56 55 55 57 24 55 55 57 25 55 55 57 26 57 57 117 27 57 57 117 26 57 57 117 57 57 57 117 58 57 57 117 58 57 57 117 58 57 57 117 58 57 57 117 58 57 57 55 58 57 52 55 58 57 52 55 58 57 55 55 58 57 55 55 58 57 55 55 58 57 55 55 58 56 56		Wondpecker		-			Meadowlark
45 55 55 55 57 24 55 55 57 47 24 55 55 57 57 24 55 57 117 50 40 57 57 117 117 57 57 57 117 117 56 57 57 117 55 40 47 57 117 55 58 57 57 55 55 58 57 52 55 55 58 57 52 55 55 58 57 52 55 55 58 57 52 55 55 58 57 52 55 55 58 57 55 55 55 58 57 56 55 55 58 57 56 55 55	25	82	50	57	12	13	120
35 55 55 50 35 35 35 30 35 35 35 36 47 57 117 120 47 57 117 120 47 57 57 117 55 47 57 117 55 47 57 117 55 47 57 35 40 47 65 65 22 32 32 32 23 32 32 32 24 32 32 32 25 32 32 32 26 56 56 56 27 32 32 32 26 57 32 32 27 32 32 32 28 56 56 56 27 32 32 32 <tr td=""> 32 32 <</tr>	25	62	45	55	3	4	105
26 46 47 215 35 89 89 213 67 110 120 47 67 111 120 40 47 67 117 37 55 47 67 40 47 65 65 83 42 52 52 84 52 52 52 84 53 52 52 84 53 52 52 84 52 52 52 84 53 52 52 84 53 52 52 84 53 52 52 84 55 52 52 84 55 52 52 84 56 56 55 84 55 56 56 84 55 56 56 84 56 56	22	45	35	52	ŝ	0	64
10 30 40 30 40 27 27 111 120 40 57 57 111 50 57 51 120 40 47 67 117 50 47 67 65 40 47 65 65 28 37 52 52 28 57 52 52 29 52 52 52 29 52 52 52 29 52 52 52 210-10 0f Heans 1 1 Dove 1 100d(peeldent 1 100d(peeldent 1 20+11 50+2 54+5 50+2 55+2	83 8	35	24	45	in c	20	89
E2 E5 E50 E50 47 57 117 120 40 57 50 117 55 57 50 117 55 57 50 117 55 57 50 65 40 47 65 65 52 52 52 55 27 52 55 55 28 77 52 55 29 52 55 55 28 52 52 55 29 52 52 55 7able of ileans 1 1 1 1 Dove i Voodpeelser i Voodpeelser i Noodperlarik i sood 56,5 56,5 asptum 56,6 56,6 56,6 56,6	Ra	88	40	00	D	8	3
47 67 120 87 50 57 117 87 50 57 117 85 47 50 35 40 47 65 65 82 52 55 55 84 32 32 32 84 32 32 32 94 40 45 65 84 32 32 32 94 40 4 40 1 <dore<td>10 or ieans 10 oddpecters : Noodpecters : Needowlark : 10.6.5 aeptum 50.2 64.5 56.6 56.8</dore<td>	50	62	33	85	16	0	135
40 57 117 55 57 50 117 55 57 50 35 40 47 67 65 40 47 65 65 82 52 52 52 84 52 52 52 84 52 52 52 84 52 52 52 84 52 52 52 84 52 52 52 10bute 50,0 42.6 50,0 85,0 64.6 110,0 50,0	37	55	63	67	13	0	133
37 50 50 47 117 55 47 61 65 40 47 65 65 22 42 65 65 24 52 52 55 24 52 52 55 24 52 55 55 27 52 55 55 28 52 52 55 29 52 52 55 7able of ileans 1 1 1 1 Dove i< Woodpeelser i Noodpeelser i Noodperlari i loadowlark i	35	52	40	22	11	5	125
56 47 85 40 47 67 40 47 65 22 42 65 24 32 32 25 32 32 7able of Means 100dpeeker : Meadowlark : 1 10ve : Woodpeeker : Meadowlark : asptum 50.2 84.5 50.5	27	52	37	20	11	2	100
40 47 67 40 45 65 52 52 65 87 37 52 84 52 52 85 52 52 84 52 52 7able of leans 1 1 1 Dove : Woodpeelser : Neadowlark : 10.65 asptum 50.2 54.6 30.65	25	47	55	1.2	0	uş.	72
40 45 65 87 87 85 65 87 87 87 55 84 52 52 52 7able of Heans 1 Dove : Woodpeekers : Headowlark : 1 1 Dove : Woodpeekers : Headowlark : 30,6 56,6 asptum 50,2 64,6 110,5	25	55	40	47	0	1	135
22 42 65 24 32 52 55 34 32 52 52 Table of Nears 100dpeckers : Needowlark : 100bule 56.8 10bule 26.6 42.6 36.8	22	36	40	45	9	-10	132
27 37 52 32 24 32 32 32 Table of Heans Table of Heans 10040000000000000000000000000000000000	550	55	53	42	9	5	132
24 32 32 Table of Means Table of Means 10000 1 Dove : Woodpeeker : Meadowlark : 10000 50.6 aeptum 50.6 84.6 110.5	17	22	27	37	5	03	125
Table of Heans I Dove : Woodpecker : Neadowlark : I Dove : 85.9 42.5 35.8 septum 50.2 84.5 110.5	36	3.8	34	32	10	03	112
1 Dove : Woodpecker : Meadowlark : 10bule 26.9 42.6 56.2 septum 50.2 84.6 110.5			Tab	Le of the	ns		
: Dove : Woodpeeker : Meadowlark : Jobule 26.9 42.6 56.8 septum 50.2 84.6 110.5							
lobule 25.6 42.6 56.2 septum 50.8 84.6 110.5				-	dpecker :	Madowlar	
	as urement as urement	s below lobule a under septum	0.00		42.5 84.5	36.2	•15 •045

EXPLANATION OF TABLE 7.

The circular muscle layer and the outer longitudinal layer were more uniform in thickness in all species than the inner longitudinal layer. The layers in the dove were not as thick as those of the other two species. Table 7. Thickness of the circular and outer longitudinal layers of the muscularia. The measurements are recorded in microns.

Dove : Woodpectar : Meadowhark : Dovo : Woodpectar : Meadowhark : Patha : Dovo : Dovo : Woodpectar : Meadowhark : Patha : Dovo : Dovo : Woodpectar : Meadowhark : Patha : Dovo : Dovo : Moodpectar : Meadowhark : Patha : Dovo : Dovo : Moodpectar : Meadowhark : Patha : Dovo : Dovo : Dovo : Dovo : Dovo : Moodpectar : Meadowhark : Patha : Dovo : Moodpectar : Meadowhark : Patha : Dovo : Dovodpectar : Meadowhark : Dovo : Dovo : Dovo : Dovo : Dovo : Dovo :	9	Ircul	Circular (middle)	10)	muscle		B	tor	Outer longitudinal	al muscle	
200 102 109-4 49.6 12.1 12.1 12.1 13.6	Dove	-	odpecker		Meadowlark		Dove		Woodpecker		ark
187 187 187 187 184.5 </td <td>85</td> <td></td> <td>260</td> <td></td> <td>162</td> <td></td> <td>19.4</td> <td></td> <td>48.6</td> <td>48.6</td> <td></td>	85		260		162		19.4		48.6	48.6	
167 112 94.0 92.5 12.0 150 70 94.5 92.5 12.0 95 125 94.5 84.5 12.0 96 125 24.5 84.5 12.0 96 125 9.7 84.5 12.0 96 125 9.7 55.4 12.1 97 92.7 55.4 12.1 97 9.7 55.4 12.1 97 9.7 55.4 12.1 98 9.7 19.4 54.0 32.1 160 1100 48.6 24.9 31.2 107 103 14.6 24.9 31.2 100 102 14.6 26.4 34.5 100 103 14.6 24.5 24.5 100 77 9.7 24.5 24.5 100 77 9.7 24.5 24.5 100 14.6 12.4 24.5<	8		187		191		19.4		24.3	48.6	
157 90 9.7 53.0 17.0 95 125 9.4 33.0 17.0 95 125 9.7 53.4 12.0 95 125 9.7 53.4 12.1 96 125 9.7 53.4 12.1 97 9.7 53.4 12.1 12.1 98 9.7 19.4 53.4 12.1 98 9.7 19.4 12.1 12.1 96 110 49.6 14.6 12.1 107 106 14.6 24.5 24.5 107 102 14.6 24.5 24.5 107 102 14.6 24.5 24.5 107 107 10.6 24.5 24.5 100 14.6 24.5 24.5 24.5 100 77 9.7 24.5 24.5 100 14.6 24.5 24.5 24.5 100 </td <td>20</td> <td></td> <td>167</td> <td></td> <td>152</td> <td></td> <td>34.0</td> <td></td> <td>92.5</td> <td>12.1</td> <td></td>	20		167		152		34.0		92.5	12.1	
160 76 24.5 45.7 14.6 87 125 24.5 45.7 14.6 87 125 24.5 54.5 15.1 87 125 24.5 54.5 15.1 88 125 9.7 54.5 15.1 92 9.7 55.4 12.1 92 19.4 54.6 12.1 160 110 48.6 14.6 12.1 100 105 14.6 21.9 3.7 100 105 14.6 21.9 3.7 100 105 14.6 21.9 3.4 100 105 14.6 21.9 24.5 24.5 100 105 14.6 24.5 24.5 24.5 100 100 10.6 10.7 24.5 24.5 100 10.7 10.7 10.7 10.7 24.5 24.5 100 10.7 10.7	55		167		06		9.7		38.9	17.0	
96 125 24.5 24.5 24.5 9.7 87 132 9.7 55.4 12.1 88 132 9.7 55.4 12.1 88 9.7 55.4 12.1 88 9.7 55.4 12.1 92 9.7 55.4 12.1 92 9.6 10.4 54.0 12.1 160 110 48.6 14.6 12.1 100 100 48.6 26.7 24.5 24.5 100 100 48.6 26.7 24.5 24.5 100 10.6 14.6 26.7 24.5 24.5 100 14.6 26.7 24.5 24.5 24.5 100 14.6 26.7 24.5 24.5 24.5 100 14.6 26.7 24.5 24.5 24.5 100 13.6 130.6 13.6 12.7 1 100	37		160		76		24.5		45.7	14.6	
87 122 9.7 55.4 12.1 88 120 9.7 19.4 12.1 167 110 49.6 14.6 12.1 167 110 49.6 24.5 12.1 107 106 14.6 24.5 21.9 107 106 14.6 24.5 24.5 107 105 14.6 24.5 24.5 107 105 14.6 24.5 24.5 107 107 9.7 24.5 24.5 108 14.6 24.5 24.5 24.5 108 14.6 24.5 24.5 24.5 108 14.6 24.5 24.5 24.5 108 14.6 24.5 24.5 24.5 108 14.6 24.5 24.5 24.5 109 109.6 109.6 112.7 1.5 109 100 100.6 112.7 1.5	201		QR		125		24.5		24.5	0.7	
32 120 9.7 24.3 12.4 75 92 9.4 13.4 12.1 167 110 48.6 24.4 12.1 167 110 48.6 24.4 24.4 107 105 14.6 24.5 24.5 107 105 14.6 24.5 24.5 100 10.6 10.4 24.5 24.5 100 78.6 0.7 24.5 24.5 100 10.6 10.4 24.5 24.5 100 10.6 10.4 24.5 24.5 100 10.6 10.6 12.1 24.5 100 10.6 10.6 12.1 24.5 100 10.6 10.6 12.1 24.5 100 10.6 10.6 12.1 24.5 100 10.6 10.6 12.1 24.5 100 10.7 10.0 12.7 24.5	80		87		122		9.7		53.4	12.1	
75 92 9.7 19.4 12.1 167 110 48.6 14.4 12.1 167 110 48.6 24.5 34.5 167 110 48.6 24.6 3.7 167 110 48.6 24.6 3.7 107 105 14.6 24.5 31.9 107 105 14.6 24.5 34.5 100 77 9.7 24.5 34.5 100 10.4 10.4 34.5 34.5 100 70.1 10.6 112.1 34.5 100 130.4 100.4 34.0 34.5	80		82		120		9.7		24.3	12.9	
02 02 10.4 54.0 12.1 167 110 48.6 14.6 12.1 167 110 48.6 14.6 12.1 107 105 14.6 21.9 21.9 107 105 14.6 21.9 21.9 107 105 14.6 21.9 21.9 107 105 14.6 24.5 24.5 100 14.6 24.5 24.5 24.5 7able 0f Means 7able 24.5 24.5 7able 0f Means 7able 15.000 10.4 1 100 130.0 112.7 1 1 100 34.0 25.6 10.7	60		75		92		9.7		19.4	12.1	
167 110 48.6 14.6 12.1 107 105 146.6 21.6 24.5 107 105 146.6 21.6 24.5 107 102 146.6 21.6 24.5 107 102 146.6 26.7 24.5 24.5 100 102 146.6 26.7 24.5 24.5 100 100.6 100.4 24.5 24.5 100 100.4 100.4 24.5 24.5 100 100.4 100.4 12.4 24.5 100 100.4 100.4 100.4 12.4 100 100.4 100.6 112.7 100.4 100 0.6 64.0 34.0 25.6 12.6	6		8		38		19.4		54.0	12.1	
160 110 48.6 21.6 2.7 107 105 14.6 26.7 21.6 107 105 14.6 26.7 21.6 107 105 14.6 26.7 21.6 107 105 14.6 26.7 21.6 107 105 14.6 24.5 24.5 26.7 24.5 24.5 24.5 26.6 20.0 10.0 10.7 26.0 27.0 24.5 24.5 26.0 26.1 10.7 24.5 26.0 10.00 4.00 12.7 26.0 24.0 25.6 24.6	48		167		110		48.6		14.6	12.1	
107 107 107 107 108 108 108 108 108 108 108 108	82		160		110		48.6		21.9	9.7	
107 102 14.6 10.4 24.5 24.5 100 77 9.7 24.5 24.5 24.5 Table of Means Table of Means 1000 test for the test for test f	75		107		105		14.6		26.7	21.9	
IOO 77 9.7 24.5 24.5 24.5 Table of Means Teble of Means 10000 clocker : Meadowlark : 10000 clocker : Meadowlark : 112.7 i Dove i Woodpecker : Meadowlark : 00 clocker : Meadowlark : 112.7 112.7 a of outer longitudinal 21.0 34.0 25.6	65		107		102		14.6		19.4	24.3	
Teble of Means 1 Dove : Woodpecker : Weadowlark : 1 Dove : Woodpecker : Weadowlark : 0 eitreular muscle layer 0 0.1 1 20.0 1 21.0 34.0 25.6	62		100		Lab		8.7		24.3	24.3	
: Dove a Woodpecker : Meadowlark : of eiteular muscle layer 70.1 130.9 112.7 layer 21.0 34.0 23.6					Table	10	Mona				
of elreular muscle layer 70.1 150.9 112.7 of outer longitudinal 21.0 34.0 25.6 Layer									-	Meadowlark	
of eltrenlar muscle layer 70.1 130.99 112.7 of outer longitudinal 21.0 34.0 23.6 Layer								- 1			ľ
ar outer Lordia turning 21.0 34.0 25.6	lokne			- mus	scle layer	2	0.1		120.9	112.7	•
	Torale T	e lay	or Janno	*Sha	TOITTON	64	0.13		34.0	23.6	03

EXPLANATION OF TABLE 8.

In measuring the size of the ducdenal villi the height was recorded in the first column of Table 8, width near base of villi in second column, width midway between crypts and villus tip in third column and width near villus tip in fourth column.

Bei	Height of	1111	a wid	width of villi	1111	8 W.3	width of villi midway	1111	211 8	width of tyilli	1111 d)
Dove	r Wood-	: Moadow	Dove	s Wood-e	Madow-s	s Dove	r Wood-		*Dove	Madow-sDove specker	: Meadow-
7.010	1148.4	1138.5	-	158.4	148.5	118.8	128.6	19.0	118.8		49.5
1049.4				69.3	0.99	0°66	148.5	79.8	0.66	0.99.0	50.4
8-026	1064.2			89.0	108.6	0.99	138.6	69.0	69.3		49.5
0.088	1188.0			60.1	79.2	69.1	118.8	59.4	79.2		89.1
AUU.L		1108.8	128.7	49.5	128.7	88.0	89.1	79.8	108.9		49.6
940.5		1039.5	138.6	257.4	188.1	0.06	158.6	108.9	59.4		
910.8	-	-	89.1	217.8	156.4	69.3	118.8	69.3	39.6	49.5	
8.006			108.9	227.7	118.8	89.1	168.5	49.6	49.5		
1158.5	1178.1		148.5	227.7	118.8	108.9	178.2	69.1	79.2		
039.5		980°1	0.98	415.8	108.9	79.2	158.6	89.1	69.1		79.2
1059.3		1138.5	128.7	166.1	178.2	0°66	227.7	108.9	89.1		79.2
029.6		1059.3	178.2	376.2	138.6	148.5	136.6	0-08	118.8		89.1
1118.7		1168.2	207.9	316.8	128.7	148.5	116.8	69.3	178.2		49.5
059.5		1128.6	207.9	206.9	158.4	148.6	128.7	0.66	178.2		69-3
1069.2	1514.7	1118.7	217.8	336.6	168.1	118.8	207.9	89.1	158.4	138.6	59.4
					Table o	of Means					
					••	Dove	: Woodpecker	cker :	Meado	Meadowlark :	Per
Height of Width of Width of	of villi of villi of villi of villi	11 1 near base 1 nidway	80			1017.1 149.2 107.6	158 22 14	\$38.6 222.4 146.5	of d	1067.9 136.8 78.5	08 24 02

EXPLANATION OF TABLE 9.

The nuclei of the chief cells were measured where found, both near the tip of the villi and in the crypts of Lieberkühn. The chief cells were predominate in the epithelial covering. Table 9. Length and width of the nuclei of the ohief cells at the tip of the willus and in the crypts of ideberkuku.

4	No. of Lot of Lo	1	144	he	ducdenal opithelium v	v111us	SI	11	tip		Td	ep1 the1		t In cr	crypts o			200	10110 12 2 D.O. B.T.T
	Dove :	1 Ilo	Toodpecker	00	ker		load	Ion	Meadowlark	a s	Dove	**	Woodpecker	ipe(1001	Madowlark	alw	rk
	X 4.1		.0		4.8				4.1	8.0		4.9	0	1.00	103	5.7			9
	X 4.5		0.	H	5.7	4		24	4.6	5.3		4.0	La	M	di	5.			8
6.9	3.4 K		5.0		5.8	-	.0		5.1	6.9	H	5.4	00		10	5.	14		10
4.8	x 4.5		8.0		5.9	4	4.6		3.9	7. T		3.5	9.8			6.		-	9
5.7	x 4.0		\$0	H	5.0	843	0.0	н	3.7	5.0	24	3.4	5	H	10		×		0
5.9	x 2.9		-	H	0.3	-	2.0	3x1	3.e	0.0	24	4.6		N		.0	7 X		4.8
5.7	X 5.1		200	K	5.2	19	5.6		4.4	5.8	H	4.0		34		5.	8		. 9
5.9	X 4.6		0.7		5.0	4.	4.8	14	5.7	5.7	10	3.5	7.5	-	4.4	5.7	N L		S
6.9	X 4.4		2.0		4.9	ud	2.02	H	5.2	0.0	H	4.4		XX		6.	K		-
5.4			-		4.0	63	2.2		4.4	6.0	H	4.6		H		6.	N N		0
6.0	X 4.6		6.		5.7	61.3	62 •	14	4.6	6.9	H	4.0		H	8.9	6.9			5.5
6.0	X 4.4		6.	H	4.6	-	2.0	14	4.6	5.3	×	5.0				6.			5
5.7	X 5.2		6.9		5.0		5.7		4.6	6.9		4.4	6.3			8.	N O		-
6.3			0.0		5.6		2.0	H	3.7	6.5		3.3				0			-
2.0			0.		4°8	w.r	2.4		4.4	6.4	K	5.0		N		.0			0
				1				e.	Table	1 JO	Keans	38							
										Dove	-	Woo	Woodpecker	COL	0.0	Moadowlark	ark	-	#d
Length	th of	nu	nucle1	41		Jo d		11	villus villus	6.0	-		7.0			10 41 10 61			10.
Leng		nuhin	nuclei	and "			50			G. 5			7.5			6.5			·00
Width Lie	dth of nuclei	nutin	lei		in crypt		Jo			4-3			4-6			4.7			.21

* "Birds in species" used as error variance

EXPLANATION OF TABLE 10.

The individual lobules or branches of the crypts of Lieberkuhn were measured for comparison of size. The branches in the meadowlark appeared to be arranged in several layers whereas the crypts of the dove and woodpecker were lobules or branches at the same level. Table 10. Size of the branches or jobules of the crypt of ideberkuhm. The height or thiotness of the jobules of the crypts is given in the second column and the number of hownise nor field is sizes it the birked column. The field covers a diameter of 369

5 1	1.1					1 1	1	1
Brjes p	Meadow-	14 10 10	16	18 22 28	16 16 16			
138							44	22 001 001
	間 OOC	1045-		42200	03 44 44 10 03			
lobules, Number of tobules per	Woodpecker: Meadowlark: Dove: Wood-	900	44	04000	410044		Keedowlark	80.0 77.2 257.5 15.7
lobules	dowlark	257.5 252.7 238.1	2189.5	218.7 218.7 218.7 228.4 262.4	291.6 247.8 218.7 247.8 252.7			85 0 M
JO	s liba						oker	00-00
of crypt	echer	72.9	- 8	53.4 58.8 38.8 1202.0 1202.0	68.68 688.6 688.6 688.6 68.6 6 6 8 6 8 6		Woodpecker	66.8 52.8 63.1 5.0
ore	ioodp	72 688	12.00	880226 880226	866 66 876 86	1 1	-	0004
noat	-					8	Dove	56.7 52.6 46.6 4.9
Thickness	Dove	72.9 48.6 38.8	43.7	43.7 43.7 38.8 45.7 45.7	30.8 40.6 55.5 34.0 55.5 54.0 54.0 54.0 54.0 54.0 55.5 55.5	Table of means	-	
						Tab		
pta	ark	48.2 58.4	40.6	z 88.9 z114.5 z101.6 z 91.4 z 88.9	x 73.6 x101.6 x114.5 x 78.7 x 78.7			
crypts	Ow J.			нинии	никин			
30	Madowlark	20.4	33.0	68.5 48.2 65.5 101.6	142.2 93.9 114.5 129.5 157.4			e. च
nles	Woodpecker :		45.7	50.81 50.81 45.7 45.1 50.81	75.6 1 60.9 58.4 1 68.5 1 68.5 1			bule fiel
1ob	clie							111
ale	dpe		N N N	N N N N N N	N N N N N N			due s p
vidu		91.4	101.6	53.5 50.8 78.7 55.8 109.2	65.8 63.5 68.5 73.6 40.1			f individual lobula individual lobula erypta f lobulas per field
individual lobules	-		13.1	63.5 55.5 48.2 58.4	45.7 48.2 48.2 48.2 48.2 48.2			
10	Dove			N N N N N N	ннини			the of
Size	å		75.6	50.8 50.8 50.8 45.7	41.4 71.1 45.1 58.1 45.1			Length of Width of 1 Height of Number of

EXPLANATION OF TABLE 11.

The muscles of the duodenal muscularis were arranged in three layers. These were recorded as the inner longitudinal layer (called muscularis muccase), circular layer and outer longitudinal layer of the muscularis. Table 11. Thickness of each of the muscular layers of the duodenum. All measurements are recorded in microns.

Inner	Inner longitudinal muscle			Circular muscle	sle	s Outer	r longitud	Outer longitudinal muscle
Dove	: Woodpecker: Madowlark	Kondowlark	: Dove	Dove skoodpeckers	Mandowlark	: Dove	; Nood pecke	Dove : Woodpecker: Meadowlark
9.7	36.0	7.8	55.8	86.5	92.3	19.4	14.5	58.8
14.6	12.6	6.4 23.2	50.B	79.2	116.6 B	14.0	1.1.1	16.0
14.6	11.1	0.0	24.5	6.99	135.1	14.5	28.1	17.0
6.3	19.4	18.5	47.1	87.4	135.1	11.1	26.7	21.8
14.6	15.1	10.6	102.0		102.0	16.5	58.8	24.3
17.4	12.1	13.6	121.5		102.0	14.0	29.1	24.3
10.6	S-AT	TV.D	101 8		1.95	10.01	20.1	2010
15.5	17.0	9.7	102.0	87.4	51.0	14.5	26.4	1. T.
30.6	0.7	14.6	70.4		In Lala	34.5	29.1	1.62
12.6	14.6	19.4	127.8	81.1	1. 17	14.5	29.1	34.0
10.6	14.6	7.5	72.9		87.4	24.3	41.7	38.8
10.6	24.3	19.4	59.53		80.9	18.4	48.6	23.2
12.1	9.7	14.6	64.6		68.0	13.1	36.4	50°4
				Table of He	Noana	-		
1				· Dotto ·	. actedation		Mandowlawk .	Pa
							- B	
Inner	Inner longitudinal muscle	muscle layer	8	11.8	14.5	12	12.6	.19
outer	Outer longitudinal muscle	muscle layer	8	16.5	29.2	24	19	.15
* "Bir	* "Birds in species" used		TTOP Ve	as error variance	-			

EXPLANATION OF TABLE 12.

The goblet cells were found throughout the small intestine. Ackert, Edgar and Frick (1958) found that the goblet cells increased in abundance with the age of the chicken. The ages of the birds studied could not be determined but plumage indicated all were adult birds. Table 12. Number of goblet cells per 20 counted in the ducdenum. In the columns to the left are the counts made near the tip of the villus and in the column to the right are the counts made of the goblet cells in the evypts of idention.

Gob	Goblet cells on villi	TITIA .	1 Goblet	Coplet Colls in orypts	or Precerkun
Dove :	: Woodpecker	: Meadowlark	a Dove	: Woodpecker :	Meadowlark
8001	C3 C3 C3 3	ର ୧୯ ୧୦ ୧୦	4098	93 (D 4) H	-40 CD CD K
-	0 80	6.00	010	94.	9-4
1919.094	ua 4º 02 62 63	00×405		00MMP	0 4 0 D 4
8888	-1 10 10 K	NG (51 10) (71	0440	10 M M QI	4480
0	04	2 Table	of Ne		0
			Dave : We	Woodpeaker : Neado	Meadowlark : Pe
Goblet cells villus tip	per	colls near	3.6	2.ª7	4.5 .25
of Lieberki	ihn .	and Alo ut stress os	3.5	64 °61	G+20

Obtained.
Variance
Jo
Analyses
10
pue
Means
Jo
Sumary
13.
Table

		Dovesti	odpecker	; Dove; Woodpecker; Meadowlark;	the Put	
Hear tip of plicae proventri-	(length	7.0	3.4 5.1	7.7	.13	
In sulci proventriculi	length	6.0	6.7	6.4	- 33	
At tip of villi duodenum	(width [length		4.6	5.5 5.5	-10-	significant significant
The Assessment of T fatheraltithes	width Teneth	4°0	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4 U	•01+	significant
in ordina or nearconner	width		4.6	4.7	-21	
Parlet	Parietal glands					
Size of nuclei of the cells	(length	5.1	5.3 4.6	4.6 4.1	40°	significant
Size of cells of the glands	length	0	8	8.4	10	
Size of gland lobules	height	14	700	984	80.	
	(width	421	289	479	•08	
Mueosa of proventriculus villi of duodenum	a of proventricul villi of ducdenum	foulus	and			
Height of pliese proventriculi and	L and	0446	460	400	200	4000 00 mm 8 0 000

Epithelial cell nuclei

6.3
-
.G.
13.
13.
15.
15.
13.
s 15.
0 15.
le 13.
10 15.
10 15.
ble 15.
ble 15.
tble 13.
able 15.
able 15.
Table 15.
Table 15.

		Doves	loodpecke	Dove: Woodpecker: Madowlark:	rkı P#	
Crypts of		Lieberkühn				1
Height of erypts Number of lobules per field Size of lobules	length	46.6 4.9 56.7 52.6	63.1 5.0 66.8 58.8 58.8	257.5 15.7 80.0 77.2	((+ 001 (* 001 >> 50 >> 52	significant significant
Thickness of muscle layers	SUB RUB	ole lay	rera			
of (below	lobule	25.9 50.2	42.5 84.5	36.2	•15 •045	significant
or guoden a) proventric luodenum		11.6 70.1 74.6	14.5 150.9 78.5	12.6	•19 •14 •41	
	-110	21.0	34.0	23.5	•29	
In Jaker TestimonarShor Jann		16.5	29.3	24.5	.15	
Nuclei of muscle cells	cells		of proventriculus	lus		
Circular layer (10 10 10 10 10 10 10 10 10 10 10 10 10 1	length width length width	17.6		14.51 20.02 20.02 20.02	• 28 • 50 • 50 • 50	
Goblet cells	cells	per 20				
Near tip of villi In crypts of Lieberkühn		8°6	C1 10	4.5 5.2	1.25	

23 . 25

* "Birds in species" used as error variance

muscle layer under the septum of the parietal gland lobules

- (5) Width of villi midway between base and tip
- (6) Length and width of nuclei at tip of villi
- (7) Height of crypts of Lieberkuhn
- (8) Number of crypts of Lieberkuhn per field,

these significant features are accompanied by a lack of significance in:

- Length and width of nuclei at tip of plicae proventriculi
- (2) Length of nuclei in sulci proventriculi
- (5) Width of nuclei of parietal gland cells
- (4) Length and width of parietal gland cells
- (5) Height and width of parietal gland lobules
- (6) Length and width of the nuclei of the circular and inner longitudinal muscle layers of proventriculi
- (7) Thickness of inner longitudinal muscle below lobule, thickness of circular muscle and thickness of outer longitudinal muscle of the proventriculus
- (6) Height of villi, width of villi near base, and width of villi near tip
- (9) Length and width of nuclei in crypts of Lieberkühn
- (10) Length and width of individual lobules of crypts of Lieberkühn
- (11) This mess of inner longitudinal, circular and outer longitudinal muscle layers of the duodenum
- (12) Count of goblet cells near villus tip and in crypts of Lieberkühn.

From the analyses it appeared that the results of the measurements of the muscles in both the proventriculus and duodenum and the result of the count of the goblet cells were very unsatisfactory as regards proof that food habits are paralleled by histological differences. In the muscles the lack of evidence by analysis for the differences obtained in the means probably can be partly explained by the fact that the muscles of the fixed tissues undoubtedly differed greatly in degree of contraction. However, it must be borne in mind that even though the differences in mean were not confirmed by analyses, this does not exclude the possibility of a significant difference among the species on the particular thing studied.

The differences in mean which could not be regarded as significant by analysis will not be considered. If one could consider that greater size and greater number, e.g. size of parietal cells, number of crypts of Lieberkuhn, were indicative of superior development, then the woodpecker had the best all around development. It showed the best development in five sets of measurements out of nine. The dove in no point of comparison ahowed the greatest development. The meadowlark was by far superior to the other two species in development of the crypts of Lieberkuhn. Evidently it was capable of secreting a much larger quantity of intestinal juice.

According to Wan and Wu (1955), Voight (1954), Wan and Lee (1951) and Riedel (1944) a vegetable diet supplemented by meat is better than a strict vegetarian diet as regards growth and development. Biester (1944) stated that in general animal proteins are considered to be superior to plant proteins in poultry feeding. He indicated that a ration should range from a 15 percent to a 17 percent level of high quality proteins. He further states that a combination of meat meal, fish meal and soybean meal is more efficient biologically than meal and fish meal as a protein supplement.

It seems, judging from experimental results of various authors, that a proper balance of animal diet and vegetable diet is desirable and appears to give the best results in growth and development. The woodpecker and meadowlark were omnivorous and the dove was granivorous. The woodpecker excelled in size of nuclei of surface epithelial cells and the meadowlark excelled in development of the crypts of Lieberkühn and height of mucces of proventriculus. The results indicated that the proventriculus and duodenum of the omnivorous birds, woodpecker and meadowlark, were more like each other than like the dove in histological features. The development as observed by a microscopical study indicated that it paralleled the food habits in the birds studied. However, whether one was the result of the other is not yet known.

SUMMARY

The proventriculus and duodenum of three species of birds, mourning dove, red-headed woodpecker and meadowlark, were studied microscopically to ascertain if the histological picture could be associated with the feeding habits.

Three birds of each species were collected for comparison, Adult birds were collected, essential tissues fixed in Bouin's

fixative, transferred to paraffin through dioxan and stained with Delafield's haematoxylin and ecsin.

Fifteen measurements were made upon each species to obtain each mean for comparison. The measurements taken were length and width of epithelial nuclei near tip of plicae proventriculi, in sulci proventriculi, at villus tip and in crypts of Lieberkuhn; length and width of parietal gland lobule, length and width of parietal gland cells and length and width of parietal gland cell nuclei; height of plicae proventriculi and tunica propria of proventriculus; height and width at base, midway and at tip of villi, height of crypts of Lieberkühn, number of crypts lobules per field, length and width of each lobule; thickness of inner longitudinal muscle layer of duodenum, its thickness under the gland lobule and gland septum in the proventriculus; thickness of circular and outer longitudinal muscle layers of both proventriculus and duodenum; length and width of nuclei of inner longitudinal and circular muscle layers of proventriculus; count of goblet cells in crypts of Lieberkuhn and at the villus tip.

Nine sets of measurements, shown significant by analysis, were used for comparison. The woodpocker with an animal diet of 35 percent showed the greatest development in most comparisons, the meadowlark with an insect diet of about 74 percent closely approached the woodpocker but exceeded both the woodpocker and dove by far in the development of the crypts of Lieberkühn. The dove, almost entirely granivorous, showed the least development. In this research the histological picture seemed to parallel the food habits, but does not prove that one was the result of the other.

AC EN OW LEDG MINT

Thanks are extended to Dr. A. L. Goodrich for his assistance during the study and in preparation of the thesis; to Dr. W. M. MeLeod and Dr. S. A. Edgar for valuable suggestions; to Dr. H. H. Laude, Dr. H. C. Fryer and Dr. A. N. Guhl for aid with the statistical analyses of the experimental data.

LITERATURE CITED

Ackert. J. E., Edgar, S. A., and Frick, L. P. Goblet cells and age resistance of animals to parasitism. Amer. Micros. Soc., Trans. 58(1):81-89. 1939. Batt, H. E. A study of the normal histology of the fowl. Ont. Vet. College Rpt. 1924. p. 21-51. 1925. Beal, F. E. L. Some common birds in their relation to agriculture. U. S. Dept. Agr. Farmers Bul. 54:40. 1898. Beal, F. E. L. Some common birds useful to the farmer. U. S. Dept. Int. Conserv. Bul. 18:28. 1942. Beal, F. E. L., McAtee, W. L., and Kalmback, E. R. Common birds of southeastern United States in relation to agriculture. U. S. Dept. Int. Conserv. Bul. 15:43. 1941. Beister, H. E., and Devries, Louis. Diseases of poultry. Ames, Ia. The Collegiate Press Inc. 1005 p. 1944. Bent, Arthur Cleveland. Life histories of North American gallinaceous birds. Smithan, Inst. U. S. Nat. Mus. Bul. 162:490. 1932. Bent. Arthur Cleveland. Life histories of North American woodpeckers. Smithan. Inst. U. S. Nat. Mus. Bul. 174:534. 1939. Bradley, O. C. The structure of the fowl. London. A & C Black Ltd. 153 p. 1915. Browne, T. G. Digestive system of fowl. Jour. Compar. Path. and Therap. 35:12-32. 1922. Chapman, Frank M. Handbook of birds of eastern North America. New York. D. Appleton. 581 p. 1932. Desselberger. H. Der Verdaungskanal der dieseiden nach Gestalt und Funktion. Jour. Ornith. 79(3):353-370. 1931. Desselberger. H. Ueber den Verdaungskanal nekarfressender Vogel. Jour. Ornith. 80(3):309-318. 1932.

Elias, Hans. Comparative histology of domestic animals. 3. Oesophagus and stomach of domesticated birds. Middlesex Vet. 4(5):1-6. 1945. Forbush, Edward Howe, and May, John Richard. Hatural history of the birds of eastern and central North America. Boston, Houghton Mifflin. 554 p. 1939. Jennings, Dolf. Food of twenty two mourning doves taken during the 1940 hunting season. Kans. Acad. Sci., Trans. 44:427-428. 1941. Kaupp, B. F. Alimentary canal of birds. Vet. Ned. 16:23-26. 1921. Macklin, C. C., and Macklin, M. T. The intestinal epithelium. In Special Cytology, by E. V. Cowdry. New York. Faul E. Hoeber. 1348 p. 1028. Riedel. Bernard B. Resistance of animals to parasitism as affected by a protein supplement of sorbean oil meal. Unpublished thesis. Kans. State Col. Agr. and Appl. Soi., Manhattan, Kansas. 38 p. 1944. Rosenberg, L. E. Post mortem auto digestion of the intestinal mucosa of the turkey. Stain Technol. 15:53-56. 1940. Rosenberg, L. E. Microanatomy of the duodenum of the turkey. Hilgardia. 13(11):625-654. 1941. Voight, J. M. Potensierung der Ausnutzung durch gamischte Nahrung. Pflugers. Arch. Ges. Physiol. 234(5):570-573. 1934. Wan, Shing, and Lee, Wei-Yung. Biological value of mixed protein in emnivorous and vegetarian diets. Chinese Jour, Physiol. 5(2):163-180. 1931. Wan, Shing, and Wu, Heien, Further observation on the growth and reproduction of vegetarian rats on omnivorous diet. Chinese Jour. Physiol. 9(2):119-124. 1935.

EXPLANATION OF PLATE I

Fig. 1, 2 Cross section of proventriculus of the mourning dove Fig. 5, 4 Cross section of proventriculus of the woodpecker Fig. 5, 6 Cross section of proventriculus of the meadowlark at different regions

- A. Mucosa
- B. Follicle of parietal glands
- C. Septum separating gland follicles
- D. Inner longitudinal muscle layer
- E. Circular muscle layer (outer longitudinal layer not drawn)
- I. Parietal gland folliels showing arrangement of glandular structure

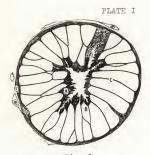


Fig. 1

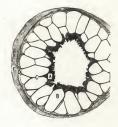


Fig. 2

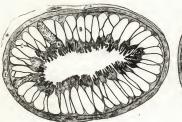


Fig. 3

Fig. 5

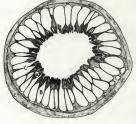


Fig. 4

Scale 2 mm

EXPLANATION OF PLATE II

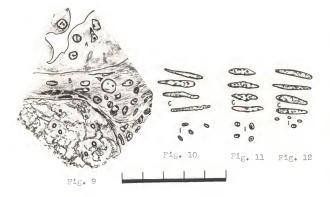

- Fig. 7 Portion near base of parietal gland follicle of the dove
- Fig. 8 Portion near base of the parietal gland follicle of the woodpecker
- Fig. 9 Fortion near base of the parietal gland follicle of the meadowlark
 - A. Parietal gland cells
 - B. Septum
 - C. Inner longitudinal muscle
 - D. Lymph nodule under septum
- Fig. 10 Muscle nuclei of dove proventriculus
- Fig. 11 Muscle nuclei of woodpecker proventriculus
- Fig. 12 Muscle nuclei of meadowlark proventriculus
 - C. Nuclei from circular muscle
 - I. Nuclei from inner longitudinal muscle

PLATE II

Fig. 7

EXPLANATION OF PLATE III

- Fig. 15, 14, 15 Three sections taken at different regions in proventriculus of dove showing the cells and septum of the parietal glands
- Fig. 16, 17, 18 Three sections taken at different regions in proventriculus of the woodpecker showing the cells and septum of the parietal glands
- Fig. 19, 20, 21 Three sections taken at different regions in the proventriculus of the meadowlark showing the cells and septum of the parietal glands
 - A. Parietal gland cell
 - B. Septum

Fig. 15

Fig. 13

Fig. 16

Fig. 17

Fig. 19

Fig. 21

Scale 50 microns

EXPLANATION OF PLATE IV

Fig.	22	Section	of	plicas	proventriculi	cf	dove
Fig.	23	Section	of	sulcus	proventriculi	of	dove
Fig.	24	Section	of	plicae	proventriculi	of	woodpecker
Fig.	25	Section	of	sulcus	proventriculi	of	woodpecker
Fig.	26	Section	of	plicae	proventriculi	of	meadowlark
Fig.	27	Section	of	sulcus	proventriculi	of	meadowlark

- A. Epithelial cells
- B. Tunica propria
- C. Cuticle

PLATE IV

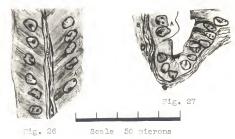
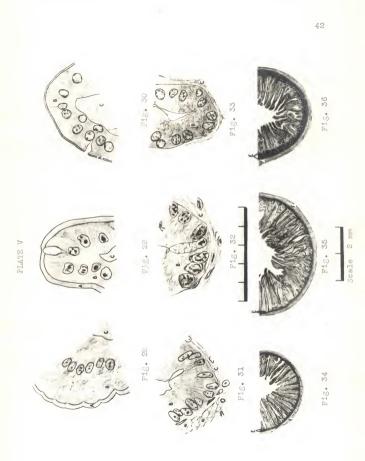

Fig. 23

Fig. 22

Fig. 25


Fig. 24

EXPLANATION OF PLATE V

Fig.	28	Section	near tip of	villus in dove ducdenum
Pig.	29	Section	near tip of	villus in woodpecker ducdenum
Fig.	30	Section	near tip of	villus in meadowlark duodenum
Fig.	31	Section	in crypt of	Lieberkühn in dove duodenum
Fig.	32	Section	in crypt of	Lieberkühn in woodpecker duodenum
Fig.	33	Section	in crypt of	Lieberkühn in meadowlark duodenum
Fig.	34	Section	of duodenum	of dove
Fig.	38	Section	of duodenum	of woodpecker
Fig.	36	Section	of duodenum	of Maadowlark

- A. Cuticle
- B. Epithelial cells
- C. Tunica propria
- D. Duodenal villi
- E. Crypts of Lieberkühn
- F. Tunica muscularis

Date Due	