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Abstract

With increasing product complexity and customization, Assemble-to-Order (ATO) sys-

tems have gained a lot of popularity in recent years. ATO systems have the advantage of

delivering customer orders at shorter leadtimes by manufacturing components to stock. How-

ever, for an on-time delivery of the final assembled product, the corresponding components

must be replenished and be available when needed for assembly in a timely yet cost-effective

manner.

This research investigates the production and subcontracting decisions in the multi-

product ATO systems. We also provide insights on the following main research questions:

(1) how to allocate shred in-house resource among various components? and (2) how does

randomness in the service times impact these decisions?

We consider a manufacturing system where the components can either be shared man-

ufactured in-house or can be procured by dedicated subcontractors, with each having finite

manufacturing capacity. In addition, the components have stochastic lead times, and com-

ponent availability is critical to satisfying the demand of the final product. Using, Monte

Carlo simulation approach, we encompass a wide range of possible scenarios and provide

insights on when to use shared resource for producing one component versus another, when

it is optimal to source components from outside vendors. Using numerical experiments, we

analyze different practical scenarios: (i) In-house manufacturer is cheaper, (ii) External sub-

contractor is cheaper, (iii) Using shifted exponential distribution (adding a constant delay

in exponential distribution). Further, we observe that if the service times are shifted expo-

nential distribution then the optimal policy tends to subcontract more often compared to

when the service times are exponential distribution.
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Chapter 1

Introduction

In the context of todays fast-paced and competitive manufacturing industry, the customer

order must be completed and delivered by a certain due date, if not before. The product

complexity is increasing and to counter these complexities and to deliver the products with

shorter lead times, a number of different manufacturing strategies have been implemented.

In literature the common manufacturing strategies are engineered-to-order (ETO), make-to-

order (MTO), make-to-stock (MTS) and assemble-to-order (ATO).

These different strategies are designed according to the nature of the product and the

nature of the demand. In ETO systems the customer demand is highly complicated and the

product is only being used for a specific environment. A manufacturer spends thousands of

hours on engineering and research, and produce a highly customized product. Examples of

these products are commercial HVAC (Heating, Ventilation, and Air Conditioning), defense

systems, oil drilling rigs and industrial cranes. These systems are common in engineering

industries.

While in MTO system, the customer places an order that may not require a lot of

engineering hours. The manufacturer produces it based on customer specification. Typically

MTO systems have shorter lead time compared to ETO system. Examples of these systems

include aerospace industries, steel industries, and automotive industries.

In MTS system, the manufacturer produces products based on demand forecast and
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retains them in inventory stocks. When the customer places an order, the manufacturer

simply satisfies the demand through inventory stock. The demands are either backordered

or lost if the stock is empty at the demand arrival. This type of manufacturing system adds

up holding costs, although they are countered with minimal opportunity losses. Examples

of products being manufactured are groceries, clothes, and other merchandise.

Taking into perspective the aforementioned strategies and products, ATO systems com-

bine the benefits of both MTO and MTS systems to provide shorter lead times for custom

products. In ATO systems, components or sub-assemblies are stored in inventories. Upon

demand arrival for the final assembled product, for quick delivery process, these components

are assembled together to produce the final product. The manufacturing of these compo-

nents take significant time and resources, so the inventory is stocked according to projected

demand. It is critical to have all components available at the time of arrival of customer

order to ensure shorter lead time and high service levels. If any of the component is not

available then the customer order is lost/back-ordered.

Interest in ATO systems has increased alongside the growing need to produce customized

products while maintaining shorter lead times. In this paper, we will analyze an ATO system

where the manufacturer has in-house manufacturing capacity for the components. Alterna-

tively, these components can also be subcontracted to an external supplier. Understanding

the complexity in developing methods to find the optimal solution, we use a simulation-based

approach to determine near optimal manufacturing policy and inventory levels to achieve

high service levels and cost minimization on a case-by-case basis.

1.1 Assemble-to-Order Systems

As companies need to make its mark on a fiercely competitive industry, manufacturers up-

grade their facilities to gain a technical edge over one another. Furthermore, as such a

personal item used by consumers on a continual basis, customization and demographic tai-

loring becomes necessary due to customer diversity. The most advanced, high-quality cell

phone models are the prime example of personalizable technology. This industry is both
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rapidly changing and involves numerous components. For example, a single smartphone

consists of display screen, microphone, speakers, sensors, camera, Bluetooth module, bat-

tery, and many other parts. Based on the customer requirements, the cell phone is assembled

from these components.

The business model governing this type of manufacturing is known as an assemble-to-

order system. To reiterate this manufacturing system, products are assembled from con-

stituent parts only after an order has been placed. The ATO system from the products

perspective could have single product system and multiple products system, while from the

resource perspective, could have dedicated or shared resources.

For single product, the assembly of pre-fabricated parts takes very little time, but the

manufacturing of those individual components may be expensive or time consuming. The

main concern in this system is that insufficient inventory of a component may cause delays

in order fulfillment, while too much inventory sitting unused could increase costs thereby

reducing a companys profits and inhibit its relevance in a competitive market. This clearly

makes inventory level policies an important consideration for the manufacturing industry.

In a multi-product system, an assembly line is capable of producing multiple different

products from their respective different components, some of which may apply to multiple

final products. This system faces the same concerns and decisions that a single product

system does, but with added complexity and more variables involved.

A shared resource is comprised of a single-server production server that is shared among

different components. This adds complexity while deciding when to produce one component

versus another components using the shared resource.

1.1.1 Single Product Systems

As mentioned above, the world of personal electronics is a prime example of assemble-to-

order systems for customized devices. From the earliest Apple iPods with a range of colors

and storage capacities, to current PCs tailored to the consumer’s work and play needs, this

industry has demonstrated a need for fast-paced development, attention to detail, and a
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balance between construction or sourcing of parts at the macro and micro levels.

As a large-scale example in the transportation industry, we may consider aviation. The

United States’ largest aerospace company, Boeing Co., has over 153,000 employees and gen-

erated over a hundred billion dollars of revenue in 2018. Zazulia (2019) elaborates how

Boeing has historically been quick to outsource when there may be cost savings, recognizing

that with some 367,000 parts comprising even its smallest 737 jet, not every piece of the

plane can be built within its own plants. Instead, Boeing must utilize a complex web of

hundreds of suppliers to produce elements like engines and fuselages all the way down to

details like airline-specific colors, branding, and exit signs. Fuselages are built in Wichita by

the Boeing spin-off Spirit Aerosystems, and sub-assembly work may even be outsourced be-

yond Boeing. However, eventually, all parts make their way to Renton, Washington Allison

(2010). There, the components are assembled into a 737 jet, flight-tested, and delivered to

the customer Anonymous (2018). Fig 1.1 displays a single product system.

Figure 1.1: A Typical Single Product System

Boeing also provides an example of the delicate balance between in-house manufacturing

and sourcing from external subcontractors and how it can go terribly wrong. When work

began on the 787 Dreamliner, a first order plane was scheduled for delivery in 2008. However,

Boeing gave external suppliers too much responsibility in an effort to cheapen the massive

project. Delays quickly piled up due to parts shortages, software issues, problems with

foreign and domestic supply chains, and even incorrect fastener installation. After sorting
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out miscommunications, performance issues, and even electrical fire problems, the first 787

was finally delivered in 2011, three years behind schedule ( Anonymous (2013)).

An assembly line for Boeing’s mainstream airplane is a fine example of a single product

system, where the components are stocked up and assembled together to manufacture the

product.

1.1.2 Multi-Product System

Next, we discuss some examples of multi-product ATO system. Fig 1.2 displays a multi-

product system with multiple components. Automotive manufacturers today have a vast line

of products to choose from. Currently Ford offers a “Build and Price” capability online where

consumers can create their own customized cars or truck from the roof down. The customers

chooses the bed configurations, paint color, various technology packages, additional style

elements like chrome or sport appearance, trailer hitches, wheels, interior designs, power-

train options and a dozen more options. Pricing is shown as the truck is designed, and

subsequently an order can be placed. At the manufacturing line, the parts dictated by the

order must be assembled to build the truck quickly and efficiently Anonymous (2019).

Figure 1.2: Multi-Product System
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Multiple products are manufactured at an assembly line. It is very common to see many

components being cross-shared among different products. For example, different models

have the same seats, stereos, speakers, engines, switches, fuses, etc. All these components

need to be stocked for faster operation.

1.1.3 ATO System with Shared Resource

Many components undergoing similar manufacturing operations that do not require dedi-

cated assembly lines.

Figure 1.3: Multi-Product with Shared Resource

Instead the same resource undergoes slight modification according to the design speci-
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fications of the product. Not only does shared resources for different components result in

effective resource management, but it also eliminates huge capital costs incurred at the instal-

lation of new dedicated machinery. Shared resources or sometimes also referred to as flexible

resources are highly common among the manufacturing industries. A multi-components sys-

tem with shared resource can be seen in Fig 1.3. Examples include packaging industries,

where the machines are calibrated for various sized products.

1.2 Subcontracting

Subcontracting is the practice of assigning some portion of the scope of work to an out-

side vendor by the original contractor either due to lack of technology, costs, or service

level requirements. Subcontracting is predominantly present in complex operations such as

manufacturing, construction and information technology.

Sourcing to subcontractors can reduce costs by capitalizing on the suppliers’ specialized

knowledge or resources. A manufacturer may have the capability to produce a component,

but a subcontractor has the facilities and resources to mass-produce the same component,

yielding more cost-efficiency and higher production rate. For example, an automotive man-

ufacturer such as Chevrolet sources out parts like rear and front bumpers from a specialized

subcontractor like Flex-N-Gate in order to meet customer demand and reduce cost. Another

advantage could be in terms of meeting service levels requirements. Often times, the manu-

facturing facilities have long queues of products due to resource limitations. Subcontracting

in this scenario could alleviate the burden from the in-house manufacturer and reduce the

overall lead time of the products.

7



1.3 Challenges with Production and Subcontracting

Decisions

These examples demonstrate the pervasiveness of assemble-to-order systems across multiple

industries. The challenges faced in manufacturing of ATO system are

• Limited in-house capacity: The availability of the components at the assembly line

is critical to satisfy the demand. Typically, the manufacturer has limited capacity to

cope up with the demand leading to stockout of components. In this case, the demand

is either backordered or lost at an higher cost. It is also common that the components

share the same resource. In this case, it is critical to decide when to produce a certain

component using the capacity at the shared resource.

• Lead time tradeoffs: It is a well known fact that the lead time is directly related to

the spare capacity. With the randomness in the demand, the in-house manufacturer

could be burdened resulting in longer queues for components and thus resulting in

higher leadtimes. The main challenge is to find the balance between leadtimes and

costs.

• High capital costs vs subcontracting: A manufacturer deciding to install another

manufacturing assembly line for the product incurs heavy capital costs. To mitigate

these high costs, the components could be subcontracted to vendors at a lower costs.

However, the vendors could have higher lead time so the decision maker need to find

the tradeoffs between cost and lead time.

• Multi-product ATO system: The literature on production and subcontracting

strategies for ATO system is limited. The multi-product ATO system increases the

complexity of the problem.
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1.4 Research Tasks and Main Contribution

The main objective of the research is to investigate policies for the component replenishment

in a general ATO system with shared resource. Within the question of inventory management

for our ATO system, the manufacturer has following options available to satisfy the demand

of the component:

1. Use capacity of the shared resource to produce one of the components.

2. Subcontract components to external supplier.

The choice between these options can depend on processing time for orders, customer

demand for the product, and costs and lead times for in-house production or subcontractors.

Typically, in MTS or MTO systems, dual index policies could be used for such decision where

we have thresholds on the inventory to decide the replenishment decisions for components.To

the extent of our knowledge, there is no know optimal policy for our proposed system. We

plan to analyze such policy in our proposed multi-product ATO system. In this paper, we

will use a simulation based approach to investigate the following research questions.

RQ1: What are the optimal inventory levels and threshold levels for the components?

How do the threshold levels impact the total cost?

RQ2: How does our decision to make in-house vs subcontract change with fluctuating

the demand?

RQ3: How does distribution of service times impact our policy?

We answers these research questions in our thesis by designing a complex simulation of

an assemble to order system. Our system consists of multi-product where each product is

composed of multi-components. Multiple scenarios are modeled with respect to cost and

service times at different servers. These scenarios are analyzed to find the direction towards

optimality.

There are two main contributions of this thesis:

Firstly, we develop a simulation based model to analyze production and subcontracting

decisions in multi-product ATO system with shared resource. This type of manufacturing

system is very common in practice. However, there is limited research on subcontracting
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in ATO system due to complexity in solving such a system. For exact analysis we present

a Markov decision process model but faced the curse of dimentionality in terms of state

and action space. To overcome this, we use Monte-Carlo simulation and answer when to

subcontract a component for a product and when to use capacity at the shared resource to

manufacturer a component.

Secondly, we analyze the impact of system parameters such as service costs/ service

rates of the manufacturer and the subcontractor on the optimal decision. The simulation

also enables us to use different distribution assumptions in the service time such as shifted

exponential distribution which is more practical to fit the proposed manufacturing system.

1.5 Thesis Outline

The thesis is organized as follows:

In chapter 2 of the thesis we provide a detailed literature review of different types of

assemble-to-order systems. It is followed by the subcontracting strategies implemented and

analyzed in different manufacturing settings. The last literature review is about simulation

techniques and the how the data is analyzed to determine inventory control policies.

In chapter 3, we develop our model as a Markov decision process. We discuss the state

space and action space of the system. With the model being extremely complex, we propose

how simulation of the system can reduce the complexity to reach near optimal solution. We

provide insights for research question RQ1 in this chapter.

In chapter 4, we discuss the impact of system parameters on the production and subcon-

tracting decisions. Using different practical scenarios such as: manufacturer is cheaper, sub-

contractor is cheaper, and other distribution assumptions, we show how the results changes

and what a supply chain manager should do under these scenarios. We provide insights on

research questions RQ2 and RQ3 in this chapter.

In chapter 5, we conclude the thesis and discuss future work possibilities and corroborate

our work.
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Chapter 2

Literature Review

In this chapter we review the relevant literature. This chapter is further organized into three

sections. In Section 2.1 we will discuss Assemble-to-Order (ATO) systems. Section 2.2 will

focus around different subcontracting strategies. Section 2.3 will elaborate on simulation

based approaches.

2.1 Assemble-to-Order Systems

There have been a number of studies conducted involving ATO systems. To further elaborate

on these studies, we have classified them into single product system and multi-product system

categories.

Single Product Systems: ‘Yano (1987) studies a single product system where the

assembly part shortages arise from late arrivals. The research develops an algorithm to find

optimal solutions for the assembly line where the lead time for these components is stochastic,

to minimize the inventory holding and tardiness cost. Kumar (1989) performs a generalized

study for the inventory cost for a factory stockroom which supplies the sub-assemblies. The

components can only be subcontracted. The main concern of his study is the effect of lead

time variability by the subcontractor, the number of sub-assemblies used in the product,

and the service levels on the inventory cost. Chu et al. (1993), present an iterative algorithm
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for optimality for ordering the components. Here again the components are provided by

a subcontractor for the assembly line. Furthermore, their proposed algorithm is for an n-

product component system. The aforementioned studies all focus on optimal decisions for

ATO systems with a known demand and random component reorder lead times.

Later, Song and Yao (2002) use greedy algorithms to solve a single product system

where the demand arrives via Poisson process and the refill rates for the components are

independent and identically distributed. The components are made to stock before being

assembled together. The paper also discusses how lead time variability undermines the

performance of the ATO unlike the standard M/G/∞. Gallien and Wein (2001) analyze a

single product ATO system where the refill rates for the components are independent but

not identically distributed.

Benjaafar and ElHafsi (2006) model a single product ATO system with multiple customer

classes.

Multi-Product Systems:

Song (1998) was the first to analyze order fill rate as a performance measure on base-stock

systems, using a multivariate compound Poisson demand process and constant lead times. In

this model, customers order different items in different quantities, and the demand for each

component is superimposed to find a compound Poisson process. Certain assumptions are

made, such as that unfulfilled demand is backlogged at positive cost, and in-stock components

are shipped to the customer without waiting for out-of-stock parts to arrive. Versatile

estimation bounds for the optimal order fill rate are developed, as well as a procedure for

exact calculation. Song concludes that the fill rate of an individual component is not an

ideal indicator of order fill rate correlated across all items. Later, Song (2000) analyzes an

ATO system where components are held in stock and assembled only when customer orders

are realized, again assuming a multivariate compound Poisson demand process and constant

replenishment lead times. The paper develops a model for estimating the order fill rate

of the system. Lu et al. (2005) analyze a multi-product ATO system to evaluate expected

backorders using bounds and approximations with appropriate parameters. ElHafsi et al.

(2008) studies the optimal production and inventory allocation policies of multi-product
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ATO systems with a modular nested design. The optimal production policy is shown to

be of base-stock type with levels dependent on the inventory of other components. The

optimal inventory allocation policy is shown to be a multi-level rationing policy, and a

simple heuristic is proposed compared to optimal policy. Gao et al. (2010) analyze a multi-

product ATO with multiple classes of demand, where replenishment depends on independent

unreliable machines. Again, they assume that demand arrives according to a Poisson process

and allow two kinds of stockout. The paper applies a matrix-geometric solution approach

to compute order-based and item-based fill rate. Zhou and Chao (2012) develop a simple

Stein-Chen approximation relating to order-based fill rate and component-based fill rates for

a multi-product ATO system.

Manufacturing Systems with Shared Resources:

Resource sharing in manufacturing enables performance and service levels improvement

while keeping low capacity costs ( Jordan and Graves (1995), Sheikhzadeh et al. (1998)).

Later, Amirteimoori (2013) studies decision-making in shared resource efficiency by eval-

uating the model as a two-stage data envelopment analysis. His study includes real life

situations where some production outcomes have failure capability and may undergo repair

operations.

Garcia-Santiago et al. (2015) exhibit a meta-heuristics approach for complex shared

resource energy production planning. They focus on comparing simulation data with genetic

algorithms to minimize the energy consumption. Another stream of literature by Simeonova

et al. (2005) involves a simulation based proposal to improve the plant efficiency, where the

manufacturing setup comprises of two parallel manufacturing servers and shared resources.

The simulation outcome reveals that a feedback strategy for rescheduling is efficient but

further is required for real life scenarios.

2.2 Subcontracting Strategies

Timely outsourcing and subcontracting in manufacturing industries proves to minimize cost

and increase service levels Yao et al. (2010). Taking in consideration the real life scenar-
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ios encircling lead times, customer variability and cost implications the decision making

process becomes complex. Kumar and Vannelli (1986) propose cost minimization for pro-

duction facility where multiple products and components are manufactured. Subcontracting

is introduced for disaggreagation of the facility, their study focuses on both financial and

non-financial parameters.

Manufacturing versus subcontracting decision is analyzed by Lee and Zipkin (1989)

through Dynamic programming algorithm. The evaluated scenario permits the manufac-

turer to satisfy demand through in-house manufacturing, subcontracting or a combination

of both. Zero replenishment lead time policy is considered for all cases. Furthermore, their

proposed model is extended to entertain backlogging and bounded inventory within the

problem.

Rivera-Gómez et al. (2016) build a stochastic optimal control model where the production

and subcontracting are evaluated for a manufacturing system. The key highlight of their work

involves taking deterioration of quality as increasing functions. The model is approached as

a stochastic dynamic programming problem. Rivera-Gómez et al. (2018) further elaborate

their findings and then formulate a simulation based approach to minimize cost and obtain

control polices for subcontracting and other manufacturing factors.

Sinha and Krishnamurthy (2014) analyze a manufacturing system where a multiple

products are assembled from multiple components. They propose an approximate method

to determine the production and subcontracting decisions. However, their work could only

solve for small examples and does not provide bounds on the solution obtained from the ap-

proximate method. Our work extends their analysis to a simulation model and also discusses

the impact of relaxing distribution assumption of service times on the optimal solution.

2.3 Simulation Approach

With unprecedented outcome possibilities in varying real life scenarios, simulation offers a

unique concept of mimicking the real structural flow. Studying and analyzing these simula-

tions enables us to predict and decide optimal solutions prior to implementation and reduce
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adverse consequences through predictive analysis Ören (2011). Simulation modeling can be

applied in many if not all environments to visualize dynamics, save resources and handle

uncertainty. Different simulation techniques are implemented to predict various behaviors in

numerous areas for example 3D modeling, health-care, aerospace, fluid dynamics, operations

research etc.

Several studies have been conducted for simulation based analysis in production sys-

tems. Huang et al. (1983) study simulation analysis for just-in-time techniques with kan-

ban for inventory policies for multistage production systems. Simulating production opera-

tions and analyzing data for inventory and production systems have been studied by ( Rezg

et al. (2004), Köchel and Nieländer (2005), Kämpf and Köchel (2006), Olhager and Persson

(2006), Dias et al. (2018)).

Rezg et al. (2004) simulate a production system with n machines (n ≥ 1), The machines

in their model are also prone to failure and have time based preventive maintenance policy

scheduled. Inventory control and maintenance strategies are formed by analyzing simulated

data and evaluating genetic algorithms. Köchel and Nieländer (2005) suggest a simulated

approach for a multi-facility/multi-echelon inventory problem. However, computational lim-

itation restricts their study for an elaborate optimal control policies.

Kämpf and Köchel (2006) model a capacitated stochastic lot-sizing system where inven-

tory and production control policies are optimized using simulations. The manufacturing

times are random and unsatisfied demand is backlogged. Their model also incorporates se-

quencing and lot size rule to maximize profits. Olhager and Persson (2006) report and review

the behavior and the design of policy structure for production and inventory control systems

using simulation. They also highlight the benefits of simulation as a risk free environment

for predictive analysis. Dias et al. (2018) propose a framework for scheduling and predic-

tive control through simulation based optimization in air separation units. The scheduling

problem addresses the dynamic behaviour of the system by state space model.
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Chapter 3

Stochastic Model for ATO System

3.1 Introduction

In this chapter, we develop stochastic models to production and subcontracting decisions

for our assemble to order system with multiple products. With limited literature on sub-

contracting decisions for ATO systems, there is a significant need of decision making in the

subcontracting of components for multi-product systems for relevant manufacturing facili-

ties. Our model for this problem involves an elaborate layout where the finished products

are assembled together with their respective components.

The components in our system are made to stock and are held at the inventory at the

assembly line. They can be produced by either; using in-house manufacturing capacity or

by subcontracting through external vendors. Both the subcontractor and the manufacturing

facility have finite production capacity, which entails stochastic lead times.

In the proposed ATO system, multiple products are assembled from respective compo-

nents. Components that have similarity in terms of their design or manufacturing processes

could be manufactured using the shared capacity at the in-house manufacturer. This idea

can be conceptualized where multiple components require to undergo similar operations, the

manufacturer instead of investing on more capacity to create parallel dedicated resources,

can use capacity on the shared resource for different components. This allows the manufac-
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turer to produce multiple products without dedicating an assembly line for a single product.

Furthermore, this completely nullifies the huge capital costs incurred in constructing a new

assembly line. However, the same decision could have impact on the lead time.

In contrast, high demands and unforeseen bottlenecks in the supply chain require the

manufacturer to sometimes subcontract these components instead of manufacturing in-house

at the shared resources. This raises the following research questions: (1) For general ATO

systems, what are some good production and subcontracting policies? (2) How do we sched-

ule shared in-house resource among different components?

3.2 Multi-Product ATO System

Sinha and Krishnamurthy (2014) proposed an Markov decision model for multi-product

ATO system. We leverage the same problem but extends the analysis to provide insights

on optimal production and subcontracting decisions for large systems and the impact of re-

laxing distribution assumptions. The model consists of two products i = 1,2. Each product

is manufactured from its two respective components Cij, where j = 1, 2. The products are

assembled at a facility where each assembly line requires both corresponding components.

For example, the final products are large and small wheels, large wheel would be assembled

from a large tire and a large rim (components) and respectively for the small wheels. The

components are stored and held at respective inventory locations. Wij represents the loca-

tions for components Cij j = 1, 2. Products i are assembled at location Sij. The assembly

time for Sij is assumed to be zero. Product i’s demand follow a Poisson process Ni(t), t >= 0

with rate λi. At the demand arrival if the both corresponding components Cij for product i

are available at Wij, the demand is satisfied. If one of either components Cij is unavailable

then the demand is unsatisfied and lost sale cost incurs. Fig 3.1 displays our supply chain

model. Our model can be extended to system with n products and m components.
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Figure 3.1: Supply Chain Model

Iij(t) is the net inventory at a given time t for the components Cij at location Wij. The

inventory of the components can be replenished by either subcontracting through an exter-

nal source Sij or use the in-house manufacturing capacity Mj. Both component inventory

replenishment sources can manufacture either C1j or C2j.

The subcontracting source Si and in-house manufacturing unit Mj are modeled as single

server queues. The service times for both facilities; subcontractor and in-house are expo-

nentially distributed with mean µ−1
s,ij and µ−1

m,ij respectively. The cost rate for each server to

manufacturer component Cij is denoted by cs,ij and cm,ij. Holding cost of the inventory is

denoted by hij and we let li be the lost sale cost for product i whose demand was unsatisfied

because of either component unavailability. In the next section we analyze the model as a

Markov Decision process.
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3.3 Markov Decision Process Formulation

To analyze the dynamics of the system we can model it as a continuous-time Markov chain

problem. Let χj , j = 1, 2 denote a subsystem j which represents the manufacturing process

of components C1j and C2j. The subcontracting units are S1j and S2j, while the in-house

manufacturing facility is Mj.

The key elements for the Markov chain process are as follows:

Decision epoch: A state change triggers the actions, i.e either on demand arrival or

product manufactured.

State Space Σ: The state of the system is represented with four inventory values i.e σ =

(I11, I21, I12, I22), σ ε Σ where Iij is the net inventory position of the component Cij.

Action Space A : The action space is expressed as, A = A1 * A2 where Aj, j = 1, 2;

where the action set of the subsystem χj with αj,kj = (mj, s1j, s2j), αj,kj ε Aj,kj = 1, 2...12.

If the component Cij is to be manufactured at the in-house facility Mj, mj is assigned the

value i and has the value 0 when the component is being outsourced. Correspondingly if

the component Cij is being being outsourced by the external subcontractor Sij, sij takes

the value i and is assigned value 0 if it is manufactured in-house. Tables 3.1 and Table 3.2

represent the action space for each of subsystems χj.

Transition Probabilities: Let p(σ
′ |σ, α1,k1 , α2,k2) be denoted as the transition probability

for any of the states σ = (I11, I21, I12, I22) to state σ
′

= (I
′
11, I

′
21, I

′
12, I

′
22) using actions α1,k1

ε A1, α2,k2 ε A2 .

We define v = Σ2
i=1λi + Σ2

i=1Σ
2
j=1(µm,ij + µs,ij) + C, where C is the normalizing factor.

The transition probability are defined as follows:

Product demand arrival i : I
′
ij = Iij − 1, j = 1, 2; then the transition probability will

be as p(σ
′ |σ, α1,k1 , α2,k2) is :

p(σ
′|σ, α1,k1 , α2,k2) = λi/v,∀i = 1, 2
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Table 3.1: Action Space for χ1

A1 M1 S11 S21

α1,1 1 1 2
α1,2 1 0 2
α1,3 1 1 0
α1,4 1 0 0
α1,5 2 1 2
α1,6 2 0 2
α1,7 2 1 0
α1,8 2 0 0
α1,9 0 1 2
α1,10 0 0 2
α1,11 0 1 0
α1,12 0 0 0

Table 3.2: Action Space for χ2

A2 M2 S12 S22

α2,1 1 1 2
α2,2 1 0 2
α2,3 1 1 0
α2,4 1 0 0
α2,5 2 1 2
α2,6 2 0 2
α2,7 2 1 0
α2,8 2 0 0
α2,9 0 1 2
α2,10 0 0 2
α2,11 0 1 0
α2,12 0 0 0

Component production completion C1j: I
′
1j = I1j + 1 and the transition probability

p(σ
′|σ, α1,k1 , α2,k2) are as follows:

p(σ
′ |σ, α1,k1 , α2,k2) = Σj(lm,1,kjµm,1j + ls,1,kjµs,1j)/v

where lm,1,kjµm,1j and ls,1,kjµs,1j, i = 1, 2 are the indicator function that will take value 1

if the Mj and Sij respectively are producing component Cij under action Aj,kj and 0 else.

Component production completion C2j I
′
2j = I2j + 1 and the transition probability
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p(σ
′|σ, α1,k1 , α2,k2) as follows:

p(σ
′ |σ, α1,k1 , α2,k2) = Σj(lm,2,kjµm,2j + ls,2,kjµs,2j)/v

where lm,1,kjµm,1j and ls,1,kjµs,1j, i = 1, 2 are the indicator function that will take value 1 if

the Mj and Sij respectively are producing component Cij under action Aj,kj and 0 otherwise.

Conclusively I
′
ij =Iij,∀ i, j = 1, 2 and the transition probability p(σ

′ |σ, α1,k1 , α2,k2) is

given by;

p(σ
′ |σ, α1,k1 , α2,k2) = (v − Σij(λi + (lm,i,kjµm,ij + ls,i,kjµs,ij)/v))

Cost Equation: Let h(σ) = ΣiΣjhijmax(Iij, 0) as the total holding cost of the inventory

and ls(σ) = Σilsimax(−Iij, 0) as the total lost sale cost. Let c(α1,k1 , α2,k2) = Σi,j(cm,ijlm,i,kj+

cs,ijls,i,kj defined as the total production cost for α1,k1 and α2,k2 where lm,i,kj or (ls,i,kj) are

binary variables which take value; 1 for in-house manufacturing unit in process and 0 for

subcontractor in process for components Cij. This results in production cost at facility is

initiated only if the action is set to produce.

Now we construct a Bellman cost equation (see Equation (3.1)) with the value function

where Vt() is the value function at any given state σ and decision time t.

Vt(σ) = h(σ) + ls(σ) + min(α1,k1
,α2,k2

)ε

(
c(α1, β2) + ηΣσ′p(σ

′|σ, α1,k1 , α2,k2)Vt+1(σ
′
)
)

(3.1)

The objective minimizes the value function, Vt(σ) at each state σ and determines the

optimal action (α∗
1,k1, α

∗
2,k2). The model described above faces a huge set of problems relating

to the dynamic analysis of the optimal policy. The state space of the system Σ and action

space A is huge. For example in our model as Iij, i, j = 1, 2 varying from -100 to 100 we

have over a billion states and and 144 actions. In addition the optimal value function V ∗
t (σ)
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may not be convex in I1j, j = 1, 2 for the state space Σ and action space α. Subsystem χj

can be visualized in Figure 3.2.

Figure 3.2: Subsystem χj, j = 1, 2

Note that for a two product and their respective two component MDP model has 144

actions and (|I| + 1)4 states when the inventory of each component varies from 0 to |I|.

This high level of complexity makes the problem formulation by MDP extremely difficult.

Additionally, the MDP model is limited to Markovian assumption with service rates and

demand arrival rate. Many manufacturing systems often follow other distributions such

as shifted exponential. Given the complexity in determining the optimal solution, we use

Monte-Carlo Simulation approach to sample potential actions of a given state and identify

a near optimal solution.
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3.4 Monte Carlo Simulation

We model our proposed ATO system using a discrete-event simulation engine inside MAT-

LAB R2014 (namely Simulink). The simulation model is designed to capture various dy-

namics of the system such as switching between production and subcontracting,non-zero

assembly time, lost sales, randomness in service and demand process, etc.

The simulation model is designed to handle two types of policy: (1) randomized action

for each state, and (2) threshold based policy.

Randomized action for each state:

At the beginning of the simulation, we specify a particular action pair (A1(σ), A2(σ)),

Ai(σ) ∈ Ai, i = 1, 2 to a state σ = (I11, I21, I12, I22), σ ∈ Σ. This data is stored in a file

which will later be used to decide if a components needs to be manufactured using in-house

manufacturer or the subcontractor. For example, for a state σ = (1, 1, 1, 1) with actions

Ai(σ) = (0, 1, 2), i = 1, 2, the simulation model should send all four components to their

respective subcontractor when the inventory for all components are 1. We run the simulation

model with the given action list. After the simulation is complete, we record the results and

update the action list with new set of actions chosen. An elaborate way of choosing the

the action space is to assign completely random actions for all the state space. A randomly

assigned action space table (see Table 3.3) is as follows:

Table 3.3: States and Corresponding Random Action
I11 I12 I21 I22 m11 m12 m21 m22 s11 s12 s21 s22
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 1 1 0 1 1 0 1 0 0
0 0 0 2 1 1 1 0 0 0 0 1
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 3 4 5 1 1 0 1 0 0 1 0
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
9 9 9 8 1 0 1 0 0 1 0 1
9 9 9 9 1 0 1 1 0 1 0 0

Note that randomly assigning actions to each state could result in millions of possible
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combinations even for a small-sized problem with inventory varying from 0 to 10. This re-

quires lot of simulation runs and could also make the sampling difficult.

Threshold based policy:

It is common to see in manufacturing industries where a threshold based policy is im-

plemented by the supply chain manager. Whenever the current inventory of a component is

lower than the threshold value, then that component is manufactured using capacity at the

in-house manufacturer to make the components at a faster rate. On the other hand, if the

current inventory of a component is at least the threshold value, then it is subcontracted to

an external vendor.In our simulation model, we use threshold base switching policy for our

experiments which helps to reduce the number of simulations while giving practical policies

to the supply chain manager.

Before the start of the simulation, the inventory Iij of each component Cij is set to

the maximum value of Bmax. The simulation begins with the demand arrival of product

i, i = 1, 2. We assume that the demand arrival process of each product i follows Poisson

process. Next, for a product i, an event is triggered which initiates the manufacturing of its

two respective components Cij, j = 1, 2 (see Figure 3.3). We ensure that the held inventory

of each component is in the range (0, Bmax), i.e., 0 ≤ Iij ≤ Bmax.

24



Figure 3.3: Demand Arrival for Product i

At the demand epoch, the state space of the system i.e. (I11, I21, I12, I22) the current

inventory of the respective components Cij, is compared to their respective threshold values

to determine whether the component needs to undergo service at the in-house facility or

subcontractor.

When the demand of product i arrives and there is available inventory stock for compo-

nents Cij, j = 1, 2 then we reduce the inventory of the components, i.e. I
′
ij = Iij − 1. This

means we are consuming from the available inventory of the components. This also sends

a signal to produce those consumed components through the policy mentioned before. If

in any case, the current held inventory of the component is unavailable, the replenishment

event of that particular component is ignored. This demand lost incurs a loss of sales cost

which is constant for every unsatisfied component. This routes the component entity to lost

sales cost accumulator before the entity is destroyed. The state space of the system remains

constant i.e Iij = Iij.

The demand for each component triggers an attribute allocation process. Figure 3.4

shows the “Set Attribute” block in Simulink to specify attributes to an entity. For our

multi-product system, every component event is associated with both types of products and
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components. The attributes are as follows:

• The “ServiceTimeMan” attribute stores the exponentially distributed random service

times for components for in-house manufacturer. We also test the model with other

distributions.

• The “Inhouse” attribute specifies the simulation if the component needs to be man-

ufactured using in-house capacity or using subcontractor. We use the thresholds to

decide the value of this attribute.

• The “Create” attribute checks for stockout situation and destroys the entity suggesting

that the demand is lost at a cost.

• The “ServiceTimeSub” attribute stores the exponentially distributed random service

times for components for subcontractor. We also test the model with other distribu-

tions.

Figure 3.4: Attribute Allocation

After the allocation of the attributes, the components undergo manufacturing process

using the pre-specified threshold policy. For products i, the components Cij will either be

sent to the in-house shared resource or will be manufactured by a dedicated subcontractor.

For example, if current inventory Iij of component Cij is 4 and threshold limit is set for 5
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then the “Inhouse” is set to direct the component to the shared in-house manufacturer Mj.

On the other hand, if current inventory Iij of component Cij is 6 and threshold limit is set

for 5 then the “Inhouse” is set to direct the component to the corresponding subcontractor

Sij. We assume that all servers in our system follow a first-in first-out (FIFO) queuing

model. The service time for each facility is present inside the attributes of the components.

The facilities will operate for the associated service time until the component production is

completed. In our simulation model, we also capture the costs at the shared resources Mj

and along with the dedicated subcontractors Sij (see Figure 3.5).

Figure 3.5: Service and Lost Sale Costs Being Stored Inside Simulation

As each component is attributed with their random service times, the utilization of the

servers for service completion of the component is corresponding to the service time. The
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cost of in-house manufacturing and subcontracting facility is measured according to the rate

of operation of the servers to produce a component to a respective cost factor.

Upon the service completion of the components Cij, the components replenish the inven-

tory and next state space of system becomes; I
′
ij = Iij + 1. The manufactured component is

added to the dynamic inventory Iij. For the next component the system will read the action

space respective to the real-time state space.

Following the production of the components, each component is again switched and

routed according to get assembled to produce the product i. Regardless of the service line,

all components are routed towards the assembler to produce the final product. The assembler

also follows FIFO queuing method and the time taken to assemble the component is assumed

to be very small. To produce the final product i both components need to be available.The

total number of products i manufactured are measured and stored. Figure 3.6 and Figure 3.7

display the complete simulation model before and after switching takes place respectively.
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Figure 3.6: Model Before Switching
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Figure 3.7: Model After Switching
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We present the steps followed through the simulation:

• Set the maximum number of iterations for the simulation and simulation time till the

system reaches steady state.

• Run each simulation with given inventory thresholds.

• Use inventory thresholds to decide whether the components need to be produced by

in-house manufacturer or subcontractor.

• Calculate the total cost that comprises of costs for all servers, inventory costs, and lost

sales costs.

• Update the inventory thresholds and run the simulation again.

• analyze results from multiple simulation runs to further narrow down the selection of

inventory thresholds.

We run each simulation for sufficient time by which we can observe steady state. In

each simulation run, we update the thresholds value and calculate the total cost. The total

cost includes the rate of mean inventory costs, lost of sale costs and cost of service of the

components throughout the simulation.

Challenges with Simulation

We faced the following challenges with the simulation model.

• Given the amount of time one simulation run takes, it is impossible to run all combina-

tion of inventory thresholds. We deal with this limitation, by using a greedy heuristics

where we analyze few hundreds runs of simulations and analyze the pattern in costs

and thresholds. This helps to set the range of random threshold values in the next

runs.

• Capturing custom results from the simulation is difficult.
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• Randomized policy does not yield any good results and it requires lot of computation

power to even analyze 1% of the samples.
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Chapter 4

Impact of System Parameters on

Production and Subcontracting

Decisions

In this chapter, we analyze the impact of system parameters such as: manufacturing and

subcontracting costs, service rates, distribution assumption on the production and subcon-

tracting decisions in a multi-product ATO system. For our system we analyze three case

studies: (1) Manufacturer is cheaper, (2) Subcontractor is cheaper, (3) Exponentially shifted

service time.

Case Study 1: Manufacturer is cheaper

With high demands and the internal capacity undergoing heavy utilization, the supply

chain has an option to outsource the components to the external subcontractor. This allows

the supply chain manager to share the load externally and supply the products to the cus-

tomers with shorter lead times. However, outsourcing these components to the subcontractor

incurs additional costs. For example at a car manufacturing site, the in-house manufacturing

facility has the capability to manufacture specific bumpers. When the demand is high, the

supply chain manager faces capacity issues, subcontracting of these bumpers are considered.
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With the product having more specifications, the subcontractor could charge higher and the

operation time may be extended.

Case Study 2: Subcontractor is cheaper

We model the system in this case when manufacturing a product at the internal facility

may cost more than normal. This is common in manufacturing lines where production of

a specific component may require more resources and cost. In this case the subcontractor

can provide the item at a lower cost but it may incur additional lead times. If the subcon-

tractor’s cost of product is cheaper but due to high lead times, back-ordering and loss of

sales cost can occur. To counter these problems and establish a steady flow at the assemble

system, the supply chain manager needs to establish balance between the subcontracting

and manufacturing in-house capacity to satisfy customers.

Case Study 3: Shifted exponential service time

In many cases when an order is placed for manufacturing there is a delay before the actual

manufacturing process starts. For example machine setup time, specifications of the prod-

uct, sending in documentation, work order confirmation and payments. In this scenario, the

supply chain manager accounts for the constant delays and utilizes the output to streamline

the supply chain. To develop this problem we modify our system by adding a constant delay

to our service time, at both subcontractor and in-house facility. This system is modelled and

analyzed for both of the above systems where the manufacturer is cheaper and also where

the subcontractor is cheaper.

Note: The best results

4.1 Experiments 1: Manufacturer is Cheaper

For Experiment 1, we assume that the manufacturer is cheaper than the external subcontrac-

tor. We also consider that the component C1j, j = 1, 2 are expensive to manufacture than
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Table 4.1: System Parameters for Experiment 1
Subcontractor’s Parameter Manufacturer’s Parameters
cs,1j, j = 1, 2 35 cm,1j, j = 1, 2 15
cs,1j, j = 1, 2 25 cm,2j, j = 1, 2 10
µs,i1, i = 1, 2 1 µm,i1, i = 1, 2 2
µs,i2, i = 1, 2 1.5 µm,i2, i = 1, 2 3
System Parameters Additional Costs
Bmax 9 lsi, i = 1, 2 80
λi, i = 1, 2 1.5 hij, i = 1, 2 2

the component C2j, j = 1, 2 at both the subcontractor and in-house facility. The in-house

facility has two production lines and each is shared across two components Ci1, i = 1, 2 and

Ci2, i = 1, 2. The manufacturer is twice as faster than the subcontractor (µm,1j = 2µs,1j).

The system parameter are as follows in Table 4.1:

Using the above mentioned system parameters, we run our simulation model for 300

scenarios. Each scenario gives us the result for the total cost associated with the randomly

assigned threshold values. After running the simulation for 650 simulation hours and 10

replications, these values for each iteration are sorted according to the minimum cost with

a 95% CI. The top ten percent of the data which yields the minimum cost is analyzed to

direct us towards optimality. Our result for the first experiment is as follows in Table 4.2:

Table 4.2: Threshold Values for Experiment 1
Total Cost C11 C12 C21 C22

97.59 ± 8.28 9 9 2 9
107.61 ± 6.8 9 9 9 2
111.36 ± 7.23 9 8 9 8
117.32 ± 7.46 9 7 7 8
123.84 ± 6.94 9 2 5 8

Once, we observe the threshold values for our best solutions, we perform statistical anal-

ysis and further limit the threshold values to minimize computation efforts. For instance, if

the top results show that the thresholds between 0 and 5 yields lowest costs then we limit the

random threshold generation for subsequent simulation runs to range 0−5. The distribution
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of the threshold values for the lowest cost is displayed in Fig 4.1

Figure 4.1: Distribution of Threshold Values for Experiment 1

These graphs indicate that the general trend towards optimality is having the threshold

values for C11 and C12 be higher. By constructing the general trend we now limit the

threshold values to be higher and run the simulation for multiple iterations again. We limit

the threshold values for C11 and C12 to be random between 5-9 and run the simulation again

for 650 simulation hours with 300 scenarios. After 10 replications of the best results with a

CI of 95% the data is as given in Table 4.3 below:

Table 4.3: Limited Threshold Values for Experiment 1
Total Cost C11 C12 C21 C22

108.62 ± 10.21 9 5 9 8
111.72 ± 6.76 9 7 9 9
111.98 ± 8.67 9 6 9 9
116.32 ± 8.27 9 9 7 1
118.43 ± 13.7 9 9 6 2
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Figure 4.2: Distribution of Limiting Threshold Values for Experiment 1

The resulted data in Fig 4.2 suggests that trend towards the optimality may require the

cut-off values to be higher. We perform the simulation run again with the same simulation

hours and scenarios but now limiting Cij i=1,2 andj = 1 to be between 5 and 9. The

accumulated best data is replacted and with a CI of 95% the data is as follows:

Table 4.4: Extending Limiting Threshold Values for Experiment 1
Total Cost C11 C12 C21 C22

94.51 ± 6.27 9 9 8 9
101.65 ± 7.98 9 9 6 8
108.99 ± 6.61 9 9 9 3
108.74 ± 8.43 9 8 9 8

The above given Table 4.4 corroborates our direction towards optimality; as our threshold

value increases the total cost of the system is reduced. After acquiring this data we again

perform distribution analysis of the threshold values (see Fig 4.3)
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Figure 4.3: Distribution of Extended Limiting Threshold Values for Experiment 1

This approximate analysis by simulating multiple scenarios and by applying Monte Carlo

simulation techniques exhibits that restricting the threshold values of Cij towards a higher

number enables us to direct towards the optimal solution.

4.2 Experiments 2: Subcontractor is Cheaper

For Experiment 2, we assume that the subcontractor is cheaper than the internal manufac-

turer. We also consider that the component C1j, j = 1, 2 is expensive to manufacturer than

the component C2j, j = 1, 2 at both the subcontractor and in-house facility. The in-house

facility has two production lines and each is shared across two components Ci1, i = 1, 2 and

Ci2, i = 1, 2. The manufacturer is twice as faster than the subcontractor (µm,1j = 2µs,1j).

The system parameter are as follows in Table 4.5
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Table 4.5: System Parameters for Experiment 2
Subcontractor’s Parameter Manufacturer’s Parameters
cs,1j, j = 1, 2 15 cm,1j, j = 1, 2 35
cs,1j, j = 1, 2 10 cm,2j, j = 1, 2 25
µs,i1, i = 1, 2 1 µm,i1, i = 1, 2 2
µs,i2, i = 1, 2 1.5 µm,i2, i = 1, 2 3
System Parameters Additional Costs
Bmax 9 lsi, i = 1, 2 80
λi, i = 1, 2 1.5 hij, i = 1, 2 2

This setting indicates that although the subcontractor requires twice as much time to

produce the components, the cost is lower at the subcontractor. All the other parameters are

the same as experiment 1. The simulation hours for this experiment at 300 and we conduct

300 different scenarios.

After 10 replications of the best data, the result with a 95% CI is as follows (see Table

4.6):

Table 4.6: Threshold Values for Experiment 2
Total Cost C11 C12 C21 C22

98.70 ± 2.12 2 2 1 2
100.83 ± 4.38 3 1 1 1
100.62 ± 3.77 4 2 3 4
101.12 ± 3.43 4 2 1 5
101.51 ± 2.33 1 2 2 2

The data suggests that the trend towards optimality is by keeping lower threshold values

for Cij. We construct a histogram (Fig 4.4) for the threshold value distribution to enable us

to better predict trend direction of optimality.
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Figure 4.4: Distribution of Threshold Values for Experiment 2

This approximate analysis by simulating multiple scenarios and by applying Monte Carlo

simulation techniques exhibits that restricting the threshold values of Cij towards a lower

number enables us to direct towards the optimal solution.

4.3 Experiments 3: Shifted Exponential Service Times

In our last experiment we model two cases. The system parameter settings for each of these

cases is identical to both the above mentioned experiments, however the service time for

each of the servers i.e in-house and subcontractor, µs,ij and µm,ij where i, j = 1, 2 have a

constant delay denoted by d is added.

We split our experiment 3 in to two parts; 3a and 3b, where 3a represents the system

where the manufacturer is cheaper and all severs have a constant d, 3b represents the system

where the subcontractor is cheaper and all servers have a constant delay d.
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4.3.1 Experiment 3a: Manufacturer is Cheaper

This experiments parameter settings are identical to the experiment 1, however a constant

delay is added to all the service time µk,i,j where k = s,m and i, j = 1, 2.

The system parameter for this experiment are given as follows Table 4.7:

Table 4.7: System Parameters for Experiment 3a
Subcontractor’s Parameter Manufacturer’s Parameters
cs,1j, j = 1, 2 35 cm,1j, j = 1, 2 15
cs,1j, j = 1, 2 25 cm,2j, j = 1, 2 10
µs,i1 + d, i = 1, 2 1+10% µm,i1 + d, i = 1, 2 2+10%
µs,i2 + d, i = 1, 2 1.5 +10% µm,i2 + d, i = 1, 2 3 +10%
System Parameters Additional Costs
Bmax 9 lsi, i = 1, 2 80
λi, i = 1, 2 1.5 hij, i = 1, 2 2

After running the simulation for 300 simulation hours and 100 scenarios the best data is

replicated 10 times, the results with 95% CI are as follows as follows:

Table 4.8: Threshold Values for Experiment 3a
Total Cost C11 C12 C21 C22

105.32 ± 13.3 2 2 8 9
96.76 ± 10.67 8 4 8 8
103.19 ± 12.74 3 9 8 8
106.77 ± 7.28 5 9 7 8
107.84 ± 10.45 1 1 6 8

To better predict the general trend of optimality we construct a distribution histogram.
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Figure 4.5: Distribution of Threshold Values for Experiment 3a

Reducing the randomness by adding a constant delay our experimental data differs from

the data in experiment 1. The coefficient of variation in in this experiment is ¡1. The

approximate analysis by simulating multiple iterations and by applying Monte Carlo simu-

lation techniques the impact of the delay exhibits that restricting the threshold values of C11

and C12 towards a lower cut-off number and C21 and C22 towards a higher cut-off number

rather than how we had a higher threshold value for routing between subcontractor and

manufacturer in experiment 1.

4.3.2 Experiment 3b: Subcontractor is Cheaper

This experiments parameter settings are identical to the experiment 2, however a constant

delay is added to all the service time µk,i,j where k = s,m and i, j = 1, 2. The system

parameters are presented in Table 4.9.
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Table 4.9: System Parameters for Experiment 3b
Subcontractor’s Parameter Manufacturer’s Parameters
cs,1j, j = 1, 2 15 cm,1j, j = 1, 2 35
cs,1j, j = 1, 2 10 cm,2j, j = 1, 2 25
µs,i1 + d, i = 1, 2 1+10% µm,i1 + d, i = 1, 2 2+10%
µs,i2 + d, i = 1, 2 1.5+10% µm,i2 + d, i = 1, 2 3+10%
System Parameters Additional Costs
Bmax 9 lsi, i = 1, 2 80
λi, i = 1, 2 1.5 hij, i = 1, 2 2

Using similar simulation run time and scenarios, the best results with 10 replications are

presented with 95% CI in Table 4.10.

Table 4.10: Threshold Values for Experiment 3b
Total Cost C11 C12 C21 C22

99.12 ± 6.33 2 2 8 9
98.53 ± 5.76 1 1 6 8
99.87 ± 6.16 2 2 1 8
100.93 ± 4.87 2 2 3 8
100.12 ± 7.87 4 1 8 1

The general trend towards optimality is again difficult to predict with the resulted data

so we construct a distribution to see how does the system behave to the threshold values

(see Figure 4.6).
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Figure 4.6: Distribution of Threshold Values for Experiment 3b

This approximate analysis by simulating multiple iterations and by applying Monte Carlo

simulation techniques exhibit the trend to differ from experiment 2. In experiment 2 it was

evident for better performance to have the threshold values lower, adding a delay decreases

the randomness and increases randomness in the new threshold values as the coefficient of

variation is 1. The data reveals by restricting the threshold values of C11 and C12 towards

a low range, C21 in the mid range and C22 towards a higher cut-off number enables us to

direct towards the optimal solution.
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Chapter 5

Conclusion and Future Direction

We present an inventory control problem for this thesis. The motivation of this problem

comes from the demand of complex and customized products increasing in toady’s fast-paced

environment. Within the highly competitive market era, manufacturers need to shorten

lead times and costs to outperform their counterparts and grow in the environment. We

highlight some common manufacturing strategies i.e. engineered-to-order (ETO), make-

to-order (MTO), make-to-stock (MTS) and assemble-to-order (ATO) systems. As products

become more complex, ATO manufacturing systems have become a commonly opted strategy

for many manufacturers.

We consider a multi-product and multi-component system, where the components can

either be manufactured at the in-house facility or by the subcontractor. The in-house facility

is shared across multiple components, while the subcontractors are dedicated to each com-

ponent. The shared resource is common in manufacturing systems where the manufacturer

instead of setting up new manufacturing lines shares the resources to manufacturer different

items.

To model our proposed problem, we first use Markov Decision Process (MDP) model

and but faced issues with the curse of dimensionality. For our proposed system, the state

space is directly proportional to the number of components and the action space is directly

proportional to the number of components are the servers. For such complex problems,
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simulation based approaches have been found useful. We develop a simulation model using

Matlab 2014 (Simulink) for our proposed system. The simulation model comes with several

computational challenges and we show how by assigning random actions to each possible

state space requires exceptional computational effort. Later, we propose a threshold based

policy which is easy to use and more common in practice for routing the components to

either in-house or subcontractor and determine near-optimal thresholds.

We analyze three scenarios i.e. 1. Manufacturer is cheaper, 2. Subcontractor is cheaper

and 3. Shifted exponential service times. We use multiple iterations and Monte Carlo

techniques to narrow down optimal decision path by limiting the threshold values. The

results for the first experiment indicate that the direction towards optimality is by having the

threshold values kept close to the base stock level for all components. However maintaining

high inventory levels increases the holding cost but reduces lost sales costs and production

costs. The next scenario, i.e. 2. Subcontractor is cheaper. The total cost of the system for

identical simulation time as experiment 1, results in cheaper production costs. The threshold

values are towards the lower end suggesting that components should be subcontracted earlier

to reduce the total production costs.

For experiments 3a and 3b, we add a constant delay by having a shifted exponential

time for the service times. This is more common in practice. We see that by restricting the

threshold values of components C11 and C12 tend towards a lower cut-off inventory value

while components C21 and C22 tend towards a higher cut-off inventory value. This result

differs from out initial experiment without the delay. While for experiment 3b the trend

towards optimality is executed by limiting the threshold values of C11 and C12 towards a

low, C21 in the mid range and C22 towards a higher cut-off number enables us to direct

towards the optimal solution. The variation of the threshold values in the last experiments

can be explained by the decrease in randomness and coefficient of variation being < 1.

The comparison of the best threshold values for all the experiments is given below (see

Figure 5.1:
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Figure 5.1: Comparison of Optimal Threshold Values

Our research gives us insights on how to determine optimal inventory and control policies

for supply chain of complex manufacturing systems by simulation. Most manufacturing

systems are highly complicated and MDP model formulation becomes extensively exhausting.

Simulation of these complex systems for random scenarios and then by restricting the model

towards optimal trends, progresses us towards optimality. Note that we are not making any

claims that the proposed simulation model gives optimal solution but the insights from our

model gives useful insights to supply chain managers in ATO systems.

Future work may include analyzing more products and components. We would also like

to analyze other replenishment policies such as lattice based policy and compare with the

threshold based policy.
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Tuncer Ören. The many facets of simulation through a collection of about 100 definitions.

SCS M&S Magazine, 2(2):82–92, 2011.

N Rezg, X Xie, and Y Mati. Joint optimization of preventive maintenance and inventory con-

trol in a production line using simulation. International Journal of Production Research,

42(10):2029–2046, 2004.
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