
 

NON-PLANAR SILICON OXIDATION: 
AN EXTENSION OF THE DEAL-GROVE MODEL 

 
 

by 
 
 
 

BRIAN D. LEMME 
 
 
 

B.S., University of Nebraska-Lincoln, 2000 
 
 
 

A REPORT 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 

 MASTER OF SCIENCE 
 
 

Department of Chemical Engineering 
College of Engineering 

 
 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2009 
 

Approved by: 
 

Major Professor 
Dr. James H. Edgar 



 

Abstract 

Silicon oxidation has been the cornerstone of the semiconductor industry for many years, 

so understanding and being able to predict the oxidation process is paramount.  The most popular 

model to date is the Deal-Grove model for the thermal oxidation of planar silicon surfaces.  The 

Deal-Grove model owes its popularity to the overall simplicity in which it was derived and the 

accuracy in which it predicts the oxidation of planar silicon geometries.  Due to this popularity 

and accuracy it is desirable to extend the Deal-Grove model beyond flat surfaces to other 

geometries such as cylinders and spheres.  Extending the Deal-Grove model to these types of 

geometries would allow the prediction of the oxidation of silicon nano-wires and silicon nano-

crystals.  Being able to predict the oxidation is attractive due to the recent progress of integration 

of silicon nano-wires and silicon nano-crystals into microelectronic devices. 

Prediction of the oxidation of silicon cylinders (nano-wires) and spheres (nano-crystals) 

by simply utilizing the established planar Deal-Grovel model results in highly exaggerated oxide 

thicknesses compared with empirical data.  This exaggeration for small silicon cylinders and 

spheres is due to the effects of the reduction in the available surface area for oxidation along with 

the stress induced due to the volumetric expansion and viscous flow of the oxide on non-planar 

surfaces.  These stress effects retard the oxidation rate in non-planar silicon geometries with 

respect to flat surfaces.  This reduction in the oxidation rate reduction is caused by the normal 

compressive stress which is normal to the SiO2/Si interface due to the volumetric expansion 

during oxidation.  This compressive stress reduces the reaction rate constant at the SiO2/Si 

interface and thus retards the overall oxidation rate for silicon cylinders and spheres with respect 

to planar silicon.  The focus of this paper will be to contrast cylindrical and spherical versions of 

the Deal-Grove model to the well established planar version.  Surface area and stress effects will 

also be explored as they help explain the reduction in the oxidation rate for non-planar silicon 

geometries.  
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CHAPTER 1 - Introduction 

The main focus of this report will be to present Deal-Grove[1] inspired silicon oxidation 

models for silicon cylinders as described by Kao, et al.[2] and Liu, et al.[3] , and silicon spheres as 

described by Okada et al.[4], Coffin, et al.[5], Liao, et al.[6]  and Chen, et al.[7].  These cylindrical 

and spherical silicon oxidation models will be compared and contrasted to the well established 

Deal-Grove[1] model for oxidation of planar silicon.  It is desirable to predict the oxidation of 

silicon cylinders and spheres by using the Deal-Grove[1] model for planar silicon oxidation due to 

the model’s overall simplicity.  Thus the feasibility for estimating the steady state oxidation rates 

of nano-scale silicon cylinders (i.e. nano-wires) and spheres (i.e. nano-crystals) using the planar 

Deal-Grove[1] model will be investigated.  Additional complexities that need to be considered for 

modeling the steady state oxidation of silicon cylinders and spheres will also be investigated and 

discussed.  

 Background  

In integrated circuit (IC) device manufacturing, thermal oxidation is one of various ways 

of producing a layer of oxide on the surface of an underlying planar single crystal semiconductor 

material[8].  In IC device manufacturing, single crystal silicon (Si) is widely popular primarily for 

the ease in which it forms an excellent thermal oxide.  The oxide formed during thermal 

oxidation of silicon is silicon dioxide (SiO2).  Thermal oxidation of silicon is a relatively easy 

process since silicon is prone to forming a stable oxide at room temperature in an oxidizing 

atmosphere.  Thermal oxidation, as its name implies, is a process that uses high temperatures 

(800oC to 1200oC) to grow oxide layers with enhanced rates in oxidizing environments.  The 

high temperature used in the thermal oxidation of silicon accelerates the oxidation process 

allowing for thicker oxide layers to be produced.  Thermally grown silicon dioxide has the 

fewest defects in both the bulk oxide and at the Si/SiO2 interface.  It has an amorphous structure 

(Figure 1.1) and it also has the desired properties of: 1) being an excellent electrical insulator 

(resistivity > 1020 ohm-cm, band gap ~ 9eV), 2) having a high break down electric field (> 10 

MV/cm), 3) forming a stable and reproducible Si/SiO2 interface, and 4) growing conformal on 
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exposed silicon surfaces [1].   The properties of thermally grown silicon dioxide make it a 

desirable material for integration in IC circuits, such as the gate oxide.    

 

Figure 1.1: Structure of amorphous SiO2 
[10] 

 

Other techniques for forming silicon dioxide include Chemical Vapor Deposition (CVD), 

Plasma Vapor Deposition (PVD), and High Density Plasma Deposition (HDP).  These 

techniques deposit a layer of silicon dioxide on the semiconductor substrate, through a gas phase 

reaction, without consuming any of the underlying substrate material.  In contrast the silicon 

substrate is consumed during thermal oxidation.  For every 1 nano-meter (nm) of silicon 

consumed, 2.17 nm (1 nm = 10-9 m) of silicon oxide is created (Figure 1.2).   

 

Figure 1.2: Schematic of thickness of Si consumed during thermal oxidation 
[10]
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The oxidation rate of thermally grown silicon oxide is dependent on the surface density 

of Si-Si bonds, which depends on the crystal orientation of the silicon substrate.  The silicon 

oxidation rate of silicon is fastest on the (111) orientation and is slowest on the (100) orientation, 

throughout the range of oxidation temperatures.[11]  For wet oxidation (111) and (100) 

crystallographic orientations bound the upper and lower oxidation rates for silicon, respectively 

(Figure 1.3).   

 

Figure 1.3: Oxide thickness versus oxidation time for (100), (110), and (111) orientated 

silicon by wet oxidation 
[10]

 

 

There are two main processes for thermal oxidation of silicon, dry oxidation and wet 

oxidation.  Dry oxidation uses molecular oxygen as that oxidant specie and proceeds according 

to the following overall reaction: 

Si(s) + O2(g) � SiO2 

Wet oxidation of silicon uses water vapor instead of molecular oxygen as the oxidant species and 

proceeds according to the following overall reaction: 

Si(s) + 2H2O(g) � SiO2 + 2H2(g) 
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Both dry and wet thermal oxidation of silicon is typically carried out at temperatures ranging 

from 800oC to 1200oC, producing silicon oxides layers ranging in thickness from around 60 

Angstroms to 10,000 Angstroms (1 Angstrom = 0.1 nm).  The oxidation rate for both dry and 

wet oxidation increases dramatically with increased temperatures.  Oxidant partial pressure also 

plays a critical role in the oxidation rate for both wet and dry oxidation.  The oxidation rate 

increases nearly the same for both wet and dry oxidation as the partial pressure of the oxidant 

specie is increased.  The wet oxidation of silicon has a higher overall growth compared to dry 

oxidation because the oxidant solubility limit in silicon dioxide is three orders of magnitude 

higher for water than oxygen (3 x 1019 cm-3 for wet oxidation vs. 5.2 x 1016 cm-3 for dry 

oxidation at 1000oC).  This fact makes wet oxidation preferable over dry oxidation of silicon for 

processes requiring the growth of thick silicon dioxide layers.  However wet oxidation has a 

drawback; it produces a lower quality oxide compared to dry oxidation.  Silicon oxide layers 

produced via wet oxidation have lower density, lower dielectric strength, and allow more current 

leakage at the Si/SiO2 interface due to dangling Si bonds.  The longer time required to grow 

silicon oxide layers by dry oxidation along with the higher quality silicon oxide produced 

typically limits this oxidation process to thin critical silicon oxide layers such as the gate oxide in 

MOSFET devices.   

  In the oxidation of silicon there are two main rate controlling regimes.  After the initial 

regime where the thermal oxidation rate of the silicon is surface reaction rate controlled the 

oxidation of silicon transitions to a diffusion controlled process for both dry and wet oxidation.  

As the thickness of the silicon dioxide layer increases, the diffusion of molecular oxygen or 

water through the existing silicon dioxide layer increasingly dominates the oxidation rate of the 

silicon, which is proportional to the concentration of the oxidant specie at the Si/SiO2 interface.  

The interface oxidant concentration is controlled by the diffusivity of molecular oxygen and 

water in silicon dioxide, which is much greater than the diffusivity of silicon in silicon dioxide.  

Thus, with thicker silicon dioxide layers, the growth rate is controlled by the diffusion of the 

oxidant specie(s) through the silicon dioxide layer.  The diffusion in turn is controlled by the 

temperature and concentration of the oxidant in the bulk gas.  Numerous mathematical models 

have been proposed to describe both dry and wet oxidation of planar silicon surfaces, such as 

silicon wafers used in semiconductor device manufacturing, taking into account the transport of 

the oxidant to the Si/SiO2 interface. 
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The most popular mathematical model to date for describing both dry and wet oxidation 

of planar single crystal silicon surfaces was developed in 1965 by B. E. Deal and A. S. Grove [1].  

The model is affectionately known as the Deal-Grove[1] model.  The Deal-Grove[1] model owes 

its popularity to its overall simplicity in describing the phenomena involved in planar silicon 

oxidation.  The Deal-Grove[1] model equates three fluxes involved in the oxidation of silicon: 1) 

transport of the oxidant (i.e. molecular oxygen or water vapor) from the bulk gas to the outer 

silicon dioxide surface, 2) transport of the oxidant across the SiO2 film toward the silicon 

surface, and 3) reaction of the oxidant at the silicon surface forming a new layer of SiO2.  

Equating these three fluxes and integrating the resulting differential equation results in the well 

known Deal-Grove[1] equation for the thermal oxidation of planar silicon: 

��� +  ��� = �(
 +  �) (1.1) 

The quantity xo is the total SiO2 thickness, t is the oxidation time, τ is a quantity that corresponds 

to a shift in the time coordinate which corrects for the presence of the initial oxide layer, A is an 

equation coefficient and B is the parabolic rate constant. 

As device dimensions have shrunk and device geometries have become more 

sophisticated, the oxidation of non-planar structures has become more common.  The thermal 

oxidation of silicon is not limited to planar geometries, such as the oxidation of silicon wafers in 

planar semiconductor device manufacturing.  Other geometries such as cylinders and spheres are 

also of interest due to ongoing research in nano-wire and nano-crystal technology.  In particular, 

silicon nano-wires are attractive for their excellent physical and electrical properties (Table 1.1), 

and controllable diameters along with the prospect of integrating them into conventional IC 

technology using existing fabrication technology.[12]  The properties of silicon nano-wires depend 

strongly on the structure, shape and size, thus their control through techniques such as thermal 

oxidation is advantageous.  These advantages make silicon nano-wires appealing as building 

blocks for the fabrication of next generation electronic and optoelectronic devices. 

Recent progress has been reported for silicon nano-wire application in electronic devices 

(Figure 1.4) such as diodes, field-effect transistors (FETs), logic gates, single electron transistors, 

sensors, and solar cells [7].  The development of nano-electronic devices makes the thermal 

oxidation of silicon nano-wires and nano-crystals important.  First, thermally grown silicon 

dioxide forms an excellent interface to the silicon nano-wire substrate [12].  Second, growing 

silicon dioxide on the surface of a silicon nano-wire by thermal oxidation is important for tuning 
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the final diameter of the silicon nano-wire.  The underlying silicon nano-wire diameter can be 

controlled by thermally oxidizing the surface and then subsequently removing the oxide grown 

by chemical etching.  Thus, the ability to predict the resulting thermal oxide thickness is 

important to properly control the silicon nano-wires to desired diameters, to attain the targeted 

electrical properties. 

 

Table 1.1: Si nano-wire electrical properties compared to a planar Si device
[13]

 

 

 

Figure 1.4: Schematic of a silicon nano-wire field effect transistor; the scale bar is 5 nm 
[13] 

 

 

 

nanowire planar Si

data device

gate length (nm) 50 50

gate oxide thickness (nm) 1.5 1.5

mobility (cm
2
/V s) 230 - 1350

Ion (μA/μm) 2000 - 5600 650

Ioff (nA/μm) 4 - 45 9

subthreshold slope (mV/decade) 60 70

transconductance (μS/μm) 2700 - 7500 650
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CHAPTER 2 - Silicon Oxidation Models 

Oxidation of Planar Silicon: Deal-Grove Model 

B.E. Deal and A. S. Grove [1] presented their now popular model for thermal oxidation of 

planar silicon in 1965.  Due to the simplicity of the model it is still applied frequently today in 

semiconductor device manufacturing.  Deal and Grove derived their model by first considering a 

plane of silicon covered by a layer of silicon dioxide, xo thick (Figure 2.1).  Two assumptions 

were made concerning the oxidation process: 

1. the oxidation process is beyond an initial transient period, and  

2. the oxidation proceeds by the inward movement of the oxidant species (i.e. oxygen 

and/or water) rather than by the outward movement of silicon. 

Assumption number two is supported by experimental evidence for silicon [13, 14, 15] as reported 

by Deal and Grove [1].  The consequence of assumption number one is that the system is in 

steady state and thus three fluxes, F1 through F3 (Figure 2.1) are equal for all time. 

 

Figure 2.1: Model for the oxidation of silicon 
[2] 
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The oxidant specie(s) (i.e. oxygen and/or water) must go through the following steps, which 

represents the three fluxes (F1, F2 and F3), respectively [1]: 

1. The oxidant (i.e. molecular oxygen or water vapor) is transported from the bulk gas to the 

outer silicon dioxide surface. 

2. The oxidant is transported across the SiO2 film toward the SiO2/Si interface. 

3. The oxidant reacts at the silicon surface forming a new layer of SiO2. 

The flux of the oxidant from the bulk gas to the outer silicon dioxide surface (F1) is represented 

as: 


� =  ℎ�(�� −  ��) (2.1) 

ℎ� = Mass transfer coefficient 

�� = Concentration of oxidant in the bulk gas 

�� = Concentration of the oxidant at the vicinity of the outer oxide surface 

To determine the concentration of the oxidant at the outer surface of the oxide, Co, Henry’s law 

is employed to relate the outer surface oxidant concentration to the partial pressure of the oxidant 

in the bulk gas.  Henry’s law is only valid in the absence of oxidant association or dissociation at 

the outer surface of the oxide, which was shown empirically by Deal and Grove to be true. 

�� = ��� (2.2) 

� = Henry’s law constant for the oxidant in silicon dioxide 

�� = Partial pressure of the oxidant at the vicinity of the outer oxide surface 

By using the ideal gas law: 

�� =  ���  
(2.3) 

�� =  ����
�  

(2.4) 

� = Boltzmann’s constant (1.3806 x 10-23 J/K) 

� = Temperature of oxidant 

� = Volume of oxidant gas 

�� = Number of oxidant molecules at the vicinity of the outer oxide surface 

Thus: 

�� = ����� = �(����
� ) 

(2.5) 
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�� =  ����� 
(2.6) 

Also, by defining the equilibrium concentration of the oxidant in the silicon dioxide layer (C*) 

as: 

�∗ ≡ �����  (2.7) 

Then the concentration of the oxidant in the bulk gas can be written as: 

�� =  �∗
��� 

(2.8) 

By utilizing equations 2.6 and 2.8 with equation 2.1 the flux of the oxidant from the bulk gas to 

the outer silicon dioxide surface is represented as: 


� =  ℎ���� (�∗ − ��) = ℎ (�∗ −  ��) 
(2.9) 

ℎ ≡  ℎ���� 
(2.10) 

The flux of the oxidant across the silicon dioxide film toward the silicon surface (F2) is described 

by the one-dimensional form of Fick’s first law of diffusion: 


� =  −� ��
�� 

(2.11) 

� = Oxidant diffusivity in silicon dioxide 

Assuming a linear concentration gradient of the oxidant in the silicon dioxide layer then equation 

2.11 can be written as: 


� = � (�� −  ��) 
��  

(2.12) 

�� = Oxidant concentration at the silicon/silicon dioxide interface 

�� = oxide thickness 

The flux of the oxidant consumed by the reaction at the silicon/silicon dioxide interface (F3) is 

given by: 


� =  ���� (2.13) 

�� = Reaction rate constant at the silicon/silicon dioxide interface 

The reaction rate constant, kS, represents a number of chemical processes that take place at the 

silicon/silicon dioxide interface during oxidation.  These include molecular oxygen dissociating 

to atomic oxygen, silicon to silicon bond breaking, and silicon and oxygen bond formation. 
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 Due to the assumption that the oxidation process is beyond an initial transient period then 

due to this steady state condition: 


� =  
� and 
� =  
� (2.14) 

 

From the steady state assumption that yielded equation 2.14 the following two equations are 

obtained: 

ℎ (�∗ −  ��) =  � (�� −  ��) 
��  

(2.15) 

� (�� −  ��) 
�� =  ���� (2.16) 

Equations 2.15 and 2.16 together create two equations with two unknowns, Co and Ci.  Solving 

equation 2.15 and 2.16 for Co and Ci yields the following: 

���∗  =  1 + �����
1 +  ��ℎ + �����

 

(2.17) 

���∗ =  1
1 +  ��ℎ + �����

 
(2.18) 

The oxidation rate is proportional to the flux of oxidant molecules to the silicon/silicon dioxide 

interface: 


 =  �� �� =  ���∗

1 +  ��ℎ +  �����
 

(2.19) 

!��!
 =  

�� = 

���∗
��

1 +  ��ℎ + �����
 

(2.20) 

�� = Number of oxidant molecules per unit volume required to form a unit volume of silicon 

dioxide (2.25x1022 cm-3 for oxygen and 5x1022 cm-3 for water) 

Equation 2.20 can be simplified by multiplying both the numerator and denominator by 2D/kS 

resulting in: 

!��!
 =  �
� + 2�� 

(2.21) 

� = 2� (�
# + �

$%) (2.22) 
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� =  2��∗
��  

(2.23) 

Equation 2.21 was employed to predict the oxidation rates for both dry and wet oxidation.  The 

rate for wet oxidation is roughly 10 times faster than the dry oxidation rate.  The results are 

graphed in Figures 2.2 and 2.3, respectively. 

 

Figure 2.2: Oxidation rates of silicon in dry oxygen at various oxidation temperatures 

 

 

Figure 2.3: Wet oxidation rates of silicon at various oxidation temperatures 
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Deal and Grove[1] arrived at initial conditions for equation 2.21 by considering a total oxide 

thickness, xo, consisting of two parts; 1) an initial layer of oxide, xi, and 2) the additional 

thickness of oxide grown during the thermal oxidation step.  The initial layer of oxide, xi is 

present on the silicon prior to the thermal oxidation under consideration.  Thus Deal and Grove[1] 

arrived at the following initial conditions for equation 2.21: 

xo = xi at t = 0 (2.24) 

 The solution of equation 2.21 achieved through integration by separation of variables 

subject to the initial conditions from equation 2.24, is: 

��� +  ��� =  ��� +  ��� +  �
 (2.25) 

Equation 2.25 can be written in the more popular form: 

��� +  ��� = �(
 +  �) (2.26) 

where: 

� = ��� +  ����  
(2.27) 

To arrive at the oxide thickness as a function of time the quadratic equation 2.25 is solved 

yielding the following equation: 

��� 2& = [1 + 
 +  �
�� 4�& ]�/� − 1 

(2.28) 

Deal and Grove[1] examined two limiting forms of equation 2.28.  The first limiting form was for 

large times (i.e. 
 ≫  �� 4�&  and 
 ≫  �), which yielded the following equation: 

,-. �& = [ /
.0 12& ]�/� or  ���  ≅ �
 (2.29) 

The second limiting form was for the extreme of small oxidation times (i.e. 
 ≪ �� 4�& ), which 

yielded the following equation: 

,-. �& = �
� 5 /6 7

.0 12& 8  or  �� ≅  2
. (
 +  �) (2.30) 

In equation 2.29 the coefficient B is referred to as the parabolic rate constant since equation 2.28 

reduces to the well known parabolic oxidation law (Figure 2.4) for relatively long oxidation 
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times.  The coefficient, 
2
., in equation 2.30 is known as the linear rate constant since the general 

relationship given by equation 2.29 reduces to a linear law (Figure 2.4) for short oxidation times. 

 

Figure 2.4: Limiting forms of Deal-Grove model 
[10]

 

 

According to equation 2.23 the parabolic rate constant, B, is proportional to the 

equilibrium oxidant concentration, C*, in the oxide.  If Henry’s law is obeyed for the equilibrium 

oxidant concentration, C*, then the parabolic rate constant, B, is also proportional to the partial 

pressure of the oxidizing species.  This prediction has been experimentally verified (Figure 2.5).  

Also, according to equation 2.22 the coefficient A is independent on the partial pressure of the 

oxidizing species in the gas [17].   
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Figure 2.5: The effect of partial pressure of the oxidant on the parabolic rate constant for 

wet and dry oxidation at 1000
o
C and 1200

o
C 

[1, 16]
 

 

In the case of wet oxidation the initial oxide thickness, xi, was found to be zero at all 

temperatures by extrapolating the oxide thickness to t = 0 on a plot of oxide thickness versus 

oxidation time.  In contrast, a plot of oxide thickness versus oxidation time for dry oxygen 

oxidation extrapolated to t = 0 did not extrapolate to zero initial thickness at any temperature.  

This difference in extrapolated initial thickness for wet and dry oxidation explains the difference 

in the reported values for τ.  Since dry oxidation does not extrapolate to zero thickness at t = 0, 

the quantity τ then adjusts the time coordinate for the presence of an initial thickness of oxide for 

dry oxidation, xi (Table 2.1). 

According to equation 2.23, the parabolic rate constant, B, is dependent on the diffusivity 

of the oxidant in silicon dioxide.  In turn the temperature dependence of the parabolic rate 

constant should be equivalent to that of the diffusivity of the oxidant specie(s) in the oxide layer.  

The temperature dependence for the parabolic rate constant is shown in Figure 2.6.   
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Figure 2.6: Temperature effect on the parabolic rate constant, B 

 

The activation energies of B are 28.5 kcal/mol and 16.3 kcal/mol for dry oxygen and water, 

respectively [1].  The diffusivity of dry oxygen and water in fused silica (the structure of silicon 

dioxide formed through thermal oxidation corresponds to amorphous, fused silica) as a function 

of temperature is given in Figure 2.7.  The diffusivity temperature dependence follows an 

Arrhenius functional relationship: 

�9� =  �9�� :;<=0>?  
(2.31) 

�@�9 =  �@�9� :;<A0=>?  
(2.32) 

 

where �9� and �@�9 are the diffusivities of dry oxygen and water in silicon dioxide, 

respectively.  The pre-exponential terms, �9��  and �@�9�  have the values of 1.02x108 µm2/hr and  

3.60x105 µm2/hr[18], respectively.  The diffusivity activation energies are B9� = 27 kcal/mol[19] 

and B@�9 = 18.3 kcal/mol[18] for dry oxygen and water, respectively.  R is the universal gas 

constant and T is temperature.  Thus, the diffusivity activation energies for dry oxygen and water 

are in good agreement with the activation energies of B for dry and wet oxidation. 
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 Figure 2.8 shows the temperature dependence of the linear rate constant, B/A.  It has an 

Arrhenius functional dependence with activation energies B9� = 46 kcal/mol[4] and B@�9 = 45.3 

kcal/mol,[1] respectively for dry oxygen and water.  A similar surface controlled mechanism is 

suggested for both dry oxygen and water since the activation energies for both of these oxidant 

species are essentially equal.  The linear rate constant is given by dividing equation 2.23 by 

equation 2.22 yielding: 

�
� =  ��ℎ

�� + ℎ (�∗
��) 

(2.33) 

The linear rate constant, equation 2.33, includes the effects at both the gas/oxide interface (h) 

along with the oxide/silicon interface (kS).  If these quantities (h and kS) are very different in 

magnitude, the quantity 
$%#

$%6#  will approximately equal kS or h, whichever is smaller.[4]  Various 

calculated values for the quantity 
$%#

$%6# are given in Table 2.3 and Table 2.4 for dry oxygen and 

water, respectively.  Deal and Grove[1] assumed that h is determined solely by a gas phase 

transport process where its value can be estimated based on standard boundary layer 

considerations.  For the flows considered in the original work by Deal and Grove[1] (Reynolds 

number ≈ 25) the value of h is estimated to be approximately 108 µm/hr.[1]  This relatively large 

value of the gas-phase transport coefficient, h was confirmed by Deal and Grove[1] by two 

experiments.  In the first experiment, the carrier gas flow rate was varied 50 fold without any 

significant effect on the oxidation rate.  In the other experiment the backside of the silicon wafer, 

which was lying flat on the boat was oxidized to the same extent as the topside.  Both of these 

observations by Deal and Grove[1] point to the relatively small importance of the gas phase 

transport process in the overall oxidation process. Also, with most silicon oxidation being 

conducted at atmospheric pressure the oxidation rate is then approximately independent of the 

gas phase mass transport (h).  With the value for h being several orders of magnitude large than 

the values for the quantity 
$%#

$%6# given in Table 2.3 and Table 2.4 it follows that 
$%#

$%6# =  �� since 

h is much larger then kS.  Thus, the activation energies for the linear rate constant, B/A for dry 

and wet oxidation reflect the temperature dependence of the reaction at the Si/SiO2 interface.  

This temperature dependence of kS is described using an Arrhenius function yielding the 

following equations for dry and wet oxidation:  
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��9� =  �9�:;<=0>?  
(2.34) 

��@�9 =  �@�9:;<A0=>?  
(2.35) 

where the pre-exponential factors �9� and �@�9 have average calculated values of 6.33x106 

µm/hr and 6.55x107 µm/hr, respectively.  These values are based upon the linear rate constants, 

B/A given in Table 2.1 and Table 2.2 along with the activation energies for dry oxygen and 

water given in Figure 2.8. 

 

Table 2.1: Rate constants for the dry oxidation of silicon 
[1] 

 

 

Table 2.2: Rate constants for the wet oxidation of silicon 
[1]
  

 

 

Table 2.3: kSh/kS+h for dry oxidation at various temperatures 

 

Oxidation Temperature (oC) A (μm) B (μm2/hr) B/A (μm/hr) τ (hr)

1200 0.040 0.045 1.12 0.027

1100 0.090 0.027 0.30 0.076

1000 0.165 0.0117 0.071 0.37

920 0.235 0.0049 0.0208 1.40

800 0.370 0.0011 0.003 9.0

700 0.00026 81.0

Oxidation Temperature 

(
o
C) A (μm) B (μm

2
/hr) B/A (μm/hr) τ (hr)

1200 0.05 0.720 14.40 0

1100 0.11 0.510 1.64 0

1000 0.226 0.287 1.27 0

920 0.50 0.203 0.406 0

Oxidation Temperature (
o
C) kSh/kS+h (μm/hr)

1200 5.0E+05

1100 1.1E+05

1000 2.8E+04

920 9.7E+03

800 1.7E+03
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Table 2.4: kSh/kS+h for wet oxidation at various temperatures 

 

 

 

 

Figure 2.7: The diffusivity of dry oxygen and water in fused silica as a function of 

temperature 
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Figure 2.8: Temperature effect on the linear rate constant, B/A 

  

The equilibrium concentration of the oxidants in silicon dioxide, C* at various 

temperatures can be determined through exploiting equation 2.23 and either equation 2.31 or 

2.32 depending on the oxidant specie of interest.  Values for the parabolic rate constant, B can be 

either taken from Tables 2.1 and 2.2 or read from Figure 2.6.  Values of C* at various 

temperatures are given in Table 2.5 for dry oxygen and Table 2.6 for water. 

 

Table 2.5: Equilibrium concentration of dry oxygen in SiO2 at various temperatures 
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Oxidation Temperature (oC) C* (cm- 3)

1200 5.1E+16

1100 6.0E+16

1000 5.6E+16

920 4.8E+16

800 3.9E+16
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Table 2.6: Equilibrium concentration of water in SiO2 at various temperatures 

 

As shown in both Table 2.5 and Table 2.6 the equilibrium concentrations for both dry oxygen 

and water in silicon dioxide are essentially constant with temperature due to the similarity in the 

temperature dependence of the parabolic rate constant, B and of the oxidant diffusivity.  

 The Deal-Grove[1] model for thermal oxidation of planar silicon owes its popularity to its 

overall simplicity.  Deal and Grove [1] compared their model to experimental results and found it 

agreed well with the experimental data.  The coefficients in the Deal-Grove[1] model, namely A 

and B, were also shown to depend on pressure and temperature in a predictable manner [1].  As 

shown above in equation 2.23 the parabolic rate constant, B, is proportional to the partial 

pressure of the oxidizing species.  The coefficient, A, is independent of pressure as shown by 

equation 2.22.  The parabolic rate constant, B, has an exponential temperature dependence due to 

the exponential temperature dependence of the diffusivities of oxygen and water in fused silica 

as shown by equation 2.23 and Figures 2.6 and 2.7.  The equilibrium concentrations of both 

oxygen and water are essentially constant across the range of oxidation temperatures of interest 

as shown in Table 2.5 and Table 2.6.  The values given in Table 2.5 and Table 2.6 for the 

equilibrium concentrations of oxygen and water are in good agreement with solubility of oxygen 

and water in silica.[17, 18]  Due to its simplicity, the planar Deal-Grove[1] model has been modified 

to predict thermal oxidation rates of cylindrical and spherical silicon structures.       

Oxidation of Cylindrical Silicon: Modified Deal-Grove Model 

In the Deal-Grove[1] model for thermal oxidation of planar silicon, the three fluxes 

(Figure 2.1) are set equal to each other (Equation 2.14).  The planar Deal-Grove[1] model is 

comparable to a steady state diffusion model for the oxidant (i.e. oxygen or water) which is 

described by the Laplace equation. [2] An idealized modified Deal-Grove[1] model for cylindrical 

silicon structures can be derived by extending the planar Deal-Grove[1] model criteria and 

Oxidation Temperature (oC) C* (cm- 3)

1200 2.6E+19

1100 2.9E+19

1000 2.8E+19

920 3.2E+19
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assumptions into cylindrical coordinates.  Also, to simplify the theoretical analysis the effect of 

crystal orientation on the rate of oxidation is assumed negligible as proposed by Kao et al. [2]   

The diffusion of oxidizing species in cylindrical coordinates is described by the solution 

of the cylindrical version of the Laplace equation [2]: 

∇�� =  1
D

E
ED 5D E�

ED8 =  0 
(2.36) 

Again as in the Deal-Grove[1] model for thermal oxidation of planar silicon the three fluxes 

(Figure 2.1) are set equal to each other.  In cylindrical coordinates these fluxes are: 


� = ℎ(�∗ −  ��) (2.37) 


� = � E�
ED  

(2.38) 


� = ���� (2.39) 


� =  
� and 
� =  
� (2.40) 

F1 = F2 at the outer surface of the oxide layer (i.e. r = b) and F2 = F3 at the Si/SiO2 interface (i.e. r 

= a) (Figure 2.9).  Solving equation 2.36 by simple integration yields the following equation 

where k1 and k2 are constants of integration: 

�(D) =  �� ln(D) +  �� (2.41) 

Differentiating equation 2.41 with respect to r yields the following equation: 

E�
ED =  ��D  

(2.42) 

Evaluation of equation 2.42 at both interfaces (i.e. r = a and r = b) produces the following two 

equations: 

E�
ED  I
 D = I =  ��I  

(2.43) 

E�
ED  I
 D = J =  ��J  

(2.44) 

Combining equations 2.43 and 2.44 with equation 2.40 generates the following two equations: 

ℎ(�∗ −  ��) =  � ��J  
(2.45) 

� ��I = ���� (2.46) 

Solving for Co and Ci generates: 
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�� = �∗ℎJ − ���ℎJ  
(2.47) 

�� =  �����I  
(2.48) 

Noting that at r = b, C = Co and at r = a, C = Ci and then evaluating equation 2.41 at r = a and r = 

b yields: 

�∗ℎJ − ���ℎJ =  �� ln(J) +  �� 
(2.49) 

�����I =  �� ln(I) + �� 
(2.50) 

Equations 2.49 and 2.50 now contain two unknowns, k1 and k2.  Solving equations 2.49 and 2.50 

for k1 and k2 produces: 

�� =  �∗
�I�� +  �Jℎ +  ln (JI) 

(2.51) 

�� =  �∗(� − I�� ln(I))
� +  �I��Jℎ + I��ln (JI) 

(2.52) 

Substituting equations 2.51 and 2.52 into equation 2.41 generates the following equation for the 

concentration of the oxidant as a function of the cylinder radius: 

�(D) =  �∗IJℎ��
�Jℎ + �I�� + IJℎ�� ln KJIL ( �

I�� + ln KD
IL) 

(2.53) 
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Figure 2.9: Schematic of an oxidized convex silicon surface 

 

In order to develop an equation for the oxidation rate of a silicon cylinder one notes that 

the concentration of the oxidant molecules at the Si/SiO2 interface is Ci at r = a.  Thus solving 

equation 2.53 at r = a generates an expression for Ci:  

�� =  
�∗ ��&

1�� + IJ 1ℎ + I� ln KJIL 

(2.54) 

The oxidation rate is proportional to the flux of oxidant molecules to the Si/SiO2 interface thus: 


 =  �� �� =  �∗
1�� + IJ 1ℎ + I� ln KJIL 

(2.55) 

!��!
 =  

�� =  

�∗ ��&
1�� + IJ 1ℎ + I� ln KJIL 

(2.56) 

It is also noted that the oxide thickness (xo) for a silicon cylinder is given by: 

�� = J − I MD J =  �� +  I (2.57) 

Thus equation 2.56 can be re-written in terms of the oxide thickness (xo) by utilizing equation 

2.57: 



 24

!��!
 =  
�∗ ��&

1�� + I�� + I 1ℎ + I� ln K1 + ��I L 

(2.58) 

The diffusion of the oxidant species on a planar silicon surface is linearly dependent on 

the oxide thickness, xo, as shown in equation 2.20 by the term xo/D in the denominator.  In 

contrast the diffusion of the oxidant species on a cylindrical silicon surface is logarithmically 

dependent on the oxide thickness, xo, as shown in equation 2.58 by the term 
N
O ln K1 + ,-

N L in the 

denominator (Figure 2.10).  Thus oxide thickness of silicon cylinders can no longer be predicted 

by means of the simple linear and parabolic rate constants as described by the Deal-Grove[1] 

model for planer silicon oxidation.  The logarithmic dependence of the diffusion coefficient in 

equation 2.58 is the main difference between equation 2.58 and the Deal-Grove[1] Model, 

equation 2.20.  The mass transfer terms (1/h) in the denominator of both equation 2.58 and 2.20 

can be neglected because to it is the smallest term in the denominator of both equations.  As the 

radius of silicon cylinders decrease, the coefficient for the diffusion term also decreases (Figure 

2.10b).  Thus for small diameter silicon cylinders with relatively thin oxide layers the reaction at 

the surface of the silicon dominates the oxidation rate as can be expect since the diffusion term in 

equation 2.58 approaches zero.  As can be seen in Figure 2.10 for these conditions, either very 

small diameter silicon cylinders or relatively thin oxide layers, the diffusion coefficient in 

equation 2.58,I ln K1 + ,-
N L, approaches zero and the oxidation process is increasingly dominated 

by the surface reaction rate. Thus for the case of thin oxides and/or small cylinder diameters the 

situation can be approximated by the use of the linear limiting form of planar Deal-Grove[1] 

model.  Although, as the oxide layer becomes thicker diffusion exhibits a more important role in 

the oxidation of silicon cylinders (Figure 2.10).  As the silicon cylinder’s oxide layer thickness 

increases the oxidation rate switches from reaction rate limited to diffusion limited similar to the 

oxidation of planar silicon.  The planar Deal-Grove[1] model can no longer adequately predict the 

oxidation rate as the oxide layer thickness increases on silicon cylinders.   

In a cylindrical structure, a high concentration of oxidant is expected due to the wide 

exposure to the ambient [2] as predicted by equation 2.53 with r = a.  For a given oxide thickness 

the Si/SiO2 interface concentration of oxidant, Ci, increases as the radius of the cylinder 

decreases.  Also as can be seen in equation 2.58 when the oxide thickness, xo, is thin relative to 
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the radius of the cylinder, a, equation 2.58 reduces to the Deal-Grove[1] model for planar silicon 

oxidation, equation 2.20 (Figure 2.11).   

 

Figure 2.10: Planar and cylindrical diffusion coefficient comparison vs. oxide thickness 

(dry oxidation) 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1 0.15 0.2

a
ln

(1
+

x
o
/a

) 
(μ

m
)

xo (μm)

Diffusion Coefficient vs. Oxide Thickness

Planar

Cylindrical (r=0.1 micron)

Cylindrical (r=0.2 micron)

Cylinder (r=0.02 micron)



 26

 

Figure 2.11: Silicon cylinder oxide thickness vs. time (dry oxygen, 800
o
C, r = 0.1 μm) 

 

The oxidation of cylindrical silicon is also dependent on the surface area of the core 

silicon cylinder.  The surface area during oxidation of planar silicon does not change with time.  

In contrast the surface area of a silicon cylinder does change with time and has to be taken into 

account when determining the oxide thickness at a given time.  Due to the conservation of 

volume the core Si cylinder radius, r = a (Figure 2.9), and the core Si cylinder radius + oxide 

shell radius, r = b (Figure 2.9), are not independent variables.[5,7]  It is assumed that the oxide 

layer formed is an incompressible fluid.[5, 7]  Also, it is assumed that the ratio of the volume of 

produced SiO2 to the volume of consumed Si is 2.25:1 by the following relationship [20]: 
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PQ��9� Y��9�&
PQ�� Y��& =  

27.3109 [V� VMW&
12.0541 [V� VMW& ≅ 2.25 

(2.59) 

where MWSi and MWSiO2 are the molecular weights of Si and SiO2, respectively and ρSi and ρSiO2 

are the densities of Si and SiO2, respectively.  The volume of a cylinder is: 

� =  _D�ℎ (2.60) 

 where r and h are the radius the height of the cylinder, respectively.  If the starting radius of the 

core silicon cylinder is given by ao and the starting radius of the core silicon cylinder + oxide 

shell is given by bo then a relationship between the core silicon cylinder, a, and the core silicon 

cylinder + oxide shell, b, can be developed through the following: 

���9� =  _(J� − I�)ℎ −  _(J�� − I��)ℎ (2.61) 

��� = _(I�� − I�)ℎ (2.62) 

where VSiO2 and VSi are the volumes of the core silicon cylinder + oxide shell and the core 

silicon cylinder, respectively.  Multiplying equation 2.62 by the value of 2.25 as given by 

equation 2.59 and then setting this equation equal to equation 2.61 yields the following equation: 

_(J� − I�)ℎ −  _(J�� − I��)ℎ =  2.25_(I�� − I�)ℎ 

or 

I� + 1.25J� =  I�� + 1.25J�� = � 

(2.63) 

To develop a function describing how the core silicon cylinder radius, a, changes with time 

equation 2.63 is used along with the following equations: 

���(I) = _I�ℎ (2.64) 

!���!
 =  2_Iℎ !I
!
  

(2.65) 

���9�(I, J) =  _(J� − I�)ℎ (2.66) 

!���9�!
 = 2_ 5J !J
!
 − I !I

!
8 ℎ 
(2.67) 

!��!
 = !J
!
 − !I

!
  
(2.68) 

Since one unit volume of Si is consumed and 2.25 unit volumes of SiO2 are produced, the 

following relationship can be developed: 
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!���9�!
 =  −2.25 !���!
  

or 

J !J
!
 − I !I

!
 =  −2.25I !I
!
  

(2.69) 

Solving equation 2.69 for da/dt yields the following differential: 

!I
!
 = − !��!


1
1 + 1.25 IJ

 
(2.70) 

In order to eliminate b in equation 2.70 the relationship given by equation 2.63 is used resulting 

in the following differential equation describing how the core silicon cylinder radius, a, changes 

with time: 

!I
!
 = − !��!


1
1 + 1.25I(� − 1.25I�);�/� 

(2.71) 

 Combining equation 2.58 with equation 2.71 creates a system of two differential equations with 

two unknowns, xo and a, which was solved numerically by means of a Runge-Kutta method 

(Figure 2.11). 

In summary according to the model presented silicon cylinder will oxidizes faster than 

planar silicon for thick oxide layers (i.e. ≥ 0.5 μm) and small diameters (Figure 2.11).  Under the 

same conditions (thick oxide and small diameters), the oxidation rate for silicon cylinders is 

surface reaction rate controlled due to the small coefficient for the diffusion term in equation 

2.58 (Figure 2.10) and also due to the higher interface concentration of oxidant, Ci.  The 

oxidation rate of silicon cylinders come close to that of planar silicon, as describe by the Deal-

Grove[1] model, for relatively thin oxide layers and small cylinders, where the oxidation rate is 

reaction rate controlled, as described by equation 2.58.  Thus in this situation the oxidation can 

be approximated with that of the planar Deal-Grove[1] model.      

Oxidation of Spherical Silicon: Modified Deal-Grove Model 

In the Deal-Grove[1] model for thermal oxidation of planar and cylindrical silicon, the 

three fluxes (Figure 2.1) are set equal to each other (Equation 2.14).  The planar Deal-

Grove[1]model  is comparable to a steady state diffusion model for the oxidant (i.e. oxygen or 

water) which is described by the Laplace equation.[11,14]  An idealized modified Deal-Grove[1] 

model for spherical silicon structures can be derived by extending the Planar Deal-Grove[1] 
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model criteria and assumptions into spherical coordinates as proposed by Coffin et al.[5] and 

Chen et al.[7]  Also, as in the cylindrical oxidation model the effect of crystal orientation on the 

rate of oxidation is assumed negligible to simplify the theoretical analysis. 

The diffusion of oxidizing species in spherical coordinates is described by the solution of 

the spherical version of the Laplace equation: 

∇�� =  1
D�

E
ED 5D� E�

ED8 =  0 
(2.72) 

Again as in the Deal-Grove[1] model for thermal oxidation of planar silicon the three fluxes 

(Figure 2.1) are set equal to each other.  In spherical coordinates these fluxes are: 


� = ℎ(�∗ −  ��) (2.73) 


� = � E�
ED  

(2.74) 


� = ���� (2.75) 


� =  
� and 
� =  
� (2.76) 

F1 = F2 at the outer surface of the oxide layer (i.e. r = b) and F2 = F3 at the Si/SiO2 interface (i.e. r 

= a) (Figure 2.9).  Solving equation 2.72 by simple integration yields the following equation 

where k1 and k2 are constants of integration: 

�(D) =  ��D + �� 
(2.77) 

Differentiation equation 2.77 with respect to r yields the following equation: 

E�
ED =  −��D�  

(2.78) 

Evaluation of equation 2.78 at both interfaces (i.e. r = a and r = b) produces the following two 

equations: 

E�
ED  I
 D = I =  −��I�  

(2.79) 

E�
ED  I
 D = J =  −��J�  

(2.80) 

Combining equations 2.79 and 2.80 with equation 2.76 generates the following two equations: 

ℎ(�∗ −  ��) =  −� ��J� 
(2.81) 

−� ��I� = ���� (2.82) 

Solving for Co and Ci generates: 
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�� = �∗J�ℎ + ���J�ℎ  
(2.83) 

�� =  −���I���  
(2.84) 

Noting that at r = b, C = Co and at r = a, C = Ci and then evaluating equation 2.77 at r = a and r = 

b yields: 

−���I��� =  ��I + �� 
(2.85) 

�∗J�ℎ + ���J�ℎ =  ��J +  �� 
(2.86) 

Equations 2.85 and 2.86 now contain two unknowns, k1 and k2.  Solving equations 2.85 and 2.86 

for k1 and k2 produces: 

�� =  − �∗J�ℎ
� 51 + ℎJ�

��I�8 + ℎ(J�
I − J) 

(2.87) 

�� =  − �∗( 1�� + I�)
1�� + I�

J� 1ℎ + 1� (I − I�
J ) 

(2.88) 

Substituting equations 2.87 and 2.88 into equation 2.77 generates the following equation for the 

concentration of the oxidant as a function of the sphere radius: 

�(D) =  �∗(DI − I� + �D�� )
D(�I�

J�ℎ − I�
J + I + ���) 

(2.89) 

In order to develop an equation for the oxidation rate of a silicon sphere one notes that 

the concentration of the oxidant molecules at the silicon/silicon dioxide interface is Ci at r = a.  

Thus solving equation 2.89 at r = a generates an expression for Ci:  

�� =  
�∗ ��&

1�� + I�
J� 1ℎ + 1� (a − a�

b ) 

(2.90) 

The oxidation rate is proportional to the flux of oxidant molecules to the Si/SiO2 interface thus: 


 =  �� �� =  �∗
1�� + I�

J� 1ℎ + 1� (a − a�
b ) 

(2.91) 
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!��!
 =  

�� =  

�∗ ��&
1�� + I�

J� 1ℎ + 1� (a − a�
b ) =

�∗ ��&
1�� + I�

J� 1ℎ + I(J − I)J�
 

(2.92) 

It is also noted that the oxide thickness (xo) for a silicon sphere is given by: 

�� = J − I MD J =  �� +  I (2.93) 

Thus equation 2.92 can be re-written in terms of the oxide thickness (xo) by utilizing equation 

2.93: 

!��!
 =  
�∗ ��&

1�� + I�
(�� + I)� 1ℎ + I��(�� + I) 1�

 

(2.94) 

The diffusion of the oxidant species on a planar silicon surface is linearly dependent on 

the oxide thickness, xo, as shown in equation 2.20 by the term xo/D in the denominator.  In 

contrast the diffusion of the oxidant species on a spherical silicon surface is dependent on the 

ratio of the product of core silicon sphere radius, a, and the oxide thickness, xo, to the core silicon 

sphere radius + oxide shell thickness, b or xo + a, as shown in denominator of equation 2.94 by 

the term 
N,-

(,-6N) (Figure 2.11).  The dependence of the diffusion coefficient in equation 2.94 on 

the ratio of 
N,-

(,-6N) is essentially the only difference between equation 2.94 and the Deal-Grove[1] 

model, equation 2.20.  As in the planar and cylindrical geometry cases, the mass transfer terms 

(1/h) in the denominator of both equation 2.94 and 2.20 can be neglected because it is the 

smallest term in the denominator of both equations.  As the radius of silicon spheres decrease the 

coefficient for the diffusion term decreases (Figure 2.12).  So for extremely thin oxides relative 

to the sphere radius the diffusion coefficient in equation 2.94 approaches zero.  In this limiting 

form the oxidation process of silicon spheres is surface reaction rate limited and thus can be 

predicted using the linear limiting form of the planar Deal-Grove[1] model (Figure 2.12).  

However, as the oxide thickness increases the diffusion term dominates in equation 2.94 and thus 

the oxidation process of silicon spheres can no longer be adequately predicted by the planar 

Deal-Grove[1] model.  



 32

 

Figure 2.12: Planar and spherical diffusion coefficient comparison vs. oxide thickness 

 

In a spherical structure, a high concentration of oxidant is expected due to the wide 

exposure to the ambient [2].  For a given oxide thickness the Si/SiO2 interface concentration of 

oxidant, Ci, increases as the radius of the sphere decreases as described by equation 2.89 with r = 

a.  Also as can be seen in equation 2.94 when the oxide thickness, xo, is thin relative to the radius 

of the sphere, a, equation 2.94 reduces to the Deal-Grove[1] model for planar silicon oxidation, 

equation 2.20 (Figure 2.13).  Thus for the case of thin oxides and large spheres the situation can 

be approximated by the use of the planar Deal-Grove[1] model. 
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Figure 2.13: Silicon sphere oxide thickness vs. time (dry oxygen, 800oC, r =0.1µm) 

  

As in the oxidation of cylindrical silicon, spherical silicon is also dependent on the 

surface area of the core silicon sphere.  Also, as with cylindrical silicon the surface area of a 

silicon sphere does change with time and has to be taken into account when determining the 

oxide thickness at a given time.  This is again in contrast to the oxidation of planar silicon where 

the surface area does not change with time.  As was with cylindrical silicon, the conservation of 

volume the core Si sphere radius, r = a (Figure 2.9), and the core Si sphere radius + oxide shell 

radius, r = b (Figure 2.9), are not independent variables.[5, 7]  The same assumptions used for 

cylindrical silicon apply to spherical silicon.  Namely, it is assumed that the oxide layer formed 

is an incompressible fluid [5, 7].  Also, it is assumed that the ratio of the volume of produced SiO2 

to the volume of consumed Si is 2.25:1 by following the relationship in equation 2.59 [20]: 

The volume of a sphere is: 

� =  4
3 _D� 

(2.95) 

 where r is the radius of the sphere.  If the starting radius of the core silicon cylinder is given by 

ao and the starting radius of the core silicon sphere + oxide shell is given by bo then a relationship 
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between the core silicon sphere, a, and the core silicon sphere + oxide shell, b, can be developed 

through the following: 

���9� =  4
3 _(J� − I�) −  4

3 _(J�� − I��) 
(2.95) 

��� = 4
3 _(I�� − I�) 

(2.96) 

where VSiO2 and VSi are the volumes of the core silicon sphere + oxide shell and the core silicon 

sphere, respectively.  Equating equation 2.96 with equation 2.97 and utilizing the relationship 

given by equation 2.59 yields the following equation: 

4
3 _(J� − I�) −  4

3 _(J�� − I��) =  2.25 4
3 _(I�� − I�) 

or 

I� + 1.25J� =  I�� + 1.25J�� = � 

(2.97) 

To develop a function describing how the core silicon sphere radius, a, changes with time 

equation 2.97 is used along with the following equations: 

���(I) = 4
3 _I� 

(2.98) 

!���!
 =  4_I� !I
!
  

(2.99) 

���9�(I, J) =  4
3 _(J� − I�) 

(2.100) 

!���9�!
 = 4_(J� !J
!
 − I� !I

!
) 
(2.101) 

!��!
 = !J
!
 − !I

!
  
(2.102) 

Now utilizing the fact that as one unit volume of Si is consumed 2.25 unit volumes of SiO2 are 

produced the following relationship is developed: 

!���9�!
 =  −2.25 !���!
  

or 

J� !J
!
 − I� !I

!
 =  −2.25I� !I
!
  

(2.103) 

Solving equation 2.103 for da/dt yields the following differential: 
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!I
!
 = − !��!


1
1 + 1.25 I�

J�
 

(2.104) 

In order to eliminate b in equation 2.104 the relationship given by equation 2.97 is used resulting 

in the following differential equation describing how the core silicon cylinder radius, a, changes 

with time: 

!I
!
 = − !��!


1
1 + 1.25I�(� − 1.25I�);�/� 

(2.105) 

 Combining equation 2.94 with equation 2.105 creates a system of two differential equations 

with two unknowns, xo and a, which was solved numerically by means of a Runge-Kutta method 

(Figure 2.13). 

In summary according to the model presented a silicon sphere will oxidizes faster than 

planar silicon for thick oxide layers (i.e. ≥ 0.5 μm) and small diameters.  Under the same 

conditions (thin oxide and/or small diameters) the oxidation rate for silicon spheres is surface 

reaction rate controlled due to the small coefficient for the diffusion term in equation 2.94 and 

also due to the higher interface concentration of oxidant, Ci.  The oxidation rate of silicon 

spheres come close to that of planar silicon, as describe by the Deal-Grove[1] model, for 

relatively thin oxide layers.      
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CHAPTER 3 - Stress Effects 

 The two modified Deal-Grove[1] models for the oxidation of silicon cylinders and silicon 

spheres presented in chapter 2 are simple models in that neither one accounts for the retarded 

oxidation caused by stress at the Si/SiO2 interface and in the bulk oxide (Figure 3.1 and Figure 

3.2) as the oxide layer increases in thickness.  Kao et al.[2] propose that the stress at the Si/SiO2 

interface and in the bulk oxide effect the reaction rate and transport of oxidants, respectively.  It 

is assumed that SiO2 is a viscous fluid and, in fact this assumption is reported to be valid above 

the viscous flow point (950oC), while at low temperatures (below 800oC) SiO2 behaves as an 

elastic solid.[5]  It is expected above the elastic point (800oC) and below the viscous flow point 

(950oC) the oxidation of non-planar Si structures is retarded due to the normal stress induced at 

the Si/SiO2 interface.[5]  The stress at the Si/SiO2 interface is a result of expansion in volume as 

the reaction at the Si/SiO2 interface proceeds.  The volume of SiO2 is larger than the initial 

volume of Si and as a result the material expands.[9,11]  The newly formed oxide pushes the old 

oxide, which rearranges itself through viscous flow.[9,11]  As the newly formed oxide presses on 

the old oxide the new oxide faces a resistance from the normal stress perpendicular to the 

surface.[2]  This normal stress hinders oxidation and thus the oxidation is retarded with respect to 

planar oxidation.[2]  Stress is also generated in the old bulk oxide by non-uniform deformation;  

the old oxide is under tension as it is being pushed out by the newly formed oxide layer creating 

a tensile stress.  The old bulk oxide experiences non-uniform deformation due to the different 

rates of oxidation on the surface of a silicon cylinder and sphere.  The dissimilar rates of 

oxidation on the surface is due to the different silicon crystal orientations creating areas of faster 

or slower oxide growth around the circumference of the silicon cylinder or sphere.  Both the 

diffusivity and the solubility of the oxidant is increased as a result of the tension in the old oxide, 

while the viscosity of the oxide is decreased.[2, 3]   
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Figure 3.1: Viscous stresses during oxide growth on convex Si structures; P = hydrostatic 

pressure in the oxide layer creating the tensile stress
[2] 

 

 

Figure 3.2: Evolution of stress components as a function of oxidation time for both convex 

and concave silicon geometries
[2]

 

 

The normal stress (Figure 3.1) at the Si/SiO2 interface for a silicon cylinder is given by [2]: 

c =  −2de( 1
I� − 1

J�) 
(3.1) 
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and the normal stress (Figure 3.1) at the Si/SiO2 interface for a silicon sphere is given by [5]:  

c =  −4de( 1
I� − 1

J�) 
(3.2) 

σ = normal stress at the Si/SiO2 interface; sign convention is positive for tension and negative for 

compression 

η = viscosity of the oxide 

β = velocity constant due viscous flow of bulk oxide 

a = radius of silicon core (Figure 2.9 and Figure 3.1) 

b = radius of silicon core + oxide layer (Figure 2.9 and Figure 3.1) 

The normal stress is compressive and thus it reduces the surface reaction rate (ks) by adding to 

the activation energy the extra work which has to be carried out by the expanding oxide.[5]  The 

reduced reaction rate is represented by: 

�f = �f�:gh$?  
(3.3) 

kso = the stress-free value of ks given by equations 2.34 and 2.35 for oxygen and water, 

respectively 

Physically the parameter Ω is related to the increase in volume due to the reaction transition of Si 

to SiO2.  Kao et al.[2] proposed Ω to be simply the difference of the molecular volume of SiO2 (45 

Å) and the atomic volume of Si (20 Å): 

Ω��9� − Ω�� = 25 Å (3.4) 

Sutardja et al.[21] and Sutardja and Oldman[22] suggest that the oxidation reaction of silicon 

involves the breaking of one Si-Si bond and the attachment of a bridging oxygen atom between 

the two Si atoms.[5]  In this case Ω must then be close to 12.5 Å, which is the difference between 

the volume of Si-O (32.5 Å) and Si (20 Å).[5]  As indicated in equation 3.3,  the inclusion of the 

compressive normal stress as a result of expansion, makes the reaction at the Si surface more 

difficult by affecting the surface reaction rate.  The reaction rate decreases at the Si surface as the 

normal stress compressively increases. 

 The velocity constant, β, is determined by the creeping flow and continuity equations.  

Under creeping flow, it is assume the viscosity of silicon dioxide is extremely high and the 

velocity is very low.[2]  The creeping flow equation relates the oxide velocity to the pressure in 

the oxide by the following general relationship: 

d∇�k =  ∇l (3.5) 
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The following two equations expand the creeping flow equation, taking symmetry into 

consideration, into cylindrical and spherical coordinates, respectively:  

d m1
D

�
�D n�(Dk)

�D op = �l
�D 

(3.6) 

d m 1
D�

�
�D n�(D�k)

�D op = �l
�D 

(3.7) 

The continuity equation is given by the following general relationship: 

�Y
�
 = −∇Yk 

(3.8) 

Assuming the oxide is incompressible (i.e. constant oxide density, ρ) and expanding the 

continuity equation into cylindrical and spherical coordinates, respectively yields the following 

equations: 

1
D

�(Dk)
�D = 0 

(3.9) 

1
D�

�(D�k)
�D = 0 

(3.10) 

Both equations 3.9 and 3.10 can be solved for the velocity, υ resulting in the following two 

equations for oxide velocity in cylindrical and spherical coordinates, respectively: 

k(D) =  e
D  

(3.11) 

k(D) =  e
D� 

(3.12) 

The velocity constant β can now be determined from equations 3.11 and 3.12 using the oxide 

growth rate at the Si/SiO2 interface.  

The other stress component affecting the oxidation of Si is the tensile stress induced by 

the non-uniform deformation of the old oxide by the newly formed oxide. The hydrostatic 

pressure (P) in the oxide volume (Figure 3.1) creating the tensile stress in a silicon cylinder is 

given by [2]: 

� = 2de 1
J� 

(3.13) 

and the hydrostatic pressure (P) in the oxide volume (Figure 3.1) creating the tensile stress in a 

silicon sphere is given by [5]: 
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� = 4de 1
J� 

(3.14) 

This tensile stress, induced by the hydrostatic pressure in the oxide volume, increases the 

diffusivity (D) and the solubility (C*) of the oxidant and decreases the viscosity of the oxide (η) 

[9, 11]
:   

� = ��:qrs$?  
(3.15) 

�∗ = ��∗:qrt$?  
(3.16) 

d =  d�:;uq (3.17) 

where ��, ��∗, and d�are the zero pressure diffusivity, solubility, and viscosity, respectively.  The 

viscosity of dry oxides is higher than that of wet oxides by two or three orders of magnitude 

which accounts for the greater retardation despite slower growth rate.[2]  Va and Vs are the 

activation volumes of the diffusivity and solubility, respectively, which are defined by the 

following relationships: 

�N = v� �
�� (WX �

��) 
(3.18) 

�� = v� �
�� (WX �∗

��∗) 
(3.19) 

α is an empirical constant.  Kao et al. [2] showed that Vs must be of the same order of magnitude 

as the molecular volume of H2O (7.5 Å3) for wet oxidation.  In a similar manner Coffin et al.[5] 

considered Vs to be of the order of magnitude of the molecular volume of oxygen (20 Å3) for dry 

oxidation.  A large range of values (75 – 600 Å3) can be found in literature for Va, which were 

deduced by experimental data fitting.  However Kao et al. [2] and Coffin et al.[5] suggest, through 

simulations using Va in the above stated range, that Va has no significant impact on the oxidation 

rate.  As a result, Kao et al. [2] indicate that the variation of the diffusivity with pressure could be 

described by a temperature dependent activation volume, but adding such complexity would not 

contribute any new physical insight. 

 The tensile stress induced by the hydrostatic pressure in the oxide volume increases the 

diffusivity and solubility as given by equations 3.15 and 3.16, respectively while the viscosity 

decreases as indicated by equation 3.17.  Then, the oxidant transport and the viscous flow 

properties are enhanced compared to zero pressure conditions [5].  The two stresses, σ and P, are 

functions of viscosity as indicated by equations 3.1, 3.2, 3.13 and 3.14, respectively.  Viscosity 
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has strong temperature dependence; consequently both stresses are higher at low temperatures 

where the viscosity is much larger.  The oxide flow becomes more difficult, causing a reduction 

in the surface reaction rate and both the diffusivity and solubility to increase relative to the planar 

Si oxidation parameters given by the standard Deal-Grove[1]  model. 
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CHAPTER 4 - Comparison of Models and Experimental Data 

The two modified Deal-Grove[1] models for the oxidation of cylindrical and spherical 

silicon structures presented in Chapter 2 predict higher oxidation rates relative to planar silicon 

structures.  Kao et al. [2] developed a model for the wet oxidation of convex cylindrical silicon 

structures incorporating the modified Deal-Grove[1] model for cylinders as presented in Chapter 

2 along with the stress effects as presented in Chapter 3.  Coffin et al.[5] developed a model for 

the dry oxidation of convex spherical silicon structures incorporating the modified  Deal-Grove[1] 

model for spheres as presented in Chapter 2 along with the stress effects as presented in Chapter 

3 in a manner similar to Kao et al.[2].  The incorporation of stress into both models predict oxide 

thickness for both cylindrical and spherical structures that differ relative to planar oxides 

predicted by the standard Deal-Grove[1] model. 

In planar oxidation, as described by the Deal-Grove[1] model, it is often assumed that the 

oxide cannot flow and thus undergoes high stress at temperatures lower than 965oC, and that the 

oxide flows at temperatures higher than 965oC to relieve the stress.  This assumption cannot be 

extended to the oxidation of curved surface such as cylinders and spheres.  According to Kao et 

al. [2] the substantial oxide growth at 800oC and the retardation at up to 1100oC suggests a 

continuous temperature dependence of the oxide viscosity.  Large stresses may occur in the 

oxide at higher temperatures and the oxide must be able to flow at low temperatures to justify the 

extent of oxide deformation on small cylinders.[2] The stress effects, due to the viscous flow of 

the oxide must be included to develop a model that is able to accurately predict the oxidation rate 

of silicon cylinders and spheres.    

In the model proposed by Kao et al.[2] for the oxidation of convex cylindrical silicon the 

physical parameters in the Deal-Grove[1] model are modified by the stress caused by the viscous 

flow of the oxide.  The stress normal to the Si/SiO2 interface decreases the surface reaction rate; 

the tensile stress in the bulk oxide enhances the oxidant diffusivity and solubility.  With the 

modified physical parameters the model presented by Kao et al.[2] predicts a thicker oxide than 

the oxide forming on a flat surface for short oxidation times, and a thinner oxide for long 

oxidation times (Figure 4.1).  The thicker oxide at short oxidation times is due to the tension in 

the oxide enhancing the oxidant solubility and diffusivity.  As oxidation proceeds 

and the oxide becomes thinner relative to that of a flat surface, the normal stress becomes more 
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Figure 4.1: Oxide growth of convex and concave cylindrical silicon including stress effects
[2] 

 

important.  As the normal stress increases with longer oxidation time oxidation retardation is 

observed.  This in contrast to the stress free model presented in chapter 2, where the oxide is 

predicted to be thicker than that of a flat surface at longer oxidation times.  

 Coffin et al.[5] extended the Deal-Grove[1] model to spherical coordinates, to describe the 

oxidation of silicon spheres (i.e. silicon nano-crystals).  In their model, Coffin et al.[5] take into 

account the effects of stress on the oxidation process in a similar manner to Kao et al.[2].  They 

found the physical parameters for the oxidation of spherical silicon are also affected by stress 

due to the viscous flow of the oxide.  The reaction rate constant is retarded by the normal stress 

at the Si/SiO2 interface, while the tensile stress in the bulk oxide modifies the oxide viscosity and 

oxidant solubility.  The reaction rate is strongly limited by these stress effects (Figure 4.2).  This 

again is in contrast to the stress free model presented in chapter 2 for spherical silicon oxidation, 

where the oxide is predicted to be thicker than that of a flat surface at long oxidation times. 
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Figure 4.2: Oxide growth of spherical silicon including stress effects
[5]
 

   

The effects due to normal compressive stress become even more important as the 

diameter of the structure decreases in size and the oxide layer becomes thicker (Figure 4.3 – 

Note: Silicon nano-wires were oxidized for 4 hours at 700oC and 2 hours and 900oC with and 

without TCA (trichlorethane); The data of interest is without TCA).  The normal compressive 

stress as discussed increasingly slows the rate of the interfacial reaction compared to that of 

planar silicon.  Thus, for Si nano-wires or nano-crystals in the low nano-meter range the 

retardation of the oxidation, induced by a thick thermally grow oxide layer, is more dramatic 

than larger diameter structures. 



 45

 

Figure 4.3: Oxide thickness as function of starting diamter for silicon nano-wires
[23]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 46

CHAPTER 5 - Conclusion 

With recent progress in the application of silicon nano-wires and nano-crystals in 

electronic devices, a comprehensive model to describe and predict the oxidation process of non-

planar silicon geometries is desirable.  The development of nano-electronic devices makes the 

thermal oxidation of silicon nano-wires (cylinders) and nano-crystals (spheres) important due to 

the ability to tune the dimensions of these devices through oxidation and subsequent etching.  

Due to the overall simplicity and popularity of the Deal-Grove[1] model for the oxidation of flat 

silicon surfaces it is desirable to adapt this model to other silicon geometries such as cylinders 

and spheres. 

A straightforward extension of the planar Deal-Grove[1] model to cylindrical and 

spherical coordinates as described in chapter 2 results in equations that describe the time 

evolution of the oxidation process for cylindrical and spherical silicon structures, respectively. 

The modified Deal-Grove[1] equations (equations 2.58 and 2.94) utilize the same assumptions 

exploited for the Deal-Grove[1] model for the oxidation of flat silicon surfaces.  However, even 

with the added complexity due to the change in the geometric structure of the silicon structure 

being oxidized, equations 2.58 and 2.94 are insufficient to predict accurately the oxidation rates 

of cylindrical and spherical silicon structures, respectively.  

Simply extending the Deal-Grove[1] model to both cylindrical and spherical coordinates 

to describe the oxidation of silicon nano-wires and nano-crystals, respectively presents additional 

complexities that have to be taken into account.  First, in contrast to a flat silicon surface, in the 

oxidation of silicon cylinders and spheres, the change in the surface area of the available silicon 

for oxidation has to be taken into account.  Secondly, the stress induced by the viscous flow of 

the oxide in non-planar geometries, such as cylinders and spheres, must be taken into account 

due to its pronounced effect  on the physical parameters (i.e. reaction rate constant, diffusivity, 

viscosity, and solubility).   

With the oxidation of planar surfaces, the surface area does not change during oxidation.  

In contrast, during the oxidation of silicon cylinders and spheres, the core silicon radius 

decreases as the oxidation process proceeds.  This reduction in the core radius decreases the 

surface area available for oxidation.  In cylindrical and spherical silicon oxidation, the core Si 

radius and the core Si radius + oxide shell radius are not independent variables.  The oxide layer 
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in both geometries is an incompressible fluid and that the ratio of the volume of produced SiO2 

to the volume of consumed Si is 2.25:1.  Utilizing these assumptions along with the equations for 

the volume of a cylinder and a sphere, relationships describing the evolution of the core silicon 

radius with time are developed (equations 2.71 and 2.104).  These time dependent equations 

describing the evolution of the core silicon radius for both cylindrical and spherical structures, 

equations 2.71 and 2.104, respectively, are coupled with the modified Deal-Grove[1] equations in 

cylindrical and spherical coordinates (equations 2.58 and 2.94) to more accurately describe the 

oxidation process of these structures. 

Another factor that must be accounted for when developing robust models to describe the 

oxidation of cylindrical and spherical silicon, is the stress induced by the viscous flow of the 

oxide.  In the oxidation of both silicon cylinders and spheres there are two types of stresses that 

affect the oxidation process.  The first is the normal stress at the Si/SiO2 interface.  This normal 

stress is induced by expansion.  Since the volume of SiO2 is larger than the initial volume of Si 

consequently the material expands during oxidation thus inducing a normal stress at the 

interface.  This normal stress is compressive and as a result reduces the surface reaction rate (ks) 

by adding to the activation energy the extra work which has to be carried out by the expanding 

oxide.  The second stress is the tensile stress induced by the non-uniform deformation of the bulk 

oxide layer by the newly formed oxide.  This tensile stress, induced by the hydrostatic pressure 

in the oxide volume, increases the diffusivity (D) and the solubility (C*) of the oxidant and 

decreases the viscosity of the oxide (η).  The importance of these two stress effects is the 

ultimate retardation of the oxidation process for both silicon cylinders and spheres with respect 

to planar oxidation.  The effects due to these stresses become even more important as the 

diameter of the structure increasingly decreases in size and the oxide layer becomes thicker.   

In conclusion, simply trying to utilize the planar Deal-Grove[1] model to predict the 

oxidation of either cylindrical or spherical silicon structures yields exaggerated oxide 

thicknesses.  These exaggerated oxide thicknesses are due to the planar Deal-Grove[1] model not 

taking into account the change in available surface area for oxidation and the stress induced due 

to the viscous flow of the oxide.  Both of these factors retard the oxidation rate of non-planar 

surfaces relative to the oxidation of flat silicon surfaces.  This is especially true for small 

diameter convex silicon structures (i.e. cylinders and spheres) with relatively thick oxide layers.  

The rate of oxidation is increasingly retarded, relative to planar silicon oxidation, as the diameter 
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of the structure decreases and the oxide layer thickness increases.  Thus, in order to accurately 

predict oxide thicknesses for non-planar silicon geometries the planar Deal-Grove[1] model 

should not be utilized.  Instead modified models such as those proposed by Kao et al.[2] and 

Coffin et al.[5] should be employed due to their inclusion of the change of surface area with time 

and stress effects.       
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