
mCNAMIC ANALYSIS OF A CRANK-ROCKER MECHANISM

toy

ULRICH SIELAFF

B.S., State University of Iowa, 1965 ^

A MASTER'S REPORT

submitted in partial fulfillinent of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

Ki\NSAS STATE UNIVERSITY
Manhattan, Kansas

1966

Approved by:



• ^^lll

1966 f^ ^ TABLE OF CONTENTS

S57/ /
C, X
ABSTRACT Ill

NOMENCLATURE V

INTRODUCTION 1

THE FOUR BAR MECHANISM 3

GEOMETRY 5

THE KINEMATIC PROBLEM 7

THE DBJAMIC PROBLEM U
THE PROGRAM AND ITS USE l6

AN EXAMPLE PROBLEM .19

COI^ICLUSION , 31

ACKNOWLEDGMENT 32

REFERENCES 33

APPENDIX , 3U

A. Derivation of Geometry .••..•.3li

B. Derivation of Angxaar Velocity and Acceleration 37

C. The Program • • Ul

11



DZNAHIC ANALYSIS OF A CRANK.ROGKER MECHANISM

i

ULRICH SIELAFF
(

I

B.S., State University of Iowa, 1965

AN ABSTRACT OF A MASTER'S REPOKT

submitted in partial fulfillment of the

requiarenents for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1966

iii



This report presents a coir5)uter program vrritten in FORTRAN

vrtiich may be used to dynamically analyze a general crank-rocker

mechanism. Although analysis in one position is not a new problem,

little work has been done to analyze a mechanism over a complete

range of angular positions. Vtt.th this program, velocities, acceler-

ations, and forces in a linkage may be found for any range of positions

of the input crank*

It
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NOMENCLATURE

normalized length of links (dijnensionless)

defined angles (degrees)

length of links (inches)

angular position of link z (degrees)
+ CCW, - CW

angular velocity of link z (radians/sec)
+ CCW, - CW

angular acceleration of link z (radians/seo )
+ CCW, - pw

the imaginary number \/-1

length of a vector along link z (inches)

position vector to a point C (inches)

velocity vector of a point C (in/sec)

acceleration vector of a point C (in/sec )

components of position (inches)

conponents of velocity (in/sec)

components of acceleration (in/sec )

mass of link z (lbs-sec /ft)

mass moment of inertia (in-lbs-seo^)

torque vector on link z (in-lbs)

force vector of the u"*^^ link on the v^ link (lbs)

angular position of center of mass (degrees)



DJTROIXJCTION

The kinematic and dynamic analysis of four-bar mechanisms is a

common problem in the study of mechanical linkages and other mach-

ine elements. Even for one position of a mechanism, the solution

to such a problem is extremely tedious and time consuming. Usually,

a graphical procedure involving velocity, acceleration, and force poly-

gons is \zsed to con5)letely analyze a four-bar mechanism. A great

number of calculations are necessary - many of i<hich are interdependent.

That is, the resxilts obtained graphically from a velocity vector poly-

gon are used to calctilate quantities which must be used in an accel-

eration polygon. These, in txim, are applied to force polygons.

In such an analysis, errors may be introduced in three ways:

1. measurement of magnitude, 2. measurement of angular direction,

3* slide rule round-off error. These problems often become acute

when a particular vector is extremely small with respect to another.

Accurately scaling these relatively small quantities is often impossible.

As a result, the solution may be no more than approximation.

It must be remembered that a graphicsa aiialysis is only good for

one position of a mechaiiism. For each position a new set of vector

polygons must be constructed in order to find the velocities, accel-

erations, and forces. Furthermore, the analysis must be repeated

when the angular velocity of the input link is changed. The resulting

accelerations and forces cannot be siinply "scaled up" since these

quantities depend on the squares of the angular velocities.

In this report a computer program is described which analyzes

at least one type of four-bar mechanism. The need for such work was



emphasized at the International Conference on Ifechanisms held at

Yale University in I961 [l] ,* Most of the programs available at that

time dealt only with the kinematics of a linkage. To date, there are

not many references available that show that the dynamics of such a

problem have been fvOly investigated. This paper deals with a conputer

solution to such a problem.

An effort has been made to keep the program presented here as

general as possible. The masses, moments of inertia, lengths, pos-

itions of center of mass, etc., are all left as variable input quan-

tities. With this program, a mechanism may be analyzed over any range

and with as many positions of the input crank as are necessary. The .'

output quantities are also easily controlled, including velocity,

acceleration of any point, pin forces, shaking forces, and driving torque.

In order to apply this program successfully to a design problem,

it is expected that the reader has a basic understanding of the

FORTRAN programming language. This program was written for the IBM

lillO, but could easily be modified for any computer using FORTRAN.

it

Numbers in brackets designate references at end of report.



THE FOUR-BAR MECHANISM

Figure 1 , The general fo\ir-bar with
lengths normalized with respect to link 2.

A general four-bar mechanism is shown in Figure 1. One of the

links is fixed in a stationary frame of reference and the remaining

three are free to oscillate or rotate. For a given position of any

one of the three movable links, the positions of the remaining two

are specified. Furthermore, any link may be "extended" to any point

in the plane and the position of such a point, i.e. x, is also

specified.

Work has been done in the classification of four-bar mechanisms.

By specifying the lengths of the members, and the fixed link, it is

possible to predict what sort of oscillation or rotation may exist.



Four-bar ineohanisms are usually classified as follows: ][2J

class at one crank (a link pinned to ground at one end) can

rotate 36O while the other crank can only oscillate,

class bi both cranks may rotate through 36O •

class c: both cranks can oscillate but neither can make a com-

plete revolution.

Geometric considerations for class "b" and "c" mechanisms can

often become very coirplicated. For this reason only the class "a"

mechanism is considered in this paper. This configuration is commonly

called the "crank-rocker" mechanism.

Link 1 will always be considered the fixed link, and link 2 the

driving link (the one idiich may rotate 360°). If the lengths are

normalized with reapeot to link 2, the following conditions imiat

hold in order that the mechanism is a crank-rockerj

1, Driving link must be the shortest link.

2- Cl<(Al*Bj^-1).

3. Cj^>((Al-bJ.i).

These conditions insure that the rocker does not drop below the

fixed link. When this happens the mechanism becomes class "c" and

an xmpredictable configuration may be achieved - the rocker may

retiim by its normal path, or covild continue on around. The first

part of the program makes these tests to insure that the lengths

vfliich are input will result in a crank-rocker iiBchanism. If these

tests are not satisfied, the program will print out this information
I

and stop.
j



OEOMETRT

In order to be programmed, a solution to this problem must be

coit^jletely- analytical. That is, no intuitive decisions as to the

directions of vectors or angular velocities can be made by the com-

puter. Completely specifying the geometry is the first step in an

analytical solution.

Case I Case n

Figtire 2. Crank-rocker in 2 positions

For any given ^ , ^ and ^ must be known. They may be found

by constructing the line OgA. This length / may be determined from

the law of cosines, since 6> , ^ and aare known. Next, the angles

r t /^ i fh are defined. The cosine of each of these angles may be

determined from the law of cosines since -< is now known.

Examination of the mechanism reveals that there are two con-

figurations which must be considered when using (^ , /^ , and /b

to detennine O^ and O^, Case I, when ^is between 0° and 180°



and Case II when ^2. ^^ between 1 80 and 3^0 •

For Case I

^ = /Bo'- C^ -f/l ) .

For Case II

A somei^at similar method for determining the geometry appears

in an article by George H, Martin in "Machine Design Magazine"
[3J .

This method is reprinted in Theory of Mach3.nes« by Joseph E, Shigley \h\*

Although the basic geometric considerations are correct, for some posi-

tions of a mechanism this derivation yields incorrect results. The

error seems to be in the author's definition of Cases I and II. For

mechanisms discussed in this report, the relative position of link 3,

the criterion used by Mr. Martin, is not the correct criterion for

determining these cases.

At least for a crank-rocker it was found that only the angular

position of link 2 determines at what point the sums and differences

ol T t n » and/^ must be changed to find &^ and ^ • This point

is ^^« 180 . A coii5)lete derivation is given in Appendix A,



THE KINEMATIC PROBLEM

A convenient method of representing the positions of points on

a mechanism is by the use of vectors in the coit^jlex plane. The

location "P" is specified by the conplex number ( a + bi ). An

equivalent statement vdiich specifies this position is r(cos^ + i sin© )•

Noting that (oosc + i sin » ) - ^"'^
, this reduces to /*<2 •

Figure 3» Complex plane representation.

The magnitude r can be related to the length of a link and the

angle & to its angular position measured from the horizontal. This

This is done in figure k»

FigujTe U* Vectors related to a linkage.
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A vector suinmatlon equation can now be written for the foiir vectors:

K,e'^' ^^e'^ = r^e'^^^^e'^' (i)

since 0, , and the r's are constant, differentiation of this expression

jrleldsJ

z&^ - .. JL ^2®j
/W4,<^'^^ - //^4^^ ^ ^^'^4^ .

<2)

Notice that O- , &- and &^ are angular velocity terras C ^ is assumed

known, since this is the angular velocity of the driver link). Sep-

arating the real and Imaginary parts of equation (2), two equations

in the unknowns &^ and &^ are obtained. These are solved:

(3)

(5)

Similarly, differentiating equation (2) yields:

Separating the real and imaginary parts of this equation yields

two equations in the unknowns ^j and ®'^ • These are solved:

A conqjlete derivation of these relations is given in Appendix B,



Figure 5» Vectors to any point on a. linkage.

An expression for the position of any point "C" (Blg\ire 5) can

now be written. In this case, "C" is fixed on link 3«

5c= ^.e'-'
y^^''^"-"^-'.

(8)

(

Since velocity of C is <i^c

Separating real and imaginary parts yields horizontal and vertical

conponents of 'V^ '

%^= -r^e^^iAjQ^ -/^^ 3,kJ Cej-f cfj

^

(10)

-Vl •= ^^S^c£i3&^-h ^^&^ (U^s C^j-^d). (11)

Since acceleration of C is O ^c

(12)

^c= -r^^'J% i^,^^e'^^-ir,oiJ^''^-''^^.ir^Gj'^^-^\
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Which, when separated yields:

It is interesting to note that in the conplex forms of V^ and

a , each term corresponds to a term •which would be used in the graph-

ical vector analysis. For exan^^le, //^ ^e ^ is equivalent

to the absolute velocity of point A both in magnitude and direction.

Since

- COS {'&i^9o) -/ f s^AjCey-<Po)

th\is multiplication by i rotates a vector 90 • Therefore:

and this, in fact, represents a vector of magnitude f^B^ tangential

to the arc vdiich the point A describes. Similar arguments apply to

all the terms in the complex expressions, ^5,6,7]
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THE DYNAMIC PROBLEM

Up to this point, no simplifying assumptions have been used.

In the foixe analysis, however, it must be assiuned that the links

behave as perfectly rigid bodies. This assumption allows the mass of

each member to be concentrated at a single point. Although in reality

these members wovild indeed be elastic, the problem of considering de-

flection due to varying inertia loads wovild be extremely coitiplex.

Presumably, these deflections would be small for most cases. It should

be noted, however, that this program would be helpful in such a con-

sideration since it may easily be modified to output the Inertia

forces on incremented masses along any link.

Basically two principles are applied. They are:

1. the D'Alembert principle, irfiich in effect reduces a

dynamic problem to one of statics.

2. the principle of superposition, ^rtiich makes it possible

to analyze one link at a time and then combine the

results in the end.

Knowing the acceleration of the center of mass of each link and

its angular acceleration, the inertia force and torque acting on each

of these members may be calculated. The D'Alembert principle states

that at any instant this may be treated as a problem with no motion,

with the inertia terms treated as static foarces. Thus

^/-^ - ,-*<i a. - G ,

^r - Je = O

.

In the force analysis each member is individually considered to

have mass, *Mle the others are assumed weightless. First,
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consider 2 and 3 weightless. The forces and torques acting on k are

shovm in Figure 6.

Figure 6, Free body diagrams of the members of a
mechanism with only link k considered to have mass.

Summing the moments about Op. yields:

/^^ X (-ym^a^) -^ ^ yl%^ - ^^^^ -f Tex = O

.

(15)

This vector equation, when expanded, is seen to contain two unknowns,

the components, /^^ and ^s^ . A second relation in these unlcno^ms is

needed. Since link 3 is considered weightless, it may carry no moment

and is thus a "two-force" member. That is, forces may only be trans-

mitted along its length. Therefore, the direction of 5-? is known.

Quantities with bars are vectors; those with x and y are components
in these directions. The primes indicate which forces are being con-
sidered. One prime, those due to inertia of link 1;; two primes, those
due to inertia of link 3> and three primes, those due to inertia of
link 2.
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c'X ^
(16)

fy ty
Equations (l5) and (16) may be solved simultaneously for f~^-^ and ^3^ •

F^^^ Fj'^ T/JAJ^^,
'

(18)

— /

Now, tjjr summing the forces on link U, the reaction F,^ can be found,

F/^ - x<^^ ~ ^^ , (^^)

/5'<''^ ^-^•^-'ST. (20)

Since /jr^ has equal and opposite reactions through links 2 and 3

.

/^2 = ^/2 ^ /^y . (21

)

The torque idiich must be applied to link 2 to balance these forces is

A sljttilar procedure is carried out irf.th links 2 and h considered

weightless and only 3 having mass. Moments are taken about "A",
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FigTire ?• Free body diagrams of the members of a
mechanism with oiily link 3 considered to have mass*

— n
Knowing the direction of ^z the relation

^4S

F.42

^ T/JAJ e>^

is also available, and thus expressions for 143 and ^3 similar to

2Z. > 'Zl
equations (l7) and (18) are obtained. Subsequently, f^^t /%/ f

•^11
. —r ''

r-^i , and '2. can be calcvilated.

Next, links 3 and it are considered weightless. If link 2 rotates

at constant angular velocity, it produces only a radial bearing reaction.

Finally, all these quantities may be superpositioned, yielding

the results:



15

^AfAfter f^Zf ^ ~*J/

These include the force on each of the bearings, the total force

tending to shake the mounting, and the torque required to drive link

2 at a prescribed velocity. [1^,8, 9]
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THE PROGRAM AND ITS USE

Before continuing further, it would be vrell to list all the

assumptions which must be made in order to use the program as it is

listed in J^pendix C,

1 • The mechanism is a crank-rocker.

2. The links are rigid,

3» The friction forces are negligible.

U. Gravity forces are negligible.

5. Link 2 is driven at constant angular velocity,

6, Only link k may have external torque. (The driving torque

on link 2 is a quantity to be calculated)

The program proceeds in very systematic fashion, exactly in the

order in which the analysis proceeded in the foregoing sections. All

velocities, accelerations, and forces are carried along as their x and

y components. A subroutine is employed to combine these components

into a magnitude and direction. Thus each time CALL VECTOR ( X, T,

MXI, DXT ) appears, 2 components, X and T, are taken to the subroutine,

and 2 quantities, magnitude and direction, are returned.

An effort was made to closely correlate the names used in the pro-

gram to those vriiich appear in the analysis. Some examples are:

TH2 - ®z

TH2D -
9

FP32 -
^sL

TPP2 -
"rl

TEX - fax

W2 - Weight of link 2

ZM2 _ Mass of link 2 .
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On examination of the program, the other quantities should be easily

recognized.

"^^^ AttfiOcLS,

TH?b"

Figure 8. A mechanism labeled with
quantities as they appear in the program.

Figure 8 shows a general crank-rocker mechanism with the input

parameters labeled as they appear in the program. The data cards

must be arranged as follows, according to 1 FOHMAT:

W2, W3, WU

ZI2, ZI3, ZIU

Rl, R2, R3, RU

ADEL2, ADEL3, ADEUi

R02, R03, RGU

TH2D

THZERO, DELTA, TH14AX

- weights of the links (lbs)

- mass moments of inertia about 0., A,
Og (in-lbs-sec'^)

- lengths of links (in)

- angular position measvired + or - from
R2, R3, or Rl; (degrees)

- distance to center of mass (in)

- angular velocity of link 2 (rad/seo)

- initial value of Qj_
increment of e^^

final value of &,
(degrees)

As many data cards of the last type aa are needed may be put in, one

after the other. That is, over some range wheire great accuracy is

required, it may be necessary to consider the mechanism using small
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increments of ^z. • ^er other ranges, large increments of ^ may pro-

vide sufficiently acciirate results* The program will stop when no

more cards are available for reading. This arrangement also allows

a mechanism to be analyzed at only one position, siitply by entering

THZERO - THIiAX on the last card.

A kinematic analysis alone is achieved by removing all the cards

related to forces and torques (statement niunbers 133-202), and their

corresponding WRITE statements. Accelerations of many points along

a link may be obtained Vy incrementing the length of RO along one of

the links*
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AN EXAMPLE PROBLEM

Figxire 9, Configuration of the example problem.

An exairole is worked to completely check the program, and also

to illustrate how some of the results may be interpreted. The mech-

anism in Figure 9 is used. Links 2 and U are deliberately left un-

balanced to make the resulting bearing reactions vary over a large

range. The ir^ut parameters are as follows:

W2, W3, WU 3.0 8,0 6.0 (lbs)

ZI2, ZI3, ZIU 0* 0.5 O.U (in-lbs-seo^)

R1, R2, R3, Rl; 12.0 U.O l6,0 12,0 (in)

ADEL2, ADEL3, ADSU; 0.0 -l5.0 +l5,0 (degrees)

RQ2, RG3, BQk 2.0 8.0 6.0 (in)

THZD 50,0 (rad/sec)

THZ£RO, DELTA, THt'IAX lao 36O.O (degrees)

Note that ZI2 may have any value since ^^ 0.
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Also in the program proper, statement number 7k is made TEX 0.0»

This states that there is no external torque on link U. In other uses

this could be TEX - CONSTANT or TEX - -fC^^) , vdiere the external

torque may depend on the angular position of link U*

Topical output sheets are shown in Figures 10 and 11. In this

case there are 36 such sheets, one for each 1 increment of O^ •

It is immediately seen that in ranges where accelerations are high,

the forces change very rapidly in a 10 rotation of link 2. It is

advisable to run the program again, this time making the increments

of ^2 smaller in these critical regions. In this instance the

program was rerun using 2 increments over the whole range to in-

crease the accuracy in plotting the results.

A preliminary check, which in effect considers all the results,

involves the torque vs. &^ curve shown in Figure 12. If this plot

is correct, in all probability the values of forces, accelerations,

and velocities are also correct, as these quantities are all applied

when calculating the driving torque.

Since the mechanism is not working against an external torque

(TEX - 0) and since the angular velocity of link 2 is constant, the

total work done on the system must equal zero.

Therefore

:

ZTT

7^ . de^ = <=>

Since 7^ is always in the same direction as &^ this reduces to
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zir

Tide = a

The graphical integration of the "^ vs. O^ curve gives a result of

almost zero, the error probably resvilting from the approximate nature

of the process (straight-line approximation between the points spaced

at 10 ), Notice that if there is an external torque applied to link

U, this integration should equal the work done to overcome this torque.

Ass\ired that all the ]?es\ilts are coirect, the other output quan-

tities can be plotted and examined. This is done in Figures 13 through

17« Many conclusions of interest in a mechanical design problem can

be drawn from these graphs.

Consider the problem of choosing bearings for the joints of a

llnlcage. Of primary interest is the maximum value of the bearing

reactions. To find these values by hand confutation at a few points

would almost be iu^iossible. Figure 13 shows that there can be several

"maxamums" over a complete cycle of operation. Simply because the

value of the force sharply deflects at some point is not conclusive

proof that the greatest force on the bearing has been foxmd. FVom

these graphs the maximum value can be immediately obtained.

It is interesting to note that these bearings may be loaded twice

at the same place in one cycle of operation. This is particularly

evident in Figures 13 and ^$ (where the curves cross). Conclusions

such as this would be significant trtien considering the fatigue char-

acteristics of a bearing under cyclic loading.
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Figures 13 and lU show that over certain angular ranges no force

is applied to the bearings. These would be ideal positions for the

placement of oil grooves or holes, since no stress would ever be

applied to these potential trouble spots. Only throvigh a solution

which considers the whole range of operation is such information

available.

The direction of loading at each of the bearings is also of

interest. For example, in Figure ^k the loading relative to link

k can be seen. It is obvious that the bearing mount would have to

sustain much greater loads in a direction along the axis of the link

than fierpendicular to its axis. Such information may be useful vrfiere

the weight of the link must be kept at a minimum.

This mechanism was piurposely chosen to exhibit large unbalanced

forces. Tlie shaking force diagram indicates sizable reactions on the

mounting in both the X and Y directions. From Figure l6 it can be

seen that the mount must be made stronger in the horizontal direction

than in the vertical, since the maximum hoidzontal conponent of the

shalcing force is almost three times as large as the maximum vertical.

This program could also be useful in attempting to balance such a

mechanism.

The kinematic portion of the solution may also find applications.

It may be necessary to find a position in a mechanism which has a par-

ticular velocity or acceleration. Such points could easily be found

with this program*
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THETA 2 THETA 3 THETA 4

40.0 32.1 67.3

ANG VEL 3 ANG VEL 4 ANG ACC 3 ANG ACC: 4

.9955E 01 .3961E 01 .1081E 04 .1636E 04

EX TORQ ON 4 /

.OOOOE-99

VEL G2 VEL A VEL G3 VEL B VEL 04

.lOOOE 03 .1999E 03 .1303E 03 .4753E 02 .2376E 02

129.9 130.0 143.7 157.3 172.3

ACC 02 ACC A ACC G3 ACC B ACC G4

.5000E 04 .lOOOE 05 .llOBE 05 .1963E 05 .9819E 04

219.9 219.9 171.6 157.9 172.9

F 3 ON 2 F 3 ON 4 F 2 ON 1 F 4 ON 1

.5230E 03 .3540E 03 .5606E 03 .2885E 03

24.8 225.6 25.9 250.5

SHAKE X SHAKE Y SHAKE

.4092E 03 .4083E 03 -.2707E 02

356.2

DRIVING TORQ

.5456E 03

Figure 10. Example problem.
Typical output.
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THETA 2 THETA 3 THETA 4

50.0 30.4 68.6

ANG VEL 3 ANG VEL 4 ANG ACC 3 ANG ACC; 4

.6476E 01 .9002E 01 .9120E 03 .1257E 04

EX TORQ ON 4

.OOOOE-99

VEL 62 VEL A VEL G3 VEL B VEL G4

.lOOOE 03 .1999E 03 .1600E 03 .loaoE 03 .5401E 02

140.0 140.0 150.5 158.6 173-6

ACC G2 ACC A ACC G3 ACC B ACC G4

.5000E 04 .lOOOE 05 .8728E 04 .1511E 05 .7558E 04

229.9 229.9 184.7 162.3 177.3

F 3 ON 2 F 3 ON 4 F 2 ON 1 F 4 ON 1

.3844E 03 .2247E 03 .4201E 03 .1637E 03

25.5 222.1 27.7 252-4

SHAKE X SHAKE Y SHAKE

.3249E 03 .3225E 03 .3928E 02

6.9

DRIVING TORQ

.6371E 03

Figure 11. Example problem.

Typical output.
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180'

Degree markings around the

curve indicat© approodjnate

corresponding positions of ^.

force f Lbs.

Figure 13. Exarple problem.
Polar diagram of force U on 1
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Dotted outline indicates
the relative position of

Degree markings around the
curve indicate approximate
corresponding positions of fijj

Force} Lbs.

Figure lU. Sxaii5>le problem.
Polar diagram of force 3 on kt
relative to link U.
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CONCLUSION

The main advantages of this method of solution are, of course, the

speed and accuracy with which the res\ilts are obtained. The program

solves a mechanism in one position for all the unknown parameters with

8 place accuracy in approximately 10 seconds. The importance of having

a solution for the complete range of operation of a mechanism has also

been emphasized.

This report has presented only a few examples of how the information

available f!ron\ this program may be used in design situations. An atteirpt

was made to show that very real and practical problems can be solved.

It has been emphasized that the program was written in a form which closely

follows the analysis in the text, making its application to other prob-

lems as simple as possible. A wide range of more specific problems which

relate to the dynamics of a mechanism could be approached with simple

modifications •
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APPENDIX A

DERIVATION OF QEOMETRT



3^

C-/JS£ I C/f^B ZZ

<::c>Aj^r/^(^<.T o^/Q ^ J2

F^OMT T/f/e Z^lA/ OCT CCKS^^^S

j^ = V a.^ -f- d^ - Z.t^d ccxs &^
'

^/Ajc^ cjas€> ^ cas(:-Gj^ T/^/S /IPpoe6 to sot/^ casb^

6^-

OOS '(-

zc

= COjS



36

( 2j2</

c/i€e I C c>^ &^ ^ /so")



37

APPENDIX B

DERIVATION OF ANGULAR VELOCITI AND ACCELERATION
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APPENDIX C

THE PROGRAM
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3,5X,7HTHETA
VEL 4,3X,

00001 F0RMAT(llX,3F12.1/)
00002 F0RMAT(15X,4E12.4/)
00003 F0RMAT(IIX,4F12.1/)
00004 FORMAT! 11X,1F12.1/)
00005 F0RMAT(15X,1E12.4/)
00006 F0RMAT(15X,3E12.4/)
00007 FORMATC/)
00008 F0RMAT{11X,5F12.1/)
00009 F0RMAT(15X,5E12.4/)
00010 F0RMAT(//18X,7HTHETA 2,5X,7HTHETA
00011 F0RMAT(//18X,9HANG VEL 3,3X,9HANG

19HANG ACC 3,3X,9HANG ACC 4/)
00012 F0RMAT(//18X,12HEX TORQ ON 4/)
00013 F0RMAT(//18X,6HVEL G2,6X,5HVEL A,7X,6HVEL G3,6X,

15HVEL B,7X,6HVEL G4/)
00014 F0RMAT{//18X,6HACC G2,6X,5HACC A,7X,6HACC G3|6X,

15HACC B,7X,6HACC G4/)
00015 F0RMAT(//18X,8HF 3 ON 2f4X,8HF 3 ON 4,4Xt

18HF 2 ON 1,4X,8HF 4 ON 1/)
00016 F0RMAT(//18X,5HSHAKE,7X,7HX SHAKEf5X,7HY SHAKE/)
00017 F0RMAT(//18X,12HDRIVING TORQ/)
00018 FORMAT(lHl)
00019 F0RMAT(4F8.4)
00020 F0RMAT(37H THIS IS NOT A CRANK ROCKER MECHANISM)

REA0(1.19)W2,W3tW4
REA0(1.19)ZI2,ZI3,ZI4
REA0(1»19)R1,R2,R3.R4
REA0(l«19)ADEL2>ADEL3tA0EL4
READ(l,19)RG2tRG3tRG4
READ(1,19)TH20

00027 READ(l,19)THZER0fDELTA,THMAX
G=386.0880
ZM2=W2/G
ZM3=W3/G
ZM4=W4/G
TH=THZERO-DELTA
1 =

RAD=57. 295779
PI=3. 14159265
SQ2D=TH2D»TH2D
DEL2=ADEL2/RA0
DEL3=ADEL3/RAD
DEL4=ADEL4/RAD
A=R3/R2
B=R4/R2
C=R1/R2
IF(A.GT.1.0)G0TO45
G0T052

00045 IF(B.GT.1.0)G0TO47
G0T052

00047 IF(C.GT.1.0)G0T049
GOT052

00049 IF(C.LT.U*B-l-0))G0T05l

4/)
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G0T052
00051 IF(C.GT.(ABS(B-A)*1.0) )G0T054
00052 WRITE(3f20)

G0T0237
00054 1=1+1

ZZZ = I

ATH2=TH+ZZZ»DELTA
TH2=ATH2/RAD
CTH2=C0S(TH2)
ZL=SQRT(R2»R2+R1«R1-2.0»R2»R1»CTH2)
CPSI=(-(R4»R4)+ZL»ZL+R3*R3)/(2.0»ZL»R3)
PSI=ARCCOS(CPSI)
CZLAM=(ZL»ZL+R4«R4-R3»R3)/(2.0»ZL»R4)
ZLAM=ARCCOS(CZLAM)
CBETA=(ZL»ZL+Rl»Rl-R2»R2)/(2.0»ZL»Rl)
BETA=ARCCOS(CBETA)
IF(TH2.GE.PI)G0T070
TH3=PSI-BETA
TH^=PI-ZLAM-BETA
G0T072

00070 TH3=PSI*BETA
TH^=PI-ZLAM+BETA

00072 ATH3=TH3»RAD
ATH4=TH4»RAD

00074 TEX=0.0
S42=SIN{TH4-TH2)
S34=SIN(TH3-TH4)
S32=SIN(TH3-TH2)
C42=C0S(TH4-TH2) '

C43=C0S{TH4-TH3)
S43=SIN(TH4-TH3)
C32=C0S(TH3-TH2)
C34=C0S(TH3-TH4)
STH0E2=SIN(TH2+DEL2)
CTHDE2=C0S ( TH2 DEL2

)

STHDE3=SIN(TH3-«-DEL3)
CTHDE3=C0S(TH3*DEL3)
STHDE4=SIN(TH4*DEL4»
CTHDE4=C0S(TH4+DEL4)
STH4=SIN(TH4)
CTH4=C0S(TH4)
STH3=SIN(TH3)
CTH3=C0S(TH3)
STH2=SIN(TH2)
CTH2=C0S(TH2)
TH30=(R2/R3)»TH2D»(S42/S34)
TH4D=(R2/R4)»TH20»(S32/S34)
SQ3D=TH3D»TH3D

|

SQ40=TH4D»TH40
TH3DD=(R2»SQ2D»C42*R3»S03D»C43-R4«SQ4D)/(R3«S43)
THADO= (-R2»SQ20«C32+R4»SQ4D»C34-R3»SQ3D) / ( R4»S34)
R2X=R2»CTH2
R2Y=R2»STH2
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RGX=RG2«CTHDE2
j

RGY=RG2»STHDE2
R3X=R3»CTH3
R3Y=R3»STH3
RG3X«RG3»CTHDE3
RG3Y=RG3»STHDE3
R4X=R<f»CTH4
RijY=R4»STH4
RG4X=RG4»CTHDE4
RG4Y=RG4»STHDE4
VAX=-R2»TH20»STH2
VAY=R2»TH2D»CTH2
AAX=-R2»SQ2D»CTH2
AAY=-R2»SQ2D»STH2
VG2X=-RG2»TH2D»STHDE2
VG2Y=RG2»TH2D»CTHDE2
AG2X=-RG2»SQ2D»CTH0E2
AG2Y=-RG2»SQ2D»STHDE2
VBX=-R4«TH4D»STH4
VBY=R4»TH^D»CTH4
ABX=-R4»SQ4D*CTH4-R4»TH4DD»STH^
ABY=-R4»SQ4D»STH4+R4»TH4DD»CTH4
VG4X=-RG4»TH4D«STHDE4
VG4Y=RG4»TH4D»CTHDE4
AG4X=-RG4»SQ4D»CTHDE4-RG4»TH400»STHDE4
AG4Y»-RG4»SQ4D»STHDEA*RG4»TH40D«CTHDE4
VG3X=*VAX-RG3»TH30»STHDE3
VG3Y=VAY+RG3»TH3D*CTHDE3
AG3X=AAX-RG3»SQ3D»CTHDE3-RG3»TH3DD»STHDE3
AG3Y=AAY-RG3»SQ3D»STH0E3*RG3»TH3DD»CTHDE3

00133 FG4X=-ZM4*AG4X
FG4Y=-ZM4»AG4Y
TI4=-ZI4»TH4D0
IF(CTH3.EQ.0.0)G0T0139
TAN3«STH3/CTH3
G0T0140

00139 TAN3=0.9E+25
00140 FP34X=(-RG4X»FG4Y*RG4Y»FG4X-TI4-TEX)/(R4X»TAN3-R4Y)

FP43X=-FP34X
FP34Y=FP34X»TAN3
FP43Y=-FP34Y
FPI4X=-FG4X-FP3AX
FP41X=-FP14X
FP1AY=-FG4Y-FP34Y
FP41Y=-FP14Y
FP23X=FP34X
FP32X=-FP23X
FP23Y=FP34Y
FP32Y=-FP23Y
FPI2Y=FP23Y
FP21Y=-FP12Y
FP12X=FP23X
FP21X=-FP12X



h$

2Y+R2Y»FPP32X

TP2=-R2X»FP32Y
TI3=-ZI3»TH300
FG3X=-ZM3»AG3X
FG3Y=-ZM3»AG3Y
IF<CTH4.EQ.0.0
TAN4=STH4/CTH4
G0T0164

00163 TAN4=0.9E+25
00164 FPPA3X=(-RG3X»

FPP34X=-FPP43X
FPP43Y=FPP43X»
FPP34Y=-FPP43Y
FPP23X=-FPP43X
FPP32X=-FPP23X
FPP23Y=-FPP43Y
FPP32Y=-FPP23Y
FPPI4X=FPP43X
FPP4IX=-FPP14X
FPP14Y=FPP43Y
FPP41Y=-FPP14Y
FPP12X=FPP23X
FPP21X=-FPP12X
FPP12Y=FPP23Y
FPP21Y=-FPP12Y
TPP2=-R2X»FPP3
FG2X=-ZM2»AG2X
FG2Y=-ZM2»AG2Y
F3P12X=-FG2X
F3P21X=-F3P12X
F3P12Y=-FG2Y
F3P21Y=-F3P12Y
FA32X=FP32X*FPP32X
FA32Y=FP32Y+FPP32Y
FB34X=FP34X+FPP34X
FB34Y=FP34Y+FPP34Y
T0RQ=TP2+TPP2
F0AX=FP21X+FPP21X+F3P2
F0AY=FP21Y+FPP21Y+F3P2
F0BX=FP41X4-FPP41X
F0BY=FP41Y+FPP41Y
SHAKX=FOAX+FOBX
SHAKY=FOAY+FOBY
CALLVECT0R(FA32X,FA32Y
CALLVECT0R{FB34X,FB3AY
CALLVECTOR(FOAX,FOAY,F
CALLVeCTOR(FOBX,FOBY,F

00202 CALLVECTOR(SHAKX, SHAKY
CALLVECTOR(VAX,VAY,VA,
CALLVECTOR(AAX,AAY,AA,
CALLVECT0R(VG2X,VG2Y,V
CALLVECT0R(AG2X,AG2Y,A
CALLVECTOR(VBX,VBY,VB,
CALLVECTOR(ABX,ABY,AB,

R2Y»FP32X

I

)G0T0163

i

FG3Y*RG3Y»FG3X-TI3)/CR3X»TAN4-R3Y)

TAN4

-FG3X

-FG3Y

IX
lY

fFA32,DFA32)
,FB34,0FB34)
OA,DFOA)
OB.DFOB)
,SHAK,OSHAK)
OVA)
OAA)
G2,DVG2)
G2,DAG2)
DVB)
DAB)
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CALLVECT0R(VG4X,VG4Y,VGA,DVG4)
CALLVECT0R(AG4X,AG4YtAGAtDAG4)
CALLVECT0R(VG3X,VG3Y,VG3iDVG3)
CALLVECT0R(AG3X,AG3Y,AG3,DAG3)
WRITE{3,7)
WRITE(3,10)
HRITE(3,l)ATH2fATH3,ATH4
WRITE(3,11)
WRITE(3,2)TH30,TH40,TH3D0tTH40D
WRITE(3,12)
WRITE(3,5)TEX
WRITE(3,13)
HRITE(3,9)VG2,VA,VG3,VB,VG^
WR I TE ( 3 , 8 ) DVG2 , DVA , DVG3 , DVB , DVG4
WRITE(3,14)
WRITE(3»9)AG2*AA»A63,AB,AG4
WRITE(3,8)0AG2«0AAtDAG3,0AB»DAG4
WRITE(3,15)
HRITE(3,2)FA32,FB3A,F0A,F0B
WRITE(3,3)DFA32,DFB34,0F0A,DF0B
WRITE(3,16)
WRITE(3,6)SHAK,SHAKX,SHAKY
WRITE{3,4)DSHAK
WRITE{3,17)
WRITE(3f 5)T0RQ
WRITE(3,18)
IF(ATH2.GT.THMAX)G0T027
G0TO54

00237 CONTINUE
STOP
END
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FUNCTION ARCCOS(X)
PI =3. 14159265358979323846
ZMULT=1.0
PROO=l.O
SAVE=0.lE-50
XX = X
X2=XX»XX
IF(ABS(XX).LE.0.7) GO TO 5
XX=SQRT(1.0-X2)
X2=XX»XX

5 SUM=(PI/2.0»-XX
VAL=XX
A = 0.0

100 A=A+2.0
PROD=PROD»A
VAL=VAL»X2
ZMULT=ZMULT»(A-1.0)
SUM=SUM-(ZMULT»VAL)/{PR0D*IA*1.0))
IF(ABS(SUM-SAVE).LT. 0.00000001) GO TO 200
SAVE=SUM
GO TO 100

200 IF(X.LT.-0.70) GO TO 103
IF(X.GT.0.70) GO TO lOl
ARCCOS=SUM
GO TO 102

101 ARCC0S=IPI/2.0)-SUM
GO TO 102

103 ARCC0S»(PI/2.0)*SUM
102 CONTINUE

RETURN
END
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SUBROUTINE VECTORCX.Y, VECTtOIRECT)
ANG=0.0
PI=3. 14159265
RAD=57. 2957795
IF(X)36, 37,36

36 ARC=ATAN(ABS(Y)/ABS(X) )

GO TO 41
37 IF(Y) 38,42,40
41 IF{X) 30,42,31
31 IF(Y) 32,33,33
30 IF(Y) 34,35,35
32 ANG=2.0»PI-ARC

GO TO 42
33 ANG=ARC

GO TO 42
34 ANG=PI+ARC

GO TO 42
35 ANG=PI-ARC

GO TO 42
38 ANG=(3.0»PI)/2.0

GO TO 42
40 ANG=PI/2.0
42 DIRECT=ANG»RAD

VECT=SQRT(X»X*Y»Y)
RETURN
END


