A NEW PEDAGOGICAL APPROACH TO TEACHING PROBLEM SOLVING

by

SUSAN MARGARET CARROLL

B. A., Emporia State University, 1973

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1981

DY
Majot Professor U

(C) Copyright 1981 by Susan Margaret Carroll

SPEC
ColL

LD
2665
T4
1951
cCat
G o

Chapter I1:

I.

L

Ly

I'

I

1T

III

v

Chapter II:

II

II

IT

II.

11

II

II

IT.

II.

II.

II.

I1

II

II.

I1

‘I

.11

LIII

v

v

VI

VII

VIII

JIX

XI

XII

LXIII

LXIV

XVI

INTRODUCTION .

TABLE OF CONTENTS

.

Background

The Problem

The Proposed Solution

Organization of Paper

BEHAVIORAL OBJECTIVES .

Be Able to Understand the Problem

Be

Be

Be

Be

- Be

Be

Be

Be

Be

Be

Be

Be

Be

Be

Be

Able to Think Sequentially .

Able to Use Punctuation and Reserved Words

Correctly VoW F o oE o &

Able

Able

Able

Able

Able

Able

Able

Able

Able

Able

Able

Able to Combine Computer Concepts to Produce

to

to

to

to

to

to

to

to

to

to

to

Make Effective Use of Indentation .

Recognize and Correct Programming Errors

Write Modular Programs

Use Block Structuring When Necessary

Box a Program .

-

-

Write Understandable Programs .

Write Conditional Statements

Nest Conditional Statements .

Use Iterate Loops .

Use Conditional Loops .

Avoid Infinite Loops

Correct Solutions

Able to Test the Solution .

11

13
14
16
18
19
20
31
24
26
27
29

30

31

31

Chapter III:
III.I
II1.11
III.IIT
III.IV

Chapter IV:
Iv.I
IV.II
IV.II1I

Bibliography

Appendix A

Appendix B

Appendix C

Figures

2-4
2-5
2-6

2~7

RESULTS

The Text . . . ¢« « o « o & &
The Lesson Plans
The Transparencies . e

The Script . & & & o v « &« 4 &
CONCLUSION AND FUTURE WORK .
Conclusion

Testing . . « « « ¢« ¢« « + &

Future Work .

KAREL'S WORLD
KAREL'S PRIMITIVE INSTRUCTIONS
KAREL'S RESERVED WORDS

KAREL'S ERROR GROUPS . .

A BOXED PROGRAM

CONDITIONS WHICH KAREL CAN TEST .

NESTED CONDITIONAL STATEMENTS .

32
32
32
33
33
34
34
34
35

36

12
15
17
22

25

Chapter I

INTRODUCTION

In this age of advanced technology, computers have become common
pieces of equipment. They can be found in industry, medicine, education,

and homes.

Along with the ever-increasing popularity of computers comes the
burden of training people to program them. No longer is the general
populace satisfied by having only a few computer experts; 1t now expects
and demands enough knowledge about these machines to control them.
Training people to write computer programs is the responsibility of
computer scientists. Without proper guidance, the science of writing
correct and understandable programs will be degraded to a level of
incomprehensible code.

Good computer programs don't just happen—-ﬁhey must be developed.
The developmental stage is commonly referred to as problem solving and
is onerof the most difficult areas of programming. It is during problem
solving that the programmer must decide exactly what he intends to do
and how he intends to do it. While this may sound simple, the fact is
that most people may understand the problem but have no idea how to
solve it. Therefore, the untrained programmer tends to write long,
unstructured, and complicated programs. To overcome this situation, a
proper problem-solving technique must be developed. Once the ability to
solve computer problems is mastered, good computer programs will be

produced.

I.I Background

In the past, problem solving was left to those who had the intuitive
ability to solve problems. The traditional approach of teaching computer
programming relied heavily on this intuitive ability because it only taught
the syntax of a computer language. It totally neglected how to solve
computer programs. While this method was acceptable for most of those
with an analytical background, it was a miserable failure for those who
did not. As more people from varied backgrounds became interested in
computer programming, the ability to solve problems could no lonéer be
left to the intuitive abilities of the individual but had to be taught.

A method of teaching computer programming was developed which included
the concept of teaching problem solving instead of teaching only the syntax
of a language as in the traditional approach. By combining these two
subjects, it was hoped that even those people with a non-analytical back-
ground would be able to solve computer problems. Unfortunately, while
this method did approach the area of problem solving, it often befuddled
those for whom it was developed (Walker).

The latest method for teaching computer programming separates the
topics of problem solving and language syntax. It is now an accepted fact
that one must know how to solve the problem before he can write the computer
program. But this method of teaching also can fail. Without a good problem-
solving text or an instructor who is properly trained in the area, the
latest approach to the teaching of computer programming will succumb to
failure (Unger, Pattis).

I.I1 The Problem

As the demand for programming knowledge increases, the number of

individuals who are qualified and willing to teach decreases. The result

is large classes being taught by under-qualified instructors. There is
no easy answer for this problem, but it is the desire of this author to
help ease the situation by introducing a new method to teach problem
solving.

I.II1 The Proposed Solution

Before a prbgrammer can solve a computer problem, he must be aware of
exactly what the problem is. Understanding the problem includes not only
knowing what must be done but also knowing the surrounding circumstances.

A method is needed which explains precisely what must be known before a
programming problem can be solved.

Once the problem is understood, the next step is to produce a sclution.
Using the available facilities within computer languages, the programmer must
interpret his thoughts into a computer program. The task is not an easy
one, for it requires a good working relationship between the programmer
and the programming concepts. However, once this relationship exists,
the programmer is better prepared to produce a solution to a computer problem.

The Karel method is a robot-oriented approach to the teaching of problem
solving. The method utilizes a mobile, programmable robot, called Karel, to
teach problem solving through the use of computer language concepts.

Karel is a programmable robot who inhabits a great flat plane. He
has five primitive instructions built into his vocabulary that allow him to
move through his world. Like natural languages, Karel's language has a
vocabulary, punctuation, and grammatical rules. The robot language also
includes many of the concepts built into computer programming languages.
Through the use of Karel's language, it is possible to teach the basic
constructs of computer programming, instill a good problem-solving technique,

and give the student an insight into computer language constraints.

The sequential thought process is one of the most crucial aspects of
program development (Wirth). The student must learn how to think in a
step-by-step fashion in order for the computer to perform the intended
actions and produce the desired results. Rather than explain how the
instructions must be arranged, the Karel method demonstrates how a robot
program is executed. Simulation is the fundamental technique and explicitly
ghows the student how the imstructions must be sequenced. Because the
student can visualize Karel's movements, it is easier for him to compre-
hend why each step in 4 program is necessary. It is during simulation that
the student learns that it is not what he means but, more importantly, what
he says and when he says it.

The programs used dufing simulation also expose the student to other
rudiments of programming. Reserved words, punctuation, and indentation
are introduced so that the student can see the regimentation of computer
languages. He is made fully cognizant of the fact that while reserved
words and punctuation are governed by strict rules, indentation is solely
for the benefit of the reader and does not affect program execution. After
his exposure to the preliminary rules of grammar and punctuation, the student
can build on this foundation as other language constructs are presented.

While programmers never intentionally put errors into their programs,
they must acknowledge that errors do occur and be able to recognize them.
Therefore, the Karel method defines and describes four basic categories of
programming errors. The method also expounds the philosophy that programs
should be assumed incorrect until proven otherwise. Throughout the course,
the student is periodically reminded of this principle and urged to be on
constant guard for violations of programming rules and special situations

which could affect the correctability of his program.

Another important concept in computer programming is modularity
{(Boss)., While other methods which teach problem solving often delay
this concept, the Karel method conveys the idea of modularity as ome
of the fundamental issues. With only primitive commands to work with,
the student is shown how to decompose a problem through stepwise refine-
ment in order to construct a program. By introducing modularity as one
of the primary concepts, the student learms to solve his programming
problems in a way natural to his way of thought.

The computer language construct, block structuring, is discussed in
conjunction with modularity. Because block structuring is integrally
linked td several programming concepts, it is of vital importance that
the student have a thorough understanding of why block structuring is
necessary and when its use is required. Thus, block structuring is
introduced and explained along with modularity.

To aid the student in his understanding of when block structuring is
necessary, the idea of boxing is demonstrated. Boxing is defined as
drawing boxes around the program components. After a program has been
boxed, the student can éasily see how the program will be executed and
thus determine if block structuring is needed in order for the program
to execute properly.

In addition to teaching how to solve computer problems correctly,
the Karel method also stresses the importance of understandable programs.
The student is informed that while modularity is of major importance, it
is not enough. Descriptive names and indentation must also be included.
To emphasize the value of understandability, the Karel method points out

how writing understandable programs will benefit the programmer.

The remainder of the course is devoted to introducing various
language constructs and their proper usage. The IF - THEN and
IF - THEN - ELSE constructs are presented individually, and each is
explained completely. Both forms of looping, iteration and conditional,
are presented. In connection with these four constructs, the subjects
of alternative conditions, negative conditions, nesting, and infinite
looping are discussed. As a finale, the student is shown how Karel may
be programmed to compute addition problems while using only the conditional
and looping constructs.

I.IV Organization of Paper

This chapter introduced the problems encountered when teaching
problem solving to beginning programming students and proposed a solution--
the Karel approach. Chapter II describes the behavior objectives of the
Karel method and explains why each of them is essential. The third
chapter is a description of the work done toward the implementation of
the Karel approach, and a discussion of the future work needed in this

area is given in Chapter IV.

Chapter II

BEHAVIORAL OBJECTIVES

Knowing something and being able to teach it are two different
things. As a programmer, I feel very comfortable with my knowledge of
programming; however, I am very uncomfortable when it comes to teaching
it,

Why? The answer is quite simple: T have been trained to perform
the duties of a programmer, not those of a teacher. In fact, the more
training I receive in my field, the more difficult it becomes for me to
relate to the needs of the beginning student.

I should add that I am not élone. Most programming instructors become
so involved in their fields that they think more about what they want to
teach than they do about what they want their students to learn.

To be an effective teacher, one must determine exactly what it is
that the student is to learn (Walbesser, Kurtz). For a computer programming
course, the accepted objective has been to have the student learn to write
computer programs. But this objective is too generalized, for it
establishes no guidelines for the acceptability of the programs and
completely ignores the issue of problem solving. It would be better
to have many smaller objectives which establish specific goals.

The objectives for a computer programming course should be classified
into two types: those which relate to problem solving and those which
relate to programming. While problem solving and programming are
integrally related, it is necessary to separate them during their
instruction because problem solving pertains solely to the writing of

generalized solutions for computer problems through the use of computer

language concepts, and programming is the direct application of a specific
languagé to the already formulated solution. Once this distinction has
been made, it is relatively easy to set the objectives for each classifi-
cation.

In problem solving, the emphasis is on how well the student learns to
apply his knowledge rather than on simply learming the facts. TFor this
reason, the objectives of problem solving must be defined as behavioral
objectives. The behavioral objectives express what the student should
be able to do after he has completed his instruction in problem solving.

II.I Be Able to Understand the Problem

Although most people don't like to compute arithmetic problems, they
dislike "word problems" even more. The principal reason for this dislike
is that they do not understand 'word problems." Unfortunately, all the
problems in the real world, including computer problems, begin as 'word
problems'; to solve them, it is necessary to understand them.

The first behawvioral objective of the Karel method is to have the
student be able to understand robot problems. 1In order to accomplish this
objective, it is first necessary to introduce Karel, his world, and the
objects which may affect Karel's movement. After the student has become
familiar with Karel and his world, it is then possible to define the
necessary components for understanding a robot problem.

Figure 2-1 is a map illustrating the great, flat plane where Karel
resides. The plane is bounded on the east and south by an impenetrable
wall which restrains Karel from falling off. Criss-crossing Karel's
world are horizontal streets and vertical avenues which extend indefinitely
to the north and west. Both the streets and avenues are numbered, and the

intersection of First Street and First Avenue is called the origin.

B QO =~y

15

14

13

12

1"

10

Figure 2-1

KAREL'S WORLD

> I)]

Karel {facing East) Wall Section Beaper

3

Eeeger-tag

Boundaries on South and West
Horizontal streets

Vertical avenues

Streets and avenues number consecutively

Wall sections

Beepers

0 1

14
Avenues

10

Karel is not alone in his world. Two other objects, wall sections
and beepers, may be found there. Wall sections are made from impenetrable
metal and may be any desired length. '"They are positioned sideways between
adjacent street corners, effectively blocking Karel's direct path from one
corner to the next. Beepers are small plastic balls that emit a quiet
beeping noise. They are situated on street corners and can be picked up,
stored, and put down by Karel" (Pattis). By using wall sections and
beepers, separately or together, it is possible to alter Karel's world in
order to create different robot problems.

Karel is a mobile robot which has the ability to perceive his
immediate surroundings. He can move forward in the direction he is facing,
and he can turn in place. Karel can see wall sections if they are within |
one-half block away, and he can hear beepers if he and the beeper are
located at the same corner. To determine the direction he is facing,
Karel has been given an internal compass. Because Karel must have the
ability to transport beepers, he has been equipped with arms and a beeper
bag. By reaching into the bag, Karel can determine if he has any beepers.

When the student is given a robot problem, he must be able td define
it in terms of Karel and his world. The first step is to decide exactly
what it is that Karel must do; this is known as the task. Once the task
has been specified, the student must then be aware of the circumstances
of the problem. An exact description of Karel's world, the situation,
must be given and should include Karel's current position, the location
and size of each wall section, and the location of each beeper. The
situation before Karel starts (the initial situation) and the situation

after Karel is finished (the final situation) will pictorially show the

11

problem. Only after the student has identified the task and the
initial situation has the problem been sufficiently defined.

IT.II Be Able to Think Sequentially

When people give instructions for performing an action, they usually
rely heavily on the ability of the one performing the action to do the
obvious without being told. This reliance leads to the deletion of
obvious instructions. Unfortunately, computers are not endowed with
this ability, so it is necessary to train people to give instructions in
a step-by-step fashion.

Teaching the student to think sequentially is the second behavioral
objective of the Karel method. After the student learns Karel's basic
commands, it is possible for him to write a robot program. Once written,
the program can then be manually simulated, thus enabling the student to
observe the result of each instruction. Through simulation, the student
can visually see why every step im a robot program 1s necessary; conse-
quently, this makes it easier for him to understand.

Karel has only five primitive instructions built inteo his vocabulary
(see Figure 2-2), but these five primitive instructions allow him to move
through his world and handle beepers. The move instruction makes Karel
move forward one block in the direction he is facing. By issuing a turn-
left instruction, Karel will turn 90 degrees to the left. A pickbeeper
instruction will méke Karel pick up one beeper, while a putbeeper instruction
tells him to leave one. The stop instruction makes Karel step and turn
himself off; it is always the last instruction of every program.

By using only Karel's primitive commands, it is possible for the
student to write a complete robot program. As he writes the program, the

student must remember to include an instruction for every action Karel is

12

Figure 2-2

KAREL'S PRIMITIVE INSTRUCTIONS

move
turnleft
pickbeeper
putbeeper

stop

Move Karel one block forward

Turn Karel 90 degrees to the left
Karel puts beeper in beeper bag
Karel puts beeper on corner

Karel turns himself off

13

to perform, because Karel will do only as he is commanded. Simulation of
the program will allow the student to experience the results of inadver-
tently excluding an instruction and will aid his development of the
sequential thought process. Once the student has the ability to think
sequentially, he is better prepared to write robot programs.

II.III Be Able to Use Punctuation and Reserved Words Correctly

Rules and regulations are commonm in today's life. They govern every=-
thing from how people talk to how they treat their fellow men. But, as
the saying goes, rules are meant to be broken. It is very doubtful that
someone has ever lived his entire life and not broken a few rules.

As in the real world, there are many rules for writing computer
programs; however, the rules for programming are strictly enforced. The
fact that the rules are always in effect is very difficult for most people
to accept. Because they are used to simply bending the rules whenever
necessary, they find it very perplexing to adhere strictly to the rules
of programming.

Within the Karel method, there are rules covering the use of punctu-
ation and reserved words. These rules are simple, yet they must be obeyed.
The student has to learn not only what the rules are, but he must learn
that he is required to abide by them as well.

The only punctuation allowed in a robot program is the semicolon. It
"serves to separate instructions: each instruction is separated from the
next instruction by a semicolon" (Pattis). A common misinterpretation of
this rule is to end each instruction with a semicolon. Although these
two rules sound equivalent, they are slightly differént in that instructions

followed by a reserved word should not be ended by a semicolon.

14

The 15 reserved words in the Karel language are listed in Figure 2-3.
Four of these words are present in every robot program: BEGINPROGRAM,
BEGINEXECUTION, ENDEXECUTION, and ENDPROGRAM; therefore, they are intro-
duced along with the semicolon. The remaining 11 reserved words are
introduced throughout the course as new language concepts are explained.
As each of these reserved words is p?esented, the rules pertaining to its
usage are explained. |

Following the stringent rules of programming is very difficult for
the beginning student; however, he must learn to do so. The ability to
write correct robot programs requires the ability to use punctuation and
reserved words accurately.

II.IV Be Able to Make Effective Use of Indentation

When writing in the English language, indentation is a common way of
expressing a change in thought. Similarly, when writing a computer program,
indentation should be used to indicate the transition from one logic
component to another.

The main difference between the two uses of indentation is that only
the first line is indented when writing in English; however, when writing
a program, complete logic components are set in. This results in the left
margin of an English teﬁt remaining fairly constant, while the margin of a
program 1s extremely flexible.

The only area of confusion concerning indentation lies in how it
affects program execution. Although indentation has no influence on how
the program will be executed, it often deceives the programmer by showing
him what he wants instead of what he has said. The Karel method explains

this problem and warns the student to be on constant guard against it.

Figure 2-3

KAREL'S RESERVED WORDS

AS
BEGIN
BEGINEXECUTION
BEGINPROGRAM
DEFINE-NEW-INSTRUCTION
DO
ELSE
END
ENDEXECUTION
ENDPROGRAM
IF
ITERATE
THEN
TIMES

WHILE

15

16

Because there are no computer enforced rules pertaining to the
correct usage of indentation, it is up to the student to develop his
own technique. The Karel method stresses the importance of "adopting
a lucid programming style'" (Pattis) and illustrates good indentation form.
Using these examples as a guide, the student is then free to develop his
own technique.

II.V_ Be Able to Recognize and Correct Programming Errors

"Programming requires an inhuman amount of precision, and although
errors should not occur in principle, they occur abundantly in practice"
(Pattis). Because errors are inevitable, it 1s necessary to be able to
locate and correct them.

The Karel method classifies all possible errors into the four basic
groups listed in Figure 2-4. Lexical errors are those errors which occur
when Karel is confronted with a word or form of punctuation that he does
not recognize. Syntactic errors occur when incorrect grammar or inaccurate
punctuation is used. Both of these error types will be detected by Karel
before he tries to execute the program. If an instruction is lexically
and syntactically correct but Karel cannot perform the action, an execution
error will result. Karel will detect this type of error and turn hiﬁself
off prematurely. The last class of errors is the most insidious, because
Karel cannot detect them. Intent errors occur when Karel suqcessfully
completes the program, but he does not perform the desired task.

Once an error is detected, it must be corrected. Both lexical and
syntax errors can be rectified by simply applying the rules of programming.
These rules pertain to the correct usage of reserved words, punctuationm,

and vocabulary. Execution and intent errors are more difficult to correct

Lexical
Syntactic
Execution

Intent

Figure 2-4

KAREL'S ERROR GROUPS

Word not in Karel's vocabulary
Incorrect grammar or inaccurate punctuation
Karel is unable to execute an instruction

Karel completes program but does not complete task

17

18

because they require the use of logic. In order to determine exactly
where the program went wrong, it is necessary to simulate Karel's actions.
After the location has been discovered, it is then necessary to rewrite
that segment of the program.

To be a competent programmer requires the ability to recognize and
correct each type of error. The Karel method appreciates this and stresses
that all programs should be considered guilty of being incorrect until
proven otherwise. Only after the student has adopted this belief and
become proficient at finding and correcting errors will it then be possible
for him to be considered as having an adequate knowledge of programming.

II.VI Be Able to Write Modular Programs

As stated previously, it is necessary, when writing computer programs,
to give detailed instructions. However, most people do not think in such
detail; instead, they tend to think in terms of large, compound instructions
which they must then break down. Because it is more natural to think in
the large, the computer concept of modularity was developed. By applying
this concept, it is possible for people to think in a way natural for them
and then break down their thoughts into the necessary detail required by
the computer.

To implement the jdea of modularity into the Karel language, a new
construct is introduced:

DEFINE-NEW-INSTRUCTION <newname>
AS |
<instruction>
The new instruction name can then express the large, compound instruction
desired, while the instruction gives the necessary detailed instructions

required by Karel.

19

The rules governing the use of the DEFINE-NEW-INSTRUCTION construct
are very simple. They are:

- The <newname> can be any word or set of hyphenated words except

for already used names and reserved words.

- The <instruction> must contain only one instruction, and it must

be one that Karel understands.

- All instruction definitions must be placed between the words .

BEGINPROGRAM and BEGINEXECUTION.

- Definitions must be separated by semicolons.

While these rules are not very complicated, they must be obeyed.

As the student learns to use the DEFINE-NEW-INSTRUCTION construct,
he is encouraged to write his programs using only new instructions. These
new instructions are then defined in terms of either primitive commands or
‘other new instructions. This defining process must be repeated until all
new instructions have been defined. After all the new instructions have
been defined, the program must be organized according to the precedence
rule for new instructions. By decomposing the problem in this fashion,
the concept of stepwise refinement is introduced.

Because the Karel method teaches the concept of modularity before the
student has had much practice in writing long programs, the student learns
to break up his program, through stepwise refinement, in a way natural for
him.

II.VII Be Able to Use Block Structuring When Necessary

When using the DEFINE-NEW-INSTRUCTION construct, it is obvious that
giving one instruction a new name is of minimal value. Thus, the concept

of block structuring is necessary, for it allows the creation of '"one big

20

instruction from a sequence of smaller ones" (Pattis). By using block
structuring in combination with the new instruction definitions, it is
possible to define a new instruction as a set of instructions.

The concept of block structuring has been included in the Karel
language. It is accomplished by enclosing a sequence of instructions
between the reserved words BEGIN and END. Because BEGIN and END are
reserved words, they are not separated from other reserved words or
instructions by a semicolon. Once a BEGIN - END block is being executed,
all the instructions contained in the block will be executed.unless there
is an error. This method of block structuring is simple to understand,
yet general enough to use with the complex instructions in the programming.

To use block structuring correctly, it is necessary for the student
to not only know the syntax of the BEGIN - END block, he must also under-
stand when its use is required. '"The fundamental property of a BEGIN - END
block is that Karel understands the entire block to represent one
instruction" (Pattis). If there is only one instruction within the block,
the block is still correct, although its use is superfluocus. If the set
of instructions is to be understood as one and the words BEGIN and END are
omitted, Karel will understand each instruction separately and will not
perform as desired. In order for the student to have a sufficient know-
ledge of block structuring, he must recognize both of these conditiomns
and be able to determine when a BEGIN - END block is essential.

II.VIII Be Able to Box a Program

One of the most common mistakes of programming is the omission of a
necessary BEGIN - END block. Although designed as a programming aid,

indentation will often conceal this mistake by making the program look

21

correct. Because the computer does only as instructed and does not compre-
hend indentation, it is necessary for the programmer to understand how the
machine will interpret his program. By breaking the program into components
the computer can recognize, the programmer will be able to detect any
missing BEGIN - END blocks.

The Karel method defines boxing as the operation of drawing boxes
around every program unit. A unit may be an instruction, any type of
BEGIN - END block, or a new instruction definition. '"The main geometric
property of boxing is that boxes are either one inside the other or are
adjacent; boxes never overlap" (Pattis).

To box a program, the primitive instructions are boxed first, and then
the units that enclose them are boxed. In this way, larger units will be
built out of smaller ones. Boxing should be started at the beginning of
the program, with the largest possible units being boxed before proceeding
further. Figure 2-5 illustrates a program which has been boxed.

The use of boxing will aid the student in his quest to write correct
programs. Because omitting a BEGIN - END block may cause either a syntax
or intent error, it is necessary for the student to be able to detect a
missing block. By allowing him to see how the program will be executed,
boxing will help the student discover when a BEGIN - END block is necessary.

I1.IX Be Able to Write Understandable Programs

There are three criteria for computer programs: the program rums,
the program does as intended, and the program is understandable. The first
two requirements are obviously important, for a program which does not

work or does not perform the desired task is of negligible wvalue, The

22

Figure 2-5

A BOXED PROGRAM

=]

EGINPROGRAM
DEFINE-NEW-INSTRUCTION turnright

BEGINEXECUTION
ovel

Eurnright];
ENDEXECUTION

ENDPROGRAM

23

significance of the third requirement, the program is understandable, is
not as obvious; however, without it, fulfilling the first two criteria
becomes extremely difficult.

If it is assumed that all programs initially contain errors, then it
becomes necessary to be able to correct these errors. To correct a
program with errors, one must be able to understand the program. Thus,
the criteria of understandability is of an equal or greater importance
than those concerning the correctness of a computer program.

The Karel method emphasizes the importance of understandability and
gives two requisites for understandable programs: the program should be
"the simple composition of easily understandable parts" (Pattis), and new
instruction names should "provide a description of how the program
accomplishes the task" (Pattis). The method explains that decomposing
"a program into separate instructions, even if an instruction is executed
once," (Pattis) will make the program more structured and more under-
standable. But, decomposing a program is not enough. The new instructions
must be given meaningful names in order for the programmer to remember
what the instructions!do. If both of these requisites are met, the program
will be understandable.

To entice the student into writing understandable programs, the Karel
method explains how understandable programs will help him. When shown the
same program written once in an understandable, structured fashion and once
using only sequential primitive instructions, the student can observe that
the understandable program is shorter, easier to check for correctness,
easier to correct if necessary, and easier to modify if necessary. Because
each of these characteristics will benefit the student, he can realize how

understandable programs will be of walue to him.

24

I1.X Be Able to Write Conditional Statements

The conditional statement is an extremely valuable tool for a computer
programmer, for it is the means which allows him to make decisions during
program execution. According to the decision, based on the current
gituation, the programmer can either have instructions performed or not
performed. This type of control is of great use to a programmer.

The Karel language has the facilities to implement two types of

conditional statements. The two forms available are:

IF <test> IF <test>
THEN and THEN
<instruction> <instruction 1>
ELSE

<instruction 2>

Both instructions perform a test on the condition and execute the
instruction following the THEN only when the condition is true. The
IF - THEN - ELSE instruction, however, allows the programmer to specify
when action should be performed if the test fails. As in new instruction
definitions, only one instruction is allowed in the THEN and ELSE clauses,
but this is again overcome by the use of block structuring.

The conditions which Karel can test are limited to those which he
can perceive through his sensory modes. These conditions are listed in
Figure 2-6. '"Each condition is represented in both its positive and
negative forms" (Pattis); thus, when the positive condition is true,
the negative form is false.

To determine when a test is Erue, certain conditions must be satisfied.
"Karel's front, left, and right are respectively clear if there are no walls
between Karel and the next corner over in the direction he is commanded to

look. The next-to-a-beeper test is true when Karel is on the same corner

Figure 2-6

CONDITIONS WHICH KAREL CAN TEST

front-is-clear
left-is-clear
right-is-clear
next-to-a-beeper
facing-north

facing-south

facing-east

facing-west
any~beepers—-in-beeper-bag

front-is~blocked
left~isz-blocked
right-is-blocked
not-next-to-a-beeper
not-facing-north
not-facing-south
not-facing-east
not-facing-west
no-beepers-in-beeper-bag

25

26

as one or more beepers" (Pattis). Because the beeper bag is soundproof,
Karel cannot hear the beepers he is carrying; therefore, these beepefs
will not affect the test. When testing the direction he is facing, Karel
consults his internal compass. To test whether he has any beepers in his
beeper bag, Karel reaches into his bag; if any beepers are present, Karel
will always find them.

Without the conditional statement, programs must be written for
specific situations; however, by using conditional statements, the program
may be generalized in order to handle many similar situations. It is
vitally important that the student learn to use the IF - THEN and IF -
THEN - ELSE constructs correctly, for it is these comstructs which allow
the student to write versatile programs,

II.XI Be Able to Nest Conditional Statements

The concept of nesting, putting one or more conditional statements
inside the THEN or ELSE clause of another conditional statement, is an
important concept for the beginning programmer to learn. This concept
allows the programmer to make decisions based on compound conditions.
By testing one situation at a time, the programmer gains the ability of
easily subdividing possible alternative situations, thus allowing him to
handle each situation appropriately.

The nesting of conditional statements within the Karel language
requires no new evaluation rules; however, a close adherence to the
established rules is required. Because it is easy to lose track of
exactly what is happening when the statements are nested several levels
deep, it 1s necessary to understand precisely how the program will be

executed; thus, the concept of boxing is used to explain to the student

27

and aid his learning of how to interpret nested conditional statements.
By boxing the nested statements, it is possible to insure that the rules
pertaining to conditional statements and block structuring are being
followed properly and that the statements are being evaluated as desired.

One major problem of nesting conditional statements concerns the
dangling ELSE. The Karel method defines the problem as the nesting of
an IF - THEN statement with an IF - THEN - ELSE statement. To solve the
problem, the Karel method introduces a new rule of grammar which states
that the first ELSE encountered must be matched with the last available
IF - THEN statement. In the event that the ELSE should be matched with
a previous conditional statement, block structuring is used as demonstrated
in Figure 2-7.

The ability to test several conditions at one time is extremely
useful because it permits the handling of various similar situations
accordingly. The student must learn to use nested conditional statements
properly in order to test more than one condition at a time.

II1.XII Be Able to Use Iterate Loops

When writing a program, it is sometimes necessary to repeat an
instruction, or a set of instructions, a fixed number of times. Of course,
it is possible to accomplish this by writing out the instruction the number
of times desired, but this is not a desirable method because it makes the
program longer and allows the possibility of having the instruction
repeated too few or too many times. Instead, the concept of iterative
looping should be used. This concept permits the repeating of an
instruction a specified number of times while requiring it to be written

only once.

Figure 2-7

NESTED CONDITIONAL STATEMENTS

IF <test 1>
THEN
BEGIN
IF <test 2>
THEN
<instruction 1>
END
ELSE
<instruction 2>

28

29

The Karel language implements the concept of the iterate loop

through the use of the ITERATE instruction. The general form is:
ITERATE <positive - integer> TIMES
<instruction>

The <positive - integer> informs KAREL how many times to execute the
one instruction that replaces <instruction>. If more than one instruction
is to be repeated, block structuring must be used.

Similar to conditional statements, ITERATE instructions may be
nested. When nesting, the innermost ITERATE instruction is executed in
its entirety for each single execution of an outer ITERATE instruction.

While it is true that any program written using the ITERATE instruction
could be written without it, the ITERATE instruction is of great benefit
to a programmer and should be learned. By using the ITERATE instruction
properly, the student will be making his program more structured and will
decrease the chance for error.

II.XII1 Be Able to Use Conditional Loops

While the use of the conditional statement allows programs to become
more generalized and iteration simplifies the repetition of an instruction,
it is the combination of these two features that produces one of the most
powerful concepts in computer programming, the conditional loop. The
conditional loop tests a condition in the current situation and, as long
as the test remaiﬁs true, repeats an instruction.

Within the Karel language, the conditional loop has the general form
of:

WHILE <test> DO

<instruction>

30

The <test> may be any of those stated for conditional statements listed
in Figure 2-6, The <instruction> may be any single instruction which Karel
understands. If more than one instruction is desired, block structuring is
necessary.

To execute the WHILE statement, Karel tests the condition; if it
is true, he executes the instruction. ¥Xarel then re-executes the entire
WHILE instruction until the test becomes false., When the test is false,
Karel is done with the WHILE instruction and continues with the statements
following the entire WHILE loop. If the test is false the first time
through the WHILE instruction, Karel does not execute the instruction
ingide the loop.

By using the WHILE instruction, the student will be able to solve
problems which require repetition until a condition is met. The use of
the conditional loop greatly increases the scope of programming problems
which may be solved; therefore, the student should become familiar with it.

IT1.XIV Be Able to Avoid Infinite Loops

The ability to repeat an instruction as long as a condition remains
true has its advantages, but it also adds to the programmer's responsi-
bilities. The programmer must insure that the condition will eventually
become false by the execution of the instruction inside the conditional
loop. If he does not and the condition forever remains true, the programmer
has written an infinite loop. An infinite loop is a loop that gets
executed an infinite number of times. It is the programmer's responsibility
to guarantee that every conditional loop he writes will terminate.

It is possible to write an infinite loop within the Karel language
by the improper usage of a WHILE instruction. The student must be aware

of infinite looping and is expected to be able to avoid it.

31

ITI.XV Be Able to Combine Computer Concepts to Produce Correct Solutions

After the student has been exposed to the different language constructs,
he must learn to use them separately and together in order to derive
golutions for computer problems. A frequent source of trouble involves
IF instructions that are within the body of a WHILE loop. Because both
instructions perform tests and have similar execution rules, the combination.
of the conditional statement and the conditional loop may cause confusion.
Only through exposure to correct examples and practice will the student
be able to understand how to combine the language constructs.

II.XVI Be Able to Test the Solution

It would be gratifying if every program written would work properly
the first time; however, this is not the case. Even when the program is
written through the use of stepwise refinement and meticulous care is
taken when writing the constructs, there is always the possibility that
the program will not perform the desired task. To insure that the program
does as intended, it is necessary to test the program.

Usually, programming is guided by a few sample situations that seem
to include all the different possibilities for the particular problem.
But, as more is learned about the problem, previously overlooked situations
might be disclosed. These special cases may cause trouble which could
result in the changing of the program.

The student must learn to search for the special cases. "Good
programmers become skilled at . . . finding dangerous situations that

interfere with programs accomplishing their tasks" (Pattis).

32

Chapter III

RESULTS

The problem of teaching problem solving is only partially resolved
after this approach has been accepted. The complete solution must also
include a description of how the material should be introduced to the
students. The Karel approach to teaching problem solving is a new
technique and unfamiliar to instrﬁctors. For this reason, it is necessary
to have not only a text but other materials as well.

I11.I The Text

The idea of using a robot as a means to teach problem solving is not
a new one. There are numerous texts which use the robot concept to
illustrate computer problem—solving'techniques.

TIn 1981, Karel, the Robot: A Gentle Introduction to the Art of

Programming by Richard E. Pattis was published. This text utilizes the
robot concept to teach problem solving in a step-by-step fashion. The
robot language used is similar to PASCAL in grammar and punctuation. The
software engineering goals of modifiability and understandability are
emphasized. Incorporated throughout the text are the principles of

- modularity, confirmability, and completeness. It was a copy of the pre-
published manuscript for this text that was used in the creation of
Appendices A through C.

III.II The Lesson Plans

To aid instructors who are unfamiliar with the Karel approach, the

material contained in Karel, the Robot has been outlined. Each major

section in the outline is an individual lesson, although two or more small
sections may be taught during one class period. The lesson plans are in

Appendix A.

33

IIT.IT1 The Transparencies

To further aid in the instruction of the Karel approach, a complete
set of designs for transparencies has also been included. The transparency
designs, found in Appendix B, follow the same sequence as the lesson plans
and should be used to illustrate them.

II1.IV The Script

So that the instructor does not simply read the transparencies to the
students, a script has been provided in Appendix C. Each numbered section
within the script explains the information seen on the corresponding

transparency.

34

Chapter IV

CONCLUSION AND FUTURE WORK

Good problem-solving techniques are crucial in the development of
computer programs. In the past, problem solving was left to those who
had the intuitive ability to solve problems; however, it is now a recognized
fact that the ability to solve problems can no longer be left to intuition
but must be taught. Unfortunately, as the demand for programming knowledge
increases, the number of qualified instructors decreases. Therefore, it
has become necessary to find an easily undefstandable method to teach
problem solving.

IV.I Conclusion

A new method for the teaching of problem solving has been introduced.
This method utilizes a mobile, programmable robot called Karel to teach
problem solving through the use of computer language conmstructs. The robot
language has been broken down into its most basic parts, and each element
is introduced separately in a logical order. B? using the Karel approach,
it is possible to teach problem-solving techniques, introduce the basic
constructs of computer programming, and expose the student to the regimen-
tation required in computer programming.

IV.II Testing

The Karel method has been used both at Stanford University and in an
off-campus class offered by Kansas State University at Fort Riley. In both
instances, it has been a highly successful method. The classes, however,
were taught by instructors familiar with the Karel approach and who did
not see any of the material found in Appendices A, B, and C. Therefore,

before the Karel method is fully implemented through the use of the

35

transparencies and script, it should be tested within a controlled envir-
onment for a minimum of one semester. After it has been tested and revised,
it can then be used to teach the fundamentals of computer programming to
all beginning students.

IV.III Future Work

Once the Karel method is fully implemented, it would be desirable for
the method to be computerized. Of course, computerization would entail
several costs but would solve the problem of too few instructors and would

allow students to learn at their own speed.

36

Bibliography

Kurtz, Edwin B., Jr. '"Help Stamp Out Non-Behavioral Objectives,'" The

Science Teacher, Vol. 32, Number 1, January, 1965.

Pattis, Richard E. Karel, the Robot: A Gentle Introduction to the Art

of Programming, John Wiley and Sons, Inc., 1981,

Ross, Douglass T.; Goodenough, John B.; and Irvine, C. A. "Software

Engineering: Process, Principles, and Goals," IEEE Tramsactions

on Software Engineering, Vol. SE-2, Number &4, December, 1976.

Unger, E. A., and Ahmed, Nasir. Computer Science Fundamentals, Charles

E. Merrill Publishing Co., 1979.

Walbesser, Henry H. Constructing Behavior Objectives, The Bureau of

Educational Research and Field Services, 1970.

Walker, Terry M. Introduction to Computer Science: An Interdisciplinary

Approach, Allyn and Bacon, Inc., 1972.

Wirth, Niklaus. '"Program Development by Stepwise Refinement," Communications

of the ACM, Vol. 14, Number 4, April, 1971.

Appendix A

LESSON PLANS

I. Meet Karel, the Robot

A. Karel's World

1.

Grid

a. Boundaries - south and west, solid neutronium

b. Streets - horizontal

¢. Avenues - vertical

d. Origin - intersection of First Street and First Avenue

Wall Sections - neutronium obstacles which may be positioned
sideways between adjacent street corners to block a path

Beepers - small plastic bells that emit a quiet beeping
noise

B. Karel's Capabilities

1.

9

10.

Move

a. Go forward in direction facing

b. Turn in place

See walls if withinone-half block

Hear beepers if he and beeper are at same corner
Determine the direction he is facing

Pick up beepers

Put down beepers

Determine if he has a beeper

Recelve set of instructioms

Memorize set of instructions

Carry out set of instructions

C. Karel's Situations

1.

Situation - Complete description of Karel's world

a. Current position of Karel

b. Location and size of each wall section

¢. Location of each beeper - including those in Karel's
beeper bag

2. Initial situation - situation before Karel starts

3. Final situation - situation after Karel turns himself off

II. Learn How to Perform Tasks
A. Define Terms
1. Task - something we want done

2. Program - detailed set of instructions which explain how to
perform the task

3. Programming language - language in which a program is
written

B. Explain Method
1. Robot named Karel
a. Limited world
b. Limited set of instructions

2. RKarel performs tasks

III.

Understand Karel's Primitive Instructions

A.

stop - Informs Karel that he has completed his task

1. Turns himself off

2, Will not resume action until restarted by another task
3. Must be the last instruction in every program

move - Causes Karel to go forward one block in the direction
he is facing ;

1. Continues to face the same direction

2. Will not move if he sees a wall section or boundary wall
between himself and the corner he is moving toward

turnleft - Causes Karel to turn 90 degrees to the left
l. Remains at the same corner
2. Can always turn

pickbeeper - Causes Karel to pick up a beeper at the corner
where he 1is standing and put it in his beeper bag

1. Continues to face the same direction

2. Remains at the same corner

3. Picks up one and only one beeper even if there are several
4. Will not pick up a beeper if none are present

putbeeper - Causes Karel to take a beeper from his beeper bag
and place it at the corner

1. Continues to face the same direction
2. Remains at the same corner

3. Will not deposit a beeper if he has none

IV,

See How Karel Works

A,

Start Karel

1. Set up initial situation

2. Press Karel's start button

Read Karel the Program

1. Include each word

2. Include all punctuation

Rarel Executes the Program

1. Karel starts only after hearing ENDPROGRAM

2. Karel continues until he turns himself off

A-5

V. Simulate Karel's Actions to Verify Program

A. Karel Executes Programs

3.

Execute instructions between the words BEGINEXECUTION and
ENDEXECUTION

Executes instructions sequentially (top to bottom)
Executes all instructions - does not leave any out
Continues until he turns himself off

a. stop instruction
b. error shutoff

B. Karel Executes Instructions

1.

2'

Performs action if possible

Shuts off if not possible

VI.

Pay Attention to Grammar and Punctuation Rules

A.

Karel's Vocabulary

1. Instructions - cause Karel to perform an action
a., Instructions will always be written in lowercase letters

2. Reserved words - delimit different portions of the program
a, Programs must start with BEGINPROGRAM and end with
ENDPROGRAM
b. Programs must contain BEGINEXECUTION and ENDEXECUTION
c. Matching pairs of BEGIN-END
d. Reserved words will always be written in uppercase
letters

Karel's Punctuation
1. Semicolon - separates instructions
a. Reserved words are not separated by semicolons
b. Reserved words are not separated from instructiomns by
semicolons

Karel's Indentation

1. Programs should be easily readable
a. Karel cannot see indentation

VII.

Don't Ask The Impossible

A,

Error Shutoff - Karel Turns Himself Off When He Cannot Execute an
Instruction

1. Move blocked by a wall section or boundary
2. pickbeeper - wﬁen Karel is not next to one

3. putbeeper - when Karel's beeper bag is empty

A-9

VIII. FKnow Your Enemies
A. Correct Program
1. Inhuman amount of precision
2. No errors "in principle"
3. Abundant errors "in practice"
B. Four Categories of Errors

1. Lexical error - Karel hears a word not in his vocabulary
and turns himself off

2. Syntactic error - Karel hears incorrect grammar or
inaccurate punctuation and turns himself off

3. Execution error - Karel is unable to execute an instruction
and turns himself off

4. Intent error - Karel successfully executes the program

but does not successfully complete his task

Remember: Karel does not know what you want him to do; all he knows is
what you tell him to do.

A-10

IX. Increase Karel's Vocabulary

A,

Why Bother?
1. People think in one language and must program in another
a. Turnright - requires three TURNLEFT instructions
b. Move ten miles - requires 80 MOVE instructions
2, Programs are shorter
a. Easier to write
b. Easier to understand
3. It is better to have Karel learn new definitions than have us
be slaves of the machine
It Is Easy
1. Give Karel a dictionary of useful instruction names and their
definitions
a. Definitions are built from simpler instructions which
Karel dlready understands
b. The first definitions would be built using primitive
instructions
2, The definition mechanism defines a new imstruction to have
the same meaning as one other instruction
a. Two new reserved words: DEFINE-NEW-INSTRUCTION, AS
b. DEFINE-NEW-INSTRUCTION signals Karel that a new
instruction is being defined
c. AS separates the new instruction name from its definition
d. Replace <new name> with the name of the new instruction
1) Any word in lowercase letters or numbers
2) May be hyphenated when a multiple word name is
desired
3) Cannot already be an instruction name
4) Cannot be a reserved word
e. Replace <instruction> with the definition of <new name>
1) Any single instruction that Karel understands
2) A primitive instruction
3) A previously defined new instruction
3. The single instruction restriction on <instruction> is

severe but useful
a. Allows Karel to understand instructions in more than
one language

A-1l

X. Build Complex Commands

A,

Dl

Block Structuring

1. Place sequence of instructions between reserved words BEGIN
and END

2. Makes one big instruction out of a sequence of smaller ones
3. The sequence of instructions should be indented
Grammar Rules

1. Instructions inside the BEGIN-END block must be separated by
semicolons

2. The reserved word BEGIN is not followed by a semicolom

3. There is no semicolon separating the last instruction from
the reserved word END

4. May put from one to as many as needed instructions inside the
BEGIN-END block

5. A BEGIN-END block is executed by executing the inmstructions
sequentially

6. Once a block is being executed, all the instructions within
the block will be executed unless Karel turns himself off

Fundamental Property

1. Karel understands the entire block to represent one
instruction
a, Define turnright
b. Define move-mile

Meaning and Correcthess

1. What's in a name?

2. Karel's only concept of a new instruction is the definition

given to him
a. Karel doesn't understand what the name means for him
to do

b. Karel does understand the definition and executes it

3., The name of a new instruction should specify "what" the
instruction does, while the definition specifies "how"

A-12

XI. Give Karel the Definitions of New Instructions

A.

Location

1. All definitions go between BEGINPROGRAM and BEGINEXECUTION

2. Nothing else can go there

3. This portion of the program is Karel's dictionary

Order

1. Each inétruction must be defined before it is used

2, A lexical error will occur if an instruction is not defined
prior to its use

Punctuation

1. The definitions of new instructions-must be separated by
semicolons

2. A semicolon must separate the last definition from the
reserved word BEGINEXECUTION

Limitation

1. Karel's vocabulary reverts back to primitive instructions
and reserved words each time he is started

A-13

XII. Learn to Box

A.

Define Terms
1. Unit
a. An instruction
b. Any type of BEGIN-END block
c. An entry in the dictionary
2. Boxing - drawing boxes around every unit in the program

Observations About Units and Boxing

l. The definition of a new instruction is the first box after
the AS

2. Semicolons are placed between every pair of adjacent units
3. Units may be nested inside other units

Geometric Properties of Boxing

1. Boxes méy be one inside the other

2. Boxes may be adjacent to one another

3. Boxes may not overlap each other

How to Box

1. Box primitive instructions first and work outward

2. Start at the beginning of the program

3. Build biggest possible boxes before starting boxes further
down

A-14

XII1. Karel Finds Errors

A. Checks for Lexical and Syntax Errors While Program Is Being
Read

B. Breaks Program Inte Units to Check Grammar and Punctuation

1. Karel only knows program read and does not know
indentation

2. Karel uses boxing to find syntax errors

A-15

XIV. Construct A Program

A,

Stepwise Refinement - The Method to Use
1. Programs will be concise

2. Programs will be simple to read

3. Programs will be easy to understand
Steps to Follow

1. Write the sequence of instructions in the BEGINEXECUTION-
ENDEXECUTION block using any instruction names desired

2. Write the definitions of the new instructions used in the
BEGINEXECUTION-ENDEXECUTION block '

3.- Write the definitions of the new instructions used in BEGIN-
END block of a new instruction definition

4. Repeat step three until all instructions are defined
Review Stepwise Refinement
1. Understand task

2. Break task into smaller, easier to understand, independent
subtasks ‘

3. Solve subtasks, thus solving main task
Verify Program
1. Stepwise refinement does not guarantee a correct program

2. "Programs are guilty of being wrong until they are proven
correct”

A-16

XV. Write Understandable Programs

A.

Understandability 1s as Important as Correctness

3

2.

Understandable programs are easier to correct

Good programmers are separated from bad ones by their
ablility to write understandable programs

Criteria for Understandable Programs

ll

How

1.

' "A good program is the simple composition of easily under-

standable parts"

Properly named instructions provide a description of how

the program accomplishes the task

a. After an instruction has been proven correct, only
need to remember what it does

Understandability Helps Us

Easler to read

Easier to verify

Easier to correct

Easier to modify

Easy to change a complete program into one instruction

XVI.

A-17

Ask A Question

A,

Karel Understands Two Similar IF Instructions

He tests his environment

He then executes the appropriate instruction depending upon
the result of the test

IF-THEN Instruction
Two new reserved words, IF and THEN
IF signals Karel that an IF instruction is present

The <instruction> is known as the THEN clause and is
separated from <test> by the word THEN

The THEN clause is an instruction nested inside the IF
instruction

It Works

Karel checks <test> In the current situation

If <test> is true, Karel executes <instruction>
If <test> is false, Karel does not execute <instruction>
Karel continues executing the program
Conditions Karel Can Test

front-is-clear . . . front-is-blocked
left-is-clear . . . left-is-blocked
right-is-clear . . . right-is-blocked
next-to-a-beeper . . , not-next-to-a-beeper
facing—north . + » not-facing-north
facing-south . . . not-facing-south

facing-east . . . not-facing-east

facing-west . . . not-facing-west

any-beepers-in-beeper-bag . . . no-beepers-in-beeper-bag

A-18

E. What Is True?

1. Karel's front, left, and right are respectively clear
if there are no walls between Karel and the next corner
in the direction he is commanded to look

2. Karel's next-to-a-beeper test is true when he and a
beeper are located at the same cormer, Any beepers in
his beeper bag do not affect this test.

3. Karel's internal compass tells him what direction he is
facing

4, Karel determines if he has any beepers in his beeper bag
by poking around in the bag

A-19

XVII. Look At The IF-THEN Instruction
A. The harvest-a-furrow Instruction
1. Always use a BEGIN-END block in definitiomns
2. FKnow when necessary or redundant
B. The turn-around-only-if-blocked Instruction
1. Omit BEGIN-END block in THEN clause
a. Karel not fooled by indentation
b. Causes subtle intent error
2. Requires effort to understand meaning of an instruction
a. Do not passively test an instruction

b. Try to find special situations where the instruction
might fail

A-20

XVIII. Box The IF-THEN Iustruction
A. Steps To Follow |
1. Box the instructions in the THEN clause
2. Box the nested THEN clause
3. Box the entire IF-THEN instruction
B, Pay Attention to Punctuation

1. Semicolons separating the IF-THEN instruction from other
instructions

2. Yo semicolons after the last instruction in a BEGIN-END
block

A-21

XIX. Do It Or Else
A. The IF-THEN-ELSE Instruction
1. ELSE - new reserved word

2. ELSE clause nested inside the IF instruction after the THEN
clause

3. THEN and ELSE clauses are identically indented

4. No semicolon between <instruction 1> and ELSE
B. How It Works

1. Karel determines if <test> is true or false

2. If <test> 1s true, he executes <instruction 1>

3, If <test> is false, he executes <instruction 2>

4, Executes either <instruction 1> or <instruction 2>, but
not both

XX.

A-22

Look At The IF-THEN-ELSE Instruction

A,

The race-stride Instruction

1.

Equivalent IF-THEN-ELSE instructioms
a. Negate test

b, Switch THEN and ELSE clauses

c. More freedom

Suggested rule i1s to use the test that makes the THEN clause

smaller

a. Reader can see it is an IF-THEN-ELSE instruction

b. Long THEN clause would put too much distance between the
IF and the ELSE

Indentation helps

XXI.

A-23

Box The IF-THEN-ELSE Instruction

AI

Steps to Follow

1. Box the THEN clause

2. Box the ELSE clause

3. Box the entire IF-THEN-ELSE instruction

Pogsible Errors

1. Syntax error - BEGIN-END block omitted in THEN clause

2. Syntax error - semicolon between the THEN clause and the
reserved word ELSE

3. Intent error - BEGIN-END block omitted in ELSE clause
Lessons to Learn
1. Tactical lesson - do not forget BEGIN-END blocks

2. Strategic lesson - the bigger an instruction, the more
complicated it becomes

XXII.

Observe Nested IF Instructions

A.

A-24

IF Instructions Nested Inside a THEN or ELSE Clause of Another

IF Instruction

l. No new evaluation rules

2. Closer attention to established rules required

3. Simulation is difficult

The Replant-Exactly-One Instruction

1. Notice boxing

2. WNotice punctuation

3. Notice consecutive END instructions
Avoid Nesting More Than Two Levels Deep

Dangling ELSE Problem

1. Two IF-THEN instructions and one ELSE clause

2. ELSE clause boxed with most recent IF instruction

3. BEGIN-END block used to alter boxing

A-25

XXIII, Repeat That

A. Karel Has The Ability To Repeatedly Execute Any Instructiom
He Understands

B. The ITERATE Instruction

1. Shorthand notation to repeat another instruction a
specified number of times

2. Two new reserved words, ITERATE and TIMES

3. The <positive-integer> informs Karel how many times to
repeat <instruction>

4, The <instruction> is the body of the iterate instruction

5. New term ITERATE loop - instruction loops back and
executes itself

C. How It Works
1. The body is executed the <positive-integer> number of times
D. How Many Times?
1. ITERATE instructions may be nested
2, The inner most ITERATE instruction is repeated the
<positive-integer> number of times each time the outer
one is repeated once
E. Box the ITERATE Instruction
1. Box the instructions in the body

2, Box the ITERATE instructiomn

3. If nested, start with inner most ITERATE instruction

XXIV.

A-26

Learn WHILE, The Most Powerful Instruction

A’.

Programs Are Limited

Repeat instructions undetermined number of times

Need to repeat while a condition is true

WHILE Instruction

Two new reserved words, WHILE and DO

WHILE starts the instruction

DO separates <tests> from the body of the WHILE instruction
It Works

Karel checks if <test> is true or false

If <test> is true, Karel executes the body of the loop
and then re-executes the entire WHILE instruction

If <test> is false, Karel does not execute the loop
but continues execution at the first statement following
the loop

A Formal Property of the WHILE Instruction

1.

2'

When Karel is finished executing the WHILE instruction,
<test> 1is guaranteed to be false

If it is necessary for <test> to be true, write
condition using <not-test>

A-27

XXV. Don't Write Infinite WHILE Loops

A. "An Infinite Loop Occurs When <Instruction> Does Not Cause
Karel To Progress Toward His Goal"

1. WHILE instruction is the only one which has the ability to
be executed indefinitely

2. A kind of intent error because Karel cannot detect it

XXVI. Know When To Perform The Test
A. Common Misconception

1, Xarel checks <test> after each instruction is executed
in the loop body

2. True only if loop body consists of one instruction
B. Correct Rule

1. Check <test> each time before all the instructions in the
loop body are executed

2 6nce in loop body, Karel is unaware of the <test>

3. <test> is rechecked only after the body is completely
executed

XXVII,

A-29

Learn To Repeat

A,

Plan Ahead

1. Set up situation for repeating instruction

2. Be sure desired task is finished when loop terminates
3. Put special cases before loop for visibility

Use Block Structuring

1.

25

IF

Multiple instruction loop bodies need BEGIN-END blocks

Omitted BEGIN-END blocks cause errors

a.
b.

Karel may recognize it as a syntactic error
Most of the time, it will cause an intent error

Instructions In WHILE Loops

Both instructions perform tests and have similar
execution rules

IF

Be
a.
b.
c.

instructions in WHILE loops are easily simulated

careful with syntax

WHILE instructions contain the reserved word DO

IF instructions do not contain the reserved word DO
Many programming errors are hard to find

A-30

XXVIII. See A Large Stepwise Refinement Programming Example
A, See How The Progrém Is Developed
1. Develop program in logical manner
2, Commit mistakes
3. Recognize mistakes
4. Rewrite program until correct

B. Task - Have Karel Escape From Any Rectangular Room With An
Open Doorway Exactly One Block Wide

1. Difficult and elusive task

2. One possible initial situation

3. Beginning solution

4. Write definitions for new instructions
C. Beyond-The-Horizon Situaticn

1. Guided by a few sample situations that seem to cover
all the facets of the problem

2. Uncover special trouble-causing cases

3. Good programmers become skilled at finding dangerous
situations

4, Modify program segment where error occurs

5. Check for gpecial trouble-causing cases

6. . Repeat steps 4 and 5 until program is correct
D. An Invariant

1. A conditiom that must be true during the execution of a
portion of a program

2. Karel's righthand side must be within one-half block
of the room wall

E. Finish Program
1. Define last instructions

2. Assemble program

A-31

F. More Beyond-The-Horizon Situations
1. A very skinny room
2. A door in an unexpected place

3. Are there others where program fails?

A-32

XXIX. Graduate to Advanced Robot Programming
A. Two New Instructions
1. zig-nw moves Karel diagonally northwest
2. zig-se moves Karel diagonally southwest

3. Iunstructions will enable an easy solution to a novel set
of beeper manipulation problems

B. The zig-nw Instruction
1. Simple definition
2. Eventually restrained by the western boundary wall
3. Precondition - Karel must be facing west
4, Precondition is invariant over instruction
a. Karel is facing the same direction after the
instruction ends as he was when he began the
instruction
5. Must only be executed when Karel's front is clear
C. The zig~se Instruction
1. Simple definition
2. Eventually restrained by the southern boundary wall
3. Precondition - Karel must be facing south
4, Precondition is invariant over instruction
5. Must only be executed when Karel's front is clear
D. Task - Find A Beeper

1. Obvious solution won't work

2. Use a search pattern involving zig-nw and zag-se
a. The search pattern will work

3. See the program which solves the task

Do

A-33

Arithmetic

Karel Can Add

1. Pickbeeper on question corner - Sth Street and Ath Avenue
2. Putbeeper on answer corner - First Street and (S + A)th

Avenue

How To Do Additiom

1. Phase one - locate and pick up beeper

2. Phase two - compute sum and deposit beeper

Phase One

1. Use previous example

2. Pickbeeper

Phase Two

1. Use zag-se instruction

2, The invariant is: the sum of the street number and

avenue number that Karel is on is always S + A

3. Karel moves south until he is on First Street

4, Position is A + S - 1 so must move 1 block east

5. Putbeeper

See Example

1. Karel must be facing south to perform zag-se préperly

Karel must be facing east for last move instruction

A-34

XXXI. Put It All Together
A. Solve the Task
1. Understand the task
2. Break large task into small, independent sub-tasks
3. Solve sub-tasks within language constraints
4. Combine sub-task solutions to produce task solution
B. Correct the Program
1. Eliminate lexical errors - unknown words
2. Eliminate syntax errors - incorrect grammar and punctuation
C. Siﬁulate the Program
1. Program should execute

2. Program should perform intended task - no intent errors

Appendix B

- R]

15

14

13

12

"

10

> .
Karel (facing East}

| o G

Wall Section Beaper

Beepar-bag

L 6 7 8 9 10

The Structure of Karel's World

11

12

13

14
Avenues

15

B-3

B-4

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
- COPY AVAILABLE

B-6

23 4567 8 910

N St

O ®m O M~ O WwdE DN -

—
Npuddin

1

Avenues

O o N O WY O N

-
Newvusdbunw

1 23 45 6 7 8 910

mN DWW~ U W T O -
Venpdun

1 23 456 7 8 910

Avenuas

Avenues

Final Situation

itial Situation

B-7

F)

W 1T T w3 W s

2 32 B B F B » ® » » @ ¢ & w =

1 2 3 456 7 8 810

O O K~ O 0 ¥ 0N -

oo ta @0 e d

(o]

e

-8B o
St

mJ!- ©

~

@D—|-8 o

6> 0

<

©

—18 o

-

O O M~ © W 9 O N ~—

[PO e

Avenuas
¥Final Situation

Avenuss

Initial Situation

B-8

9
TASK --- Somerhing we want done
PROGRAM --- Detailed set of instructions which explain how to perform
the task
PROGRAMMING LANGUAGE --- Language in which a program is written
10

We will be using Karel, his limited world, and a limited set of

instructions to perform tasks.

11

stop -—— informs Karel that he has completed his task

1. Karel turns himself off.
2, Karel will not resume action until restarted by another program.
3. Stop must be the last instruction in every robot program.

12

move --- causes Karel to go forward one block in the direction he is
facing

1., Karel continues to face the same direction.
2. Karel will not move if he sees a wall section or a boundary
wall between himself and the corner he is moving toward.

B-9

13

turnleft --- causes Karel to turn 90 degrees to the left

1. Karel remains at the same corner.
2. Karel can always turn.

14

pickbeeper ~-- causes Karel to pick up a beeper at the corner where he
is standing

1. Karel continues to face the same direction.
2. Karel remains at the same corner.
3. Karel picks up one and only one beeper even if there are several.
4. Karel will not pick up a beeper if none are present,
15
putbeeper —-- causes Karel to take a beeper from his beeper bag and place

it at the corner

1. Karel continues facing the same direction.
2. Karel remains at the same corner.
3. Karel will not deposit a beeper if he has none.

16

Karel's Five Primitive Instructions

1. stop

2. move

3. turnleft
4. pickbeeper
5. putbeeper

17

TASK -—- Move a beeper from Second Street and Fourth Avenue to Fourth

Street and Fifth Avenue.

B-10

18

-
o

L R N X 7

8

- N W s~ OO N OO

f

1 23 4567 3 910

Initial Situation

3

Avanues

19

BEGINPROGRAM
BEGINEXECUTION

move;
move}

pickbeeper;

move;

turnleft;

move;
move;

putbeeper;

move;
stop

ENDEXECUTION

ENDPROGRAM

B-11

20

-
(o]

LRl N R R]

- N~ OO N O©

S TR A S e LT A e Ak A

1 23 45 8687 8 910

Avanuas

e o

Initial Situation

BEGINPROGRAM
BEGINEXECUTION
move;
move;
pickbeeper;
move;
turnleft;
move;
move;
putbeeper;
move;
stop
ENDEXECUTION
ENDPROGRAM.
L

-t
Q

L Radl B B Radt ']

—®

- N hoOe N @O
g
.

1 23456 7 8 910

Avenuss

Final Situation

B~12

21

Rules for Reserved Words

. Every program must start with BEGINPROGRAM,

Every program must end with ENDPROGRAM.

Every program must contain a BEGINEXECUTION and an ENDEXECUTION.
Every BEGIN must have a matching END.

W o =

Note: Reserved words will always be written in uppercase letters.

Punctuation Rules

1. The semicolon is the only allowed punctuation mark.

2, The semicolon separates instructions.

3. The semicolon does not separate reserved words.

4. The semicolon does not separate reserved words from instructionms.
Indentation

1. It makes the program easier to read.
2. It aids in the deteection of errors.
3. Karel cannot hear indentation.

22

Error shutoff --—- Karel turns himself off when he cannot execute an
instruction.

1. move blocked by a wall section or boundary
" 2. pilckbeeper when Karel is not next to one
3. putbeeper when Karel's beeper bag is empty

23

Programming requires an inhuman amount of precision. In principle, there
should never be any errors since we know all the rules. In practice, there
is an abundance of errors.

Four Categories of Errors

B-13

24

1. Lexical error --- Karel hears a word not in his wvocabulary and
turns himself off.

2. Syntactic error --- Karel hears incorrect grammar or Iinaccurate
punctuation and turns himself off.

3. Execution error --- Karel is unable to execute an instruction and
turns himself off.

4, Intent error --- Karel successfully executes the program but
does not successfully complete his task.

25
Remember ---

Karel does not know what you want him to do; all he knows is what you

tell him to do.

26

turnright = turnleft;

turnleft;
turnleft

27

move ten miles = move;

move;
move ;
. {154 move instructioms)
move;
move

B-14

28

PROBLEM: People think in one language and must program in another.

29

Give Karel a dictionary of useful instruction names and their definitions.

1. Definitions are built from simpler instructionms.
2. The first definitions would be built using primitive instructions.

30

DEFINE-NEW-INSTRUCTION turnright
AS

turnleft
turnleft
turnleft

DEFINE-NEW-INSTRUCTION movemile
AS

move
move
move
move
move
move
move
move

31

DEFINE-NEW-INSTRUCTION <newname>
AS

<instruction>

32

Replace <«newname> with the name of the new instruction.
1. Any word in lowercase letters or numbers.
2. Cannot already be an instruction name.

3. Cannot be a reserved word.

=~

May be hyphenated.

33

Replace <instruction> with the definition of <newname>.
1. Any single instruction that Karel understands.
2. A primitive instructiom.

3. A previously defined new instruction.

34

DEFINE-NEW-INSTRUCTION evence
AS
move

DEFINE-NEW-INSTRUCTION tourne-a-gauche
AS
turnleft

35

BEGIN
<instruction>;
<instruction>;
<instruction>;

.

<instruction>;
<instruction>
END

B-16

36

Fundamental property of the BEGIN - END:

Karel understands the entire block to represent one instruction.

37

DEFINE-NEW-INSTRUCTION turnright
AS
BEGIN
turnleft;
turnleft;
turnleft
END

DEFINE-NEW-INSTRUCTION movemile
AS
BEGIN
move;
nove;
move;
move ;
move;
move;
move;
move
‘END

38

39

DEFINE-NEW-INSTRUCTION turnright
AS
BEGIN
turnleft;
turnleft
END

B-17

40

RULE: Karel executes a newly defined instruction by executing its
definitiom.

41

RULE: The instruction name should specify "what" the instruction does,
while the definition specifies "how'".

B-18

42

BEGINPROGRAM
DEFINE-NEW-INSTRUCTION turnright
AS

BEGIN
turnleft;
turnleft;
turnleft

END;

DEFINE-NEW-INSTRUCTION climb-north-east
AS
BEGIN
turnleft;
move;
turnright;
move
END;

BEGINEXECUTION
climb-north-east;
pickbeeper;
climb-north-east;
pickbeeper;
climb-north-east;
pickbeeper;
stop

ENDEXECUTION

ENDPROGERAM

43

IMPORTANT

1. All definitions go between the reserved words BEGINPROGRAM and
BEGINEXECUTION.

2. Only instruction definitions may be located between BEGINPROGRAM
and BEGINEXECUTION.

3. This portion of the program is called Karel's dictionary.
4, Each instruction must be defined before it is used.
5. Instruction definitions must be separated by semicolons.

6. The last definition must be separated from the reserved word
BEGINEXECUTION by a semicolon.

7. Every program must contain a complete set of definitions for all
new instruction names that it uses.

B-19

44

DEFINE-NEW-INSTRUCTION turnright
AS

turnleft;

turnleft;

turnleft

45

An instruction, any type of BEGIN - END block, or an entry in
Karel's dictionary.

UNIT:

46

BEGINPROGRAM

DEFINE-NEW-INSTRUCTION turnright

BEGINEXECUTION
lclimb-north-eastl
D D D l;
Imb-north—-easy:
P Decper);
]§I§m§-noi§§—eastq
[pickbeeper};

Etop]
ENDEXECUTION

ENDPROGRAM

B-20
47
Geometric property of boxing:

Boxes may be one ingside the other, nested, or they may be adjacent,.
Boxes may never overlap.

48

How to box:
1. Box primitive instructions first and work outward.
2. BStart at the beginning of the program,

3. Build the bigpgest possible boxes before starting boxes further

down.
59
BEGINPROGRAM BEGINPROGRAM
DEFINE-NEW-INSTRUCTION turnright DEFINE-NEW-INSTRUCTION turnright
AS AS
turnleft; :
turnleft; Fiznieit;
turnleft turnleft
BEGINEXECUTION BEGINEXECUTION
move; move;
turnright; turnright;
stop stop
ENDEXECUTION ENDEXECUTION

ENDPROGRAM ENDPROGRAM

B-21

50
Primitive instructions
stop
move DEFINE-NEW-INSTRUCTION <newname>
turnleft AS
pickbeeper <instruction>
putbeeper
BEGIN
<instruction>;
<instruction>; Types of errors
. syntax
. lexical
<instruction>; intent
<instruction> execution
END
51

STEPWISE REFINEMENT

52

Steps to Follow:

1. Write the sequence of instructions in the BEGINEXECUTION -
ENDEXECUTION block.

2. Write the definitions of the new instructions used in the
BEGINEXECUTION -~ ENDEXECUTION block.

3. Write the definitions of the new instructions used in the
BEGIN - END blocks of the new instruction definitions.

4, Repeat step 3 until all instructions are defined.

B-22

53

TASK: Harvest a field of beepers.

10 !
i
.8
L
t 7
]
6
5
4
3
2
1 -

123 456 7 8 310

Avenues

Initial Situation

54

BEGINEXECUTION
move;
harvest-2-furrows;
position-for-next-2;
harvest-2-furrows;
position-for-next-2;
harvest-2-furrows;
move;
stop

ENDEXECUTION

B-23

33

DEFINE-NEW-INSTRUCTION harvest-2-furrows
AS
BEGIN
harvest-a-furrow;
go~-to-next-furrow;
harvest-a-furrow
END

DEFINE-NEW-INSTRUCTION position-for-next-2
AS
BEGIN
turnright;
move
turnright
END

56

DEFINE-NEW-INSTRUCTION harvest-a-furrow

AS

BEGIN
pickbeeper;
move;
pickbeeper;
move;
pickbeeper;
move;
pilckbeeper;
move;
pickbeeper

END

DEFINE-NEW-INSTRUCTION go-to-next-furrow
AS
BEGIN
turnleft;
move;
turnleft;
END

DEFINE-NEW-INSTRUCTION turnright
AS
BEGIN
turnleft;
turnleft;
turnleft
END

57
B-24

BEGINPROGRAM
DEFINE-NEW-INSTRUCTION turnright
AS

BEGIN
turnleft;
turnleft;
turnleft

END;

DEFINE-NEW-INSTRUCTION position-for-next-2
AS
BEGIN
turnright;
move;
turnright
END;

DEFINE-NEW-INSTRUCTION go-to-next-furrow
AS :
BEGIN
turnleft;
move;
turnleft
END;

DEFINE-NEW-INSTRUCTION harvest-a-{furrow

AS

BEGIN
pickbeeper;
move;
pickbeeper;
move;
pickbeeper;
move;
pickbeeper;
move;
pickbeeper

END;

DEFINE-NEW-INSTRUCTION harvest-2-furrows
AS
BEGIN
harvest-a-furrow;
go-to-next-furrow;
harvest-a-furrow
END

BEGINEXECUTION

move;
harvest-2-furrows;
position~for-next-2;
harvest-2-furrows;
position-for-next-2;
harvest-2-furrows;
move;

stop -

ENDEXECUTION
ENDPROGRAM

B-25

58

STEPWISE REFINEMENT
1. Understand task

2. Break task into smaller, easier to understand, independent
subtasks

3. Solve subtasks

59

"Programs are guilty of being wrong until they are proven cotrrect.'

60

Understandability is as important as correctness.

61
Criteria for understandable programs:
1. A simple composition of easily understandable parts

2. Instructions properly named

62

Understandability helps the programmer by making the program:
1. easier to read
2. easier to verify
3. easier to correct
4. easier to modify

5. easier to change into one instruction

B-26

63

IF - THEN

IF - THEN - ELSE

64

IF <test>

THEN

<instruction>

65

How executed:
1. Check <test> in the current situation.

2., If <test> is true, execute <instructiom>.

3. If <test> is false, do not execute <instruction>.

66

IF next-to-a-heeper

THEN
pickbeeper;
move

Conditions Karel can test for:

front-is-clear front-is-blocked
left~is~clear léft-is-blocked
right~is-clear right-is-blocked
next-to-a~beeper not-next-to-a-beeper
facing-north not-facing-north
facing-south not-facing-south
facing-east not-facing-east
facing-west not-facing-west
any-beepers-in-beeper-bag no-beepers-in-beeper-bag

68

Conditions are TRUE when:

front, left, and right are respectively clear if there are no
walls between Karel and the next corner in the direction
he is commanded to look

next-to-a-beeper is true when Karel and beeper are located at
the same corner

Karel's internal compass tells him what direction he is
facing

Karel determines if he has any beepers by poking around in
his beeper-bag

- N H&OO N OO

69

L1 b
\."'all‘
7

1

2 3 4

§68 7 8 910

Avenuas

B-28

70 B-29

BEGINPROGRAM
DEFINE-NEW-INSTRUCTION turnright
AS

BEGIN
turnleft;
turnleft;
turnleft

END;

DEFINE-NEW-INSTRUCTION position-for-next-2
AS
BEGIN
turnright;
move)
turnright
END;

DEFINE-NEW-INSTRUCTION go-to-next-furrow
AS ;
BEGIN
turnleft;
move;
turnleft
END;

DEFINE-NEW-INSTRUCTION harvest-a-furrow

AS

BEGIN
pickbeeper;
move;
pickbeeper;
move;
pickbeeper;
move;
pickbeeper;
move;
pickbeeper

END;

DEFINE-NEW-INSTRUCTION harvest-2-furrows
AS
BEGIN
harvest-a—furrow;
go-to-next-furrow;
harvest-a-furrow
END

BEGINEXECUTION
move;
harvest-2-furrows;
position-for-next-2;
harvest-2-furrows;
position-for-next-2;
harvest-2-furrows;
move;
stop

ENDEXECUTION

ENDPROGRAM

B-30
71

DEFINE-NEW-INSTRUCTION harvest-a-furrow
AS
BEGIN
pickbeeper-if-present;
move; '
pickbeeper-if-present;
move;
pickbeeper-if-present;
move;
pickbeeper-if-present;
move;
pickbeeper-if-present
END

2d

DEFINE-NEW-INSTRUCTION pickbeeper-if-present
AS
BEGIN
IF next-to-a-beeper
THEN
pickbeeper
END

73

DEFINE-NEW-INSTRUCTION turnaround-only-if-blocked
AS
BEGIN
IF front-is-blocked
THEN
BEGIN
turnleft;
turnleft
END
END

74

DEFINE-NEW-INSTRUCTION does-not-turnaround-only-if-blocked
AS
BEGIN
IF front-is-blocked
THEN
turnleft;
turnleft

B-31

25

DEFINE-NEW-INSTRUCTION does-not-turnaround-only-if-blocked
AS
BEGIN

IF front-is-blocked
THEN ‘
turnleftif;

END

76

DEFINE-NEW-INSTRUCTION capture-the-flag
AS
BEGIN

L
IF next-to—a-beeper

THEN

77

IF <test>
THEN
<instruction>
ELSE
<instruction>

B-32

78

How executed:
1. Check <test> in the current situation.
2. 1If <test> is true, execute THEN clause.

3. If <test> is false, execute ELSE clause.

79

TASK: Bun a mile hurdle race with wall sections representing the
hurdles.

80

DE?INE-NEW-INSTRUCTION race-stride

AS
BEGIN
IF front-is-blocked
THEN
Jump-hurdle
ELSE
move

END

B-33

81
IF front-is-blocked IF front-is-clear
THEN THEN
jump-hurdle move
ELSE ELSE
move jump-hurdle
82

DEFINE-NEW-INSTRUCTION incorrect-race-stride

AS
BEGIN
IF front-is-blocked
THEN
turnleft;
move;
turnright;
move}
turnright;
move;
turnleft
ELSE

move
END

83

IF front-is-blocked

THEN

[}ump-hurdle}

ELSE

et e s

B-34
84

DEFINE~-NEW-INSTRUCTION incorrect-race-stride
AS
BEGIN

IF front-is-blocked
THEN

[move] ;
(Curnzisht] ;
WOvVE] 3

;

move] ;

ELSE

move \

END

85

DEFINE-NEW-INSTRUCTION incorrect-race-stride
AS
BEGIN

IF front—is-clearl
THEN

move
ELSE
turnleft|;
move ;
turnright ;
move ;
turnright ;
move
turnleft

END

86

Tactical Lesson: Never forget BEGIN - END blocks.

Strategic Lesson: The bigger the instruction, the more complicated it
becomes,

B~35

87
IF <testl>
THEN
<instructionl>
ELSE
IF <test2>
THEN
<instruction2>
ELSE
<instruction3>
88
DEFINE-NEW-INSTRUCTION replant-exactly-one
AS :
BEGIN
IF not-next-to-a-beeper
THEN
ELSE
[BEGIN
;
IF not-next-to-a-beeper|
THEN
END
END
89
IF <testl> IF <testl>
THEN THEN
IF <test2> IF <test2>
THEN THEN
<instructionl> <instructionl>
ELSE ELSE
<instruction2> <instruction2>

B-36

90

Rule: The ELSE clause is always boxed with the first possible preceding
IF instruction.

91

IF <testl>
THEN
BEGIN
IF <test2>
THEN
<instructionl>

END
ELSE
<instruction2>

2

REVIEW
How the IF instruction is executed:
1. Check <test> in current situation.
2. 1If <test> is true, the THEN clause is executed.

3. If <test> is false, the ELSE clause is executed if one is
present.

93

IF <test>
THEN
<instruction>

IF <test>
THEN
<instruction>
ELSE
<instruction>

B-37

IF <testl>
THEN
IF <test2>
THEN
<instructionl>
ELSE
<instruction2>

IF <testl>
THEN
<instructionl>
ELSE
IF <test2>
THEN
<instructionZ>
ELSE
<instruction3>

IF <testl>
THEN
BEGIN
IF <test2>
THEN
<instructionl>
END
ELSE
<instruction2>

94

ITERATE

WHILE

95

ITERATE <positive-integer> TIMES

<instruction >

96

B-38

DEFINE-NEW-INSTRUCTION turnright

AS
BEGIN
ITERATE 3 TIMES
turnleft
END

97

DEFINE-NEW-INSTRUCTION face-east
AS
BEGIN
IF not-facing-east
THEN
turnleft
IF not-facing-east
THEN
turnleft
IF not-facing-east
THEN
turnleft
END

DEFINE-NEW-INSTRUCTION face-east
AS
BEGIN
ITERATE 3 TIMES
IF not-facing-east
THEN
turnleft
END

98

DEFINE-NEW~-INSTRUCTION make-square-cf-length-6

AS
BEGIN
ITERATE 4 TIMES
BEGIN
ITERATE 6 TIMES
move;
turnleft
END
END

99

The inner loop is performed completely for every single execution of the

outer loop.

100

DEFINE-NEW-INSTRUCTION make-square-of-length-6

AS

BEGIN

ITERATE 4 TIMES
BEGIN

!ITERATE 6 TIMESI
;

END

101

TASK: Move forward until a beeper is found.

102

IF not-next-to-a-beeper ITERATE ? TIMES
THEN 1T not-next-to-a-beeper
move; THEN
IF not-next-to-a-beeper move
THEN
move;

IF not-next~to-a-beeper
THEN
move

103

WHILE <test> DO
<instruction>

B-40
104

How the WHILE is executed:
1. Check <test> in the current situation.

2., 1If the <test> is false, the WHILE is finished and execution
starts with the first instruction after the WHILE loop.

3. If the <test> is true, the WHILE loop is executed and then
the entire WHILE instruction is re-executed.

105

WHILE not-next-to-a-beeper DO
move

106

Formal property of the WHILE instruction:

When the WHILE instruction has finished executing, the test is
guaranteed to be false.

107

WHILE <not-test> DO
<instruction>

108

DEFINE-NEW-INSTRUCTION face-east
AS
BEGIN
WHILE not-facing-east DO
turnleft
END

B-41

109

WHILE next-to-a-beeper DO
turnleft

110

An infinite loop cccurs when the instructions in the body of a WHILE
instruction do not cause Karel to progress toward his goal,

111

DEFINE-NEW-INSTRUCTION pickup-line
AS
BEGIN
WHILE next-to-a-beeper DO
BEGIN
pickbeeper;
move
END
END

112

Correct rule:
Check <test> each time before entering lcop body.
Once in the loop, execute all the instructions.

Recheck the <test> after the bodv has been completely executed.

113

TASK: Harvest a line of beepers whose end is marked by a wall.

B~42

114

—
o

aecagnry

- N WO A0 N 0O

DEFINE-NEW-INSTRUCTION harvest-to-wall
AS
BEGIN
WHILE front-is-clear DO
pickbeeper;
move
END

115

DEFINE-NEW-INSTRUCTION harvest-to-wall
AS
BEGIN
pickbeeper;
WHILE front-is-clear DO
BEGIN
move;
pickbeeper
END
END

116

DEFINE-NEW-INSTRUCTION harvest-to-wall

B-43

117

WHILE <testl> DO
BEGIN
IF <testl>
THEN
<instructionl>
<instruction2>
END

118

DEFINE-NEW-INSTRUCTION sparse-harvest-to-wall
AS
BEGIN
pickbeeper;
WHILE front-is-clear DO
BEGIN
move;
IF next-to-a-beeper
THEN
pickbeeper
END
END

B-44

119

IF next-to-a-beeper
THEN
pickbeeper
ELSE DO
turnleft

120

Writing a program is not always an easy task, even when you know all the
rules.

121

TASK: Escape from any rectangular room with an open doorway exactly one
block wide.

122

-t
o

PR X R R

- N WL OO N O

1 23 45 6 7 8 910

Avenues

Initial Situation

B-45

123

BEGINEXECUTION
go-to-wall;
turnleft;
follow-until-door-is-on-right;
exit-door;
stop

ENDEXECUTION

124

DEFINE-NEW-INSTRUCTION go-to-wall
AS
BEGIN
WHILE front-is-clear DO
move
END

T Y R

125

DEFINE-NEW-INSTRUCTION go-to-wall

AS
BEGIN
WHILE front-is-clear DO
move
END
|
10
9
8
L
7 | I T |
6]
5 - e
4
3 i .
2 ||i
1E (T

1 23 4568 7 8 910

Avanues

126

DEFINE-NEW-INSTRUCTION go-to-wall
AS
BEGIN
WHILE front-is-clear DO
move
END

B-46

BEGINEXECUTION
go-to-wall;
turnleft;
follow—until—door—is—on-right;
exit-door;
stop

ENDEXECUTION

127

DEFINE-NEW-INSTRUCTION go-to-wall

AS
BEGIN
WHILE front-is-clear DO
BEGIN
sidestep-right
IF front-is-clear
THEN
BEGIN
sidestep-back-left;
move
END
END
END
10 B !

RraparTp

= N kA2 0w

8 ¢ 10

S g

Avanues

B-47

e
T

128
:
l
i
i

Qowhkww<d oo~

1
NeaunudPuew

6 7 8 9 10

123 458

Avanuas

B-48

129

DEFINE-NEW-INSTRUCTION go-to-wall
AS
BEGIN
IF right-is-blocked
THEN
turnright
ELSE
shuffle~to-wall
END;

DEFINE-NEW-INSTRUCTION shuffle-to-wall

AS
BEGIN
WHILE front-is-clear DO
BEGIN
sidestep-right;
IF front-is-clear
THEN
BEGIN
sidestep-back-left;
move
END
END
END;
DEFINE-NEW-INSTRUCTION sidestep-right
AS
BEGIN
turnright;
move;
turnleft
END;
DEFINE-NEW-INSTRUCTION sidestep-back-left
AS
BEGIN
turnleft;
move;
turnright

END;

B-49

130

BEGINEXECUTION
go—-to~wall;
turnleft;
follow-until-door-is-on-right;
exit-door;
stop

ENDEXECUTION

131

The follow-until-door-is~on-right instruction must:
1. finish when Karel senses a door on his righthand side.

2. keep Karel's righthand side adjacent to a wall while he follows
the perimeter of the room.

132

DEFINE~-NEW-INSTRUCTION follow-until-door-is-on-right
AS
BEGIN
WHILE right-is-blocked DO
follow-perimeter
END

133

DEFINE~NEW-INSTRUCTION follow-perimeter
AS
BEGIN
IF front-clear
THEN
move
ELSE
turnleft
END

134

BEGINEXECUTION
go-to-wall;
turnleft;
follow-until-door-is-on-right;
exit-door;
stop

ENDEXECUTION

B-50

135

DEFINE-NEW-INSTRUCTION exit-door
AS
BEGIN
turnright;
move;
move
END

136 B-51

BEGINPROGRAM

DEFINE-NEW-INSTRUCTION turnright
AS
BEGIN
ITERATE 1} TIMES
turnleft
END;

DEFINE-NEW-INSTRUCTION sidestep-right
AS
BEGIN
turnrightc;
move;
turnleft
END;

DEFINE-NEW-INSTRUCTION sidestep-back-left
AS

BEGIN

turnleft;

move;

turnright

END;

DEFINE-NEW-INSTRUCTION shufile-to-wall
AS
BEGIN
WHILE front-is-clear DO
BEGIN
sidestep=-right;
IF front-is-clear
THEN
BEGIN
sidestep-back-left;
move
END
END
END;

DEFINE-NEW-INSTRUCTION go-to-wall
AS
BEGIN
IF right-is-blocked
THEN
turaright
ELSE
shuffle-to=-wall
END;

ngINE—NEW-INSTRUCTION follow-until-door-is-on-right
BEGIN
WHILE right-is-blocked DO
follow-perimeter
END;

igFINE—NEW—INSTRUCTION exit=-door
BEGIN

turnright;

move;

move
END;

BEGINEXECUTION
go-to-wall;
turnleft;
follow-until-door-is-on-tight;
exit-door;
stop

ENDEXECUTION

ENDPROGRAM

B-52

137
108 10 §
R Sof
s 88 t gl
L] & P

S t 7 F ’
° g 5§
s g8 5 E

4 B 4 3
3§ 3§
2 § 2
1 18

1 23 456 7 8 910 123 4 5 6 7 8 810
Avenyea Avenuss
A very skinny room A door in an unexpected place
138
zig-nw
zag-se
139
DEFINE-NEW-INSTRUCTION zig-nw DEFINE-NEW-INSTRUCTION zag-se
AS AS
BEGIN BEGIN
move; move ;
turnright; turnleft;
move; move;
turnleft turnright

END END

B-53

140

-t
o

"X T Bl)

- N OO N OO

123 45 67 8 810

Avenues

zig-nvw

141

-
o

PN Y R

- N W00 N oW

l

1 23 45 6 7 8 810

Avenuas

zZag-8e

142

TASK: Find a beeper in an unenclosed area.

B-54

143
10 E ' !
8 Y
-
Y
®
t 7 &8
s :
8 B
ol
2 B
1§ —
1 23 45 6 7 383 910
Avénues.
144
10 ! !
s'q i
;
e 8
.
t 7
s
6
L)
4 [:;
3 {
2 b l ‘m N
1 | — |]

1 23 468 67 8 S 10

Avenuss

B-55

145

DEFINE-NEW-INSTRUCTION find-beeper

AS
BEGIN
go-to-origin;
face-west;

WHILE not-next-to-a-beeper DO
IF facing-west
THEN
zig-move
ELSE
zag-move
END

146

The zig-nw instructions:
1. Karel will eventually be restrained by the western boundary wall.
2, Precondition - Karel must be facing west.

3. Precondition is invariant over instruction.

The zag-se instruction:

1. Karel will eventually be restrained by the southern boundary
wall.

2. Precondition - Karel must be facing south.

3. Precondition is invariant over instruction.

147

DEFINE-NEW-INSTRUCTION advance-to-next-diagonal
AS
BEGIN
IF facing-west
THEN
turnright
ELSE
turnleft;
move;
turnaround
END

148

Karel can add!

B-56

149

Question corner - The corner where Karel picks up the beeper (represented
by § Street and A Avenue).

Answer corner - The corner where Karel deposits the beeper,

The answer corner will always be on First Street and A + 5 Avenue,

150

BEGINEXECUTION
find-beeper;
pickbeeper;
compute-sum;
putbeeper;
stop

ENDEXECUTION

L Badl N B hagll ")

“ N AU N OO

-t
(=)

151

LA Frr R Aas

1 23 45 6 7 8 910

Avenued

152

b + 3

5+ 4

w

-+

-
fl

(s - 1) + (A+ 1)

B-57

153

S+A=(S-1+ @A+ =(S-2)+@QA+2)=...-=

1+ (A+58-1)

154

DEFINE~-NEW-INSTRUCTION compute-sum
AS
BEGIN
face-south;
WHILE front-is-clear DO
zag-se;
face-east;
move
END

REVIEW

155

I. Solve the task

1.

&.

3.

4.

Understand the task.

Break the large task into small, independent subtasks.

Solve the subtasks within constraints of language.

Combine subtask solutions to produce large task solution.

B-58

156

IT1. Correct the program
1. Eliminate lexical errors.

2. Eliminate syntax errors.

157

III. Simulate the program
1. Program should execute.

2. Program should perform intended task.

158

GOOD LUCK AND GOOD PROGRAMMING.

c-1

Appendix C

SCRIPT

This is Karel.

This is Karel's world. It isn't too exciting according to our
standards--no tornadoes, no Aggieville, etc.—-but it does have
enough variety to allow Karel to perform some interesting tasks.
Karel's world is a great flat plane with the standard north, south,
east, and west compass points. On the south and west, the plane is
bounded by infinitely long walls which restrain Karel from falling
over the edge. Horizontal streets and vertical avenues criss-cross
the plane at regular one block intervals. The intersection of
First Street and First Avenue is called the origin. Besides Karel,
two other types of objects occupy Karel's world.

There are wall sections which can be manufactured in any desired
length. These wall sections may be placed between adjacent street
corners to block Karel's path. The other type of object is a
beeper. Beepers are small plastic balls that emit a quliet beeping
noise. They may be situated on street corners, but they do not
block Karel's path.

Now, let's take a closer look at Karel.

Karel is a mobile robot that can move forward in the direction he is
facing. He can also turn iIn place. Karel also possesses the senses
of sight, sound, direction, and touch.

Although Karel can see, he is very nearsighted and can only see wall
sections when they are closer than one-half block away. His hearing
isn't too good either, unfortunately, because he can only hear a
beeper if he and the beeper are on the same corner. Because Karel
can't see where he is going, he has been equipped with an internal
compass which allows him to determine the direction he is facing.
Finally, Karel has arms that can be used to pick up and put down
beepers. Notice the soundproof beeper-bag around Karel's waist.
This is used to carry the beepers Karel picks up. Karel can also
determine if he has any beepers by poking around in the bag.

Karel has one other interesting feature; that is, he can receive

a set of instructions, memorize them, and then perform the actions
associated with them.

However, before we can instruct Karel, we must know Karel's
situation; that i1s, we must know Karel's position, the location
and size of each wall section, and the location of each beeper,
including those in Karel's beeper bag.

The situation before Karel starts is called the initial situation.
The situation after Karel turns himself off is called the final
situation.

10

11

12

13

14

15

16

17

18

Cc=-2

Now we know who Karel is and what his world is like. We also know
what it takes to describe his initial and final situation.

We are now almost ready to learn how to perform a task. But first,
we should define some of the terminology we will be using. A task
is something we want done. The detailed set of instructions which
explains how to perform the task is called a program, and the
language in which the program is written is called the programming
language.

We will be using Karel his limited world, and a limited set of
instructions to perform tasks.

There are five primitive instructions which Karel understands. The
stop instruction informs Karel that he has completed his task.
Karel performs a stop instruction by turning himself off, and he
will not resume action until restarted by another task. The stop
instruction must be the last instruction in every program.

The move instruction causes Karel to go forward one block in the
direction he is facing. A move will not change the direction Karel
is facing. Also, Karel will not move if he sees a wall section or
a boundary between himself and the corner he is facing.

To change Karel's direction, the turnleft instruction is used. It
causes Karel to turn 90 degrees to the left. A turnleft will not
cause Karel to change his position, only his direction. Karel can
always perform a turnleft.

The pickbeeper instruction causes Karel to pick up a beeper located
at the same corner where he is standing and put the beeper in his
beeper bag. When Karel picks up a beeper, he does not change his
direction or location. If several beepers are present, Karel will
pick up one and only one. Of course, if there is no beeper present,
Karel will not be able to pick one up.

If we want Karel to take a beeper out of his beeper bag and place it
at the corner where he is standing, we issue a putbeeper instruction.
The putbeeper instruction will not cause Karel to move or change
direction. It causes him to deposit only one beeper if he has any.
If he has none, he will not leave omne,

We now know Karel's five primitive instructions: stop, move,
turnleft, pickbeeper, and putbeeper.

With the five instructions, we are ready to make Karel work,
Suppose we want Karel to move a beeper from Second Street and Fourth
Avenue to Fourth Street and Fifth Avenue.

First, we set up the initial situation. Then, we press Karel's
start button.

12

20

21

22

c-3

Next, we read Karel the program, making sure that we include every
word and all punctuation. Karel starts executing the instructions
only after hearing ENDPROGRAM and continues until he turns himself
off.

0f course, we don't really have a robot named Karel; therefore, we
must simulate Karel's actions to verlfy the program. Let's see
how this program works.

(Read and follow program instructioms.)

Notice that the instructions all lie between the words BEGINEXECUTION
and ENDEXECUTION. The instructions were executed sequentially; in
other words, from top to bottom. All the instructions were executed,
and Karel continued to perform until he turned himself off at the
stop instruction. This program did not cause Karel to shut himself
off prematurely; however, if the program contained an instruction
which could not be executed, Karel would have performed an

error shutoff.

Let's look at the program carefully and pay particular attention to
the grammar and punctuation. The actions we wanted Karel to perform .
are instructions. They are always written in lower case letters.

The other words (BEGINPROGRAM, BEGINEXECUTION, ENDEXECUTION and
ENDPROGRAM) are called reserved words. They delimit different
portions of the program and are always written in uppercase letters.
The only punctuation in the program is the semicolon. Wotice that

it separates the instructions. For readability, the program has

been indented; however, Karel is not affected by indentation.

Remember, reserved words delimit the different portions of the
program, The rules for using reserved words are: every program
must start with BEGINPROGRAM and end with ENDPROGRAM; every program
must contain a BEGINEXECUTION and an ENDEXECUTION; and every BEGIN
must have a matching END. Reserved words will always be written in
uppercase letters. .

Also, the only punctuation allowed in a program is the semicolon.
It is used to separate instructions. Semicolons do not separate
reserved words nor do they separate reserved words from instructions.

Indentation of program segments 1s stressed because it makes the
program easier to read and aids in the detection of errors. However,
Karel cannot hear indentation; thus, it does not affect him.

Don't tell Karel to perform the impossible because he can't. Instead,
he will perform an error shutoff. That is, he will turn himself off.
The three instructions which could cause an error shutoff are: MOVE -
if he is blocked by a wall section or boundary; PICKBEEPER - when

Karel is not next to one; and PUTBEEPER - when his beeper bag is
empty.

23

24

23

26

27

28

29

C-4

Of course, no one expects to write errors in their program.
Unfortunately, we do because programming requires an inhuman amount
of precision. In principle, there should never be any errors since
we know all the rules. In practice, there is an abundance of
errors; therefore, we need to know about them.

There are four categories of errors.

Lexical errors occur when Karel hears a word not in his vocabulary
and then turns himself off. For example, SIT is a word unknown to
Karel and would cause an error shutoff.

Syntactic errors occur when Karel hears incorrect grammar or
inaccurate punctuation and then performs an error shutoff. Examples
would be putting a semicolon after a reserved word or not having an
END for a BEGIN,

Execution errors occur when Karel cannot perform an instruction,
so he turns himself off. Asking Karel to PUTBEEPER when he has
none will cause an execution error.

An intent error is when Karel successfully executes the program but
fails to successfully complete his task. For example, suppose we
wrote a program where Karel was supposed to pick up all the beepers
in his world. Then, after Karel performed all the instructiomns and
turned himself off normally, there was one or more beepers left. An
intent error would have occurred because the program executed
correctly but it did not perform the task correctly.

Remember, Karel does not know what you want him to do; all he knows
is what you tell him to do.

Suppose we want Karel to turn right. To perform this act, Karel
must receive three turnleft instructions. This is simple to do
but rather awkward.

Look at another clumsy aspect of robot programming. What if we
need a program that will move Karel over vast distances? For
example, assume Karel must move ten miles, pick up a beeper, and
then move another ten miles. Because Karel understands about
moving "blocks" but not "miles," we are forced to supply him a
program which contains 160 move instructions. This may be 2 simple
solution, but it produces a very long program.

The problem is that people think in one language and must program

in another. Because shorter programs are easier to write and under-
stand, it would be better to have Karel learn "new" instructioms.
Also, it is more desirable for Karel to learn new definitions rather
than have us be slaves of the machine.

In order for Karel to learn new instructions, a dictionary of useful
instruction names and their definitions must be provided. Each
definition is built from simpler instructions which Karel already
understands. The first definitions would be built using primitive
instructions, and then these new definitions could be used to build
more definitioms.

30

31

32

33

34

35

36

37

c-5

Going back to the previous examples, we can now tell Karel that the
definition of a turnright instruction is three turnleft instructions
and that move mile is defined as eight move instructions. Whenever
Karel needs to execute either of these instructions, he can simply
refer to his dictionary and execute the instruction definitionm.

"Karel's definition mechanism defines a new instruction to have the
same meaning as one other instruction." The form is: DEFINE-NEW-
INSTRUCTION, <new name>, AS, <instruction>. We now have two new
reserved words: DEFINE-NEW-INSTRUCTION and AS. DEFINE-NEW-
INSTRUCTION signals Karel that a new instruction is being defined.
AS separates the new instruction name from its definition.

To use the mechanism, replace <new name> with any word in lowercase
letters or numbers. The two exceptions to this are the word cannot
already be an instruction name, nor can it be a reserved word. The
word may, however, be hyphenated to permit multiple word names.

<instruction> is replaced with the definition of <new name>. This
includes any single instruction that Karel understands, primitive
or previously defined.

Although the single instruction restriction is severe, the definition
mechanism is still very useful. If Karel is ever sent to France, the
French programmers could employ DEFINE-NEW-INSTRUCTION to translate
their French instructions into English.

To build complex commands, we need to replace <instruction> with a
sequence of instructions., This is accomplished through the use of
block structuring. By placing a sequence of instructions between the

reserved words BEGIN and END, one big instruction is produced.
Indentation should be used to reinforce the idea that the BEGIN-END
block represents one large aggregate instruction. Look more closely
at this new grammar rule. Observe that the instructions inside the
BEGIN-END block are separated by semicolons, while the first and last
instructions are not separated from the reserved words BEGIN and END.
BEGIN-END blocks and the BEGINEXECUTION-ENDEXECUTION block have
equivalent internal punctuation. There may be as many instructions
inside a BEGIN-END block as needed. The block 1s not necessary for

a single instruction; however, it is grammatically correct.

The BEGIN-END block is executed by executing the instruction within
the block sequentially, and once the block is being executed all the
instructions inside that block will be executed unless Karel turns

himself off.

"The fundamental property of the BEGIN-END block is that Karel under- -
stands the entire block to represent one instruction.”

With block structuring, we can now define the new instructions of
turnright and movemile.

38

39

40

41

42

43

C-6

"If you call a thumb a finger, how many fingers do you have?" "The
correct answer is eight; calling a thumb a finger does not make it
one." Similarly, '"just because you define an instruction named
turnright, it doesn't mean that the instruction really turns Karel
to the right."

This definition is perfectly legal. Karel would execute a turnright
instruction by executing two turnleft instructions. Karel doesn't
understand what the instruction name is supposed to accomplish. He
only understands and executes the definition. '"Consequently, any new
instruction we define may contain an intent error," as this one does.

"The rule is that Karel executes a newly defined instruction by
executing its definition. Do not try to shortcut this process by
doing what the instruction 'means.' Learn to interpret Karel's
programs as literally as he does.”

Another rule to follow is the instruction name should specify "what"
the instruction does, while the definition should specify "how." 1If
the two do not match, one of them should be changed.

Here is an example of a complete robot program. All the definitions
are between BEGINPROGRAM and BEGINEXECUTION. Every instruction is
defined before it is used. Also note that the new instruction
definitions are separated by semicolons and that the last definition
is separated from the reserved word BEGINEXECUTION by a semicolon.

The important things to remember about instruction definitions are:

1. They all go between the reserved words BEGINPROGRAM and
BEGINEXECUTION.

2. Only instruction definitions may be located between BEGINPROGRAM
and BEGINEXECUTION.

3. This portion of the program is called Karel's dictionary.

4. Each instruction must be defined before it is used or a lexical
error will occur.

5. The definitions must be separated by semicolons.

6. A semicolon must separate the last definition from the reserved
word BEGINEXECUTION.

7. Every program must contain a complete set of definitions for all
new instruction names that it uses because Karel does not remember
new instruction definitions forever. Each time he is started, his
vocabulary reverts back to his original set of primitive
instructions and reserved words.

44

45

46

47

48

49

50

51

52

c-7

Remember block structuring (making one large instruction out of a
sequence of instructions by enclosing them in a BEGIN-END block)?
What happens if the words BEGIN and END are omitted? To answer that
question, we must understand how Karel breaks a program into its
constituent components.

Define a unit as either an instruction, any type of BEGIN-END block,
or an entry in Karel's dictionary.

Define boxing as the operation of drawing boxes around every unit in
a program. Karel boxes every program read to him in order to deter-
mine what it means.

In this program, boxes have been drawn around every unit. The entire
program is also considered a unit; however, a box has not been drawn
around it.

"There are three important observations about boxing. First, the
definition of a new instruction is the first box after the AS,
Notice that the first unit in each of these definitions is a
BEGIN-END block. Second, recognize that semicoloms are placed
between every pair of adjacent units. Finally, notice that units
are frequently nested inside of other units."”

The main geometric property of boxing is that boxes may be one
inside the other, nested, or they may be adjacent; boxes may never
overlap. '

The way to box a program is to box the primitive instructions first
and work outward. Start boxing at the beginning of the program and
build the biggest boxes possible before starting boxes further down.

Now we can answer the question of what happens when the words BEGIN
and END are omitted. Look how the turnright definition is boxed.
Karel understands turnright to be defined as one turnleft instruction.
The remaining turnleft instructions are not part of the definition
and would cause a syntax error because they are not valid dictionary
entries.

"Remember, Karel only hears the program read and does not know the
indentation." As Karel is read the program, he checks for lexical
errors and boxes the units in order to check for syntactic errors.

Review what we know (primitive instructioms, definitions of new
instructions, block structuring, types of errors, and boxing).

Do you think you know enough to construct a robot program? Maybe,
but first let's see how it should be domne.

The method to use is called stepwise refinement. This method will
lead to concise, simple to read, and easy to understand programs.

The steps to follow are:

53
54

55

56

57

58

59

60

61

1. Write the sequence of instructions in the BEGINEXECUTION-
ENDEXECUTION block using any instruction names desired.

2, Write the definitions of the new instructions used in the
BEGINEXECUTION~ENDEXECUTION block.

3. Write the definitions of the new instructions used in the BEGIN-
END blocks of new instruction definitioms.

4, Repeat step 3 until all instructions are defined.
Suppose we want Karel to harvest a field of beepers.

First, write the BEGINEXECUTION-ENDEXECUTION block. This is only omne
of many possible ways to solve this task.

Next, write the definitions for the new instructions. Notice that
there are still new, undefined instructions within these definitioms.

Write the definitions for the new instructions used in the
definitions. Now everything is defined, so we are ready to assemble
all the instructions into one robot program.

Remember to put the definitions in the proper order; each instruction
must be defined before it is used.

By using stepwise refinement, the "harvest a field of beepers" task
seemed to solve itself. Let's review what happened. First, the task
had to be understood. Then, the task was broken into smaller, easier
to understand, independent subtasks. Finally, the subtasks were
solved thus producing the solution for the main task.

After a program has been written, it should be verified because step-
wise refinement does not guarantee a correct program. In fact,
programs should be considered guilty of being wrong until they are
proven correct.

A correct program is important, but an understandable program is
equally important. Understandable programs are easier to correct,
and good programmers are separated from bad ones by their ability
to write understandable programs.

What makes an understandable program? "A good program is the simple
composition of easily understandable parts." This is accomplished
through stepwise refinement. But breaking a program into small
pieces is not enough. New instruction names should provide a
description of how the program accomplishes the task. Then, after
the instruction has been proven correct, the name will help us to
remember what the instruction does.

62

63

64

65

66

67

68

c-9

Why bother writing understandable programs? The answer is because the
programs will be easier to read, easier to verify, easier to correct,
and easier to change in the event that the task is slightly changed.
Also, "complete programs are often so useful that we want to include
them as instructions in even bigger programs.' '"This conversion is
relatively straightforward because all we must do is define a new
instruction whose definition is the sequence of instructions within
the BEGINEXECUTION-ENDEXECUTION block." By doing this, we will save
time because we won't be solving the same task many times.

Now that we know the prerequisite for writing a good program, let's
extend our programming vocabulary. "Karel is built to understand
two similar IF instructions, the IF-THEN and the IF~-THEN-ELSE
instruction." Both of these instructions command Karel to test his
present situation and execute an appropriate instruction depending
on the result of the test.

The IF-THEN instruction introduces two new reserved words: IF and
THEN. "The word IF signals Karel that an IF instruction is present.
The <instruction>, which is known as the THEN clause, is separated
from <test> by the word THEN. The THEN clause is an instruction
nested inside the IF instruction."

When Karel executes the IF-THEN instruction, he first checks to see
if <test> is true or false In the current situation. If <test> is
true, he executes the THEN clause. If <test> is false, he does not
execute the THEN clause.

For example, let's simulate this program segment. First, Karel
checks whether or not he is next to a beeper. If he is, he will
execute the pickbeeper instruction. The IF-THEN instruction being
completed, Karel now continues executing the program at the move
instruction. But what happens if there are no beepers? Karel

would check if he was next to a beeper and determine that the <test>
was false. Karel would not execute the THEN clause but would continue
executing the program starting at the first instruction following the
IF-THEN instruction: move. "An error shutoff cannot occur in either
case because Karel executes the pickbeeper instruction only when he
confirms the presence of at least one beeper on the cormer.”

Here i1s the complete list of the vocabulary words that can be
substituted for <test>. '"Notice that each condition is represented
in both its positive and negative form."

Karel has TV cameras for eyes and can turn his head to the left and
to the right. Karel's front, left, and right are respectively clear
if he does not see a wall between himself and the next corner in the
direction he is commanded to look. "The next-to-a-beeper test is
true when Karel is on the same corner as one or more beepers. He
cannot hear beepers any further away, and he cannot hear beepers in
his soundproof beeper bag. Karel has an internal compass, and he
consults it to determine which direction he is facing." '"Finally,
Karel can test whether he has any beepers left in his beeper bag by
reaching in with his arm."

69

70

71

72

i3

74

75

76

c-10

Remember the harvest-a-~field task we solved earlier? For that task,
there was a field of beepers with one beeper located on every corner.
Now, suppose we have the same task, but the initial situation has
changed. Instead of having one beeper at every corner, there are now
barren corners. The original program would cause Karel to perform an
error shutoff at the first corner without a beeper.

Changing the original program is relatively easy. In fact, we can

reuse almost all of the previous sclution; that's one of the advan-
tages of good programming. The only thing that must be modified is
the harvest-a-furrow instruction.

It now looks like this. Of course, the pick-beeper-if-present
instruction must be written, but this is easily done using the IF-
THEN instructiom.

The BEGIN-END block around the definition is unnecessary in this
example, because the definition contains only ome instruction, the
IF-THEN. '"We shall adopt the convention of always defining a new
instruction by putting its definition in a BEGIN-END block." It
is recommended that you do this alsc but, more importantly, you
should know whether the block 1s necessary or redundant.

Here is an example of how to use a BEGIN-END block inside the IF-
THEN instruction. In this example, we are defining an instructiom
which will turn Karel around only if his front is blocked. The
BEGIN-END block enclosing the instruction definition is redundant;
however, the BEGIN-END block nested in the THEN clause is necessary.

Look at what happens when this block is removed. It still lecks
correct, but is it? Do not let the indentation foocl you. Karel
doesn't know how the program is indented; therefore, he does exactly
what he igs told. If his front is blocked, he turns around. If his
front is not blocked, he turns left.

This is how the instruction is boxed by Karel. Without a BEGIN-END
block in the THEN clause, Karel will always execute at least one
turnleft instruction. "This illustrates a subtle intent error.”
"It should start to dawn on us that programming errors are indeed
possible, and it requires effort to understand the meaning of an
instruction." Therefore, do not passively test an instruction, but
try to think of special situations where the instruction might fail.

To box an IF-THEN instruction, first box the instructions in the
THEN clause, which may be a single instruction or a BEGIN=-END block.
Then, box the entire IF-THEN instruction. This includes the reserved
words IF and THEN, the test, and the previously boxed THEN clause.
Note the punctuation. The IF-THEN instruction is separated from the
instructions by a semicolon, and the last instruction in each of the
BEGIN-END blocks does not have a semicolon.

77

78

79

80

81

82

83

84

85

86

Cc-11

The second kind of IF instruction is the IF-THEN-ELSE. It is similar
to the IF-THEN instruction except for the ELSE clause. The reserved
word ELSE separates the ELSE clause from the THEN clause. The ELSE
clause is nested ingside the IF instruction after the THEN clause.

The THEN and the ELSE are indented identically. There should not be
a semicolon separating the THEN clause from the ELSE clause.

To execute the IF-THEN-ELSE instruction, Karel first checks to see
if <test> is true or false. If <test> is true, Karel executes the
THEN clause. If <test> is false, he executes the ELSE clause.
Karel will always execute either the THEN clause or the ELSE clause,
but he will not execute both.

Suppose we wanted Karel to run armile hurdle race with wall sectioms
representing the hurdles.

One possible solution could be to have him perform eight race-stride
instructions if the definition of race-stride looked 1like this. Of
course, the jump-hurdle instruction would have to be defined.

Observe these two instructions. While they are different in form,
they execute equivalently. In fact, we can always derive an
equivalent IF-THEN-ELSE instruction from another ome by negating
the test and switching the THEN and ELSE clauses. '"This gives us
the extra freedom to arrange IF-THEN-ELSE instructions to read
naturally.”

"When there is no preference for which test is best, one suggested
rule is to always use the test that makes the THEN clause smaller.”
This keeps the THEN and ELSE clauses visually close to the IF so
that we can easily see that the instruction is an IF-THEN-ELSE.

"If both clauses are large, indent them further to help show where
the IF-THEN-ELSE ends.”

To box the IF-THEN-ELSE instruction, first box the THEN clause, then

box the ELSE clause. Finally, box the entire IF-THEN-ELSE instruction.

Do not forget to use BEGIN-END blocks inside the THEN and ELSE
clauses. Look at the definition of race-stride without the BEGIN-END
block. After Karel boxes the instructions, he encounters an FELSE.
But because he is not boxing within an IF instruction, Karel reports
a syntax error, The reserved word ELSE cannot appear outside of an
IF instruction. "A similar error occurs if we accidentally put a
semicolon between the THEN clause and the reserved word ELSE."

If the BEGIN-END block is mistakenly omitted from an ELSE clause, a
subtle intent error will occur.

By now, you should have learned two very important lessons. The
tactical lesson is never forget BEGIN-END blocks. The strategic
lesson is the bigger the instruction, the more complicated it
becomes.

87

88

89

c-12

There is one last class of IF instructions. '"These are known as
nested IF instructions because they involve an IF instruction nested
inside a THEN or ELSE clause of another IF." ©No new evaluation
rules are necessary to execute nested IF's, but we will have to pay
closer attention to the established rules. Because it 1s easy to
lose track of where we are in the instruction, simulating a nested
IF instruction is difficult.

This is an example of a nested IF instruction. Notice how the inner
IF instruction is boxed within the ELSE clause of the outer IF. Also
note that in this example, the inner IF instruction is the last
instruction in a BEGIN-END block; therefore, there is no semicolon
separating it from the reserved word END. Look how the two END
instructions are placed back to back. This will cause all the
ingtructions to finish at the same time.

Let's simulate Karel's actions for the three possible corner situation.
If Karel is at a corner where there are no beepers, he executes the
outside IF and determines that he is not next to a beeper. 'Therefore,
he executes the putbeeper instruction in the THEN clause of the
outside IF instruction, leaving one beeper on the corner." "Now
assume there is one beeper on the corner." Karel executes the outside
IF, finds the test is false, and he executes the ELSE clause. This is
a BEGIN-END block composed of two instructions; he executes pickbeeper
first, picking up the only beeper on the corner. Now, he executes the
nested IF instruction and finds there are no more beepers on the
corner. Therefore, he executes the THEN clause of this instruction,
which puts a beeper back on the now empty corner. Karel is dome with
the block, the ELSE clause, the outer IF, and the entire replant-".
exactly-one instruction. "Finally, assume Karel is on a corner

with two beepers. Karel executes the outside IF, finds the test is
false, and therefore executes the ELSE clause. He starts the BEGIN-END
block by executing pickbeeper first, picking up one of the two

beepers on the corner." '"He executes the nested IF instruction and
finds there is still a beeper on the corner, so he skips the THEN
clause. Once again, Karel is finished with the nested IF, the

outside IF, and the entire instruction, and he has left one beeper

on the corner." 1If leaving one beeper on every corner that Karel
visits was our purpose, we have now verified that this instruction

is correct. As we have just seen, nesting IF instructions can get
complicated. Therefore, it is advisable to avoid nesting more than

two levels deep. This example contains one level of nesting.

Look at these two nested IF instructions and carefully study how
each instruction is boxed. The only difference between these two
instructions involves the boxing of the ELSE clause. The first
instruction has the ELSE boxed with the nested IF, while the second
instruction has the ELSE boxed with the outside IF. Obviously,
these are two different instructions, but Karel cannot tell them
apart because they both contain the same words arranged in the same
order. This is known as the dangling ELSE problem. To solve the
dangling ELSE problem, we must know how Karel would box this
instruction.

90

921

92

93

94

95

96

91

98

C-13

The rule is: whenever Karel reads an ELSE clause, he boxes it with
the most recently read IF instruction that it can be a part of.
This means that the ELSE clause is boxed with the first possible
preceding IF instruction.

In the event that we want the ELSE clause to be boxed with the
outer IF, a BEGIN-END block would be used. The reserved word END
forces Karel to conclude the nested IF instruction. '"Thus, when
the ELSE is finally read to Karel, there is only one IF imnstruction
he can match it with."

Let's review the IF instruction. First, Karel decides if the <test>
is true or false., If the <test> is true, Karel performs the THEN
clause and then continues with the first statement following the IF
instruction. If the <test> is false, Karel performs the ELSE clause
if there is one present and then continues with the first statement
following the IF instruction.

Here are the five forms of the IF instruction that we have seen.
The first two are not nested, and the last three are.

There are only two more instructions built into Karel's vocabulary:
the ITERATE and WHILE instructions. Both of these instructions give
Karel the ability to repeatedly execute any instruction he under-
stands.

This is the general form of the ITERATE instruction. It is a short-
hand notation used to tell Karel to repeat another instruction a
specified number of times. ITERATE and TIMES are two new reserved
words, and <positive-integer> represents the number of times we
want Karel to repeat the <instruction>. '"We refer to <instruction>
as the body of the ITERATE instruction, and we shall also use the
term ITERATE loop to verbally suggest that this instruction loops
back and executes itself , . ."

Remember the turnright instruction? By using the ITERATE
instruction, we can accomplish the same task with less effort.

Suppose we would like an instruction which makes Karel face east.
Obviously, the definition on the left will work, but using the
ITERATE will again accomplish the same task with less effort.

As with IF instructions, ITERATE instructions may also be nested.
Look at this imstruction. "Assuming no blocking walls, this
instruction moves Karel in a square whose sides are six blocks
long." To understand what happens, let's simulate Karel's actioms.
Karel first hears the words ITERATE 4 TIMES and understands that he
execute the following instruction four times. He enters the BEGIN-
END block and receives the words ITERATE 6 TIMES. Karel understands
that he must execute the following instructions six times, so he
performs six moves. Being done with the nested ITERATE instructionm,
KAREL turns left. Now, Karel has finished the BEGIN-END block or
the body of the outer ITERATE loop. But wait, Karel remembers that

99

100

101

102

103

104

105

106

107

C-14

he 1s supposed to perform this loop four times and he has only

done it once. So again, Karel enters the BEGIN-END block of the
outer ITERATE instruction. He receives the words ITERATE 6 TIMES,
and once again he performs six move instructions. After moving

six blocks, Karel then turns left. Once again, Karel has completed
the outer loop body. Having gone through the outer ITERATE loop
twice, Karel will now proceed to go through it two more times.
When he has finished, Karel will have executed twenty~four moves
and four left turns, '

In other words, the inner loop will be performed completely for
every single execution of the outer loop.

Observe how the ITERATE instruction is boxed. First, the
instructions in the body are boxed. Then, box the complete
ITERATE instruction. If there are nested ITERATE instructions,
box the innermost one first and work outward.

Until now, we héve been limited to programs where we knew how many
times an instruction had to be executed. But what happens when
Karel's task is to move forward until he finds a beeper?

Here are two possible solutions. Unfortunately, Karel doesn't
understand either of them because he doesn't know how to interpret
the dots or the question mark. What we need is an imstruction
which has Karel perform an action until a condition becomes false.

"The WHILE instruction allows Karel to continually repeat any
{nstruction until a condition becomes false." '"The new reserved
word WHILE starts the instruction, and DO separates <test> from
the body of the WHILE". The conditions which can replace <test>
are the same as those for the IF instruction.”

Karel executes the WHILE instruction according to the following

rules. "If <test> is false, Karel is done with the WHILE instruction,
and he continues executing instructions following the entire WHILE
loop. If <test> is true, Karel executes <instruction> and then re-
executes the entire WHILE instruction."

Now we can solve the task of having Rarel move forward until he
finds a beeper.

There is a very important property of the WHILE instruction: when
the WHILE instruction is finished executing, the <test> is known
to be false. "We can use this property when writing programs that
require a certain condition to be true at some time."

"Whenever <test> must be true, we write something similar to this
WHILE instruction into our program" The <not-test> is the negative
form of the condition we are currently testing. As long as the
negative form remains true, the WHILE loop will be executed; however,
as soon as the negative form becomes false, in other words when the
condition becomes positive, the loop will be finished.

108

109

110

111

112

113

114

115

Cc-15

Look at an example of how the <not-test> condition is executed.

The definition of the face-east instruction can now be written

with the WHILE instruction. The not-test condition is not-facing-
east. When this loop is finished, the not-facing~east condition

is guaranteed to be false; thus, Karel is facing east.

What would happen if Karel executed this WHILE instruction? Note
that the body of the WHILE loop is a turnleft instruction and not
a pickbeeper. Because turning left will never make the condition
false, Karel will remain at one corner and continue turning
indefinitely. 'We say he is stuck in an infinite loop."

An infinite loop occurs when the instructions in the body of a
WHILE instruction do not cause Karel to progress toward his goal.
Fortunately, the WHILE instruction is the only instruction which
has the ability to cause an infinite loop. Unfortunately, infinite
looping is a kind of intent error, because Karel cannot detect
when he is stuck in one.

Carefully read this example of a WHILE instruction. WNotice that it
does not get Karel stuck in an infinite loop. '"This imstruction
has Karel pick up a line of beepers, finishing when he picks up

the last beeper in the line or when there is a gap in the line.

The instruction is interesting because it is the first WHILE loop
body we have seen that is a sequence of instructions and therefore
requires a BEGIN-END block." This poses a very interesting question:
when does Karel test the condition and exit the loop? "A common
misconception is that Karel checks test after each instruction
he executes in the loop body." However, this is true only when
there is one instruction in the body.

The correct rule is: check the condition each time before entering
the loop body. Once in the loop, execute all the instructions.
Then recheck the <test> after the body has been completely executed.

Given the task of harvesting a line of beepers whose end is marked
by a wall, let's see how we should use the WHILE instruction.

Here we see Karel's initial situation and an instruction that looks
like it will solve the task. Let's simulate Karel's actions and see
if they would really work. While Karel's front is clear, he will
pickbeeper, move, check the test, pickbeeper, move, check the test,
pickbeeper, move, and stop. Observe that the last beeper did not
get harvested. Of course, the situation can be easily remedied by
inserting another pickbeeper after the WHILE instruction; however,
it is preferred to have the special case first to make it more
visible.

This would be a correct and more understandable definition., Notice
that the extra pickbeeper is before the WHILE instruction and that
the instructions in the loop body have been switched. The WHILE
instruction was used in this example, but the ITERATE instruction
could have been used because they are both structurally identical.

116

117

118

119

120

121

122

C-16

"What would Karel do if we read him the previous instruction but
forgot to put in the BEGIN and END delimiters in the body of the
WHILE instruction?" Karel would box the instruction into three
instructions. He would then pick the first beeper, move until he
saw the wall, and then pick the last beeper. This is an intent
error, because Karel understood and executed all the instructions
but he did not perform the required task. Remember, multiple
instruction WHILE and ITERATE loop bodies need BEGIN-END blocks.

Another cause of trouble and misunderstanding is the use of an IF
instruction inside a WHILE loop. ''Confusion arises because both of
these instructions perform tests and have similar execution rules.
But by keeping a level head and applying the rules we already know,
this type of instruction is easily simulated.™

Give Karel the task of harvesting all the beepers between his
starting corner and the wall. Here is an example of one possible
initial situation and a refinement of the original harvest-to-wall
instruction.

"The execution of this instruction in the initial situation starts

by having Karel pick up the first beeper. Karel's front is clear so
he moves ahead and executes the IF instruction, checking for a beeper.
Because he is next to one, he executes the THEN clause and picks it
up. The body is now completely executed; therefore, Karel re-executes
the WHILE loop. Once more, he checks whether his front is clear. It
is, so he executes the loop body by moving ahead and executing the IF.
But this time Karel is not next to a beeper, so he does not exscute
pickbeeper. Again, he is done with the IF and done with the body of
the loop. Therefore, he re-executes the WHILE loop. He continues in
this manner until his task is successfully completed."

"Here is a type of syntax error that is difficult to spot." Do you
see what is syntactically wrong? ''You either see it or you do not,
so studying the instruction is probably futile. The problem is the
reserved word DO does not belong in the ELSE clause." "This is an
example of another error that is hard for the human mind to see but
trivial for Karel's small but precise intellect to spot. Many
times, programming errors are hard to find, but once spotted they
are obvious."

Writing a program is not always an easy job, even when you know all
the rules. Therefore, let's develop a program in a logical manner,
commit the mistakes, find the mistakes, and rewrite the program
until it is correct.

Karel's task is to escape from any rectangular room with an open
doorway exactly one block wide.

This illustrates one possible initial situation. Using this
situation, we will obtain a general plan for escaping from rooms.
As we develop the program, be on guard for errors and special
situations which would make the program incorrect.

123

124

125

126

127

128

129

Cc-17

This program accomplishes the task. "Initially, Karel starts some-
where in the room facing some arbitrary direction. He starts the
task by moving to the wall that he is initially facing. Karel then
follows the walls of the room in a counter-clockwise direction until
he senses the door, keeping his right side to the wall. He exits
through the door and finally stops." We must now define the
instructions go-to-wall, follow-until-door-is-on~-right, and exit-door.

The go-to-wall "instruction moves Karel forward until he senses a
wall directly in front of him., The test we eventually wish to be
true is front-is-blocked, so using the formal WHILE property, we
should be able to write this instruction."

"Although this simple instruction works in the initial situation we
saw earlier, it does not work correctly in all initial situations.
Unfortunately there are some initial situations where the WHILE
instruction never terminates, leaving Karel in an infinite loop.
These situations are characterized by Karel initially facing the
door instead of one of the walls. When Karel executes this go-~to-
wall instruction in such a situation, he would zoom out of the room
without knowing he exited and would keep on moving.'

"We call this type of situation a beyond-the-horizon situation.
Normally programming is guided by a few sample situations that seem
to cover all of the facets of the problem. Although we would like
to prove that all other situations are not too different from these,
frequently the best we can do is hope. But as we learn more about
the task, we might uncover situations that are beyond our original
horizons. These situations are legal, but special trouble-causing
cases. Once we have discovered a beyond-the-horizon situation, we
might have to change our program to account for it."

These situations are usually hard to find because they are not
intuitively obvious. "Good programmers become skilled at extending
their horizons and finding dangerous situations that interfere with
programs accomplishing their tasks.

To correct the program, the go-to-wall instruction will have to be
modified; however, the beginning decomposition is still valid.
"The fact that the door is only ome block wide is the key" to the
problem,

"We shall program Karel to move forward in a right shuffling motiom.
He will check for walls directly in front of him and in front of the
corner on his right. In this way, he is guaranteed to not pass
through the door umnnoticed." But even this correction has a hidden
problem.

There is now a new beyond-the-horizon situation where Karel cannot
shuffle right because of a wall.

This problem is easily corrected by placing a test in the go-to-
wall instruction. 'These instructions are now correct and will
work in any room situation."

130

131

132

133

134

135

136

137

138

139

c-18

"We continue by writing the follow-until-door-is-on-right
instruction. Recall that the initial decomposition has Karel
execute a turnleft instruction after go-to-wall; therefore, we

can assume that Karel's right is blocked by one of the room walls."

The follow-until-door-is~on-right instruction must satisfy two
criteria: "It must finish when Karel senses a door on his right-
hand side, which can be sensed when Karel's right becomes clear.
If a door has not been found, the instruction must keep Karel's
right side adjacent to a wall while following the perimeter of the
room in a counter-clockwise direction.”

"We call a condition that must be true during the execution of a
portion of a program an invariant. The invariant for the second
criterion is that Karel's righthand side be within one half block
of the room wall as he follows the perimeter. To do this, Karel
moves forward except when he reaches a corner. In this situation,
he turns to the left, ready to parallel the next wall.,"

Again, we will use the formal property of the WHILE instruction.
Now Karel will follow the perimeter of the room until the door is

on his right.

The follow-perimeter instruction has Karel move forward until he
comes to a corner of the room. Once at the corner, Karel turns
left and again is ready to move forward. The invariant that his
right side remain next to the wall is always true.

The last instruction we have to write is exit-door.

Because the door must be on Karel's right, here is how the
instruction would be written.

The program is now written and must be assembled. The entire final
program is now presented.

As one final note, here are two beyond-the-horizon situations. In
both, Karel "successfully escapes the room and stops, but not quite
in the way we might expect." And there might be other beyond-the-
horizon situations that would force the program to fail.

The last new instructions we will look at are zig-northwest and zag-
southeast. These instructions move Karel diagonally northwest and
southeast.

"Both of these instructions are simply defined using Karel's
primitive instructions." However, with the aid of these diagonal
moving instructions, a novel set of beeper manipulation programming

problems will be easily solved.

c-19

140 The zig-northwest instruction allows Karel to move northwest until
he is restrained by the western boundary wall. Note that there is
nothing forcing Karel to move northwest; thus, for this instruction
to execute correctly, Karel must be facing west when the instruction
starts. This is called a precondition. "A precondition of an
instruction is some condition that must be true before the
instruction can be correctly executed." Also, notice that Karel is
facing west when the instruction has been completed. That means
the precondition is invariant over the instruction. Finally, Karel's
front must be clear for the zig-northwest instruction to execute
correctly; otherwise, an error shutoff will occcur.

141 The zag-southeast instruction allows Karel to move southeast until
he is restrained by the southern boundary wall and has similar
properties as zig-northwest. The precondition for zag-southeast is:
Karel must be facing south. Again, the precondition is invariant
over the instruction and Karel's front must be clear.

142 Give Karel the task of finding a beeper in an unenclosed area.

143 The obvious solution would be to put Karel at the origin, face him
east, and have him move forward looking for a beeper. If he doesn't
find one, have him go to Second Street and continue searching.

Karel would continue this strategy until he found a beeper. But
this solution won't work because First Street extends forever and
Karel would be caught in an infinite loop.

144 What is needed is a search pattern that will take Karel to every
corner within an area and then expand the area if necessary. This
gsearch pattern does just that and will solve the task.

145 The find-beeper instruction can be written to implement the search
pattern. It '"starts by moving Karel to the origin and facing him
west." ™"This establishes the precondition for zig-northwest. The
WHILE loop's purpose is to keep him moving until he finds a beeper,
and by the formal WHILE property it is correct if the loop always
terminates. The IF instruction nested in the body of the loop
continues moving Karel in the direction he is facing."

146 "The moving instructions zig-move and zag-move operate similarly.
They move Karel diagonally to the next corner as long as he is
able, otherwise he is blocked by the boundary wall and must advance
to the next diagonal."

147 "The advance-to-next-diagonal instruction starts its job by facing
Karel away from the origin; he turns a different direction depending
on whether he has been zigging or zagging. Karel then moves one
corner farther away and turns around. If Karel was zigging when
he executes advance-to-next-diagonal, he will be positioned to
continue by zagging and vice versa."

148 The last and one of the most interesting aspects about Karel is
that we can program him to perform additionm.

149

150

151

152

153

154

155

c-20

We can represent an addition problem by placing a beeper on the
question corner and have Karel deposit it on the answer corner.
The street and avenue numbers for the question corner (called S
and A, respectively) represent the numbers to be added. The
answer corner will always be on First Street and A + § Avenue.

"This problem can be broken into two separate phases. In the first
phase, Karel must locate the question cornmer and pick up the beeper.
This can be accomplished by executing the find-beeper instruction
followed by a pickbeeper instruction. During the second phase,
Karel computes the sum of the two numbers and puts the beeper dowm
on the answer corner."

"The second phase can be accomplished by having Karel zag down
toward First Street."

let's see why zagging helps solve the problem. Suppose Karel finds
a beeper on Sixth Street and Third Avenue. By performing a zag
goutheast instruction, Karel will move to Fifth Street and Fourth
Avenue. '"This occurs because a zag-southeast instruction decreases
the street number Karel is on by one and increases the avenue
number he is on by one. The invariant for this problem is: the
sum of the street number and avenue number that Karel is on is
always S + A."

By executing a zag-southeast, Karel has preserved the invariant
because 6 plus 3 equals 5 plus 4. In other words, S + A equals
S-1+4+1.

"If Karel continues performing zag-southeast instructions whenever
his front is clear, he will continually move south until he arrives
on First Street. Our invariant equations tell us that:" S + A
will equal 1 + A+ 5 - 1.

"Jow that Karel's street position is 1, his avenue position will be
A=5S -1, To complete the sum, all Karel has to do is to move omne
avenue east and put down the beeper. He will then be on the answer
corner of First Street and (A + S)th Avenue."

The definition for the compute-sum instruction can now be written.
The face-south instruction must be included before the WHILE loop
to insure that Karel executes zag-southeast correctly. The face-
east instruction 1s necessary because Karel will be facing south
when the WHILE loop is completed, and he must advance one block
east before he can deposit the beeper.

We now know how to write a robot program. The first step is to solve
the task. To do this, first we must understand the task. Then break
the task into small, independent subtasks. The subtasks are then
solved within the constraints of the language. After all the
subtasks have been solved, they are combined to form the solution

to the original task.

c-21

156 The second step is to correct the program. This means eliminating
all the lexical and syntax errors.

157 The third and final step is to simulate the program. By simulating
the program, we should be able to determine if the program executes
and if it performs the intended task.

158 You have now seen all the rules, so good luck and start programming!

A NEW PEDAGOGICAL APPROACH TO TEACHING PROBLEM SOLVING

by

SUSAN MARGARET CARROLL

B. A., Emporia State University, 1973

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1981

ABSTRACT

With the ever-increasing demand for computer programming knowledge,
it has become necessary to define a method for the instruction of problem
solving which will aid in the development of analytical thinking.

The Karel approach to the teaching of problem solving utilizes a
mobile, programmable robot. Through the use of Karel, it is possible
to teach problem solving, the primary computer language concepts, and
introduce the rigorous demands of regimentation required for computer
programming. Although the Karel language is not a true 'computer language,"
it is similar to many high-level languages, especially PASCAL, in the areas
of punctuation, block structuring, conditional testing, looping, and sub-
routines.

This paper examines the Karel method, explains the behavioral
objectives to be obtained, provides the rudimentary means for implementation,

and makes recommendations for future study.

