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Abstract 

The standard Chi-square test for the equality of proportions of positive responses to c 

specified binary questions is valid when the observed responses arise from independent random 

samples of units.  When the responses to all c questions are recorded on the same unit, a situation 

called correlated proportions, the assumptions under which this test is derived are no longer 

valid.  Under the additional assumption of compound symmetry, the Cochran-Q test is a valid 

test for the equality of proportions of positive responses.  The purpose of this report is to use 

simulation to examine and compare the performance of the Cochran-Q test and the standard Chi-

square test when testing for the equality of correlated proportions.  It is found that the Cochran-Q 

test is superior to the Chi-square test in terms of size and power, especially when the common 

correlation among the binary responses is large. 
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CHAPTER 1 - Introduction 

Suppose that binary responses { , 1,2,..., ;  1,2,..., }ij jX j c i n   are recorded on units 

exposed to c environments { jE }.  Let ijX  =1 denote a positive response to jE  and let the 

expected values E( ijX ) = , j=1,2,...,cj .  We are interested in using the observed data { ijx } to 

test the hypotheses  

0 1 2: cH         vs   :a i jH    for at least one pair ( ,i j ) .     (1.1) 

For the purposes of this study, it is helpful to think of the c environments as questions and that 

we are interested in comparing the proportions of positive ( ijx =1) responses to these questions.  

An important consideration in choosing the appropriate method to carry out this test is 

specification of how the data were collected.  Here, we consider two cases.  In Case 1, ilX  and 

jkX  are mutually independent if ( , ) ( , )i l j k .   In Case 2, ilX  and ikX  are recorded on the same 

unit and hence, are typically not independent.  Case 2 is referred to as the problem of testing for 

the equality of correlated proportions.  The data structure in Case 1 is in the form of a 

completely randomized, one-way design with jn  binary responses in environment jE , j = 

1,2…,c, as laid out in Table 1.1 below.   

Table 1.1: Case 1 { ijX  } Independent 

Environments 

1E  2E  … 
cE  

11X  12X  … 
cX1  

21X  22X  … 
cX 2  

… … … … 

11nX  22nX  … 
cn cX  

 

 

In Case 2, each of r  units is exposed to all c  environments. The exposures to the environments 

are independently randomized over each unit. This data structure amounts to a complete, 

randomized block design where the units are blocks and the responses are binary.    
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Table 1.2: Case 2 Correlated Proportions 

 Environments 

Blocks 1 2 … c Row Totals 

1 
11X

 
12X

 

… 
cX1

 
1R  

2 
21X

 
22X

 

… 
cX 2

 
2R  

… … … … … … 

r 
1rX

 
2rX

 

… 
rcX

 
rR  

Column 

Totals 
1C  2C … 

cC M 

 

 

Example 1.1: Suppose that an investigator wants to compare the proportions of positive 

responses to c  fixed questions in a large target population of students.  Using a Case 1 design, 

1 2 cn n n       students would be randomly selected from the population and, at random, jn  

students would be asked to respond to question j ,  1,2,...,j c and their responses scored as 

right or wrong.  In Case 2, r  students would be randomly selected and their responses, in 

random order, to all c questions recorded. 

 

Example 1.2: Suppose the investigator wants to carry out a simulation study to compare the 

power of c hypothesis tests, the environments, at some fixed alternative, aH .  Using the design in 

Case 2, the investigators simulates r independent data sets under aH , and carries out all c tests 

on each data set and records the proportions of times out of r that each test leads to the rejection 

of 0H .  In Case 1, the investigator would have simulated rc independently, identically distributed 

samples under aH .  Each of the c tests would be carried out on r of these samples and a record 

made of whether or not the null hypothesis was rejected.  In this setting, the blocking in Case 2 

requires fewer units than Case 1 and has the advantage of controlling for heterogeneity among 
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units.  Specifically, Case 1 requires the generation of rc data sets while Case 1 requires only r 

datasets.  However, Case 2 requires an additional assumption of compound symmetry, as 

described below, in order to carry out a valid test of (1.1). The proper analyses for these two 

designs in the general setting should be carried out as follows. 

 

Case 1: The Standard Chi-Square test for Equality of Proportions  

Sum the rows in Table 1.1 and display the results in Table 1.3, called a 2xc contingency 

table.  The entries 








 


jn

i
jijj cjCXO

1
1 ,...,2,1,   and jjj OnO 12   and  in Table 1.3 are 

obtained by tallying the total number of ones and zeros, now called ‘successes’ and ‘failures’, 

respectively, in each column of Table 1.1.  The row totals { #
iR }   of Table 1.3 are respectively 

the total number of observed successes and failures. Note that NnnnRR c  ...21
#
2

#
1 and 

1 ~ ( , )i i iO B n  , 1, 2,...,i c , are independent, binomial random variables.   

Table 1.3: Data Structure for Standard Chi-Square 

Outcomes E1 E2 … 
cE  Totals 

Success O11 O12 … 
cO1  

#
1R  

Failure O21 O22 … 
cO2  

#
2R  

Total 
1n  

2n  … 
cn  N  

 

Increasing values of the test statistic 

 

                                  
 

,  where,
1

2

1

2

N

Cn
E

E

EO
T ji

ij

r

i j ij

ijij 


 
 

                            (1.2) 

                                                                                                                 

provide increasing support for aH  over 0H given in (1.1).  The test statistic measures the relative 

squared difference between the estimated expected counts }{ ijE under 0H  and the observed 

counts }{Oij  in Table 1.3.  One of the main assumptions of this test is that of mutual 

independence among the samples, as specified in Case1. 
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Decision Rule: For large samples, reject 0H  at approximate type 1 error rate   if 

2
)1,1(  cT  , the 100(1- ) percentage point of a chi-square distribution with 1c degrees of 

freedom. 

Case 2: Cochran’s Q Test 

Recall that ~ (1, )ij jX B  , ijX  is independent of klX  for i k  but ijX  may be correlated 

with ilX , l j .  Thus, the rows of Table 1.2 are independent random vectors. But, random 

variables within a row may be correlated with kjikij XXE ,)(   ,j k=1,2,…c;  i = 1,2,…r. 

 

Cochran (1950) developed a randomization test in this setting which actually tests the more 

restricted null hypothesis  

 

,),1(3,12,1ij2100 ... and ...: cccH                     (1.3a) 

       where lm = ( 1, 1)il imP X X  , i = 1,2,…,r, l m . 

 

Clearly, 00H  implies 0H  in (1.1). But, the converse is not true. Note that 00H  is equivalent to 

 

*
00 1 2: cH          and 1,2 1,3 ( 1),... , ij c c                           (1.3b) 

        where lm = corr( ,il imX X ) , l m . 

 

The second condition in (1.3b) is commonly called compound symmetry. Mandansky 

(1963) called 00H the hypothesis of interchangeability.   Berger and Gold (1973) and Bapkara 

and Somes (1977) showed that the Q- statistic only has a limiting chi-square distribution under 

*
00H  or 00H  . 

Cochran’s Q 

Cochran’s (1950) test statistic is given by    

                                 2 2

1
1

( 1) ( / ) /( )
c

r

j ii
j

Q c c C M c cM R




                                 (1.4) 
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where M = jC = iR .   

An asymptotically size   test is given by: 

   

Decision Rule: Reject 00H  at approximate type I error rate  if 1 ,Q    , )1(  c . 

 

Berger and Gold (1973) showed that under 0H , the asymptotic distribution of Q  is given 

by a linear combination of independent, single degree of freedom chi-square variates, where the 

coefficients are difficult to estimate.  Mandansky (1963) showed that as a test of exchangeability, 

Cochran’s test is not consistent against all alternatives. Wallenstein and Berger (1981) developed 

an approximate test for 0H  that performed reasonably well in terms of size and power in a small 

scale simulation study.  Vitalliano (1979) conducted a simulation study which indicates that 

Cochran’s Q, used as a test statistic for 0H , tends to be conservative in small samples and 

performs reasonably well in terms of type I error rate unless the hypothesis of compound 

symmetry is grossly violated.  

When c = 2, Cochran’s Q is equivalent to the well known McNemar’s (1947) test.   

McNemar’s Test 

For c = 2, the rows of Table 1.2 may be viewed as independent realizations of random 

variables ( 1 2,Y Y ), where jY = 1 if the response to condition j is a success and 0 otherwise, j = 1,2.   

Table 1.4 summarizes the entries in Table 1.2 in a 2 x 2 table, where the four cells correspond to 

counts of the possible values of ( 1 2,Y Y ). 

Table 1.4: Summary Counts for Comparing Two  

Proportions 

 
2Y  

1Y  0 1 Total 

0 e f e+f 

1 g h  g+h 

Total e+g f+h N 
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McNemar’s test statistic 
gf

gf





2

2 )( is used to test, in the notation of  (1.1) for c =2, 

   1 1 2 2: 1 1oH P Y P Y     
,
 

   1 2: 1 1aH P Y P Y  
.
 

 

Note that this test statistic only uses those blocks in which a unit responds differently to 

the two environments. This makes sense since these are the only blocks that contain information 

about the 1 2  . Compound symmetry holds by default here since c =2. The decision rule for 

McNemar’s test is given by: 

 

             Reject 0H at approximate level of significance  if 2 2
1 ,1   . 

Relationship Between the McNemar’s and Cochran’s Q test  

McNemar’s and Cochran’s Q tests are equivalent when there are c=2 responses in each 

row of Table 1.2.  To verify this statement, we  start out by setting c = 2 in Q,  

                                            2 2

1
1 1

2 ( / ) /(2 )
c r

r

j i ii
j i

Q C M c R R


 

      

 

Since   21 CCCM j , 

                          
2

2

1

2 ( / )j
j

C M c


  = 2
1 1 22[( ( ) / 2)C C C  + 2

2 1 2( ( ) / 2)C C C  ]        (1.5) 

 

                                                       = 2
1 2( )C C  

 

                                                      = 2( )g h f h    

 

                                                      = 2( ) .f g  

 

Similarly, 
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1

2
r

i
i

R

 - 2

1

r

i
i

R

 =  2( 2 )f g h  - ( 4 )f g h                                  (1.6) 

                                                  = (f+g) 

 

Dividing (1.5) by (1.6) yields the desired result. 

 

An Example   

(Adapted from Conover ,1980) 

Each of three basketball enthusiasts had devised his own system for predicting the 

outcomes of collegiate basketball games.  Twelve games were selected at random, and each 

sportsman presented a prediction of the outcome of each game.  After the games were played, the 

results were tabulated, using “1” for successful prediction and “0” for unsuccessful prediction. 

Table 1.4 summarizes the outcomes.  This example falls under Case 2. We have c=3 

environments which are each of the sportsmen. The r=12 games are the blocks. Here, Cochran’s-

Q is used to test the hypothesis: 

 

0 1 2 3:H     ,       vs                                          

                                    
:a i jH    for at least two i,j 

Using equation 1.4, one finds a value of 8.2Q , and after comparing Q  to the tabled 

value of 99.5 )2,05.0(  , we fail to reject 0H  at the nominal type I error rate 0.05 and conclude 

that there is not a statistically significant difference among the three prediction systems.  Table 

1.5 also gives pairwise correlations of the responses, values that can in an informal manner be 

used to assess the validity of the assumption of compound symmetry. 

 

 Chapter Two will provide the background on the algorithm used in generating the 

artificial binary data and the software used to generate the data.  Chapter Three will present the 

findings of the study while Chapter Four reviews finding and gives recommendations. 
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Table 1.5: Example Data 

 Sportsman 

Game 1 2 3 Totals 

1 1 1 1 3 

2 1 1 1 3 

3 0 1 0 1 

4 1 1 0 2 

5 0 0 0 0 

6 1 1 1 3 

7 1 1 1 3 

8 1 1 0 2 

9 0 0 1 1 

10 0 1 0 1 

1 1 1 1 3 

2 1 1 1 3 

Totals 8 10 7 25 

Sample 

proportions 
0.667 0.833 0.583 1 

Pairwise 

Correlations 
1vs2 1vs3 2vs3  

 0.633 0.478 0.076  
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CHAPTER 2 - Generating Artificial Binary Correlated Data and 

Simulation Study Design  

Leisch et al. (1998) outlined an algorithm for generating correlated binary data from 

multivariate binary distributions.  In addition, they created an R package called bindata, which 

allows the user to specify values of the correlation matrix, marginal success rates, and sample 

size.  The result is a simulated dataset of 1’s and 0’s with correlated columns.  By default, if the 

correlation structure is not specified, the data generated will be independent across columns. 

Appendix A provides more information on the bindata package. 

The simulation experiment conducted here specified various levels of r, c, correlations 

jk = corr( ,ij ikX X ), j k , and success rates { }j   and simulated data in the form of Table 1.2.  

In deciding on the specific values of jk
  
and r to use in the study, a preliminary study was done 

using various combinations of each.  After trying different combinations, correlations between  0 

and 0.6 were found to be best, as other combinations were not always compatible with the 

bindata package.  From the preliminary study the information on the number of cpu hours for 

different combinations was collected.  This was very useful in deciding on final values of r and c 

since the code is a fairly slow one.  Based on these results it was decided to look at values of r = 

50, 100 and 200.  Values of r greater than 300 were initially considered but in most cases 

produced powers equal to one therefore not providing much variability for analysis.  The 

marginal proportions { i } used were centered about 0.5.  In all cases the data generated satisfied 

the condition of compound symmetry. 

Each simulation was carried out 1000 times, thus generating 1000 binary correlated data 

sets on which both the Cochran-Q test and the standard Chi-square test were carried out.  

Estimated rejection rates of 0H  given in (1.3b) are  summarized, and an assessment as to how 

well Cochran’s Q and the standard Chi-square test performs in terms of size and power is made.   

From each type of test the p-values were stored and compared to 05.0 , scoring a 1 for a p-

value less than  alpha and 0 otherwise.  The proportion of ones in each type of test was then 

recorded.  This data was used to assess the estimated powers and the estimated type one error 
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rates of both tests.   In addition the differences in the results of both tests were compared.  Since 

the data being used to compare the two tests was based on the same original data set, the 

appropriate test to compare the power and type I error rates is Cochran-Q test. 
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CHAPTER 3 - Simulation Study Results 

The estimated type 1 error rates as well as the power of both the Cochran-Q test and the 

standard Chi-square test are reported.  In addition, the p-values for the comparison of the 

performance of the two tests are reported.  All these tests were carried out at nominal type I error 

rate 05.0 . Tables 3.1– 3.8 present the results of the simulation study.   

To facilitate comparisons based on the marginal distribution, the non-centrality type 

parameter   was introduced, where  )1/()( 2  


cr
c

c  , { i }are the specified success 

rates  for each of the c populations under the alternative, and   is the mean of the specified 

proportions.  The parameter    is zero under oH and increases as the variation among the 

specified proportions increases.  The values of   for the different scenarios considered are 

shown in Table 3.1. 

 

Table 3.1: Non-Centrality Parameters under the Alternative Hypothesis 

 Marginal Probability 

c=2 (0.4,0.6) (0.45,0.55) (0.48,0.52) 

r    

50 1.000 0.250 0.040 

100 2.000 0.500 0.080 

200 4.000 1.000 0.160 

c=3 (0.40,0.50,0.60) (0.45,0.50,0.55) (0.48,0.5,0.52) 

r    

50 0.500 0.125 0.020 

100 1.000 0.250 0.400 

200 2.000 0.500 0.080 

 

In addition, the estimated standard errors are calculated using the binomial distribution 

for both the estimated type one error rates and the estimated powers.  In each case  /ˆ Ny and 
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N
se

)ˆ1(ˆ
)ˆ(

 
 , where y is the number of times the null hypothesis is rejected by a given test 

and N=1000 and is the number of simulations carried out. 

These standard errors are used to compute the estimated margins of errors (m.o.e) for a 

95% confidence level and are presented in Table 3.2.  This is calculated only for a few 

representative values of ̂  that give the reader an idea of the estimated m.o.e for values of ̂  

close to those in Table 3.2.  

 

Table 3.2: Standard Errors for Estimates for c=2 and c=3 

̂ 2s.e( ̂ ) 

0.01 0.003 

0.05 0.007 

0.10 0.009 

0.15 0.011 

0.20 0.013 

0.50 0.016 

 

 

For valid comparisons of power of Cochran’s Q and the standard Chi-square we want the 

estimated type I error rates to be equal or relatively close for the two tests. This difference needs 

to be considered throughout the analysis.  The estimated type I error rates for the Cochran-Q are 

closer to the nominal type I error rate of 0.05 while the estimated type I error rates for the Chi-

square test are much smaller than 0.05, the exception being when .0   The tradeoff between 

the lower type I error rates and the power is noticeable in the relatively lower power of the Chi-

Square test for .0   This is true both in the case of c=2 and c=3. 

Two Environments: c=2 

In Table 3.3 the estimated type I error rates are shown for the Cochran-Q and the 

standard Chi-square tests for c=2.  The estimated type I error rates average 0.05 for all values of 

  under the Cochran-Q test.  For the Chi-square test, the averages were 0.06, 0.014 and 0.003 
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for  = 0, 0.4, 0.6 respectively.  The Cochran-Q performed similarly for all values of  , while 

the Chi-square had estimated type I error rate much smaller than the nominal type I error rate of 

0.05 for non-zero values of  .   

 

Table 3.4 presents estimated powers for c=2, using three different pairs of marginal 

distributions. Figures 3.1-3.3 also makes comparisons of the estimated power as   changes and 

for different values of  .  The power of the Cochran-Q test increased as  increased.  In all cases 

of   (including zero), the power of the test increased as  increased.  This was also true when 

the standard Chi-square test was used instead of the recommended Cochran’s Q test.  

With respect to changes in power as   changed, all else held constant, for Cochran’s 

test, the larger   the greater the power of the test.   The opposite was true for the estimated 

powers under the Chi-square test, instead the powers were higher for lower values of  , all else 

held constant.  This was expected based on the low type I error rates for the chi-square test 

when   is large.  As mentioned before the two tests have different estimated type one error rates 

which show up here in the differences in power. 

For fixed marginal probabilities and  , the power increased as r, the number of rows in 

Table 1.2, increased for both the Cochran-Q and the standard Chi-square.   

Using the Cochran-Q test to compare the power of the two tests gave p-values less than 

0.05 in all cases of  = 0.4 and 0.6 leading to the conclusion that there is a statistically 

significant difference between the result we get from the two tests. The only exception to this 

was r =200 and  = 0.  For   = 0 however the results were mixed, the differences were not 

statistically significant when r =200.  The p-values for the difference between the two test (see 

Table 3.5) indicates a significant difference between the results of the two test when   = 0.4 and 

  = 0.6. 
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Table 3.3: Estimated Type I Error Rates for c=2 

Cochran’s Q Chi-Square 

r=50  r=50   

Marginal 

Probabilities 

0 0.4 0.6 Marginal 

Probabilities

0 0.4 0.6 

(0.4,0.4) 0.068 0.056 0.049 (0.4,0.4) 0.067 0.016 0.004

(0.5,0.5) 0.069 0.054 0.047 (0.5,0.5) 0.076 0.016 0.004

(0.6,0.6) 0.064 0.050 0.046 (0.6,0.6) 0.062 0.011 0.003

 

r=100  r=100   

Marginal 

Probabilities 

0 0.4 0.6 Marginal 

Probabilities

0 0.4 0.6 

(0.4,0.4) 0.061 0.054 0.051 (0.4,0.4) 0.063 0.013 0.000

(0.5,0.5) 0.073 0.069 0.060 (0.5,0.5) 0.081 0.016 0.003

(0.6,0.6) 0.070 0.051 0.054 (0.6,0.6) 0.066 0.013 0.006

 

r=200  r=200   

Marginal 

Probabilities 

0 0.4 0.6 Marginal 

Probabilities

0 0.4 0.6 

(0.4,0.4) 0.052 0.050 0.045 (0.4,0.4) 0.055 0.015 0.000

(0.5,0.5) 0.034 0.032 0.040 (0.5,0.5) 0.036 0.009 0.003

(0.6,0.6) 0.046 0.040 0.035 (0.6,0.6) 0.041 0.011 0.001
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Table 3.4: Estimated Powers for c=2 

Cochran’s Q Chi-Square 

 r=50   r=50   

Marginal 

Probabilities 

  0 0.4 0.6 Marginal 

Probabilities

  0 0.4 0.6 

(0.40,0.60) 1 0.526 0.727 0.909 (0.40,0.60) 1 0.539 0.547 0.557

(0.45,0.55) 0.250 0.197 0.244 0.310 (0.45,0.55) 0.250 0.208 0.138 0.082

(0.48,0.52) 0.04 0.089 0.089 0.096 (0.48,0.52) 0.04 0.102 0.030 0.011

 

 r=100   r=100   

Marginal 

Probabilities 

  0 0.4 0.6 Marginal 

Probabilities

  0 0.4 0.6 

(0.40,0.60) 2.00 0.793 0.956 0.999 (0.40,0.60) 2.00 0.804 0.881 0.928

(0.45,0.55) 0.50 0.299 0.448 0.613 (0.45,0.55) 0.50 0.326 0.269 0.215

(0.48,0.52) 0.08 0.109 0.123 0.147 (0.48,0.52) 0.08 0.124 0.045 0.018

 

 r=200   r=200   

Marginal 

Probabilities 

  0 0.4 0.6 Marginal 

Probabilities

  0 0.4 0.6 

(0.40,0.60) 4.00 0.977 1.000 1.000 (0.40,0.60) 4.00 0.980 0.998 1.000

(0.45,0.55) 1.00 0.496 0.723 0.897 (0.45,0.55) 1.00 0.500 0.516 0.511

(0.48,0.52) 0.16 0.121 0.152 0.230 (0.48,0.52) 0.16 0.118 0.062 0.032
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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Table 3.5: P-values for Comparing Cochran's Q and The Standard Chi-square Tests 

r=50 

Marginal 

Probabilities 

  

0 0.4 0.6 

(0.40,0.60) 1 0.0279 <0.0001 <0.0001 

(0.45,0.55) 0.250 0.0482 <0.0001 <0.0001 

(0.48,0.52) 0.04 0.0286 <0.0001 <0.0001 

 

r=100 

Marginal 

Probabilities 

  

0 0.4 0.6 

(0.40,0.60) 2.00 0.0116 <0.0001 <0.0001 

(0.45,0.55) 0.50 <0.0001 <0.0001 <0.0001 

(0.48,0.52) 0.08 0.0023 <0.0001 <0.0001 

 

r=200 

Marginal 

Probabilities 

  

0 0.4 0.6 

(0.40,0.60) 4.00 0.0833 0.1573 NA1 

(0.45,0.55) 1.00 0.4328 <0.0001 <0.0001 

(0.48,0.52) 0.16 0.3657 <0.0001 <0.0001 

 

 

 

 

 

                                                 
1 This NA indicates that the Q or McNemar’s test statistics could not be calculated based on the data that 

was produced in Table 3.4 for r=200 and  =0.60.   
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Three Environments: c=3 

Tables 3.6 – 3.8 presents results for c=3.  In Table 3.6 the estimated type I error rates are 

shown for the Cochran-Q and the standard Chi-square tests.  The estimated type I error rates 

average 0.05 for all values of   under the Cochran-Q test.  For the Chi-square test, the averages 

were 0.05, 0.008 and 0.0007 for  = 0, 0.4, 0.6 respectively.  Again, the Cochran-Q performed 

similarly for all   while the Chi-square became increasingly conservative as    increased. 

The estimated powers when c=3 are presented in Table 3.7.  Figures 3.4-3.6 also compare 

the estimated powers for changes in  and for different values of  .  For the Cochran-Q test, the 

powers increased as  increased.  For all values of r , the higher values of  were associated 

with higher powers.  The Chi-square tests also had higher powers for higher values of   and as 

in the case of c=2, opposite to the behavior of the Cochran-Q test, higher values of   were 

associated with lower powers. 

Interestingly, for both c=2 and c=3, with as expected, the exception of  = 0, the power 

of the Cochran-Q test is generally higher than that for the chi-square test. For r = 50 this was 

even more pronounced.  In general the powers were below 0.50 for the chi-square. Again the p-

values for difference between the two test indicates a statistically significant difference between 

the powers of the two tests when   = 0.4 and   =0.6. 
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Figure 3.4 
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Figure 3.5 
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Figure 3.6 
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Table 3.6: Estimated Type I Error Rates for c=3 

Cochran’s Q Chi-Square 

r=50  r=50   

Marginal 

Probabilities 

0 0.4 0.6 Marginal 

Probabilities

0 0.4 0.6 

(0.4,0.4,0.4) 0.064 0.052 0.039 (0.4,0.4,0.4) 0.067 0.007 0.000

(0.5,0.5,0.5) 0.062 0.071 0.058 (0.5,0.5,0.5) 0.068 0.016 0.002

(0.6,0.6,0.6) 0.054 0.054 0.066 (0.6,0.6,0.6) 0.057 0.009 0.002

 

r=100  r=100   

Marginal 

Probabilities 

0 0.4 0.6 Marginal 

Probabilities

0 0.4 0.6 

(0.4,0.4,0.4) 0.065 0.055 0.045 (0.4,0.4,0.4) 0.069 0.009 0.000

(0.5,0.5,0.5) 0.059 0.060 0.056 (0.5,0.5,0.5) 0.062 0.010 0.000

(0.6,0.6,0.6) 0.057 0.057 0.060 (0.6,0.6,0.6) 0.056 0.007 0.002

 

r=200  r=200   

Marginal 

Probabilities 

0 0.4 0.6 Marginal 

Probabilities

0 0.4 0.6 

(0.4,0.4,0.4) 0.048 0.046 0.045 (0.4,0.4,0.4) 0.043 0.007 0.000

(0.5,0.5,0.5) 0.033 0.040 0.040 (0.5,0.5,0.5) 0.034 0.006 0.001

(0.6,0.6,0.6) 0.036 0.037 0.045 (0.6,0.6,0.6) 0.033 0.004 0.000
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Table 3.7: Estimated Powers for c=3 

Cochran’s Q Chi-Square 

 r=50   r=50   

Marginal 

Probabilities 

  0 0.4 0.6 Marginal 

Probabilities 

  0 0.4 0.6 

(0.40,0.50,0.60) 0.500 0.458 0.640 0.853 (0.40,0.50,0.60) 0.500 0.456 0.339 0.287 

(0.45,0.50,0.55) 0.125 0.141 0.203 0.281 (0.45,0.50,0.55) 0.125 0.134 0.051 0.025 

(0.48,0.50,0.52) 0.020 0.078 0.079 0.098 (0.48,0.50,0.52) 0.020 0.081 0.014 0.005 

 

 r=100   r=100  

Marginal 

Probabilities 

  0 0.4 0.6 Marginal 

Probabilities 

  0 0.4 0.6 

(0.40,0.50,0.60) 1.000 0.741 0.936 0.997 (0.40,0.50,0.60) 1.000 0.736 0.766 0.781 

(0.45,0.50,0.55) 0.250 0.249 0.364 0.513 (0.45,0.50,0.55) 0.250 0.241 0.136 0.062 

(0.48,0.50,0.52) 0.400 0.079 0.090 0.115 (0.48,0.50,0.52) 0.400 0.083 0.014 0.004 

 

 r=200   r=200  

Marginal 

Probabilities 

  0 0.4 0.6 Marginal 

Probabilities 

  0 0.4 0.6 

(0.40,0.50,0.60) 2.000 0.967 0.999 1.000 (0.40,0.50,0.60) 2.000 0.969 0.987 0.999 

(0.45,0.50,0.55) 0.500 0.393 0.636 0.835 (0.45,0.50,0.55) 0.500 0.391 0.317 0.271 

(0.48,0.5,0.52) 0.080 0.077 0.124 0.165 (0.48,0.5,0.52) 0.080 0.076 0.023 0.007 
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Table 3.8: P-values for Comparing Cochran's Q and The Standard Chi-square Tests 

r=50 

Marginal 

Probabilities 

  

0  0.40  0.60 

(0.40,0.50,0.60) 0.500 0.7237  <0.0001 <0.0001 

(0.45,0.50,0.55) 0.125 0.0897  <0.0001 <0.0001 

(0.48,0.50,0.52) 0.020 0.6171  <0.0001 <0.0001 

 

r=100

Marginal 

Probabilities 

  

0  0.40  0.60 

(0.40,0.50,0.60) 1.000 0.1317  <0.0001 <0.0001 

(0.45,0.50,0.55) 0.250 0.1025  <0.0001 <0.0001 

(0.48,0.50,0.52) 0.400 0.2852  <0.0001 <0.0001 

 

r=200 

Marginal 

Probabilities 

  

0  0.40  0.60 

(0.40,0.50,0.60) 2.000 0.3173  0.0005  0.3173 

(0.45,0.50,0.55) 0.500 0.6171  <0.0001 <0.0001 

(0.48,0.50,0.52) 0.080 0.6547  <0.0001 <0.0001 
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CHAPTER 4 - Conclusion 

The aim of this study was to assess the effect of using the inappropriate standard Chi-

square test instead of the Cochran-Q test when working with correlated binary data. The result of 

the study revealed that there is a statistically significant difference in the powers of the two tests, 

with the Cochran-Q test being the more powerful of the two.   

This result also holds regardless of the sample size.  The power of the tests was affected 

by the correlation structure of the data.  Specifically, the higher the correlation, the higher the 

power under Cochran-Q, while the power was lower for higher correlations under the Chi-square 

test.   Thus, Cochran’s Q and not the standard Chi-square should be used to compare correlated 

proportions when compound symmetry holds.  

The study focused on rates of success centered on 0.50 and so for further study it would 

be interesting to how the results might differ if values closer to say 0.20 or 0.80 were considered. 

The issue of compound symmetry was raised in discussion of the assumptions of the 

Cochran-Q test.  It would be interesting to consider data in which the pair wise correlations are 

not all equal. 
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Appendix A - Bindata Package  

Source: http://cran.r-project.org/web/packages/bindata/bindata.pdf 

 

Package ‘bindata’ - November 22, 2009 

 

Version 0.9-17 

 

Date 2009-11-22 

 

Title Generation of Artificial Binary Data 

 

Author Friedrich Leisch and Andreas Weingessel and Kurt Hornik 

 

Maintainer Friedrich Leisch Friedrich.Leisch@R-project.org 

 

Description Generation of correlated artificial binary data. 

 

License GPL-2 

 

Depends e1071, mvtnorm (>= 0.7-0) 

 

Repository CRAN 

 

Date/Publication 2009-11-22 19:06:36 
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rmvbin  Multivariate Binary Random Variates 

Description 

Creates correlated multivariate binary random variables by thresholding a normal     

 distribution. The correlations of the components can be specified either as common 

 probabilities, correlation matrix of the binary distribution, or covariance matrix of the 

 normal distribution. 

 

Usage 

rmvbin(n, margprob, commonprob=diag(margprob), 

bincorr=diag(length(margprob)), 

sigma=diag(length(margprob)), 

colnames=NULL, simulvals=NULL) 

 

Arguments 

n number of observations. 

margprob  margin probabilities that the components are 1. 

commonprob  matrix of probabilities that components i and j are simultaneously 1. 

bincorr  matrix of binary correlations. 

sigma   covariance matrix for the normal distribution. 

colnames  vector of column names for the resulting observation matrix. 

simulvals  result from simul.commonprob, a default data array is automatically 

 loaded if this argument is omitted. 

 

Details 

Only one of the arguments commonprob, bincorr and sigma may be specified. Default are 

uncorrelated components. 

 

n samples from a multivariate normal distribution with mean and variance chosen in 

 order to get the desired margin and common probabilities are sampled. Negative values 

 are converted to 0, positive values to 1. 
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Author(s) 

Friedrich Leisch 

 

References 

Friedrich Leisch, Andreas Weingessel and Kurt Hornik (1998). On the generation of 

 correlated artificial binary data. Working Paper Series, SFB “Adaptive Information 

 Systems and Modeling  in Economics and Management Science”, Vienna University of 

 Economics, http://www.wu-wien.ac.at/am 
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Appendix B - R Code 

#function for Cochran-Q test 

cochranq.test <- function(mat) 

{ 

  k <- ncol(mat) 

  C <- sum(colSums(mat) ^ 2) 

  R <- sum(rowSums(mat) ^ 2) 

  T <- sum(rowSums(mat)) 

  num <- (k - 1) * ((k * C) - (T ^ 2)) 

  den <- (k * T) - R 

  Q <- num / den 

  df <- k - 1 

  names(df) <- "df" 

  names(Q) <- "Cochran's Q" 

  p.val <- pchisq(Q, df, lower = FALSE) 

  QVAL <- list(statistic = Q, parameter = df, p.value = p.val, 

              method = "Cochran's Q Test for Dependent Samples", 

              data.name = deparse(substitute(mat))) 

  class(QVAL) <- "htest" 

  return(QVAL) 

} 

##################################################################### 

library(bindata)  # code requires the 'Bindata' package 

#next I specify the marginal probabilities and correlation structure 

margprob<-c(0.40, 0.50, 0.60) 

rho<-cbind(c(1,0,0),c(0,1,0),c(0,0,1)) 

 

M=1000  #number of simulations 

r=50    #number of rows in binary dataset 

##################################################################### 
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#Initialization 

pval.cochran=rep(NA,M) 

pval.cochran.1=rep(NA,M) 

pval.cochran.2=rep(NA,M) 

pval.cochran.3=rep(NA,M) 

ind.cochran=rep(NA,M) 

ind.cochran.1=rep(NA,M) 

ind.cochran.2=rep(NA,M) 

ind.cochran.3=rep(NA,M) 

pval.chisquare=rep(NA,M) 

pval.chisquare.1=rep(NA,M) 

pval.chisquare.2=rep(NA,M) 

pval.chisquare.3=rep(NA,M) 

ind.chisquare=rep(NA,M) 

ind.chisquare.1=rep(NA,M) 

ind.chisquare.2=rep(NA,M) 

ind.chisquare.3=rep(NA,M) 

#################################################################### 

ptm <- proc.time() 

for (i in 1:M) 

{ 

############################################## 

simdata<-matrix(NA,nrow=r,ncol=3) 

# this next for loop generates r independent rows and 3 dependent columns and saves as 

 'simdata' 

 

for (j in 1:r) 

{ 

set.seed(i*r+j) #did not use set.seed(i) b/c I would end up with the same 

                # binary dataset for each simulation 
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simdata[j,]<-rmvbin(1,margprob=margprob,bincorr=rho) 

} 

 

############################################## 

#the next set of steps stores p-values from Cochran-Q test 

pval.cochran[i]<-cochranq.test(simdata)$p.value 

if(pval.cochran[i]<0.05) 

{ind.cochran[i]=1} 

else {ind.cochran[i]=0} 

 

############################################## 

#the next set of steps stores p-values from Standard Chisquare test 

#chisquare test 

a=sum(simdata[,1]) 

b=sum(simdata[,2]) 

c=sum(simdata[,3]) 

pval.chisquare[i]<- prop.test(x = c(a,b,c), n= c(r,r,r), correct = FALSE)$p.value 

if(pval.chisquare[i]<0.05) 

{ind.chisquare[i]=1} 

else {ind.chisquare[i]=0} 

 

 

 

 

############################################## 

sum(ind.chisquare)/M 

sum(ind.cochran)/M 

############################################### 

#Next compare the success rates in the two test to see if their  

#Differences are statistically significant 

y<-matrix(NA,M,2) 
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y[,1] <- ind.cochran 

y[,2 ] <- ind.chisquare 

data <- data.frame(x1=y[,1], x2=y[,2]) 

cochranq.test(data) 

proc.time() - ptm 

 

 


