
This is the author’s final, peer-reviewed manuscript as accepted for publication.  The 
publisher-formatted version may be available through the publisher’s web site or your 
institution’s library.  

This item was retrieved from the K-State Research Exchange (K-REx), the institutional 
repository of Kansas State University.  K-REx is available at http://krex.ksu.edu 

 

On cellular indecomposable property of semi-Fredholm 
operators 
 
Guozheng Cheng, Xiang Fang 
 
 
How to cite this manuscript 
 
If you make reference to this version of the manuscript, use the following information: 
 
Cheng, G., & Fang, X. (2012). On cellular indecomposable property of semi-Fredholm 
operators. Retrieved from http://krex.ksu.edu 
 
 
Published Version Information 
 
 
Citation: Cheng, G., & Fang, X. (2012). On the cellular indecomposable property of 
semi-Fredholm operators. Chinese Annals of Mathematics, Series B, 33(6), 903-908.  
 
 
 
Copyright: © The Editorial Office of CAM and Springer-Verlag 2012 
 
 
 
Digital Object Identifier (DOI): doi:10.1007/s11401-012-0744-x 
 
 
 
Publisher’s Link: http://link.springer.com/article/10.1007/s11401-012-0744-x?null 
 
 
 



On Cellular Indecomposable Property of
Semi-Fredholm Operators

Guozheng Cheng Xiang Fang∗

School of Mathematics Department of Mathematics
Wenzhou University Kansas State University

Wenzhou, Zhejiang, 325035, China Manhattan, KS, 66502
Email: chgzh09@gmail.com Email: xfang@math.ksu.edu

Abstract

In this paper we prove that an operator with the cellular indecomposable
property has no singular points in the semi-Fredholm domain. Besides its
own interests, this fills a gap in [3]. Our proof relies on the 4 × 4 matrix
model of semi-Fredholm operators [2].

Keywords: cellular indecomposable property; semi-Fredholm operators; sin-
gular points.

In a series of three papers [3], [4], [5], R. Olin and J. Thomson introduced
and studied the cellular indecomposable property (CIP) which has become
a basic notion in operator theory. An operator T ∈ B(H) has (CIP) if any two
nontrivial invariant subspaces M1,M2 ⊂ H of T have a nontrivial intersection
M1 ∩M2 ̸= {0}. Note that if T has (CIP), then so does T − λ for any λ ∈ C since
T and T − λ have the same invariant subspace lattice.

The principle question underlying Olin and Thomson’s research is what the
spectral picture [6] of a CIP operator can look like. For instance, one can show
that the Fredholm index of a CIP operator cannot be positive, hence the adjoint
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is quasi-triangular [1], [6]. It is easy to achieve index 0 or −1, and it is still not
known whether the index can be −2 or smaller.

Motivated by the spectral picture problem, Olin and Thomson made a thorough
analysis of subnormal operators with (CIP). For general operators, they proved a
result on semi-Fredholm operators (Lemma 4 in [3], see Theorem 1 in this paper)
which is needed in the proof of the main result in [3]. Their proof of Lemma 4,
however, contains a gap in handling singular points in the semi-Fredholm domain
as explained below.

On the other hand, their result is almost certainly useful for further study of
the spectral theory of a general CIP operator. This prompts us to find a complete
proof and in this paper we prove a result (Theorem 2) which is enough to fill the
gap and is of independent interests–we show that a CIP operator has no singularity
at all.

Our main technical tool is the 4× 4 matrix model of semi-Fredholm operators
developed in [2].

Recall that a singular point λ0 ∈ ρF (T ) in the Fredholm domain ρF (T )
of an operator T ∈ B(H) acting on a Hilbert space H is a point λ0 such that the
dimension function of the kernel

λ → dim(ker(T − λ))

is not continuous at λ0. When λ0 ∈ ρsF (T ), the semi-Fredholm domain, λ0

is singular if the projection Pker(T−λ) does not converge to Pker(T−λ0) as λ → λ0

in the strong operator topology. In this paper, we mainly consider those singular
points in the semi-Fredholm domain.

To overcome the complexity caused by a singular point, [3] used a translation
argument: For a semi-Fredholm T , possibly singular at 0, they replaced T by T−λ
for some small λ so they assume that T is regular at 0. However, they implicitly
used the following argument: If T is analytic, then so is T − λ. Here an operator
T is analytic if

∩k≥0T
kH = {0}.

See the first line and the last line of page 402 of [3]. This is not true as illustrated
by the following one dimensional extension of a pure isometry S ∈ B(H),

T =

(
0 0
0 S

)
∈ B(C⊕H). (1)
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The statement of the following Theorem 1 is the same as Lemma 4 in [3].

Theorem 1. If T is a semi-Fredholm operator such that

(1) the Fredholm index satisfies index(T ) /∈ {0,−1}, and

(2) T is analytic, ∩k≥0T
kH = {0},

then T is cellular decomposable, that is, it has no (CIP).

A close examination of the proof in [3] shows that the arguments there do not
work for the above T in (1). The obstacle is at the end of page 402: After a
translation T − λ, the second analytic condition (2) in Theorem 1 is no longer
satisfied. Moreover, [3] actually proved Theorem 1 under an extra condition

(3) T has no singularity at 0.

The main result of this paper is the following.

Theorem 2. If the Hilbert space H is infinite dimensional, dim(H) = ∞, and
T ∈ B(H) is cellular indecomposable, then T has no singular points in its semi-
Fredholm domain.

So Theorem 1 follows from Theorem 2 and the proof of Olin-Thomson in [3].
Note that Theorem 2 does not hold on a finite dimensional Hilbert space, as
illustrated by a single nilpotent Jordan block, which indeed has (CIP) and is
singular at the origin.

Corollary 3. If T ∈ B(H) is an operator with the cellular indecomposable prop-
erty, and T is semi-Fredholm, then T has the following matrix decomposition,

T =

(
T1 A
0 T2

)
. (2)

Here the decomposition is with respect to H1 ⊕ H⊥
1 , with H1 = ∩k≥1T

kH,
T1 ∈ B(H1) is invertible, and T2 is a pure shift.

Recall that a pure shift is a left-invertible operator which is also analytic [2].
The proof of Corollary 3 is essentially contained in the proof of Theorem 2.

It is an interesting question to see when the T1 entry in (2) is indeed void. If
index(T ) ≤ −2, then Theorem 1 implies that T1 cannot be void. Again, we do not
know whether index(T ) ≤ −2 can happen for a CIP operator.
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The rest of this paper is devoted to the proof of Theorem 2.

Proof of Theorem 2. We first recall the 4 × 4 upper-triangular matrix model of
semi-Fredholm operators developed in [2] which we rely on heavily.

For any semi-Fredholm T ∈ B(H) we can decompose H = H1 ⊕H2 ⊕H3 ⊕H4

into the direct sum of four closed subspaces, with some components possibly void,
such that the associated matrix of T has the form

T =


T1 ∗ ∗ ∗
0 T2 ∗ ∗
0 0 T3 ∗
0 0 0 T4

 . (3)

The properties of T1, T2, T3, T4 which we will need are listed below.

(i) T4 is a pure shift semi-Fredholm operator. See the definition after Corollary 3.
Or, to be more speficic, recall that a semi-Fredholm operator S ∈ B(K) is a pure
shift if

(a) ker(S) = {0}, and

(b) S is analytic, ∩k≥0S
kK = {0}.

In particular, if S is a pure shift, then ker(S∗) ̸= {0} and dim(ker(S∗ − λ)) is a
constant on a small open neighborhood of the origin by general Fredholm theory.

(ii) T ∗
1 is a pure shift.

(iii) T2 is invertible,

(iv) T3 is a finite nilpotent matrix. In particular,

dim(H3) = N < ∞. (4)

It follows that
TN
3 = 0. (5)

These two conditions will play important roles in the proof.

(v) The origin 0 is a singular point in the semi-Fredholm domain of T if and only
if H3 ̸= {0}. So our goal is to show H3 = {0}.
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First we show that H1 = {0}. Otherwise, H ′ = ker(T1) ̸= {0} is a nontrivial
invariant subspace of T . Since T ∗

1 is a pure shift,

dim(ker(T1)) = dim(ker(T1 − λ))

when λ is small enough, but nonzero, we have

H ′′ = ker(T1 − λ) ̸= {0}

to be another nontrivial invariant subspace of of T1, hence of T . Clearly
H ′ ∩ H ′′ = {0} since they consist of eigenvectors of different eigenvalues. This
is a contradiction since T has (CIP).

Next we show that at most one of H2 and H3 can be nonzero. Otherwise, H2 is
a nontrivial invariant subspace. Since H3 is nonzero, by (v) above, 0 is a singular
point of T , hence

ker(T ) ̸= {0},

which is another nontrivial invariant subspace. Since T2 = T |H2 is invertible, T is
bounded below on H2. It follows that H2 ∩ ker(T ) = {0}. Again a contradiction
with (CIP).

If H3 = {0}, then we are done.

Next we assume that H2 = {0}, and H3 is a nontrivial invariant subspace. In
this case, H = H3 ⊕H4.

Since dim(H) = ∞ and dim(H3) = N < ∞, we know that H4 is nontrivial.
Since T4 is a pure shift, we can choose a unit vector

k ∈ ker(T ∗
4 )

and let Hk ⊂ H denote the invariant subspace generated by

(
0
k

)
under the action

of T .

Claim: Hk ∩H3 = {0}.

This will be in contradiction with (CIP), so it follows H3 = {0}, and we are done
then. The rest of the proof is devoted to prove this claim.
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Next we assume that there is a sequence of polynomials pt(z) ∈ C[z] such that

lim
t→∞

pt(T )

(
0
k

)
=

(
e
0

)
∈ Hk ∩H3,

and we wish to show e = 0.

Write

T =

(
T3 A
0 T4

)
for some A ∈ B(H4, H3) and for any polynomial

p(z) = a0 + a1z + · · ·+ anz
n,

we write

p(T )

(
0
k

)
=

(
p(T3) Bp

0 p(T4)

)(
0
k

)
=

(
Bpk

p(T4)k

)
.

Here Bp is a noncommutative polynomial of T3, A and T4. If we can show that for
any polynomial p,

||Bpk|| ≤ C||p(T4)k|| (6)

for some constant C, independent of p, then we can conclude that e = 0.

Without loss of generality, we assume

n ≥ N = dim(H3)

since otherwise we can choose

an+1 = · · · = aN = 0,

so that p is formally of degree N . This will make the bookkeeping in the proof of
(8) easier. Equation (8) is a key step toward the proof of (6).

Next we calculate Bp by direct calculation. For any i = 1, 2, · · · , N, let

Bi = aiT
i−1
3 A+ ai+1T

i−1
3 AT4 + · · ·+ anT

i−1
3 AT n−i

4 .

By using
TN
3 = 0 (7)
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and by writing out all terms in Bp, we have

Bp = B1 + · · ·+BN . (8)

The proof of (8) involves some work on bookkeeping, but there is nothing chal-
lenging. In writing out all terms of Bp, one just needs to keep (7) in mind.

Note that N = dim(H3) is independent of p = p(z). So it suffices to show that
for each i = 1, 2, · · · , N,

||Bik|| ≤ C||p(T4)k||
for some constant C, independent of p. Let

B′
i = ai + ai+1T4 + · · ·+ anT

n−i
4 ,

then
Bi = T i−1

3 AB′
i,

hence it suffices to show
||B′

ik|| ≤ C||p(T4)k|| (9)

for some constant C, independent of p.

Next we show (9) by induction. First for i = 1. Since T4 is a pure shift, it is
bounded below, so we assume

||T4x|| ≥ c||x||

for some c > 0 and any x ∈ H4.

Write
p(T4)k = a0k + T4(a1 + a2T4 + · · ·+ anT

n−1
4 )k.

By our choice of k, k ⊥ T4H4, so we have

||p(T4)k||2 = ||a0k||2 + ||T4(a1 + a2T4 + · · ·+ anT
n−1
4 )k||2

≥ c2||(a1 + a2T4 + · · ·+ anT
n−1
4 )k||2,

which is the case of i = 1 for (9).

Now replace p(z) by q(z) = a1 + a2z + · · · + anz
n−1, and apply the i = 1 case

of (9) to q(z), one obtains the i = 2 case of (9) for p(z), with a different constant
C. Keep iterating this process and the proof of (9), hence the whole proof, can be
completed.
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