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NOMENCLATURE

A cross-sectional area

h enthalpy

k ratio of specific heats

9 density

P pressure

p small increment of pressure

T temperature, ° R.

V ve I oc i ty

6 time

v volume

X gap distance

x small increment of X

Y out-put displacement

y small increment of out-put displacement

X(s) Laplace transform of x

Y(s) Laplace transform of y



I. INTRODUCTION

A control system usually includes power-amplifying equipment because

the power required to vary the controlled quantity is large compared to the

power available in the reference input. In both pneumatic and hydraulic

control systems, the flapper valve (or flapper amplifier) is a most common

and basic device for high gain and power-amplifying.

Generally speaking, pneumatic systems have the following advantages

over hydraulic systems (6)*;

1. Availability of working medium. In a pneumatic system, air can

be vented to the atmosphere and is readily available at most places, there-

fore no return line is necessary. In hydraulic systems, a return line must

be used to provide venting.

2. Reliability. Pneumatic systems are clean, inexpensive and relative-

ly trouble free. Hydraulic systems are dirty because of its working medium,

dirt being a source of trouble. Therefore, an important advantage of

pneumatic systems is that they are highly reliable.

3. In most hydraulic systems, petroleum-base fluids are preferred for

their ant i -corrosive and lubricating qualities. These fluid are flammable

and create a fire hazard. While in pneumatic systems, there is no danger of

fire hazard.

Now, consider the conventional flapper valve shown in Fig. I. When the

flapper is closed so that there is no flow, the controlled pressure rises to

the stagnation pressure of the supply air. As the flapper opens, the con-

trolled pressure will be reduced and will approach the ambient pressure. The

pressure in the bel lows is the quantity to be control led and the gap-distance

* Numbers in parentheses refer to the items of references.
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is the controlling variable. It is easily seen that as the gap-distance

decreases, the flow rate also decreases. If the supply pressure, P , is

constant, then, the flow rate is low if P
c

is high and vice versa. Since

the flow rate is controlled by gap-distance X, the load pressure P
c

is also

controlled by X. Fig. 2 (I) shows a typical relation between P
c

and X for

the conventional valve shown in Fig. I. As X increases, P
c

approaches P
g

,

and as X approaches zero, P
c

goes to the stagnation pressure of supply air.

SUPPLY I

AIR.

Fig. I

There is a point of inflection (the point at which ^ does not increase

nor decrease). Near this point, the curve can be adequately approximated by
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a straight line. For example, part ab in Fig. 2 is nearly a straight line

and hence pressure and gap-distance are linearly related along ab.

As shown in Fig. 2, ?
c

is always above P
g

, the ambient pressure, there-

fore the bellows must be spring-loaded, allowing operation about some posi-

tive pressure point such as point b. Notice that a spring is needed simply

because the pressure is always positive. If an operating point of zero

gauge pressure can be found (
=Pg), then there is no need for the spring.

When the pressure is positive, it expands the bellows; when the pressure

is negative, the atmospheric pressure will return the bellows to its orig-

inal position. In order to accomplish this* it is necessary to produce a

partial vacuum which varies with the flow rate (hence controlled by Gap-

Distance).

In this report, an effort was made to investigate the response of a

"Venturi Tube" fluid amplifier which reduces the controlled pressure below

the ambient pressure under some conditions using supply pressures smaller

than normal. Venturi Tube details will be discussed later.
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II. STEADY STATE OPERATION OF VENTRUI TUBE AMPLIFIER

A. Introduction

It is a well known fact that when a flow passes through a region of

decreasing cross-sectional area, the velocity increases and the pressure

decreases. Consider the passage shown in Fig. 3. For purposes of illus-

tration, assume incompressible flow, i.e.,(>=(^. From the continuity

Fig. 3

equation, the following relation is obtained,

Pi<V,.)
= ^(A

2
V
2

)

°
r A

|

V
|

= A
2
V
2

Since A
(

> h^, V| < V
2

. Next, consider the energy equation for in-

compressible, steady and frictionless flow (Bernoulli equation ),

P,^g + v*/2g = P
2
/
(
>c: + M

2

2
/ 2g where

It is easily seen as V
2

increases, P
2

has to decrease in order to keep the

sum constant. If P
{

is a little higher than the atmospheric pressure, and
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>V then P9 could be lower than atmospheric pressure,

In applying the Venturi Tube principle explained above, the new

amplifier has the arrangement shown in Fig. 4.

B. Steady State Analysis

In analyzing the flapper amplifier shown in Fig. 4, a few restrictions

and assumptions were made:

1. The flow is assumed to be isentropic and one-dimensional.

2. The perfect gas laws are obeyed, (i.e., P =CRT and = constant)

3. The effect of viscosity is negligible.

In addition, for the f I apper "va I ve shown in Fig. 4, the exit circum-

ference is considered equivalent to the exit plane of a convergent nozzle,

as shown in Fig. 5.

T
D

i

r-x

Fig. 4

Referring to Fig. 4, the pressure at section a is assumed to be con-

stant and equal to or greater than the ambient pressure for a fixed stagna-

tion pressure. In other words, P is independent of gap-distance X. Inas-

much as an isentropic process is cons ide red, Qand V
g

, the density and veioc-



city, respectively, of air flow at section a are also constant for constant

stagnation pressure and temperature. It is also reasonable to assume X«D

for al I values of X. Let us define:

P
q

= stagnation pressure of supply air

T
q

= stagnation temperature of supply air

P
c

= pressure to be control led

( )* = signifies critical state*

X* = value of X corresponding to critical state at section t, as shown

in Fig. 4.

The continuity equation gives a relation between section t and a for

steady flow:

(>
+
( tt/4 ) d^V

+
= (>UDX)V

a
or

r t
v

t
u
t

4 P V D
* a a

( I )

Under critical condition, eq. (
7

I ) becomes

p*V* d
2

X* t t t (la)
4 PV D

x a aa a

AREA OF CIRCUMFERENCE EQUIVALENT CONVERGENT

NOZZLE, WHERE J d' = i
= ttDX ttDX

*The critical state is the state
sonic speed at that state.

Fig. 5

at which the flowing velocity equals the
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If P and T are fixed, then, * and V* can be calculated. In other
o o t

words, when aupply air has constant state, X* will depend on and D

only. The gain of an amplifier is defined as AP/AX. It is seen that making

d
+

small and D large gives us a smaller value of X*, hence a greater gain

can be attained.

By writing the energy equation, the following relation between sections

t and a is obtained:

h ,+vJ/2gJ = h + V^/2gJ (2)
a a

k-l 0.2857
. , h = C.T and T./T « (PJP)

'

P P
Notice h ,

= C T , h = C T and T./T (P7P) k = <P+/P )

t pp a pa ta ta ta

2 2
Solve for V./V from eq. (2)

T a

„ „ 2gJC T f , D /D , 0.2857 . 1

V?/V
2

=
I

- 12025 (T /V
2

) (P./P )
°- 2857 -

t a a a t a

I /k
Combining equations (I) and (3a) and keeping - (P^./P

g
) in

mind, the following relation is obtained:

(3)

(3a)

l/k , , 2
r 0.2857

X=(P
+
/P

a )
(d^/4D)

j
l-l2025(T

a
/Vg) (P

+
/P

a )
-l[

Eq. (4) shows X as a function of (P
+
/Pg) or (P

c
/P

+
). Fig. 6 shows

a numerical example. It is seen that there is no inflection point as there

is in Fig. 2. But, as X goes closer to X*, the gain approaches infinity.

Fig. 7 shows the same relation in d i mens i on I ess form for different values

of P 7p .

a o
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Fig. 7 tells us that on the range — X <0.5 (when P
c

is high) P
c

and

X have a better linear relation, but the gain is low.

As mentioned previously, when the flapper amplifier is operated

around the point P = P , the bellows does not have to be spring loaded.
v c a

This is the most important advantage by using a convergent-divergent

restriction.

C. Experimental Data

A laboratory set-up of a two-dimensional flapper amplifier with 1/64"

depth is shown in Fig. 8.

Fig. 8

The data obtained for P /P = 0.6 and 0.7, respectively, are tabulated
a o

below and plotted as shown in Fig. 9.

P*/Po =0.6

lOOOX
"in

o.o 0.5 I.O 1.5 2.0 2.5 3.0 *6 4.0 <V.S 6.0 5.5 Q>.0 T.O

Pc
19.10 18.85 ia35 IG.87 14..30 6.55 T.30 M5 1.50 -I.05 -2.10 -2.85 -V15 -3.45 •3.45

J
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FIS. 9 PRESSURE-GAP DISTANCE. RELATION
— EXPERIMENTAL DATA,
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Pa. / Po = 0.7

1000 X
in

a.o 0.5 1.0 15 2.0 2.5 ao 3.5 4.0 4.5 6.0 5.5 &0 «>.5

Pc

m 12.25 12. 1

5

11.85 11.20 9.90 7.*S 6.10 2-85 LIS O -1.50 -1.85 -2.15 •2.35 -2.40

A comparison of mathematical analysis and data obtained experimental-

ly shows that the latter deviates from the former at lower pressures and

the values of X* are greater than those calculated from the mathematical

formula. The reason might be the effects of viscosity and high degree of

turbu lence.

The effect of viscosity reduces effective area so that ttDX can not

represent the real cross-sectional area. In order to make the flow rate

larger so that the properties at the throat becomes critical,, the cross-

sectional area ttDX* has to be larger. This might be the reason why X* from

experimental data is greater.

On the other hand, when the flow rate increases, the friction or turbu-

lence also increases. This makes the assumption of isentropic flow less

accurate.

Fig. 9 shows that there is an inflection point near P
c
= P This means

a very good I inearrelation between P and X can be obtained near P = Pc c a'
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III. THE TRANSFER FUNCTION OF VENTUR I -TUBE AMPLIFIER

A. Linearized Operation

Assume V is a nonlinear function of U and let the nonlinear relation

shown in Fi

Vo|^_

j. 10.

/ ,A

1

V

1

Fig. 10

is U, then, the abscissa intersects the nonlinear function at V, and it in

tersects the tangent at (V
q
+ v). From Fig. 10, the equation for V is as

the fol lowi ng:

V = V|+v + e = Vj +

(dV ) v v = u (dV)

dU o
=

u",
or

dU

Therefore, the new ordinate can be approximated, within a small range of U

by

V = V. + (dV)

dU O
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The last equation explains the theory of small perturbation, and the

procedure is known as linearization.

B. The Transfer Function

In considering the dynamic operation of the flapper amlifier, it is

helpful to use the continuity equation for unsteady flow:

Mass Flow Rate in = Mass Flow Rate out + Rate of Mass Stored

In applying the above equation, it is convenient to choose a control

volume. The boundary of the chosen control volume is shown by the dotted

I i ne in Fig. 4.

Mass Flow Rate in = C.(iT/4)dJv,VT t t

Mass Flow Rate out - (-LUDX)V
xa a

n -u j. li ttj. dM dM dPc n A
Rate of Mass Stored = - = - ^ = Q. P

q
c

where

M = mass in the control volume

Q = ^ = capacitance of the control volume (5)

For convenience, let us consider a unit capacitance. Then, the continuity

equation becomes:

(^(Tr/4)d^V
+

= C^TrDX)V
a

+ P
c

( 5 )

Now, refer to Fig. 4 again. Let A
c

be the cross-sectional area of the

bellows and y be a small increase of the length of the bellows* then

AP A = Ky
c c '

d(APc ) dPc K dy _ K
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Thus, eq. (5) becomes

tytt/4)d*V
+

=(?V
g
UD)X +-^- y (7)

2
The energy equation C T

q
= C T^_ + V^/2gJ gives

p o p

2857
't

= (29JC
p
T )*

[ '-(VP
o

) °
(8)

From the adiabatic relation P
Q/(? = p^/\y^

= c ^constant), the expression

for (?
t

is obtained:

<P
t
/0)

(9)

The left-hand side of eq. (7) thus has the following expression:

fy<ir/4)d*V
+

= (P
c
/C)

l/k
(TT/4)d

2
(2gJC

p
T
Q )

l-< p
c
/p

>
°'

2857
j

= z

where Z is a function of P
c

only. Notice, P
+

= has been assumed.*

Linearize equation (7), we get

-Np
c

= (<>,V
a
TrD)x + pc

(10)

or

-N^-y = CfcV ttD)x + £-y (10a)
c c

where _ M _ dZ

dP
c

= (^/4)d
2
(2gJC T) * ((?/P

o
) r 0.143 J_ ?p }

-0.2857]

L l-(P./P.
°- 2857 k c o

J
c o

0.2857
X

I I- (p
c
/p

+
)

J'
Transforming eq.(IOa) into the Laplace domain:

* For more details about this assumption, see "DISCUSSION AND SUMMARY'



16

v '
, A (V D)

YCs) c a .

X(S) KN I s + I

( " 5

N

Eq. (II) is the transfer function of the Venturi-Tube flapper amplifier

and has the same form as that of the conventional flapper amplifier (I).
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IV. DISCUSSION AND SUMMARY

1. From the normalized pressure gap-distance relation shown in Fig. 7

it is seen that as X > X*, the gap-distance has no effect on the controlled

pressure, and the gain becomes zero. p
a
/p

Q
wi 1

1

never be smaller than 0.5283.

Hence the term "ambient pressure" means atmospheric pressure when P
q
<27.85

psia (=14.7/0.5285), and it wi I I be higher than atmospheric pressure if

P
Q
>27.85 psia.

2. If is the time constant of the amplifier, eq. (II) gives

r= i/n (|2)

Eq. (12) shows that the time constant per unit capacitance varies inversely

with N. The curve showing normalized l/N versus P
c

was plotted in Fig. II.

The time constant approaches zero as P
c

goes to P
q

and it becomes infinity

when P
C
/P

Q
approaches 0.5283. Notice that

I
= the value read from Fig. II

N
dl (2gJC T )K
t p o

4P
o

A smaller value of l/N can be attained by making d
+

large, (hence the flow

rate becomes high)

3. The gain constant keeps changing as the operating point moves since

this is a nonlinear device. Let G denote the gain constant, defined as:

K N (13)

Therefore, G is proportional to D and l/N. Since l/N is proportional to

2
l/d_j. (see the middle of this page), a high gain constant is obtained when

D is large and d
+

, small. If a high gain constant and a small time constant
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are to be attained simultaneously, D/d
+

and d
+

must be large which

requires a high air flow rate. These two requirements must be com-

promised to meet the specifications of a particular case.

4. Refer to Fig. 12. If a contoured plug is used instead of a simple

flat flapper, the pressure gap-distance relation can be improved. For ex-

ample, by contouring the plug such that the relation between X and the

"effective" exit area is similar to that shown in Fig. 13, the curves in

Fig. 7 theoretically can be made linear. The contour required is dependent

on the supply air properties and the ambient pressure.

Fig. 12 Fig. 13

5. In analyzing the flapper valve-volume (or load) combination,

three different cases can be assumed, according to reference 4.

(a) The Isentropic Model

i. The volume of load is separated from the valve by an imper-

meable membrane. The membrane will not support a pressure dif-

ference and will not allow any heat transfer between the volume

and the valve.

ii. The gas inside the volume behaves i sentrop i ca I I y

.

(b) The Perfect Mixing Model



20

By the statement of perfect mixing, the author of reference 4

means that the stagnation enthalpy of the fluid leaving the exit-

of the flapper amplifier is the same as the stagnation enthalpy

of the fluid in the load (or the volume),

(c) The Imperfect Mixing Model

In this case, charging and discharging the volume are distinguished.

i. In charging the volume, it is assumed that the stagnation en-

thalpy of the fluid leaving the exit of the flapper amplifier

is the same as that of the fluid flowing into the flapper am-

pl if ier.

ii. In discharging the volume, two assumptions are made:

(A) The stagnation enthalpy of the fluid leaving the flapper

amplifier is a weighted average of the stagnation enthalpies

of the flow into the amplifier and the flow leaving the

vol ume.

(B) The ratio of the stagnation temperature of the fluid leaving

the amplifier to the supply stagnation temperature is close

to unity. (0.9 to I.I)

Numerically,, there is really very little difference between the three

models. The reason is that the temperature ratio (the temperature in the

volume/supply temperature) ranges only between 0.9 and I.I, and the vari-

ation in temperature ratio has a small effect on the pressure. For an calcu-

lations, then, one might as well use the isentropic model, since it is the

simplest to work with.

In this report, the isentropic model is adopted.

- end -
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ABSTRACT

In this report, a proposed method to eliminate the return spring of

a conventional flapper amplifier was studied. A Venturi Tube was em-

ployed to produce a partial vacuum so that an operating point of zero

gauge pressure could be attained. Thus, the spring force is replaced by

the atmospheric pressure.

The steady state operation of the new flapper amplifier was investi-

gated and the transfer function was derived. The relation between the

controlled pressure and gap distance was determined; equations for the

controlled pressure and time constant (and gain constant) relations were

derived also. The results show that a high gain constant and small time

constant can be attained simultaneously, but the flow rate must be high.

Some experimental data were obtained.


