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CHAPTER I

PRELIMINARIES

1.1 Introduction

The orientation of this work is a little different from cost writings

of this nature in that it is mostly a setting forth of preliminary excursions

into what appears to be a promising off-shoot of the applications of Markov

chains. Some results of previous authors, primarily Conover [1965] and

Gani [1965], are presented in a slightly less procedure-oriented light

from their original settings. Whenever interesting points were found, they

were developed to some degree and, if they seemed worthwile in any sense,

included here. No one of these points was developed to any large extent due

to limitations in the time available. Instead, an attempt was made to present

a direction in which development may prove of value.

The origins of this work lie in the theory of dams, queues, and

provisioning. At this stage it touches them all as well as other related

subjects. It is for this reason that examples used to illustrate the results

obtained were somewhat simplified selections from these fields.

The remainder of this chapter will present a short resume of the subjects

upon which it is hoped this work may build.

1.2 Storage theory

The theory of storage concerns itself with a storage function S(t),

defined on a discrete or continuous parameter t (most frequently time) of

the following type:

S(t) = I(t) - D(t) - F(t) t >



where I(t) is a random feeding function, D(t) is a depleting function which

may or may not be a random variable, and F(t) is a limiting function deter-

mining the maximum size of S(t). All of these functions are positive and

non-decreasing. Thus they are cumulative functions in time representing

the total feed, depletion and 'overflow' respectively.

An early problem of this type concerned the problem of ruin in an

insurance company (Segerdahl, 1939) where S(t) represents the company

capital, I(t) the premiums, and D(t) the claims. In general one finds

problems in storage theory arising under the subject of provisioning or

under dam theory. Gani [1955] has pointed out that, with S(t) the deficit

in provisioning, or the total content in dam theory, the two problems are

direct analogues and can be simultaneously handled.

In dam theory, the major objective appears to be to obtain stationary

distributions for the dam content, S(t), under given input distributions

and for given release rules. A model, first proposed by Moran in 1954, has

provided a major tool for this work and has been developed by many workers.

Among them are Prabhu, Yeo, Gani, and Ghosal. For an informal review of the

results up to 1957, the reader is referred to the papers by Gani [1957] and

Kendall [1957]. Prabhu reviews some later results in 1965.

Gani, referring to storage problems in general, had occasion to say,

"a systematic method of attack has yet to emerge from the known solutions".

As far as can be ascertained the same situation exists today. This is a

motivation for the attempt at some generalization in this work.

Most usually, writers on the subject of storage theory have assumed

that the inputs giving rise to the feeding function, I(t), are independent

over time, that is that I(t) has (at least) stationary independent incre-

ments. With this restriction, a wide class of discrete storage functions



may be classed as Markov chains and have relevance to this work.

1.3 Flooding theory

Interest in the statistical treatment of flooding dates back to the

early part of this century. Fuller in 1914, was perhaps one of the first.

It was not until sometime later that any level of sophistication was reached

however, for in 1936, Slade was apparently justified in deriding the methods

employed up to that date. During this period "ad hoc" solutions based on

interpolation formulae and empirical distributions found favor. Papers on

these methods, for example that by Geyer in 1940, can be found in profusion.

Then in 1942 Gumbel wrote a paper employing known distributions to obtain

theoretical return periods of floods, and with it opened up a whole new ap-

proach.

This activity notwithstanding, theories offering solutions to flooding

in terms of dams are rare to date. The results by Gani [1965], referred to

throughout this work, are far from complete. These results, despite the

timely development of the shift operator by Conover [1965], are too complex

to offer any immediate solution to real problems of a practical nature. The

ground work is laid, however, and in time, practical results will no doubt

evolve.

1.4 Gani's flooding model

Consider a river system with a network of m tributaries feeding a main

stream. Let I
n
(t) , n = 1, 2, . . . , m; t _> be the input (in volume units

during the t time unit) supplied by the n ' tributary to the main stream.

The following assumptions will be made for this model:

(i) It will be assumed that the input I (t) takes on only discrete

values from the finite set {0 , 1, 2, . . . , L } ; n = 1, 2, . . . , m.



In much of the work it will be necessary Co assume that there exists

a finite bound, s, on the L :

n

s = Max {L
n } n - 1, 2, . . . , m

(ii) It will be assumed that the flow magnitude in the main stream is

affected only by the inputs and any dams that may be placed on the river.

Thus, for example, there is no incidental loss or gain between one tributary

junction and the next.

(iii) It will also be assumed that the flow speed in the river is

independent of the flow magnitude, at least during the flood period. This

assumption allows for a simplification as follows:

Let t
n

be the time it takes for a particle to travel from the source

of the main stream to the junction of the n
tr

tributary. Then make a linear

transformation on I (t) :

n

Z
;
(t) X

n
(t + *«> * - 1, 2, .... * .

Now the time variable, t, refers to the same water particle as it arrives

at each of the tributary junctions, and thus explicit mention of time is no

longer necessary. r(t) will be referred to simply as I .

(iv) It will be assumed that 1^ n - 1, 2, . . . , *, is a random

variable such that

(a) I
n

is independent over time. That is to say that an

observation of 1^ for one time interval is independent of

any observations of I
n

for other time intervals. This may

be true for example, if a time unit is taken long enough.

(b) The stochastic process {1^ n = 1 , 2 , . . . , m } is a non-

homogeneous Markov chain.



Under these assumptions it is possible to obtain the probability dis-

tribution, R , (a row vector) of the flow magnitude, S , on the n section,
' n n

that is between the (n-1) and n tributary junctions:

R _ (r
(n)

r
(n) (n)

n " U
'

r
l '2 ' • '

' }

where

rf
n)

= P(S = i)
i n

Since the flow is independent over time (by assumption) this probability

distribution fully describes the flow during flood times.

The probability of flooding on the n section is obtainable as follows:

Let F be the level of flow magnitude on the n section which just causes
n

flooding. That is flooding occurs on the n section if S >_ F . Then

define a row vector Z such that it has unity in the first F positions and
n n

zeros elsewhere.

Then:

P (flooding on n
th

section) = 1 - R Z' (1.1)
n n

This model will be referred to in the body of this work and R will be
n

obtained under different dam systems.



CHAPTER 2

THE MATRIX SHIFT MULTIPLICATION OPERATORS

2.1 Introduction

The shift multiplication operation is a matrix operation first used

by Conover [1965] in order to express the distribution of the sum of the

first m states of a non-homogeneous finite state Markov chain in a mathe-

matically manipulable form.

Later, Gani [1965] used a similar operator developed from Conover's

operator. He used it to sum the states of a Markov chain in his flooding

models. This new operator offered some advantages but in return tended to

aggravate some problems in mathematical properties which arise when sequen-

tial shift operations are performed repeatedly.

Both of the above authors worked with the finite state case only.

The shift operations needed to consider the infinite case are added in

paragraph 2.3.

Since both operators have advantages, both will be considered in this

chapter. A more detailed discussion of the properties and relative advan-

tages of the two operators can be found in appendix I.

2.2 The definitions of the shift operators

2.2.1 Notation

We will use the following matrices for definition purposes:

Let A be a (p+1) x (q+1), matrix of the form;

- • • • 3
o,o o,q

• •

p,o p»q



and let B be a (q+1) x (r+1) matrix of the form;

0,0

q»o

o,r

q,r

Then let C AB, the ordinary matrix product with dimensions (p+1) x (r+1)

and elements given by:

c. .
= ) a. . b, .

/i = 0, 1, 2, . . . p
1. vb, .

{

k=0
i,k k.J Lj » 0, 1, 2, . . . r

The subscripting from is used throughout this work rather than the

more common subscripting from unity because the dimensions of the product

matrix of a shift operation are more easily expressed in terms of p,q and

r than in terms of full dimensions. Further, their application to Markov

chains is under consideration and this notation is significant in the

interpretation of the expressions in this context.

2.2.2 Conover's shift operation

DEFINITION I: Conover's shift operation is an operation defined for

two matrices, A and B with a common dimension, (q+1), which delivers a

matrix D of dimensions (p+r+1) x (r+1) as follows.

The element of D, namely d. .is given by
1,3

J

d. . = c. . . if < i-j < p

= otherwise

i = 0, 1, 2,

J = 0, 1, 2,

p+r

(2.1)



The operation is written D = A * B.

Example 2.1. Some feeling for this operation can be obtained from a

simple example, such as that given, as well as a consideration of the

general term in paragraph 2.2.4.

Consider the matrices

A = 1 2 0|

141

and

B =
1 2 2

2 1

3 2

then the ordinary matrix product AB gives us

:

AB = 5 2 4

14 8 1

So that by sequentially shifting the columns of AB downward we get:

A *

Dimensions are in order: (1+2+1) x (2+1) =4x3

5

14 2

8 4

1

2.2.3 Gani's shift operator

DEFINITION II: Gani's shift operator is an operation defined for

two matrices, A and B, with a common dimension, (q+1) which delivers a

matrix G of dimensions (p+1) x (q+r+1) as follows:

The notation using the asterisk is in accordance with the original notation
by Conover [1965]. It is probably intentionally the same as that used bv
Feller [1965] to indicate a convolution. While the two are related
(paragraph 2.4), Gani's operator actually bears closer resemblance to the
convolution operator.
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Let 1 be the matrix of elements 5. , such that:

o. .
= b. . . if < j-i < r

i,j i,j-i - J - H - 0, 1, . . •. p

n . 1

(2 ' 2 >
= otherwise Lj = 0, 1, . . . q+r

so that B has dimension (q+1) x (q+r+1)

then G = A -9- B
d=fA$

Example 2.2. Consider the matrix

ll 2 2

B- 20 1

|3 2

From B we obtain B by sequentially shifting the rows of B to the right:

t-
12 2

2 10
3 2

so that if

A = 12
14

then

G = AOB =
I

1 6 2 2 °
JO 2 12 9

Dimensions are in order:

for t: (2+1) x (2+2+1) =3x5
for G: (1+1) x (2+2+1) =2x5

2.2.4 The general elements

It can be easily seen from their definitions that the following

expressions give the general elements of the two shift operators:
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Conover: Let A = U^}^ x (q+1)

B = {b
i,J

}
(q+D x (r+1)

then if D = {d } = A * B then D is (p+r+1) x (r+1) with general element:

d. .
=

) a. . ,b. . if < i-j < p r± = 0, 1, . . . p+1
l.J kt

l-J.k k,j ~ ~
\ ( 2.3)

= otherwise v
j = 0, 1, . . . t

Gani; for A and B as above:

If G = A -9- B then G is (p+1) x (q+r+1) with the general element given

by:

g. .
=

) a. ,b, . ,
(1 = 0, 1, . . . p5 i,3

ki
i,k k, 3 -k

\ (2 .4)

j = 0, 1, . . . q+r

2.3 The case of infinite matrices

2.3.1 Motivation

Gani and Conover considered the finite state case. Thus the shift

products were not defined for the case where some or all of the dimensions

of the operand matrices are infinite.

However, there does not appear to be much difficulty in expanding

these conclusions to include the infinite state space case. Since many

problems, including Gani's flooding model, can benefit from an infinite

state space as an approximation to the continuous case and since many prob-

lems, including the queueing models, customarily use an infinite though

discrete state space it is rewarding to develop the infinite state space

case whenever possible.

2.3.2 Definitions

If the matrices which are to be shift multiplied are infinite in some

or all dimensions, the definitions I and II are still applicable with the
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appropriate dimensions (p,c or r) taken to be infinite.

The general elements undergo slight changes, however. It was for this

reason that the operations were not defined in terms of their general

elements.

2.3.3 General elements

A consideration of the definitions I and II lead directly to the fol-

lowing general elements in the infinite case.

Gani shift product: The general element of G = A -9- B where A and B are both

infinite in both dimensions is given by;

;. . = T a. , b. .
, \

i,J v=n 3L »
k k >J-k L

. = 0, 1, 2, . . .

(2.5)

k=0 ->- ~»j -
tj . o, 1, 2, . . .

In this case G is an infinite matrix with no elements necessarily zero.

If B is infinite in both dimensions while A is an infinite row vector:

then the general element of G = A -9- B is given by:

g
i

=
^ a

k
b
k i-k J = 0, 1, 2, . . . (2.6)

3 k=Q « K.J K

In this case G is an infinite row vector.

The summations in equations 2.5 and 2.6 extend from to j rather than,

as may be expected, to °°. This is because the Gani shift operator involves

the sequential movement of the rows of B to the right to give B before

multiplication. B is then an upper triangular r.atrix and the summations

need only extend to the diagonal elements to process all the non-zero

elements of each column.
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Conover shift product: To minimize the problems associated with the

double definition of the element of the Conover shift product (2.1) we

introduce a degenerate function as follows:

y . , 1 if i > J
i 'J (2.7)

= otherwise

Then the matrix {y . . } is lower triangular with unity on and below the

main diagonal.

We will also have uses for Kronecker's delta function (Hohn [1958],

namely;

6. .
= 1 if i = j

= otherwise

Then the general element of D = A * B where A and B are both infinite

in both dimensions is given by:

1, , " y± i I a. . ,b .

\1 »J 1>J k-Q 1 J

»

K K »J I

i = 0, 1, 2, . . .

(2.8)
Lj - 0, 1, 2, . . .

Here we find D to be a lower triangular matrix.

However, if B is infinite in both dimensions while A is an infinite

row vector as before, then the general element of D - A * B becomes:

ri = 0, 1, 2, . . .

d. . - 6. . I a.b. . {
(2.9)

i,j i.J ki
k k,j lj = 0, 1, 2, . . .

where in this case D is not a row vector, but rather a diagonal matrix.

The subscript on a in (2.9) is k rather than a function i or j

because the ordinary matrix product of A and B is a row vector which the

shifting simply expands into a diagonal matrix. Thus the moving choice of

rows of A implied by the subscript i-j on a in (2.8) does not apply here.
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2.4 Relation to convolutions

The purpose of the shift operators that have been presented in this

chapter is not unlike the purpose of the well known convolution operator

as used, for example, by Feller [1965]. The similarity between the simple

form of the convolution operator and the general form of a shift product

element is immediately striking. For this reason it may be of value to

pursue this comparison with the intention of relating these two concepts,

and by this means, further clarifying the operation performed by a shift-

multiplication. The reader is referred to appendix II for this comparison.



14

CHAPTER 3

SUMS OF STATES OF MARKOV CHAINS

3.1 Introduction

3.1.1 Background and content

The derivation of the probability distribution of the partial sum of

the first r states of a non-homogeneous Markov chain with a finite state

space was first obtained by Conover [1965]. Later Gani [1965], using his

form of shift multiplication, asserted a similar expression which was more

compact. Unfortunately his form required sequential shift multiplication

from the right which presents a mathematical complication. Gani did not

prove his assertion in his paper.

This chapter will then present these results with a proof of Gani's

assertion for completion. Some related results which were found in the

course of the preparation of this work will be presented and the infinite

state space case will be mentioned.

3.1.2 Notation

Consider a realisation to- {y^ y% , . . . } of a non-homogeneous

Markov chain {Y^. Let I
fc

= f(Y
t
), t = 1, 2, ... be a one to one mapping

of the states of the Markov chain onto the set A = {a + bk}, k = 0, 1, 2,.

where a and b are real constants. As is customary with such chains

(Parzen [1962]) this work will, without loss of generality, deal simply

with the function I where a = and b = 1.

Define the transition probabilities p*" = P(l = i/T = -n forr i,j t
J t-1

i = 0, 1, 2, . . . and j = 0, 1, 2, . . . and let P
fc

= ^ ,} be the trars-

ition matrix. Define further the initial probabilities
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p* as p* = P(I., = i), i = 0, 1, 2, . . .and let R
±

= {.p.} be the prob-

ability distribution of the initial state expressed as a row vector.

It is now the purpose of this chapter to discuss the probability-

distribution of the partial sura of the first r states, namely S where:

S
r

= I I r = 1, 2,

t=l

Let the probabilities p. be defined by: p. = P(S = i) for i - 0, 1, 2,...

and r = 1, 2, . . . and also let R = {p.} be the probability distribution

of S .

r

3. 2 The known results

3.2.1 The assumption of a bounded state space

Solutions have been obtained for R by both Conover and Gani in the
r

case where the state space is bounded by a finite quantity, s such that

I <_ s for all positive integers r. They are presented in this paragraph.

3.2.2 Conover' s form

Given the notation of paragraph 3.1.2 it was proved by Conover [1965]

that:

R» - [R, * I * P. * P, * . . . * P ] E (3.1)m 1 2 3 m

where the shift multiplications are understood to be performed sequentially

from the left and where E is a unit column vector of dimension (ms + 1) x 1.

Example 3.1. Consider a homogeneous Markov chain with the state space

{0,1,2} and transition matrix:

P =

P0,0 P0,l P0,2

pl,0 Pl,l Pl,2

P 2,0 P 2,l P 2,2
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with initial probability distribution R. = r

.p
Q

, p. , p
2

]

Then if we wish to obtain R_ by applying (3.1) we find: R^ = [B^ * I * ?] S

The equation n's evaluated as follows:

p o

R * I = o Vl

o o p
2

so that

P P0,0 P P0,1 P P0,2

(R
1

* I)P =
Vl,0 P 1P1,1 P1P1,2

P 2p 2,0 P
2
P2,1 P 2P 2,2

and so

p opo,o ° °

p lpl,0 P P0,1 °

R * I * p = P 2P 2,0 P 1P1,1 P P0,2

P 2P 2,1 P 1P1,2

o o p
2p 2j2

Thus we have

P P0,0

P 1P 1,0
+ P P0,1

R2" P 2P2,0
+ P 1P1,1

+ P P0,2

p 2P2,l
+ P 1P1,2

P
2
P 2,2

which is intuitively acceptable.
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3.2.3 Gani's form

Given the notation of paragraph 3.1.2 it was stated by Gani [19 55]

that R , the probability distribution of S , is given by:
m m

r = Rn
-e p. -e- p. -e-

m 1 2 J
P
m

(3.2)

Here the shift multiplications are understood to be performed sequentially

from the right hand side.

Example 3.2. If we wish to repeat example 3.1 using equation (3.2) we find:

R
2

= R
l * P where

R
x
t = [p , Pl ,P 2

]

P0,0 P0,l P0,2

Pl,0 Pl,l Pl,2

'2,0 p2,l F2,2

which gives:

[p P0,0' P P0,l
+ P1P1,0' P P0,2

+ P1P1,1
+ P 2P2,0' P 1P1,2

+ P 2P 2,1' P 2P 2,2
]

This result is in agreement with that obtained in example 3.1.

3. 2. A Proof of Gani's form.

Mathematical induction will be used to prove (3.2).

Consider P^ Q ?
r

= ^ p ( I
r_1

= J / \_ 2
= i> -& (P(I

r
= j / 1^ = i) >

where i = 0, 1, 2, ...,s and j=0,l,2,...,s.

The shifting of the rows of P results in:

P
r-1 * P

r " {P(I
r-l = * ' \-2 = « } '

{P(I
r = ^ ' \-l = « }

-apci^-k/ i
r_ 2

- DP(i
r

- j-k / i^-k)}
k=0

Due to the Markov property we may write this as:
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{ i p(i = k / i = i)p(i = j-k / r^ = k, i = i)}

k=0

I ?
P(I

r-l
= k

>
T
r-2

= 1} ?(I
r

=
j
~k

>
T
r-1

= k
'

T
r-2

= i}

=

\to P(I
r-2 = i}

'

?(I
r-l " k

'
X
r-2 = «

s

{ £ P(I = j-k, I = k / I = i)}

k=o
r r i

= {P(I
r
+ I

r_1
= j / I

r_ 2
= I)} (3.3)

So assuming that:

P & . . . -9- P = {P(I +1 . + ...+ I - j / I - - i)} (3.4)
r mm m-1 r r-1

where r <_ m, it can be shown that:

p .«... e- p = {p(i + . . . + i . j / i . - i)}
r-l m m r-1 J r-2

Following the same procedure as that used to obtain (3.3) we get:

p
r_ x

« (p
r
* ... p

m ) - {P(i
r_r j !

i
r_ 2

= l)} * (P(im
+...+i

r
= 3/i

r
_!=i)>

" tPd^ = 3 I I
r_ 2

- 1)} • (PCI, + ... + I
r

- j-i I I
r_ x

" i)>

{Jn
P(I

r-l
" k / X

r-2
" i)P(I

m + ••• + I, = j"k
! 1^ - k)

)

k=0

{P(I
m
+ ... + I

r _ 1
= j I I

r_ 2
= i)} (3.5)
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Thus since (3.3) is true we can use (3.5) to proceed, step by step to expand

until we have shown (3.4) true for any value of m = 1, 2, . . . and

r = 1, 2, . . . , m. Thus by mathematical induction we have that (3.4) is

true for any such m and r. So that we have:

p
2 *- •

-* p
m = ^ 2

+ i
3
+ vv'tVi3./^'? 1

and R -0- P -9- . . . -9- P can be written as:
i I m

{P(I
1

= i)} -9- {P(I + 'I + . . . + I = j / I = i)}
J- L 5 ml

= {P(I
X

= i)} • {P(I
2
+ . . . + I

m
= j-i / I

1
= i)}

s

= { I P(I = k)P(I + . . . + I = j-k / I = k)}
k=o

m "

s

= { I P(I
9
+ I, + . . . + Im = j-k, I, = k)}

k=0

= {P(I + I + . . . + I = j)}
± l. m

R
m

Since P. has dimension (s+1) x (s+1) it follows that P . -9 P . , has dimension
i l l+l

(s+1) x (2s+l) , and finally that P.-9P -9. . .-9P has the dimension

(s+1) x ([m-l]s+l) so that R
n

-9 P_ -9 . . . -9 P has the dimension given by

1 x (ms+1)

.

This completes the proof of (3.2). An attempt has been made to relate

(3.2) and (3.1) directly but because of the difference in direction of
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operation for the two equations only a complete evaluation would suffice.

This would be equivalent to the proof above combined with Conover's

published proof.

3.3 An alternative

The probability distribution of S can be obtained in an alternative

form which does not involve shift operations. The advantage of such a form

lies in algebraic convenience of ordinary matrix multiplication. Particularly

its familiarity and associativity are desirable. Unfortunately, however,

this alternative form has associated with it increased complexity. Also,

this form cannot be generalized to include the infinite state space case.

To obtain the same end result as that of (3.1) or (3.2) in any alterna-

tive form it is necessary to define special matrices which, with ordinary

matrix multiplication, will result in a shifting process analogous to that

performed by the shift operator. Given a Markov chain such as that defined

in 3.1.2, with the state space bounded by s as in 3.2.1 a basic matrix

which can be used to perform this shifting process is given by the

[(r-l)s+l] x (rs+1] matrix of:

<4- [£
:

i

I

*
rx = 1, 2, 3,

W = 0, 1, 2,

1 2
where Z, and Z, are zero matrices of dimensions [(r-l)s+l] x k and

K. K.

Y
[(r-l)s+l] x [s-k] respectively. Here U, is a matrix \%Those size is

determined by r, the iteration number, and which contains the identity matrix

placed after the k column of zeros. Hence, for example, in the case where

the state space is the set {0,1,2,3}:
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u;

1 c

1

T_

1

while

U
x

= [0 1]

Now from these matrices the iteration matrices A can be constructed using

the transition probabilities {p. . } of the Markov chain:

A
r

=

r+1
u
o

' r+1
T7
r

l

p0,s
U

1

1

p0,0
• • •

• • • • •

•

1

1

r+1
ps,0

u
r

s
• • • •

' r+1
TT
r

i p u
,

s,s s

r rHere A has dimension (s+1) [ (r-l)s+l] x (s+1) (rs+1) so that A becomes an

expanded shifted form of the transition probability matrix P _ filled in

with zeros.

Lastly there is a need for an accumulator matrix U defined as follows:

u:

u
r

=

of dimension (s+1) [ (r-l)s+l] x [rs+1]
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Then the probability distribution of S^ is:

R = R. A
1
A
2

m 1
A""

1
U
m

(3.6)

The proof of this, requiring results from appendices I and II, will be left

for appendix III

.

Example 3.3 If we wish to repeat examples (3.1) and (3.2) for equation

1 2
(3.6) we have R„ = R. A U

where

u
2=

1

1

1

1

1

1

1

1

1

P0,0
po ,1

1

1

1

p
o ,2

pi,o
o pl.I

1

1

Pl,2

P 2 .0
P 2

1

4 p2,2

A
X=

So that R A =

[p P0,0' P 1 P1,0' P 2 P2,0 P P0,1' P 1 P1,1' P 2 P2,l p P0,2' P1 P1,2' P 2 p 2,2
]

1 2
thus R

x
A U
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[p P0,0' P1 Pl,0
+ p P0,1' P 2 P 2,0

+ Pl ?1,1
+ P P0,2' P 2 p2,l

+ pl P1,2' P 2 P2,2 ]

which is in agreement with (3.1) and (3.2).

3.4 Sums of states of Markov chains with infinite state spaces

Using the definitions of the shift products for matrices with infinite

dimensions, the case of the Markov chain whose state space is not bounded

as in paragraph 3.2.1, can still be encompassed by the results using the

shift operators (3.1) and (3.2). The proofs follow closely the proofs for

the finite state case and may be found in appendix III.

Unfortunately, however, the alternative form of paragraph 3.3 cannot

be generalized to include the infinite state case. This is because the

r r
alternative form involves the matrices A and U which are formed from

submatrices. In the infinite state case these submatrices would have to be

infinite, which would result in an impossible structure.

3.5 Sums of states of Markov chains as Markov chains

3.5.1 Introduction

Consider a realization {y., y_j . . . } of a stochastic process

{Y ; t = 1, 2, . . .} defined on the countably infinite sample space

{E , E , E_, . . .} such that a probability measure of the form

p = P(Y. = E ) is defined for k = 1, 2, . . . and r = 0, 1, 2, . . .,
r k r

where the events (En , E , S_, . . .} are mutually exclusive while the

random variables Y,t=l,2,3, .. . are statistically mutually in-

dependent.

Such a process may be regarded as a Markov chain in which the state

space E can be mapped by a one to one mapping onto the set of non-negative
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integers. Let I, = f (Y, ) be such a mapping. Let this mapping be chosen
iC k

such that

/•k = 1 , 2 , . . .

P
"" P(I*" r)

1 , 2vr = 0, 1, 2, . . .

Then the transition probabilities, p. . of this Markov chain are

given by:

Pi,J = P(I
k =

^
' Vl " ±} ri = 0, 1, 2, . . .

= Pd
k

= 3) '
j = 0, 1, 2, . . .

k= P
J

>k - 1, 2, ...

Now we have a realization of a Markov chain {1-i . . .} where all

the I , t = 1, 2, . . . are mutually independent. This being so, we may

observe that the sum of the first r of these:

r

S
r

= I I
k

r = 1, 2, . . .

r
k=l

R

forms a stochastic process {S., , S 2> . . .} which is a Markov chain.

This can be seen as follows:

P(S
r

=
j '

S
r-1

=
Vl' S

r-2 = \-V '

'

* * •
S
l * V

= P(S
r

- J / I
x
-\ t I

2
- i

2
- lr • • • , Vl - Vl - i

r_2
}

which is equivalent to:

- P(I
r

= J " Vl / \ - ±r I
2

= i
2

" V • ' ' > Vl = Vl " V2 )

which, by the independence assumption, gives:
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- ?(I
r - j "W

so that we may write:

- P(s
r

- 3 I s
r_x

= l^)

Thus if the states of a Markov chain are mutually independent then the

partial sums of states also form a Markov chain. The reverse of this is

not proved. The above is merely a setting forth of a very common special

case of a Markov chain. (Parzen, 1962)

3.5.2 The transition matrices in a special case

Under the conditions of paragraph 3.5.1, that is, if the partial sums

of states of a Markov chain form a Markov chain, then the transition

matrices of the new Markov chain bear a simple relationship to the trans-

ition matrices of the original Markov chain.

Let. for p
K

the transition probabilities as in paragraph 3.5.1,
i»J

the transition matrices of the Markov chain be T = {p~ .}.

Then let P, be the transition matrices of the Markov chain formed
k

by the partial sums of states:

P
k
={P(S

k+l
=j /S

k
=i)> * ml > 2

' ' *
*

Then it can be shown that

P = (t * T '

V

(3.7)
*k U k ;

Since the proof of (3.7) requires some results from appendix I, it will

be left for appendix II. It is, however, intuitively obvious as can be

seen from the following example.

Example 3.4: The content of these last two paragraphs is essentially

simple and their content becomes immediately clear if (3.7) is written out.



26

The transition probabilities of tl e original independent stochastic process

from 2.5.1 can be written:

f
1 = o, 1, 2, . . •

k k
p. . = p.
i»j J

.

j = o, 1, 2, . . .

^k = 1, Z , • • •

so that

k
p

k
Pi

k
p 2

* • •

k k
p l

k
P 2

• •

T
k

= k
p o

k
pl

k
P 2

'

•

•

• •

thus by (3.7)

k
p

k
p l

k
P2

* • •

k
p

k
pl

* • •

P
k

=

k
p '

• *

• • •

• •

•

where validity is intuitively obvious

3.5.3 An example - a Poisson counting pre>cess

Consider a stochastic process {X ; t = 1, 2, . . .} where each N
t

is distributed independently according to the Poisson probability law.

That is:

-V X
v e v

P(N
t

= x) =
x .

x = 0, 1, 2, . . . (3.3)

= otherwise
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It is known then that the stochastic process {S , S , . . .}

r

where S =
i N, is a Poisson counting process with

k=l
K

-rv. .x
P(S

r
= X ) =

e £» x = 0, 1, 2, . . . (3.9)

This follows from the reproductivity of the Poisson distribution

(Wilks, 1962).

It may be noted, however, that any of the equations (3.1), (3.2),

or (3.6) would agree with this result. For example consider (3.2).

Observe that the above process {1^, N,, . . .} qualifies as in paragraph

3.5.1 as a Markov chain. It has, setting P(N = x) = p~; t = 1, 2, . . .

;

x = 0, 1, 2, ..., the initial probability distribution:

v - r
1 1 1 i

1
_

' p0' pl' P 2' * " '*

with the stationary transition probabilities given by:

Pi,j
= ?(N

t
=

j I
"t-1

= i} for all t = 2; 3, . . .

= P(N
t

= j) =
pj

so that if T = {p. .}, then the general element of T -0- T is given by

t, . using (2.5)

:

i,J

i = 0, 1, 2, . . .

t . . =
I p p

.

l
»J k=0

k J
"k

lj = 0, 1, 2, . .

j -v k -v j-k
- e v e e

k=0

-2v j J

k^
k: (j-k):
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which, using the binomial expansion gives:

e-
2v (2v)J

Continuing in this manner evaluation of T ©• T -9-
. . . © T to (r-1)

terms results in the general element:

-i
-(r-l)v , r ,, v j rl = 0, 1, 2, . . .

r-1 _ e ([r-l]v) J
I

t

.

. f *s

1 >J J • ^=012

then, using (2.6) we find that R © (T -9- T -9 . . . -9 T) results in (3.9)

as expected.

3. 5. A An example - flooding models

Gani [1965] has suggested that the inputs supplied to a river by its

tributaries during a flood season may be Markovian. Under this assumption

(3.1) or (3.2) will supply the probability distribution of the flow in the

main stream between the r and r+1 tributary junction directly. It is

necessary for assumptions (i) to (iv) of Gani's flooding model (paragraph

1.4) to hold.

Let (I-,, I~, L, . . .} be the Markov chain describing the tributary

inputs. Let D.. = {P(I. = i) } be the probability distribution of the source

stream and let T be the transition matrix from the tributary (r-1) to

tributary r. Then

m
S = I I
m

r=l
r

is the flow in the main stream between the junction of tributary m and

tributary (m+1) . Let R = {P(S = i) } be the probability distribution ofmm
S . Then R is given by (3.1) or (3.2). If the flow in all tributaries
m m * x '

is bounded by a maximum value, say s, then (3.6) could be used.
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CHAPTER 4

A FILTERING PROCESS

4.1 Introduction

4.1.1 A definition of filtering

A filtering process is not a concept which is standard throughout

the literature. The term as it is used in this work is different from that

used in at least one major reference (Parzen [1962]). In this work the term

is used because it seems to be intuitively appropriate. One may consider

a 'black-box' type of process where input, consisting of one realization

of a random variable, results in an output which is, in turn, one. reali-

zation of another random variable whose distribution is determined by the

input. Then the output may be taken to be a filtering of the input. More

specifically, the following definition will be used:

DEFINITION III: Let {I j t = 1, 2, . . . } and {0 ; t = 1, 2, . . .}

be discrete parameter stochastic processes defined on the state space

{0, 1, 2, . . .}. Then {0 } will be said to be a filtering of {I } if

is a discrete random variable with

fi,j ,k = 0, 1, 2, . . .

P(<V = J^r = *> = P(0 =j/l =i,0 =k) (3.10)
U £- y *J y • • •

Thus , given I , is not dependent upon the output, , of the previous

stage. For notation convenience let

i,i - p(0
t

J ' h -

«

It may be noted here that is not independent of _ , simply that given

the value of I no further information is given by the value of

It will also be necessary in paragraph 4.4.3 to assume
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fi>j»k = 0,1,2,. ..

P(0
t

- j/I-i) = PCO^/Vi,!^)
[

(3.11)

This last requirement will be of some significance in deterministic

filtering. This type of filtering is one which, it is felt, may have

wide application. There follow a few examples.

(i) If we consider, as input, the arrival process of a queue, then

losses and defection (refusing to join the queue) (Cohen, 1957, et. al.)

can be handled by a filtering of this class, to produce as output the

resultant stochastic process of components that actually do join the

queue. This type of situation could arise, for example, when fresh com-

modities are subject to spoiling losses before sale.

(ii) If we consider as input the stochastic process describing the

length of a queue then reneging (impatiently leaving) (Palm, 1937, et. al.)

as well as some service processes, both independent and not, could be

described in terms of a filtering of this class.

(iii) Tandem service procedures arise very frequently (Burke, 1956,

et. al.) for example in traffic problems, sequential processing situations

and in multiple stage storage procedures. In such situations the input to

a stage is the output from the previous stage and this type of process

could also be described in terms of a filtering of the type used here,

provided that requirement (3.11) was not necessary in the intended ap-

plication.

Much work has been done for situations like these. The reader is

referred to Saaty (1961) for bibliography of related work.

4.1.2 Notation

Define the following matrices for t = 1, 2, . . .:



31

The probability distribution of the input I as the row:

D
t

= {d
i

= p(I
t

= i)} i =
°' 1

'
2

' •
•

The probability distribution of the output as the row:

A
t

= {aj}= P(0
t

= i)} i = 0, 1, 2, . . .

The response matrix of the filtering:

fi = 0, 1, 2,

Q
t = {q

t
jj=P(0t =

j
,

It
= i)}

,j=0sl525

Then it is easily verified that A - D Q (A. 2)

The general element of D Q is given by:

00 00

£
d
k qk i

=
I P(I

t
= k) P(0

t
" i / I

t " W
k=0 * k » 1 k=0

t t t

= P(0
t

= i)

t= a.
l

For Markov chains the notation of paragraph 3.1.2 will be used.

4.1.3 A hypothetical example

Consider a situation where a service is offered repeatedly at discrete

times. An example might be a cinema with showings at times x ;

t = 1, 2, . . . . Assume that the probability distribution, R^ , of the

number of persons aware of the service at time t is obtainable. If, for

example, the persons became aware independently at a constant rate, v,

then R in (3.9) of the example in paragraph 3.5.3 would supply the

required distribution. Then one may regard the persons who, being aware

of the service at time t , do not make use of it at time x as defectors.
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The defection probability is frequently taken as a function of time, in

this case perhaps of the number of showings, t. Net uncommonly (Riordan,

1953) the defection probability is taken to be negative exponential with

the rate At . That is:

A(t ,-t.) -A(t -t.) rX >_MT t-rT
i

; _AUt~V /
P (defection at time x ) = e -e i

W
t

>_

Then for a given time the defection probability is constant and can be

used to obtain the probability of i-j defectors out of i persons by

the binomial probability law. These probabilities {q ; i,j = 0,1,2,...

and t = 1,2,...} used as elements of the matrix Q form a response matrix

for the filtering applied by the defection process. Then R Q is the

probability distribution of the number of persons making use of the

service at time t . If one defined a column vector, F, such that it had

its first M elements unity and the rest zero where M is the number of

customers required for a success then P(t performance a success)=L-R Q F

A. 2 Deterministic filtering of Markov chains

4.2.1 Introduction

Let {I
1

, I_, ...} be a Markov chain as in paragraph 3.1.2. Then

define a deterministic filtering as one such that, for all I 0,1,2,...

and t = 1,2,...

P(0 = j / I = i) = 1 for some non-negative

integer j

= otherwise

In this case then the output process is simply a 'many to one' or a 'one to

one' mapping of the state space {0, 1, 2, . . .} onto itself. Thus the
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response matrix Q has, in each row, all zeros except for one unit element.

Gani [1965] applied this particular case to his flooding model but

there is some doubt as to the validity of one of his results (paragraph

4.2.2).

It is obvious here that the requirement (3.11) is fulfilled by a

filtering of this class.

4.2.2. A disagreement with Gani

Further to the notation of paragraph 4.1.2 let R be the probability

distribution, expressed as a row vector, of the' partial sums of outputs:

m
p = / 0. r = 1, 2, . . .

m
t=l

t

Let T be the matrix of transition probabilities p. . of the Markov chain
n X »J

{Ir V

'i,j
p. ,

= P(I_ = j / !„_•, = i)

i,j = 0,1,2,

n = 2,3, . . .

Then Gani states that

R
m * D

1
Q
1 * T2^2 * • ' * * V*a

(4 - 3)

A simple example follows which will show that this interpretation of

Gani's result is not acceptable. Under the assumption that {0^,0^,...}

forms a Markov chain it has been found possible to obtain the transition

matrices of this chain in terms of T and Q and thus, by (3.1), (3.2) or
n n

(3.6) obtain an expression for R . To date however the conditions under

which {0 , , . . .} does form a Markov chain have not been investigated.



Example 4.1

Take D
±

= [d
Q

, d
][

, d
£

]

and

3

T = T =l
l 2

p0,0 P0,l P0,2

'l,0
Pl,l pl,2

5

2,0 P 2,l P2,2

with

Q
1

= Q
2

1

1

1

Applying (4.3) we have

p0,0 P0,l+P0,2 °!

T
2
Q
2

= pl,0 Pl,l+Pl,2 °

P2,0 P2,l+P2,2 °

and

D
1
Q
1

= [d
0'

d
l
+d

2' ° ]

thus

V °1Q 1 * T
2
Q
2

[d , d1+d 2
, 0] P0,0 P0,l+P0,2 °

P0,l P0,l+Pl,2

p 2,0
P2,l

+p
2,2

c

= [V0 l
0'd (p0,rt l 2

,VW' (W (hA.2> »^° ]

which disagrees with the anticipated result, namely:

V tVo,0' d
O
(pO,l+P0,2

)
-fd

l
Pl,0

+d
2
P 2,0'

d
l
(pl,l+Pl,2

)+d
2
(p 2,l+P 2,2

) ^'° ]

(4.
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The latter form is intuitively valid, for example take the second element

P(S„ = 1). Observing Q we have:

P(S
2

= 1) = ?(o
1
+ o

2
= 1)

= PCC^ = 0, o
2

= 1) + P(0
1

- 1, o
2
- 0)

= P(I = 0, I
2

= 1 or 2) + P(I
1

= 1 or 2, I
2

= 0)

" (d P01
+ d p02

) + (d
l
P 10

+ d
2
P 20

)

as in (4.4)

.

4.3 Filtering the sums of states of a Markov chain

4.3.1 Introduction

If {I.., I-, . . .} is a Markov chain and S is the partial sum of the

first r states of this chain as in paragraph 3.1.2, then this section

presents some consequences of filtering (in the sense of paragraph 4.1.1)

the stochastic process {S.. , S~, . . . } as input.

A solution for the probability distribution of the output of the

filter, generalized slightly from a result from Gani, will be given and

proved.

It is not necessary in this section of the work to assume that the

filtering is of a deterministic nature. The only limitations are those

mentioned in definition III, namely that both the input and output processes

be defined on the state space {0, 1, 2, . . .} and that the output given

the input does not depend on the previous output.

4.3.2 Notation

Let {I', I', . . .} be a Markov chain with state space {0,1,2,. .. ,s}

such a.s that defined in paragraph 3.1.2, with the initial distribution
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R. = {p7; and with the transition matrices P
fc

= {r>
±

.}. Define

j _ o + I'; r = 1, 2, . . .. I is now the filtered sum of the states
r r-1 r r

1, 2, . . . , r - 1 plus state r. That is, a filtering is applied to every

sum of states (The lack of filtering is considered as a special case of

filtering). As before R = {p^} is the probability distribution of 1^.

Now let the response matrix of the r filtering be Q = {q .}

where

fi - 0, 1, 2, . . . , s

q
r

. = P(0 = j / . + I' = iHi,j r J r-1 r
j = 0, 1, 2, . . . , s

r 1, 2, ...

in keeping with the definition of filtering. Here Qr
is [rs+1] x [rs+1]

.

Now let

u
r

. ,. N
= P(0 = j / 0^ = i, I' = k) k = 0, 1, 2, . . . ,

s
i,j,(k) r r-1

- P(0
r

= j /
r_ 1

= i,
r_ 1

+ i; = i + k)

= P(o
r

= j / o
r_ 1

= i, i
r

= i + k)

so that by the definition of the filtering

= P(0
r

= j / I
r

= i + k)

r
=
q±+k,j
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Then define the [(r-l)-s+l] x [rs+1] matrix IT = {U
i,3,(k) } ' This matrix

is then the submatrix of Q :

r

^r
=

^,0

li,o

#

*k,0

qrs,0

q0,l q0,2

qk,l qk,2

[ (r-l)s+k,0

• •

A0,rs

%1 ql,2 ' * ' <l,rs

• • %rs

*(r-l)s+k,rs

lrs,rs

1"

Now define a matrix A in terms of the UI and the transition probabilities:

P . . = p(i'
i,3 r J ' K-i - i)

:

-
= o, 1. 2, • • • 5 S

j
= 0, 1, 2, • • • » s

r = 2, . . a

<i =

as follows; if r > 2:
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r+] r 'H-l r >*-1-''
sc

po,o
L
'o

po,i
u
o • • •

P0,s
u
o

r+1 r r-i
TT
r r+1 T7r

p 1 n U p, , U. . . . p U.
1,0 1 1,1 1 l,s 1

A
r

=

• • •

• • •

• • •

r+1
TT
r r+1

T7
r r+1

TTrp „ U p . U . . . p u
s ,U s s,l s s,s s

here A is a (s+1) [ (r-l)s+l] x (s+1) [rs+1] matrix which will be us<sd to

perform a 'shifting-type' of operation.

2 1
If r = 1 then the (s+1) x (s+1) matrix A is formed:

A =
LA,-. A- • • • A J

1 s

where

2 1 2 1 2 1
P0,r

u
0,0,(0) P0,r

U
0,l,(0) * * *

P0,r
U
0,s,(0)

2 1 2 1 2 1
p l,r

u
0,0,(l) pl,r

u
0,l,(l) ' * '

Pl,r
U
0,s,(l)

A
1 -
r

• • •

• • •

• • •

2 1 2 1 2 1
ps,r

U
0,0,(s) Ps,r

U
0,l,(s) * * *

ps,r
U
C,s,(s)

The elements of this matrix may have a direct probabilistic interpretation,

namely the i,j element is:

P(IJ - r / I* - i) P(0
1

- j / V
±

- i)

= ?{I'
2

= r / i: = i) P(0
1

- j / I'
±

- i, V
2
- r)

if condition (3.11) is met
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= P(l» - r, O
x
- j / I[ - 1) (4. 5)

which will make available probabilities like P(0. + I- = j / I- i)

.

The elements of A in general are not as clear.

One other matrix needs to be defined as a ' collector-of-terms '

,

namely

:

»
r

o

u
r

= •

•

u
r

s

which is a (s+1) [ (r-l)s+l] x [rs+1] matrix.

4.3.3 A known result

It was stated by Gani that if Q is defined as in paragraph 4.3.2,

then, in the notation of the previous paragraph:

R = D. A
1
A
2

. . . A
m_1

if
1

(4
m 1

6)

however, this result will hold for filtering of the type defined in

paragraph 4.1.1, provided that condition (3.11) is net.

Proof of (4.6)

:

The matrices used have definitions which differ in the three cases:

m = 1, 2, > 3 so each will be considered separately.

(i) If m = 1:

U, is a 1 x (s+1) matrix with elements
k

rj = 0, 1, 2, . . .

u
n a m = p(0

i
= 3 / i{ = k)

°'^' (k) 1 1
4t - 0, 1, 2, . . .
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so that V U
1

is 1 x (s+1) by (s+1) x (s+1) thus 1 x (s+1) matrix with

elements

:

I P(0 = j / I' = k) P(I' = k) = P(0
1

= j)

k=0

thus V U
1

= R
±

(ii) If o - 2:

By the definitions and (4.11) D A is a 1 x (s+1) matrix with

elements

:

s rj
= 0, 1, 2,... D

I P(I' = k) P(i: = r, , - j / I' = k)
\

k=0
1 2 1 X

lr = 0, 1, 2,... D

= P(IJ = r,
1

= j)

so that D, A
1
U
2

is a 1 x (2s+l) matrix with elements:
1 r r

I P(I1 = r, = k) P(0
2

= j /
1

= k, V
2

= r)

k=0

= P(0
2

= j, I
2

= r)

Consequently

h A
1

U
2

Di [aJ A^

I Di ^ U
2

n 1 r r
r=0

$
V

1 2
Thus D A U is a 1 x (2s+l) matrix with elements:
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s

J
P(0

2
- j, Tj-r) - P(IJ - r)

r=0

which is an agreement with (4.6).

(iii) If m >_ 3:

For simplicity partition D.. A ... A = Uq ^ ... ?
s

J

in accordance with the partitioning of A . Then ?r
is a 1 x [ns+1]

vector. Consider then £ = D- A r =
0,-> 2, . . . ,

s

= { I P(I« = k) P(i: - r, = j / I' = k)}

k=0
X 2 1 1

= {P(I» = r,
1

= j)} (a)

which is a 1 x (s+1) vector. By mathematical induction with (a) as starting

point, it will be shown that:

c£ = {Pdi+j. = k ' °
r

=
J )} k = 0, 1, 2, . . . ,

s

r+1
Assume then (b) to hold for some fixed r, and consider £ • From (b) we

1 r , r+1 . ,

have the subvectors of D. A . . . A , consequently, since t,^ is a sub-

1 r r+1
vector of (D., A . . . A )A we observe that:

C1
= \ I P

r+
v £^ (C)

^k L
n n,k n n

n=u

where

^ U
n

+1
" { ]

P(I
r+l

= n
' °r = j) P(

°r+1
= 4 7

°r = *> K+l ' n) }

-tPd^-k, o^-i)}
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which is a 1 x [(r+l)s+l] vector. Note that:

"(T 1 = '- = i / I ' = rv>

p^t' i, / t« n n
Ul+2 " r+1

x 7
~r+l

n;

P(I
l+2 " k

'
X
r+1

= n
' °r+l

= 1} =

nO
r+1

= i / r
+1

= n)

HV
+2

= k, 0^ i / r +1
- n)

p(o
r+1

= i / r+1
= n, r

+2
= k)

P(I
r+l

= n
'

X
r+2

= k)—*±± 22 = P(I t = k / r = n)

P(i;
+1

= n)
r+2 r+1

So that;

C < C1
- {p ^;+2 = k

'
x
;+i

= n) p(i
;+i - n

>
°
r+i

- i)}

- (p(i;
+2

= k / r
+1

- n, o
r+1

= i) pci;^ = n, o
r+1

= i»

= {Hi;+2 = k, I^-n,
r+1

= i)} (d)

r+1
Thus by (c) £. = {P(I ,,, = k, , . = i) } which completes the proof of (b)

k r+Z r+1

That being so we may proceed to evaluate:
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1
A
m-1 _Jti

r
m-1 r

111-1
!!]

111

p. A ... A IT = Uq • • ' ^
s

J

s im-1

k=o
k k

where

C1 ^ * { ^ ?(I
m " k

' °m-l " j) P(
°m - i/0

m-l
=
*'K

= ^
k=0

= {P(I' = k, = i)}
m m

k
1

. /.A111
- 1

which completes the proof of (4.6)

so that V A
1

.
."

. A™
1
if has elements ?(0

m
= i) i = 0, 1, . . . ,

ms

4.3.4 Application to flooding models

Continuing the development of Gani's flooding model (paragraphs 1.4

and 3.5.4); the case where the dams on a river, whose tributaries supply

Markovian inputs, are placed on the main stream after each tributary

junction, will be considered.

Suppose that the inputs {1^ Ij, . . .}, where I
n

is the input

supplied by the n
th

tributary, form a Markov chain as in paragraph 3.5.4.

It is necessary, in order to apply (4.6), to add the restriction of an

upper bound, s, on the values of the inputs. That is x
n £ s for a11

n 1, 2, . . .. Suppose further that after each tributary junction there

th
is a dam on the main stream which, for the n

u
junction, has the response

matrix Q . This Q need not be of a deterministic nature, however re-
n n

quirement (3.11) is met by a deterministic filtering.

From each Q one may obtain the matrices U of paragraph 4.3.2, and
n

then, given the transition matrices of the Markov chain {1^ I
? , . • • .
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obtain the A matrices. Then the probability distribution of the flow in

th
the main stream between the m filtering, is given by (4.6).

4.3.5 Application to queues

Consider a queue whose length, , is observed at the discrete times

T I t = 0, 1, 2, .• . .. Let the arrivals to this queue be Markovian, that

is if I is the number of arrivals during the t time interval [t , t ]

then {I,> I ?J • • . } is a Markov chain. Further, assume that the state

space of this chain is bounded. That is I <_ s , t = 1, 2, . . .

.

Now {0 ; t = 1, 2, . . . } is the stochastic process where

= ^
t_i~

L
t

- Here L is the number of persons who leave the queue during

the t time interval. This quantity L will then be taken to include

persons who leave after service as well as persons who defect, for whatever

reason. In order to regard this leaving process as a filtering on the

process {0 } it will be necessary to be able to obtain the probabilities:

U
i,jf (k)

=P(
°t

=
J /0

t-l
=i

>
rt- k)

t = 1, 2, . • •

i = 0, 1, . • . (t-l)s

j - 0, 1, . • . ts

1 k = 0, 1, . , . s

Where in this situation these are the probabilities that, given a previous

queue length of i and an arrival of k, (i+k-j) persons leave. Consequently

the leaving process may be dependent upon the queue length, so that situa-

tions where balking, defection and service time are influenced by queue

length or recent arrivals can be handled. This type of situation has

attracted the attention of many workers in the field of queue theory.
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the most important are Haight (1957) and Finch (1959).

In the above situation it is now possible to determine the probability

distribution, R , of the queue length, , at the end of time interval m bym ^ m J

the use of (4.6). At this time no attempt has been made to obtain steady

th

state probabilities in terms of filtering models.

A simplified case is the following. Let T be the time when the t

person leaves after service. Assume no defection and exponential service

times with parameter y. Assume also independent Poisson arrivals with

rate A. These assumptions are common and lead to the simplest form of

queue namely the M/M/l queue (Parzen [1962]). In this case;

U
i,3,(k)

= ? (°
t
=J /0

t_x
-i, 1,-k)

= 1 if i+k = j+1 or if i = j = k = C

otherwise

Also P(I
e
- i , Vi . . pj , qp"

ft = 1, 2,

i = 0, 1, 2,...,(t-l)s

j = 0, 1, 2, . .
.
,ts

& \J y -U y L- j • • j S

= 1 2

with p =
UX

00

because p. . = P(I =j)=/ye e"
At

(At) j

• —, ct

- [t+v • (tttJ
"

^y+A y+A ;
qp~

In order to place a bound on the number of arrivals during any one service

it will be necessary to assume that, for all j _> s, qp
J is small enough to

be disregarded.
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APPENDIX I

A. Some Shift Multiplication Algebra

I. Proper ties of Conover's shift operator

(a) It is transitive, but not in general associative or

commutative

.

A * (B+C) = (A*B) + (A*C) (i)

(B+C) * A = (B*A) + (C*A) (ii)

(b) (AB) * C = A * (BC)

however

(A*B)C / A * (BC)

(iii)

(c) For suitably dimensioned identity matrices I- and I_

I. * A - A * I
2

(iv)

where if A is square I, = I_.

also Q QA = I * A (v)

(d) If A is a row vector and E a unit column

[(A*I) * B] E = (I*B')A' (vi)

which allows for a way of dropping E as in (3.1) for example.

II. Properties of Gani's shift operator

(a) Neither transitive, associative nor commutative

(b) A -0 B = A(I-03) (vii)

= AB where ¥ = I6B

.

(viii)

(c) If A is a row vector then

A-0B = E ' -e (B '-9- A ' ) (ix)

where E is a unit column vector of suitable length.

III. Some relations between the shift operators

(a) A * B = (I«B'A T )' (x)

(b) A -& B = A(I*B')' (xi)
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(c) If A is a row vector then

(A9B)' = [(A*I) * B]E (xii)

B. Proofs of equations (i) through (xii)

Use the notation A = {a. , J for a natrix A with elements a. .,
i,j i,j

i = 1, 2, . . . n and j = 1, 2, . . . m. Let E be a unit column

vector of suitable length and let 1=8. .be the identity matrix

with elements defined by Kroneker's delta:

5. .
= 1 if i =

j

= otherwise

The equations are not proved in numerical sequence.

(i) and (ii)

:

These have been proved by Conover [1965].

(iii) : Proof of

(AB) * C = A * (BC)

This equation follows from the fact that the shifting of the

columns in Conover' s shift operation takes place after the

formation of a common matrix product so that both (AB) * C

and A * (BC) are shiftings of the product ABC.

Dimensions:

If A is (p+1) x (q+1), 3 is (q+1) x (r+1) with C then

(p+1) x (r+1) then both (AB) * C and A * (BC) are (p+s+1) x (s+1)

.

(iv) : This follows directly from (iii)

.

(v) : Proof that

Q > QA » I * A

Observe that if A is (p+1) x (q+1) and I is (p+1) x (p+1)

then I * A is a (p+q+1) x (q+1) matrix containing columns of
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A shifted sequentially downward. The same result could be

obtained by multiplying A on the left by a (p+q+1) x (p+1)

matrix Q whose elements are solution to the consistent set of

(2q+l)(q+l) equations in as many unknowns, represented by:

QA = I * A

(vii) and (viii)

:

These follow directly from the definition of Gani's shift

operator,

(x) : Proof that

A * B = (I « B'A')'

This result follows from a consideration of their general

elements, using paragraph 2.2.4. It is also easy to see

intuitively. Since B'A' = (AB)
'

, the right hand side is simply

the transpose of (AB) ' after its rows have been shifted. This

Is equivalent to shifting its columns, which is the left hand

side.

Dimensions: If A is (p+1) x (q+1) and B is (q+1) x (r+1) then

AB is (p+1) x (r+1) so that I -9- B'A 1 is (r+1) x (r+p+1) which

when transposed is the dimension of A * B.

(xi) : Proof that

A « B = A(I * B')' :

A & B = A(I -9- B) by (vii)

but I * B*= (I •& B)' by (x)

so that A 6- B = A(I * B')'

(xii) : Proof that

(A & B) ' = [(A * I) * B]E if A is a 1 x (q+1) row and E is a

(r+1) x 1 column where B is (q+1) x (r+1)

:
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Here A * I = {a. 6. .} by (2.3)

so that (A * I) * B = {a. 6. .}* {b. .}
i i.J i,J

{]>i-j WVj } by(2 ' 3)

{a. . b. . .}
i-j i-J.J

thus [(A * I) * B]E - {T a. . b. .}L i-j x-j,j

while by (2.4), (A & B) ' is the same.

Dimensions: A * I is (q+1) x (q+1) so that

(A * I) * B is (q+r+1) x (r+1) . Thus [(A * I) * B]E is

(q+r+1) x I as is (A -6- B) '

(vi) : This follows directly from (xii) and (xi)

(ix) : Proof of

A -9- B = E' 0-(B
?

-0- A') where A is a row vector and E a unit

column matrix.

Note that (B* A')' = (1 * A)B by (xi) -

so that (A * I ) * B = I(A * I-) * B

= I * (A * I )B by (iv)

= I * (I * A)B by (iv)

- I * (B 1
•& A') 1

Thus A & B = E' ([A * I] * B) ' by (vi)

= E' (I * [B 1 •& A'])'

= E' -&(B' A') by (xi)
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APPENDIX II

Shift Operators And Convolutions

A general discussion

Convolutions are defined in several different ways in the literature.

The most simple form is that used by Feller in volume I of his book

[1950]. To avoid confusion, this definition is reproduced here.

r \ —j fv \ V = fl 1 2 . . be any two number
Definition: Let {a

k
> and {b^.}, k - U, J., *» . • • 3

sequences (not necessarily probability distributions)
.

The new

sequence { Cj.} r = 0, 1, 2, . . .
defined by

c
r

= a b
r
+ a

l Vl +
• ' '

+ Vl b
l
+ a

r
b (±) '

is called the convolution of {a
k

> and {b
k

>

.

Thus c =
I a

k
b
r_k

which bears resemblance to the general term of

k=0

a shift product. If we let the sequences {a^ , i\} and {c^ form

the elements of the row vectors A, B, and C respectively, then we have

m

the following minor theorems.

Theorem 1 . If A and B are row vectors whose convolution is C then

C = A 6 EB
(l1)

where E is a unit column vector.

Proof: Since E is a unit column vector, the product EB produces a

matrix with the row vector B repeated as each row of EB. So that if

x is the general element of EB then:
i.j

ri = 0, 1, 2, . . .

x. ,
- b. \1 »J J lj = 0, 1, 2, . . .

Thus c , the general element of A -O EB is, by (2.6):
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:
i

=
J a

k
x
k i-k j = 0, 1, 2, . . .

J k=0
k ' J

= 1 *k Vk
k=0

K J K

So that the vector {C.} is the convolution of A and B.

The result (ii) has equivalent forms in terms of Conover's

operator:

Theorem 2. If A and B are row vectors whose convolution is C then

C = E'[A * I) * EB]' (iii)

and C = A(I * B'E')

'

(iv)

Proof: These results follow from (ii) directly by using equations

(xii) and (vi) of appendix I.

Since the theory of convolutions is fairly well developed, the

relationships expressed above could be of value. One significant

difference between shift operators and convolutions is worthy of

comment. The convolution operation is associative (Feller [1950])

while, as has been mentioned, neither Gani's nor Conover's shift

operator is. This leads to the conclusion that:

Theorem 3. If A, B, and C are row vectors then

A # E(B -0 EC) = (A EB)«EC = A £(EB -0 EC) (v)

Proof: It has been shown that

B -0 EC = { ) b,C. , }

k=0
k J~k

j j-n
so that A 0- E(B -0 EC) = { T a ^ b, C , }

nt
n

k=0
k J"n"k

- t I I a
n
b

fc
C } (Vi )

n=0 k=0
n k J n k
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A # EB - { > a. b . , }

k=0
k J_k

so that (A EB)-e EC = { £ [ a^b c. } (vii)

n=0 k=o
k n"k J n

3 J-n
Similarly A £(EB 6- EC) - { \ I a b c, .} (viii)

n=0 k=0
n k J n K

Obviously (viii) is the same as (vi) . That (vii) is an equivalent

form follows from a consideration of the terms involved. Each term

of (vi) has a similar term in the expansion of (vii)

.

B. Relevance to sums as Markov chains

In paragraph 3.5 the sum of independent variables was considered as

a Markov chain. A statement was left unproved, namely:

P
k

= (I * I
k
»)« (ix)

where T, is the transition matrix of a Markov chain in which all
k

states are independent and P is the transition matrix of the cor-

responding sum of states Markov chain. (See 3.5.1)

Proof of (ix) : If all the states of the Markov chain {I-, I., . . .}

are independent with:

Pi
= P(I

n
= i) = P(I

n
= i / I

n_ 1
= j) i = 0, 1, 2, . . .

k
then clearly the elements , t . , of T, are

1 1 J k

k ri = 0, 1, 2, . . .

Cl >j" P
J li-0 1 2J U >-L » i

> • • •

so that if R
n

= {p.} then
1 l

T
k

- ER
X

(x)



53

where E is a unit column matrix.

From (3.1) R* = [R * I*T ]E

where R. is the probability distribution of

i

S =
I I ; i = 1, 2, . . .

1
k=0

R

This can be generalized to:

V =
[Vi * x * V E

= (I * T
k

T

)R^._
1

by (vi) of appendix I

thusR
k

=R
k-i

(I *
V>'

so that by analogy to the Markov chain of sums of states

for which R
k
=R

k_ 1
P
k

it follows that P = (I * T ')' is the transition matrix her*
tv K.

This completes the proof of (ix)

.

It is of value to note that, by (3.2)

R = R, T. « T. , . . -9- Tm i 2 3 m

where operation from the right is understood. However, since (x)

:

R
m

= R
±

•& E R
1

. . . •& E R
±

= R
1
(^ER

1
)

m_1

It follows from (v) that in this case the direction of operation is

not significant.
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APPENDIX III

A. Proof of alternative (3.6)

It has been mentioned in the body of this work that, at any stage the

lack of a filtering can be represented by a response matrix which is

simply the identity matrix. That is a filtering may be applied which

has as the elements of its response matrix:

qi,j
= P(

°t
= J / x

t
= i)

fi
= 0, 1, 2, . . .

- 1 if i - j - j - 0, 1, 2, . . .

= otherwise t = 1, 2, . . .

Thus the response probability is certain if the output is equal to

the input and zero otherwise. By using the concepts of paragraph

4.3 it is possible to consider the sum of states of a Markov chain

as the stochastic process resulting from the filtered sums of states

of a Markov chain, with the identity as response matrix. So that

equation (4.6) results in (3.6) directly.

B « Proof of Conover's form for the case of an infinite state space

In paragraph 3.2.2 it was stated that

R' = [R * I * P * p * . . . * p ]Emi 2 3 m

where, if we have an infinite state space, all of these matrices

are infinite. R
±

; i = 1, 2, ... is the probability distribution

of the partial sum of the first i states, P. is the transition matrix

from the (i-1) ' to the i state and I is an identity matrix of

infinite dimensions. E is an infinite unit column. The elements

of these matrices will be denoted as
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(1)(i) By (2.9) R * I = {6. . Y p,^ 6 }
1 i»J k=

k k .J

= (6. .
p<»}

where 6 . is Kroneker's delta, defined earlier.
1

»

J

oo

(ii) Then R * I * P - { J 5 pg P^ 1 ** < 2 ' 9 )

= {PClj = i-j) p(i
2

= j / i
i

= i_j)}

= {P(I
2

- j, I
x

- i-j)} = P(s
2

- i, I
2

- j)} (a)

r

If 8 - J Ij i = 1, 2, . . .

i=l
1

(iii) Now by using (a) as a starting point it will be shown, by

mathematical induction, that

let
-

R * I * P
2

* ... * P
r

= {P(S
r
=i,l

r
=j)} = {q

*
} (b )

Assume (b) to be true for some r. Then by (2.8)

CKj *l!*P
2

* ... *P
r
) *P

r+1
= {q^

1
}

00

= {YU J qi-J.kO

where y^ is, as before, a function which is zero only when j

exceeds i and is otherwise unity. So now:
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{<£*}> =
{ ^, i I P(S =i-j, I -k) P(I =j/l =k)}

i.J i>J v-n r r r+1 r
k=0

= (y. . I P(S ^i-j-k, I =k) P(I .,-j/I =k,S =i-j-k)}
'i,j .

L „ r-1 J ' r r+1 J r ' r-1 J
' J k=0

= {y. I P(I . ,=j, I =k, S = i-j-k)}
i»j

kZ
r+1 r r_1

- {P(s
r+1

- i, i
r+1

= j)}

So that (b) holds true for all r = 1, 2,

(iv) Thus [R * I * P * ... * P ]E = { I
q* }

r
k=0

1,K

- { I P(S = I, I = k)}
k=0

r r

= {P(S
r

= i)}

C. Proof of Ganl's form for the case of an infinite state space

If the reader will compare the general element of Gani's shift product

for the finite case (2.4) and for the infinite case (2.5 and 2.6)

he will observe that the difference lies only in that the summation

• for the infinite case extends to j whereas for the finite case it

extends to q (where the common dimension of the operand matrices is

q+D.

Reading through the proof given for the finite case in paragraph

3.2.4, it will be clear that, if the summations used extend to j

rather than to s, the entire set of non-zero probabilities is covered

for the infinite case so that (3.2) holds equally for the unbounded

state space.
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ABSTRACT

In the investigation of the distribution of the partial sums of states,

m
S = £ I.,m=l, 2, ...,of the non-homogeneous finite state Markov

i=0

chain {I, , I , . . .}, Conover developed a matrix operation which he called

'shift multiplication'. It was in terms of this operator that he was able

to express the probability distribution of S . Later Gani used a similar

operator, developed from Conover 's operator, to perform the same function.

The two operators were, however, quite different in their algebraic prop-

erties.

In the first part of this thesis, these two operators were defined and

the general elements of their products obtained. Since neither Conover nor

Gani had occasion to generalize their operations to include infinite

matrices, this was done. Some of their more obvious algebraic properties

were given and their relation to the convolution operator from probability

theory was discussed.

Then the probability distribution of the partial sums of states of a

Markov chain was presented in the two forms obtained by Conover and Gani.

Gani's form was proved and an alternative method for obtaining this distri-

bution without recourse to shift operators was presented and proved. The

case where the state space of the Markov chain is not bounded, was given

and proved. Some consequences of the case where the sums of states of a

stochastic process form a Markov chain, were mentioned. A Poisson counting

process was used to illustrate this.

Gani used his operator to obtain the probability distribution of the

flow magnitude in the main stream of a river system with tributaries

supplying Markovian inputs. Using a dam model slightly modified from



Moran [1954] he obtained this distribution for two dam systems.

In the thesis, generalizing from Gani's results, a "black-box" type

of filtering was defined in which the output is a random variable whose

distribution is determined by the realization of the input variable. The

probability distribution of this output was discussed for the case where

the states of a Markov chain are filtered for the case where the partial

sums of states of a Markov chain are filtered.

These results were applied to Gani's flooding model and one of his

conclusions confirmed. The other, concerning a solution for the case

where dams are placed on the tributaries, as interpreted in this thesis,

was shown to be in error.

Some brief examples of applications of these results to other situations

were given.
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