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Chapter I

INTRODUCTION

It is well known that the physical and chemical properties of molecules
and crystals are determined by their "valence" electrons. Valence electrons
are loosely bound to the nuclei and move freely throughout the crystal.
When a valence electron is near the nucleus, it is strongly affected by
the nucleus and the "core" electrons which are more tightly bound to the
nucleus.

Near the nuclei valence eigenfunctions are 1ike atomic eigenfunctions.
_ They have higher energy than the core electrons. Because valence eigen-
functions must be orthogonal to the core electron eigenfunctions they
display strong oscillations in the region near the nucleus. In the region
of a molecule or crystal between the cores, the valence electron will see
a smooth potential and the eigenfunction is sTowly varying. This suggested
to Kleinman and Phillips that valence eigenfunctions L be written as a

1inear combination of a smooth function ¢, and core electron eigenfunctions

. D)
C

¥, =9, ¥ zbcwc (I-1)
Eigenfunction-wV satisfies the Schrodinger equation
2
, aP
(gﬁ'+

where VC is electrostatic potential of the nuclei, the core electrons and

vc)wv S B¥ (1-2)
valence electrons of the crystal.
The valence electron wave function ¥y is orthogonal to the core elec-

tron wave functions. Using this property and Eq. (I-1) the Schrodinger



equation may be rewritten as an eigenvalue equation for by

2
P -
Gt Ve * 2 (EE¥esr e, = Eo

. (1-3)
(1

v
Phillips and Kleinman ) showed that the potential in the Eq. (I-3)
above is weak. It is an example of a pseudopotential called the Phillips-
Kleinman pseudopotential (PKP). The objective of any pseudopotential for-
mulation is to replace the original Schrédinger equation for an electron
in the crystal by an effective equation for the physically important valence
electron states which is easjer to solve than the original equation. Un-
fortunately in the case of PKP it is not possible to solve the equation
without effectively solving the original problem. However, the PKP has
served to motivate various approximate pseudopotential calculation schemes.

In one such approximate scheme the pseudopotential is expressed in a
parametric form and the free parameters are chosen to agree with experi-
mental observation. This approach is called the empirical pseudopotential
method.

Recently, attempts have been made to formulate pseudopotentials from

a stronger theoretical base(4’5’?)

than is possible with empirical pseudo-
potentials. The objective is to derive a pseudopotential directly from
atomic models without reference to experiment or more complete electron
energy band calculations. Such pseudopotentials are called ab initio
pseudopotentials (AIPs). The principal objective of this thesis is to
study AIPs both numerically and mathematically.

In Chapter II the properties-of many-electron atoms are reviewed, a
precise distinction is made between core electrons and valence electrons.

The nodal structure of the radial function of many-electron atoms is

emphasized. The concepts of empirical pseudopotential, AIPs and bare-ion



pseudopotential are introduced.

In Chapter III AIP models are discussed. First we discuss the pseudo-
potential for an atom. From it we introduce the concept of a bare-ion
pseudopotential which can be transferred to a crystal or a system with
many atoms. In order to define a pseudopotential for an atom, six condi-
tions on the pseudo wave functions are imposed. These conditions are
insufficient to completely define a pseudopotential and must be supple-
mented by a calculational procedure or recipe.

(4,7) for AIPs are introduced and

In Chapter IV two different recipes
discussed. It is shown that the six conditions are satisfied in both
recipes. The result of Kerker's recipe is reproduced quite well. A
comparison and discussion of these two recipes are made. The similarities
and differences. of these two recipes are discussed. Some properties of

pseudopotentials of these two recipes are studied.

The results of the thesis are summarized and discussed in Chapter V.



Chapter 11

ATOMS, SOLIDS, AND PSEUDOPOTENTIALS
The main objective of this work is to study pseudopotential models for
atoms and solids. However to bring such models into a proper historical
and conceptual perspective in this chapter, the independent particle model
(IPM) or shell model of atoms will be briefly reviewed. The review will
serve to introduce the language that is used to describe IPMs of atoms,
leading to the conceptual basis for pseudopotential model of solids and

atoms.

A.  Hydrogen-Like Atoms

In a model of hydrogen-like atoms, we consider an electron moving in
the field of a nucleus with positive charge Ze. The potential interaction

energy between the nucleus and the electron is Coulombic.
V= - 8 (I1-1)

The Hamiltonian for a hydrogen-like atom is

2 2

H=Do+ (- 28 (11-2)

The Schrédinger equation is

=Y - =)y = Ey (II-3)

The Eq. (II-3) has the meaning that the electron moves around the
nucleus under the Coulomb force with the nucleus fixed.

The solution of the Schrodinger equation is separable

o= R (r) T, (3,0) (11-4)



into a radial function times a spherical harmonic. Therefore the state of
electron is characterized by the quantum numbers n, &, m (a spin quantum
number m. may be included).

The principal quantum number, n, has non-zero integer values. It
specifies in which "energy shell" the electron is moving and it determines
the energy of the state

Z2
E =-= 13.6 eV (I1-5)
n 2
n
The angular momentum quantum number, %, can be any one of the values 0, 1,
Zasukd , (n-1) for a given n. It determines the angular momentum of the

electron which is equal to

L =4 vVa{etl) (I1-6)
The magnetic quantum number, m, gives the Z- component of angular momentum.
L =mh (I11-7)

m can take any of the following values -2, -(2-1),..., =1, 0, +1,..., (&-1),
2, for a given 2.

In classical physics the electron in a hydrogen-like atom moves in a
definite orbit. In quantum mechanics the precise position and momentum can
not be given simultaneously. Only the probability for finding an electron
at given position and with a given momentum is found. The electron position
probability density is defined by |W(?)|2. When |W(F)|2 is large the prob-
ability of finding the electron is large.

Now we will study the radial function in the eigenfunctions of hydrogen.
Examples of radial éigenfunctions are shown in Fig. II-1. A physically
meaningful radial solution of Eq. (I1I-3) is determined by boundary conditions

requiring regularity at small r and that it asymptotically approaches zero



Figure II-1: -

!2 for

The radial probability distribution ernz
several values of the quantum numbers, n, 2 of
the hydrogen atom. (From E.U. Condon and G. H.
Shortley, The Theory of Atomic Spectra, Cambridge

University Press, Cambridge, 1953).
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The. radial probability. distribution function |rRas|* for several values of the
quantum numbers n, ¢, (From E. U. Condon and G. H. Shortley, The Theory of Atomic Spectro,
TCambridge Unlversity Press, Cambridge. 1953.)



at large radial distance.

The number of nodes (zeros) of a radial function ara(r) is equal
to n-(2+1). When ¢ = n-1 there is no node. For a fixed & the energy
state corresponding to the smallest n = ¢ + 1 has the lowest energy.
Therefore for 2=0 (s states), the state ls has the lowest energy as com-
pared with 2s, 3s, .... states. For ¢ = 1 (p states), the energy state
2p has the lowest energy compared with 3p, 4dp, ... states.

The average value of r for an electron in a hydrogen-like atom is

calculated to be

2
a_n
> = 0 (145 (1 - MLy (11-8)
n

This estimates the spatial extent of an electron in a state n, 2. The
electron will mainly move in the region for which r is smaller than or equal
to <r>. The higher the energy, the larger the spatial extent of the elec-

tron will be.

B. Many Electron Atoms

In the hydrogen-like atom we have only one electron moving around the
nucleus. But for many other atoms more than one electron moves near the
nucleus. This is a many-body problem. Besides the interaction between the

nucleus and the electrons, there are interactions between the electrons.

In an IPM
p2 Zez T
B - Bt vy (1) + vy (M1 (F) = v () LTE=5)

approximates the dynamics of an electron.

The potential V,(r) is the Coulomb potential for all electrons

H
() = 5 dpr DGEDeT (11-10)



where n(r) is the electrostatic average electron probability density.

The last term ch(n(r)) is the exchange correlation potential. The
effect of this term is to remove an electron's interaction with itself and
crudely account for correlation effects. We require the potential to be
spherically symmetric and as in the hydrogen atom the solutions are sep-
arable into radial and angular factors as in Eq. (II-4). The quantum
numbers n, 2, m (ms} used to characterize states of the hydrogen atom
retain their meaning. However, in a single-electron approximation to
a many-electron atom the energy quantum number n, is not simply related
to the energy as it was in the hydrogen case. The connection between
quantum numbers and the nodal structure of radial eigenfunction is retained.

The eﬁergy of the electron is dependent upon n and ¢. The angular
factor Yzm{e’¢) of the wave function for an electron is still the same as
in hydrogen-like atoms, but the radial factor Rnﬁ(r) may be quite different
from that in a hydrogen-like atom.

But the nodal structure of the radial function is the same as in the
hydrogen-1ike atom. That is to say the radial function arR(r) has no
node when ¢ = n-1 and has [n-(2+1)] nodes as 2 # n-1. It implies that
with the same value of 7 the state corresponding ton = ¢ + 1 will have
the Towest energy and doesn't have nodes. Several examples about the
nodes in the radial functions with different n and 2 are shown in Fig.
(II-2). From the figure it is seen that the 3d (n=3, 2=2) radial function
has no node while the 3s(n=3, 2=0) radial function has 3-(0+1)=2 nodes.

The connection between the single-particle model and a many-electron
atom is made by associating electrons with single-particle states. The

Pauli exclusion principle requires that no more than one electron be



Figure 11-2:

The radial functions with different n and g

for a Si atom.
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associated with a particular single-particle state. The total number of
such states is equal to the number of electrons in the atom. A set of

such states is called an electron configuration. The configuration cor-
responding to the lowest single particle eigenvalue is called the ground
state configuration. The electron charge density in the single-particle

model is the sum over ground state electron probability densities.

n(r) =2 2 v ()]

A more accurate solution of the many-electron problem may be obtained by
superposing Slater determinants of single-particle configurations.

Configurations may be specified by listing the quantum numbers n and
¢ along with a superscript indicating the number of électrons occupying
the states. For example, the ground state of a silicon atom is

(15)2 (25)2 (2p)® (35)% (3p)?

and the ground state of Molybdenum is

(15)2 (25)2 (2r)® (35)2 (3r)® (3¢)10 (45)2 (4P)® (4d)> (53)}

C. Forming Solids From Atoms

When the atoms come together to form a crystal, the nuclei will be
regularly positioned in a crystal. The idea is schematically represented
in Fig. II-3. The electron states with lTower energy are bound tightly to
their own nuclei. The nuclear attraction dominates the dynamics of such
states and are expected to be very similar to the wave functions of an
isolated atom. Those electron states are called "core" states. The
spatial region in which the probability density of the core states is large
is called the core region. Electron states which have higher energy are

screened by the core electrons. So they are not so intensely attracted by



Figure II-3:

13

Calculated electron wave functions for the
levels of atomic sodium, plotted about two
nuclei separated by the nearest neighbor

distance in metallic sodium, 3.7 R.
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i
Na{ls?, 252 2p8% 35') P

2s

Calculated electron wave functions for the levels of atomic sodium, plotted about two nuclei
separated by the nearest-neighbor distance in metallic sodium, 3.7 A. The solid curves are my(r)
for the 1s, 2s, and 3s levels. The dashed curve is r times the radial wave function for the 2p levels.
Note how the 3s curves overlap extensively, the 2s and 2p curves overlap only a little, and the Is
curves have essentially no overlap. The curves are taken from calculations by D. R. Hartree and
W. Hartree, Proc. Roy. Soc. A193. 299 (1948). The scale on the r-axis is in angstroms.
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their own nuclei and can move far away. Consequently, in a crystal the
atomic wave function of such electronic states will overlap those of
neighboring nuclei. They are influenced as strongly by the neighboring
nuclei as by their own nuclei. Such electronic states can't be associated
with a definite atom. Rather, they belong to the whole crystal and wander
around throughout the whole crystal. These electronic states are called
valence states. Because the atomic valence wave functions from neighboring
sites overlap one another, the corresponding crystal eigenfunctions will

be changed. This explains why the valence electron states are so important
in a crystal and why the valence electronic states determine the physical

and chemical properties of a crystal.

D.  Pseudopotential Idea

The valence eigenfunctions outside the core region are expected to be
rather smooth. In the core region the valence eigenfunctions have strong
oscillations. This is mainly because the valence eigenfunctions have to
be orthogonal to the core electron eigenfunctions.

The idea of a pseudopotential (IPM) is to replace the effect of the
nuclei and core electrons by an effective potential for the valence elec-
trons. The valence pseudoeigenfunctions are ground state eigenfunctions
in the pseudopotential model. Explicit dependence on core states has been
removed. Pseudopotential modeis are motivated by the observation that the
core electrons play an indirect role in the physics and chemistry of solids.
Theoretical justification for pseudopotentials make their use plausible,
but there is no rigorous derivation of a pseudopotential model from first
principles.

The difficulty is that an analysis leading rigorously to a pseudo-

potential form can only be evaluated with the aid of a complete calculation
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of the all electron problem.

There is no unique way to construct pseudopotentiai models. An
example of a type of pseudopotential model is the empirical pseudopotential
model.

A simple functional form is taken for the pseudopotential, then re-
peated calculations of the energy bands are used to adjust parameters in
the pseudopotential until optimum agreement with experimental information
is obtained., Often the choices are guided by all-electron calculation
results. Thus, empirical pseudopotential models are essentially interpolation
schemes for energy bands.

Many attempts have been made to devise pseudopotential models more
strongly based on first-principle. The "ab initio" pseudopotential models
are an attempt in this direction. One constructs from an atomic IPM an
effective potential called a bare-ion potential which represents the
effects of core electrons and the nucleus. Certain of these "ab initio”
pseudopotentials will be studied and analyzed in detail in the next

section of this thesis.



Chapter III

AB INITIO PSEUDOPOTENTIAL MODELS

Ab initio pseudopotentials are one kind of pseudopotential. They are
a recent development in this subject.(7)(4)

The idea of an AIP is to replace the influence of nuclei and the core
electrons on the valence electrons by a potential based on first-principles
so that we can treat the valence states in a pseudopotential and need not
consider the core states.

We first construct the pseudopotential of an atom and then find a
bare-ion pseudopotential for the atom. If the approach is to be a useful
one, this bare-ion potential must be insensitive to changes in the valence
configuration and hence be transferable to a cystalline or molecular
environment.

First we state the conditions. imposed on pseudo eigenfunctions by
Hamann Schlliter and Chiang (HSC)}, but we note that these conditions are
not complete in that other conditions are imposed, but not explicitly
stated. The conditions on pseudowavefunctions do not imply a unique
pseudopotential. In general there will be an infinity of pseudopotentials
consistent with the conditions. To completely define a pseudopotential it
is also necessary to prescribe a calculational procedure or "recipe" which

Teads to pseudopatential. Two examples of recipes are given below.

A. Mathematical Reguirements

The conditions for pseudowavefunctions for an atom as given by HSC
are stated as conditions on radial functions for single-particle atomic

mode] .
17
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The dynamical equation in a single-eléctron model for an electron in
a many-electron atom is

2

i%a'+ Vo(r) + V() + v (P19 (F) = ews () (111-1)

where the Hamiltonian operator is spherically symmetric and the differential

equation is separable in spherical coordinates,

wi(F) = Ry, (r) ¥, (8,6) (111-2)

where me(e,¢) is a spherical harmonic. The related radial function

Ung{r) = arE(r) (I11-3)

satisfies the equation
2

[..
dr2 r

v 2L V(r) U (r) = e, U (r) (I11-4)

V(r) is the potential due to the nucleus, the core electrons and valence
electrons of the atom.

Upon replacing the potential V(r) with a pseudopotential the radial
equation for valence states becomes

2

d 2(g+1) PS PS _
[- 3 + V 2(r) U 7 (r) =
drz r2 2 2

PS |,PS
e U (r) (111-5)

The solution UES

(r) is the pseudo wave function. In general a pseudo-

potential of this type will depend on the angular momentum quantum number.
Before listing the HSC conditions a definition of a "cut-off"

radius e is made. Such a "cut-off" radius re is not always precisely

defined in the 1iterature.(7)(4) Ab initio pseduopotential models are

not sensitive to small changes in the cut-off radius. Here, the "cut-of f"

radius Py is defined to be the radial distance from the origin to the

last extremal point in the radial function Ui(r). This is shown schemat-

ically in Fig. (III-1).



Figure III-1:

The cut-off radius re

19
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The four HSC conditions are:(4)
(1) Real and pseudo valence eigenvalues are equal for a chosen
"prototype" atomic configuration,

€, = € (I1I-6)

(2) Real and pseudo radial functions are equal at and beyond the

core radius, e

r) = Ul(r‘) for r > re (I11-7)

(3) The Togarithmic derivatives of the real and pseudowavefunction

are equal for r?rc

dent (r) o dEnUZS(r)
BZ(T”) = din(ry - B (r) = KGR (I1I-8)

(4) The first-energy derivatives of the logarithmic derivatives are

equal for r?rc.

3 PS
S B;z,(‘”) = =55 8 (r), r= re (111-9)
L BER :

These conditions require that the pseudo radial functions and potential

be identical to the atomic radial functions and potential beyond r. Faor
F o, the pseudopotential will have the same scattering properties as the

atomic potential. One can show that condition (4) is equivalent to

r # r
JC Uﬁ(r} dr = )(’)C {u;’s(r)]2 dr (111-10)

Thus, the normalization condition is kept for Uis(r), because

r o]
QOIS SR OIRE RS R VARG
5 T

r 2 o

=j C|U£(r‘)|2 dr +j U (r)[2 dr =j U (r‘)l2 dr
% A )

o r

HSC refer to condition (4) as the "norm-conserving” property and distinguish
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pseudopotentials which satisfy this condition as "norm-conserving" pseudo-
potentials. Condition (4) is equivalent to requiring that the electric

charge inside r_ in the pseudo and real atom be the same.

c
However, HSC implicitly impose additional conditions through their
recipes. They require their pseudopotential to be continuous functions
which have a finite value at r = 0.
Since the pseudopotential is found by inverting the radial equation
(ITI-2) an additional condition implied is

(5) The second derivatives of Uis(r) and Ug(r) are equal to each

other at r > e

2 74
d=  PS | _d [
U™>{r) =S U (r) (111-11)
drz b ‘e dr2 . e
and the second derivatives of Uis(r) is a continuous function for r < L

PS
2

not only equal to each other at r = B They will be also very close to

The pseudo wavefunction U “(r) is matched with Ug(r) very well. They are

each other in a small segment near r = e This can be seen in Fig. III-1.

PS
i &

Since the pseudoradial function U “(r) is the lowest energy solution

of the radial equation which is physically meaningful, the pseudo radial

PS
4

written in the faorm

function U,~(r) is nodeless and regular. The radial function may be

P (r) = A W, (r) (111-12)
where WQPS(P) is regular. function which is positive definite, wlPS(r) > 0
rz 0.

Another?xwﬁition implicitly included by HSC is that the pseudopo-
tential be finite at r = 0. This requirement may be explicitly imposed

by adding the condition that
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(6) The logarithmic derivatives of the radial function evaluated
at r = 0 is 2+1,

dan(UPS (r))

.Q' = -
W“ |l,=0_ g+ 1 (111-13)

or in terms of Eq. (III-12} that

4 .ps 5 g | ;
g W, ()l =0 (111-14)

[t is convenient to defer an explicit proof of this condition until after

the calculation of a pseudopotential is discussed in the next subsection.

B. The Ab Initio Pseudopotential for an Atom

Once the pseudo wavefunction is determined then the pseudopotential
can be easily determined. We need only to substitute Uzs(r) into the

radial equation and solve it for the pseudopotential

2, PS
d=U " (r)
PS _ % 2(e+ 1)
Vi(r) = —— - (2t - ) (111-15)
2 drz rz %
PS
e (r)
For r > re since Uzs(r) = Ug(r) we have

But the pseudopotential and real potential are different for r < e

The analytic form of the pseudopotential can be more easily seen by

replacing Uzs(r) by r£+1-wis(r) as given in Eq. (III-12). Then in terms
of wis(r).
PS
2 2o+l dw (r% PS
PS(r) = (€ W) + HERL )+ o, (111-16)

k dr
In Eg. (III1-16) the centrifugal term in the potential has been eliminated.
PS
i b

It is also seen that if W ~(r) were to have a finite first derivative at
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r=0, the pseudopotential would be singular. Thus, & non-singular pseudo-
potential must satisfy condition (6) above.
In general the pseudopotentials for each angular momentum value will

(14)

be different. Some authors refer to such potentials as "non-local

2-dependent" potentials. The pseudopotential Hamiltonian may be written
WS = P Py | (I111-17)

where the g-dependence

VP3(r) =z VP3(r) o, (111-18)
g
is included through projection operators
P2 = 7 |aume<gm| (I11-19)
m= -£

In princ{ple a pseudopotential term for all t-values is needed. This
might appear to present significant calculational difficulties. For suf-
ficiently large values of & the lowest energy radial eigenfunctions of any
atom will be nodeless and only condition (6) above is not immediately
satisfied by the atomic radial functions themselves. In fact the pseudo-
potentials for these higher 2-value terms must be very similar and a
standard approximation is to simply set all higher ¢-value pseudopotential
terms st(r) equal to one another. For example in low Z atoms such as

silicon

WP3(r) = VE2(r) for 2 > 2 (111-20)

In this approximation the pseudopotential operator may be written as

BS

WP (r) = V52 (r) + r) - V52(r)) P (111-21)

[T i Y
—
=7

2=0 2 L

where the "non-local" terms are restricted to the first few g£-value.
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C. Bare-lon Pseudopotentials

The pseudopotentials Vis(r) include the combined effects of the nuclear
core and valence charge densities. If the contribution from the valence
electron charge density is subtracted from st(r), then the remainder
will be the pseudopotential of the core and nuclear charges alone. Such a

potential is defined by

V3 = VP () + v

5 2B P(r)) + ch(nss(r)) (111-22)

Coul (”v
Because of the manner in which it is constructed the bare-ion pseudo-
potentials are exact potentials for the configuration upon which they are
based. If the pseudopotential approach is to be a successful one, it is
essential that the bare-ion pseudopotential adequately represent the effects
of the core and nuclear charge densities when the valence configuration is
modified. Yin and Cohen(s) have reported several numerical experiments

for atomic models which test the idea. In their paper the bare-ion pseudo-

PS
28

(Ne core) 352 3p0'5

(r) (n=3) is originally constructed from the configuration
0.5

potential V

3d of Si. Then they use this bare-ion pseudopotential

to find the eigenvalues of Si with the valence configuration 352 3p1 3d1.
The bare-ion pseudopotentials Vié(r} are the same ones constructed from the
original configuration but the valence charge density is determined self-
consistently. The result agrees well with the result from an all-electron
(AE) self-consistent calculation.

For example the eigenvalues of a 3s eigenfunction in the valence config-

uration 352, 3p1, 3d1

of Si by using the former (PS) method and the latter
(AE) method are respectively -1.0794 (Ry) and -1.0784 (Ry), the percent dif-
ference is less than 0.1%. The eigenvalues of 3p are -0.5562 (Ry) and -0.5555
(Ry), the percent difference is less than 0.2%, and the eigenvalues of 3d are

just the same which 15 equal to -0.586 (Ry) without deviation. The eigen-
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values of the original configuration, €gg = -1.4851 Ry, e, = -1.9420 Ry

3p
and €34 = 0.3364 Ry, are drastically altered.

The asymptotic behavior of the bare-ion pseudopotential operator is
found by noting that pseudopotentials are constructed to reproduce the
all-electron potential beyond the cutoff radii. For large r the all-

electron potential has the form
2
e pS

V(r) = = = Vg (P2 (0)) + v, (n7>(r) (111-23)

where ZV equal the number of valence charges and because n(v) = nss(r)

for large r. Comparison with Eq. (II[-22) indicates that the asymptotic
form of the bare-ion potential is independent of g-values and literally

the potential of a bare-ion

Z e2

PS _ v
VRB(r) = - (111-24)

The bare-ion pseudopotential operator for an atom is written as

PS(v)

Vp

- PS
= i VQB(P) Pi (111-25)

where Pﬁ is the angular momentum projection operator defined by Eq. (III-19).

D. Pseudopotential in a Crystal

In a crystal, we still have the one-particle Schrddinger equation

for an all-electron problem
pl

[fem 4 Vn(?) + VH(?) + ¥, (n))yy

o () = e;v.(F) (111-26)

i
Here Vn(?), V. (¥) and Vv, (n) are the nuclei patential, Coulomb potential
and the exchange-correlation potential, respectively.

The pseudopotential idea is still useful for a crystal. It will
facilitate the calculation because by introducing a pseudopotential the

ion core is eliminated. In an ab initio pseudopotential model the potential
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is replaced by the bare-ion pseudopotentials of all the atoms located at
positions ﬁa plus the self-consistent Coulomb potential of the valence

electrons and the exchange and correlation potential of the valence

electrons
PS _ PS > PS PS
V3(r) =z VB{a) (r - ﬁa) + Vo1 (n,7(r)) + v (nf>(r) (111-27)
ﬁa
and the corresponding Schrédinger equation is
2
P -
(5 + VPS(r))?i('F) = v (F) (111-28)

This may be contrasted with empirical pseudopotential calculations.

The potential in the Hamiltonian operator is the empirical pseudopotential
e
Vp(r) = % V(@)  16°F (14) (111-29)

in which the V(G)'s are parameters empirically determined by fitting to
experimental data. By their construction band structures calculated from
empirical pseudopotentials have excited state energies consistent with
experiments. The band structure calculated from ab initio pseudopotentials
generally have lower excited state energies which are less than those

(5)

observed experimentally. Perhaps an understanding of the differences
between empirical and ab initio pseudopotential approaches can be found

by comparing their respective bare-ion pseudopotentials.



Chapter IV

SPECIFIC AB INITIO PSEUDOPOTENTIAL MODEL (FOR AN ATOM)

In Section (III) we imposed conditions on the pseudo wavefunction.
These conditions will help us to construct a pseudopotential, but they are
not sufficient to uniquely construct a pseudopotential. There can be many
pseudopotentials consistent with these conditions. Therefore it is neces-
sary for us to prescribe a definite procedure to construct a pseudopotential.
This procedure is called a "recipe". We can have different recipes, and
they will give us different ab initio pseudopotentials. In this section
we will first give the Hamann, Schliter and Chiang recipe and Kerker's
recipe and then compare and discuss them.

Before we go to these recipes, let us recollect some definitions.

The dynamical equation in the single-particle model for a many

electron atom is

[ + V(FI1Y, (F) = e ¥, (F) | (1v-1)

Here V(r) is the sum of the potential due to nuclei, V,, the Coulomb poten-

tial of electrons, VH’ and the exchange and correlation potential ch(n(r))

(¥) =V

=

JF) + V(R + v, (n(7) (1v-2)

If V(¥) is spherically symmetric, then after separating variables we have

a radial equation

2
d (a+1) -
- g )+ : 71 U (r) = =l () (1v-3)
where
Ui(r) = arﬁ(r) (1v-4)

28
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A. HSC Recipe
We shall state this recipe step by step.

_Xq

(i) Choose an analytic function f(x) = e which cuts off rapidly at

large arguments.

(i1) Choose a cutoff radius Paii 3. T where g 1S the radius of outer-

most peak of U, (see Fig. IV-1).

(111) Form a first pseudopotential

V3r) = [1-FE91 V() + ¢ FE) (1v-5)

= r‘CJL ci

and solve the radial equation, Eg. (IV-3) with this potential. Adjust C,

so that the eigenvalue ¢, is the same for the first pseudopotential as the

)
atom. Let le(r) be the radial solution for the first pseudopotential

problem.

. PS ”
Since Vlz(r) = Y(r) for r > r

i the normalized eigenfunction of the

first pseudopotential and the atom differ by a constant factor

U, (r) = a,w,(r) (1v-6)
in the range r 2 Tear
In general the radial eigenfunction ng(r) does not satisfy the pseudo-

charge conserving condition (4) of Chapter III. A1l other conditions are
satified.

(iv) Form a second radial eigenfunction

r

wy, (1) = o (wy, (1) + 5,r" L)) (1v-7)
‘ cL

where s, is determined by the normalization condition

2 e UNIR R L :
oy £ (wy,(r) + 6£gz(;zgﬁ) dr =1 (1v-8)

(v] The final pseudopotential Vgi(r) is found by inverting the radial



Figure IV-1: The cut-off radius ey
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equation for Wzg(r).
Now Tet us verify the six conditions on the pseudo wavefunction stated
in Section III.

Since Wy satisfied the radial Eq. (IV-2) with the same eigenvalue

2
€, the first condition is satisfied.

From Eq. (IV-6 - IV-8) one can see WZQ(r) will approach very closely to

and that the charge inside r__ is the same for

U (r) for r greater than P g

2 £

the pseudo atom as for the atom. Consequently, for r greater than Fag the

first and second derivatives of wzl(r) and Uﬁ(r) are very close to each

other respectively. The enerqy derivatives of 3(r) and st(r) are equal

to each other as discussed in Chapter III. Since Vzi(v) is equal to C,
_ i : = 2+l 1 =

at r=0, and if we write wzg(r) r Wll(r), we must have wlz(r) = 0 at

r=0, as shown in Chapter III. If we write w2z(r) = r2+1 W

22(r), then from
Eq. (IV-7) we know Wzi(r) = 0 at r=0. Therefore the six conditions on

‘pseudo wavefunction w, (r) are all satisfied.

B.  Kerker's Recipe

The following is another recipe due to Kerker.(Y) We first introduce

Kerker's recipe and then reproduce the results from Kerker's paper.

(a) Kerker's Recipe
A cutoff radius is defined as in Chapter III. The pseudowavefunction

in the region r < re is parameirized as

4 3 A

# (I") = rl""l Nz(r), W (l") = ear‘ + br + cr” + d

2 . (1v-9)

in terms of constants a, b, ¢, and d. The Kerker form assures that the

pseudoeigenfunction is nodeless and satisfies condition (6). The four

constants are chosen to satisfy conditions (2-5) in Chapter III. Thus,
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the six conditions on pseudoeigenfunctions are all satisfied. The pseudo-
potential is found by inverting the radial equations for Kerker's pseudo-

radial function.

(b) To Reproduce Vgs(r) in Kerker's Paper
6)

Kerker( wrote a paper to explain his recipe for pseudopotential. In

his paper he gave two numerical examples using Si and Mo. He calculated

" PS PS
Ug(r) = PRR(P), U£ (r) and VBR
Si and Mo separately. Kerker's results are shown in Fig. IV-2 and Fig. IV-3.

(r) for different n,¢ in a configuration for

We shall reproduce the results in these two figures by using Kerker's
recipe. The result will show that our understanding of the recipe is cor-
rect anq_allow us to analyze contributions to a pseudopotential.

The results in Kerker's paper are reproduced quite well. Now we want
to analyze the pseudopotential to see if there is something we can learn
from it.

As we stated in Section II, there are similarities between hydragen-
Tike atoms and single-particle models of many-electron atoms. Hydrogen-
like atoms may be viewed as the simplest many-electron atom. Hence we
will first analyze hydrogen-like atoms, and hope we can learn something
which is useful for the analysis of the many-electron atom.

For a hydrogen-like atom the potential is equal

42
B Unﬁ(r)
i g%'= dr T ﬁ(zzl) fe (I1v-10)
nL r
where
o
€hg = T "?'(RY) (1v-11)
n
let
U r) = P () (1v-12)



Figure IV-2:
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Comparison of real radial functions and Kerker's
pseudo radial functions and bare-ion pseudopotentials
for Si.

(From G. P. Kerker, J. Phys. C: Solid St. Phys.,

13 (1980) L189~94 printed in Great Britain).



(

10

rlau)

Real (broken curves) and pseudo- (full curves) radial wavefunctions for Si in the
configuration 3s?3p!3d'. The angular components of the corresponding core pseudo-
potential are also plotted. Note that the repuisive centrifugal potential is not included.
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Figure IV-3:
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Comparison of real radial functions and Kerker's
pseudo radial functions and bare-ion pseudobotentia]s
for Mo.

(From G. P. Kerker, J. Phys. C: Solid St. Phys.,

13 (1980) L189-94 printed in Great Britain).
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Real and pseudo-radial wavefunctions for Mo 5s'4d*Sp® and the core pseudopotential.
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Figure IV-4:
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Comparison of real radial functions and Hermann,

Schluter and Chiang's pseudo radial functions and
bare-ion pseudopotentials for Mo.

(From Hamann, D. R., Schliiter, M. and Chiang, C.,

1979, Phys. Rev. Lett. 43, 1494).
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Comparison of pseudo wave functions (solid
lines) and ab initio full-core atomic valence wave func-
tions (broken lines) for Mo. The lower panel shows the
corresponding bare-fon pseudopotentials.
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Replace U . in Eq. (IV-10) and it becomes

W
cz )
z

_ 4 2(8+1) Mg ' (1) (1v-13)

+ ¢
r wnifk) ng

For a hydrogen-like atom the lowest energy radial function for a given

angular momentum ¢ is nodeless and has the form

Upp(r) = C v**1 exp(-2r/n) (1v-14)
where
n= ¢+l
For such states
_Z,
wng(r) =Ce

The first term in Eq. (IV-13) W2 (r)/W_ (r) = -¢

() /(i

- exactly cancels the

eigenvalue term. The second term 2{g+1) W (r))} reproduces the

ng I8
hydrogen-like potential.

. PS
Since Fz

(r) is nodeless, we conjecture that for n = 2+1, Fzs(r) may
have the same property. This is that the first and second terms in a
pseudopotential may approximate the pseudopotential and the energy of

the state, respectively. To investigate this idea the terms

v (Iv-15)

, = WM + e

ng
and

v

= 2(er)Wl (r)/(rk (r) (1v-16)

are calculated. For a hydrogen-like atom V, is identically zero and Vl

¢
reproduces the potential. The plots using Kerker's pseudo radial functions

are shown in Figs. (IV-5 - IV-10} for Mo and Si. Also plotted is the total

pseudopotential
PS -
VR (r) = Vﬁ(r) + Vl(r) (Iv-17)



Figure IV-5:

PS
& 1

radial distance r for the 3s state of Si

Decomposition of the pseudopotential (V

st(r) =V, (r) + U (r)

Versus
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Figure IV-6:

Decomposition of the pseudopotential (VES) versus
radial distance r for the 3p state of Si

Vio(e) = Y (r) + V()
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Figure IV-7:

Decamposition of the pseudopotential (VZS) versus
radial distance r for the 3d state of Si

VP (r) = U (r) + Vy(r)
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Figure IV-8:

Decomposition of the pseudopotential {VES)

radial distance r for the 5s state of Mo

PS(

)

r) = Vylr) + Vq)(r)

versus
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Figure IV-9:

Decomposition of the pseudopotential (VES) versus
radial distance r for the 5p state of Mo

VP3(r) = vy (r) + Y, (r)

L )
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Figure I1V-10:

Decomposition of the pseudopotential (VES
radial distance r for the 4d state of Mo
PS -

) versus
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From these figures we find that the 3d state of Si is the only case
for which n is equal to 2+l and for this case the terms V¢(r) and Vl(r)
do behave similarly to the hydrogen-like atom case. That is V¢ is approxi-
mately zero and Vl(r) is the main contribution to the pseudopotential. The
Mo 4d and 5P states behave similarly although for these states n is not
equal to o+l.

Another interesting thing is that in all six figures there is a common
character. For small r the pseudopotentials produced by Kerker's recipe
are linear in r. Is it true that the pseudopotentials from HSC recipe
will also have this same property? This question motivates us to compare

and discuss these two recipes. This will be the topic for the next section.

C. Comparison and Discussion

At first we will compare these two recipes to see the similarities and
differences between them, then we will discuss some properties of the pseudo-
potentials.

(i) Comparison of the Recipes

The similarities and differences between these two recipes are ex-
plained below.

Both of them are ab initio pseudopotential recipes, based on
atomic structure information. Each can provide pseudo eigenfunctions,
pseudopotentials and bare-ion pseudopotentials of an atom which can be
used to get the pseudopotential of a crystal as stated in Chapter IIT-IV.

The pseudowavefunctions from these two recipes satisfy all the
six conditions stated in Chapter III. But there are some differences
between them.

Kerker's recipe starts with the construction of pseudo wave
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function with undetermined constants and a definite cutoff radius. By
using the condition which the pseudo wave functions have to satisfy

we can find the pseudowavefunctions and then find the pseudopotential
and bare-ion pseudopotential by inversion.

The HSC recipe starts with the construction of the first approximate
pseudopotential Vii(r). Then from the radial equation we get the first
approximate pseudo eigenfunction UTE After improving Wi, we get the
pseudo eigenfunction Wo - Finally by means of inversion we get the pseudo-
potential.

They are two different recipes. Therefore, they will give dif-
ferent pseudo wave functions, pseudopotential and bare-ion pseudopotential.
The difference between bare-ion pseudopotentials can be seen in Fig. IV-3
and Fig. IV-4. But from these two figures it is not very easy to see the
difference between the pseudo wave functions of the two recipes. In order
to see the difference between the two pseudo wave functions we shall
study the behavior of these two pseudo wave functions as r approaches zero
and we shall see these two pseudo wave functions are different from each
other, as r approaches zero.

In Kerker's recipe the pseudo wave function

2., 3

F (r) = r2+1 ed(1+cr +br +(a+%c2)r4+ ced) (1v-18)

2
for small r.

The HSC recipe proceeds in two steps. The real potential V(r) has

the form

-

I A A (1v-19)

20
for small values or r.

Then we have from Eq. (IV-5)
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Sy el U (1v-20)
C

for small r.
It follows from the radial equation, Eq. (IV-3) that leading terms in
roare

W a+l (¢, - ¢) (c, - 52)2 4
0 = e " e e (12D

In the "norm-conserving” second step of the HSC recipe
W =
25 az(wlz * 5£g£(x))
(¢, -¢,)
r£+l s % L' 2

JL¥8) + gy

(C-E) w4
(4(;£+5)%42+6) ) ;%Jr Ry (Iv-22)
&

+

The coefficient of 2 s equal to zero for the pseudoeigenfunction in the
HSC recipe. The corresponding term using Kerker's recipe is edb which is
not equal to zero in general. The pseudo wave functions are different from
each other in these two recipes. From the result above we can find the
pseudopotentials in two different recipes for small r and shall see what
different behaviors they will have.

From Eq. (IV-18) and Eq. (IV-15 - IV-17) the pseudopotential in

Kerker's recipe for small r'is

PS _
Vilky(r) = 2c(243) + 3b(20+4)r + & (1v-23)
and the pseudopotential in HSC recipe for small r is
2
S i = 2(£+2)(c2 - 52) , 3(c2 - aﬁ) 2, ——
%(H) (42+6)(1+s ) (20+5)(42+6) (145 ) %

Hence, for small r the leading term in Kerker's recipe is linear in r while
in HSC recipe the leading term is quadratic in r. This gives the answer

to the question raised in the end of the previous section.
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(i) Discussion

From Fig. IV-2 we see that the Kerker bare-ion pseudopotentials of
Mo for 2=0, 2=1 are very flat and close to each other. But the bare-ion
pseudopotential of Mo for 2=2 is very steep, and is far below that of
£=0 and 2=1.

The following will give an explanation for this fact.

From the diagram we know as r approaches a large value then all three

Vgi(r)'s for 2=0, 2=1, and 2=2 will coincide. So we see if two VPS(r)'s

Be
differ very much at r=0 then these two VBZS(r)'s will differ very much.
Otherwise if two Vgi(r)‘s differ not too much at r=0, then these two Vgi(r)
will be c]ose.to each other. Therefore, to determine whether two Vgi(r)
differ very much or not,we need only to see the values of these two ng(r)
at r=0. This is the key point.
From Eq. (IV-23) we have the pseudopotential at r=0 in Kerker's recipe

as follows

VES(D) = 20(22 +3) + (1V-25)

2
In general there is no large difference between g, for different ¢.

Then the constant C will determine the magnitude of VZS(O). Since VES(G)

and VEE(O} differ by the same constant for different ¢, so the value of C
will determine the magnitude of V'2(0). If C is large, then V)3(0)

is large, otherwise VZE(O) is small.

The values of C's for different p for atom Mo and atom Si are given
in Table IV-1.

For atom Mo the constant C for 2=0 and ¢=1 are close to each other and
they are quite different from that for ¢=2. Therefore it accounts foi the
fact that the bare-ion pseudopotentials of Mo for 2=0 and £=1 are close to
each other while they are far apart from that for 2=2.

As for atom Si, we see the constant C for 2=1 and ¢=2 are close to
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each other, and they are quite different comparatively from the constant C

for 2=0. Therefore we have an idea that the Vig(r)'s for ¢=1, and 2=2 will

be close to each other while they will be separated from Vzg(r) for 2=0.

This happens to be the case.



Table IV-1:

The value of ¢ for different g2 for Mo and

Si atoms.
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Table IV-1
Mo
g =0
g =1
9 =2
Si
2 =0
g =1

0.74950
0.09085
-2.03135

0.5836
-0.1197
-0.3019
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Chapter V

SUMMARY

Ab initio pseudopotential method is an important method developed re-
cently. It is an efficient method, because it only needs to consider a few
valence electrons and ignores the core. This makes calculations relatively
much easier. It is very useful because we can construct a bare-ion pseudo-
potential from the pseudopotential for an atom. This bare-jon pseudo-
potential will replace the influence of the core on the valence electrons,
therefore it can be used for different valence configurations, and can be
used in a crystal.

For ab initio pseudopotentials we study all the conditions imposed on
the pseudowavefunction for an atom. Some of them are implicit and are
ignored by HSC. These conditions are not sufficient to uniquely determine
a pseudowavefunction. Many different pseudowavefunctions can satisfy
these conditions. In order to uniquely determine a pseudowavefunction
and then a pseudopotential we need a definite procedure to prescribe the
calculation which will lead to a definite pseudo wave function. This
procedure is called a "recipe". Once the pseudo wave function is determined,
then by inverting the radial equation, we get the pseudopotential and by
subtracting the influence of the valence electrons from the pseudopotential,
the bare-ion pseudopotential is obtained.

Two ab initio pseudopotential recipes, HSC recipe and Kerker's recipe
are studied in this thesis. The pseudo wave functions and the bare-ion
pseudopotentials are calculated by Kerker's recipe. The results are re-

produced. They are in good agreement with Kerker's results.
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These two recipes are compared and discussed. The similarities and
differences of these two recipes are discussed. These two recipes produce
different pseudo wave functions, pseudopotentials, and bare-ion pseudo-
potentials. It is interesting to note that while eigenfunctions produced
by two recipes are definitely different from each other for small r, they
look very similar to each other for small r in the diagram of the two recipes
given by HSC and Kerker in their papers. The decomposition of the pseudo-
potential is made. The differences between the bare-ion pseudopotential
of Mo and Si for different ¢ are explained.

We have studied two different ab initio recipes. The question is
how to use these two recipes for crystals and determine the properties
of the crystals. From the results we can judge which recipe is better

and we can try to get another recipe better than these two.
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ABSTRACT

In a crystal, two different kinds of electrons may be distinguished.
Electrons which are tightly bound by nuclei are core electrons. Less
tightly bound valence electrons move throughout the crystal. Valence
electrons determine the physical and chemical properties of a crystal.

The idea of a pseudopotential is to replace the influence of the nuclei
and core electrons and other valence electrons by an effective potential
for valence electrons. Elimination of explicit dependence on core elec-
trons facilitates calculation.

To obtain an ab initio pseudopotential in a crystal, an ab initio
pseudopotential is first constructed for an atom. Subtracting the valence
electron contributions leaves a bare-ion pseudopotential. Bare-ion pseudo-
potentials attempt to replace the effect of the nucleus and the core elec-
trons by an effective potential. Thus bare-ion pseudopotential is then
used for different valence configurations of atoms and for crystals.

To find an ab initio pseudopotential for an atom general mathematical
conditions are imposed on the pseudo eigenfunctions. However, these con-
ditions are insufficient to uniquely determine a pseudoeigenfunction. In
addition, a definite calculation procedure or "recipe" must be prescribed.
Different recipes will lead to different pseudo eigenfunctions. The Hamann,
Schliiter and Chiang mathematical conditions with two alternative recipes
are analyzed in this thesis. Pseudopotentials for an atom are obtained
by inverting the radial equation for the pseudo eigenfunctions. It is
found that besides the mathematical conditions given by Hamann, Schliiter

and Chiang, implicit conditions are also implied by their calculational



procedure. The consequences of these implicit conditions are discussed
ab initio pseudopotential recipe due to Kerker is reproduced.
A decomposition of the Kerker pseudopotential is studied. The
Kerker recipe is compared and contrasted to the Hamann, Schliter and
Chiang recipe. The pseudoeigenfunctions and the pseudopotential of those
two recipes are analytically different. Although the pseudo eigenfunctions

produced by two recipes appear very similar to each other when plotted.



