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Abstract 

There are some who hold the view that liquid hydrocarbons in the upper Paleozoic formations in 

Kansas are being locally derived. It has been the long held belief that the liquid hydrocarbons 

found in Kansas have come from distant sources in Oklahoma. To shed further light on this issue 

about the origin of hydrocarbons in the upper Paleozoic formations in Kansas, a study was 

conducted to analyze the geochemical characteristics of REE in Lansing-Kansas City oils that 

were collected from several locations in a small area within Rooks County, Kansas. The total 

REE contents in these oils ranges from about 3.1 ng (or 10-12 gram) per Liter of oil to about 131 

ng per Liter of oil. The pattern of relative distribution of the REEs for each oil sample has been 

constructed from values that were obtained by dividing the individual REE concentrations of a 

given oil sample by the respective concentrations of the REEs in a standard or a reference sample 

(such as PAAS, a representation of average argillaceous sediments in the crust that is commonly 

used for the analyses of a variety of crust originated sedimentary products). A standard- 

normalized relative distribution pattern of an oil sample can reveal an important history of 

chemical evolution of the oil of interest. The PAAS-normalized patterns of relative distribution 

of the REEs in the Lansing-Kansas City oils from Rooks County, Kansas are significantly 

diverse. Although nearly all oil samples investigated in this study have varied degrees of light 

REE-enrichment across the REE series from La to Sm, they differed in their relative Ce 

abundances. Some samples have positive Ce anomalies; some have negative Ce anomalies, and 

some others with the absence of any Ce anomaly. The oils also differed in their PAAS-

normalized relative distribution of the middle rare earth elements (MREEs), ranging from Sm to 

Tb. All oil samples were relatively enriched in the MREEs, but with varied degrees of 

enrichment from a prominent one to almost a barely noticeable one. The oils differed in their 

relative distributions of Eu, as some were with a positive Eu anomaly, some with a negative Eu 

anomaly, and some with the absence of any Eu anomaly. The trends of the heavy rare earth 

elements (HREEs) from Tb to Lu among the oils ranged from nearly flat for the most oils to a 

progressive depletion across the series for few samples. Furthermore, the oils were varied in 

having prominently anomalous relative distributions, in some cases with a positive anomaly and 

in others with negative anomaly, for such elements as Tb, Ho, and Tm (MM-JS-04, MM-MC-

3A, and MM-MC-01). The anomalies for Tb, Ho, Tm are reflections of enzyme activity of 



  

source material during its primary (growth) environment. The metals are known to be 

preferentially located at the active sites of the enzymes. The oils not only differed significantly in 

their REE-geochemical characteristics, they also had a wide range of K/Rb weight ratios from 

about 877 to about 2000. These high values are typically the ones that can be assigned to organic 

materials, well exceeding the range of values that are associated with common silicate minerals 

and rocks, having an average value of 250-350ppm. Different zones in the Lansing-Kansas City 

formations also show distinct REE distribution patterns. There are four broadly classified 

distribution patterns. MREE enrichment can be observed in samples with production from the 

middle Lansing-Kansas City zones (G-I). In samples with comingling Lansing-Kansas City 

zones, amplification of anomalies from differing source materials can be observed. The diversity 

in the REE distribution patterns and K/Rb ratios in oils collected from central Kansas makes a 

strong argument against long distance transportation from a distant source in Oklahoma. 
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Chapter 1 - Introduction 

The purpose of this study is to use Rare Earth Elements (REE) as a means of 

geochemically analyzing oil produced from the Lansing-Kansas City Group in central Kansas. 

REE have proven to be useful tracers in many geological and geochemical investigations and 

demonstrate important applications in igneous, metamorphic, and sedimentary petrology 

(Rollinson, 1993). To date, studies by Abanda and Hannigan (2006), Dao-Hui et al. (2013), and 

Ramirez (2013) are the only investigations to examine the REE content in the organic matter. Of 

these three, Ramirez (2013) is the only study to address REE geochemical potential for organic 

source bed and crude oil correlations.  In Ramirez (2013), REE geochemical investigations were 

targeted on oils generated in the Woodford shale and overlying Mississippian formation located 

in the Anadarko Basin, in north-central Oklahoma. This is the first study that takes a holistic 

approach to gain additional insight about oil generation using REE composition in crude oils. 

This study takes the same approach as Ramirez (2013), but as a means to identify organic source 

bed and crude oil correlation in the Lansing-Kansas City group in Rooks County, Kansas. It is 

believed by most of geologists that crude oil in the mid-continent is sourced primarily from the 

Woodford Shale in central Oklahoma. By placing the source of the midcontinent petroleum 

system in central Oklahoma, oil in northwestern Kansas would have to be transported 

approximately two hundred miles. This study hypothesizes that oil in the Lansing-Kansas City 

group in central Kansas is being locally sourced rather than originating from the Woodford Shale 

and migrating north. 

In order to understand this study, it is first important to understand the concept of a 

petroleum system. Petroleum systems are broken into several key components. The most 

important part of a petroleum system is the source rock. The source rock is considered the 

“kitchen” of the entire petroleum system. It is where the hydrocarbons are generated from 

compacted organic materials. When buried to a certain depth and given the right amount of heat, 

these organics undergo a process known as catagenesis that transforms them into hydrocarbons. 

Once the source rock has undergone catagenesis, the hydrocarbons are expelled and migrate 

through carrier beds into a porous rock unit know as a reservoir rock. The reservoir rock needs to 

be stratigraphically or structurally trapped beneath an impermeable rock layer called the seal. 
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Figure 1 Map showing potential oil migration from Anadarko basin (Modified from 

Gerhard, 2004). 

This project focuses on determining whether the source of the upper Pennsylvanian 

Lansing-Kansas City group in central Kansas has migrated a long distance (Woodford Shale), or 

if the hydrocarbons are originating from a local source in Kansas by analysis of REE data and 

gas chromatograph data collected on ten crude oil samples from Rooks County, Kansas. The 

Lansing-Kansas City group is the second largest producing unit in Kansas, with over one billion 

barrels recovered to date. This prolific rock unit accounts for 19% of Kansas’ total oil produced 

each year. The majority of Lansing-Kansas City production has come from conventional 

production due to the nature of the rock unit (thin interbedded limestone and shale), but there 

could be the possibility for unconventional production in the future. The unique property of the 

Lansing-Kansas City group is that it has the ability to produce from multiple zones in one well.  

In Rooks County, Kansas the Lansing-Kansas City consists of 14 zones of alternating limestone 

units (zones A-L) separated by shales. Of these 14 zones, the Lansing-Kansas City produces 
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from 7-8 different limestone zones. Several of the wells sampled in this study are producing from 

multiple zones within the Lansing-Kansas City. 

Traditional methods of oil-oil correlation have employed the organic constituents 

identified by GC and GC-MS of crude oils for correlation. This study takes a relatively new 

approach to oil-oil correlation. The premise takes consideration of the traditional organic data-

based means of liquid hydrocarbon correlation.  The new approach used in this study goes 

beyond examining the organic compositions of the crude oils, relying on information about their 

inorganic metal constituents. This study, however, is not the first one to use inorganic 

constituents as a means of correlating crude oils.  There have been several attempts in the past to 

use trace elements as potential tools for correlating crude oils. Early reports on presence of 

metals include the works of Corbett (1967), Filby (1975), Shirey (1931), Witherspoon (1957), 

and Yen (1975). Many of these early studies looked specifically into the concentrations of 

vanadium and nickel. Corbett (1967) found that vanadium, nickel, and iron are commonly 

present but in minor amounts.  The work showed that almost 70% of the total vanadium are 

present in the asphaltene fraction with about 30% in the non-volatile raffinate, pointing to the 

fact that the metals are associated more with the highest molecular weight components.  

Studies by Lewan and Maynard (1982) and others have claimed that vanadium and nickel 

are acquired by sediments, especially those on the ocean floor, at the sediment-water interface 

during the deposition of sediments. Their distributions in the sediments are influenced by the pH 

and Eh conditions of the environment at the interface. Lewan and Maynard (1982) concluded 

that the vanadium nickel ratios remain unchanged during migration of the liquid hydrocarbons 

from source bed to the reservoir rocks, implying that the ratios of the liquids would be a good 

indicator of the sources from which the liquids are derived. Studies have sought variation trends 

of both vanadium and nickel in crude oil. It is not too common to find good correlations in the 

variations between the two. A case in point may be the study of Kansas oils by Schumacher and 

Chaudhuri (2014). The failure to see the good correlations between the two goes beyond the 

source rock variation. The two elements are influenced differently by the Eh and pH conditions. 

The nickel concentrations will be influenced by pH considering it exists as a divalent ion. On the 

other hand, the V concentration will be impacted by the oxidation states. This study has 

considered using REEs as tracers for the origin of crude oils at their source area. These elements 

as a group behave similarly, with the exception of two among them. The group, in general, has 
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3+ oxidation states in natural environments. The two exceptions referred here have one lower 

oxidation state (Eu
2+

) for one and the other with a higher oxidation state (Ce
4+

). A low pH 

environment promotes the mobility of the group, in particular under the influence of 

complexation with a variety of organic and inorganic ligands. This general geochemical behavior 

makes them potentially a useful tracer for the sources of oils in which these elements can be 

found. The geochemical discussions of this group that follows are important toward an 

understanding of how these elements can be used for oil correlation or source differentiation.  
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1.1 Rare Earth Elements 

The REEs or lanthanides (Ln) are a group of 14 elements from lanthanum (La) to lutetium 

(Lu) (atomic numers 57-71). They are located in block 5d of the periodic table (Figure 2). Rare 

earth elements have completely filled 5s
 2

, 4d
 10

, 5p
 6

, and 6s
 2

 orbitals. The elements differ from 

each other in their electronic configurations based on electron filling at the next higher energy 

orbitals beyond 6s
 2

.The differences occur at the 4f orbitals or a higher-energy 5d orbital.  All the 

lanthanides are present as trivalent ions (Ln
+3

), with the exceptions of europium (Eu) and cerium.  

Europium also occurs as a divalent (Eu
2+

) and cerium (Ce) can also have a valence of 4 (Ce
4+

).  

 

 

Figure 2 Rare Earth Elements or Lanthanides in the Periodic Table 

 There are several well-known coherent chemical properties of Ln ions and their 

interactions with compounds. In Table 1, the atomic number and ionic radii’s values are shown 

for each individual REE. A major property of the Ln is the “lanthanide contraction”. This is the 

progressive decrease in the size of the atom, or decrease in the ionic radius, with increasing 

atomic number (Smith, 1963; Evans, 1990). This property makes REEs great tracers for defining 

many different natural inorganic and organic geological processes. 

http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib7
http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib5
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Table 1 Atomic number and Ionic Radii for the REE. 

Element La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

Atomic electron 

configuration 

(all begin with 

[Xe]) 

5d16s2 4f15d16s2 4f36s2 4f46s2 4f56s2 4f66s2 4f76s2 4f75d16s2 4f96s2 4f106s2 4f116s2 4f126s2 4f136s2 4f146s2 4f145d16s2 

Atomic  number 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 

Ln3+ radius 

(pm) 

(6coordinate) 

103.2 101 99 98.3 97 95.8 94.7 93.5 92.3 91.2 90.1 89 88 86.8 86.1 

 

 

The lanthanide contraction arises from insufficient shielding of the increasing nuclear 

attractive force with each additional proton at the nucleus and accompanying additional electron 

that fills the 4f orbital, as the atomic number increases. The imperfect shielding thus causes a 

reduction in size of the entire 4f sub shell and a steady contraction in the ionic radii (Cotton and 

Wilkinson, 1962). Lanthanides vary primarily in the number of 4f electrons, causing these 

elements to have very similar chemical properties. This property also allows the REEs to exist in 

many materials together as a group. However, their occurrence together in natural materials does 

not imply that they respond equally to chemical changes of natural systems. In fact, the Ln ions 

separate to some degree when the correct size accommodation in mineral structures is available. 

REEs can also become involved in complex ligands that have different stabilities, specifically in 

the formation of chelates (the same ligand offering two donor atoms to form bonds with the 

REEs). In some mineral structures, such as those in amphiboles and garnets, REEs with smaller 

ionic radii (heavy REE) are accommodated, whereas in some other mineral structures, such as in 

the feldspars, REE with larger ionic radii (light REE) are favored. In solutions, some degree of 

separation among REE occurs because the stability constants of many different REE-ligand 

complexes are typically varied in a gradual or steady fashion, but not necessarily in a smooth 

pattern, across the REE series.  

The observed trends in REE distribution patterns among samples of interest may cast 

light on similarities or dissimilarities of their chemical evolutionary processes. The REE relative 

distribution patterns of natural materials fall into a small number of broad categories. The 

+3,+4 +2,+3 
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variations that have been observed in natural materials have led studies on REE to subdivide the 

elements into three groups (Figure 2):  

 Light REEs (La, Ce, Pr, Nd, Sm, and Eu – from atomic number 57 to 63) 

 Middle REEs (Sm, Eu, Gd, Tb, Dy, and Ho – from atomic number 62 to 67) 

 Heavy REEs (Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu – from atomic number 64 to 71).  

The middle REE group includes the two end-members (Sm and Eu) of the light REE group and 

the first four members (Gd, Tb, Dy, and Ho) of the heavy REE group (Topp, 1965). 

 

Figure 3 Lanthanide Contraction (Ramirez, 2013).  

In Pearson’s (1963) terminology, the Ln
 3+

 ions are classified as “hard” ions, which 

causes them to bond preferentially with “hard” base ligands such as H 2 O, OH
 −

, CO 3 
2−

, NO 3 
−
, 

SO 4 
2−

, PO 4 
3−

, O
 2−

, F
 −

, CH 3 COO
 −

, and R-OH (alcohols). Lanthanides, like many other “hard” 

acid ions, have a strong preference for O donor atoms. Bonding to Cl
 − 

ions has been known, but 

it is relatively weak compared to bonds created with O
 2−

 and F
 −

 anions. Complexes solely with 

NH 3, R-NH 2 (amines), HS
 −

 and CN
 −

 are extremely weak (Evans, 1990, Wood, 1990). In 

general, the Ln ions preference for donor atoms is O > N > S (Thompson, 1979).  
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http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib10
http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib6
http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib5
http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib12
http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib9
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Wood (1990) gave a comprehensive review of the stability constants of Ln-complexes 

with many common inorganic ligands. Thompson (1979) and Evans (1990) provided data on 

stability constants of Ln-complexes with a number of different organic ligands. The sulfate 

ligands cause very little fractionation between the light Ln
 3+

 ions (LREE) and the heavy 

Ln
 3+

 ions (HREE). Fluoride complexation can cause fractionation of the Ln ions in dilute 

fluoride solutions. Similar to fluoride complexations, the stability of Ln-CO 3
+
 complexes also 

progressively increases with increasing atomic number of the Ln. The stability of chloro- 

complexes decreases with increasing atomic number.  This trend is opposite of the behavior of 

the fluoro- complexes (Wood, 1990). Several studies have noted the precipitation of phosphate 

minerals from solution.  The phosphate precipitation causes the minerals to have a relative 

enrichment of the middle Ln across the series, displaying a convex relative distribution pattern.  

This pattern is often marked by the highest enrichment in Sm and the corresponding equilibrium 

solutions to have a relative depletion for the middle Ln, displaying a concave upward relative 

distribution pattern with the most depletion of Sm (Byrne et al., 1996). 

 Variations in the ionic size of the Ln the stability of the complexes impose some distinctive 

geochemical characteristics on the Ln compositions of natural materials.  As stated earlier in the 

chapter two Ln ions have a valence other than 3, Eu
2+

 and Ce
4+

. These two REE may be 

fractionated, if reducing (Eu
2+

) or oxidizing (Ce
4+

) conditions are present. When analyzing 

relative distribution patterns of REEs, increased values above the expected trivalent abundance 

are considered positive anomalies, while lower values are negative. Crystallographic controls on 

these elements are fairly well known, for example the affinity of feldspars for Eu
2+

. Enzymatic 

effects are not as well known. 

Variations within the coherent chemical properties make the Ln group a good tracer for 

the differentiation of inorganic and organic processes. Subtle differences in the chemical history 

of a group of solids, solutions, or solid-solution reactions may be best revealed through an 

examination of the relative distribution of the REEs for each substance of interest when 

compared with a known standard or reference material. 

Moving across the rare-earth series with increasing atomic number, a distribution pattern 

of the REEs for a given substance is shown as the ratio of the concentration of each individual 

REE of the substance to the concentration of the same element of a chosen standard or reference 

material. REE studies in igneous petrology use chondrite as reference material. Sedimentary 

http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib12
http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib9
http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib5
http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib12
http://archives.datapages.com/data/ocgs/data/062/062003/214_ocgs620214.htm#bib2


9 

 

studies with REE use the Post Archean Australian Shale (PAAS) or the North American Shale 

Composite (NASC). When analyzing a specific sample, the reference material used should be 

appropriate to the material analyzed. Using chondrite as a reference material for the REE study 

in oil might not be appropriate. The PAAS is the reference material used throughout this study. 

When normalizing REE concentrations to a reference material, a smooth distribution pattern 

within the LREEs may be interrupted at Ce and Eu. Europium positive or negative anomalies 

may be linked to a crystallo-chemical or solution-chemistry effect.  An example of this is 

feldspars that accommodate Eu
2+

 over Eu
3+

. This effect might not be applicable in all materials, 

particularly when studying organic matter. Europium can be biochemically controlled by 

enzymatic effect in a living system. Cerium anomalies can also be attributed to crystallographic 

effects, in the case of Manganese oxide precipitation. Ce has also been found with anomalies in 

plants. Positive anomalies are identified in these elements if their observed relative 

concentrations are in excess of relative concentrations that could be predicted from the relative 

distribution trend defined by their two immediate respective neighbors. Negative anomalies are 

identified if the observed relative distribution values are depleted relative to the predicted values 

determined by the trend line that connects their two respective immediate neighbor REEs. 

Element PAAS 

La 38.2 
Ce 79.6 
Pr 8.83 
Nd 33.9 
Sm 5.55 
Eu 1.08 
Gd 4.66 
Tb 0.774 
Dy 4.68 
Ho 0.991 
Er 2.85 
Tm 0.405 
Yb 2.82 
Lu 0.43 

Figure 4 REE values for Post Archean Austrailian Shale (PAAS). 
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 1.2 Crude Oil Composition 

Petroleum is composed almost completely of hydrogen and carbon, with 1.85 times more 

hydrogen atoms than carbon. Sulfur, nitrogen and oxygen constitute less than 3 percent of 

petroleum. From kerogen to the asphalt to the oil, an increase can be observed in hydrogen and a 

decrease in sulfur, nitrogen and oxygen relative to carbon. 

 

Table 2 Elemental Composition of Natural Materials (Hunt, 1995) 

ELEMENT VOLUME PERCENT 

 Oil Asphalt Kerogen 

Carbon 84.5 84 79 

Hydrogen 13 10 6 

Sulfur 1.5 3 5 

Nitrogen 0.5 1 2 

Oxygen 0.5 2 8 

Total 100 100 100 

 

Table 2 shows average composition levels for oils worldwide. Hydrocarbons vary in their 

structural forms comprising different molecular arrangements. Paraffins are alkanes (open-chain 

molecules with single bonds between the carbon atoms). They are the second most common 

constituents of crude oil, and comprise most of the gasoline fraction of crude oil. Naphthenes are 

cycloalkanes (alkane rings). They are the most common molecular structures in petroleum. These 

rings usually contain 5 or 6 carbon atoms. The average crude oil contains approximately 50% 

naphthenes, with higher amounts in the heavier fraction and less in the lighter fraction. Aromatic 

hydrocarbons contain at least one benzene ring (a ring with 6 carbons and 6 hydrogens attached 

to each carbon). Aromatics rarely make up more than 15% of total crude oil, and are 

concentrated mostly in the heavy fractions of petroleum. Crude oil also contains molecules other 

than hydrogen and carbon. These molecules include nitrogen, sulfur and oxygen. These are 

present through the entire boiling range of crude oil. The compounds that contain oxygen are of 

particular interest due to the REEs affinity to oxygen.  
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Since REE may be found bound to oxygen bearing sites, it is important to note some 

compounds that contain oxygen molecules (Figure 3). Oxygen compounds are made of chain or 

ring acids. Phenols and Carboxylic acids encompass these compounds, which consist of chains 

or ring acids. 

 

Figure 5 Compounds found in oil containing Oxygen molecules 

Compounds containing Nitrogen, Sulfur and Oxygen and Aromatics represent about 75% 

of the residuum portion of crude oil. Residuum entails approximately 18% of the total volume of 

an average 35˚ API gravity crude oil (Table 3). Residuum is the most complex fraction of 

petroleum and also the least understood. The main components of residuum are heavy oils, 

resins, asphaltenes, and high molecular weight waxes.  

Table 3 Composition of a 35 ˚ API Gravity Crude Oil (Hunt, 1995) 

Molecular Size Volume Percent 

Gasoline (C5 to C10) 27 

Kerosine (C11 to C13) 13 

Diesel Fuel (C14 to C18) 12 

Heavy Gas Oil (C19 to C25) 10 

Lubricating Oil (C26 to C40) 20 

Residuum (>C40) 18 

Total 100 

 

Asphaltenes are dark brown to black amorphous solids. Moving from oils to resins to 

asphaltenes, the molecular weight, the aromaticity, nitrogen, oxygen and sulfur content increases. 

Asphaltenes exist in petroleum as colloidal particles dispersed in an oily medium. As the oily 

medium is removed by distillation, the particles become more concentrated to form asphalt, 
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which at room temperatures is highly viscous, resembling a hard solid. According to Hunt (1995) 

an asphaltene molecule consists of 10 to 20 condensed aromatic and naphthenic rings with 

paraffin and naphthenic side chains. These condensed aromatic structures also contain space for 

free radicals, where highly reactive an unpaired electrons are emplaced. Some of these sites are 

capable of complexing metals.  

 

Figure 6 Schematic Asphaltene Molecule (Hunt, 1995). 
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The following table displays the percent of resins and asphaltenes in various crude oils. 

Table 4 Resins and Asphaltenes in Crude Oils (Erdman and Saraceno, 1962) 

Crude Oil Source 
Weight percent   

Resins Asphaltenes 

Ellenburger W. Texas 4.2 0.24   

Ragusa Sicily 9 0.28   

Grozni USSR 8 1.5   

Karami China 14 1.8   

Wilmington California 14 5   

N. Beldridge California 18 5   

Khaudag USSR 33 8   

Belaim Egypt 20 13   

Boscan Venezuela 29 18   

Athabasca Canada 24 19   

 

Heavy crude oils have more oxygen with residue comprising over 5 % oxygen most of 

the times (Hunt 1995). It is important to note that Oxygen is present in the composition of crude 

oil. Analysis of REE is possible due to the previously mentioned characteristic of REE, the 

affinity REE have to create ligands with oxygen.   

 

 

 

 

 

 

 

 



14 

 

 1.3- Gas Chromatography 

The basis for this study is the analyses of REEs in crude oils. Gas chromatograph data 

was also used, to help constrain the REE results. Dr. R.P. Philp and his colleagues conducted the 

gas chromatograph data at the University of Oklahoma.  

Samples were run through an Agilent Technologies 5957c GC analyzer that was set to a 

sampling time of 100 minutes where initial temperature was set at 40 degrees Celsius and 

reached a maximum temperature of 300 degrees Celsius. Oil samples were injected from a 

syringe with oil volumes at 10 milliliter in to a capillary column having a constant flow rate of 

1.4 mL per minute at 21.725 psi, having a velocity through machine averaging 30.339 cm/sec. 

The mass spectrometry analyzer was running the same volume as the GC, where the electro- 

magnet was running on 2435 volts. The analysis took place between 10 minutes and 80 minutes. 

 1.3.1 n-Alkanes and Isoprenoids 

There are numerous types of petroleum hydrocarbon chains. Chains as simple as a n-

alkane to as complicated as saturated cyclical hydrocarbons. A more useful and easier series to 

understand are the normal (n) alkanes and the isoprenoids. These organic carbons can provide a 

lot of useful information to determine crude oil’s formation history. Alkanes are the combination 

of carbons and a number of hydrogen atoms needed to satisfy carbon’s valence charge of 4. This 

commonly gives rise to a chemical compound having CnH2n+2. The number of carbon atoms 

can greatly increase, reaching even C40 amounts, indicating alkane complexity. The most useful 

n-alkane range used in oil biomarker evaluation is the C11-C25, with special emphasis on the 

C18 and C19, plus the carbon preference index between C11-C22 biomarkers. 

Isoprenes contain a series of five-carbons, and are commonly found in all oil biomarkers. 

These complex hydrocarbons come from the biosynthesis by polymerizing the appropriate 5-

carbons isoprenes (Peters et al., 2005). The two commonly used isoprenoids used in biomarker 

analysis are pristane and phytane. Both fall into the acyclic, diterpane series where pristane is 

created by the degradation of phytane by losing a methyl group. In conjunction with n-C17-18 

chains, much can be interpreted about the source rock and the post-accumulation alterations of 

oil. Pristane and phytane are commonly looked at together as a ratio (Pr/Ph). The Pr/Ph ratio of a 

crude oil is a reflection of the source of the original organic matter and the paleoenvironmental 
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conditions during decomposition and early burial. Higher Pr/Ph values (3 to 15) indicate a source 

from mostly land derived organic matter that has passed though a highly oxygenated state in its 

decomposition. Low Pr/Ph values (1.1 to 2) indicate oil that has been generated from marine 

organic source materials. 

 1.3.2 Biodegradation of Crude Oil 

Petroleum commonly encounters many alterations following the expulsion from its 

source, with the most usual forms being biodegradation. This process occurs in the subsurface, 

and can only occur in areas where life can be sustained; environments containing food, water, 

correct salinities and pHs.  

Moldowan and Peters (2005) discussed that for an organism to break down oils as a food 

source it can be done in more than one way. Some microorganisms have been known to secrete 

biosurfactants for cellular breakdown, the creation and use of enzymes and biopolymers, which 

can transform oils into water-soluble compounds. Some microorganisms may convert the oil in 

carbon dioxide, water and nutrients via oxidation, while another may use nitrates, sulfates and 

ferric ions to break down the hydrocarbon. 
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Figure 7 Gas chromatograms showing the effects of biodegradation with decreasing 

amounts of alteration (top to bottom). (Peters et al. 2005) 

Under prolonged exposure to microbes and the effects that they bring about, an overall 

understanding should be discussed. As stated in the previous parts of the chapter, microbes will 

consume the hydrocarbon chains, changing the oils composition, but will also change the 

physical make-up. As the consumption continues, the oil will become heavier and heavier in 

density and more enriched with nickel, sulfur and vanadium, indicating alterations. Also, when 

considering an oils alteration and characteristics gas-to-oil ratio (GOR) values are important in 

understanding what effects are influencing and controlling these values. Arouri et al (2010) 

stated that thermal maturity and type of source rock, the charge history and the regional 

distribution of the carrier, reservoir and seal bed influence GOR distribution in a field. However, 

this only controls initial characteristics of the GOR, when obviously alterations will occur post 
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accumulation. Sited by Arouri et al (2010) are water-washing, oil cracking, biodegradation, 

segregation, and phase separation caused by pressure drop or gas influx. When gas migrates into 

a laterally extensive reservoir, it has the habit of displacing oils into shallower areas (Gussow, 

1954). According to Gussow’s principle, API gravity and GOR increases towards the basin’s 

center. In addition, preference by microbes and water for the lighter end n-alkanes tends to 

decrease oils GOR, where the lighter end alkanes tend to compose natural gas. 
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 1.4 Geological Setting 

The study area is located in northwestern Kansas in Rooks County. The major structural 

features that affect the study area are the Cambridge Arch and the Central Kansas Uplift. 

Together these two structures are referred to as the Central Kansas Uplift.  These anticlinal 

structures are ridges of Precambrian granite running northwest-southeast that formed during 

major periods of tectonic movement during pre-Mississippian and Middle Pennsylvanian times. 

Movement of the Cambridge Arch also occurred during Mesozoic time (Newell et. al. 1987).  

Above the basement granite lays the Cambro-Ordovician Arbuckle Dolomite, which is the 

primary oil producing rock unit in Kansas (Figure 4). As the Central Kansas Uplift is approached 

the formations below the Pennsylvanian and above the Arbuckle tend to pinch out until the 

Lansing-Kansas City rests upon the Arbuckle. At points on the Central Kansas Uplift the 

Arbuckle is completely eroded away. The Central Kansas Uplift and Cambridge Arch are bound 

on each side by similar basin areas: the Salina Basin to the northeast, the Hugoton Embayment to 

the west, and the Anadarko Basin to the south. The study area, Rooks County, is located on the 

eastern flank of the Central Kansas Uplift (Figure 6).   The majority of Lansing-Kansas City oil 

production in Kansas occurs on the Central Kansas Uplift. 

 

Figure 8 Structure map of Kansas with study area location (Watney, 1980). 
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 1.4.1 Lansing Kansas City Group 

The Lansing-Kansas City formations are part of the Missourian Stage of the Upper 

Pennsylvanian series.  Most Pennsylvanian rocks in Central Kansas were deposited in shallow 

seas that alternately covered, then retreated from the land. The reoccurrence of the rising and 

falling sea levels caused the Pennsylvanian rocks in Kansas to occur as interbedded limestone 

and shales with occasional coal deposits and sandstones. In northwestern Kansas carbonate 

facies in the Lansing-Kansas City are highly variable (Watney, 1980). The Lansing-Kansas City 

ranges from 200-400ft in thickness over the Central Kansas Uplift. Moving south from the 

Cambridge Arch towards the Anadarko Basin, the Lansing-Kansas City groups become more 

massive. This indicates the Anadarko Basin was subsiding and expanding northward from 

Morrowan through Missourian time, after which subsidence decreased, resulting in shoreline 

regression and basin filling during Virgilian and later time. The act of subsidence and expansion 

created the alternating cyclic terrigenous clastic and carbonate strata. Individual cycles less than 

30 meters in thickness were deposited in northwestern Kansas as a response to fluctuations of sea 

level and progradation of sediments. Each cycle in this area is characterized by four basic 

components: a thin but distinctive basal transgressive unit, overlain by marine shale, followed by 

the regressive carbonate and regressive shale (Merriam 1963).   
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Figure 9 Type well log of Lansing-Kansas City group.  Taken from Conoco Adell L-KC 

Unit 406 from section 2-T6S-R27W (Watney, 1980). 
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 1.4.2 Lansing-Kansas City Production in Central Kansas 

Oil and gas production has been a crucial element of the Kansas economy since the 

beginning of the twentieth century.  The state currently ranks eighth among all states in annual 

oil production and fifth in annual gas production (Newell et al., 1989). Kansas’s reservoirs have 

produced nearly 6 billion barrels of oil to date, with a significant majority of the past production 

coming from reservoirs in proximity to the Central Kansas Uplift (CKU). The Lansing-Kansas 

City group is the second largest producer of hydrocarbons in Kansas (Figure 2), accounting for 

19% of Kansas’s annual oil production. The mature, well-developed areas of production of oil 

and gas from Lansing-Kansas City rocks are located principally on the Central Kansas Uplift. 

Rooks County is one of the largest producers of oil from the Lansing-Kansas City group in the 

state of Kansas, accounting for more than 68.9 MMBO. Russell County, southeast of Rooks 

County, is the largest Lansing-Kansas City oil producer with more than 183.2 MMBO (Figure 

5). 

 

Figure 10 Distribution of Kansas oil production by geologic formation. 

The majority of Kansas’s Lansing-Kansas City production comes from central and north 

central Kansas, in areas on the Central Kansas Uplift. The largest producing county from the 

Lansing-Kansas City formation is Russell County, Kansas in the central portion of the state. 

According to Figure 10, Rooks County has produced approximately 68.9 MMBO from the 

Lansing-Kansas-City formation. The 68.9 MMBO of Lansing-Kansas City oil produced from 

Rooks County ranks 6
th

 among all counties in Kansas.  
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Figure 11 Lansing-Kansas City total oil production by county (MMBO). 

The Lansing-Kansas City formations extend over the majority of the state of Kansas, 

except for the eastern portion of the state, where it outcrops. The Lansing-Kansas City received 

its name for outcropping in the Kansas City area. The Lansing-Kansas City is deepest in the 

south-central portion of the state, where it begins to enter the Anadarko Basin. Along the Central 

Kansas Uplift, where Lansing-Kansas City production is most prolific, the top of the Lansing 

formations can be found between 1500-2000 feet below sea level. 

 

Figure 12 Structure map at top of Lansing-Kansas City group with Lansing-Kansas City 

oil production. 
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Chapter 2 - Methodology 

 2.1 Study Area and Sample Locations 

The study area is comprised of Rooks County, Kansas, which sits on the eastern flank of 

the Central Kansas Uplift in northwest Kansas. Ten oil and nine brine samples were collected 

from various oil well pumps in Rooks County for this study. The wells that were sampled are all 

conventionally producing oil wells, meaning that they do not employ horizontal drilling or 

hydraulic fracturing. Each well is producing from the Lansing-Kansas City at depths ranging 

from 3000-5000 feet below sea level. Initial oil sampling began in May 2013, with McElhaney 1, 

1A, 3A, and 4. The Petty John #1 and Dopita J #2 were also sampled, but produced more water 

than oil. These wells were used for brine analysis, which will be discussed later. Oil samples 

were collected in 1000ml narrow mouth clean Nalgene bottles. Lansing-Kansas City oil is 

generally very lightweight and wells produce an adequate amount of water as well as oil. Four 

liters of oil/brine were collected from each well to insure enough oil would be obtained for 

analyses. The remaining oil samples were collected in October 2013 using the same sample 

techniques. All wells sampled were found within Rooks County, Kansas and locations are given 

in Table 2. Seven of the ten oil samples were taken from two different Lansing-Kansas City 

fields: the McElhaney and Jones fields. Locating wells with Lansing-Kansas City production to 

sample was a time consuming process. The Kansas Geological Survey Oil and Gas well database 

was the main tool used to locate LKC wells. Originally, my goal was to locate LKC wells that 

were producing from only one zone, and collect oil from each zone for correlation. I soon found 

out that this was nearly impossible. In Rooks County it is more common to find wells producing 

from multiple zones in the LKC. I decided to break down the LKC into upper, middle, and lower 

sections and locate oil for each section (Figure 13). The lower section consists of zones J-L/M. 

The middle section consists of zones G-I. The upper section consists of zones A-F. This method 

proved to be much easier and I found that production in multiple zones generally matches the 

division of the Lansing-Kansas City in three sections. 
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Figure 13 Regional map showing study area and sample locations. 
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 Figure 13 is a gamma ray log taken modified from Brown (1984) showing a zone 

breakdown of the Lansing-Kansas City group in Haskell County, Kansas. The log has been 

broken down into upper, middle, and lower sections according to the sea level depth at the time 

of deposition. 

 

Figure 14 Lansing-Kansas City zone breakdowns. (Modified from Brown, 1984). 
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 2.2 Sample Well Logs 

The following logs correspond to wells sampled in this study. Each log is marked by 

which zone/zones within the Lansing-Kansas City it is producing from.  This information was 

gathered from the Kansas Geological Survey Oil and Gas well database. Perforation depths are 

marked according corresponding scout cards for each well. Lansing-Kansas City zones were 

determined by referencing Figure 13.  

Table 5 Table with well identification, sample names, and Lansing-Kansas City zones. 

 

 

Figure 15 Gamma ray log of McElhaney #1 with perforations marked. 
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Figure 16 Gamma ray log of McElhaney #1A with perforations marked. 

 

Figure 17 Gamma ray log of McElhaney #3A with perforations marked. 
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Figure 18 Gamma ray log of McElhaney #4 with perforations marked. 

 

Figure 19 Gamma ray log of Jones #2 with perforations marked. 
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Figure 20 Gamma ray log of Jones #3 with perforations marked. 
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Figure 21 Gamma ray log of Jones #4 with perforations marked. 
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Figure 22 Gamma ray log of Jackson #1 with perforations marked. 

 

Figure 23 Gamma ray log of Williams #11A with perforations marked. 
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 2.3 Methodology for Oil Analysis 

 The nine oil samples in this study were processed at a designated lab in the Chemistry and 

Biochemistry Department at Kansas State University and then sent for ICP-MS and ICP-AES 

analysis at the University of Strasbourg in Strasbourg, France. 

 Initially, 100ml of oil was taken and treated with 30ml of vaccum sealed doubly distilled 

purified nitric acid. The acid was diluted 3 times of the original concentration. This showed no 

detectable amount of REEs by ICP-MS analysis. Next we used 200ml of oil treated with the 

same volume of 3 time’s diluted concentrated nitric acid. Again, no REE could be detected by 

ICP-MS analysis. Then we used 500ml of oil, and this time only La, Ce, and Nd were detectable. 

Sm to Lu was not detectable at all.  Finally, 1000ml of oil was used with the same amount of 

reagent added to it as before. All elements were detectable by ICP-MS analysis. 

 The sample processing began by extracting crude oil from sample bottles.  The sample 

bottles contained a mixture of crude oil and brine that is associated with oil. The oil was 

extracted by carefully pipetting out of the sample bottle, avoiding contact with the brine. The 

pipetted oil sample was placed into 22 cleaned 50ml centrifuge tubes. Each sample was then 

centrifuged for 4 hours to ensure separation of oil and brine. It was observed that centrifuging 

removed 2-3 milliliters of brine from each centrifuge tube full of oil. Each oil sample was then 

weighted by the milliliter, in an electronic scale to know the sample’s mass in grams.  After this 

separation process was completed, the evaporation process began for the oil samples.  
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Figure 24 Oil sample preparation flow chart (Modified from Ramirez, 2013). 

 The evaporation process took place at Dr. Matthew Totten’s lab in Manhattan, KS. The 

room preparation in the Chemistry/Biochemistry Building was not adequate to do heavy oil 

evaporation. The black fumes emitted during heavy oil evaporation were too volatile to conduct 

the evaporation indoors. I used a process (Figure 21) implemented by Ramirez (2013). This 

consisted of preparing a homemade slow evaporation furnace with complete isolation to the 

outside and a ventilation conduct to dispose of the fumes.  

The initial evaporation started at 200 degrees Celsius on a covered hot plate. At this 

temperature the samples will emit smoke, but not boil. The samples were monitored during the 

evaporation process to ensure continuous fuming with no boiling. Each oil sample took an 

average of 100 hours for slow evaporation. Small increases in temperature were applied to each 

sample during the 100 hours. As the temperature increased, the light fractions of the oil were 

volatilized. As explained in the crude oil composition section, the heavy fraction of the oil is the 

residue with a high percentage of Oxygen and Nitrogen. The purpose of evaporation of the oil 
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samples was to separate the heavy fraction. It was very apparent when the samples reached the 

heavy fraction of the oil because they ceased to emit fumes and the originally liquid oil had 

become a viscous, pasty material. In some cases the oil was completely hardened. When the 

sample wouldn’t fume anymore at temperatures close to 550˚C, the sample was removed and 

taken to the Chemistry lab for continued preparation. At this point the oil has evaporated off the 

light fraction materials, leaving a think tar substance in the bottom of the evaporation beaker. To 

continue the evaporation processes, 4N HNO3 solution was added to the crude oil. This process 

caused the sample to turn into a hard ash substance. The samples were left on the hot plates 

overnight and evaporated to dryness.  After each sample was cooled, a mixture of 30ml of 

concentrated HNO3 and 30ml of deionized H2O was used to rinse the dried ash and the solution 

was collected in a 100ml crucible. This process was repeated, and approximately 120ml of rinse 

solution was collected. The rinse solution was then placed on a hot plate at 150 degrees Celsius 

and evaporated to dryness. Each sample was allowed to cool to room temperature. Finally, 15ml 

of 1N HNO3 was added to each crucible.  The acid was swirled around ensuring that the 

evaporated solution dissolves into the 1N HNO3. The 15ml of 1N HNO3 final solution was then 

filtered with 42mm hardened ashless filter paper, collected in 30ml samples bottles, and shipped 

to the lab for processing. 

 2.3.1 Potential Sources for Analytical Error 

The ICP-MS and ICP-AES machines at the University of Strasburg show an analytical 

instrument error of 5%. There are also two sources of potential error that should be addressed in 

this study: REEs in the nitric acid and contamination by variable silicate dust. The acid used in 

this study is vacuum sealed double distilled purified concentrated nitric acid. Before each step of 

sample preparation all instruments are thoroughly cleaned by nitric acid bath and rinsed with 

deionized water. A blank sample of the nitric acid used in this study was run on the ICP-MS and 

the total REE concentrations were approximately 2.5 ppb. This small amount of REEs would 

have little to no effect on the samples. The second concern is variable silicate dust contaminating 

samples during preparation. Great care is taken to avoid dust contaminating the oil samples. 

Small amounts of dust will have little to no effect on the REE distribution patterns.  
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Chapter 3 - Results 

The Lansing-Kansas City oil and brine samples were prepared for analysis in the Kansas 

State University Chemistry/Biochemistry department.  The oil and brine samples were sent to the 

Laboratory of Hydrology and Geochemistry at the University of Strasbourg, France, for 

analytical examination by ICP-MS and ICP-AES. Oil and brine sample results are shown in the 

following tables. 

 3.1 Crude Oil REE Concentrations 

Table 6 shows the REE and trace element analysis of the ten oil samples taken from ten 

wells in Rooks County, Kansas.  After  receiving the raw ICP-MS and ICP-AES data, the 

samples were corrected to the sample amounts and final solution amounts.  Each sample started 

with approximately 1000ml oil.  This oil was burned down and dissolved in 15ml of 1N HNO3. 

Raw data was multiplied by 15 and divided by 1000 in a Microsoft Excel spreadsheet. From Si to 

P, all numbers are in parts per million (ppm). The remaining elements from Sc to U are in parts 

per billion (ppb). Elements that were below detection limit have been filled in with orange. REEs 

have been highlighted in blue. At the bottom of the table Ce and Eu anomalies, U/Th ratios, V/Ni 

ratios, K/Rb ratios, and Total REEs have been calculated. 

Table 6 REE and trace element analytical results for Lansing-Kansas City oil samples 

Element MM-MC-01 MM-MC-1A MM-MC-3A MM-MC-04 MM-JS-02 MM-JS-03 MM-JS-04 MM-JK-01 MM-WM-11A 

Si 0.22 0.27 0.27 0.18 0.045 0.060 1.05 0.048 0.395 

Al 0.213 0.049 0.11 0.039 0.200 0.206 0.341 0.135 0.419 

Mg 9.527 0.03 9.58 0.042 0.083 0.177 21.1 0.177 0.183 

Ca 50.32 0.35 46.7 0.27 0.479 0.926 258 1.34 1.01 

Fe 0.44 0.23 2.47 0.44 0.048 0.685 5.85 1.05 0.354 

Mn 0.0127 0.00271 0.02344 0.00969 - 0.010 0.058 0.007 0.007 

Ti - - - - 0.006 0.004 0.015 - 0.003 

Na - 0.58 - 2.18 2.15 6.54 0.02 13.3 14.5 

K 2.34 - 1.97 - 0.220 0.224 10.7 0.288 0.312 

P 0.15 0.1 0.19 0.1 0.038 0.036 0.242 0.066 0.092 

Sr 2310 13 2706 9 4.9 38.4 26500 67.8 32.5 

Ba 13.1 2 55.7 2.1 4.3 4.4 261 3.9 8.0 

V 65300 36100 100000 42300 986 1480 40200 1720 9070 

Ni 20300 10700 28300 11900 367 481 4481 465 1454 

Co 98 43 147 59 3 4 49 5 9 
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Zn 226 85 197 79 25.5 64.9 123 24.5 86.3 

Cr 16.2 7.3 14.5 7.0 2.8 1.7 13.2 2.7 9.0 

Cu 31 8.3 224 12.0 11.0 8.3 12.4 5.5 26.3 

Rb 1.69 0.054 1.93 0.040 0.11 0.12 12.2 0.16 0.30 

Y 1.30 0.45 0.20 0.44 0.10 0.12 0.70 - - 

Zr 4.9 0.26 0.56 0.29 4.51 0.71 3.47 1.00 10.2 

Cs 0.08 - 0.12 - - - 1.31 0.10 - 

La 8.10E-02 3.90E-02 1.60E-02 1.59E-02 9.52E-04 1.29E-03 1.56E-02 8.10E-04 3.59E-03 

Ce 1.64E-02 7.91E-03 1.28E-02 5.09E-03 1.70E-03 1.50E-03 1.56E-02 1.22E-03 6.02E-03 

Pr 1.63E-02 8.48E-04 1.32E-03 4.58E-04 1.11E-04 1.88E-04 1.46E-03 1.11E-04 6.35E-04 

Nd 7.50E-03 3.29E-03 4.68E-03 1.73E-03 4.13E-04 6.19E-04 4.78E-03 4.29E-04 2.38E-03 

Sm 2.25E-03 7.43E-04 9.60E-04 3.15E-04 7.94E-05 9.38E-05 4.71E-04 9.52E-05 4.13E-04 

Eu 8.25E-04 1.43E-04 - 6.75E-05 3.17E-05 3.75E-05 - 3.17E-05 7.94E-05 

Gd - 6.00E-04 9.00E-04 3.00E-04 1.43E-04 1.31E-04 5.14E-04 2.38E-04 3.97E-04 

Tb - 6.75E-05 1.28E-04 - 1.59E-05 1.88E-05 6.21E-04 1.59E-05 4.76E-05 

Dy 1.73E-03 3.60E-04 6.68E-04 2.18E-04 6.35E-05 9.38E-05 4.07E-04 7.94E-05 2.70E-04 

Ho 1.05E-03 6.00E-05 3.38E-04 4.50E-05 - 1.88E-05 2.06E-03 1.59E-05 4.76E-05 

Er 1.13E-03 1.88E-04 3.83E-04 1.43E-04 4.76E-05 5.63E-05 2.79E-04 4.76E-05 1.43E-04 

Tm 8.25E-04 - 5.25E-05 - - - 2.14E-05 - 1.59E-05 

Yb 1.20E-03 2.03E-04 3.08E-04 1.65E-04 4.76E-05 5.63E-05 1.71E-04 4.76E-05 1.11E-04 

Lu 8.25E-04 - 3.75E-05 - 6.35E-05 3.75E-05 4.29E-05 1.59E-05 1.59E-05 

Pb 1.2278 1.4025 13.2750 1.3950 0.0308 0.0371 0.4241 0.0235 0.0646 

Th 0.0090 0.0009 0.0016 - - - 0.0021 - - 

U 0.0596 0.0189 0.0938 0.0292 0.0004 0.0006 0.0089 0.0004 0.0021 

U/Th 6.616666667 21.05 59.52380952 - - - 4.13 - - 

V/Ni 3.216748768 3.373831776 3.533568905 3.554621849 2.686376022 3.076923077 8.971211783 
3.69892473

1 
6.237964237 

K/Rb 1384.6 - 1022.3 - 2000.0 1866.7 877.8 1800.0 1040.0 

TREE 0.1310 0.0534 0.0385 0.0244 0.0037 0.0041 0.0420 0.0032 0.0142 

 

 An important calculation is the total REEs in each oil sample. This was calculated by 

adding each element’s concentration in the oil sample.  Figure 16 was created using the 

calculated total REEs. According to Figure 16, MM-JK-01 contains the smallest amount of total 

REEs and MM-MC-01 contains the largest amount of total REEs. Knowing the samples with the 

smallest and largest total REEs enables you to use those samples to normalize the remaining 

samples.  The total REE concentrations may be representing the light hydrocarbon bearing 

enriched oil fraction analyzed. 
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Figure 25 Distribution of total REE concentration in Lansing-Kansas City oil samples. 
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 3.2 REE Distribution Patterns of Crude Oil 

In order to analyze and compare the concentrations of REEs in crude oil samples, each 

sample must be normalized to set of constants.  In this study REE distribution patterns were 

normalized to the Post Archean Austrailian Shale (PAAS) (Figure 17) and the smallest total 

REE, MM-JK-01 (Figure 18), as stated above. Values for REEs were plotted on a line graph with 

element name on the x-axis and normalized REE values on the y-axis.  

 

Figure 26 Relative distribution patterns of REE concentrations in three Lansing-Kansas 

City oil samples (MM-WM-11A, MM-MC-1A, MM-MC-4A). Normalized to PAAS. 

Samples are grouped with similar distribution patterns. Zones of production are 

highlighted with correlating colors.  
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Figure 27 Relative distribution patterns of REE concentrations in three Lansing-Kansas 

City oil samples (MM-JS-02, MM-JS-03, MM-JK-01). Normalized to PAAS. Samples are 

grouped with similar distribution patterns. Zones of production are highlighted with 

correlating colors. 

 

 

Figure 28 Relative distribution patterns of REE concentrations in two Lansing-Kansas City 

oil samples (MM-JS-04 and MM-MC-3A). Normalized to PAAS. Samples are grouped with 

similar distribution patterns. Zones of production are highlighted with correlating colors. 
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Figure 29 Relative distribution patterns of REE concentrations in one Lansing-Kansas City 

oil samples (MM-MC-01). Normalized to PAAS. Zone of production is highlighted with a 

correlating color. 
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 3.3 K/Rb Ratios 

 K/Rb ratios were calculated and plotted for Lansing-Kansas City oil samples and 

compared to a know average K/Rb ratio in silicate minerals (Figure 19). Rb values were taken 

from raw ICP-MS data and divided by K values taken from raw ICP-AES. Rb values were 

recorded in parts per billion (ppb) and K values were recorded in parts per million (ppm). After 

dividing Rb values by K values in an Excel spreadsheet, the samples needed to be multiplied by 

1000. 

 

Figure 30 K/Rb ratios of Lansing-Kansas City crude oil samples. Average of silicate 

minerals (clays) included for reference (Chaudhuri et al., 2007). 
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 3.4 Crude Oil Gas Chromatograph Analysis 

Gas chromatographs were run on 11 crude oil samples in the Lansing-Kansas City group. 

Nine of the eleven samples also have been analyzed by ICP-MS and ICP-AES for trace element 

and REE concentrations. MM-DJ-02 and MM-PJ-01 were collected while sampling the other 9 

wells, but were not producing enough crude oil for analysis of REEs. Dr. R.P. Philp and his 

colleagues at the University of Oklahoma provided gas chromatograph data. Approximately 

10ml of crude oil was sent to Dr. Philp for whole oil analyses.  He determined that the doublet at 

40 minutes was the nC17/Pr. By identifying the nC17 biomarker allowed for easy identification of 

the other biomarkers in the chromatograms. Figure 20 is a compilation of all 11 chromatographs 

with corresponding numbers to identify each graph. Full size chromatograms are located in 

Appendix B. 

 

Figure 31 n-Alkanes in Lansing-Kansas City oils. 
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Figure 32 Isoprenoids of Lansing-Kansas City oil samples. 
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Figure 33 Gas Chromatograms of Lansing-Kansas City crude oil. (1) MM-DJ-02 (2) MM-

MC-3A (3) MM-MC-4A (4) MM-JK-01 (5) MM-WM-11A (6) MM-JS-04 (7) MM-JS-02 (8) 

MM-MC-01 (9) MM-JS-03 (10) MM-MC-1A (11) MM-JS-03. 

1 2 3 

4 

11 10 

8 9 

6 7 
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Chapter 4 – Discussion 

 4.1 REE Relative Distribution Signatures in Crude Oil 

Although samples for this study were taken from a relatively small area in central 

Kansas, the REE distribution patterns vary greatly. Nearly all oil samples investigated in this 

study have varied degrees of light REE-enrichment across the REE series from La to Sm, they 

differed in their relative Ce abundances. Some samples have positive Ce anomalies; some have 

negative Ce anomalies, and some others with the absence of any Ce anomaly. The oils also 

differed in their PAAS-normalized relative distribution of the middle rare earth elements 

(MREEs), ranging from Sm to Tb. All oil samples were relatively enriched in the MREEs, but 

with varied degrees of enrichment from a prominent one to almost a barely noticeable one. The 

oils differed in their relative distributions of Eu, as some were with a positive Eu anomaly, some 

with a negative Eu anomaly, and some with the absence of any Eu anomaly. The trends of the 

heavy rare earth elements (HREEs) from Tb to Lu among the oils ranged from nearly flat for the 

most oils to a progressive depletion across the series for few samples. Furthermore, the oils were 

varied in having prominently anomalous relative distributions, in some cases with a positive 

anomaly and in others with negative anomaly, for such elements as Tb, Ho, Tm, and Lu, which 

potentially implies biogenic enzyme influence. 

Table 7 Lanthanum to Lutetium ratio showing LREE enrichment. 

Sample La/Lu 

MM-JS-02 0.17 

MM-JS-03 0.39 

MM-JS-04 4.09 

MM-JK-01 0.57 

MM-WM-11A - 

MM-MC-01 1.11 

MM-MC-1A - 

MM-MC-3A 4.80 

MM-MC-4A - 
 

Cerium and Europium anomalies are measured by finding the value of cerium or 

europium that the distribution pattern should follow if there was no depletion or enrichment, by 

interpolating between the normalized values of Lanthanum and Praseodymium for cerium 
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anomaly, and Samarium and Terbium for the europium anomaly. The calculated value is 

designated as Ce* or Eu*. The analytical value of Ce and Eu is divided by the Ce* and Eu* 

calculated values. Due to analytical error margin of 10% from the laboratories used, when 

calculating the anomalies, a standard is set where my value is considered an anomaly when 

having a value of ±10% for enrichment or depletion.  

 4.1.1 Light Rare Earth Elements (LREE) 

 Cerium Anomalies 

Table 8 Cerium anomalies in Lansing-Kansas City oil samples. 

Sample Ce/Ce* 

MM-JS-02 1.14 

MM-JS-03 0.68 

MM-JS-04 0.68 

MM-JK-01 0.91 

MM-WM-11A 3.13 

MM-MC-01 0.10 

MM-MC-1A 0.18 

MM-MC-3A 0.57 

MM-MC-4A 0.27 
 

The most prominent feature shown throughout all LREE distribution patterns is a Cerium 

negative anomaly. Six of the nine samples show the presence of a negative Ce anomaly. Two 

samples show the presence of a positive Ce anomaly, and one sample shows no anomaly at all. 

An explanation for the variations in Ce concentrations from different wells may be linked to 

variations in organic source materials. Several studies have shown that Mn-oxyhydroxides partly 

controlled REE fractionation and mobility in natural water.  This provides evidence that a 

negative cerium anomaly is developed through the oxidation of Ce (III) onto the surface of 

MnO2 (Pourret et al., 2008; Davranche et al., 2005). Literature has also frequently reported Ce 

negative anomalies in terrestrial inorganic materials due to the manganese oxide precipitation 

effect. As manganese oxide precipitates as Mn-nodules found on ocean beds, the ocean beds 

have been reported to have positive cerium anomalies. Additionally, seawaters have also found 

to correlate with ocean beds, showing Ce negative anomalies. Adversely, focusing on the two 

samples with positive Ce anomalies, Pourret et al., 2008 explains that in multiple studies positive 
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Ce anomalies have only been reported in alkaline waters. Such positive Ce anomalies were 

interpreted as resulting from the stabilization of carbonato-Ce(IV)-complexes in solution leading 

to enhanced abundances of Ce (IV) in comparison with its trivalent REE neighbors (Moller and 

Bau, 1993). Pourret et al., 2008 introduces the idea that positive Ce anomalies may be more 

common features of alkaline, carbon-rich and aerobic waters than previously recognized. 

 4.1.2 Middle Rare Earth Elements (MREE)  

 MREE Enrichment 

Seven out of the nine samples have been found to have MREE enrichments (MREE with 

convex upward trends). MREE enrichments can generally be attributed to increases in 

phosphates. It can be reasonably argued that organic matter associated with the source of the 

Lansing-Kansas City was a prime source of this phosphorous, which became available during 

organic matter transformation. 

 Europium Anomalies 

A commonality found in the most of the MREE portion of the distribution patterns is a 

Eu positive anomaly. Five of the nine samples exhibit a strong Eu positive anomaly.  Two 

samples (MM-JS-04 and MM-MC-3A) recorded no Eu values because the element was below 

detection limit. The Eu anomaly couldn’t be calculated for sample MM-MC-01 because Gd was 

below detection limit. 

Table 9 Europium anomalies in Lansing-Kansas City oil samples. 

Sample Eu/Eu* 

MM-JS-02 1.31 

MM-JS-03 1.54 

MM-JS-04 - 

MM-JK-01 0.86 

MM-WM-11A 1.69 

MM-MC-01 - 

MM-MC-1A 1.01 

MM-MC-3A - 

MM-MC-4A 1.03 
 

Most geochemists working on crustal inorganic materials have attributed positive Eu 

anomalies in such materials to crystallographic effects, especially feldspar minerals which favor 
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accommodation of Eu
2+

 over a trivalent species. But those who have worked on modern plants, 

like Chaudhuri and Clauer, have found Eu positive anomalies in plants relative to their growth 

substrates. The evidence from such studies does not support the idea of a crystallographic effect. 

Often finding differences in Eu anomalies among different organs of the same plant, Chaudhuri 

and Clauer (2007) believe that plant enzyme effect plays a significant role in Eu anomalies in the 

organic materials.  

 4.1.3 Heavy Rare Earth Elements (HREE) 

 Terbium, Holmium, and Tm Enrichments 

 

Figure 34 Relative distribution patterns of Lansing-Kansas City oils. MM-JS-04 showing 

positive Tb and Ho anomalies. MM-MC-3A showing a positive Ho anomaly. MM-MC-01 

showing positive Ho and Tm anomalies. 

There are several samples that show a Tb, Ho, or Tm positive anomaly, as shown in 

Figure 22. These anomalies were determined by looking at the overall trend of the REE 

distribution patterns. The anomalies have been common with Eu and Ce in natural materials 

because of the difference in the oxidation states from the natural (III) oxidation state for all the 
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REEs. Thus, Ho, Tb, and Lu anomalies, varied in different degrees among the samples, and these 

are reflections of the growth history of the organic source material, arising potentially from 

enzymatic influence during the growth of the organic materials. 

 4.2- Lansing-Kansas City Zone Correlation 

There are four broadly distinct REE distribution patterns. These patterns correlate well to 

specific zones of production in the Lansing-Kansas City formations.  

The first pattern (Figure 26) includes wells MM-WM-11A, MM-MC-1A, and MM-MC-

4A. The REE distribution patterns in general were slight LREE enriched to nearly flat. All 

samples show a slight MREE enrichment. La enrichment is due to La-Ca replacement. Ca is an 

important component needed for plant growth. La has a similar size to Ca, often times replacing 

Ca in plant enzymes. 

The second pattern (Figure 27) includes wells MM-JS-02, MM-JS-03, and MM-JK-01. 

All samples in this pattern show a slight MREE enrichment due to a phosphate influence. Each 

sample has mixed zone production. The mixed zones deferred sometimes to a positive Gd 

anomaly, in other situations Ho and Tm negative anomalies.   

The third pattern (Figure 28) includes wells MM-JS-04 and MM-MC-3A. These 

distribution patterns are described as having nearly flat REE distribution patterns with a slight 

LREE enrichment.  MM-JS-04 has very prominent Tb and Ho positive anomalies, unlike MM-

MC-3A with a flat distribution pattern. 

The fourth pattern (Figure 29) contains MM-MC-01. This pattern is showing production 

from solely the LKC “A” zone. It was characterized by a very rough concave upward distribution 

pattern, which may suggest an influence of phosphate depletion. Nevertheless, the most 

significant features of this distribution pattern are marked with positive anomalies of a number of 

REEs. The oil coming from this single zone must be derived from varied organic sources. 

MREE enrichment (Figures 26 & 27) can be observed in samples with production from 

the middle Lansing-Kansas City zones (G-I). In samples with comingling LKC zones (Figures 27 

& 28), amplification of anomalies from differing source materials can be observed. 
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 4.3-K/Rb Ratios in Crude Oil 

Potassium (K) is essential for all forms of life and is taken up by plants in its cationic 

form (K
+
). Rubidium (Rb), a trace element with similar properties as K, in contrast, has no 

biological function. The uptake of Rb is also much more sensitive to changes in soil properties 

such as K availability, acidity, and absorption properties of the soil. This results in typically 

higher K/Rb ratios in biological materials than in soils (Peltola et al., 2008). Based upon 

assumptions regarding average chemistry of smectites and illites, the average shale requires 13.4 

% potassium feldspar to provide the necessary K+ (Totten and Blatt, 1996). As the average shale 

only contains 5% feldspar (Blatt, 1992), an additional source for potassium is required. A study 

by Chaudhuri et a., 2007 also showed that when K is studied in conjunction with Rb, the K/Rb 

ratio can be a strong geochemical tracer for the source of potassium into a system. Their study 

concluded that K/Rb ratios are much higher in organic materials than in common K bearing 

silicate minerals, like feldspar and mica. K/Rb ratios taken from eight Lansing-Kansas City 

crude oil samples range from 877 to 2000, which indicates a large influence from organic matter 

in the crude oils.  According to Chaudhuri et al., 2007, silicate minerals have a K/Rb ratio range 

from 50-650, significantly lower than the crude oil samples in this study (Figure 19).  According 

to the currently accepted petroleum system model for the midcontinent (Figure 1), oils in the 

Lansing-Kansas City group would have migrated from two potential sources in northern 

Oklahoma: Ordovician and Devonian aged rocks (Gerhard, 2004).  The hypothesis presented by 

Gerhard argues that the intersection of fractures of the Nemaha and Central Kansas Uplift form a 

structural barrier to migration, so that oil moving from the south is shunted along the major 

fractures to fill reservoirs on and along the uplifts. If the oils in the Lansing-Kansas City 

reservoirs migrated along fracture pathways from the Anadarko basin, K/Rb ratios will be 

expected to have a narrow range of values. If the oils migrated such a long distance, the oils 

exchanged K/Rb values with the silicate values. This study is supportive of the idea based on 

significantly high K/Rb ratios in Lansing-Kansas City oil samples the local oil generation in the 

northwest Kansas is a strong possibility. The ratio range of 877-2000 is indicative of local source 

rock variations. The local source rocks may not appear to have attended the appropriate vitrinite 

reflectance in conformity with the accepted oil-window temperature. Hence the assertion of local 

source derivation for the oil will require an explanation. If either a metal aided catalytic effect on 
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the organic mater transformation or natural radioactive source radiation promoted a reaction or 

both might have played an important role in this local source transformation to generate oil. 

 4.3 Biomarkers 

Biomarkers are a group of compounds found in hydrocarbons that are considered 

“molecular fossils.”  Biomarkers are structurally similar to living organisms, but have been 

diagenically altered. Biomarkers allow exploration geologists to evaluate the type of source rock, 

maturity of the oils, and alterations incurred upon the oils following accumulation (Evans 2011). 

The two groups of biomarkers looked at in this study are the n-alkanes and the isoprenoids. A 

discussion of these biomarkers can be found in chapter 1.3.1. 

 The original chromatograms show 3 different trends with normal alkanes or n-alkanes. 

The first trend shows a high peak around nC6 and nC7 with a rapid decrease until nC11/nC12, 

then a small hump between nC13-nC15 and a gradual decline until the end of the chromatograph. 

There are six samples showing trend one: MM-JS-02, MM-JS-03, MM-JS-04, MM-MC-01, 

MM-WM-11A, and MM-JK-01. The second trend is similar to the first, but with out a prominent 

peak and decline around nC6/nC7. This trend shows one high peak at nC7 with nC8 significantly 

lower. Between nC8 and nC12 there is a gradual increase in size of the peaks, with the top of the 

hump occurring at nC13/nC14 and a gradual decrease until the end of the chromatogram. There 

is 4 samples showing trend two: MM-MC-1A, MM-MC-3A, MM-MC-4A, MM-DJ-02. The 

third trend only occurred in one sample, MM-PJ-01. This pattern shows the possibility of 

biodegradation of the oil. The values of the biomarkers between nC6 and nC12 are significantly 

lower than the ten other samples. There is a large hump that forms between nC13 and nC17 and 

a rapid decrease until the end of the chromatogram. Values for the n-alkanes between nC11 and 

nC30 were converted into a normalized percent and plotted on a graph for correlation of all 11 

samples (Figure 20). The largest differences are observed between nC11 and nC17, as well as 

towards the end of the sequence. 

 After n-alkanes were determined, isoprenoids were studied and values were converted to 

normalized percent. Isoprenoid signatures show little differences between the eleven samples. In 

general, IP14 and IP15 share about the same value. IP16 has the highest peak with a delpletion in 

IP17 and a high peak at pristine. The normalized percent of the isoprenoids were plotted on a 

graph for correlation of the eleven samples. 
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 The pristine and phytane values were calculated and converted into a normalized percent, 

the same as the rest of the isoprenoids. A pristane/phytane ratio was calculated for each sample 

(Table 7). As stated in a previous chapter, pristane and phytane are commonly looked at together 

as a ratio (Pr/Ph). The Pr/Ph ratio of a crude oil is a reflection of the source of the original 

organic matter and the paleoenvironmental conditions during decomposition and early burial. 

Higher Pr/Ph values (3 to 15) indicate a source from mostly land derived organic matter that has 

passed though a highly oxygenated state in its decomposition. Low Pr/Ph values (1.1 to 2) 

indicate oil that has been generated from marine organic source materials. The Pr/Ph values for 

each of the eleven samples range from 1.15 to 1.48. These values indicate that the source of oils 

in the Lansing-Kansas City formations are a collection of marine organic source materials. 

 

Table 10 Pristane/Phytane ratios for Lansing-Kansas City oil samples. 

Sample 
Pr/Ph 
Ratio 

MM-JS-02 1.48 

MM-JS-03 1.29 

MM-JS-04 1.26 

MM-MC-01 1.33 

MM-MC-1A 1.38 

MM-MC-3A 1.34 

MM-MC-04 1.35 

MM-WM-11A 1.32 

MM-JK-01 1.28 

MM-PJ-01 1.15 

MM-DJ-02 1.39 
 

Finally, the carbon preference index (CPI) was calculated for each oil sample (Table 11). 

The CPI is a measure of the odd and even n-alkane chain length preference in crude oil. Values 

for the Lansing-Kansas City oils ranged from 0.98 to 1.01, indicating the source was a marine 

carbonate (Evans, 2011). 

Table 11 Carbon Preference Index (CPI) of Lansing-Kansas City oil samples. 

Sample CPI 

MM-JS-02 0.989 

MM-JS-03 1.008 

MM-JS-04 0.987 
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MM-MC-01 0.981 

MM-MC-1A 0.974 

MM-MC-3A 1.001 

MM-MC-04 0.988 

MM-WM-11A 0.988 

MM-JK-01 0.990 

MM-PJ-01 0.980 

MM-DJ-02 1.011 
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Chapter 5 – Conclusions 

 Walters (1958) and Price (1980) both advanced the theory of long-distance migrations of 

oil from the Anadarko basin to central Kansas through Arbuckle rocks, during the mid-Permian. 

Their model calls for decreasing amounts of oil and gas to be emplaced northward as traps fill 

and correspondingly decrease the supply of petroleum for more northerly traps. The barriers to 

migration model suggested herein simply adds one more complication to the migration story and 

does not assume a restricted supply of petroleum from the Anadarko (Gerhard, 2004). It can be 

argued from this study that the belief that liquid hydrocarbons in northwest Kansas did not all 

migrate from the Anadarko basin, but instead have some component of local source generation. 

 When comparing results from tools such as REE distribution patterns and K/Rb ratios 

there are a significant amount of differences between each sample.  Total REE concentrations 

range from 0.0032 to 0.131 ng/L of oil (Figure 16). REEs also vary in their distribution patterns, 

specifically in the HREE values.  Depending on which elements are enriched or depleted could 

mean a different type of source material or difference in source rock. K/Rb values show the 

largest amount of differences, with values ranging from 877 to 2000. These values indicate a 

K/Rb source originating from organic materials. The difference in these results suggests a local 

oil source. We believe that if the oils in the Lansing-Kansas City originated from the Anadarko 

basin, the REE and K/Rb results would be similar due to hydrocarbon mixing over long 

distances. Looking at gas chromatograph data for each oil sample, there are three distinct oil 

classifications shown. Differences in biomarker patterns also supports the idea varying sources. 

The collective info from this study strongly suggests local source variation is a strong case for oil 

generation and accumulation in the Lansing-Kansas City formations in Rooks County, Kansas. 

 5.1 Future Work 

Much work still needs to be done to determine an exact source of the oils in the Lansing-

Kansas City group. Shale units in the lower Kansas City and other formations around Kansas that 

show strong gamma ray signatures should be investigated for REE concentrations, TOC, and 

vitrinite reflectance. 

Chaudhuri et al., 2011, has shown that oil field brine can be a useful tool for 

understanding organic processes during sediment deposition and hydrocarbon generation. 
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Lansing-Kansas City brines collected during this study should be analyzed and compared to the 

hydrocarbon data. 

The idea of hydrocarbon generation, while probable in deep basin environments, only 

focused on the temperature increase on organic matter but does not take into account all five 

regimes present in petroleum source beds. Those regimes are the atmospheric gases, lithosphere 

or mineral matrices, hydrosphere or H20, biosphere or organic materials, and the ergosphere or 

energy produced from temperature increase and radioactive decay of isotopes present in source 

beds (Kelly, 2014). 
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Appendix A - REE Distribution Patterns in Crude Oil 
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Appendix B - Gas Chromatograph Analysis of Crude Oil 
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