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Chromium Oxide loaded Silica Aerogels: Novel Visible light Photocatalytic Materials for 

Environmental Remediation 

Manindu N Peiris Weerasinghe, Kenneth J Klabunde 

Abstract 

Various photocatalytic systems have been reported for degradation of harmful air pollutants. 

Most of the reported catalysts are based on well-known semiconducting material, Titanium 

Dioxide (TiO2), while some are based on other materials such as Silicon Dioxide (SiO2), various 

Zeolites. However, titania based systems are very popular in this regard and the most of the 

photocatalytic processes that involve titania are considered non-localized.  

Thus, to study the photocatalytic ability of a localized system, novel aerogel based samples 

were studied using silica and chromium and tested for photocatalytic activities. The new 

photocatalytic systems were prepared to obtain aerogel silica as the matrix material by co-

hydrolyzing silica precursor with chromium(III) ions to obtain chromium loaded silica materials. 

Later, these prepared samples were compared to chromium loaded titania and mixed silica-titania 

systems. All the prepared systems have high surface areas compared to the systems that have 

been reported in literature. Samples were characterized by X-ray diffraction, Diffusive 

reflectance UV spectroscopy, and BET surface analysis methods. The kinetics of photocatalytic 

degradation of a model pollutant, acetaldehyde, was performed using a Shimadzu GCMS-QP 

5000 instrument and a glass reactor with a quartz window. 

Change in photocatalytic activity was found with various molar ratios of SiO2 to TiO2. 

From all the systems, chromium loaded pure SiO2 showed the highest activity towards 

acetaldehyde degradation compared to mixed systems and TiO2 based systems. The interesting 
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photocatalytic activity of silica based materials occurs due to the efficient insertion of chromium 

ions into silica matrix to generate reactive sites. The photo excitation is believed to occur at 

molecular orbital level at localized chromium sites.  

Key Words 

Photocatalysis; Aero gel; Semiconductors; Silicon Dioxide; Kinetics; Transition metal 

incorporation; UV and Visible light  
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1. Introduction 

Photocatalysis has been studied actively during the last several decades because of its 

application to green energy and due to the understanding of the importance of a cleaner 

atmosphere. As a result there are a large number of reports about applications of photocatalysis 

in various tasks such as environmental remediation, photocatalytic water splitting, etc. 

Photocatalysis has widely been studied to destroy organic dye compounds from industrial 

effluents, oxidation of indoor and outdoor organic pollutants, etc. The basic advantage of 

photocatalysis is its ability to mineralize a large variety of harmful organic pollutants under 

ambient temperature and pressure conditions.[1] 

In most of the successful photocatalytic materials that have been reported earlier, comes 

with a supporting base material. Titania is one of the most widely used photocatalytic material 

that has shown success in organic material decomposition. It is believed that the supporting 

material facilitates the catalytic activity of the catalytic site by enhancing charge carrier 

separation, allowing reduced electron hole recombination and facilitating charge transfer to 

adsorbed species making photocatalytic processes are non-localized.[2,3,4] But, whether a 

photocatalytic process must always be non-localized and semiconductors are required are 

questions that still needs to be answered.  

Therefore, our main objective is to discover photocatalytic systems which progress according 

to localized mechanisms. The study was carried out by preparing such a system using insulating 

silica materials. Generally low reactivity and higher band gap energy of silica makes it a suitable 

material to study the localized properties of photocatalysis.  
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Furthermore, to achieve visible light activity, it is important to insert a suitable light 

harvesting material into silica in order to introduce photocatalytic activities. Transition metals 

and metal oxides have been actively used in this regard. Transition metals are very good 

candidates to absorb in the visible range of the spectrum, as orbital energy transfer usually lies in 

the visible range.  According to several literature reports and based experiments which were 

carried out in our lab, chromium loaded systems showed highest activities towards oxidation of 

organic air pollutants. Thus, for our systems chromium was chosen as the doping agent for our 

more in-depth study of Cr-SiO2 and mixed TiO2-SiO2 samples.[5,6,7,8] Herein we report the 

observed UV and visible light activities of chromium ions loaded silica and titania based 

materials and possible mechanisms for the observed photocatalytic performances. 

2. Material and methods 

2.1. Photocatalyst Preparation 

2.1.1. Preparation of Chromium ions loaded Silica and/or Titania Aerogel Samples 

Chromium ion loaded silicon dioxide (Silica), titanium dioxide (Titania) and mixed silica-

titania samples with varying molar ratios of silica to titania were prepared using an aerogel 

preparation method. During the synthesis process Tetraethylorthosilicate (TEOS) and 

Titaniumisopropoxide (Ti(ipr)4) were used as corresponding silica and titania precursors 

respectively. These precursors were co-hydrolyzed in the presence of Chromium(III) nitrate 

(Cr(NO3)3.9H2O), which is the chromium ion precursor. All the chemicals were analytical grade 

used without further purification. During the preparation of samples an amount equivalent to 0.1 

mole percent of the dopant material was dissolved in 140 ml of methanol and 20.0 ml of TEOS 

solution and stirred well. Corresponding titania based samples were prepared using the same 

amount of chromium(III) nitrate dissolved in 140 ml of methanol and 26.6 ml of Ti(ipr)4. Mixed 
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silica and titania samples were prepared using corresponding silica and titania precursor amounts 

for the molar ratios expected for the final products. Then, a mixture of 0.5 ml of water and 2.5 ml 

concentrated nitric acid was added drop wise to hydrolyze silica and/or titania precursors. The 

solution mixture was then aged for about 15 minutes and super critical drying was carried out in 

an autoclave. Then the autoclave was quickly vented soon after the temperature reached 265 oC. 

Finally, the resulting powder was calcined in air at 500oC for 2 hours. 

2.2. Kinetic Studies of photocatalytic systems 

Prepared samples were tested for both UV light and visible light photocatalytic activities. 

Kinetics of the photocatalytic degradation was studied using a Shimadzu GCMS-QP 5000 

instrument and a glass reactor with a quartz window. Acetaldehyde was used as a model 

pollutant and the temperature of the glass reactor was maintained at 25 oC by circulating water in 

the outer jacket of the reactor during all the kinetic experiments. In a typical experiment 0.10 g 

of the prepared sample was uniformly placed on the special glass chamber allowing UV or 

visible light to directly contact the prepared photocatalytic material. Then the air filled system 

was sealed and 0.10 ml of liquid acetaldehyde was introduced to the bottom of the reactor to 

avoid any direct contact of liquid acetaldehyde and the photocatalytic material. During the 

experiment acetaldehyde slowly gets evaporated due to its near room temperature boiling point, 

and gaseous acetaldehyde gets absorbed on to the reaction sites of the catalyst. Photocatalysts 

were then illuminated with UV or visible light using a 1000 w xenon lamp and glass filters by 

cutting off unnecessary light. The progress of any reaction was detected by injecting 35 µl of gas 

samples from the sealed reactor to the Shimadzu GCMS-QP 5000 instrument every 20 minutes. 

All the kinetics experiments were carried out at least two times in order to confirm the accuracy 
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of the results and were compared with commercially available titania P25 and prepared blank 

samples, where no dopant elements were present. 

2.3. Characterization Studies 

Brunauer-Emmet-Teller (BET) measurements of surface area and pore size distribution of 

the prepared samples were determined using a Quantachrome NOVA 1200 gas 

absorption/desorption analyzer after degassing the samples at 150 oC for two hours. Powder 

XRD analysis of the samples was carried out to determine the crystalline nature using a Scintag-

XDS-2000 spectrometer with Cu K radiation with applied voltage of 40 kV and current of 40 

mA. Samples were scanned 2θ from 0o to 75o with a scan rate of 1o per minute. Diffuse 

reflectance UV-Visible spectra were measured at room temperature in air on a Cary 500 scan 

UV-Vis-NIR photometer over the range from 200 to 900 nm. The sample cell was made of two 

transparent CaF2 discs, a Teflon O-ring and screw-type combination in which photocatalysts 

were packed between two discs and the O-ring. Polytetrafluoroethylene (PTFE) powder of 1 µm 

particle size was taken as a reference material for diffuse reflectance studies.  

The compositions of prepared photocatalysts were determined by carrying out elemental 

analysis using Energy Dispersive Spectrometry using a Scanning Electron Microscope. Detailed 

study of the loaded chromium was carried out using a bulk elemental analysis to determine the 

final amounts of loaded ions. Bulk elemental analysis was carried out using simultaneous optical 

systems and axial or radial viewing of the plasma using Perkin Elmer Optima 5300 spectrometer 

at Galbraith laboratories Inc.  

TEM studies were carried out using a Philips CM100 operating at 100 kV. The TEM samples 

were prepared by dispersing few milligrams of the catalyst in ethanol using an ultrasonic bath. 
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Then a drop of catalyst-ethanol mixture was placed on the TEM grid and air dried. The facilities 

were provided by the Microscopy and Analytical Imaging Laboratory at Department of Biology, 

Kansas State University. 

2.4. Hydroxyl radical generation studies using Terephthalic acid 

Terephthalic acid(TPA), which is not a fluorescent compound, gives a single, fluorescent 

product, 2-hydroxyterephthalic acid (HTPA), by reacting with hydroxyl radicals produced during 

the photocatalytic reaction (Figure 1). HTPA emits fluorescence at around 426 nm on the 

excitation of its own 312 nm absorption band. The measurements of the amount of OH˙ were 

performed for the chromium loaded titania and silica based systems carrying out photocatalytic 

reaction by means of this TPA fluorescence probe method as follows. For the measurements of 

any hydroxyl radicals generated during photocatalytic reactions the photocatalyst samples were 

irradiated under UV and visible light in terephthalic acid solution (2×10-3 M). Then the solution, 

after separation from the photocatalyst, was taken for fluorescence analysis. The fluorescence 

measurements were carried out at the excitation wavelength of 314 nm in the range of emission 

wavelength from 330 nm to 600 nm with maximum peak at 425 nm.[9,10,11] 

 
Figure 1: Reaction path of terephthalate and hydroxyl radicals to generate fluorescent 
hydroxyterephthalate 
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3. Results and Discussion 

3.1. Structure of Chromium loaded Photocatalytic systems 

It is well-known that the effective surface area of a material is important in deciding the 

photocatalytic efficiency of a material because in most of the photocatalytic systems the catalytic 

activity takes place on the surface of the material[12]. Therefore, the photocatalyst synthesis 

process was specially designed to obtain higher effective surface area using a super critical 

drying technique. Surface area values obtained from the BET analysis experiment show that all 

the samples have very high effective surface area values. Obtained effective surface area values 

of silica based materials are higher compared to that of titania based materials which confirm 

what has previously been reported.[13,14] Further, mixed silica and titania systems show a gradual 

decrease in effective surface area with increasing amounts of titania added as indicated in table 1. 

The surface area of samples increased according to a linear pattern with increasing amounts of 

silica (Supporting Information S1). 

Table 1: Change in specific surface area of 0.5(mol)% chromium loaded silica and titania based 
materials

 

According to the EDS studies the ratios of silica to titania in mixed oxide samples matched 

exactly to the initial precursor concentrations. But, due to the limited sensitivity of the instrument 

as well as the minute amount of dopants present in these samples, percentages of chromium 
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could not be detected (Supporting Information, S2). Therefore, a bulk elemental analysis was 

carried out specially to determine the amounts of chromium present in the 0.5(mol)% chromium 

loaded sample. According to the results obtained, the percentage of chromium is 0.369% by 

weight, which when converted in to reported mol % units comes around 0.43(mol)%. Thus, 

considering possible instrumental errors it is clear that only a minimal amount of chromium has 

been lost during the preparation procedure. 

XRD patterns of the Chromium loaded photocatalytic systems are shown in Figure 2. 

Characteristic peaks for the anatase titania can be identified in the titania based system and the 

mixed titania silica systems. No crystalline peaks were observed for the rutile crystalline phase 

of titania. This confirms that prepared titania based samples have anatase crystallinity which is 

suitable for good photocatalytic performance.[15] For the silica based system one broad peak was 

observed that indicates the well-known amorphous nature of silica materials.  

Furthermore, no other diffraction peaks arising from loaded chromium were observed for any 

system indicating that chromium ion doping during the synthesis has no effect on the crystalline 

phase of the matrix material and the loaded chromium does not create any crystalline phases 

either. Chromium crystalline peaks may not be detectable due to lower concentrations and very 

smaller crystallite sizes. Detailed XRD studies were carried out with higher loading chromium 

silica samples prepared in the same procedure to study the reason for absence of chromium 

crystalline peaks. But, as indicated in the figure 2b, no crystalline peaks arising from chromium 

species could be recognized for any higher loaded samples. Thus, consistent with literature 

reports it is clear that chromium either exist as non-crystalline forms bound to silica matrix or 

finely dispersed in the matrix of silica or titania as very small chromium oxide nano-particles.[5,16] 
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Figure 2: (a) Powder XRD studies of 0.5(mol)% Cr loaded silica, titania and (1:1) mixed 
systems (b) powder XRD studies of 0.5(mol)% Cr-SiO2, 1(mol)% Cr-SiO2, 2(mol)%Cr-
SiO2 and 5(mol)% Cr-SiO2. 

Figure 3 shows diffuse reflectance UV-Vis absorption spectra of chromium loaded SiO2, TiO2, 

and mixed photocatalysts. The absorption spectra obtained for titania based samples show 

absorption bands in the UV region compatible with previously reported Titania P25.[16] As 

expected, when chromium is present, absorption in the visible region was observed. For silica 

based photocatalytic systems, bands at 240 nm, 265 nm, 360 nm, 445 nm and 550 nm, can be 

easily recognized in the system where no titania is present. The bands correspond to O  Cr6+ 

charge transfer transitions for Cr6+ ions in tetrahedral environment. These bands can be assigned 

as follows; the band at 445 nm (22500 cm-1) is the symmetry-forbidden transition (1t1  2e) 

which is partially allowed in solid salts, while the other bands at 370 nm (27000 cm-1) 1t1  2e, 

294 nm (34000 cm-1) 1t1  7t2, and 241 nm (41400 cm-1) 6t2  2e are symmetry allowed 

transitions.[18,19,20]  
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Figure 3: Variation of UV-vis absorption bands with different ratios of SiO2 to TiO2 of 
samples loaded with 0.5(mol)% chromium 

Therefore, based on the XRD and the clear UV-Vis absorption patterns which correspond to 

the individual Cr6+ state, it is evident that isolated Cr(VI) sites exist dispersed in the matrices of 

Silica and Titania. The use of minute amounts of chromium during the preparation of these 

materials also favor the formation of isolated Cr6+ sites.[5] Tetrahedral Cr6+ has been reported in 

three different chemical forms, such as Chromium oxide (CrO3), Chromate ions(CrO4
2-) and 

Dichromate ions(Cr2O7
2-). Due to the characteristic yellow-orange coloration and according to 

previous reports both chromate and dichromate species are possible on silica surface[21].  
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Figure 4: TEM images of (a) Blank Silica aerogel, (b) 0.5(mol)% Cr-SiO2 catalyst (c) 5(mol)% 
Cr-SiO2, and (d) 0.5(mol)% Cr-TiO2 

Comparison of TEM images of blank silica sample, 0.5(mol)% Cr-SiO2, and 5(mol)% Cr-

SiO2 is shown in figure 4 above. Loaded chromium sites on silica matrix can be identified in 

both chromium loaded samples as ~ 2 nm size dark spots. The amount of chromium sites 

increase with increasing chromium loading was observed without significant increase in the size 
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of these particles. But, no chromium sites could be observed on the surface of Cr-TiO2 sample as 

shown in the figure 4d.   

The structure of the bound chromium site is one of the important factors when studying the 

mechanism of photocatalytic action. There have been several attempts reported in literature to 

characterize the structure of isolated Cr6+ sites on silica. Moisii and co-workers proposed two 

possible structures for Cr6+ sites (Scheme 1a and 1b) and confirmed the structure 1a for their 0.5% 

Cr loaded silica xerogels using XANES and Raman spectroscopic studies. [22]   

 
Scheme 1: possible structures for the bonding nature of chromium sites to silica 

The probability of getting the same binding nature for our 0.5 (mol)% chromium loaded 

silica system is high due to the similar compositions and nearly same synthesis procedures that 

were employed during the preparation of materials. Further, it has been predicted in literature, 

using Pauling’s criterion, that there is a high probability of isomorphous substitution, which 

would yield metal ions in a stable tetrahedral environment surrounded by oxygen atoms. Based 

on the ratio of ionic radii, ρ, of the cation and anion, the calculated value for titania and oxygen 

( ρ=0.515) falls out of the acceptable range (ρ= 0.225-0.414) for a tetrahedral coordination due to 

the larger size of Ti4+(68pm). Therefore, the binding of small tetrahedral Cr6+(44pm) ions to 

titania matrix is unlikely due to the larger distortion. But Since the ionic radii of Cr6+ and 

Si4+(41pm) are much closer in value, binding of Cr6+ into a silica matrix is very favorable 

compared to Cr6+ binding onto titania.[25] But, due to the presence of the hexavalent Cr oxidation 

state in our catalyst, it is unlikely that Cr6+ could enter into the bulk lattice of silica due to charge 
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considerations and due to the absence of four siloxy anions. Thus, it is likely that most of the 

loaded chromium will end up on the surface of the silica material about 1-2 nm sized clusters of 

chromium(VI) oxide, resulting in a large number of catalytically active sites.[22,23]  

3.1 Kinetics of photocatalytic degradation 

Figure 5 summarizes the results obtained from acetaldehyde photodegradation studies of 

prepared silica, titania and mixed photocatalytic systems under UV and Visible light.  
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Figure 5: Kinetics of photocatalytic degradation of acetaldehyde using 0.5%( mol) 
chromium loaded silica, titania, mixed systems, blank samples and commercially available 
titania P25 (a) under UV light irradiation (b) under visible light irradiation 

According to the kinetic results obtained, chromium ion loaded silica shows the highest 

photocatalytic degradation ability towards acetaldehyde under UV and visible light. The blank 

silica sample, without any chromium ion doping, shows minimal acetaldehyde degradation, 

indicating the importance of loaded chromium in the photocatalytic performance. Furthermore, 

the acetaldehyde degradation under UV light without any catalyst (Blank Acetal) is higher than 

that of in the presence of pure silica (Blank/SiO2). Blank titania also shows significant CO2 

production and this is expected for titania based compounds under UV light.[3,25] Chromium 

doping seems to be not very important in UV light based catalysis as there is only a slight 
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increase in the activity compared to the blank titania based sample. The highest active sample, 

chromium loaded silica aerogel, as shown in both figures 5a and 5b, shows very interesting 

photocatalytic behaviors under UV and visible wavelengths that only start its activity upon 

exposure to light confirming photocatalytic nature of the material. 

The photocatalytic activity under visible light is of more interest to us since a larger 

percentage of solar radiation consists of visible range.[24] Thus, all the samples were tested for 

visible light photo degradation of acetaldehyde and the results obtained are plotted in figure 5a. 

According to the kinetic results acetaldehyde degradation under visible light without any catalyst 

is very low. Therefore, it can be assumed that all the carbon dioxide observed is due to the 

photocatalytic behavior of the material synthesized. Blank silica sample showed no 

photocatalytic activity, as expected, because of the inability of insulating silicon dioxide (SiO2) 

to act as a photocatalytic material by itself. The titania sample prepared in our labs shows a slight 

activity compared to commercially available P25 which may be arising due to the compositional 

changes of different crystalline phases, surface area differences and the particle sizes of 

titania.[3,25] According to the powder X-ray diffraction studies (figure 2) the titania based samples 

prepared in our lab consisted of 100% anatase crystalline titania. But, commercially available 

P25 titania is a mixture of both anatase and rutile crystalline phases.[3,25] According to earlier 

reports, the anatase phase is more efficient as photocatalytic material compared to that of rutile 

phase. Thus, the presence of more anatase titania in our samples may be responsible for the 

comparatively higher activity of our blank titania sample.[3,25] 

The 0.5(mol)% Cr-SiO2-TiO2 systems and the 0.5(mol)% Cr-SiO2 systems show very high 

photocatalytic activities under visible light compared to all the other systems. Further, according 

to figure 6, which compares the effect of different ratios of silica and titania on kinetic activities 
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under visible light, increasing photo degradation ability is observed when more and more silica is 

present. This increased photo activity could occur due to the favorable binding of Cr6+ in a silica 

matrix over that of titania.  

 
Figure 6: Kinetics of photocatalytic degradation of acetaldehyde using 0.5%( mol) 
chromium loaded photocatalytic systems with varying ratios of SiO2: TiO2 under visible 
light irradiation 

Turnover number and the rate of catalysis were calculated using kinetic information given in 

figure 5. For calculation purposes the amount of loaded chromium was used as the catalytic 

active sites assuming that all the loaded chromium involved equally in catalytic oxidation 

process. Turnover numbers given are only for 100 minutes of catalytic time. Since the catalysts 

are active after 100 minutes reaction time, turnover numbers can be further improved by carrying 
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out catalytic experiments for prolonged time durations. Thus, turnover numbers for 0.5(mol)% 

Cr-SiO2 system and mixed systems clearly indicate that the acetaldehyde degradation process is 

photocatalytic in nature. 

 

 

Table 2: Turnover numbers obtain for the acetaldehyde degradation under visible light 

Catalyst 
Turnover Number 
(First 4 hours of 

catalysis) 

Turnover 
Frequency (min-1) 

0.5(mol)% Cr-SiO2 17 0.17 

0.5(mol)% Cr-SiO2-TiO2 (80:20) 11 0.11 

0.5(mol)% Cr-SiO2-TiO2 (60:40) 12 0.12 

0.5(mol)% Cr-SiO2-TiO2 (50:50) 8.8 0.09 

0.5(mol)% Cr-SiO2-TiO2 (40:60) 6.5 0.07 

0.5(mol)% Cr-SiO2-TiO2 (20:80) 4.0 0.04 

0.5(mol)% Cr-TiO2 3.7 0.04 

 

3.3 Mechanism/s of photocatalytic activity 

Understanding the mechanism which governs the photocatalytic activity is equally important to 

the study of the structure of the material, and can lead to predicting better photocatalysts. The 

study of hydroxyl radical generation upon exposure to UV light is widely used to confirm the 
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mechanism of photocatalytic activity of titania based photo catalysts.[8,23] The observed intense 

fluorescence peaks at 426 nm indicate the oxidation ability of the generated reactive species 

which we believe the main component is hydroxyl radicals according to the previous reports. 

The results obtained from hydroxyl radical detection experiments for both titania and silica based 

samples studied herein, clearly indicate the formation of hydroxyl radicals during the 

photocatalytic performance of silica based sample as well (figure 7). 

 
Figure 7: Fluorescence spectra obtained for the supernatant liquid of the irradiated a) 
titania b) silica suspension containing 3 × 10-3 M terephthalic acid at various irradiation 
periods. 

Comparing the results of kinetic studies, it is clear that 0.5(mol)% Cr-SiO2 material is able to 

perform best in degrading acetaldehyde into carbon dioxide. Further, according to the results 

obtained the catalytic activity emerges only upon irradiation of light, proving the photocatalytic 

nature of the catalyst. Since silica is an insulating compound with very large band gap, it cannot 

be excited with light photons generating reactive electron hole pairs, which is generally 

considered as the primary process governing any photocatalytic reaction upon exposure to UV/ 

Visible light. But, due to the high photo sensitivity observed in the Cr loaded silica photocatalyst, 

there must be a different mechanism of photocatalytic degradation. 
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According to the evidence from UV-Visible spectra, TEM and XRD analysis, chromium sites in 

the silica matrix are highly dispersed. In addition to that, due to the insulating silica support the 

active photocatalytic sites, which are metal oxide species, are localized and isolated making the 

photocatalytic process significantly different from that of semiconducting titania.  

According to Yoshida and coworkers studies, when loded metal oxides are highly dispersed a 

photo driven excitation can occurs at the molecular orbital level at localized reaction sites[6] 

During the excitation process, an electron in the ground state of the M-O bond gets excited to an 

unoccupied singlet orbital. Then depending of the availability of inter system crossing 

mechanisms, the excited electron could transfer to a triplet state yielding phosphorescence, 

which has been detected using a photoluminescence spectroscopic method.[6] We were able to 

observe similar emission fine structure which consist of intensity maxima corresponding to each 

vibrational energy level of the bond in the photoactive site, in our case (Cr - O). Note our solid 

state photoluminescence studies (Figure 8). According to the results indicated in the figure 9, 

fine structure cannot be identified in photoluminescence spectra of blank samples. The emission 

peaks present in the blank photoluminescence spectra may occur due to the output of the light 

source in the instrument as well as outside light sources. Since, the blank samples do not show 

any fine structures in the region where fine structure is observed for Cr-SiO2 sample, it is clear 

that peak patterns arise due to the presence of chromium. Further, the luminescence fine 

structures are much clear in silica based systems compared to that of titania based system which 

is a good evidence for higher number of reactive sites in much reactive silica based 

photocatalysts. Even though we can assign this peaks generally as phosphorescence fine 

structure due to vibrational bands, in depth studies and calculations are necessary to confirm the 
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assignment. But, in general the observed vibrational fine structure is a clear indication of the 

localized excitation process taking place during the photocatalytic process. 

 
Figure 8: Solid state fluorescence of 0.5(mol)% Cr-SiO2 catalyst at 300 nm excitation wave 
length  
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Figure 9: comparison of solid state fluorescence study of 0.5(mol)% Cr-SiO2, 0.5(mol)% 
Cr-TiO2 and blank samples   

The intervals of peak maxima values obtained for the photoluminescence studies indicate the 

vibration energy of the photoactive sites. The calculated values are indicated in the table (3) 

below. According to the calculated values does not in agreement with the reported IR values for 

the Cr=O and the Cr-O-Si bonds reported in literature, but in agreement with IR values of Cr-O 

bonds of chromium clusters (Figure 10).[24-27]   
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Table 1: The intervals of the fine structure on the phosphorescence spectrum of Cr-SiO2 

Maximum Wavelength (nm) Maximum Wavelength (cm-1) Gap between adjacent peaks 

(cm-1) 

438 22779.04 - 

451 22222.22 606.1 

468 21367.52 805.4 

483 20746.89 620.6 

493 20325.2 421.7 
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Figure 10: Diffuse Reflectance IR spectra of (a) blank silica, (b) 0.5(mol)% Cr-SiO2 systems  

Thus, based on the above literature and experimental data it is clear that the Cr6+ loaded silica 

system is producing reactive electron hole pairs upon light irradiation. Usually, in titania based 

systems, generation of reactive hydroxyl radicals and oxygen species takes place by reacting 

surface hydroxyl groups and atmospheric oxygen with photo generated electrons and holes 

respectively. Similarly, according to the hydroxyl radical experiments carried out for our 

0.5(mol)% Cr loaded silica sample, a fluorescence peak around 426 nm provides evidence for 

hydroxyl radical generation during the photocatalytic reaction (figure 7). However, the active site 

is localized, and all the chemical steps must take place rapidly at that site. Therefore, photo 

generation of reactive electron and holes in quantum sites of Cr―O, generate positively charged 

holes, which must react with surface hydroxyl groups present on the silica surface producing 

reactive hydroxyl radicals. These hydroxyl radicals may be involved in oxidation of 

acetaldehyde in the presence of oxygen to carry out complete oxidation to produce carbon 

dioxide.   
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Figure 11: Proposed mechanism of photocatalytic activity. 

3 Summary 

 The photocatalytic oxidation ability of chromium loaded silica systems were prepared and 

studied to better understand localized nature of photocatalysis. The prepared 0.5(mol)% Cr-SiO2 

system shows interesting visible and UV light activities towards acetaldehyde degradation. Even 

though, semiconducting titania based systems are known as successful photocatalytic materials, 

insulating silica based systems showed higher oxidation abilities towards complete oxidation of 

acetaldehyde. Such direct comparison has not been reported before. According to the reported 

literature, most of the silica based systems were successful for either partial oxidation of organic 

materials or other reactions, such as polymerization, metathesis reactions, etc.[7]  

Moreover, the structure and the mechanisms which govern the photocatalysis are compared 

separately for the chromium loaded titania system as well as for the silica based system. 

Hydroxyl radical generation studies further support the proposed localized electron-hole pair 

generation at highly dispersed chromium oxide photo active quantum sites.      
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Supporting Information 
 

 

Figure S1: Increase in the effective surface area with increased amounts of silica 

 
Figure S2: EDS Elemental analysis of 0.5(mol)% Cr-SiO2 
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