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INTRODUCTION

Foriierly, reticulated-shells were rarely considered because of the
high-cost® of engineering désign and analysis, joint fabricationm, erection
tifme- and labor. However, with the development of new erection techniques
and new joint systems, such as-spheres,.unistruts, and the triodetic joint
(Fig.- 1), they are fast:gaining acceptance. New techniques for design
afd” analysis® are also-being developed.-

A simple reticulated shell has a curved surface composed of a
single: layer of prismatic members.. These members intersect to form
regular patterns on the surface.  Some:such patterns are shown in Fig. 2.
The type of connection and type: of member to be used are the first
considerations in the:establishment. ofany such pattern. Surface
dMiisions are generally chosen. to minimize the number of connections
afid the variety of members.. Each lattire pattern has a particular
advantage for a particular type of structure. For example, the triangular
pattern of Fig: 2 (d). is best:suited for the dome of Fig. 3 (a). It
requires two different- members in each ring and all joints may have
identical angles.

In the past few years, a variety of such structures has been
designed and built using the triodetic system of connecting elements
and light gage cold-formed structural tubing. Apart from simple
reticulated structures, structures involving additional members out of
the shell surface or a.complete double layer of elements have been

achieved (Fig. 4). Wrightl has presented an informative detailed
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(c) Triodetic

Fig. 1. Connectors.
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Fig. 2. Reticular patternms.



analysis of double layer domes utilizing light gage tubing. Hybrid
structures have also been built., In this kind of structure there is
composite structural action between a full or partial reticular
framework and flat or warped skin elements that may or may not coincide
with the "middle surface" of the shell and which otherwise act as
_cladding.

Figure 3 and Fig. 4 show some of the structures that have been
built in the last few years. The trend has been to use a common
connector and thus to enable each member to be optimized for minimum
weight. This has resulted in more economical structures than the
conventional practice of having fewer but more expensive joints. It
has been determined that 250 ft. is a practical size for single layer
domeé from the standpoint of erection and cost. Shells larger
than 300 ft., in general, should be designed as double layered.

Maximum spanning capacities‘of up to 800 ft. and possibly more can be
achieved with reticulated shell structures.5
With the fast-growing use of reticulated shells, many approaches
for the analysis of such structures have been developed. The first and
the most popular is the standard stiffness approacn. Two available
computer programs are STRESS13 and FRANL4., FRAN has a capacity of
fifteen independent loading conditions, 15,000 members, 2,000 joints
and 105 structural units. The second approach has been suggested by
Dean and Ugarte7 using the concepts of discrete field mechanics. The
third approach has been suggested and validated by Wrightz, Salvadorii5,

and Lanel®, They have considered the reticulated shell as a continuum.



(a) Dome (b) Barrel

(c) Toroid (d) Hypar

(e) Hypar-umbrella

Fig. 3. Types of reticulated shells.
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Fig. 4. Double-layer forms for framed shells.



Buchert4 has derived split rigidity equations for edge effects similar
to those previously used in air and spacecraft structures. The fifth
approach is through the use of models.

In this report, analysis and design of "reticulated shells as
continuum" will be studied with reference to the dome. Relationships
between membrane forces and bar forces will be derived, elastic and
physical properties of the analogous shell will be established, various
buckling criteria will be given, and an example will be solved to

illustrate the use of various equations.



MEMBER FORCES

Solutions for various kinds of shells under different loading
conditions are available in many books on '"Theory of Shells". By tﬁe
membrane theory, the three components of the membrane force field Ng,
Ny and Ng¢ can be found at any point of the middle surface of a
continuous shell., A shell may have significant bending strength but
the changes in curvature and twists caused, in most cases, are so small
as to be of little practical significance. Membrane theory is valid
in most cases except when the edges are loaded by moments or normal
shears, or when there are significant concentrated loads having
components normal to the shell surface. Even in these cases, membrane
theory can be used by applying corrections to the membrane solutions.

If the surface patterns of a reticulated shell (with or without
cladding) are capable of resisting the forces per unit length Ng, N¢
and Ngg, then it is reasonable to assume that such a shell will behave
in a fashion similar to a continuous shell, at least in so far as the’
membrane forces are concerned. Thus, if relationships between the
member forces of a reticulated shell and the membrane forces of an
analogous shell can be established, many available solutions for
continuous shells can be used to advantage.

Two popular patterns in the analysis and design of reticular
domes are shown in Fig. 2 (d) and Fig. 2 (e). They are reproduced in

Fig. 5 (a) and Fig. 5 (c).



.(a) Equilateral triangular grid (b) Membrane forces
Ny
L
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(c) Rectangular triangular grid (d) Membrane forces

Fig. 5. Equilateral and rectangular triangular grid
for analysis.



Consider the pattern of Fig. 5 (a). Static equilibrium of
forces on a vertical cut of length V3L in the 6-direction gives
P, P

21=1+_+__=Ne/371.
2 2

or
4P) + P, + P3
Ne -
2/3L
Consider equilibrium of forces in the ¢-direction.
-/—3-?2 —./_EPa = N9¢|/§L
2 2
or
P2 - P3
N.. gr———n 5
be 2L

Next consider the statical equilibrium of forces on a horizontal cut

of length L in the ¢~direction.

or

Y3(Py + Pj)
N = ———
¢ 2L

10

(1)

(2)

(3)
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To solve Eqns. (1), (2), (3) for Py, P,, Py, multiply Eqn. (2) by 3

and add to Eqn. (3). Thus

ﬁPz
EHB¢+N¢='—I-‘
or
L
P, == (N, + /3N_,) . (4a)
A ¢ 0¢

Substituting for P, in Eqn. (1),

R S Y i
0¢ '
2/3 2 2L
or
N N
P3 = -3—- _932L
2/3 2
L
=, - Mgy (4b)

Next substitute for the values of P, and P3 in Eqn. (1).

4P N + /3N N, - /3N
LGL I . PO

%  2.AL 6 6

4P1 _‘E

2#51.3

or



Pl g "L__' (3Na - N¢) .
2v3

Rewriting,
L
P} == (3N_ - N)
2/3 0 [
L
Py = — (N¢ + /.3_Ne¢)

Py =L o, - EN%) .

Equations (5), (6) and (7) give the relationships for finding the member
forces, for the equilateral triangle pattern of Fig. 5 (a), from the
known membrane forces of the analogous shell.

Similar relationships can be established for the pattern of

Fig. 5 (c¢).

Consider the statical equilibrium of forces on a vertical cut of

length L; in the 6-directionm.

Lz'
Ls

Considering equilibrium in the ¢-direction,

L

Pi— = LN
3 1 .
L, 0¢

(5)

(6)

(7

(8a)

(8b)

Consider the statical equilibrium of forces on a horizontal cut of length

12



L2 in the ¢—direétion.

L,

Equation (8b) gives

P,=1L
3= LN,
Substituting for P3 in Eqn. (8a),

P,+LN =LN
27 “2gy  lg

or

Py = LN, = LoNo, .

Also substituting for P4 in Eqn. (9¢),

Ly
P, =NUL, - _"'“(LaN )
1 ¢ 2 L3 8¢

Rewriting Eqns. (Qa), (9b) and (9c),

-]
"

LN - LN
1 2¢ 19¢’

L1Ne i L2NB¢ s

d
N
n

P3 - I..3Ne¢

13

(8c)

(9a)

(9b)

(9¢)

(10)

(11)

(12)



The above two cases show the simplicity of establishing the
relationships between the member forces and the membrane force.
Similar relationships can be established for any other reticular
pattern by following the method indicated above. It is important
to note that relationships (5), (6), (7), (10), (11) and (12) are

independent of member sections and are statically determinate.

14
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ELASTIC PROPERTIES OF THE ANALOGOUS SHELL

To establish a homogeneous shell that is analogous to the
reticulated shell, its elastic and physical properties must be
established. The elastic properties of the analogous shell are known
if Hook's law can be expressed for its "material’. Given that the
grid members are homogeneous and linearly elastic, it is reasonable
to assume that the material of the analogous shell is homogeneous and
linearly elastic for any of the patterns shown in Fig. 2. In general,
as the grid members running in different directions can have different
sections, it is not reasonable to assume that the "material" is isotropic.
The joints are considered to be structurally adequate and of zero
dimension on the shell surface. Although it is questionable whether the
joint characteristiecs cam appreciably affect the shell stability, still
the relationships developed in this case may readily be modified to suit
the actual joint behavior. ‘

Consider the array shown in Fig. 6. It has members of two
different sections. Member 1 has area of cross section A, and moment
of inertia Ij. Members 2 and 3 have area of cross section A2 and moment
of inertia I,. The material of the analogous shell is considered to

be homogeneous, linearly elastic and anisotropic.

1°71

Fig. 6. Equilateral triangular grid.
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Hook's law can be written as

g g
€ = 5] - \" i (133)
a El BEJ
] ¢
o g
c = % _y- 8 (13b)
¢ g bg-
¢ ]
i
y =2 @30
8¢ G”
where
EB = normal strain in §-direction,
e¢ = normal strain in ¢-direction,
TB¢ = ghear strain,
Oy = normal stress in f-~direction,
c¢ = normal stress in ¢-direction,

t9¢ = ghear stress,

vig = Poisson's ratio of the analogous shell in 6-directionm,

v’¢ = Poisson's ratio of the analogous shell in ¢~direction,
E"e = Modulus of Elasticity of the analogous shell in the
g—direction,

E“ = Modulus of Elasticity of the analogous shell in the
¢-direction,
G- = shear modulus of the analogous shell.
To solve for Cgs G¢, Tog from Eqns. (13a), 13b) and (13c), multiply Eqn.

(13b) by v”, and add to Eqn. (13a).

6



or
E= 2z
. 9(58 + v BE@)
e L]
(l - v‘e\’"b)

Similarly multiply Eqn.(13a) by v‘¢ and add to Eqn. (13b).

) E'¢(E¢ + v’¢ee)

g .
¢ (1 - V‘BV‘¢)

Equation (13c) can be rewritten as

Tgg = G‘Ye¢'.

Next consider the deformation of the grid shown in Fig. 6.

Pl

El] = —
AE

By =
AZB
P

€3 T ’
ALE

17

(l4a)

(14b)

(15a)

(15b)

(15¢)

where €1> Eg» ea are the strains in members 1, 2 and 3, respectively, and

E is the modulus of elasticity of the material of the members.

Knowing the strains e, €,, €3 in any three directions, ee, >

2 g’
Yoq

LisnerlT.

can be found by the use of the following equations given by Perry and
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e, + € €n — E Y
€, = 6 ¢ + B ¢ cos2f; + ﬁ sin28: , (16a)
2 2 2
e +¢ €, — € Ya.
€ = 6 ) + 6 ¢ 005282 + __Bi sinZBz ’ (16b)
2 2 2
e, + € €, — E Y
€g = 0 $ . 6 ¢ cos2B3 + _& sin28, , (16c)
2 2 2

where By» Bys B3 are the angles which the members make with the positive
direction of the chosen g-axis, Fig. 6.
In this case, B, = 0; 8, = 60°; B3 = ).20“ substituting for B,, B,,

By in Eqn. (16).

o} 8 $ _
E = + = E 3 = (17&)
1 2 2 e
€, + E € € 3y
e,m e #2044 80 (17b)
2 2 2 2 2
e.+ ¢ € E fi'y
€3=_i____¢._l£_§_;tl___ﬁ_¢ . (17c)
2 2 2 2
From Eqn. (172),
€g = €1 (18a)
Subtract Eqn. (17c) from Eqn. (17b).
%)
€Eg = £3 T —Y Y
2 9 8¢
or
You = 2 (e, - c9 - (18b)
¢ A



Add Eqns. (16b) and (16¢) and substitute for €g from Eqn. (18a).

€pg tezg=e_t+te - -
0 ) 2
£ 3e
=_8.+ ¢ 5
2 2
or
. = )
¢ 3
or

P
g, Wt
e bl
AlE
- P 2P 2P
€¢ = __l, — + __....2‘.— + 3 s
3AE  3AE  3A5E
2(P2 - P3 )
Ya¢ =
EAZE

Equations (19) gives strains in the g, ¢-directions and shear strain in
terms of the member forces. The elastic constants in Eqns. (13) and (14
can now be determined between Eqms. (1), (2), (3), (13) and (19).

If tz,_tz are the membrane thicknesses of the analogous shell

4 ; : m . ; .
normal to the ¢ and ¢-directions and t, is the shear thickness, then the

19

(18c)

(19a)

(19b)

(19¢)

)



following relationships can be written.

=2

ag =--—B
9 ¢
¢
N
g, =2
¢ cm
$
N
Tk = -jig
<y ™
s

It can be seen from Eqn. (13a) that when

0’¢=0 ’

Using Eqn. (20a), Eqn. (21la) can be written as

Ng

E§ =
1:6E:e

Substituting from Eqn. (1),

(4P + Py + PJ)

Ue=

2f§it§

_Since U¢ = 0 was assumed,from Eqns. (3) and (20b),

\/3_(]?2 b = P3)
PR P TSl || S
® 2Lt$

or

20

(20a)

(20b)

(20c)

(21a)

(21b)
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Substituting this in Eqn. (21b),

2p,
O'B = .
/:’TLt’;

Equation (2la), after substituting for ee and 04, can thus be written as

2P1 AE
E’e = - X —
ﬁLte Py
- . : (21c)
ELt‘g

Similarly, Eqn. (13b) can be written as

when

GB =0 . (214d)

From Eqns. (1), (20b), and (21d),

=

g_= s
3] m
to
4P, + P, + Py

2 EL::%}

o,

or

4Ry = - (B, +P) . (21e)
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From Eqns., (3) and (20b),

V3(P, + P3)
g . EE————— (21£)
¢ 2Lt™
L
Substituting from Eqn. (2le),
YE)
o, = —— (-4P;) . (21g)
¢ ope®
¢
Equation (19b), after substituting from Eqn. (21e), becomes
- Pl 8?1
£¢ - — - —
3A,E  3A,E
= PI(AZ + 8A1)
= s (21h)
3AAE
Substituting Eqns. (21g) and (21h) into Eqn. (21d),
E¢ B m x
2wel - By 8A,)
i 6v3A,A E
6v3A,E
- e (211)
Lt‘;(s + Ag)
Ay
Equation (13c) can be written as
T
¢ =2 (213)
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From Eqn. (20c),

5 . (21K)

Substituting from Eqn. (2),

P2 - P3
Toe " —;;;;—— . (211)
8
Substituting from Eqns. (19c) and (21j) in Eqn. (13¢c),
 ByePy V3A2E
G’ = x
L™ 2(P, - Py)
v3A,E
= " (21m)
4Le™

BEquations (21c), (21i) and (21m) give expressions for elastic constants
Ee‘, E¢' and G- for the analogous shell. For g5 = 0, Eqn. (13a) gives

a -
vy = -4 ¢ (222)
E 8 6¢

Substituting Eqns. (20a), (20b), (2lc) and (21i),

. N &) 6Y3A,E 3Lty
v e - 0 X X = A X . -
ts H¢ Lc¢(8+-_3) 2A\E
A1
9N _A,
- ¢! . : (22b)

N, (8 + Aa,
A)



Substituting P; = 0 in Eqns

P, + Py

. (1) and (3),

b 2/AL

and

¢ 2L
Substitute Eqmns. (22c) and

(P
v',.=9x

/3 (P2+ P,)

(22d) in Eqn. (22b).

, + P3) 2L

34,

X
2/3L Y3(P, + Py)

(8 + A4,
A

1
==x

3 (8A; + Ay

Similarly, when e¢ =0,

Vg

From Eqn. (19b),

1

9A,

24

(22¢)

(22d)

(22e)

(221)



a¢ = + + .
3AE  3AE  3AE

As s¢ = (0, therefore

-]

_ Dt
2A1

Substituting from Eqns. (20a), (20b), (21lc) and (21i) in Eqn. (22f),

m n Az

. Ny tg 2A.E Lt¢(8 +'KE)
\!¢=—Z——-K mx

ty Ng /ALty 6Y3AE

N¢ 1 (8A1 + Az)
=_x—
N 9 A

9 2

Substituting Eqn. (22g) into Eqns. (1) and (3), _

PiA;
Py + —
. 2A3

2/3L

P,(8A, + A,)

4A173L
and

l_ﬁ?ﬁz

N

¢
2L 24,

4LA,

25

(22g)

(22h)

(221)

(223)
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Substituting Eqns. (22i) and (22j) into Eqn. (22h),

Y3 P A, 4A}/3L 1 (8A, + A,)
v, o= — X B —
®  4LA, P (8A +A) 9 A
1
- . (22k)
3

Equations (22e) and (22k) give the relationships for the Poisson's Ratios

v’y and v~ for the material of the analogous shell.

b
By a similar procedure, the elastic properties of the analogous shell
for any pattern of a reticulated shell can be established. For an

equilateral triangle pattern in which all members have the same area of

cross-section A, Eqns. (21c), (21i), (21j), (22e) and (22k) can be written as

2AE
E'e - ’ (23a)
ELt“é
2AF
l?."|¢ = ’ (23b)
/L™
¢
vY3AE
G* = , (23c)
4Lty
1
S om e (239)
o 3
1
o i (23e)
v ¢ 7
m _ m _
If ty = t¢ = t‘é‘, then
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E%g E‘¢
G —_—- (24)
2(1 + ve) 2(1 + v’¢)

Thus, this case of an equilateral triangle with

and E 8- E ¢ = E”.

members having the same area of cross section is essentially an isotropic

case having the following properties:

2AE
E° = (25)
Y3Lt™
E” V3AE
G = = s (26)
2(1 +v) 4Lt™
1
ve _ . @27
3

™ — membrane thickness of the isotropic analogous shell.

rt
[}
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PHYSICAL PROPERTIES

A reticulated shell is believed to possess both axial stiffness
and bending stiffness. Thus, in general, it has two membrane thicknesses
and two bending thicknesses. A dichotomy exists in this regard as Wrightz
has given two thicknesses and two moduli of elasticity which are based
entirely on member rigidities. This has n; effect when Membrane and
Bending actions are considered separately, but the results show considerable

variance when both these actions are combined. Herein, the physical

prbperties will be established based on the split rigidity concept.

Membrane Thicknesses

Considering Eqn. (2lc) and assuming Ey = E,

24,
ty = — - (28)
V3L
Similarly, comnsidering Eqn. (21i) and taking E’¢ = E,
6/34,
(29)

®  L(8 + Ay

A

For the analogous shell, Equations (28) and (29) give the membrane

thicknesses in the g-direction and ¢-direction, respectively.

Bending Thicknesses

Consider the grid of Fig. 6 subjected to pure bending.



Fig. 7.

(a) Moments due to Ry

w/
2

3/4Ry /[ |1/Rg M| \!

(b) Moments due to R¢

Bending deformationms.
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If Re is the radius of curvature in the 86-direction, then RB is

the radius of curvature in element 1 and 4Ra in the other element, Fig.
EI

7 (a). The corresponding moments induced in members 1 and 2 are 'ﬁ_l
EI 3]

and ';_;.3. , respectively. Moment —~2 in member 2 has a component

Elz 8 .- Re

22¢ in the 6-direction.

BRG .

In a repeating array of length V3L, two elements of each type

cause the total moment. Thus, unit moment in the @-direction is given by

0 )
E (81, + I,)
1 2
- : (30)
4V3R,L :
A radius of curvature R¢, in the ¢-direction, causes a radius of
4R
curvature __4’ in the member 2, Fig. 7 (b). Corresponding moments induced
3 3 EI2
in member 2 are equal to —— . The component of each of these moments

4R EI,
in the ¢-direction is equal tg 3/3 — . In a repeating length L, there

8R
are two elements. Thus, unit moment fn the ¢—direction is

3«’:TE12

mq’ = " (31)

4R¢L

For bending of a plate or shell in one direction only,
D
W — (32)
R

where

30



m = unit moment

R = radius of curvature

3 .
Et
and D= : (33)

12(1 - v2)

Substituting Eqn. (32) into Eqn. (33) and rewriting,

12 mR(1 - v2)
t3 = A (34)
E

For bending of a shell only in the 6-direction, Eqn. (34) can be
written as
b3 12 make(l - VgV ¢)

te - - . (35)
6

Substituting for mg, v‘¢ from Eqns. (30) and (22k) into Eqn. (35)
and assuming v°g = }_ .
3

As E’e = E (from Eqn. (28)), therefore

ps 12 B + )R, - %)

te =

43R oLE

8v/3 (81, + I,)

9 L

8/3 (81, + I,) 1
t, = [ 13

. (36)
9 L

For bending of the shell in the ¢~direction only, Eqn. (34) can be

written as

31



32

3 12 mRy(1 - vigv?,)
e

Substituting for mg, and v; from Eqns. (31) and (22k) into Eqn.

(37) and taking v7g = 1 and By = E,
3

1
t¢b3= 12 x 3/§E12R¢(l -9)
4R4LE
8/312
L 3
8/3 1, 1 _
¢ D - 53 (38)
¢ L

Thus, the analogous shell for the equilateral triangle pattern of
Fig. 6 has the following physical properties based on the assumption

24,
tg=— (39a)
v3L
6/3A;
=" (39b)
¢ L8 + 4y
A
b 8/3 (811 + I2) 1
tg = — SNSRI - (39¢)
9 L
b 8/3 15 1
t¢ = —)3 . (394)

L
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For the equilateral triangle pattern in which all the members are similar,

A=A =A)and I= I1 = 12. In this case, Eqn. (39) gives
th = tf =t = 2 A (40a)
¢ AL
and
1
83 1. -
P=tg=cb=( 3. | (40b)
¢ L
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BUCKLING CRITERIA

Buckling is a serious problem in the design and construction of
reticulated shell structures. Recently, considerable research and
analysis on the stability of such structures has been performed.
Investigations of existing structures have shown that some of the
structures previously designed have marginal factors of safety against
buckling. Several investigators suspect that the recent failures of
several structures were due to inadequate resistance against buckling.
Although considerable research has been performed, there is much more
work needed for the "complete art of analysis" of such structures.

The results available at present can be used to design a doubly curved
shell-like structure safely, efficiently, and economically.

The following factors are considered for the buckling analysis
of a reticulated shell:

1. local buckling,

2. general buckling,

3. effect of edge conditions, and

4, yield strain effects.
Local Buckling

Local buckling, also known as dimple buckling, occurs when one
node deflects through and the local curvature becomes negative. Very
little experimental and theoretical work has been done on local buckling.
Bucherts gives the following criteria for the local buckling of a

reticulated shell, consisting of equilateral triangles with all the
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members having the same properties.

1f the length of the member is such that

12 > 10 R/I , (41)
A

local buckling can occur. If

L2 < 10 RVI , (42)
A
R = radius of curvature,
local buckling will not occur prior to complete loss of local curvature,
and thus, failure.
Equation (42) can be used to restrict the length of members to

eliminate any chances of local buckling.
General Buckling

General buckling results in fhe failure of the structure. It
occurs over a considerable portion of the structure. Bucherts’6 gives
the following criteria for the general buckling of a framed shell.

For a reticulated shell which has the same membrane and bending

thicknesses in both the directions, the wave length of the buckle is

given by
1 b3
w=20"R2 &F , (43)
¢!
w = wave length.



Critical buckling load P., is given by

3
2

b
P, = 0.366 (552 (-Eii) " (45)

R t
To consider the effect of unsymmetrical loads acting on the
dome, he suggests that an equivalent pressure be calculated from the
loads. That equivalent pressure should then be compared with the
theoretical buckling load given by Eqn. (44), after an approximate
factor of safety is applied. He suggests a factor of safety of two
to be used, when designing on the basis of Eqn. (44). The equivalent

pressure Pgq is given by

2tm0m
peq - 2 s , (45)
¢_ = maximum membrane stress.

For a reticulated shell which has different membrane and bending
thicknesses in each direction, Buchert6 gives the foliowing equation

for finding Pyt

t®  J2F2 ¢P 3
P, = 0.183 E[-212 812 , (46)
R Q = ,
0
where
B, = 5
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J=21g% +63(1 -6) +62(1 - 6)2 +1e1 - ¢)3
2 2

+ 11 -0t + v, - D + 2B, - D63 - 6),
10 4 3

+ 3, - D621 - 6)2 + (8, - 16A - 6)3
4 5 |

+2(, -1 @-6 ,

12
=2+ -0 +ia -2 ,
2 2 6 -

F=34+23, -1 +3@, - D2+3@, - 1?3

2 4 2 8
1,3 2 1
+ 18 + 385(1 - By) +2B(1 - B))?
2 4 2
1(1 - B,)3
+— ’
8
(3
G = B_l .
€2
t® 1 ¢ 3
g 2
gy = 217 )Y
R 5
ot tg 3
Ez = [""—]2 [_]k .
R t:l;

All of the above constants except H are known for the given shell
geometry. The value of H must be determined for each case, such that

Por 1s minimum. Different values of H (greater than 0) are assumed and

Per calculated. The value of H, which gives the minimum value of p_.
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is the proportionality constant for the case under consideration.
Effect of Edge Conditions

Shell edge conditions affect substantially the capacity of a
reticulated shell to resist buckling. The importance of edge conditions
as to affecting the shell stabi;ity has been demonstrated both
experimentally and theoretically. With proper que design, buckling
can be made to occur away from the edges at a higher load. Poor edge
design can bring down the critical buckling load to almost zero, whereas,
with proper edge conditions, a buckling load very close to the theoretical

buckling load can be achieved. Buchert5

suggests a number of ways to
provide desirable edge conditions. These include increasing the effective
bending thickness for a distance of approximately the buckle wave length
from the edges; doubling the radius of curvature near the edge; or
providing double edge rings separated by about one-fourth the wave length
of the buckle, and with a moment of inertia twice that of the orthogonal
members.

For a reticulated spherical shell which has the same membrane and

5

bending thicknesses in both the directions, Buchert gives the following

equation to compare with Eqn. (44), to find if the edge conditions govern.

m
2t Ocr

P., = — » 47)
Cr R

where

critical buckling stress.

Q
]

cr



He gives the following equation to find the deflection during and prior

to loading.

ceb? &3 N, R
A= —_— Sin2¢s - = (48)
3/2t™ R t"E
where C is a constant of integration given by
N, cos ¢ N
- ( @S i + as)
Ay e
CE = (49)
2 /2t"r
(— + )

2K 4K2Ab sin ¢g

where
r = base ring radius,
¢g = angle to the spring line from the shell apex,
Ab = area of the tension beam,
Nﬁs = primary membrane circumferential stress at the spring line,
N¢s = primary membrane meridional stress at the spring line,
3t™R2 1 .
K= [ 14 . (50)
(t?) 3
A
If — << 1, then Oy in Eqn. (47) is given by
t!ll
g R ¢P 3 A
€ =10.41 (—) 2 -0.81 — . (51)
Et® t® t®
A
I1f — is not much less than one, the following equation is used to find Opnpt

tﬂl
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o R A A - o 1
€T - _ 0.54 — - 0.145 [9.9(—)2 + 3.08(—)3]12
EtR t® t™ ™
A A A e 1
+ {1.09(—)2 - 0.03 — [9.9(—)2 + 3.08(—)3]2
t™ 2 t® th
t? 1
+ 0.359() 312 (52)
tm

Yield Strain Effects

Yield strain or yield stress of the material has a significant

effect on the buckling load. After testing models in the laboratory

and investigating theoretically, Buchert® has made the following

observations:

1.

2.

Soft Aluminums can reach the values given by Eqm. (44).
The higher strength stainless steels buckle at values
that are about 1.5 times those given by Eqn. (44).
Annealed copper buckles at values considerably lower

than those given by Eqn. (44).
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DESIGN EXAMPLE

Problem: Design a reticulated spherical dome having a span of
200 ft. and a rise equal to 40 ft. Dead load is 15 psf and live load

is 30 psf.

Total load = p = 45 psf = .045 ksf.

(100)2 + (40)2

Radius R =
2 x 40

11600

80
= 145 ft.
Assume that the number of members on the base circumference is equal to 120.

mx 200

Maximum length of members = ———— = 5.024 ft.
120

Membrane forces in a spherical shell are given by Fluggea.



- pR
N¢ =z —
1 + cos¢
1
Ng = PR—m— - cos¢)
1 + cosp
Na¢ = (.
At the base,
105
cosp = — = 0.724
145
- .045 x 145
N¢ = ——— = - 3,785 K/ft.
1+ 0.724
1
NB = 0.045 x 145 ( - .724)
1+ .724
= 3.785 - 4,724
= - 0.939 K/ft.
At the apex,
cosd = 1.
- 045 x 145 - 6.525
N, = —m——=
¢ 2 2
= - 3.262 K/ft.
1
Ne = 045 x 145¢( -1)
1+1

= — 1 247 V/fr
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Maximum Member Forces

Use an equilateral triangle pattern with all members having the

same cross—sectional area and triodetic joints.

Assuming perfect joint behavior,

(refer Eqn. 3)

L
Pl = —— (3N - N )
2/3  ° ¢
5.024
= [3(- 0.939) + 3.785]
2/3
= 1.405 Kips.
L
By 8 Py m— (N .) (refer Eqns. 6 and 7)
/3 ¢
5.024 (- 3.785)
/3
= - 11 Kips.

Use steel tubes having diameter x thickness = 4.5"x 0.157", (pg. 49, Ref. 18)
(ASTM AS01-68a, Hot-Formed Welded and Seamless Carbon Steel

atructural Tubing, Fv = 36 ksi.)
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Area of cross section = A = 2.22 Sq. in.,

moment of inertia = 5.641 THie T,

5.641 1
radius of gyration = ( }2 = 1.6 in.,
2.22
L 5.024 x 12
_= —_— = 37.68,
r 1.6
. 11
maximum compressive stress = —— = 4,95 ksi,
2.22

allowable compressive stress = 19.38 ksi, > 4.95 ksi,

(Table 1-36, pg. 5-84, Ref. 19)

2 A 2 x 2,22
tP = _ = = 0.0425, (refer Egqn. 40a)
: Y3 L 1.732 x 5.024 x 12
o 83 TL1 8x1.732 x5.641 & 4
t? = [ —]3 = [ 13 = [1.29]13% = 1.09, (refer Eqn. 40d)
L 5.024 x 12
3tmR2 3 x 0.0425
K% = = (145 x 12)2 = 292200, (refer Eqn. 50)
(£P) 3 (1.09)3
K = 23.24,
= 3
p..=0.366 E (—)2 (—)2, (refer Eqn. 44)
cT
R g
0.0425 1.09 £
= 0.366 x 30000 ( )2 ( )2,
145 0.0425

.12077 ksf = 120.77 psf,

using a factor of safety = 2.



Allowable buckling load = = 60.38 psf > 45 psf.

Check for local bucklingi

i

L2 <10R— , . (refer Eqn. 42)
A

145 ¥5.641
<10 x — 5
12 2.22

p . ,
34,81 < 192.12 . safe in local buckling.

Edge Effects

= 2
Ring Tension = T H¢s R sin bs

100
= 3,785 x 145 (—)2 = 260 Kips.
145 :
260
Areaof tension ring = Ab = — = 11,82 sq. in.
22
- [ + =2
A.b t .
CE = . : (refer Eqn. 49)
2 Y2t"r
[— + ——1]

2K 4K2Ay singg

100(- 3.785) x 0.724 (- 0.939)
ul + ]
. 11.82 12 x 0.0425

1.414 1.414 x 0.0425 x 100 x 12
+

2 x 23.24 4 x (23.24)2 x 11.82 x 192]
145




46

25.02
= = 732 Ksi.
.03418
ce(tP)3 k3 , NgR 1
A= [———x — sin®¢, - 1= (refer Eqn. 48)
3/2¢t™® R R t® E
732(1.09) 3 (23.24)3 100 (- 0.939)145 1
S | x x (—)2 - ]
3 x 1.414 x 0.0425 145 x 12 145 0.0425 30000
21202.6
% 0.7067" .
30000
A 0.7067
_— = 16.62 .
t®  0.0425
Using Eqn. (52),
¢ R A A 1
€T _ _ 0.54 — - 0.145[9.9(—)2 + 3.08(—) 3]2
EtT o tm ¢
A A A ¢? 1
+ {1.09(—)2 - 0.03 —[9.9(—)2 + 3.08(—)%]2
™ o ¢l t®
b 1
+ 0.359(—) 3}2
tlﬂ
1.09 1
= = 0.54 x 16.62 - 0.145[9.9(16.62)2 + 3.08( )32
.0425
1.09 1
+{1.09(16.62)2 - 0.03 x 16.62[9.9(16.62)2 + 3.08( )32
.0425
1.09 1
+ 0.359¢( ) 332
.0425

1
= - 8.97 - 0.145[233.88] + [301.08 - 116.6 + 605612



= 36.13 .

Et™
c = 36,13 —
R

tm

o

2 x 36.13 E

(0.0425)2
2 x 36.13 x 30000 x

(145)2

0.186 Ksf

[}

186 psf .

186
Allowable p_.. = — = 93 psf 745 psf.
: 2

General buckling controls the design.

= 20,y — (refer Eqn.

47)

47



et

200" dia.

T

Plan

A

Elevation

200' dia. Dome
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4.5". x 0.157" dia. x tks. = 4.5" x 0.157"

|<_—-— 5.024' ————7‘

Details at A-A

¥

Triodetic Comnnector
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CONCLUSIONS

Analysis and design of reticulated shell structures have been
considered based on the continuum shell analogy concept. Relationéhips
between the member forces of the reticulated shell and the membrane
forces of the analogous shell have been established. Elastic and
physical properties of the analogous shell have been given. Local
buckling, general buckling and edge effect criteria for a spherical
reticulated dome have been given for a safe and economical design.
Finally, an example has been solved to illustrate the use of the

various formulae.
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NOTATIONS

The following symbols are used in this report:

A, A1,A2

Ay
B}

Eg.Ef

F,G,H

e~

I, I;,I;
J,K
L,L;,L;, Ly
m,me',m¢
NgsNysNog

member cross—sectional areas.

cross-sectional area of the tension beam.

ratio of membrane thicknesses in

¢ and 6-directionms.

ratio of bending thicknesses in ¢ and 6-directions.

constant of integration.

Et3

12(1 - v2)

modulus of elasticity of members.

modulii of elasticity of the analogous shell in 6 and

¢-directions, respectively.
constants.

shear modulus of elasticity
member moment of inertias.
constants.

member lengths.

unit moments.

unit membrane forces.

primary membrane meridional unit
primary membrane circumferential
member forces.

critical buckling load.
equivalent pressure.

constant.

radii of curvature.

force at the spring line.

unit force at the spring line.
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base ring radius.

tension in the base ring.
shell membrane thicknesses.
shell bending thicknesses.

angles which the members make with the chosen positive direction
of 6-axis.

shearing strain.

normal strains in members 1, 2 and 3.

normal strains.

Poisson's ratios.

normal stress.

eritical buckling stress.

maximum membrane stress.

shearing stress.

half wave angle in the meridional direction.
half wave angle in the circumferential directiom.

angle enclosed by the shell axis of rotation, the spher: al
center and any point on the surface.

$ at the spring line.

deflection from a perfect surface.
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10.

11.

12,

13.

14.
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The framed or reticulated shell is evidently an important structural
form, which, by reason of economy and structural efficiency, will come to
be used more widely. A number of reticulated shells have been built in
the past few years, with varying degrees of success. The "complete art
of analysis" of such structures is not yet fully established. Various
approaches for the analysis of reticulated shells have_been suggested by
various authors.

The continuum shell analogy approach for the analysis of reticulated
shells is provided herein. Analyses are presented (1) relating the member
forces of the reticulated shell to the membrane forces of the analogous
continuum shell, (2) giving the elastic properties of tﬁe analogous shell,
and (3) giving the physical properties of the analogous shell. Criteria
for local buckling, general buckling and effect of edge conditions are
given for a spherical dome.

On the basis of these analyses and criteria, a spherical dome of

200 ft. span and 40 ft. rise is designed.



