SIMULATYON AND OPTLUZZATION OF A TWO STAGE CONTLRTIOUS ANELROBIC DIGESTER SYSTEM

by 60^{2}
Jean-Claude Baltes Engineer, Ensic, France 1963

A Master's Thesis
submitted in partiat culfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Chemical Ensineering

KANSAS STATE UNIVERSITX
Nanhattan, Kansas
1969

Approved by:

TABLE OF CONTENT

I. Introduction
II. Basic Relationships

1. Mechanism of anaerobic fermentation
2. Kinetic model
3. Performance equations
A. Conventional system
B. System with recycle
C. Concept of washout
4. Economic model
III. Analysis of System
5. Determination of washout times
6. Steady state Washout time
IV. Optimization
7. Formulation of the problem
8. Numerical data
9. Analysis by differential calculus
10. Analysis by empirical search
11. Contours
V. Results and Discussion
VI. Conclusions

Acknowledgment
Nomenclature
References
Figures
Tables
Computer Programs

Appendix If	Slopes of the concentration curves at the points of discontinulty
Appendix II:Graphlcal determiriation of the roots of $\varphi\left(\theta_{2}\right)=0$	
Appendix III:Nature of the stationary points of response surface (Σ)	
Appendix IV,Computational procedure for the search technique approach	
Appendix VIDescription of the main program MICU20	

I. INTRODUCTIOAN

Biological processes have been operated as continuous flow systems for many years. However, development of mathematical models for such systems has been more recent (since 1950) with significant early contributions by Novick and Szilard (1). Monod (2), and Herbert (3). Most of the earlier work was devoted to the analysis of pure bacterial cultures in single-stage reactors.

More recently, there has been much interest in the analysis of biological waste water treatment $(4,5,6)$. These works again assumed that the process involved a single culture.

However, anaerobic digestion is a complex process and in the recent past, growing attention has been given to it from both the theoretical and experimental points of view. liajina and McCarty (7,10) refer to anaerobic digestion as a complex twostep process involving various intermediate cherical species and several types of organisms. This mechanism is now widely Lised. Willimon and Andrews (9) carried out experimental work usine a single stream system under varlous operating conditions. These authors (8) have given a mathematical formulation of the kinetic model of the anaerobic process which allows them to simulate onemstage and two stage processes. Finally, Pfeffer (13) has emphasized the advantages of a contact process (i. e. including recycle of oreanisms) as contrasted with a conventional system.

In this work a mathematical formulation employing the kjnetjo model of Willimon and Andrews is used to simulate conventional and contact anaerobic processes consisting of
two staces. In addition, by adjoining an economic model to the process model, the process is optimized for various values of the recycle ratio.

The results obtained by this approach must be balanced with enginecring judgment and experience. The kinetic and economic models can only approximate reality. Nevertheless, this study may yield a better understanding of the process and a more efficient industrial application.

II. SASIC BELATIONSIIIPS

1. Mechanism of anaerobic fermentation (?)

The anaerobic treatnent of waste water involves ssvera? microbial species which cariy out murnerous biochemical and microbiological reactions (sce Figure 1). The process yields carbon dioxide CO_{2}, methanc Cit_{4}, and reduced organic nolecules $\left(\mathrm{H}_{2} S\right.$, etc....). The bacterial population consists of facultative organisms which tolerate small amounts of dissolved oxygen and snaerobic bacteria.

The anaerobic fermentation process is a sequential one including two distinct stops, which are the "acid rermentation" step and the "methane fermentation" step. During the "acid. fermentation" step: "acid producing bacteria" break compley oresanc compounds down to simpler organic structures, as bacterial growth taices plase. The principal internedlate compourds resulting from "acid fementation" are volatile acids, i.e. short-chain carboxylic acids $\left(C_{1}\right.$ to $\left.C_{6}\right)$. These volatile acids provide substrate for

oncerobic woste trecimenis (7).
${ }^{\circ}$
Sequenitial mechonism
Fig. 1
the "methane-froming" bacteria. Durinz "methane fermentation", the organic acids produced during the "acid femmentation" step are converted. Into carbon dioxide and methane. These bacteria are substrate specific, 1. e. each of these ferments only a small group of intermediate compounds. This fact has also been recogrized by Willimon and Andrews (9) in their experinental work. Thus the stabilization of all intermediates necessarily involves several cultures. Figure 2 shows the significance of acetic and propionic acids as intermediate proaucts (10).

We shall implement this scheme in the kinetic model by using the following monenclature.
$S=$ raw material to be converted,
$A=$ acid producing bacteria,
$\mathrm{R}=$ intermediate product. It undergoes fast conversion by methane-producing bacteria,
$\mathrm{U}=$ intermediate product. It undergoes slow conversion by methane-producing bacteria,
$B=$ methane proiucing bacteria fermenting R,
$\mathrm{C}=$ methane producing bacteria fementing U ,
$P=$ final product.
Figure 3 is a schematic representation of the mixed culture model which is assumed in this study. Although there are a large number of interaediates and microbial species, we shail assume that the system cen be adequately represented by two intermediates, Fi and U, and three microbial speciss, A, B and C. Figure 4 shows the system of two completely mixed cants in which the porcess is carried out. Such a system, when it does not include a recycle

Fig. 2 Pothway in mathana fermentation of compler wasies (10).
First stoge
Second sicge
Fig. 3 Nixed culture mocel used in this study (8).

water
ancerobic waste
for
Conventional two-stage digesier system
treatment.
Fig. 4.
strear of organisms, is referred to as a "conventional system" (10). Wher it includes a recycle strean of orsanisms, it is a "contact process" (Figure 5).

2. Kinetic model

Several assumptions must be made in developing the kinetic model for this mixed culture system.

1. Envixonmental conditions are such that acid fermentation occurs only in digestor 1 and methane fermentation only in digester 2.
2. Both digesters are completely mixed.
3. The effect of endogeneous respiration or organism deday can be neglected.
4. Froduct fermentation is directly zelated to growth.
5. Isothermal conditions are assumed and thus there is no temperature effect.
6. Monod's function describes the growth rate, 1. e.

$$
x_{x}=\frac{k S X}{\bar{K}_{S}+\bar{X}}
$$

where

```
x = rate of production of organism,
k = maxinus specific growth rate,
K}\mp@subsup{S}{S}{}=\mathrm{ saturation constant,
S = substrate concentration,
X = organtsm concentration.
For the sake of cleamess, we shall denote the various
conversions involved in tihe kinetic scheme as follows:
```


Consider conversions (A1) and (A2). where S is metabolized by organism A yielding products R and U and additional cell.s A. The rates of utilization and creation of the various species involved are directly ralated by the yield factors. The same holds for conversions (B) and (C). For instance, yield factors $Y_{A / S}$ and $Y_{R / S}$ are defined as

$$
\begin{aligned}
& Y_{A / S}=\frac{\text { rate of formation of } A}{\text { rate of utilization of } S} \\
& Y_{R / S}=\frac{\text { rate of formation of } R \text { by reaction }(A I ;}{\text { rate of utilization of } S}
\end{aligned}
$$

The various yield factors are shown in Figure 6.
In the first stage, substrate S is consumed by orsanisid A, giving organic acids R and U as products. Usine Nonod's mowel for growth of A. gives

$$
\begin{equation*}
r_{A}=\frac{k_{A} S_{1} A}{k_{S}+S_{1}} \tag{1}
\end{equation*}
$$

From this expression and the yield factor $Y_{A / S}$. we obtain for the consumption of substrete ($-\mathrm{r}_{\mathrm{s}}$)

$$
\begin{equation*}
r_{s}=-\frac{k_{A} S_{1} A}{Y_{A} / S\left(V_{S}+S_{1}\right)} \tag{2}
\end{equation*}
$$

Since the rate of production of oreanic acids P and U is directiy related to growth

$$
\begin{align*}
& r_{R_{I}}=-Y_{R / S} r_{S}=\frac{Y_{R / S}}{Y_{A / S}} r_{A} \tag{3}\\
& r_{U_{I}}=-Y_{U / S} r_{S}=\frac{Y_{U / S}}{Y_{A / S}} r_{A} \tag{4}
\end{align*}
$$

In the second stage, intermediate R is consumed by organism B and intermediate U is consumed by organism C with product P (nethane) being produced. The kinetic models for growth of orgenism B and consumption of R are, respectively (the consumption of R is $-\mathrm{r}_{\mathrm{R}_{2}}$,

$$
\begin{equation*}
x_{B}=\frac{k_{B} R_{2} B}{K_{R}+R_{2}} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
r_{R_{2}}=-\frac{k_{B} R_{2} B}{Y_{B / R}\left(K_{R}+R_{2}\right)} \tag{6}
\end{equation*}
$$

Likewise, for organism C and intermediate U, we can write

$$
\begin{align*}
r_{C} & =\frac{k_{C} U_{2} C}{K_{U}+U_{2}} \tag{7}\\
r_{U_{2}} & =-\frac{k_{C} U_{2} C}{\left.Y_{C / U}^{\left(K_{U}\right.}+U_{2}\right)} \tag{8}
\end{align*}
$$

Since proauct p is produced by the fermentation of both B and C, the expression for product yield is of the form

$$
\begin{equation*}
r_{F}=-Y_{P / R} r_{R_{2}}-Y_{P / U} r_{U_{2}} \tag{9}
\end{equation*}
$$

or in tierms of organisms B and C

$$
\begin{equation*}
r_{P}=\frac{Y_{P / R}}{Y_{B / A}} r_{B}+\frac{Y_{P / U}}{Y_{C / U}} r_{C} \tag{10}
\end{equation*}
$$

In the next section, these equations will be combined with the material balances at each stage for each species involved in the process. This will yield the performance equations of the system.

3. Performance equations

The material balance equations are derived first for a conventional system (see Figure 4). There they will be developed for an anaerobic contact process (see Figure 5)
A. Conventional systera.

At the first stage, the four species involved are organism A. and organics S, R and U. A material balance for organise A yields

$$
-A+x_{A} \theta_{1}=0
$$

or

$$
\begin{equation*}
A=r_{A} \theta_{1} \tag{21}
\end{equation*}
$$

Substituting r_{A} from equation (1), and solving for S_{1}, we have

$$
\begin{equation*}
s_{1}=\frac{K_{S}}{\theta_{1}^{K} A}-I \tag{12}
\end{equation*}
$$

A substrate s inaterial balance gives

$$
s_{0}-s_{1}+r_{S} \theta_{1}=0
$$

or

$$
\begin{equation*}
s_{0} \cdot s_{I}=-r_{S} e_{1} \tag{13}
\end{equation*}
$$

Dividing equation (II) by equation (13) gives

$$
A=\left(S_{0}-S_{1}\right)\left(-\frac{r_{A}}{r_{S}}\right.
$$

But, by definition $-\frac{r_{A}}{r_{S}}=Y_{A / S}$. Therefore we have

$$
\begin{equation*}
A=Y_{A / S}\left(S_{0}-S_{1}\right) \tag{14}
\end{equation*}
$$

A substrate R material balance for the first stage yields

$$
-R_{1}+r_{R_{2}} \theta_{I}=0
$$

or

$$
\begin{equation*}
R_{I}=\Sigma_{R_{1}} \theta_{I} \tag{15}
\end{equation*}
$$

Dividing equation (15) by equation (13) gives

$$
R_{1}=\left(S_{0}-S_{1}\right)\left(-\frac{r_{R_{1}}}{r_{S}}\right)
$$

By definition

$$
-\frac{r_{R_{I}}}{r_{S}}=Y_{R / S}
$$

This gives

$$
\begin{equation*}
H_{1}=Y_{R / S}\left(S_{0}-S_{I}\right) \tag{16}
\end{equation*}
$$

In the present kinetic scheme, the processes of formation of R and U are formally identical. Therefore, we can write

$$
\begin{equation*}
U_{I}=v_{U / S}\left(S_{0}-S_{I}\right) \tag{17}
\end{equation*}
$$

In the second stage, five species are involved, namely B, C, R, U and Y. We can write the steady state material balances for
each component as follows: For organism B we obtain

$$
\begin{equation*}
-B+r_{B} \theta_{2}=0 \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{2}=\frac{K_{R}}{K_{B}{ }_{2}-1} \tag{1.9}
\end{equation*}
$$

Consider, the consumption of substrate U by organisn C. The kinetic relationship governing this growth process is formally the same as for the reaction of organism B on substrate R [Equa.tions (5) and (7)]. Moreover, the meterial balance for organism C around the second stage has the same form as equation (18). As a result, we car write

$$
\begin{equation*}
U_{2}=\frac{K_{U}}{k_{C} \theta_{2}-I} \tag{20}
\end{equation*}
$$

The material balance at the second stage for intermediate H. is

$$
\begin{equation*}
R_{1}-n_{2}+r_{R_{2}} \theta_{2}=0 \tag{2I}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{2}-R_{2}=-r_{R_{2}}^{\theta_{2}} \tag{22.}
\end{equation*}
$$

Conbining this with equation (18), we get

$$
\begin{equation*}
B=\frac{r_{8}}{r_{F_{2}}}\left(r_{1}-R_{2}\right) \tag{23}
\end{equation*}
$$

Takins account of equations (5) and (6), we have

$$
\begin{equation*}
B=Y_{B / B}\left(B_{1}-R_{2}\right) \tag{2.4}
\end{equation*}
$$

Due to the similarity of the reaction of B on R, and of the reaction of C on U, we can write immediately

$$
\begin{equation*}
c=v_{C / U}\left(U_{1}-U_{2}\right) \tag{25}
\end{equation*}
$$

The steady state material balance for product P is

$$
\begin{equation*}
-P+\int_{P} P_{\theta_{2}}=0 \tag{26}
\end{equation*}
$$

Substituting the right hand side of equation (10) for r_{p} we cbtain

$$
P=\frac{Y_{P / R}}{Y_{B / R}} r_{B} \theta_{2}+\frac{Y_{P / U}}{Y_{C / U}} r_{C} \theta_{2}
$$

Taking account of equation (18) and the corresponding relationship $C=r_{C}{ }_{2}$ we obtain after substitution

$$
\begin{equation*}
P=\frac{Y_{P / R}}{Y_{B / R}} \cdot B+\frac{Y_{P / U}}{Y_{C / U}} \cdot C \tag{27}
\end{equation*}
$$

Equation (12), (14), (16), and (17) describe the performance of the first stage while equations (19), (20), (24), (25), and (27) describe the behavior in the second stage for a two stage conventional process. The correspondins set of equations for a contact process which includes a recycle stream of oreanisms will be derived next.
B. System with reoycle.

Since the model for growth used in this stuay assumes that organism a grows only in stage one and organisms B and C grow only in stase two, any attempts to concentrate the organisms by means of recycle mast be carried out oy feeding the organisms
leaving a stage back to that same stage. The methane producing bacteria represented in this study by organisms B and C often have a simaler maximura specific growth rate than the acid producing organisms (organism A in this study). Bocause of this, recycle of organisms B and C will be considered in this study as shown in Figure 5. Organisms B and C which metabolize the volatile acids in the second stage, are settled in a clarifier at the outlet of this stage (Figure 5). A frastion r_{q} of the sludge leaving the clarifier is recycled to the second stage. Such a system is referred to as an "anaerobic contact procoss" (10). It is assumed that there is no endogoueous decay of organisms. All streams after the second stage are supposed to be equally concentrated in organics S, R and U. The recycle stream does not contain product P. The treated effluent does not contain signifim cant quantities of organisms B or C (Figure 5).

Let

```
q = fraction of the sludge sent to waste disposal section.
\beta = clarifier efficiency.
    r = recycle ratio.
```

The kinitic scheme given in Section 2 above remains valid for the present system, i. e. the rates of reaction of the various species involved in the process axe given by equations (I) through (10). Similarly, for the first stage, there is no modification to efuations (12), (14), (16), and (17) needed, because there is no change in performance at this stage.

The performance equations for the second stage are obtained
from the steady state material balances for species B, C, R, U, end P.

The amount of organism B entering the second stage is now (qr) (βB). Moreover, the flow rate through this stage is $q(1+r)$. Fence, the material balance for B can be written as

$$
\begin{equation*}
q r_{r}^{0} B+r_{B} V_{2}-\frac{8}{4}(1+r) B=0 \tag{28}
\end{equation*}
$$

Where r_{B} is given by equation (5). Substituting this expression for r_{B} into equation (28) and dividing by q yields

$$
r \rho B+\frac{k_{B} R_{2} B}{K_{R}+R_{2}} \cdot \frac{V}{q}-(I+r) B=0
$$

Rearranging this gives

$$
\begin{equation*}
\frac{k_{B} R_{2}}{K_{R}+x_{1 R^{2}}} \cdot \frac{v_{2}}{q}=1+(1-8) r \tag{29}
\end{equation*}
$$

By definition $V_{2 / q}=\theta_{2}$ is the hydraulic residence time at the second stage and

$$
\begin{equation*}
\xi=1+(1-\beta) r \tag{30}
\end{equation*}
$$

is a dimensionless factor whoch depends on β and r. Then, equation (i) can be written as

$$
\frac{k_{B} \mathrm{H}_{2}{ }^{\theta} 2}{\mathrm{k}_{R}+\mathrm{H}_{2}}=\xi
$$

Solving this equation for H_{2} gives

$$
\mathrm{a}_{2}=\frac{\mathrm{k}_{\mathrm{R}} \xi}{\mathrm{k}_{\mathrm{B}} \theta_{2}-\frac{5}{5}}
$$

Dividing the numerator and denominator of this fraction by yields

$$
\begin{equation*}
v R_{2}=\frac{k_{R}}{k_{B} \cdot e_{2}-1} \tag{31}
\end{equation*}
$$

Where

$$
\begin{equation*}
k_{B}^{\prime}=k_{B / \xi} \tag{32}
\end{equation*}
$$

Equation (31) has the same form as equation (19), where k_{B} is replaced by k_{B}. Note that equation (28) may be written, after rearranging, as

$$
\begin{equation*}
r_{B} \theta_{2}=\xi B \tag{33}
\end{equation*}
$$

In the process of metabolization of species 4 by ereenisms C, the underlying kinetic scheme, is the same as for the reaction or R and B. Therefore, by analosy, we obtain

$$
\begin{equation*}
v v_{2}=\frac{K_{U}}{k_{C} \cdot \theta_{2}-\mathrm{I}} \tag{t}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{C}^{\prime}=k_{C} / \xi \tag{35}
\end{equation*}
$$

The amount of R carried by the recycle stream is (rq) R_{2}. The amount of R leaving the second staje is $q(I+r) R_{2}$. Then, the steady state material balance of this compound is

$$
\begin{equation*}
I q R_{2}+q R_{1}+r_{E_{2}} V_{2}-q(I+r) R_{2}=0 \tag{36}
\end{equation*}
$$

Pearranging equation (36), We obtain
$r_{R_{2}} \theta_{2}=R_{2}-R_{1}$
Dividing equation (33) by equation (37) yields

$$
\frac{{ }^{\prime} \mathrm{B}}{\mathrm{r}_{R_{2}}}=\frac{B \xi_{2}}{\mathrm{H}_{2}-R_{1}}
$$

From equations (5) and (6)

$$
\frac{r_{B}}{r_{R_{2}}}=Y_{B / R}
$$

Substituting this value into the preceeding equation yields

$$
B=\frac{Y}{B / R}\left(R_{1}-R_{2}\right)
$$

or

$$
\begin{equation*}
B=Y B / R\left(R_{1}-R_{2}\right) \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{B / R}^{\prime}=\frac{Y_{B / R}}{\xi} \tag{39}
\end{equation*}
$$

Equation (38) has the same form as equation (23) where $\mathrm{Y}_{\mathrm{B} / \mathrm{R}}$ is replaced by $Y^{*} B / R$.

The steady state material balance for orgenics U can be obtained by anaiogy to the case of organics R. Hence we can writc immeodetely

$$
\begin{equation*}
\sigma=Y_{C / J}{ }_{c}\left(U_{1}-U_{2}\right) \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{C / U}=\frac{Y_{C / U}}{\xi} \tag{41}
\end{equation*}
$$

For product p, the steady state material balance is

$$
\ldots(1+r) q+r_{p} V_{2}=0
$$

or

$$
\begin{equation*}
P=\frac{r_{p} \theta_{2}}{1+r} \tag{42}
\end{equation*}
$$

Substituting r_{p} as given by equation (10), we obtain

$$
\begin{equation*}
P=\frac{Y_{P / R} r_{B}{ }^{\theta} 2}{Y_{B / R}(1+r)}+\frac{Y_{Y / U} U^{r} C^{\theta} 2}{Y_{C / U}(I+r)} \tag{43}
\end{equation*}
$$

According to equation (33) we have

$$
r_{B} \theta_{2}=\xi B
$$

By analugi we can write

$$
r_{C} \theta_{2}=\xi C
$$

Substituting these expressions into equation (43) yiejes

$$
\begin{equation*}
P=\frac{Y_{P / R}}{(\overline{1}+r)} \frac{\xi B}{Y_{B / R}}+\frac{Y_{P / U}}{(\bar{I}+r)} \frac{\xi C}{Y_{C / U}} \tag{44}
\end{equation*}
$$

Let

$$
\begin{align*}
& Y_{P / R}=\frac{Y_{P / B}}{I+I} \\
& Y_{Y / U}=\frac{Y_{P / U}}{I \div Y} \tag{45}
\end{align*}
$$

Then, taking account of equations (39), (41), and (45), equation (44) can be written as

$$
\begin{equation*}
P=\frac{Y^{\prime} P / R}{Y^{\prime} \frac{B / R}{B}} \cdot B+\frac{Y^{\prime} P / U}{Y^{\prime} C / U} \cdot C \tag{46}
\end{equation*}
$$

Performance equations (31), (34), (38), (40) and (46) have the same form as the corresponding equations for the conventional process, 1. e. equations (10), (20), (24), (25) and (27) respectively. Therefore, provided the constants $k_{B}, k_{C}, Y_{B / R}$. $Y_{C / U}, Y_{P / R}$ and $Y_{P / U}$ are transformed according to equations (32), (35), (39), (41) and (45) respectively, the simulation of the process can be carried out using the same computer procrara es for the conventional process.

An important parameter for a contact process is the solid retention time. According to NeCarty (10), the solid reterition time (SRI) is defined as

$$
S R T=\frac{\text { Suspended } \text { solids in the system }}{\text { Suspended solids removed per day }}
$$

We shall apply this definition to the organisme E in the secend stage. The mass of organisms B in this stage is V_{2}. . The quantity of B romoved por day is (q) (βB). Then

$$
\operatorname{SBT}_{B}=\frac{V_{2} B}{\omega q \beta B}
$$

or

$$
\begin{equation*}
\operatorname{sir}_{5}=\frac{V_{2}}{q} \cdot \frac{1}{\omega s} \tag{47}
\end{equation*}
$$

Where $\operatorname{San}_{\mathrm{B}}$ is the solid retention time of organisms B in the second stage. Furthermore the material balance for organisms B around tne clarlfyer can be cxpressed ac

$$
(1+r) q B=(r+\omega) q \beta B
$$

which gields, after simplifying and rearranging,

$$
\begin{equation*}
\beta \omega=1+(1-\beta) r \tag{48}
\end{equation*}
$$

Then, according to equations (30), (47), and (48), $\mathrm{SRT}_{\mathrm{B}}$ can be expressed as

$$
\mathrm{SRT}_{B}=\frac{\theta^{a}}{\xi}
$$

Note that equation (48) implies

$$
1+(1-\beta) r>0
$$

or

$$
r<r_{\max }
$$

where

$$
r_{\max }=\frac{1}{\beta-1}
$$

When $r=r_{\text {max }}$, equation (48) shows that

$$
\beta \omega=0
$$

If $\beta \neq 0$, then $\omega=0$, i. e, all available oryanisns B a recycled.
C. Concept of wash-out time.

Since microbial growth is an autocatalytic process, organisms must be present for Erowth to ocour. If the flow rate is too large relative to the reproduction rate the organisms may not be able to reproduce fast enough and wash-out of organisms may result, It is important to determine which residence times will cortinuously support a growing culture and which ones will
result in wash out and no growth. At first we shall consider the first stage. The function which describes the variations of outlet concentration of substrate S is hyperbolic as given by equation (12).

$$
\begin{equation*}
s_{1}=\frac{k_{S}}{e_{1} k_{A}-i} \tag{12}
\end{equation*}
$$

There is a mathematical limit for θ_{1} for which $S_{1}-\infty$. This occurs where $\theta_{1}-1 / k_{A}$. Obviously, it has no physical significance since $S_{1}<S_{0}$. The lowest residence time $\theta_{V I}$ for which equation (12) has a physical significance is where

$$
s_{1}=s_{0}
$$

This is to say that, when $\theta_{1}=0_{w 1}$, washout occure fos orocmism A and there is no conversion of substrate S. Equations (16), (17), and (14) show that under this condition $R_{1}=U_{1}=A=0$. These results are illustrated in Figure 7. When $\theta_{2}>\theta_{W 1}$. Organisin A can grow and S is converted to produce R and U. Equations (12), (14), (16), (17) show that, under this condition, we have

$$
S_{1}<S_{0}, \text { and }\left\{\begin{array}{l}
A>0 \\
R_{1}>0 \\
U_{1}>0
\end{array}\right.
$$

At the inlet of the second stage the concentration of S, Λ, R, and U are respectively S_{1}, A, H_{1}, and U_{1}. Consider equation (19) Which gives R_{2}, the outlet concentration of R, as a function of residence time θ_{2} in the second stage. As in the

previous case the relative size of the values of the maximum specific growth rate k_{B} and the dilution rate θ_{2} will determine Whether growth of organism B can occur in the second tank. R is converted only if organism B is present in which case the inlet concentration R_{g} exceeds the outlet concentration R_{2}. Examining equation (19) then shows that there exists a residence time $0_{\text {wz }}$ for which the following equation holds.

$$
\begin{equation*}
R_{2}-R_{1}=0 \tag{49}
\end{equation*}
$$

At $\theta_{w 2}$, equation (23) shows that $B=0$. When $\theta_{2}>\theta_{w 2}, R$ begins to be converted and B to grow, giving product P.

A similar reasoning applies to U and C. The former is converted and the latter grows only if $\theta_{2}>\theta_{\mathrm{v} ;}$, where $\theta_{\mathrm{r} 3}$ is the solution of equation (20) for θ_{2} if

$$
v_{2}=U_{1}
$$

At $\theta_{\text {w3 }}$, equation (25) shows that $C=0$. When $\theta_{2}>\theta_{\text {w3 }}$, U besins to be converted, and C to grow, yielding product P.

It has been noted (8) that in the second stage, wash-out usualiy occurs first for the oryarism which has the smallest maximuc specific growth rate. Since $k_{C}<k_{B}, C$ is the slowest Erowing organism. Therefore, the followng inequality is usually satisfied.

$$
\begin{equation*}
\theta_{w 2}<\theta_{w 3} \tag{51}
\end{equation*}
$$

Thus, the corbltion which must be satisfied in order for organism A. to grou in the first stage is

$$
\begin{equation*}
\theta_{I}>\theta_{w I} \tag{52}
\end{equation*}
$$

Similarly, the condition for the growth of organisms B and C in the second stage is

$$
\begin{equation*}
\theta_{2}>\theta_{v: 3} \tag{53}
\end{equation*}
$$

The inequalities given by equations (52) and (53) will be referred to as "conditions of reasibility".

4. Economic model.

We shall consider a cost of treatment consisting of two terms. The first term is the total hydraulic residence time $\theta_{1}+\theta_{2}$ of the feed stream q in the system. This term reprecents approximately the cost of the ilsesters in terms of volunc. Therefore, it also represents roughly the fixed costs of treatment for a given plant and a given flow rate. In addition, the degree of removal of organics from the feed stream has an important economic significance. In fact, the stream leaving the clarifier can either be discharged into a receiving stream or treated further in order to achieve a better stabilization or lts organic content. In both cases, we may incur a penalization which is a function of the degree of ireatment. In this work, the penaliza. tion term takes the form $z_{S} S_{1}+z_{R} n_{2}+z_{U} U_{2}$ penalization where z_{S}, z_{R}, ant z_{U} are constents. This term must also be expressed in terms of reaidence time. Thus, the dimension of the constiants z_{S}, z_{R}, and. z_{U} is tire/concentration.

In this section, we shall detemmine the wash-out times, $\theta_{\text {wI }}, \theta_{\text {w2 }}, \theta_{w 3}$, of the system using the concept of washwout stated in Section I工.3. Then, we shall prove that the washmout steady state is a solution for the steady state problerd provided that tho feed stream is free of organisms.

1. Determination of wash-out times.

Organism At
By definition of $\theta_{w l}$, we have

$$
s_{1}\left(\theta_{W 1}\right)=s_{0}
$$

Because of equation (12), this gives

$$
\frac{K_{S}}{\theta_{w 1}^{k_{A}}-1}=s_{0}
$$

and

$$
\begin{equation*}
\theta_{w 1}=\frac{1}{k_{A}}\left(1+\frac{K_{S}}{S_{0}}\right) \tag{54}
\end{equation*}
$$

K_{S} and S_{0} are positive. Thus, equation (54) implies

$$
\begin{equation*}
\theta_{\mathrm{v}_{\mathrm{K}} 1}>\frac{1}{\mathrm{k}_{\mathrm{A}}} \tag{55}
\end{equation*}
$$

Moreover, when $S_{1}=S_{0}$, equation (14) shows that $A=0$. When wash-out occurs in the first stage, the concentration of organism A is zero.

Crganism B_{i}
The corresponding wash-out time, say $\theta_{w 2}$, ocours when

$$
\begin{equation*}
H_{2}\left(\theta_{W 2}\right)=H_{1} \tag{50}
\end{equation*}
$$

Substituting from equation (19), we have

$$
\frac{K_{R}}{k_{B} \theta_{W 2}-1}=R_{1}
$$

Then

$$
\begin{equation*}
v \theta_{w 2}=\frac{1}{k_{B}}\left(1+\frac{K_{B}}{R_{1}}\right) \tag{57}
\end{equation*}
$$

Again, we notice that substituting equation (56) into equation (24) Ieads to $B=0$.

Organism C:

$\theta_{\text {w3 }}$ corresponds to the condition that

$$
\begin{equation*}
U_{2}\left(\theta_{w 3}\right)=U_{1} \tag{58}
\end{equation*}
$$

Substituting from equation (20) we have

$$
\frac{K_{U}}{{ }_{k_{C}}{ }^{\theta_{W 3}}-1}=U_{1}
$$

Solving for $\hat{o}_{w 3}$ yields

$$
\begin{equation*}
v \theta_{w 3}=\frac{1}{K_{C}}\left(1+\frac{K_{U}}{U_{1}}\right) \tag{59}
\end{equation*}
$$

This equation implies that

$$
\begin{equation*}
0_{n 3}>\frac{1}{k_{C}} \tag{60}
\end{equation*}
$$

Equat!on (5i) shows that $\theta_{w l}$ does not depend on the residence time of any of the stages. However, the expressions for $\theta_{w 2}$ and ${ }^{G}$ w contain the terms K_{1} and U_{1} respectively, which are dependent
on the residence time of the first stage. As a result, the wash-out times of organisms B and C depend on the residence time in the first tank. Figure 8 illustrates the concept of washout time of organism A in the first stage. The dimensionless concentrations $S_{1} / S_{0}, A / S_{0}, R_{1} / S_{0}$, and U_{1} / S_{0} as obtained from equations (12), (14), (16), and (17) respectively are plotted versus the residence time θ_{1} ranging from 0 to 2 days. When $\theta_{1}<\theta_{w l}, S_{1} / S_{0}=1$ and $A / S_{0}=0$, no conversion takes place and wash-out of organism A occurs. When $\theta_{1}>\theta_{w 1}$, the concentration of substrate s falls, indicating that s is converted, while the concentration of organisin A rises due to its growth.

2. Steady state wash-out time.

Let us consider the firist stage. If we assume an initial concentration A_{0} of oreanisms in'the feed strean, the material balance for organism A can be written as

$$
\begin{equation*}
A_{0}-A=-x_{A} \theta_{1} \tag{61}
\end{equation*}
$$

Fos substrate S, it is

$$
\begin{equation*}
s_{0}-s_{1}=-s_{s} \theta_{1} \tag{7}
\end{equation*}
$$

Dividins equation (61) by equation (7) and noting that $-r_{A} / r_{S}=$ $Y_{A / S}$, we cbtain

$$
\begin{equation*}
A_{0}-A=-Y_{A / S}\left(S_{0}-S_{1}\right) \tag{62}
\end{equation*}
$$

which can be rearranzed to give

$$
A=A_{0} * Y_{A / B}\left(S_{0}-\Sigma_{1}\right)
$$

Substituting this expression into equation (1) giving r_{A} yields

$$
\begin{equation*}
I_{A}=\frac{k_{A} S_{1}}{k_{S}+S_{1}}\left[A_{0}+Y_{A / S}\left(S_{0}-S_{1}\right)\right] \tag{63}
\end{equation*}
$$

Substituting equations (62) and (63) into equation (61) yields

$$
\begin{equation*}
-Y_{A / S}\left(S_{0}-S_{1}\right)=-\frac{K_{A} \theta_{1} S_{1}}{K_{S}+S_{1}}\left[A_{0}+Y_{A / S}\left(S_{0}-S_{1}\right)\right] \tag{64}
\end{equation*}
$$

By introducing the condition $A_{0}=0$, equation (64) can be written as

$$
\begin{equation*}
\left(S_{0}-s_{1}\right)\left(1-\frac{k_{A}{ }^{2} I S_{1}}{K_{S}+s_{1}}\right)=0 \tag{65}
\end{equation*}
$$

This is an equation of second order, which gives the steady state concontration S_{1}. Obviously, one of the roots $1 \mathrm{~s} S_{2}=S_{0}$. This is precisely the condition for wash-out of organism A from the first stage. Another root is given by

$$
1-\frac{k_{A} \theta_{1} S_{1}}{k_{S}+s_{1}}=0
$$

Solving for S_{1} yields

$$
\begin{equation*}
s_{1}=\frac{k_{S}}{\theta_{I} k_{A}}=-I \tag{12}
\end{equation*}
$$

which is identical to equation (12). Thus this approach shows that, in adilition to the steady state described by the performance equations given in Section II.3., there is a socond solution which can be referred to as "wash-out steady state" for the first stage. By analoey the same conclusions can be reached for
the second stage.
The analysis given above yields an important conclusion as to the operation of the system. Indeed, let us assume that wash-out of organism A occured in the first stage due to flooding. Then, for this stage, the stable steady state solution is given by the first root of equation (65), 1.c. $S_{1}=S_{0}$. This implies that the feed stream flow through the first stage without undergoing any biochemical conversion. However, if a residence time θ_{1} is established such that $\theta_{1}>\theta_{w l}$ and if some organisid is is introduced into the first stage, this organism can grow utilizing substrate S. After a transient period, the system reaches a stable steady state described by the second root of equation (65) which yields cquation (12). In this steady state, continueus organic utilization occurs, which is the condition for the system to operate efficiently.

IV. OFTIMIZATION

In this Section, we shall determine the optimal policy for a two-stage continuous anaerobic digester systcm using two different approaches. In the first apprcach, differential calculus ylelds an analytical expression for the optimal policy. In the second approach, the analysis of the probiem is carried out from tinc point of viek of an empirical search tcchnique, ramely the Simplex technique which is discussed in Appendix IV.

1. Formulation of the problem

According to the cconomic model described in Section II.4,
the objective function to be minimized consists of two parts. The first part expresses the equipment $\operatorname{cost}\left(\theta_{1}+\theta_{2}\right)$. The second pert is the penalization cost $z_{S} S_{1}+z_{R} R_{2}+z_{U} U_{2}$ for discharging the organics remaining in the effluent stream. Thus the objective function J can be expressed as

$$
\begin{equation*}
J=\theta_{1}+\theta_{2}+z_{S} S_{1}+z_{R} B_{2}+z_{U} U_{2} \tag{66}
\end{equation*}
$$

Suostituting equations (12), (19), and equation (20) into the above equation gives

$$
\begin{equation*}
J=\theta_{1}+\theta_{2}+\frac{z_{S} K_{S}}{\theta_{1} k_{A}-1}+\frac{z_{\mathrm{S}} K_{B}}{k_{B} \theta_{2}-1}+\frac{z_{U} K_{U}}{k_{C} \theta_{2}-1} \tag{57}
\end{equation*}
$$

Note that if $\theta_{W 2} \leq \theta_{2}<\theta_{W 3}$, the concentration of U in the treated effluent is U_{1}. Then the objective function would be

$$
J^{\prime}=\theta_{1}+\theta_{2}+\frac{z_{S} K_{S}}{\theta_{1} k_{A}-I}+\frac{z_{R} k_{B}}{k_{B} \theta_{2}-1}+z_{U} U_{1}
$$

The decision variables are chosen to be the two residence times θ_{1} and θ_{2}, Since there is no equality constraint, the optimization problem is two-dimensional. Equation (67) shows that the optimization problem is a non-linear one with the decision variables θ_{1} and θ_{2} subject to the conditions of feasibility.

$$
\begin{align*}
& \theta_{1}>\theta_{w 1} \tag{52}\\
& \theta_{2}>\theta_{w 3} \tag{53}
\end{align*}
$$

2. Numcrical data.

The optimization will be performed with the following values
of physical and economical parameters:

$$
\begin{aligned}
& s_{0}=10.0 \mathrm{gm} / 1 \\
& \mathrm{k}_{\Lambda}=6.0 \mathrm{day}^{-1} \\
& \mathrm{~K}_{\mathrm{S}}=0.50 \mathrm{gm} / 1 \\
& Y_{A / S}=0.25 \\
& Y_{R / S}=0.40 \\
& Y_{U / S}=0.20 \\
& k_{B}=0.50 \mathrm{day}^{-1} \\
& \mathrm{~K}_{\mathrm{H}}=1.00 \mathrm{gm} / 1 \\
& Y_{B / R}=0.10 \\
& Y_{P / R}=0.75 \\
& \mathrm{k}_{\mathrm{C}}=0.25 \mathrm{day}^{-1} \\
& K_{U}=1.50 \mathrm{Em} / 1 \\
& Y_{C / U}=0.10 \\
& Y_{P / U}=0.75 \\
& z_{S}=1.00 \\
& z_{R}=1.50 \\
& z_{U}=1.50
\end{aligned}
$$

The choice of these values for z_{S}, z_{R}, and z_{U} is compatible with the two conditions of feasibility as will be shown in Section IV. 3 below,
3. Analysis by differential calculus.

Let (Σ) be the surface described by equation (67). First, We have to find the stationary points on surface (Σ). The coordinates of such points satisfy the necossary conditions

$$
\begin{equation*}
\frac{\partial J}{\partial \partial_{I}}=0 \tag{68}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial J}{\partial \theta_{2}}=0 \tag{69}
\end{equation*}
$$

From equation (66) we have

$$
\frac{\partial J}{\partial \theta_{I}}=I+z_{S} \frac{d S_{1}}{d \theta_{I}}+z_{R} \frac{d R_{2}}{d \theta_{I}}+z_{U} \frac{d U_{2}}{d \theta_{I}}
$$

R_{2} and U_{2} do not depend on θ_{1}. Then substituting $d S_{1} /{ }^{\prime d \theta_{1}}$ yields

$$
\begin{equation*}
1-\frac{z_{\mathrm{S}} k_{\mathrm{S}} k_{\mathrm{a}}}{\left(k_{\mathrm{A}} e^{1}-1\right)^{2}}=0 \tag{70}
\end{equation*}
$$

Solving for θ_{1} yi.elds

$$
\begin{equation*}
\theta_{I}=\frac{1}{k_{A}}\left[1 \pm \sqrt{z_{S} K_{S} k_{A}}\right] \tag{71}
\end{equation*}
$$

In order for θ_{1} to have a physical significance, it has to satisfy

$$
\theta_{I}>\theta_{\mathrm{WI}}>\frac{I}{\mathrm{k}_{\mathrm{A}}}
$$

Therefore, the expression for θ_{1} is necessarily

$$
\begin{equation*}
\theta_{I L}=\frac{I}{k_{A}}\left[I+\sqrt{Z_{S} K_{S} k_{A}}\right] \tag{72}
\end{equation*}
$$

Let us now consider equation (69). From equation (66)

$$
\frac{\partial J}{\partial \theta_{2}}=1+z_{\mathrm{R}} \frac{\mathrm{~d} R_{2}}{\mathrm{~d} \theta_{2}}+z_{\mathrm{U}} \frac{\mathrm{dU}}{\mathrm{~d} \theta_{2}}
$$

Substituting into this equation the derivatives $\frac{\mathrm{dR}_{2}}{\mathrm{~d} \mathrm{\theta}}$ and $\frac{\mathrm{dU}}{\mathrm{d}_{2}}$ computed from equations (19) and (20) yields

$$
\frac{\partial J}{\partial \theta_{2}}=1-\frac{z_{R} K_{P} k_{B}}{\left(k_{B} \theta_{2}-1\right)^{2}}-\frac{z_{U} K_{U} k_{C}}{\left(k_{C} \theta_{2}-1\right)^{2}}=0
$$

or

$$
\begin{equation*}
\frac{z_{\mathrm{P}} K_{\mathrm{P}} k_{\mathrm{B}}}{\left(k_{B} \theta_{2}-1\right)^{2}}+\frac{z_{U} K_{U} k_{\mathrm{C}}}{\left(k_{C} \theta_{2}-1\right)^{2}}-1=0 \tag{73}
\end{equation*}
$$

Let

$$
\begin{equation*}
\varphi\left(\theta_{2}\right)=\frac{z_{B} k_{B} k_{B}}{\left(k_{B} e_{2}-1\right)^{2}}+\frac{z_{U} K_{U} k_{C}}{\left(k_{C} \theta_{2}-1\right)^{2}}-1 \tag{74}
\end{equation*}
$$

Then, equation (74) becomes

$$
\begin{equation*}
\varphi\left(\theta_{2}\right)=0 . \tag{75}
\end{equation*}
$$

Equation (73) can also be written as

$$
\begin{aligned}
z_{R} K_{\mathrm{H}} k_{B}\left(k_{C} \theta_{2}-1\right)^{2} & +z_{U} K_{U} k_{C}\left(k_{B} \theta_{2}-1\right) \\
& -\left(k_{B} \theta_{2}-1\right)^{2}\left(k_{C} \theta_{2}-1\right)^{2}=0
\end{aligned}
$$

This equation is of 4 th order and, therefore, equation (73) has four roots.

In order for θ_{2} to have a physical significance, it has to satisfy

$$
\theta_{2}>\theta_{w 3}>\frac{1}{k_{C}}
$$

It can be shown (see appendix II) that the largest root of
equation (73), say $\theta_{2 L}$, always satisfies this condition. It remains to prove that the point defined by the coordinates $\theta_{1 L}$ and $\theta_{2 L}$ is a minimum on response surface (Σ), i.e. that the Hessian matrix of the objective function J is positive definite at this point (see Appendix III).

Equations (72) and (75) allow us to express the inequality constraints (52) and (53) in terms of the physical and economical parameters of the system.
The first inequality constraint is

$$
\theta_{1 L}>\theta_{W 1}
$$

Substituting equations (54) and (72) in this equation leacis to the relationship
which must be satisfied to have growth in the first tank. Simplification of the above relation yields

$$
\sqrt{Z_{S} K_{S} K_{A}}>\frac{K_{S}}{S_{0}}
$$

Ralsing this to the second power and rearranging gives

$$
\begin{equation*}
z_{S} k_{A}\left(S_{0}\right)^{2}-K_{S}>0 \tag{76}
\end{equation*}
$$

Values of all the parameters appearing in this inequality are positive. It follows from inequality Elven by equation (75) that

$$
z_{S}>\frac{k_{S}}{k_{A}\left(s_{0}\right)^{z}}
$$

For a given initial substrate concentration, thexe is a lower limit for penalization z_{S} in order for the first stage to operate above the wash-out residence time and under optimal conditions $z_{S}=1.0$ satjsfies the inequality of equation (76).

The second inequality constraint is

$$
\begin{equation*}
\theta_{2 L}>\theta_{w 3} \tag{77}
\end{equation*}
$$

where $\theta_{2 L}$ is the largest root of $\varphi\left(\theta_{2}\right)=0$ and $\theta_{W 3}$ is given by equation (59). We know that $\theta_{w 3}$ and $\theta_{2 L}$ are both larger than I / k_{C}, and that $\varphi\left(\theta_{2}\right)$ monotonously decreases when $\theta_{2}>1 / k_{C}$. Therefore, the inequality given by equation (77) yields

$$
\varphi\left(\theta_{w 3}\right)>\varphi\left(\theta_{2 L}\right)
$$

But, by definition,

$$
\varphi\left(\theta_{2 I}\right)=0
$$

Hence, the second condition for feasibility is

$$
\phi\left(\epsilon_{W_{i j}-3}\right)>0
$$

Subsituting the expression for φ from equation (74) yiclds

$$
\begin{equation*}
\frac{z_{R} K_{R} k_{B}}{\left(k_{B} \theta_{W 3}-1\right)^{2}}+\frac{z_{U} K_{U} k_{C}}{\left(k_{C} \theta_{W 3}-1\right)^{2}}-1>0 \tag{78}
\end{equation*}
$$

This inequality is Iinear in z_{R} and z_{U}. In addition, $\theta_{w 3}$ depends on θ_{1}. It can thus be concluded that for siven operating conditions at the first stage, there are lower lymita ror penalizailon coefficients z_{R} and $z_{U}, \quad z_{R_{R}}=z_{U}=1.50$ satisfies the

Inequality Eiven by equation (78).
Finally, the coordinates $\theta_{1 L}$ and $\theta_{2 J}$ of poirit A minimize the objective function J given by equation (67) and satisfy the inequality constraints given by equations (52) and (53). Thus,

$$
\begin{aligned}
& { }^{\theta}{ }_{1 O P T}={ }^{\theta} 1 \mathrm{~L} \\
& { }_{2 O P T}={ }^{\theta} 2 \mathrm{~L}
\end{aligned}
$$

Point A corresponds to the optimal policy on response surface (Σ). In addition to point A, the surface (Σ) has three other stationary points, namely, B, C, and D (see Appendix III). B and D are saddle points, C is a maximure point.

4. Analysis by empirical search.

As stated previously the objective function J is to be minimized under the two inequality constraints $\theta_{1}>\theta_{W I}$ and $\theta_{2}>\theta_{w 3}$, where θ_{1} and θ_{2} are the two decision variables.

In the differential calculus approach, this constrainea optimization problem is solved in two steps. In the first one, we determine the stationary points of the response surface (Σ). In the second one, we check a posteriori that the stationsiry point of interest (point A) satisfies the inequality constraints given above.

The empsical search technique, simplex, is particularly suitable to treat atonce such a constrained optimization problem (see Appendix IV).

By means of these two techniques, it is found that the optimal residence times for the system under consideration are
$\theta_{1}=0.455$ days and $\theta_{2}=7.183$ days. Figure 9 shows a plot of the dimensionless concentrations $\mathrm{R}_{2} / \mathrm{S}_{0}, \mathrm{U}_{2} / \mathrm{S}_{0}, \mathrm{~B} / \mathrm{S}_{0}, \mathrm{C} / \mathrm{S}_{0}$ and P / S_{0} in stage two for the optimal policy for stage one. Figure 10 shows the plot of the same dimensionless concentration for a contact system where $r=0.25$ and $\beta=4.0$. These figures illustrate the increased stability of the contact process. Indeed, the wash-out times $\theta_{w 2}$ and $\theta_{w 3}$ for the contact process are 0.629 days and 1.772 days as compared to 2.515 days and 7.087 days for the conventional system. Comparing Figures 9 arid 10 shows also a strong increase in oreanism concentzations B and C together with a more efficient reduction of the organics in the case of the contact process.

5. Contours.

When J is given a fixed value J_{c} equation (67) represents the corresponding contour. Let us write equation (67) in the form

$$
\begin{equation*}
J_{c}=A+\theta_{I}+\frac{z_{S} K_{S}}{k_{A} \theta_{I}-I} \tag{79}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\theta_{2}+\frac{z_{R} K_{R}}{k_{B} \theta_{2}-1}+\frac{z_{U} K_{U}}{k_{C} \theta_{2}-1} \tag{80}
\end{equation*}
$$

Rearranging equation (79) yields

$$
\begin{equation*}
k_{A}\left(\theta_{I}\right)^{2}+\left[\left(A-J_{C}\right) k_{A}-1\right] \theta_{I}+z_{S} K_{S}+J_{C}-A=0 \tag{81}
\end{equation*}
$$

For the purpose of eeneration of the contours, let y be the current value of θ_{2}, and x_{1} and x_{2} the current values of the

two roots of equation (81). Thus the procedure to get the contour corresponding to J_{c} is as follows:

Fix y (or θ_{2}).
Compute A by equation (80).
Substitute A and solve equation (81) for x_{1} and x_{2}.
The two points (x_{1}, y) and ($\left.x_{2}, y\right)$ lie on the contour where the objective function has the value J_{c}. By allowing y to vary the whole contour is generated. Thus the question arisest what is the permissible rance for y ? The discriminant of quadratic equation (81) is

$$
=\left[\left(A-J_{C}\right) k_{A}-1\right]^{2}-4 k_{A}\left(z_{S} K_{S}+J_{C}-A\right)
$$

For equation (83) to havo tro scaj roote, has to be positive. This restricts the range of variation of A and θ_{2} in case of a maximu or minimum for response surface (Σ).

The contours of response surface (Σ) around the stationary points A, B, C and D are show on Figures $11,12,13$, and 14.

On Figure 13, the contours generated by this procedure have no physical significance when $\theta_{\text {w2 }}<\theta_{2} \leq \theta_{\text {w3 }}$. This part of the contours are represented by the dashed lines. In deed, when $\theta_{\text {w2 }}<\theta_{2} \leq \theta_{3}$, wash-out occurs for organism C. Thus, the objectlve function is given by the following equation (see Section IV.)

$$
\begin{equation*}
J^{\prime}=\theta_{1}+\theta_{2}+\frac{z_{S} K_{S}}{k_{A} \theta_{I}-1}+\frac{z_{H} K_{R}}{k_{B} \theta_{2}-1}+z_{U} U_{I} \tag{82}
\end{equation*}
$$

where U_{1} is given by

Fig. 11 Contours of the response surfoce arcund oplimal poini A.

Fig.12 Condurs of the response surfece cround saddie foin E.

Fig. 13 Contours of the response surtoce around minimus point C.

fig. la Compurs of lise repories suiface crund saddie poiri D.

$$
\begin{equation*}
U_{I}=Y_{U / S}\left(S_{0}-S_{1}\right) \tag{17}
\end{equation*}
$$

and S_{1} is given by

$$
\begin{equation*}
S_{1}=\frac{K_{S}}{k_{A} \theta_{I}-I} \tag{12}
\end{equation*}
$$

Equations (12) and (17) yield

$$
U_{1}=Y_{U / S}\left(S_{0}-\frac{K_{S}}{k_{A} \theta_{1}-1}\right)
$$

Substituting this expression of U_{1} into equation (82) gives

$$
\begin{align*}
J^{\prime}=\theta_{I}+\theta_{2} & +\frac{z_{S} K_{S}}{k_{A} \theta_{I}-I}+\frac{z_{R} K_{R}}{k_{B} \theta_{2}-1} \\
& +z_{U} Y_{U / S}\left(S_{0}-\frac{K_{S}}{E_{A} \theta_{I}-I}\right) \tag{83}
\end{align*}
$$

When J^{\prime} is given a fixed value J ' c ' equation (83) represents the corresponding contour. Let us write equation (83) in the form

$$
\begin{equation*}
J_{c}=A^{\prime}+\theta_{I}+z_{S} K_{S}-\frac{z_{U} Y_{U / S}}{k_{A} \theta_{I}} \frac{K_{S}}{I} \tag{84}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{\prime}=\theta_{2}+\frac{z_{B} K_{R}}{z_{B} \theta_{2}-I} * z_{U} Y_{U / S} S_{0} \tag{85}
\end{equation*}
$$

Rearranging equation (84) yields

$$
\begin{align*}
& {k_{A}\left(\theta_{I}\right)^{2}}_{\dot{2}}^{+\left[\left(A^{\prime}-J^{\prime}{ }_{c}\right) k_{A}-I\right] \theta_{I}+z_{S} K_{S}-z_{U} Y_{U / S} K_{S}} \\
& \quad+\left(J_{c}{ }_{c}-A^{\prime}\right)=0 \tag{86}
\end{align*}
$$

The contours can then be senerated using the procedure previousiy
described. They are shown on Figure 13 by the continuous lines where $\theta_{2} \leq \theta_{W 3}$. The contours of the physical response surface are discontinuous for $\theta_{2}=\theta_{W 3}$. Indeed, when this equality holds, the expression of the objective function changes. This explairs the points of discontinuity on Figure 13.

V. RESULTS AND DISCUSSION

The numerical results of this work have been obtained using the program MICU20 (see Appendix V). The main design variables for the conventional process and a contact process are given below.

For the conventional process, the optimal policy is $\theta_{1}=$ 0.455 days and $\theta_{2}=7.183$ days. The correspondins concentrations are
. At the first stage,

$$
\begin{aligned}
& S_{1}=0.289 \mathrm{gm} / \mathrm{l} \\
& A=2.428 \mathrm{gm} / 1 \\
& R_{1}=3.885 \mathrm{gm} / 1 \\
& U_{1}=1.942 \mathrm{gm} / \mathrm{l}
\end{aligned}
$$

- At the second stager

$$
\begin{aligned}
& R_{2}=0.386 \\
& U_{2}=1.88 .5 \\
& B=0.350 \mathrm{gm} / \mathrm{I} \\
& \mathrm{C}=0.006 \mathrm{gm} / 1 \\
& \mathrm{P}=2.667 \mathrm{gm} / \mathrm{l}
\end{aligned}
$$

The wash-out times are

$$
\begin{aligned}
& \theta_{w 1}=0.175 \text { days } \\
& \theta_{w 2}=2.515 \text { days } \\
& \theta_{w 3}=7.089 \text { days }
\end{aligned}
$$

For the contact process, the results are computed for $r=0.25$ and $\beta=4.0$. The optimal policy is $\theta_{I}=0.455$ days and $\theta_{2}=2.64$ days. The corresponding concentrations are

- At the first stage

$$
\begin{aligned}
& S_{1}=0.289 \mathrm{gm} / 1 \\
& A=2.428 \mathrm{gm} / 1 \\
& R_{1}=3.885 \mathrm{gm} / 1 \\
& U_{1}=1.942 \mathrm{gm} / 1
\end{aligned}
$$

- At the second stage

$$
\begin{aligned}
& \mathrm{R}_{2}=0.234 \mathrm{gm} / 1 \\
& \mathrm{U}_{2}=0.924 \mathrm{gm} / 1 \\
& \mathrm{~B}=1.460 \mathrm{gm} / 1 \\
& \mathrm{C}=0.411 \mathrm{gm} / 1 \\
& \mathrm{P}=2.807 \mathrm{gm} / 1
\end{aligned}
$$

The wash-out times are .

$$
\begin{aligned}
& \theta_{w 1}=0.175 \text { days } \\
& \theta_{w 2}=0.629 \text { days } \\
& \theta_{y 3}=1.772 \text { days }
\end{aligned}
$$

The solid retention time in the second stage is

$$
\operatorname{SRT}_{E}=10.56 \text { days }
$$

A parametric study has been carried out with r as parameter,
β being given a constant value of 4.0 . The successive values of r are $0 ., 0.05,0.10,0.15,0.20,0.25$ and 0.333 , respectively. Figure 15, which is a plot of the optimal cost of treatment versus the resycle ratio r. Siows that the cost is significantly reduced by using recycle. Similarly, in Figure 16, a plot of percent of reduction or organics versus the recycle ratio r siows that recycle increases the degree of treatment obtained in an optimum system. Figure 17 which is a plot of total gas production versus r, illustrates the increased gas production obtained by means of recycle. Finally, Figure 18 gives a plot of the wash-out liquid retention time $\theta_{w 3}$ as a function of the recycle ratio.

As compared to the conventional anaerobic process, the results obtained in this work show that the anaerobic contact process has several advantages under the optimal condition. For a recycle ratio of 0.25 and a clarifier efficiency of 4.0 , the cost reduction is $(11.333-5.106 \% 11.333=54.9 \%$. In the conventional process the concentration of organics in the effluent stream is $0.289+0.386+1.885=2.56 \mathrm{gm} / 1$. The reduction in organics concentration is then (10. - 2.56)/10 $=74.4 \%$. In the contect process the concentration of organics in the outlet strean is $0.289+0.234+0.914=1.437 \mathrm{gm} / 1$ which yields a reduction in organics of (10. - 1.437)/10. $=85.6 \%$. The amount of gaseous products is, for the contact process, (1. + .25) x $2.807=3.51 \mathrm{gn} / 1$. Thus, there is an improvement in production of griseous products which can be used to meet the energy reçurements of the process. This improvement is (3.51-2.667)/ $2,667=31.6 \%$. Finally, the wash-out time $\theta_{\mathrm{w} 3}$ decreases from

7.089 days for a eonventional system to 1.772 days for the contaet process.

Figures 15 to 18 show that these improvements in the perform. anee of the system take place over the whole permissible range of the reeycle ratio. However, the assumption of a eonstant value for the clarifier efficieney β may not be true when r takes on high values. At these recycle rates, almost all the oreanisms contained in the stream leaving the second stage have to be separated. Indeed, the major problem arising from the use of the anaerobie contact proeess to date is related to an inability to separate effieiently the baeterial solids from the effluent stream for recyele back to the second stage (14). High efficiency is necessary to maintain the required long sludge retention time while operating at short hydraulic detention tjmes (14). In the successful full-seale treatment of meat-packing wastes (15), a vacuum degasifier has been used between the digester and final settling tank to remove gases which tend to float the solids rather than allowing them to settle in the setting tank." This seheme or some other solids separation device may be needed to implement the anaerobie eontact proeess.

Moreover', high values for the reeycle ratio imply long solid retention times. This yields organisn deeay, which is assumed to be negligible in this work. Hence, the eurves given

* A flotation process making use of the large quantities of dissolved sases to float and eoneentrate the solids for retum to the digester also appears feasible (10).
on Figures 15 to 18 are not sicnificant for high values of r. However, they show a realistic trend when the value of x is consistent with the assumptions of constant clarifier efficiency and constant maximum specific growth rate.

VI. CONCIUSIONS

A rathematical formulation of the kinetic model reported by several authors (7. 9, 10) for the anaerobic digestion process allowed us to analyze the two-stage systems under consideration in this work. It has then been shown that the wash-out times are importent design paraneters. In addition, the process has been optimized by considering an objective function of economic type. Under the assumptions which have been made, the optimization problem has one and only one minimum solution.

As reported by Pfeffer (13), this work shows that the contact process has several advantages over the conventional process. They are more efficient organic content reduction, increased total gas production and greater stability.

This work is a theoretical one. Hence, additional experim mental work is required to verify the assimptions which have been made. However, since industrial biolosical was'e treatments involve mixed cultures metabolizing mixed substrates, this study constitutes a contribution to improve our knoviledge and control of these processes.

- The author wishes to express his sincere appreciation to Dr. Liang-tseng Fan and Dr. Larry E. Erickson for their constant enthusiasm and advice in this work; Dr. E. S. Lee for his help in reading the manuscript; the Kansas State University Computing Center for the use of their facilities; and the $\mathrm{K} . \mathrm{S} . \mathrm{U}$. Ensineering Experiment Station, the Kansas Water Resources Research Institute, and Office of Water Resources Research, and the Federal Water Pollution Control Administration, U. S. Department of the Interior for supporting this work (Proj. A-019-KAN and Froj. WF-01141-01).

NOMENCLATURE

q	Flow rate.
S_{0}	Concentration of organics in the feed stream.
S_{1}	```Concentration of primary substrate in first (and in second) stage.```
$\mathrm{R}_{1}, \mathrm{U}_{1}$	Concentration of volatile acids R and U in first stage.
$\mathrm{R}_{2}, \mathrm{U}_{2}$	Concentration of volatile acids R and U in the second stage.
P	Concentration of final product in the second stege.
A	Concentration of organisil A in the first stage.
B, C	Concentration of orgenisms B and C in the second stage.
$\mathrm{k}_{8}, \mathrm{k}_{\mathrm{B}}, \mathrm{k}_{\mathrm{C}}$	Maximum specific growth rate for organisms A, B, C, respectively.
K_{S}, K_{R}, K_{U}	Seturation constants for S, R, U, respectively.
θ_{n}	Residence time at stage n .
$\theta_{\mathrm{n} \text { opt }}$	Optimal residence time of stage n.
$\theta_{\text {wi }}$	Wash-out retention time for organisr A.
$\theta_{\text {w2 }}$	Wesh-out retention time for organism B.
${ }^{\text {w }}$ \%	Wash-out retention time for organism C.
$Y_{A / S}$	Yield constant for formation of orgenism A in terins of utilization of substrate S.
${ }^{\mathrm{Y}}$ R/S	Yield constant for formation of R from S .
$Y_{U / S}$	Yield constant for formation of U from S.
$Y_{B / R}$	Yield constant for formation of organism B from utilization of intermediate R.
$Y_{C / U}$	Yield constant for formation of organism C from utilization of intermediate U.
$v_{p / R}$	Yield constant for formation of procuct P from intermedjate B .
$Y_{Y / U}$	Yield constant for fornation of product P from

intermedjate U.

r	Recycle ratio for the second stazc.
8	Clarifyer Efficiency.
$k_{B}^{\prime}, k_{C}^{\prime}$	Transformed constants for k_{B} and k_{C}.
$Y^{\prime}{ }^{\prime} / \mathrm{F}$	Transformed yield factor for $Y_{B / R}$.
$Y_{P / R}^{\prime}$	Transformed yield factor for $Y_{P / R}$.
$Y_{C / U}^{\prime}$	Transformed yield factor for $Y_{C / U}$.
$Y_{P / U}^{\prime}$	Transformed yield factor for $\mathrm{I}_{\mathrm{P} / \mathrm{U}}$.
ξ	Contact factor.
$r_{\text {A }}$	Rate of production of organism A in the first siege.
$r_{B} \cdot{ }^{r_{C}}$	hates of production of organisms B and C respectively in the second stage.
r_{S}	Fate of consumption of substrate 3 in the inst stage,
$r_{R_{1}}: r_{U_{1}}$	Fates of consumption of organics F and U respectively in the first stage.
${ }^{\mathrm{F}_{2}} \cdot{ }^{r_{\mathrm{U}}}$	Rates of consumption of organics B and U respectivel y in the second stage.
r_{P}	Rate of production of product P in the seccne staç.
J	Objective function.
z_{S}, z_{H}, z_{U}	Penealization for discharging organics $S, R_{\text {g }}$ and U respectively.
Σ	Hesponse surface.
A	Minimum point on (Σ).
B, D	Saddle points on (Σ).
C	Naximum point on (5)
$h_{1 j}$	Hessian matrix.

1. Novick, A., and L. Szilard "Experiments with the chemostat on Spontaneous mutations of bacteria." Proc. Natl. Academy of Science 36: 708, 1950.
2. Monod, J. "La technique de culture continue, theorie at applications." Annales Inst. Pastcux 29: 390, 1950.
3. Herbert, D., R. Elsworth and R. C. Telling "The continuous culture of bacteria. A theoretical and experimental study," J. Cenl. Microbiol. 14: 601. 1956.
4. Erickson, L. E., and L. T. Fan "Optimization of the hydraulic regime of activated sludge systens," accepted for publication, Water Pollution Control Federation Journal (1967).
5. Erickson, L. E., and Y. S. Ho, and L. T. Fan, "Modeling and Optimization of Step Aeration Waste Preatment Systens, accepted for publication, Water Pollution Control Federation Journal (1967).
6. Eckenfelder, W. W., Blological Waste Treatment, Fergamon Press, 1961.
7. Malina, J. F., Jr., "Anaerobic Waste Treatment," Manual of Preatment Processes, Environmental Science Services Corpuration (1968).
8. Willimon, E. P., Jr., and J. F. Andrews, "Kinetics or multistage biological processes," Proceedings 22nc Puxdue University, Iafayette, Ind., 1967 (in Press).
9. Willimon, E. P., and J. F. Andrews, "Hultistage biological processes for waste treatment," Proceedings 22nỏ Purdue Industrial Waste Conference, Purdue University, Lafayette, Ind., 1967 (in Press).
10. McCarty, P. L., "Anaerobic Waste Ireatment Fundamentals," Public Works (September 1964).
11. Nelder, J. A., and R. Mead, "A Simplex Method for Function Minimization," Computer Joumal 7 (1965).
12. McCarty, P. L., "Kinetics of Waste Assirilation in Anaerobic Treatment," Public works (1964).
13. Pfeffer, J. T.. "Increased loadings on dicesters with recycle of digested solids," Water Pollution Control Federation Journal (1968).
14. KcCarty, P. L., "Anaerobic Wastie Treatment Fundamentals," Public Works (December 1964).
15. Steffen, A. J., and Bediter, M., "Operation of Full-Scale Anaerobic Contact Treatment Plant for Hoat Packing Wastes," Proceedings l6th Industrial Waste Conf., 1961, Purdue Engineering Extension Series 109, 423-437 (1.962).

COMPUTER PROGRAM

Main routine MICU20 and subroutines

```
c MAIN PROGRAM MICU2O.
C THIS PROGRAM DEFINES THE OFTIMAL DESIGN OF A TwO-STAGE WaTER TREATNENT
C BY MIXED CULTURES. IT CALLS 4 SUBROUTINES SIMRLE,OBJ,NEWTON,ISOBAT
C
C PROGRAMMER JC DALTES
C
C FIRST PART*****APECIFICATIONS, STATEMENT FUNCTION DEFIHITIONS AND DATA
C
                    READING.
        EXTERNAL OBJ
        REAL KA,KS,KB,KR,KC,KU,MUS,MUR,MUU,KBO,KCO
        DINENSION TITLE(30),TH(2,3),TMIN(2),DV(2)
        COMMON THH2,THW2,THW3,NUS,NUR,MUU,KA,KS,KB,KC,KU,DELTS,DELTAY
        COMMON /SEARCH/NDIM,KDIM,TH,ALPHA, BETA,GAMMA,IBARY,EPSIL,LIMIT,
        l
                        IC ONV,TMIN,SMIN,NITER,CRIT,NEVAL
c
C READ AND ECHO-CHECK DATA. DEFINE STATEMENT FUNCTIONS.
    XlSI(T) = KS/(T*KA - I.)
    DELTAS(T)= X1SO - XISI(T)
    X2Al(T)= YAS*DELTAS(T)
    XIRI(T)= YRS*DELTAS(T)
    XIUl(T)= YUS*DELTAS(T)
    X1R2(T)=KR/(T*KB - 1.)
    DELTAR(T,U)= XIRI(T)-XIR2(U)
    XIU2(U)=KU/(U*KC-1.)
    DELTAU(T,U) = XIUI(T) .. XIU2(U)
    X2B2(T,U) = YBR*DELTAR(T,U)
    X2C2(T,U) = YCU*DELTAU(T,U)
    X1P2(T,U) = YPR/YBR*X2B2(T,U) * YPU/YCU*X2C2(T,U)
    W2(TI) = (KR+XIRI(TII)/(KB*XIRI(TI))
    W3(TI)=(KU+XIUI(TI))/(KC*XIUI(TX))
    READ(1,1010) TITLE
    WRITE (3,3010) TITLE
    READ(1,1020) XISO,KA,KS,YAS,YRS ,YUS
    WRITE(3,3020)X1SO,KA,KS,YAS,YRS,YUS
    HEAD(1,1020) KSO,KH,YBRO,YPRO
    WRITE(3,3030)KBO,KR,YBRO,YPRO
    READ(1,1020) KCO,KU,YCUO,YPUO
    WRITE(3,3040)KCO,KU,YCUO,YPUO
    PEAD(1,1020) MUS,MUR,MUU
    WRITE(3,3081) MUS,MUR,MUU
    PARAN=0
    5 READ(1,1020,END=85) R,BET
    CONTAC= 1.-(BET-1.)*R
    WRITE(3.3075) R,BET,CONTAC
    IF(CONTAC.GT.0.0) GO TO 10
    WRTTE(3,30%6)
    STOP
c
C generate fictutious constants for the second stage.
        10 KB=KBO/CONTAC
        KC=KCO/CONTAC
        YbIE=YBHO/CCNTTAC
        YCU=YCUO/CONTAC
```

```
    YPR-YPRO/(1.&R)
    YPU=YPUO/(I.+R)
    WRITE(3,3077) KB,KC,YBR,YCU,YPR,YPU
    THWL= (KS+NISO)/(KA*YISO)
    IF(PARAN.EQ.I) GO TO l2
    IF(INOPT.EQ.O) GO TO 25
C
C IF OPTIMIZATION PROBLEM, READ IN AND WRTTE PARAMETERS FOR SEARCH.
    WHITE(3.3083)
    NDIM=2
    KDIMENDIM&I
    WRITE(3,3050)NDIM
    READ(I,IOTO) ALPHA,DETA,GAMMA,STEP,IBAMY
    WRITE(3.306l)
    WRITE(3,3070) ALFHA,BETA,GAMMA,STEP, IBAPY
    READ(1,1080) EPSIL,LIMIT,ETA,MAXIT
    WRITE(3.3080) ESPSIL,ETA.
    WRITE(3,3082)
C
C SECOND PART%*%%%DELTERMINATION OF OPTIMAL POLICY
C DIFFERNTIAI CALCULUS APPROACH.
    I2 WRITE (3,3085)
    THIOFT=1./KA*(I.+SQRT(MUS*KS*KA))
            TEST'I= MUS*KA*XISO*XISC - KS
            CAJT, NENTON(TH2OPT)
            THV3 (KU*XIUI(THIOPT))/(KC*XIU1(TH1OPT))
            TEST2= QUAPT(THW3)
            WRITE(3,3086) THIOPT,TEST1,TH2OPT,TEST2
            IF(TESTI.GT.0.0.AND.TEST2.GT.0.0) GO TO 15
            WRITE(3,3088)
            STOP
C
C SEAROH TECHNIQUE APPROACH.
        15 WHITE(3,3087)
            LLAC=0
            NEVAL=0
            RTH1= TH1ODT+0.5
            RTH2= TH2OPT*l.
C
C ENTER ORTTMIZATION LOOP.
        21 TH(1,I)= THIOPT* STEP
            TH}(2,1)=TH2OPT
            TH}(1,2)=THIOPT
            TH(2,2)== TH20PT+STEP
            TH}(1,3)=TH1OPT+STEP
            TH(2,3)=TH2ODT+STEP
            THW2= W2(ETTHI)
            THW3= N3(RTEII)
            CAEL SIMFLE(OBJ)
            LIAC=ILIAC+].
            IF(ICONV.EQ.I) GO TO 22
            WRITE(3,3150) NITER,CRIT
            SHOP
```

```
        22 IF(ABS(TMIN(1)-RTHI).LT.ETA.AND.ABS(TMIN(2)-RTH2).LT.ETA) GO TO 23
        IF(LLAC.EQ.MAXIT) GO TO 24
        RTH1=TMIN(1)
        RTH2->TMIN(2)
        GO TO 21
        24 WRITE(3,3100) Llac
        STCP
    23 RT1= TMIN(1)
    RT2= TMIN(2)
    THW2= W2(HTI)
    THW3= W3(RT1)
    WRITE(3,3109) LLAC
    WRITE (3,3110) RT1,RT2
    WRITE (3,3140) SMIN
    GO TO 26
C
C THIPD PART*****THE POLICY IS FIXED BY THE USER WITHOUT BEING OPTIMAL.
C IF NO OPTIMIZATION PROBLEM
        25 WMITE(3,3084)
            HEAD(1,1020,END=999) RT1,RT2
            WHITE(3,3042) RII,RT2
            DV(1)= RTI
            DV(2)= RT2
            THWZ= W2(MTJ)
            THW3= W3(RT1)
            NEVAL=O
            WRITE(3,3082)
            CALL OBJ(DV,S)
            WRITE(3,3480) s
C
C FOURTH PART***** STATE CORRESPONDING TO THE CHOSEN POLICY
        26 WRITE(3,3500) THWI, RTI
            IF(RTI.GT.THWI) GO TO 34
        30 VRITE (3,3079)
            STOP
        34 Sl= XlSI(RTI)
            Al= X2AI(RTI)
            RI= XIRI(RT1)
            Ul= XIU1(RT1)
            WRITE(3,3120) Sl,Al,R1,U1
            WRITE (3,3520) THW2,THE3,RT2
            IF(RT2.GT.THW3) GO TO 35
            GO TO }3
        35 R2= X1R2(RT2)
            U2:= XIU2(RT2)
            B2= X2B2(RT1,RT2)
            C2= X2C2(RTI,RT2)
            P2= X1P2(ET1,HT2)
            WRITE(3,3130) R2,U2,B2,C2,P2
            SRT= RT2/CONTAC
            WRITE(3,3089) SRT
            IF(ICYHV.EQ.O) GO TO 75
```

C FIFTH PART *u*** OUTPUT OF CURVES CORHESPONDING TO THE CHOSEN POLICY.
C 1) FIRST STAGE
36 WRITE (3,3180)
Sl= XlSl(THWI)
A1=: X2A.(THWI)
Rl= XlRl(THWI)
Ul= X1UI(THWI)
DKISI= -KS*KA/(KA*THWI-1.)**2
DX2AI= -YAS*DX1SI
DX1R1- -YRS*DX1S1
DXIUI= -YUS*DXISI
WRITE(3,3190) THW1,S1,A1,R1,U1,DX1S1,DX2A1,DX1R1,DXIU1
RT = (AINT(10.*THWI)+1.)/10
40 SI= XISI(RT)
Al= X2AI(RT)
R1= XlR1(RT)
Ul= XIU1(RT)
WRITE(3,3190) RT,SI,Al,R1,Ul
RT= RT+%O.1
DIF= RT - AINT(RT)
IF(.NOT.(1.-DIF.LT.O.01.0R.DIF.LT.O.01)) GO TO 40
50 Sl= XlSI(FT)
Al= X2AI(RT)
Rl= XlRI(RT)
Ul= XIUl(FT)
WRITE(3,3190) RT,Sl, ^l,Rl,U1
RT=HT+1.
IF(RT.LE.20.0) GO TO 50
2) SECOND STAGE BETWEEN THW2 AND THW3.
WRITE(3,3200)
R2= X1R2(TH%2)
B2= X2B2(RT1,THW2)
F2= YPR/YBR*B2
DK1R2= -KR*KB/(THW2*KB-1.)**2
DX2B2= -YBR*DXIR2
DIX1P2= YPR/YBR*DX2B2
WRITE(3,3210) THW2,R2,B2,P2,DX1R2,DX2B2,D1X1P2
RT= (\operatorname{ANT}(10.*THW2)+1.)/10
6 0 ~ R 2 = ~ X I R 2 (R T) ~
B2= X2B2(RT1,RT)
P2= YPR/'YBR*B2
WHITE(3,3210) RT, R2,B2,P2
RT=RT+0.1
DIF= ITT - ATNT(RT)
IF(.NOT.(I.-DIF.LT.O.01.DH.DIF.LT.0.01)) GO TO 60
6I R2= XIR2(RT)
B2= X2B2(RT1,RT)
P2= YFR/YER*B2
WRITE(3,3210) RT,R2,B2,P2
RT=RT+I.
IF(HT.GE.THW3) GO TO 71
COTC 61

```
```

C
C 3) SECOND STAGE ABOVE THW3
71 WRITE(3,3220)
R2= XlR2(THW3)
B2= X2B2(RT1,THW3)
P2= X1P2(RT1,THM3)
U2= XIU2(THW3)
C2= X2C2(RT1,THW3)
DX1U2= -KU*KC/(THW3*KC-1.)4*2
DX2C2= -YCU*DX1U2
D2X1P2= YPR*KR*KC/(KB*THW3-1.)**2
D3X1Y2= YPU/YCU*DK2C2+D2X1P2
WRTTE(3,3230) THV3,R2,B2,P2,U2,C2,DX1U2,DX2C2,D2X1P2,D3X1P2
HT}=(\operatorname{AINT}(10.4THW3)+1.)/1
73 R2= XlR2(RT)
B2= X2B2(RT1,RT)
P2= X1P2(RTI,RT)
U2= XIU2(RT)
C2= X2C2(RT1,PT)
WRITE(3,3230) RT,R2,B2,P2,U2,C2
RT=RT}+0.
DIF=RT-AINI(RT)
IF(.NOT.(1.-DIF.LT.0.01.OR.DIF.LT.0.01)) GO TO 73
72 R2= X1R2(RT)
B2= X2B2(RT1,FT)
P2= X1P2(1TT1,PT)
U2:= XlU2(RT)
C2= X2C2(RT1,RT)
WRITE(3,3230) RT, R2, B2,P2,U2,C2
RT=RT\&1.
IF(RT.LE.20.) GO TO 72
75 IF(ICONT.NE.O) GO TO }8
PAPAM=1
GO TO }
C
C SIXTH PAFT %%米外 DRAW THE CONTOURS OF THE OBJECTIVE FUNCTION.
80 READ(1,1020) DELTS,DELTAY
CALL ISOBAT
85WRITE(3,3240)
GO TC }100
999 WRITE(3,3540)
1000 STOP
1010 FORRMAT(20.44/10A44)
1020 FORMAT(5F10.0)
1041 FORMAT (3I10)
1070 FOMMAT(4F1C.0.I10)
1080 BORTAT(2(E10.2,110))

```

```

3020 FORHAT(19H FEED CONCENTHATION,2IX,4HX1SO,F9.2,5H GN/L/
I llom

```
```

 5 40X, 3HYUS, F10.2/1)
 3030 FORMAT(29H MAXIMUM SPECIFIC GRONTH RATE,11X,2HKB,FII.2,6H DAY-1/
I 20H SATURATION CONSTANT,20%,2HKR,Fll.2,5H GM/L/
2 14H YIELD FACTORS, 26X,3HYBR,F10.2/
3 40%, 3HYPR,F10.2//)
3040 FORMAT(29H NAXIMUM SPECIFIC GRONTH RATE,1IX,2HKC,F'II.2,6H DAY-1/
l 2OH SATURATION CONSTANT,20X,2HKU,Fll.2.5H GM/L/
2 14H YIELD FACTORS,26X, 3HYCU,F10.2/
3 40X, 3HYPU,F10.2//)
3042 FORMAT (16H RES IDENCE TIMES, 24X,3HPTI,F10.2/
l 40X,3HRT2,F10.2/)
3050 FORMAT(18H SEARCH PARAMETERS/15HODIMENSIONALITY,25X,4HNDIM,16/)
3061 FORMAT(9H STRATEGY/)
3070 FORMAT(11H REFLECTION,29X,5HALPHA,F8.2/
1 12H CONTRACTION 28X,4HBETA,F9.2/
2 1OH EXPANXION 30X,5HGNMMA, F8.2/
3 T41,'S'EEP',F9.2/T41,5HIBARY,15/)
3075 FORMAT('IPECYCLE RATIO',T4I,'r',Fl3.3/
l 'CLARIFYER EFFICIENCY',T41,'BET',F1I.3/
2 'CONTACT FACTOR',T41,"CONTAC',F8.3//)
3076 FORMAT('ITHE CON1'ACT FACTOR IS NOT POSITIVE.'//)
3077 FORMAT('FICTITIOUS CONSTANTS: KB/KC/YBR/YCU/YPR/YPU',6FIO.2//)
3079 FORMAT('OTHIS POLICY IS NOT FEASIBLE'///)
3080 FORMAT(20H PRESCRIBED ACCURACY,20X,5HEPSIL,1PEII.I/
1 33H ACCUBACY OF OVER ALL CONVERGENCE,7X,3FETA,1PE13.1/)
3081 FOMMAI(31H PENALIZATION FOR DISCHARGING S.9X,3HMUS,F12.4/
1 30x,1HR,9x, 3HMUR,F12.4/
2 30x,1HU,9X,3HMUU, Fl2.4//)
3082 FORMAT(1H1,T56,9H*********/T56,9H*RESULTS*/T56,9H**********///
l 47H CONCENTRATIOISS ARE IN GM/L. TIMES ARE IN DAYS.///)
3083 FORMAT(36HODETERMINATION OF THE OPTIMAL POLICY///)
3084 FORMAT(33HOTHE CHOSEN FOLICY IS NOT OPTIMAI./

```

```

3085 FORMAT(}45%,6\mp@subsup{H}{}{*%*** 14HOPTIMAL POLICY 6H %****//
l 45x,30HDIFFERENTIAL C.ALCULUS APPROACH//)
3086 FOMMAT(1H 39X,6HTH1OPT,1PE12.3/1H 39K,5HTEST1,1PE12.2//
1 1H 39X,6HTH2OPT,1PE12.3/40X,5HTEST2,1PE12.2j/)
3087 FORHAT (50X,16HSIMFLEK APPROACH//)
3088 FORHAT('INEGATIVE TLEST FOR FEASIBILITY. THE CALCULATIONS ARE',
1 'STOPPED'//)
3089 FOMMAP(///' SOLID RETENTION TIME IN SECONND STAGE',
l T4l,'SRT',Fll.3//)
3100 FORTAT(31H CATCULATIONS ARE STOEPED AFTER,15,12H ITERATIONS.)
3109 FORMAT(35H CONVERGNCE HAS BEEN REACHEU AFTER,14,11H ITCHATIONS/)
3110 FORNAT(27H OPTIMAL DFCISION VARIABLES,IPE31.3/1H 1PE57.3/)
1 40X,4सX2Al, F10.3/40X,4NX1H1,F10.3/40X,4HX1U1,F1O.3/)
3130 FORHhT(33: STATE VECTOH AT THE SECOND STAGE,7X,4HX1R2.Flo.3/
I. 40X,4HX1U2,F10.3/40X,4HX2B2,F10.3/40X,4HX2C2,F10.3/
2 40X,4HX1P2,F10.3/)
3140 FOMHAT(27H OPTIMAL OBJECTIVE FUNCTION,IPE32.4/)
3150 FORMMT(6H AFTER,15,33H ITERATIONS, THE CRITERION EQUALS 1PE10.2/
l 26H CalculatIONS ARE STOPPED./)

```
 1 55X,11HFIRST STAGE///
\(15 \mathrm{~K}, 2 \mathrm{HTH}, 10 \mathrm{X}, 4 \mathrm{HX} 1 \mathrm{SI}, 11 \mathrm{X}, 4 \mathrm{HX} 2 \mathrm{Al}, 11 \mathrm{X}, 4 \mathrm{HX} 1 \mathrm{RI}\),
\(211 \mathrm{X}, 4 \mathrm{HX1U1}, 10 \mathrm{X}, 5 \mathrm{HDX1S1}, 10 \mathrm{X}, 5 \mathrm{HDX} 2 \mathrm{Al}, 10 \mathrm{X}, 5 \mathrm{HDX1H1}, 10 \mathrm{X}, 5 \mathrm{HDXIUI} /)\)
3190 FORMAT (F8. 3, F13.3,7F15.3)
3200 FORMAT (1H1, \(45 \mathrm{X}, 34 H S E C O N D ~ S T A G E ~ B E T W E E N ~ T H W 2 ~ A N D ~ T H W 3 / / / / ~\)
1 4X,2HTH,10X,4HXLR2,
2 11X,4HX2B2,11X,4HX1P2,10X,5HDX1R2,10X,5HDX2B2,10X,6HD1X1P2/)
3210 FOMMAT (F7. 3.F14.3.5F15.3)
3220 FORTAT (1H1,50X, 23HSECOND STAGE ABOVE THW3////
\(14 \mathrm{X}, 2 \mathrm{HTH}, 10 \mathrm{X}, 4 \mathrm{HX} 1 \mathrm{R} 2,11 \mathrm{X}, 4 \mathrm{HX} 2 \mathrm{~B} 2\),

3 6HD2X1F2,6X,6HD3X1P2//)
3230 FORMAT (F7. 3, F14.3.4F15.3.4F12.3)
3240 FORMAT (19HINORMAL TERMINAIION)
3490 FORMAT (19H OBJECTIVE FUNCTION,F35.3/)
3500 FORNAT (1HO, 52X,11HFIRST STAGE//14H WASH OUT TIME,F40.3//
115 H RESIDENCE TIME,F39.3/)
3520 FORMAT (1HO,52X12FSECOND STAGE//15H WASH OUT TIMES,F39.3/
1 IH F53.3//15H RESIDENCE TIME,F39.3/)
3540 FORMAT( 31HINO RESIDENCE TIMES FOUND. STOP)
END

SUBROUTINE SIMPLE(ORJ)
C THIS SUBEDUTINE FINDS THE MINIMUM OF THE OBJECTIVE FUNCTION GIVEN
C BY SUBROUTINE OBJ. THE ARGUMENT OF SIMPLE REQUIRES AN EXTERNAL
C STATEMENT IN TIEE CALLING HOUTINE.
C FOLLOWING VARIAELES SHOULD BE PREVIOUSIY DEFINED AND STORED IN
C COMMON / SEARCH/
C NDIN, KUIM, \(2 \mathrm{H}, \mathrm{ALPHA}, \mathrm{BETA}, G A M M A, ~ I B A R Y, ~ E P S I L, ~ L I M I T ~\)
C THIS S.NE DEFINES AND STORES INTO THE SEME AREA
C ICONV, TMIN, SMIN,NITER, CRIT WHERE THIN IS THE OPTIMAZ DECISION BECTOR.
C NEVAL IS DEFINED BY S.NE OBJ.
C IF THE SEARGF CONVERGED, ICONV \(=1\). IF NOT, ICONV \(=-1\) AND THE BEST
C CUHRENT POINT IS CONSIDERED AS OPTIMAL.
C DIMENSIONS T,SIGTH,TBAR,TREF,TEXP,TCON,TMIN NDIM
c
C TH NDIM,KDIM
KDIM
C CHANGING THE DIMENSIONALITY OF THE SEARCH REQUIRES THE PROFER
C DIMENSION STATEMENT. THIS SUBROUTINE HAS BEEN TESTED FOR NDIM \(=1,2,3,4,20\).
C PROGRAMMER JC BALTES
KSU, CHEM ENG, FEB 68
c
C SPECIFICATIONS.
COHNON /SEARCH/NDIM,KDIM,TH, ALPHA, BETA, GAMMA, IBARY, EPSIL, LIMIT,
1
ICONV,TMIN, SMIN,NITER,CRIT,NEVAL
DIMENSION TH(2,3),T(2),S(3),SIGTH(2),TBAR(2),TREE(2),TEXP(2),
1 TCON(2), MMIN(2),W(3)
C
C INITIAYIZATION
NITER=0
ICONV \(=0\)
C
C COIPUTE INITIAL FUNCTION VALUES.
DO \(30 \mathrm{~J}=1, K D I M\)
DO 40 I \(=1\),NDIM
\(40 \mathrm{~T}(I)=T H(I, J)\)
30 CALL OBJ (T,S(J))
C
C BEGINNING OF ITERATIOINS.
C DEFINE THE POINT HAVING THE HIGHEST FUNCTION VALUE
\(41 \mathrm{SH}=\mathrm{S}(1)\)
JH니
DO \(50 \mathrm{~J}=2, \mathrm{KDIM}\)
IF(S(J).LE.SH) GO TO 50
SH-S (J)
\(\mathrm{JH}=\mathrm{J}\)
50 CONTINUE
C
C DEFINE TEE POINT HAVING THE LOWEST VALUE OF TAE OBJECTIVE FUNCTION.
51 SImS(I)
\(\mathrm{J}=1\)
DO \(60 \mathrm{~J}=2, \mathrm{KDIM}\)
IF(S(J).GE.SL) GO TO 60
Sics (J)
JIーJ
60 CONTTNUE

\section*{IF(ICONV*ICONV.EQ.I) GO TO 320}
\({ }^{C}\)
C DETERMINATION OF THE CENTROID
IF(IBARY.NE.0) GO TO 90
DO \(70 I=1\), NDIM
SIGTH (I) \(=0\).
DO \(80 \mathrm{~J}=\mathrm{=}\), KDIM
IF(J.EQ.JH) GO TO 80
\(\operatorname{SIGTH}(I)=\operatorname{SIGTH}(I)+T H(I, J)\)
80 continue
\(70 \mathrm{TBAR}(I)=\) SIGTR(I)/FLOAT(NDIM)
GO TO 130
90 SIGMAW=0.
DO \(100 \mathrm{~J}=1, \mathrm{KDIM}\)
\(W(J)=S(J H)-S(J)\)
100 SIGMAW=SIGMAW+W(J)
DO \(110 \mathrm{I}=1\), NDIM
SIGTH(I) \(=0\).
DO \(120 \mathrm{~J}=1, \mathrm{KDIM}\)
\(120 \operatorname{SIGTH}(\mathrm{I})=\operatorname{SIGTH}(\mathrm{I})+\mathrm{W}(\mathrm{J}) * \mathrm{TH}(\mathrm{I}, \mathrm{J})\)
110 TBAR(I) \(=\) SIGTH(I)/SIGMAW
130 CALL OBJ (TBAR, SBAR)
c
C REFLECTION GIVES POINT (TREF)
DO 140 \(1=1\), NDIM
3.40 TRET \((I)=(1 .+A L P H A) * T B A R(I)-A L H A * T K(I, J H)\)

CALL OBJ (TREF,SREF)
IF (SREF.LT.S(JL)) GO TO 160
DO \(150 \mathrm{~J}=\mathrm{I}, \mathrm{KDIM}\)
IF(J.EQ.JH) GO TO 150
IF (STREF.GT.S(J)) GO TO 150
GO TO 180
150 CONTINUE
© TO 220
c
C EXPANSION GIVES POINT (TEXP)
160 DO \(170 I_{=1}=\),NDIM
170 TEXP(I) \(=\) GAMMA*TREF(I) + (1.-GAMMA)*TBAR(I)
CALL OBJ (TEXP, SEXP)
IF(SEXP.LT.S(JL)) GO TO 200
180 DO 190 I=1,NDIM
\(190 \mathrm{TH}(\mathrm{I}, \mathrm{JH})=\operatorname{TREF}(\mathrm{I})\)
\(\mathrm{S}(\mathrm{JH})=\mathrm{SREF}\)
GO TO 300
200 DO 210 I=1,NDIM
\(210 \operatorname{THI}(I, J T)=T E X P(I)\)
\(\mathrm{S}(\mathrm{JH})=\mathrm{SEXP}\)
GO TO300
c
c CONTRACTIUI GIVES POINT (TCON)
220 IF(SERE.GT.S(JH)) GO TO 240
Do \(230 \mathrm{I}=\mathrm{I}\),NDIM
\(230 \mathrm{TH}(\mathrm{I}, \mathrm{JH})=\mathrm{TREF}(\mathrm{I})\)
```

 240 DO 250 I=I,NDIM
 250 TCON(I)=BETA*TH(I,JH) + (1.- BETA)*TBAR(I)
 CALL OBJ(TCON,SCON)
 IF(SCOiv.GT.S(JH)) GO TO 27O
 DO 260 I=1,NDIM
 260 TH(I,JH)=TCON(I)
 S(JH)=SCON
 GO TO 300
 270 DO 290 J=1,KDIM
 IF(J.EQ.JL) GO TO 290
 DO 250 I=1,NDIM
 TH(I,J)=(TH(I,J)+TH(I,JL)O/FLOAT(NDIM)
 280 T(I)=TH(I,J)
CALL OBJ(T,S(J))
290 CONTINUE
C
C CRITERION FOR CONVERGENCE.
300 SQDELS=0.
DO 310 J=1,KDIM
310 SQDELS=SQDELS+(S(J)-SBAR)**2
CRIT=SQRT(SQDELS/FLOAT(NDIM)
NITER=NITER+1
IF(CRIT.GE.EPSIL) GO TO340
ICONV=1
GO TO 51
340 IF(NITER.LT.LIMIT) GO TO 41
ICONV=-1
WRITE(3,3010) NITER ,
3010 FORMAT(49H1THE SEARCH RETURNS THE BEST CURRENT POINT AFTER,
1 I2HITERATION NO 15,31H. THIS IS NOT THE TRUE OPTIMUM.//)
GO TO 51
320 DO 330 I=1,NDIM
330 TMIN(I)=TH(I,JL)
SMIN:S(JL)
RETURN
END

```

FUNCTION QUAR(U)
REAL KA,KS, KB, KR, KC ,KU, MUS, MUR, WUU
COMMON THWI,THW2,THW3, MUS, MUR, MUU,KA,KS, KB, KR, KC, KU, DELTS, DELTAY
 RETURN
END

SUBROUTINE NEWTON(ROOT)
C
C RHIS SUBROURITNE COMPUIES A ROOT OF QUART \(=0\)
REAL KA,KS,KB,KR,KC,KU,MUS,MUR, MUU
COMMON THW1,THW2,THWZ,MUS,MUR,MUU,KA,KS,KB,KR,KC,KU,DELMS,DELTAY DQUART (U) \(=-2 . * M U R * K R * K B * K B /(U * K B-1) * *\).
1 \(-2 . * M U U * K U * K C * * 2 /\left(U^{*} K C-1.0^{* *} * 3\right.\)

C
C LOOR FOR AN INTERVAL WHERE FUNCTION QUART HAS OPPOSITE SIGNS. \(\mathrm{XI}=1 . / \mathrm{KC}+0.01\)
\(5 \mathrm{XZ}=\mathrm{XI}+0.10\)
\(\operatorname{IF}(Q U A R I(X 1) * Q U A R T(X 2) . L E . O .0)\) GO TO 10 X1- X 2
GO TO 5
C
\(10 \mathrm{X2}=\mathrm{XI}-(\operatorname{QUART}(X 1) / D Q U A R T(X 1))\) IF(ABS (X1-X2).LT.1.OE-04) GO TO 20 \(\mathrm{Xl}=\mathrm{X} 2\) GO TO 10
20 ROOT=X2
REIURIN
END

SUBROUTINE OBJ (T, S )
REAL KA,KS,KB,KR,KC,KU,MUS, MUR, MUU
COMMON THW1,THW2,THW3, NUS,MUR, MUU,KA,KS,KB,KR,KC,KU,DELTS,DELTAY COMMON /SEARCH/ BICON(20),NEVAL
DIMENSION I(I)
IF (T (1).LT. THW1.OR.T(2).LT.THW3) GO TO 10
XIS2 \(=K S /(K A * T(1)-1\).
\(X 1 R 2=K R /\left(K B^{*} T(2)-1.\right)\)
\(\mathrm{XIU} 2=\mathrm{KU} /(\mathrm{KC*T}(2)-1\).
\(S=\quad(T(1)+T(2))+\) MUS*XIS2 + MUR*XIR2 + MUU*XIU2
NEVALe NEVAL+1
GO TO 20
\(1.0 \mathrm{~S}=1.0 \mathrm{E}+06\)
20 RETURN
END

SUbroutine isobat
c
C SPECIFICATIONS.
REAL KA,KS,KB,KF,KC,KU,MUS,MJR,MUU
INTEGER SIlO
DIMENSION TITLE(30),TH(2,3),TMIN(2).DV(2)
COMMON THWZ,THW2,THW3,THU, MUR,MUU,KA,KS,KB,KR,KC,KU,DELTS, DELTAY
COMMON /SEARCH/NDIM,KDIM,TH,ALPHA,BETA,GAMMA,IBARY,EPSIL,IIMIT,
1 ICONV,TMIN, SMIN,NITER,CRIT, NEVAL
C
WRITE (3.3240)
\(\mathrm{S}=(\operatorname{AINT}(10 . * S M I N)+1) /\).10 .
SII \(10=0\)
76 DO 110 I=1. 10
WRITE \((3.3250) 5\)
c
C INCREASE Y.
\(\mathrm{Y}=(\operatorname{AINT}(\operatorname{TliLN}(2)+10)+1.) /\).
DO \(80 \mathrm{~J}=1,25\)
\(\operatorname{IF}(A B S(Y-1 . / K B) . L T .1, O E-04 . O R . A B S(Y-1 . / K C) . I T .1 . O E-04)\) GO TO 79
\(A=Y+M U R * K R /(K B * Y-1)+.M U U * K U /(K C * Y-1\).
DISCP \(=((A \cdots S) * K A-1) * * 2-.4 . * K A *(M U S * K S * S-A)\)
IF(DISCR. LT .0 .) GO TO 81
XI \(\ldots(1, \cdots(A-S) * K A+5 Q R T(D I S C R)) /(2 . * K A)\)
\(\mathrm{X} 2=(1 .-(\mathrm{AmS}) * \mathrm{KA}-\mathrm{SQRT}(\mathrm{DISCR})) /(2 . * \mathrm{KA})\)
WHITE(3,3260) \%1,X2,Y
\(79 \mathrm{Y}=\mathrm{Y}+\mathrm{DELTAY}\)
80 CONTINUE
C
C DECREASE Y.
\(81 \mathrm{Y}=(\operatorname{AINT}(\operatorname{TMN}(2) * 10)) /\).10 .
DO \(90 \mathrm{~J}=1,20\)
\(\operatorname{IF}(\) ABS \((Y-1 . / K B) . L T .1 .0 E-04 . O R . A B S * Y-1 . / K C) . L T .1 .0 E-04) ~ G O ~ T O ~ 89 ~\)
\(\mathrm{A}=\mathrm{Y}+\mathrm{MUR} * \mathrm{KR} /(\mathrm{KB} * \mathrm{Y}-1)+.\mathrm{MUU} * \mathrm{KU} /\left(\mathrm{KC} * \mathrm{Y}-\mathrm{I}_{\text {. }}\right.\).)
DISCR \(=((A-S) * K A-1) * * 2-.4 . * K A *(M U S * K S+S-A)\)
IF(DISCR.IT.O.) GO TO 100
\(\mathrm{XI}=(1 .-(\mathrm{A}-\mathrm{S}) * \mathrm{KA}+\mathrm{SQRT}(D I S C R)) /(2 . * \mathrm{KA})\)
X2 \(=(1 .-(A-S) * K A-S Q R T(D I S C R)) /(2 . * K A)\)
WRITE \((3,3260) \mathrm{X1}, \mathrm{X2}, \mathrm{Y}\)
89 Y \(=Y\)-DEITTAY
90 CONTINUE
\(100 \mathrm{~S}=\mathrm{S}+\mathrm{DELTS}\)
IF'(S110.EQ.1) RETUPN
110 contunue
S1:10 \(=1\)
\(\mathrm{S}=1.10 * 3 \mathrm{HIN}\)
WRITE (3.3251)
GO TO 76

3250 FORMAT (19HOOBJECTIVE FUNCTION, F12.2.4X,2HK1,8X,2HX2,8X,1HY/)
3251 FORMAT 34 HOCONTOUR CORRESPONDING TO 1.1*SIMIN)
3260 FORMAT(1H. F38.3.2F10.3)
END

\section*{APPENDIX I}

\section*{SLOYE OF THE CONCENTRATION CURVES AT THE POINTS OF DISCONTINUITY}

At the points of discontinuity of the concentration curves, wash-out occurs for organism \(A, B\) or \(C\). In order to draw these curves with accuracy, it is useful to detemine their slopes at the wash-out residence tines \(\theta_{\text {W1 }}, \theta_{W 2}\), and \(\theta_{W}{ }^{\circ}\)

In the first stage, washout occurs when \(\theta_{1}=\theta_{W 1}\). Then, from equations (12), (14), (16) and (17), we obtain respectively
\[
\begin{aligned}
& \left.\frac{d S_{1}}{d \theta_{1}}\right|_{\theta_{W 1}}=\frac{-K_{S} k_{A}}{\left(k_{A} \theta_{W I}-1\right)^{2}} \\
& \left.\frac{d A}{d \theta_{1}}\right|_{\theta_{W 1}}=-\left.Y_{A / S} \frac{d S_{1}}{d \theta_{I}}\right|_{\theta_{W 1}} \\
& \left.\frac{d R_{1}}{d \theta_{1}}\right|_{\theta_{W 1}}=-\left.Y_{R / S} \frac{d S_{1}}{d \theta_{1}}\right|_{\theta_{W 1}} \\
& \left.\frac{d U_{1}}{d \theta_{1}}\right|_{\theta_{W 1}}=-\left.Y_{U / S} \frac{d S_{1}}{d \theta_{1}}\right|_{\theta_{W 1}}
\end{aligned}
\]

In the second stage, wash-out occurs for organism \(B\) and \(C\) when \(0<\theta_{2} \leq \theta_{W 2}\). When \(\theta_{W 2}<\theta_{2} \leq \theta_{W 3}\), organism \(B\) alone grows using organics \(R\) and yieldine product \(P\). Then, from equations (19), (24), and (27), we obtain respectively
\[
\left.\frac{d p_{2}}{d \theta_{2}}\right|_{\theta_{W 2}}=\frac{K_{P} k_{B}}{\left(k_{B} \theta_{W 2}-1\right)^{2}}
\]
\[
\left.\frac{\mathrm{dB}}{\mathrm{~d} \theta_{2}}\right|_{\theta_{W 2}}=-\left.Y_{B / R} \frac{\mathrm{dR}_{2}}{\mathrm{~d} \theta_{2}}\right|_{\theta_{W 2}}
\]
and
\[
\begin{aligned}
& \left.\frac{\partial P}{d \theta_{2}}\right|_{\theta_{W 2}}=\left.\frac{Y_{F / R}}{Y_{B / R}} \cdot \frac{d B}{d \theta_{2}}\right|_{\theta_{W 2}} \\
& \left.\frac{\partial P}{d \theta_{2}}\right|_{\theta_{W 3-}}=\left.\frac{Y_{P / R}}{Y_{B / R}} \frac{d B}{d \theta_{2}}\right|_{\theta_{W 3-}}
\end{aligned}
\]

When \(\theta_{2}>\theta_{W 3}\), both organisms \(B\) and \(C\) grow. Concentration \(U_{2}\) fails, yielding more product P. From equations (20), (25), and (27), we obtain respectively
\[
\begin{aligned}
& \left.\frac{d U_{2}}{d \theta_{2}}\right|_{\theta_{W 3}}=\frac{-K_{U} k_{C}}{\left(k_{C} \theta_{W 3}-1\right)^{2}} \\
& \left.\frac{d C}{d \theta_{2}}\right|_{\theta_{W 3+}}=-\left.Y_{C / U} \frac{d U_{2}}{d \theta_{2}}\right|_{\theta_{W 3}} \\
& \left.\frac{\partial P}{d \theta_{2}}\right|_{\theta_{W 3+}}=\left.\frac{Y P / R}{Y_{B / R}} \cdot \frac{d B}{d \theta_{2}}\right|_{\theta_{W 3}}+\left.\left.\frac{Y_{P / U}}{Y_{C / U}} \cdot \frac{d C}{d \theta_{2}}\right|_{W 3}\right|_{W}
\end{aligned}
\]

\section*{APPENDIX II}

\section*{GRAPHICAL DETERMINATION OP THE ROOTS OR EQUATION \(\varphi\left(\theta_{2}\right)=0\)}

Let us examine the function \(\varphi\left(\theta_{2}\right)\) defined by equation (74). From this equation we can deduce that when \(\theta_{2} \Rightarrow \pm \infty, \rho>-1\) and when \(\theta_{2} \rightarrow \frac{1}{k_{B}}\) or \(\frac{1}{k_{c}}, \varphi \rightarrow+\infty\). The sign of the derivative \(\frac{d \varphi}{d \theta_{2}}\) gives useful information about the function \(\varphi\left(\theta_{2}\right)\). From equation (74), we obtain
\[
\begin{equation*}
\frac{\partial \varphi}{\partial \theta} \frac{-\theta z_{R} K_{R} k_{B}^{2}}{\left(k_{B} \theta_{2}-1\right)^{3}}-\frac{2 z_{U} K_{U} k_{C}^{2}}{\left(k_{C} \theta_{2}-1\right)^{3}} \tag{87}
\end{equation*}
\]

The abscissa of the stationary points of function \(\varphi\left(\theta_{2}\right)\) are given by
\[
\begin{equation*}
\frac{d \varphi}{d \theta_{2}}=0 \tag{88}
\end{equation*}
\]

Employing the expression given by equation (87) and rearranging yields
\[
\left(\frac{k_{C} \theta_{2}-1}{k_{B} \theta_{2}-1}\right)^{2}=-\frac{z_{U} k_{U} k_{C}^{a}}{z_{R} K_{R} k_{B}^{2}}
\]

Let
\[
-\frac{z_{U} K_{U} k_{C}^{2}}{z_{R} K_{R} k_{B}^{2}}=-p^{3} \quad \text { and } \quad\left(\frac{k_{C} \theta^{2}-1}{k_{B} \theta^{2}-1}\right)^{3}=\omega^{3}
\]
\[
=\left(\frac{z_{U} K_{U} k_{C}}{z_{R} K_{R} k_{B}}\right)^{1 / 3}>0
\]

Solving equation (88) for stationary points of function \(\phi\left(\theta_{2}\right)\) gives
\[
\begin{equation*}
(\Leftrightarrow)^{3}+\stackrel{P}{P}^{3}=0 \tag{89}
\end{equation*}
\]
which may be written as
\[
(\Theta)+p)\left(\Theta^{2}-p \Theta+p^{2}\right)=0
\]

This equation breaks down into
\[
\begin{equation*}
(1)+\rho=0 \tag{90}
\end{equation*}
\]
end
\[
\begin{equation*}
\text { (1) }{ }^{2}-\rho \Theta+\rho^{2}=0 \tag{91}
\end{equation*}
\]

Let us first consider equation (86). It is quadratic with respect to \(\Theta\). Its discriminant is
\[
p^{2}-4 p^{2}=-3 p^{2}<0
\]

Therefore, equation (91) has no real roots. Solving equation (90) yields
\[
(\Theta)=\frac{k_{C} \theta_{2}-1}{k_{B} \theta_{2}-1}=-\rho
\]

Hence
\[
\begin{equation*}
\theta_{2} \equiv \theta_{2 m}=\frac{1+\rho}{k_{C}+\rho k_{B}} \tag{92}
\end{equation*}
\]

Let us compare \(\theta_{2 \mathrm{~m}}\) to \(\frac{1}{\mathrm{k}_{\mathrm{B}}}\).
\[
\theta_{2 \mathrm{~m}}=\frac{1}{k_{B}}\left(\frac{1}{k_{C}}+\rho\right)
\]

But \(\frac{k_{C}}{k_{B}}\) is less than 1. Consequently
\[
\theta_{2 m}>\frac{1}{k_{B}}
\]

Now, \(\theta_{2 \mathrm{n}}\) can be written as
\[
{ }^{\theta}{ }_{2 m}=\frac{1}{k_{C}}\left(\frac{1+e}{1+\frac{k_{B}}{k_{C}} \rho}\right)
\]
which shows immediately that
\[
\theta_{2 m}<\frac{1}{k_{C}}
\]

Therefore, we have
\[
\frac{1}{\mathrm{k}_{\mathrm{B}}}<\theta_{2 \mathrm{~m}}<\frac{1}{\mathrm{k}_{\mathrm{C}}} .
\]

It can thus be concluded that derivative \(\frac{d \varphi}{d \theta}\) vanishes once in the interval \((-\infty,+\infty)\) for \(\theta_{2}={ }^{0}{ }_{2 m}\). In addition, \(\theta_{2 \text { in }}\) lies between \(\frac{1}{k_{B}}\) and \(\frac{1}{k_{C}}\). Equation (53) gives the following additional information.
when \(\theta_{2}> \pm \infty \quad \frac{d \phi}{d \theta} \Rightarrow 0 \pm\)
when \(\theta_{2}>\frac{1}{k_{B}} \pm 0, \frac{d \varphi}{\partial \theta_{2}}-\mp \infty\)
\[
\text { when } \theta_{2} \Rightarrow \frac{1}{\mathrm{k}_{\mathrm{C}}} \pm 0, \quad \frac{\pi \varphi^{0}}{\mathrm{~d} \theta} \Rightarrow \neq \infty
\]

With this information we can set up the table for the variation of function \(\varphi\left(\theta_{2}\right)\) (see Table 1). The numerical values which appear in the second part of Table 1 are computed from the numerical data given in Paragraph (IV. 2). \({ }^{\theta_{2 m}}\) turns out to be the abscissa of a minimum for the graph of function \(\varphi\left(\theta_{2}\right)\) (see Figure 19).
\[
\begin{aligned}
\theta_{2 m} & =\frac{1}{\mathrm{k}_{\mathrm{C}}+\frac{\rho}{\mathrm{K}_{\mathrm{B}}}} \\
\rho & =\sqrt{\left(\frac{1.50}{1.50}\right)\left(\frac{1.50}{1.00}\right)\left(\frac{0.25}{0.50}\right)^{3}} \\
& =\sqrt[2]{0.375} \\
\rho & =0.720 \\
\theta_{2 m} & =\frac{1+0.720}{0.25+0.720 \times 0.50}=\frac{1.720}{0.610}
\end{aligned}
\]

Thus
\[
\theta_{2 m}=+2.82
\]
and the value of function \(\varphi\) is computied as follows;
\[
\begin{aligned}
\varphi\left(\theta_{2 \mathrm{n}}\right) & =\frac{1.50 \times 1.00 \times 0.50}{(0.50 \times 2.82-1)^{2}} \\
& +\frac{1.50 \times 1.50 \times 0.25}{(0.25 \times 2.82-1)^{2}} \\
& =\frac{1.750}{0.168}+\frac{0.563}{0.057}-1 \\
& =4.46+6.46-1 \\
\varphi\left(\theta_{2 m}\right) & =+9.92 .
\end{aligned}
\]

TABLE 1
VARIATIONS OF FUNCTION \(\varphi\left(\theta^{2}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \({ }^{9}\) & \(\cdots\) & & \[
\frac{1}{k_{B}}
\] & \multicolumn{4}{|r|}{\(\frac{1}{k_{C}}+\quad+\infty\)} \\
\hline \[
\frac{d \phi}{d \theta_{2}}
\] & 0. & + & + \(\infty\) & \(-\infty-0++\infty\) & - & - & 0 \\
\hline 9 & -1 & & & \[
{ }_{\varphi}^{\infty}\left(\theta_{\mathrm{m}}^{2}\right),+\infty
\] & & & - 1 \\
\hline
\end{tabular}



Fig. 19 Function \(\left(0_{2}\right)\).

Function \(\phi\left(\theta_{2}\right)\) is shown on Figure 19. Its graph intersects the \(\theta_{2}\) - axis at two points. Therefore, equation (73) has two real roots. The negative root is
\[
\theta_{2}=-0.376
\]

The positive root is
\[
\theta_{2}=+7.183
\]

Although \(\theta_{2}=-0.376\) is the ordinate of two stationary points on surface ( \(\Sigma\) ), this value may be discarded for the purpose of optimization because it is neçative.

Let us now check the two conditions of feasibility, inequalities (76) and (78). The first one is
\[
\begin{equation*}
z_{S} k_{A} S_{O}^{2}-K_{S} \geq 0 \tag{76}
\end{equation*}
\]

Substituting numerical values gives
\[
\text { 1. } \times 6 \times(10 .)^{2}-0.50=+599.5>0
\]

The second one is
\[
\begin{equation*}
\frac{z_{R} K_{R} k_{B}}{\left(k_{B} \theta_{W 3}-1\right)^{2}}+\frac{z_{U} K_{U} k_{C}}{\left(k_{C} \theta_{W 3}-1\right)^{2}}-1>0 \tag{78}
\end{equation*}
\]

At the first stage, \(\theta_{1}=0.455\). Thus, from equation (12)
\[
s_{1}=\frac{0.50}{0.455 \times 6-1}=0.289
\]

Froin equation (17), we have
\[
U_{1}=0.20(10.0-0.289)=1.942
\]

From equation (59)
\[
\theta_{W 3}=\frac{1}{0.25}\left(1+\frac{1.50}{1.942}\right)=7.09
\]

From equation (74)
\[
\begin{aligned}
\phi(7.09) & =\frac{1.50 \times 1.00 \times 1.50}{(7.09 \times 0.5-1)^{2}}+\frac{1.50 \times 1.50 \times 0.25}{(7.09 \times 0.25-1)^{2}}-1 \\
& =0.115+0.944-1 \\
\varphi(7.09) & =0.059>0
\end{aligned}
\]

The two conditions for feasibility are satisfied at operating point A.

\section*{APPENDIX III}

NATURE OF THE STATIONARY POINTS
OF RESPONSE SURFACE ( \(\Sigma\) )

The first coordinate of stationary points is given by equation (7.1)
\[
\begin{equation*}
\theta_{1}=\frac{1}{k_{A}}\left[1 \pm \sqrt{z_{S} K_{S} k_{A}}\right] \tag{71}
\end{equation*}
\]

Substituting numerical values for the parameters yields
\[
\begin{aligned}
& \theta_{1}=+0.455 \\
& \theta_{1}=-0.122
\end{aligned}
\]

In addition, equation (73) gives the following two values for \(\theta_{2}\)
\[
\begin{aligned}
& \theta_{2}=+7.18 \\
& \theta_{2}=-0.376
\end{aligned}
\]

Therefore, response surface ( \(\Sigma\) ) has four stationary points given belows
\[
\begin{aligned}
& A(+0.455,+7.18) \\
& B(-0.122,+7.18) \\
& C(-0.122,-0.376) \\
& D(+0.455,-0.376)
\end{aligned}
\]

The nature of each of these stationary points will be examined by evaluation of the Hessian matrix. As a gerieral rule, the necessary and sufficiert consition that a square matrix be
positive definite is that each of the principal minors of this matrix be Ereater than zero. A necessary and sufficient condition for a square matrix to be negative definite is that the signs of its principal minocs be alternatively negative and positive; that is the principal minor of rank \(r\) is negative if \(r\) is odd and positive if \(r\) is even. We shall now test the matrix \(H\) at the stationary points, namely \(A, B, C\) and \(D\).

The general expression of the Hessian matrix of the objective function \(J\) is
\[
H=\left|\begin{array}{ll}
\frac{1}{2} \frac{\partial^{2} J}{\left(\partial \theta_{1}\right)^{2}} & \frac{1}{2} \frac{\partial^{2} J}{\partial \theta_{1} \theta^{\partial \theta} 2} \\
\frac{1}{2} \frac{\partial^{2} J}{\partial \theta^{2 \theta} 2} & \frac{1}{2} \frac{\partial^{2} J}{\left(\partial \theta_{2}\right)^{2}}
\end{array}\right|
\]

Let
\[
\begin{aligned}
& n_{11}=\frac{1}{2} \frac{\partial^{2} J}{\left(\partial \theta_{1}\right)^{2}} \\
& n_{12}=\frac{1}{2} \frac{\partial^{2} J}{\partial \theta_{1} \partial \theta_{2}}=\frac{1}{2} \frac{\partial^{2} J}{\partial \theta_{2}^{\partial \theta} 1} \\
& n_{22}=\frac{1}{2} \frac{\partial^{2} J}{\left(\partial \theta_{2}\right)^{2}}
\end{aligned}
\]

Fromi equation (67), we have
\[
\frac{\partial J}{\partial \theta_{1}}=2-\frac{z_{S} k_{S} k_{A}}{\left(k_{A} \theta_{1}-1\right)^{3}}
\]

Differentiaing this again with respect to \(\theta_{1}\), we obtain
\[
\frac{\partial^{2} J}{\left(\partial \theta_{I}\right)^{2}}=\frac{2 z_{S} K_{S} k_{A}^{2}}{\left(k_{A} \theta_{I}-2\right)^{2}}
\]

Hence
\[
n_{11}=\frac{z_{S} K_{S} k_{A}^{2}}{\left(k_{A} \theta_{1}-1\right)^{3}}
\]

From equation (67), we have
\[
\frac{\partial^{J} 2}{\partial \theta_{2}}=1-\frac{z_{R} K_{R} k_{B}}{\left(k_{B} \theta_{2}-1\right)^{2}}-\frac{z_{U} K_{U} k_{C}}{\left(k_{C} \theta_{2}-1\right)^{2}}
\]

Taking the derivative of this expression again with respect to \(\theta_{2} \mathrm{yields}\)
\[
\frac{\partial^{2} J_{2}}{\left(\partial \theta_{2}\right)^{2}}=\frac{2 z_{R} K_{R} k_{B}^{2}}{\left(k_{B} \theta_{2}-I\right)^{3}}+\frac{2 z_{U} K_{U} k_{C}^{2}}{\left(k_{C} \theta_{2}-I\right)^{3}}
\]
and
\[
n_{22}=\frac{z_{B} K_{B} k_{B}^{2}}{\left(k_{B} \theta_{2}-1\right)^{2}}+\frac{z_{U} K_{U} k_{C}^{2}}{\left(k_{C} \theta_{2}-1\right)^{2}}
\]

In addition
\[
\frac{\partial^{2} J_{2}}{\partial \theta_{1}} \frac{\partial}{\partial \theta_{2}}=0 .
\]

Hence
\[
h_{12}=n_{21}=0
\]

Now, the general Hessian matrix at point \(\left(\theta_{1}, \theta_{2}\right)\) is
\[
H=\left\lvert\, \begin{gathered}
\frac{z_{S} K_{S} k_{A}^{a}}{\left(k_{A} \theta_{I}-1\right)^{3}} \\
0
\end{gathered}\right.
\]
\[
\left.\frac{z_{R} K_{R} k_{B}^{2}}{\left(k_{B} \theta_{2}-1\right)^{3}}+\frac{z_{U} K_{U} k_{C}^{2}}{\left(k_{C} \theta_{2}-1\right)^{3}} \right\rvert\,(93)
\]

Foint A (0.455, 7.183)
Substituting the coordinates of point A in equation (93) leads to
\[
\begin{aligned}
& H_{A}=\left|\begin{array}{cc}
\frac{1.0 \times 0.50 \times(6 .)^{2}}{(6.00 \times 0.455-1)^{3}} & 0 \\
0 & \frac{1.50 \times 1.00 \times(0.50)^{2}}{(0.50 \times 7.183-1)^{3}}+\frac{1.50 \times 1.50 \times(0.25)}{(0.25 \times 7.183-1)^{3}}
\end{array}\right| \\
& H_{A}=\left|\begin{array}{cc}
\frac{18}{(1.73)^{3}} & 0^{\prime} \\
0 & \frac{0.375}{(2.59)^{3}}+\frac{0.140}{(0.796)^{3}}
\end{array}\right|
\end{aligned}
\]

Finally
\[
H_{A}=\left|\begin{array}{cc}
+3.48 & 0 \\
0 & +0.299
\end{array}\right|
\]
\(H_{A}\) is pesitive definite. The two principal minors are \(+3.48>0\) and \((+3.48)(+0.299)-0>0\). Hence point \(A(+0.455,+7.183)\) is a minimum on response surface ( \(\Sigma\) ). The procedure set up in section IV. 5 to generate the contours around this point has been
implemented by means of subroutine ISOBAT (see Figure 20).

\section*{Point B \((-0.122,+7.18)\)}

Substituting \(\theta_{1}=-0.122\) and \(\theta_{2}=+7.18\) in to equation (88) yields
\[
\begin{aligned}
& H_{B}=\left|\begin{array}{cc}
\frac{18}{(-1.732)^{3}} & 0 \\
0 & \frac{0.375}{(2.59)^{3}}+\frac{0.140}{(0.796)^{2}}
\end{array}\right| \\
& H_{B}=\left|\begin{array}{cc}
-3.46 & 0 \\
0 & +0.299
\end{array}\right|
\end{aligned}
\]
\(H_{B}\) is not positive nor negativo dorinite bccousc its principal minors are \(-3.46<0\) and \((-3.46)(+0.299)<0\). As a result, point \(B(-0.122,+7.18)\) is a saddle point on response surface ( \(\Sigma\) ).

Point C \((=0.122,-0.376)\)
This point has the abscissa of \(D\) and the ordinate \(\theta_{2}=\) - 0.376. Thus
\[
n_{11}=-3.46
\]
and
\[
\begin{aligned}
n_{22} & =\frac{0.375}{[0.50 \times(-0.376)-1]^{3}}+\frac{0.140}{[0.25 \times(-0.376)-1]^{3}} \\
& =\frac{0.375}{(-1.188)^{3}}+\frac{0.140}{(-1.094)^{3}}
\end{aligned}
\]


Figure 20(a). Flow - chart of subroutine ISCBix


Figure \(20(\mathrm{~b})\). Thi of fiot - chart of subroutine ISOBAT
\[
=-0.331
\]

The Hessian matrix at point C is
\[
H_{C}=\left|\begin{array}{cc}
-3.46 & 0 \\
0 & -0.331
\end{array}\right|
\]
\(\mathrm{H}_{\mathrm{C}}\) is negative definite because its principal minors are
\(-3.46<0\) and \((-3.46)(-0.331)>0\). Therefore, point C ( -0.122 , -0.376 ) is a maximum on ( \(\Sigma\) ).

\section*{Point \(D(+0.455-0.376)\)}

This point has the same abscissa as \(A\) and the same ordinate as C. Matrix \(H_{D}\) can 1mmediately be written as
\[
H_{D}=\left|\begin{array}{cc}
+3.48 & 0 \\
0 & -0.331
\end{array}\right|
\]
\({ }^{H} D_{D}\) is neither positive definite nor negative definite because its principal minors are \(+3.48>0\) and \((+3.48)(-0.331)<0\). Therefore, point D is a saddle point on response surface ( \(\Sigma\) ).

\section*{APPENDIX IV}

\section*{COMPUTATIONAL SCHEME FOR THE \\ SEARCH TECHNIQUE APPROACH}

Basic features of the sequential simplex technique (11).
We consider, initially, the minimization of a function of \(n\) variables, without constraints. \(P_{0}, P_{1}, \ldots, P_{n}\) are the \((n+1)\) points of the current simplex in n-dimensional space. We write \(y_{i}\) for the function value at \(P_{i}\) and define \(h\) as the suffix such that
\[
y_{h}=\max _{1}\left(y_{i}\right)
\]
and \(\mathscr{O}\) as the suffix such that
\[
y_{l}=\min _{i}\left(y_{i}\right)
\]

Further we define \(\overline{\mathrm{P}}\) as the centroid of the points with \(i\) is \(h\), and write \(\left[P_{i} P_{j}\right]\) for the distance from \(P_{j}\) to \(P_{j}\). At each stage in the process \(P_{h}\) is replaced by a new point; three operations are used -- REFLECTION, CONTRACTION, and EXPANSION. These are defined as follows The reflection of \(P_{h}\) is denoted by \(P *\), and its co-ordinates are defined by the relation
\[
P^{*}=(1+a) \bar{P}-a P_{n}
\]
where \(a\) is a positive constant, the reflection coefficient. Thus \(F^{*}\) is on the line joining \(P_{h}\) and \(\bar{F}\), on the far side of \(\vec{P}\) faom \(P_{h}\) with \(\left[p^{*} \bar{F}\right]=a\left[p_{h} \widetilde{P}\right]\). If \(y^{*}\) İes between \(y_{h}\). and \(Y_{f}{ }^{\prime}\)
then \(P_{h}\) is replaced by \(F^{*}\) and we start again with the new simplex. If \(y^{*}<y_{\ell}\), \(1 . e\). , if reflection has produced a new minimum, then we expand \(P *\) to \(P^{* *}\) by the relation
\[
P^{* *}=\gamma P^{*}+(1-\gamma) \bar{P}
\]

The expansion coefficient \(\gamma\), which is greater than unity, is the ratio of the distance \(\left[P^{* *} \overline{\mathrm{~F}}\right]\) to \(\left[\mathrm{P}^{*} \overline{\mathrm{P}}\right]\) ! If \(\mathrm{y}^{* *} \leq y\) we replace \(P_{h}\) by \(p^{* *}\) and restart the process; but if \(y^{* *}>y_{\ell}\) then we have failed to find a better point by expansion, and we replace \(P_{h}\) by \(P^{*}\) before restarting.

If on reflecting \(p\) to \(p *\) we find that \(y^{*}>y_{1}\) for all \(1 \neq h, 1 . e\). that replacing \(p_{h}\) by \(F^{*}\) leaves \(y^{*}\) the maximum, then we define a new \(P_{h}\) to be either the old \(P_{h}\) or \(P^{*}\), whichever has the lower \(y\) value, and form
\[
P^{* *}=\delta P_{h}+(1-\beta) \bar{P} .
\]

The contraction coefficient \(\beta\) lies between 0 and \(I\) and is the ratio of the distance [ \(\left.p_{k+*} \bar{P}\right]\) to \(\left[P_{h} F\right]\). We then accept \(P * *\) for \(P_{h}\) and restart, unless \(y^{* *}>\min \left(y_{h}, y^{*}\right)\), 1.e., the contracted point is worse than the better of \(P_{h}\) and \(P^{\prime \prime}\). For such a failed contraction we replace all the \(P_{1}\) 's by \(\left(p_{1}+P_{i}\right) / 2\) and restart the process.

The criterion adopted to stop the search is to compare the "standard exror" of the \(y\) 's in the form \(\sqrt{\Sigma\left(y_{1}-\bar{y}\right)^{2}} / n\) with a premset value.

The name SIMPLE has been given to the corresponding FORTRAN subroutine for this seerch procedure.

In order to perform a search the value of the objeetive function should be available for a given deeision vector. The FORTRAN name of this subroutine is OBJ. Flow-chart of subroutine SIMPLE appears in Figure 21.

Constraints on the volume to be searched.
If, for example, one of the \(x_{1}\) must be non-negative in a minimization problem, then the original sequential simplex seareh method may be adopted as follows: The seale of the \(x\) eoncemed can be transformed, e.g., the funetion can be modified to take a large positive value for all negative \(x\). In the latter case any trespassing by the simplex over the border will be followed automatieally by eontraetion moves whieh will eventually keep it inside. This mothod is illustrateo in Ficure 22. If the refleeted point \(P^{*}\) trespasses the border line of the permitted resion, a eontraction follows, whieh results in the new simpler \(P_{1}, P_{2}, p \%\). If the expanded point \(p * *\) trespasses the border line, p** is replaeed by the reflected point p which was within the permitted region. In either ease the new simplex is within the eonstraint and the iteration process can be earried on.

Determination of the optimal policy by the enoirieal search.
The various eomponents of the optimization problem have been stated in Section IV. The procedure eonsists of the following steps:

Step 1
Compute \(\theta_{1}\) opt by equation (72) and eheek the first eondition, equation (76).


Figure 21(a). Flow - chart of suroutine STrFte


Figure 21(b). Continuation


Figure 21(c). Continuation


Figure 21(d). End of subroutine ST"TLE

Case of reflection
—....... Old simpde:
New simplex

Case of crpansion


Fig. 22. Treatmont of inequality constroints on the indapancant voriables in simplex techniqua.

\section*{Step 2}

Determine \(\theta_{2}\) opt by solving equation (73). Compute \(\theta_{w 2}\) and check the second condition, equation (78).

\section*{Step 3}

Initialize counters and set the first guess for optimal. solution.

\section*{Step 4}

In order to perform the search an initial simplex and the inequality constraints should be specified. Thus this step consists of setting the initial simplex in the neighborhood. of the optimal point already defined in Steps 1 and 2 and computine \({ }^{\theta}{ }_{w 3}\) corresponding to the initial guess for \(\theta_{2}\) set in Step 3 . Stop 5

Call the search technique. If the resulting point is close enough to the initial guess, its coordinates constitute the optimal policy. If not, the result of the search serves as startins point for the next iteration. Step 6

After convergence the correspondins state variables can be computed using the performance equations.

\section*{APPENDIX V \\ DESCRIPTION OF MAIN FROGRAM MICUZO}

The main program for solving this problem has bcen given the name MICU20. In this paragraph all FORTRAN locations will be written with capital characters.

The program MICU20 consists of six parts as illustrated in Figure 23.

\section*{First part:}

It contains the speciffications, the definition of statement functions needed in the remainder of the program, the input statements for the physical and economical parameters and the input statements of option parameters NOPT, ICURV and ICONT and the search parameters. In addition, it pcrforms the echo-check of these data.

Second part:
It is devoted to the determination of the optimal policy. Note that cquation (73) which is of degree 4, has been solved by the NEWTON method. The name of the subroutine which performs this search is precisely NEWTON.

The values of the first members of inequalities given by equations (76) and (78) are called respectively TESTl and TEST2. Third part:

This part deals with the case whore the operating policy \({ }^{\left(\theta_{1}\right.}\). \(\theta_{2}\) ) is fixed by user without being optimal.

It sicply consists of reading the chosen dccision variables, and calling subroutine OBJ which gives the value of the objcctive function.


Figure 23(a). F1ow-chart of main progran MiCU20
First part: Specifications, statement functions \& data echo check


Figure \(23(\mathrm{~b})\). Second part: Deternination of optimal nolicy


Figure 23(c). Find of second part


Figure 23(d). Third part: Case of non-cptimal policy


Figure 23(e). Fourth part: State variables of optiral policy


Figure 23(f). Fifth part: Concentration curves


Figure 23(g). Fart VI: Drawing of contours End of program ICU20

\section*{Fourth part:}

The state variables resulting from the previously chosen policy are determined.

\section*{Fifth part:}

In thls part the concentration curves are plotted. In addition the slopes at the points of discontinuity are detemined, according to Appendix I.

\section*{Sixth part:}

By calling subroutine ISOBAT various contours around the optimal point are generated using the procedure described in section IV.5. The meaning of the symbols in Figure 23 appears in Table 2. Table 3 contains the list of the required data cards.

\section*{TABLE 2}

\section*{MAIN FORTRAN SYMBOLS}

Symbol
Meaning or corresponding algebraic variable

MICU20
SIMPLE
NEWTON

ISOBAT

OBJ
QUART
KA, KB, KC
KS, KR, KU
MUS, MUR, MUU
THWユ, THW2, THW3
DELTAS, DELTAY

Main routine
Subroutine for SIMPLEX search technique
Subroutine implenenting NEWTON'S method for root searching

Subroutine to generate the contours around the optimal point on the response surface

Subroutine for computing objective function
Function \(\varphi\left(\theta_{2}\right)\)
\(k_{A}, k_{B}, k_{C}\)
\(K_{S}, K_{R}, K_{U}\)
\(z_{S}, z_{H^{\prime}}, z_{U}\)
\(\theta_{\text {wl }}, \theta_{\text {w2 }} \theta_{\text {w3 }}\)
Increment on objective function and \(\theta_{2}\) respectively for contours drauins

Dimensionality of search

ALPHA, BETA, GAMMA \(\alpha, \beta, \gamma\)
IBAFY Option parameter for SIMPLE
EPSIL Convergence criterion for SIMPLE
LIMIT Naximum number of iterations to be performed. during the search

ICONV
TMIN
NITER

NEVAT
Convergence index
Optimal decision vector
Number of iterations actually performed in STMFLE

Numoer of furction evaluations

TABLE 2 (Cont.)

X1S1, X2A1, XIRI, \(S_{1}, A, R_{1}, U_{1}\)
deltas
DELTAR
\(S_{0}-S_{1}\)
\(\mathrm{R}_{2}-\mathrm{R}_{2}\)
deltau
\(U_{1}-U_{2}\)
X1R2, Y1U2, X2B2, \(\quad R_{2}, U_{2}, B, C, P\) - X2C2, X1P2

R, BET
W2, W3
NOPT, ICURV,
1CONT
ETA
MAXIT

TESTI
TEST2
THIOPT, TH2OPT \({ }^{\circ}\)
LLAC
TH
RT1, RT2
s
Ex1s1

DX2A1
Criterion for over-all convergence
Maximum number of iterations for optimization loop

Value of first member of inequality (76)
Value of first member of inequality (78)
\(\theta_{\text {lopt }} \theta_{\text {zopt }}\)
Iterations counter
Current s mplex
Operating residence times
Objective function
\(\left.\frac{d S_{I}}{d \theta_{I}}\right|_{\theta_{w s}}\)
\(\left.\frac{\partial A}{d \theta_{1}}\right|_{\theta_{N 12}}\)
\(\left.\frac{d R_{1}}{d \theta_{1}}\right|_{\theta_{W 1}},\left.\frac{d U_{1}}{d \theta_{1}}\right|_{\theta_{w 1}}\)

\section*{TABLE 2 (Cont.)}
\(T\)

SH
SL
TBAR
SBAR
MREF, SREF

TEXP, SEXP

Current decision vector in SIMPLE Hichest function value ( \(y_{h}\) ) Lowest function value ( \(y_{l}\) ) Coordinates of the centroid Value of the objective function at centroid Coordinates and function value at reflected point

Coordinates and function value at expanded point
```

,
TABLE 3
DATA CARDS

```
\begin{tabular}{ll} 
Card \\
\hline 1 and 2 & TItIe \\
3 & XISO, KA, KS, YAS, YRS, YUS \\
4 & KB, KR, YBR, YPR \\
5 & KC, KU, YCU, YPU \\
6 & MUS, MUR, MUU \\
7 & NOPT, ICURV, ICONT \\
8 & R, BET \\
9 & RTI, RT2 If NORT \(=0\) and ICONT \(=0\) \\
10 & ALPPHA, BETA, GAMMA, STEP, IBARY \\
11 & EPSIL, LIMIT, ETA, MAXIT \\
12 & DELTS, DELTAY
\end{tabular}

\title{
AN ABSTRACT OF A MASTER'S THESIS
}
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Chemical Ensineerine

KANSAS STATE UNIVERSITY Manhattan, Kansas

\section*{ABSTMACT}

This work considers an anaerobic digestion process represented by a two-step mechanism and carried out in a two-stage continuous digester system. A mathematical formulation of the kinetic and flow models has been given, which allows simulation of the system. On this basis, an objective function of economic type can be constructed, the minimization of which yiclds the optimal design. The analysis of the system by means of this mathematical formulation also shows that washmout times are important design parameters. Finally, a contact process in which organisms are recycled to the second stage is compared to the conventional process. From this comparison it can be concluded that the contact process has definite advantrges over the convontional process.```

