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I . INTRODUCTION

Biological processes have been operated as continuous flow

systems for many years. However, development of mathematical

models for such systems has been more recent (since 1950) with

significant early contributions by Novick and Szilard (1),

Monod (2), and Herbert (3). Most of the earlier work was devoted

to the analysis of pure bacterial cultures in single-stage reactors.

More recently, there has been much interest in the analysis

of biological waste water treatment (^,5i6). These works again

assumed that the process Involved a single culture.

However, anaerobic digestion is a complex process and in

the recent past, growing attention has been given to it from

both the theoretical and experimental points of view. Malina and

HcCarty (7,10) refer to anaerobic digestion as a complex two-

step process involving various intermediate chemical species and

several types of organisms. This mechanism is now widely used.

Willlmon and Andrews (9) carried out experimental work using a

single stream system under various operating conditions. These

authors (8) have given a mathematical formulation of the kinetic

model of the anaerobic process which allows them to simulate

one-stage and two stage processes. Finally, Pfeffer (13) has

emphasized the advantages of a contact process (i. e. including

recycle of organisms) as contrasted with a conventional system.

In this work a mathematical formulation employing the

kinetic model of Willlmon and Andrews Is used to simulate

conventions?.! and contact anaerobic processes consisting of



tt/o stages. In addition, by adjoining an economic model to the

process model, the process is optimized for various values of the

recycle ratio.

The results obtained by this approach must be balanced with

engineering judgment and experience. The kinetic and economic

models can only approximate reality. Nevertheless, this study

may yield a better understanding of the process and a more

efficient industrial application.

11 • BASIC .HgLATIOKSillPS

1. Mechanism of anaerobic ferm entation (7)

The anaerobic treatment of waste water involves several

microbial species which carry out numerous biochemical and

microbiological reactions (see Figure 1). The process yields

carbon dioxide C0
2 , methane CHjj,, and reduced organic molecules

(HpS, etc...). The bacterial population consists of facultative

organisms which tolerate small amounts of dissolved oxygen and

anaerobic, bacteria.

The anaerobic fermentation process is a sequential one

including two distinct steps, which are the "acid fermentation"

step and the "methane fermentation" step. During the "acid

fermentation" step, "acid producing bacteria" break complex organic

Compounds down to simpler organic structures, as bacterial growth

takes place. The principal intermediate compounds resulting from

"acid fermentation" are volatile acids, i.e. short-chain carboxylic

acids (C, to C;;). These volatile acids provide substrate for
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the "methane-froming" bacteria. During "methane fermentation",

the organic acids produced during the "acid fermentation" step

ere converted into carbon dioxid_e and methane. These bacteria

are substrate specific, i. e. each of these ferments only a

small group of intermediate compounds. This fact has also been

recognized by Hillimon and Andrews (9) in their experimental

work. Thus the stabilization of all intermediates necessarily

Involves several cultures. Figure 2 shows the significance of

acetic and propionic acids as intermediate products (10).

We shall implement this scheme in the kinetic model by using

the following monenclature.

S = raw material to be converted,

A = acid producing bacteria,

R = intermediate product. It undergoes fast conversion by

methane-producing bacteria,

U = intermediate product. It undergoes slow conversion by

methane-producing bacteria,

B m methane producing bacteria fermenting H,

C m methane producing bacteria fermenting U,

P final product.

Figure 3 is a schematic representation of the mixed culture

model which is assumed in this study. Although there are a large

number of intermediates and microbial species, we shall assume

that the system can be adequately represented by two intermediates,

R end *J, and three microbial species, A, B and C. Figure k shows

the system of two completely mixed tanks In which the porcess is

carried out. Such a system, when it does not include a recycle
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stream of organisms, is referred to as a "conventional system"

(10). When it includes a recycle stream of organisms, it is a

"contact process" (Figure 5)»

2. Kinetic model

Several assumptions must be made in developing the kinetic

model for this mixed culture system.

1. Environmental conditions are such that acid fermentation

occurs only in digestor 1 and methane fermentation only in

digester 2.

2. Both digesters are completely mixed.

3. The effect of endogeneous respiration or organism

deday can he neglected.

h. Product fermentation is directly related to growth.

5. Isothermal conditions are assumed and thus there is no

temperature effect.

6. Monod's function describes the growth rate, 1. e.

kSX
r
x ~ K

s
+ X

where

r = rate of production of organism,

k - maximum specifio growth rate,

K„ = saturation constant,
3

S = substrate concentration,

X c organism concentration.

For the sake of clearness, we shall denote the various

convert-ions involved in the kinetic scheme aa follows t
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A
(Al) S - R

A
(A2) S - U

B
(B) R - P

C
(C) U - P

Consider conversions (Al) and (A2) , where S is metabolized

by organism A yielding products R and U and additional cells A.

The rates of utilization and creation of the various species

involved are directly ralated by the yield factors. The same

holds for conversions (B) and (C). For instance, yield factors

Y, ,„ and Yr,/q are defined as
A/3 va

y rate of formation of A
A/3 "" rate of

1

utilization of 3

v rate of formation of B by reaotion (Al)
R/S

= rate "of utilization of ~3

The various yield factors are shown in Figure 6.

la the first stage, substrate S is consumed by organism A,

giTing organic acids R and U as products. Using Konod's model

for growth of A gives

rA = J^ (1)

From this expression and the yield factor X»/g, we obtain for the

consumption of substrate (-r
t ,

)

A/3
^„

aiA
. , {?-)
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Since the rate of production of organic acids H and U is directl.v

related to growth

\ - - Y
H/3

r
s - ijj *A (3)

*
Vl - - Y

u/s
r
s - r^i r

A c*)

In the second stage, intermediate R is consumed by organism

B and intermediate U is consumed by organism C with product P

(methane) being produced. The kinetic models for growth of

organism E and consumption of R are, respectively (the consumption

of R is - r )

R
2

r _ W_ (5)X
B " KR + R

2

k
B
R
2
B

(6)r
R
2

" " V?KH + K
2 )

Likewise, for organism C and intermediate U, we can write

- _W_ (?)
- Ky + U,

*tl =U
2
= " *C/UiKU + °"2 J

(8)

Since product P is produced by the fermentation of both B and C,

the expression for product yield is of the form

v _ „ v . v _ v v ( P

)

r
p

= - rp/B r^ . p/u r^ v. ;

or in terms of organisms B and C
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r = p& rB
&2 r do)p yb/b B s c/u c

In the next section, these equations will be combined With

the material balances at each stage for each species involved in

the process. This will yield the performance equations of the

system.

3. Performance equations

The material balance equations are derived first for a

conventional system (see Figure k ) . Then they will be developed

for an anaerobic contact process (see Figure: 5)

A. Conventional system.

At the first stage, the four species involved are organism

A and organlcs S, H and U. A material balance for organism A

yields '

-A r
A 6;L

-

A = r. 9. (11)
A 1

Substituting r from equation (1), and solving for S. , \ie have

s
i - e,kA

- i
UV- J

A substrate S material balance gives

Vi

_r
s
8
i

(13)



14

Dividing equation (11) by equation (13) gives

A . (8 - S ) ( -
I*)
S

r
But, by definition - ~A = Y A/r,. Therefore we have

rg A/3

A . '^(S, - S
x

) (14)

A substrate R material balance for the first stage yields

- R
i V 1

= °

(15)

Dividing equation (15) by equation (13) gives

h « (8 - Sl J (- A)

By definition

r
P-l

r
g

- X
R/S

Tills gives

R
l
n Y

R/S
(S

"
s.
X

(16)

In the present kinetic scheme, the processes of formation of R

and. U are formally identical. Therefore, we nan write

"
a - -u/s (s

o - 3
i>

< 1?)

In the second stage, five species are involved, namely B, C,

R, U and P. Vie can write the steady state material balances for
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each component as follows! For organism B we obtain

- B + r
B
e
2
= (18)

or

E -2 09)K
2 - kE e - 1

v y '

Consider, the consumption of substrate U by organism C.

The kinetic relationship governing this growth process is formally

the same as for the reaction of organism B on substrate R [Equa-

tions (5) and (7)]. Moreover, the material balance for organism

C around the second stage has the sace form as equation (IS),

As a result, we can write

The material balance at the second stage for intermediate

R is

E
l " h + r

R
2
9
2 - ° (21)

or

B, - B
2
= - r

R
e
2

(22)

Combining this with equation (18), we get

B . Si. (r
x

- r
2

) (23)

2

Taking account of equations (5) and (6), we have
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Due to the similarity of the reaction of B on R, and of the

reaction of C on U, we can write immediately

c Yc/u (TJ
i

- V < ?-5>

The steady state material balance for product P is

- P +**£e
2
= (26)

Substituting the right hand side of equation (10) for r we obtain

P „ _£Z? r o + -£Z2 re,
YB/R

b 2 ~C/V C 2

Taking account of equation (IS) and the corresponding relationship

C ~ r S we obtain after substitution
C 2

P/R D .

XP/U
- +^ . C , (2?)

*B/R XC/U

Equation (12), (1^), (16), and (17) describe the. performance

of the first stage while equations (19), (20), (2'0i (25), and

(2?) describe the behavior in the second stage for a two staye

conventional process. The corresponding set of equations for a

contact process which includes a recycle stream of organisms will

be derived next,

B, System with recycle.

Since the model for growth used in this study assumes that

organism A grows only In stage one and organisms B and C grow

only In stage two, any attempts to concentrate the organisms by

means of recycle must be carried out by feeding the organisms
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leaving a stage back to that same stage. The methane producing

bacteria represented in this study by organisms B and C often

have a smaller maximum specific growth rate than the acid

producing organisms (organism A in this study). Because of this,

recycle of organisms B and C will be considered in this study as

shown in Figure 5> Organisms B and C which metabolize the

volatile acids in the second stage, are settled in a clarifier at

the outlet of this stage (Figure 5). A fraction r of the sludge

leaving the clarifier is recycled to the second stage. Such a

system is referred to as an "anaerobic contact process" (10). It

is assumed that there is no endogoueous decay of organisms.

All streams after the second stage are supposed to be equally

concentrated in oiganlos S, H and U. The recycle stream does not

contain product P. The treated effluent does not contain signifi-

cant quantities of organisms B or C (Figure 5).

Let

q = fraction of the sludge sent to waste disposal section.

p = clarifier efficiency.

r = recycle ratio.

The kinitic scheme given in Section 2 above remains valid

for the present system, i. e. the rates of reaction of che various

specie» involved in the process are given by equations (1) through

(10). Similarly, for the first stage, there is no modification

to equations (12), (1*0, (16), and (1?) needed, because there is

no change in performance at this stage.

The performance equations for the second stage are obtained
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from the steady state material balances for species B, C, H, U,

end P.

The amount of organism B entering the second stage is now

(qr) ( p B ) . Moreover, the flow rate through this stage is

q(l + r) . Eence, the material balance for B can be written as

ft'
qr?B + r

B
V
2

- lf(l + r)B = (28)

where r
fi

is given by equation (5). Substituting this expression

for r
E

into equation (23) and dividing by q yields

r3B + P~2~ . ST- (1 + r)B E
B " Il

2

Rearranging this gives

kBR2 h
K
R + x1R2

' q
1 + (1 -,g)r (29)

By definition V"
2

• = 9 is the hydraulic residence time at the

second stage and

tg= 1 + (1 - §)r (30)

is a dimensionless factor which depends on g and r. Then,

equation (ii.) can be written as

kr r^ = *

Solving this equation for H
2
gives

a- k
B
«
2

-5:
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Dividing the numerator and denominator of this fraction by

yields

where

k
B ' - Vs (32)

Equation (31) has the same form as equation (19) . where k_ is

replaced by k„'. Note that equation (28) may be written, after

rearranging, as

r
B
e
2
=$B (33)

In the process of metabolization of specie by organisms

C, the underlying kinetic scheme is the same as for the reaction

of R and 3. Therefore, by analogy, we obtain

where

V - k
c /^ (35)

The amount of R carried by the recycle stream is (rq)R ,

The amount of R leaving the second stage is q(l + r)R
?

. Then,

the steady state material balance of this compound is

I'qK, + q
R
l + rp V, - q(l + r)R, a (36)

Searrangins equation (36) , we obtain
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/

r
R2

6
2 " R

2 " h <37)

Dividing equation (33) by equation (37) yields

3
'b b 1
r
H
2

= \ ~ R
l

Prom equations (5) and (6)

r
H2

" B/R

Substituting this value into the precseding equation yields

B . lm (h - bj
^ 1 2

or

B = *3/H(Hl " H
2 ) ^ (33)

where

1
B/R -

|
(3;

Equation (33) has the same form as equation (23) where ¥._,/,, is

replaced by Y'
B/R

-

The steady state material balance for organic S U can be

obtained by analogy to the case of organics E. Hence we can

write Immediately

'•• - *W°i - V {h0)

wnere

*'c/u - -f-
<*"
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For product P, the steady stats material balance Is

P (1 + r)q t r
p

V
2

.

Substituting rp
as given by equation (10), we obtain

P VhV 2
+
VcS

(^j

According to equation (33) v'o have

rB
e
2
„$B

By analogy we can write

rO = f C
C 2 *

Substituting these expressions into equation {k}) yields

*
fc ir?r5 YB/R

+ (l -?) yc/u
« '

Let

- P/B 1 + r

1 P/U " 1 -;- r

C*5)

Then, taking account of equations (39), ('*!), arid (45), equation

(n-'i i can be written as
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1 3/R X C/U

Performance equations (3D. (3*)i (30), (40) and (46) have the

same form as the corresponding equations for the conventional

process, i. e. equations (10), (20), (24), (25) and (27)

respectively. Therefore, provided the constants kg, k , Y . ,

X„/,,, Yp /R
and Yp/n are transformed according tc equations (32),

(35), (39), ('H) and (45) respectively, the simulation of the

process can be carried, out using the same computer progratu as

for the conventional process.

An important parameter for a contact process is the solid

retention time. According to KcCarty (10), the solid retention

time (SHT) is defined as

S R'T _§.H-So ended solid s in the system

_

** Suspended "solids removed per day

We shall apply this definition to the organisms E in the second

stage. The mass of organisms B in this stage is V_B. The

quantity of B removed per day is ( q)(3B). Then

V
2
B

SlU
B " USJb

V
? 1

OK1
B - q * wg ^'>

where SRT„ is the solid retention time of organisms B in the

second stage. Furthermore the material balance for organisms

around tfte clarifyer can be expressed as
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*

(1 + r) qB = (r + n) qpB

which yislds, after simplifying and rearranging,

pw. 1 + (1 - p.) r (48)

Then, according to equations (30), (47) , and C+8), SRT can be
o

expressed as

SRTD = S_
B %

Note that equation (^8) implies

i + (1 - g) r >

or

vihere '

rmax =
g - 1

When r = r , equation (^3) shows that
max

g~>=

If p ^ 0, then oo = 0, i. e. all available organisms B a- recycled.

C. Concept of wash-out time.

Since microbial growth is an autocatalytic process,

organisms must be present for growth to occur. If the flow rate

is too large relative to the reproduction rate the organisms

may not be able to reproduce fast enough and wash-out of organisms

may result. It is important to determine which residence times

will continuously support a growing culture and which ones will
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result in wash out and no growth. At first we shall consider

the first stage. The function which describes the variations of

outlet concentration of substrate S is hyperbolic as given by

equation (12).

K
S

S
l " *Jk/. 1 < 12 >

There is a mathematical limit for 9, for which S-, - ro . This

1/k.. Obviously, it has no physical signlfi-

for which

equation (12) has a physical significance is where

si= s
o

This is to say that, when 9, = C -,, wash-out occurs for ojg&nism

A and there is no conversion of substrate S. Equations (16),

(1?), and (14-) show that under this condition R, = U. = A = 0.

These results are illustrated in Figure ?. When 6, > 9 ,

.

1 Wl

Organism A can grow and S is converted to produce R and U.

Equations (12), (1*0 , (16), (17) show that, under this condition,

we have

fA

>

H >

°1> °

At the inlet, of the second stage the concentration of S, A,

B, and U are respectively S^ , A, f^, and 0_. Consider equation

(19) which gives H , the outlet concentration of H, as a

function of residence time B in the second stage. As in the
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previous case the relative size of the values of the maximum

specific growth rate k and the dilution rate 9 Will determine
B 2

whether growth of organism B can occur in the second tank. E is

converted only if organism B is present in which case the inlet

concentration R, exceeds the outlet concentration R . Examining1 2

equation (19) then shows that there exists a residence time 8.wz

for which the following equation holds.

B
2

- Bj » {kQ)

At 8 , equation (23) shows that B = 0. When > 6 , R"2 2 w2

begins to be converted and B to grow, giving product P.

A similar reasoning applies to U and C. The former is

converted and the latter grows only if 6 > 6 , where
v3

the solution of equation (20) for e if

u
2
- V

1
(50)

At 6 „, equation (25) shows that C = 0. When 0„ > 8 „, B baginsw3 2 w3

to be converted, and C to grow, yielding product P.

It has been noted (8) that in the second stage, wash-out

usually occurs first for the organism which has the smallest

maximum specific growth rate. Since k < k , C is the slowest
C B

growing organism. Therefore, the following inequality is

usually satisfied.

Ttms, the condition which must be satisfied in order for organism

A to grow in the first stage is
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6
1 * \l (52)

Similarly, the condition for the growth of organisms B and C in

the second stage is

6 * 6 ->

'

(53)

The inequalities given by equations (52) and (53) will be referred

to as "conditions of feasibility".

4. Economic model.

We shall consider a cost of treatment consisting of two

terms. The first term is the total hydraulic residence time

6 + 6„ of the feed stream q in the system. This term represents

approximately the cost of the digesters in terms of volume.

Therefore, it also represents roughly the fixed costs of treatment

for a given plant and a given flow rate. In addition, the degree

of removal of organics from the feed stream has an important

economic significance. In fact, the stream leaving tile clarlfier

can either be discharged into a receiving stream cr treated

further in order to achieve a better stabilisation of its organic

content. In both cases, we may incur a penalization which is a

function of the degree of treatment. In this work, the penaliza-

tion term takes the form z„ S, + Zj, VU + z,, 0„ penalization

where z . z Q , and z,, are constants. This term must also be
fa Q U

expressed in terms of residence time. Thus, the dimension of the

constants z , z , and z is time/concentration.

III. ANALYSIS OF SYSTEM
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In this section, we shall determine the wash-out times,

9 , S, „ , S _, of the system using the concept of Mash-oat stated
wl *• 2 wj

in Section II, 3 • Then, we shall prove that the wash-out steady-

state is a solution for the steady state problem provided that

the feed stream is free of organisms.

1 . Determination of wash-out times.

Organism At

3y definition of 6 , , we have* wlW s
o

Because of equation (12), this gives

K
S

S,
e , k„ - i o
wl A

and

K and S„ are positive. Thus, equation (5k) implies

6 > -I- (55)
wl k ,A

Moreover, when S n 5 , equation (1A) shows that A «= 0. When

wash-out occurs in the first stage, the concentration of organism

A is zero.

Organise 3i

The corresponding wash-out tslme, say „, occurs when
w2W - R

i
(56)
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Substituting from equation (19) » we have

a.
k
B

ew2- 1
"'

1

Then

•
9w2 - t (1 + if ( 57)

Again, we notice that substituting equation (56) into equation

(24) leads to B = 0.

Organ! sq C i

6 corresponds to the condition that
w3

vy - u
i

(58)

Substituting from equation (20) we have

K
U

k„ e , - 1 - v
i

c w3

Solving for _ yields
w3

K

tt(1 * *«2) (59)N *3 V" u
x

This equation implies that

, > -/- (60)

Equation (5'0 shows that e , does not depend on the residence

time of any of the stages. However, the expressions for and

6 , contain the terms H
1
and U, respectively, which are dependent
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on the residence time of the first stage. As a result, the

wash-out times of organisms B and C depend, on the residence time

in the first tank. Figure 8 illustrates the concept of wash-

out time of organism A in the first stage. The dimenslonless

concentrations S./Sq, A/Sq, H^Sq, and U./Sq as obtained from

equations (12), (l^), (16), and (17) respectively are plotted

versus the residence time 0-, ranging from to 2 days. When

8. < 6wl . si/s o = 1 and A/so - °» no conversion takes place and

wash-out of organism A occurs. When S > 3 ,» the concentration

of substrate S falls, indicating that S is converted, while the

concentration of organism A rises due to its growth.

2 • St eady state wash-out time

.

Let us consider the first stage. If we assume an initial

concentration A of organisms in 'the feed stream, the material

balance for organism A can be written as

A
Q

- A = - rA Bj (61)

For substrate S, it Is

3
Q

- s
x

. -r
a h (7)

Dividing equation (61) by equation (7) and noting that ~r /r -
A 3

X . ,„, we obtain
A/S

A
-

A " "
Y
A/S

(S
" V < 62)

which eau be rearranged to give

km A -:• I <3 - 3 )
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Substituting this expression into equation (1) giving r yields
A

kAsl
. .. r. . « i* a \t (63)rA " V^I U

°
+W S

"
S
l
)]

Substituting equations (62) and (63) into equation (6l) yields

" YA/S (S - Sl ) = - J~-s~ C A + Y
A/S

(S - Sl )] (M)

By introducing the condition A
Q

= 0, equation (6^) can be

written as

( s
o
-s

i
)(l--|A.Jl),o (65)

This is an equation of second order, which gives the steady state

concentration S-. Obviously, one of the roots is S ^ S„, This

is precisely the condition for wash-out of organism A from the

first stage. Another root is given by

1 k*L_el_s i _
K
S + 3

1
'

Solving for 3. yields

1 «

which is identical to equation (12). Thus this approach shows

that, in addition to the steady state described by the performance

equations given in Section II. 3., there is a second solution

which can be referred to as "wash-out steady state" for the

first stage. By analogy the same conclusions can be reached for
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the second stage.

The analysis given above yields an important conclusion as

to the operation of the system. Indeed, let us assume that

wash-out of organism A occured in the first stage due to flooding.

Then, for this stage, the stable steady state solution is given

by the first root of equation (65), i.e. S = S„. This implies

that the feed stream flow through the first stage without tinder-

going any biochemical conversion. However, if a residence time

6 is established such that 6, > 9 k1 and if some organism A is

introduced into the first stage, this organism can grow utilizing

substrate S. After a transient period, the system reaches a

stable steady state described by the second root of equation (65)

which yields equation (12). In this steady state, continuous

organic utilization occurs, which is the condition for the system

to operate efficiently.

IV. OFTIHIZATIOK

In this Section, we shall determine the optimal policy for

a two-stage continuous anaerobic digester system using two

different approaches. In the first approach, differential

calculus yields an analytical expression for the optimal policy.

In the second approach, the analysis of the problem is carried

out from the point of view of an empirical search technique,

namely the Simplex technique which is discussed in Appendix IV.

1 . Formulation of the problem

According to the economic model described in Section II. 4,
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the objective function to be minimized consists of two parts.

The first part expresses the equipment cost (8 + 9_). The second

pert is the penalization cost z„ S» + z R + z U for
D JL R 2 U 2

discharging the organics remaining in the effluent stream. Thus

the objective function J can be expressed as

J = e
x + e

2
+ z

g
$
x

+ z R
2
+ z

D
u
2

(66)

Substituting equations (12), (19), and equation (20) into the

above equation gives

Z„ K Zrv K
(6?)

\ kA " l k
B

3
2 " X k

C
6
2 " X

Note that if S „ < 8~ < 6 Tr0 , the concentration of U in the
w^ — 2 wj

treated effluent is U . Then the objective function WOttld be

z K ' z K
-• - - t z„ 0,J = w

i
+ H

2
+ a. k. » T T STe, - l

T
u 1

1 A B 2

The decision variables are chosen to be the two residence times

6 and 8,. Since there is no equality constraint, the optimlza-
1 £-

tion problem is two-dimensional. Equation (6?) shows that the

optimization problem is a non-linear one with the decision

variables 9 and 9 subject to the conditions of feasibility.

V 8wi
(52)

2 • Numerical data

.

The optimization will be performed with the following values
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of physical and economical parameters

i

s
o - 10.0 gm/1

k
A = 6.0 day"1

K
s

O.SO gm/1

Y
A/S

= . 25

Y -
R/S

- O.ii-0

Y
u/s

= 0.20

k
B " 0.50 day"1

K
R

= 1.00 gm/1

i
B/R

= 0.10

Y
P/R

- 0.75

k
c

B 0.25 day"1

K
u " 1.50 em/i

Y
c/u

** 0.10

Y
p/u

= 0.75

z
s

1.00

z
R

1.50

z„ - 1.50

The choice of these values for z
s , z , and z is compatible with

the two conditions of feasibility as will be shown in Section

IV. 3 below.

3« Analysis by differential calculus.

Lot (L) be the surface described by equation (67). First,

we have to find the stationary points on surface (£). The

coordinates of such points satisfy the necessary conditions
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(68)

and

ft " ° (69>

From equation (66) we have

_?J , ffl
dE

2
dU

?
537 = -1 + zs ae^^

+ z
r de

1
* z

u de
x

R and ti
2

do not depend on 6 . Then substituting dS /dS-, yields

zq j: s k„
1 §_ S a = (?0)

(k
A

e
1 - l)

2

Solving for 9.. yields

In order for 6, to have a physical significance, it has to

satisfy

0, > . > X
1 wl ka

Therefore, the expression for 8. is necessarily

6
il - rA[1 + ^PT^l 3 < 72)

Let us now consider equation (69). Prom equation (66)

v . dR dU

i>8™ " - + z
r de

2
+ z

u de~
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dR dU
Substituting into this equation the derivatives — and —

§

a6
2

d0
2

computed from equations (19) and (20) yields

aj _ ,
Z
R K

R
k
B

Z
U

K
U

k
C

>Q ~
X

2 2
= °

(k
B °2 ' 1}

.

(k
C

?
2 " «

+ —f2-_u_c _ j = (?3)

(k
fl

e
2

- i) (k
c

e
2

- i)

Let

z K„ k„ z„ K,. k,

f(

e

2
) , —R_A_b_ + _JL-L_£__ _. i (7-:)

(k
B

e
2 " 1J (k

c °2 " 1}

Then, equation (7^) becomes

fi& 2
) = 0. (75)

Equation (73) can also be written as

Z
R
K
R

k
3
(k

C V 1)2+ Z
U

K
U

k
C
(k

E V 1]

- (k
B

e
2
- l) s (k

c
9
?
_- l) z .

This equation is of 4th order and, therefore, equation (73)

has four roots.

In order for G p
to have a physical significance, it has to

satisfy

6
2 * S

w3
>

i|

It can ba shorn (see Appendix II) that the largest root of
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equation (73) f say 6 , always satisfies this condition. It

remains to prove that the point defined by the coordinates 6
1L

and 9 OT is a minimum on response surface (2 ) , i.e. that the

Hessian matrix of the objective function J is positive definite

at this point (sea Appendix III).

Equations (72) and (75) allovr us to express the inequality

constraints (52) and (53) in terms of the physical and economical

parameters of the system.

The first Inequality constraint is

6 > 9
1L wl

Substituting equations (5't-) and (72) in this equation leads to

the relationship

i[i + vipc7^]>fci + ^i
A A

which must be satisfied to have growth in the first tank.

Simplification of the above relation yields

Jz K k > -2
S S A S

Q

Raising this to the second power and rearranging gives

Z
S

k
A (V 3

" h > ° (7S)

Values of all the parameters appearing in this inequality are

positive. It foliov:s from inequality given by equation (76) that

i > §

k
A < S(/
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For a given initial substrate concentration, there is a

lovrer limit for penalization z in order for the first stage to
s

operate above the wash-out residence time and under optimal con-

ditions z„ - 1.0 satisfies the inequality of equation (76).

The second inequality constraint is

e > e . (77)
2L »3

where 9 is the largest root of $f«2
) = and e^ is given by

equation (59). Vie know that ~ and 6 are both larger than

l/kr , and that f(8 ?
) monotonously decreases vrhen

2
> 1/1.,,.

Therefore, the inequality given by equation (77) yields

f(e
v;3

) >?(e
2L

)

But, by definition,

<ne
2Ij

) - o

Hence, the second condition for feasibility is

f<ew3) > o

Substituting the expression for f from equation (7^) yields

_^H_1h13_^ +
******

, - 1 > (78)

(kB ew3 - l) (k
c

ew3 - i)

This inequality is linear in z
p

and e , In addition, 6 depends

on 6- . It can thus be concluded that for given operating con-

ditions at the first stage, there are lower limits for penaliza-

tion coefficients Z„ and z„. z_ =, z ^ 1.50 satisfies the
It u H U
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Inequality given by equation (70).

Finally, the coordinates 9 and of point A minimize the

objective function J given by equation (6?) and satisfy the

inequality constraints given by equations (52) and (53). Thus,

8 -
10PT ~~ 1L

6
20PT

= 6
2L

Point A corresponds to the optimal policy on response surface (£ )

.

In addition to point A, the surface (E'J has three other stationary

points, namely, B, C, and D (see Appendix III). B and D are

saddle points, C is a maximum point.

k . Analysis by empirical search

.

As stated previously the objective function J is to be

minimized under the two inequality constraints 8.. > n
and

8 > 6 _, where 9 and 9 are the two decision variables.

In the differential calculus approach, this constrained

optimization problem is solved in two steps. In the first one,

we determine the stationary points of the response surface ( £ )

.

In the second one, we check a posteriori that the stationary

point of interest (point A) satisfies the inequality constraints

given above.

The empirical search technique, Simplex, is particularly

suitable to treat at once such a constrained optimization problem

(see Append i x IV )

.

By Beans of these two techniques, it is found that the

optimal residence times for the system under consideration are
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O
x

0.455 days and 6
2
= 7.183 days. Figure 9 shows a plot of

the dimensionless concentrations R_/S , V„/S
Q , E/S , C/3 and

P/3 in stage tvjo for the optimal policy for stage one. Figure

10 shows the plot of the same dimensionless concentration for a

contact system where r = 0.25' and 3 = 4.0. These figures

illustrate the increased stability of the contact process. Indeed,

the wash-out times 8 and 6 _ for the contact process are 0,629

days and 1.772 days as compared to 2.515 days and 7.037 days for

the conventional system. Comparing Figures 9 and 10 shows also

a strong increase in organism concentrations B and C together

with a more efficient reduction of the organics in the case of

the contact process.

5. Contours .

When J is given a fixed value J equation (67) represents

the corresponding contour. Let us write equation (67) In the

form

where

k
B

o
2

- i k
c

e
2

- i

(79)

(80)

Rearranging equation (79) yields

k
A (0

1 f + [(A - J
c

) k
A

- 1]8
1

+ z
g

Kg + J
o

- A . (81)

For the purpose of generation of the contours, let y be the

current value of 8„, and x.. and x the current values of the
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two roots of equation (81). Thus the procedure to get. the

Fix y (or 9 ).

Compute A by equation (80).

Substitute A and solve equation (81) for x. and x .

The two points (z., y) and (x , y) lie on the contour where

the obiective function has the value J . By allowing y to vary
c

the whole contour is generated. Thus the question arises!

what is the permissible range for y? The discriminant Of

quadratic equation (81) is

= [(A - J
c
)k
A

- if - 4k
A
(z

s
K
s + J

c
- A)

For equation (81) to have two real roots, has to be positive.

This restricts the range of variation of A and 9- in case of a

maximum or minimum for response surface (E ) .

The contours of response surface (E ) around the stationary

points A, B, C and D are shown on Figures 11, 12, 13, and Ik,

On Figure 13, the contours generated by this procedure

have no physical significance when 9w2 < 9
?
< 9

i
,. This part of

the contours are represented by the dashed lines. In deed, when

9 < 9 < 6 , wash-out occurs for organism C. Thus, the

objective function is given by the following equation (see

Section IV.)

J ' = 6
1 + 9

2 * k/l^! i + k/f^ 1 + Z
U h (82 '

where U
1

is given by
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u
x " Y

u/s
(s

o " V <">

(12)S
l

K
S

" kA e l
- 1

Equatl ons (12) and. (1?) yield

ii V t<

K
S

l - u/s v
o k

A
e^^ - I'

Substituting this expression of U, into equation (82) gives

z K„
J- = 9l + 9 + -

B 2

+ Z
U Vs (S - i-4f'-T-T) (83)

When J' is given a fixed value J' , equation (SO) represents the

corresponding contour. Let us write equation (83) in the form

*' = e , + v^r-rr zn *„/«, S n (85)

where

''Z
+ k^~9^~l + Z

U
I
0/fl

S

Rearranging equation (84) yields

kA ( 0l
)-\[(A' - J'

c
)kA

- l]G
a + H K

s
- Zu Y

u/3 K
s

+ (J' c
- A') = (86)

The contours can then be generated using the procedure previously
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described. They are shown on Figure 13 by the continuous

lines where 9
2
< 9 . The contours of the physical response

surface are discontinuous for e_ = 6 „. Indeed, when this

equality holds, the expression of the objective function changes.

This explains the points of discontinuity on Figure 13.

V. RESULTS AMD DISCUSSION

The numerical results of this work have been obtained using

the program MICU20 (see Appendix V). The main design variables

for the conventional process and a contact process are given

below.

For the conventional process, the optimal policy is S,

0.455 days and 8 = 7.183 days. The corresponding concentra-

tions are

» At the first stagei

S = 0.289 gm/1

A = 2.4-28 gm/1

B, = 3.885 gm/1

U
1

= 1.91*2 gm/1

- At trie second stagei

Ro = O.386

U
2
=1.835

3 = 0.350 gm/1

C =0.006 gm/1

P . 2.667 gm/1

The wash-out times are
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6 , = 0.175 days

V" 2 - 515deys
.

.

6
w3

7.08° days

For the contact process, the results are computed for

r 0.25 and B ^ 4.0. The optimal policy is e = .^55 days

and 9 = 2.64 days. The corresponding concentrations are

- At the first stage

S
x

= 0.289 gm/1

A = 2. 'I-28 gm/1

R = 3.885 gm/1

U = 1.9*2 gm/1

- At the second stage

H =,0.234 gm/1
2

U
2

=. 0.914 gm/1

B = 1.460 gm/1

C m 0.411 gm/1

P = 2.807 gm/1

The wash-out times are •

6
wl

. 0.175 days

6 „ - 0.629 days
W2

B , - 1.772 days

The solid retention time in the second stage is

SRTp =, IO.56 days

A parametric study has been carried out with r as parameter,
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g being given a constant value of k.O. The successive values of

r are 0., 0,05, 0.10, 0.15, 0.20, 0.25 and 0.333, respectively.

Figure 15, which Is a plot of the optimal cost of treatment versus

the recycle ratio r. Slows that the cost is significantly reduced

by using recycle. Similarly, in Figure 16, a plot of percent of

reduction of organlcs versus the recycle ratio r shows that

recycle increases the degree of treatment obtained in an optimum

system. Figure 17 which is a plot of total gas production versus

r, illustrates the increased gas production obtained by means of

recycle. Finally, Figure 18 gives a plot of the wash-out liquid

retention tine 8 -, as a function of the recycle ratio,
"3

As compared to the conventional anaerobic process, the

results obtained in this work show that the anaerobic contact

process has several advantages under the optimal condition. For

a recycle ratio of 0.25 and a clarifier efficiency of 4.0, the

cost reduction Is (11.333 - 5.10^11.333 - 5^.9%. In the conven-

tional process the concentration of organlcs in the effluent

stream is 0.289 + 0.386 + 1.885 = 2.56 gm/1. The reduction in

organlcs concentration is then (10. - 2.56)/10 » r/h,h%. In the

contact process the concentration of organlcs in the outlet

stream is 0.289 + 0.23*1 + 0.91* = 1.^37 ga/1 which yields a.

reduction in organlcs of (10. - 1.^3?)/10. = 85.6;?. The amount

of gaseous products is, for the contact process, (1. + .25) x

2.807 - 3.51 gm/1. Thus, there is an improvement in production

of gaseous px-oducts which can be used to meet the energy

requirements of the process. This improvement is (3.51 - 2.667)/

2.667 = 31.6%. Finally, the wash-out tiirse ? decreases from
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7.089 days for a conventional system to 1.772 days for the contact

process.

Figures 15 to 18 show that these improvements in the perform-

ance of the system take place over the whole permissible range of

the recycle ratio. However, the assumption of a constant value

for the clarlfier efficiency g may not be true when r takes' on

high values. At these recycle rates, almost all the organisms

contained in the stream leaving the second stage have to be

separated. Indeed, the major problem arising from the use of the

anaerobic contact process to date is related to an inability to

separate efficiently the bacterial solids from the effluent

stream for recycle back to the second stage (14). High efficiency

is necessary to maintain the required long sludge retention time

while operating at short hydraulic detention times (14). lis the

successful full-scale treatment of meat-packing wastes (15), a

vacuum degasifier has been used between the digester and final

settling tank to remove gases which tend to float the solids

rather than allowing then to settle in the settling tank. This

scheme or some other solids separation device may be needed to

implement the anaerobic contact process.

Moreover, high values for the recycle ratio imply long

solid retention times. This yields organism decay, which is

assumed to be negligible in this work. Hence, the curves given

* A flotation process making use of the large quantities cf

dissolved gases to float and concentrate the solids for return

to the digester also appears feasible (10).
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on Figures 15 to 18 are not significant for high values of r.

However, they show a realistic trend when the value of r is

consistent with the assumptions of constant clarifler efficiency

and constant maximum specific growth rate.

VI . CONCLUS IONS

A mathematical formulation of the kinetic model reported by

several authors (7, 9, 10) for the anaerobic digestion process

allowed us to analyze the two-stage systems under consideration

in this work. It has then been shown that the wash-out times

are important design parameters. In addition, the process has

been optimized by considering an objective function of economic

type. Under the assumptions which have been made, the optimiza-

tion problem has one and only one minimum solution.

As reported by Pfeffer (13) , this work shows that the

contact process has several advantages over the conventional

process. They are more efficient organic content reduction,

increased total gas production and greater stability.

This work is a theoretical one. Hence, additional experi-

mental work is required to verify the assumptions which have

been made. However, since industrial biological waste treatments

involve mixed cultures metabolizing mixed substrates, this study

constitutes a contribution to improve our knowledge and control

of these processes.
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KOMESCLATUHE

q Flow ratd

S Concentration of organics in the feed stream.

Sj Concentration of primary substrate in first (and in
second) stage.

R^i U
1

Concentration of volatile acids R and U in first stage.

H , U Concentration of volatile acids P. and U in the
second stage.

P Concentration of final product in the second stage.

A Concentration of organism A in the first stage.

B, C Concentration of organisms 3 and C in the second stage.

k , , k
B>

k„ Maximum specific growth rate for organisms A, B, C,
respectively.

K , K n , K TI
Saturation constants for S, H, U, respectively

.

S n u

n

3
n opt

9
wl

ew2

@
w3

Residence time at stage n.

Optimal residence time of stage n.

Wash-out retention time for organ! s:,". A.

Wash-out retention tine for organism E.

Wash-out retention time for organism C.

Y.,,, Yield constant for formation of organism A in terms
A/S of utilization of substrate S,

Yo/„ Yield constant for formation of R from S.

Y.. ,„ Yield constant for formation of U from S.
J/S

Y . Yield constant for formation of organism B from.
B/R utilization of intermediate R.

Y ,,, Yield constant for formation of organism C from
'
v utilization of intermediate U.

l
P/U

Yield constant for formation of product P from
intermediate R.

Yield constant for formation of product P from



r

P

k
B'

k
C

Y
*B/R

P/R
v •

C/0
X*
P/'J

<5

r.

r
C

r„

l

j

Z-, . Z. .

£

A

B, D

C

1
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intermediate U.

Recycle ratio for the second stage.

Clarify er efficiency.

Transformed constants for kD and k,,

.

Transformed yield factor for YR / R
-

Transformed yield factor for Y . .

Transformed yield factor for Y.,..,

Transformed yield factor for Yp/n>

Contact factor.

Rate of production of organism A in the 1 first stsHjS,

Hates of prcduction of organisms B and
in the second stage.

C respect

J

voly

Rate of consumption of substrate S in 1:he first- ,<jtage,

Rates of consumption of organics R and
in the first stage.

U respect! vely

Rates of consumption of organics R and
in the second stage.

U respeptl.vely

Rate of production of product P in the seccnd ct::IgjB.

Objective function.

Penealization for discharging organics
respectively.

S , H , and u

Response surface.

Minimum point on (I).

Saddle points on (E).

Maximum point on (li).

Kessian matrix.
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COMPUTER PROGRAM

Main routine MICU20 and subroutines
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C MAIN PROGRAM MICU20.
C THIS PROGRAM DEFINES THE OPTIMAL DESIGN OF A TWO-STAGE WATER TREATMENT
C BY MIXED CULTURES. IT CALLS k SUBROUTINES SIMPLE,OBJ .NEWTON, IS 03AT
C 1 FUNCTION QUART
C PROGRAMMER JC DALTES KSU, MANHATTAN, FALL 63
C
C FIRST PART*«***AFECIFICATI0N3, STATEMENT FUNCTION DEFINITIONS AND DATA
C READING

.

EXTERNAL 03J
REAL KA,KS,KB,KR,KC,KU,MUS,MUS,MUU,KBO,KCO
DIMENSION TITLE(30) ,TH(2,3) ,TMIN(2) ,DV(2)
COMMON TH171,THW2,THW3,KUS ,MUR,MUU,KA,KS ,KB,KC .KU.DELTS .DELTAY
COKMON /SEARCH/MDIK ,KDIM ,TH .ALPHA, BETA , GAMMA , IBARY , EP3IL , LIMIT

,

1 ICONV.TMIN.SMIN, NITER, CHIT.NEVAL
C
C READ AMD ECHO-CHECK DATA. DEFINE STATEMENT FUNCTIONS.

XlSl(T) = KS/(T*KA - 1.)
DELTAS (T)= X1SO - X1S1(T)
X2A1 ( T )= YAS*DELTAS ( T

)

X1RKt) = YRS*DELTAS(T)
X1U1(T)= YUS*DELTAS(T)
X1R2(T)= KR/(T»KB - 1.)
DELTAR(T,U)= X1R1(T)-X1R2(U)
X1U2(U) = KU/(U*KC-1.)
DELTAU(T.U) = XIUI(T) - X1U2(U)
X2B2(T,U) = YBR*DELTAR(T.U)
X2C2(T,U) = YCU*DSLTAU(T,U)
X1P2(T,U) = YPR/YBR*X?.B2(T,U) -: YPU/YCU*X2C2(T,U)
W2(T1)= (KR+X1R1(TM/(KB*X1R1(T1)

)

W3(T1)=, (KU+X1U1CT1) )/(KC*XlUl(Tl)

)

REAE( 1,1010) TITLE
WRITE (3, 3010) TITLE
READ(1,1020) X1S0,KA,KS,YAS,YRS,YUS
WRITE(3,3020)X1SO,KA,KS,YAS,YRS,YUS
READ( 1,1020) KS0,KR,Y3R0,YPR0
WRITE(3,3030)K3O,KR,YBRO,YPRO
EEAD( 1,1020) KCO.KU.YCUO.YPUO
WRITE ( 3 , 30^0 ) KC ,KU ,YCUO ,YPUO
READ ( 1 , 1 2 ) MUS , MUR , MUU
WRITE(3i30ol) MUS, MUR, MUU
PARAK=0

5 READ(1,1020,END=S5) R.BET
CONTAC= l.-lBbT-i. J*R
WRITE(3,3075) R.BET.CONTAC
IF(CORTAC.GT.O.O) GO TO 10
WRITE(3,30',; 6)
STOP

r

C GENERATE FICTITIOUS CONSTANTS FOR THE SECOND STAGE.
10 KBbKBO/CONTAC

K&dCCO/COHTAC
YBR.-YBHO/CCNTAC
STCOWfCUO/CONTAC
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YPIfcYPRO/a.-j-R)
YPU=YPUO/(l.+R)
WHITE(3,3077) K3,KC,YBR,YCU,YPR,YPU
THW1= ( KS+X13 ) / ( KA*X1S }

IF(FARAM.EQ.l) GO TO 12
IF(NOFT.EQ.O) GO TO 25

C
C IF OPTIMIZATION PROBLEM, READ IN AND WRITE PARAMETERS FOR SEARCH.

WRITE(3,3083)
NDIK=2
KDIMbNKOW.
WRITE(3i3050)NDIM
READ( 1 , 1070 ) ALPHA , DETA, GAMMA , STEP , IBARX
WRITE (3, 3061)
WRITE (3,3070) ALPHA , BETA , GAMMA , STEP , IBARY
READ(1,1080) EPSIL, LIMIT, ETA, MAXIT
WRITE(3,30S0) E3PSIL.ETA
WRITE (3, 308 2)

C
C SECOND PART*****DELTERMINATION OF OPTIMAL POLICY
C DIFFERENTIAL CALCULUS APPROACH.

12 WRITE(3,3085)
TH10PIW1 . /KA* ( 1 .+SQRT ( MUS*KS*KA)

)

TBSTls MUS<<KA*X1S0*X1SG - KS
CAl,L NEWTON (TH20PT)
THV73 (KUvXlUl(THlOPT) )/(KC*XlUl(TH10PT)

)

TEST2= QUART (THW3)
WRITE ( 3. 3086 ) TH10PT.TEST1 .TE20PT ,TEST2
IF(TEST1.GT.0.0.AND.TE3T2.GT.0.0) GO TO 15
WRITE (3, 3088)
STOP

C
C SEARCH TECHNIQUE APPROACH.

15 WRITE (3, 303 7)
LLAC=0
NEVAL=0
HTH1= TH10PT+0.5
BTHZa TH20PT+2

.

C
C ENTER OPTIMIZATION LOOP.

21 TH(1,1)= TfilOPT+STEP
TK(2,1)= TH20PT
TH(1,2)= TH10PT
TH.'2,2) = TH20FT+STEP
TH ( 1 , 3 )= TH10PT+STEP
TH(2,3)= TH20PT+STEP
THW2= W2(BTH1)
THW>_- W3(P.TH1)
CALL SIKPLE(OBJ)
LLAC=I,LAC+1
IF(ICONV.EQ.l) GO TO 22
WRITU'(3,3150) NITER, CHIT
STOP
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22 IF(A3S(TMIN(1)-RTH1).LT.ETA.AND.ABS(TMIN(2)-RTH2).LT.ETA) GO TO 23
IF(LLAC.EQ.MAXIT) GO TO 2k
RTH1-=TKIN(1)
RTH2=THIN(2)
GO TO 21

2* WRITE ( 1,3100) LLAC
STOP

23 BTla TMIN(l)
HT2= TMIN(2)
THW2= W2(RT1)
THW3= W3(RT1)
WRITE ( 3.3109) LLAC
WRITE ( 3 , 3110 ) RT1 , RT2
WRITE (3, 31^0) SMIN
GO TO 26

C
C THIRD PABT*****THE POLICY IS FIXED BY THE USER WITHOUT BEING OPTIMAL.
C IP MO OPTIMIZATION PROBLEM

2 5 WRITE(3,308i|-)
READ(1,1020,END=999) RT1.RT2
WRITE (3, 30*1-2) BT1.RT2
DV(1)= RT1
DV(2)= RT2
THW2= W2(RT1)
THW3= W3(RT1)
NEVAI..0
WRITE (3. 308 2)
CALL 0&J(DV,S)
WRITE(3.3 ;4-90) S

C
C FOURTH PART***** STATE CORRESPONDING TO THE CHOSEN POLICY

26 WRITE(3,3500) THW1.RT1
IF(RTl.GT.THWl) GO TO Jk

30 WRITE(3,3079)
STOP

3*+ Sl^ XlSl(RTl)
Al= X2A1(RTI)
Rl= XlRl(RTl)
Ul= XlUX(RTl)
WRITE(3,3120) Sl.Al.Rl.Ul
WRITE ( 3 , 3520 ) THW2 ,THE3 , RT2
IF(RT2.GT.THW3) GO TO 35
GO TO 30

35 R2= X1R2(RT2)
U2= X1U2(RT2)
B2= X2B2(RT1,RT2)
C2= X2C2(RT1,RT2)
P2= X1F2(RT1,RT2)
WRITE(3,3130) R2,U2,B2,C2,P2
SRT-_= RT2/CONTAC
WBITE(3,3089) SHT
IF(ICUBV.EQ.O) GO TO 75



68

C FIFTH PART •**•* OUTFUT OF CURVES CORRESPONDING TO THE CHOSEN FOLICY,
C 1) FIBST STAGE

36 WHITE (3, 3180)
Slo XlSl(THWl)
Al= X2A1(THW1)
Rl= XTRl(THWl)
Die XlUl(THWl)
DX1S1= -ICS*KA/(KA*THW1-1. )**2
DX2A1= -YAS*DX1S1
DX1R1= -YRS*DX1S1
DX1U.U- -YUS*DX131
WRITE(3,3190) THva,Sl,Al,Rl,Ul,DX131,DX2Al,DXlRl,DXlUl
RT = (AINT(10.*THW1)+1.)/10

40 Slo XlSl(RT)
Al= X2A1(RT)
Rl= XlRl(RT)
Ul= XlUl(RT)
WRITE(3,3190) RT,S1,A1,R1,U1
RT= HX+0.1
DJJo RT ~ AINT(RT)
IF(. NOT. (1.-DIF.LT.0. Ol.OR.DIF.LT. 0.01)) GO TO 40

50 Sla XlSl(RT)
Al= X2A1(RT)
Rl= XlRl(RT)
Ulx. XlUl(RT)
WRITE( 3 , 3190 ) RT , SI , 11 , Rl , Ul
RT=-HT+1.
IF(RT.LE.20.0) GO TO 50

C
C 2) SECOND STAGE BETWEEN THW2 AND THW3.

WRITE (3, 3200)
R2= X1R2(TKW2)
B2= X2B2(RT1,TKW2)
P2= YPR/YBR*B2
DX1R2= -KH*KB/ ( THW2*KB-1 .

) ** 2

DX2B2= -YBR--DX1R2
D1X1P2= YPR/YBR*DX2B2
WRITE( 3 , 3210 ) THW2 , R2 , B2 , P2 . DX1R2 ,DX2B2 ,D1X1P2
RT= (AINT(10.*THW2)+1.)/10

60 R2= X1R2(RT)
B2= X2B2(BT1,RT)
F2= XPB/XBB»82
WHITE(3,32"10) RT,R2,B2,P2
RT=RT+0.1
DIFrt RT - AINT(RT)
IF(. NOT. (1.-DIF.LT.0. 01.DR.DIF.LT. 0.01)) GOTO 60

6i H2^ X1R2(RT)
B2= X2B2(RT1,RT)
P2= YrR/YBR*B2
WRITE(3, 3210) RT,R2,B2,P2
BI=HD+1.
IF(RT.GE.TRW3) GO TO ?1
GC TC 61



69

C 3) SECOND STAGE ABOVE THW3
71 WHITE(3,3220)

R2= X1R2(THW3)
B2= X2B2(RT1,THW3)
P2= X1P2(RT1,THW3)
U2= X1U2(THW3)
C2= X2C2(RT1,THW3)
EKlUa* -KU*KC/(THVJ3*KC-1. )**2
DK2C2= -XCU*EX1U2
D2XlP2-= YPR*KR*KC/(KB*THW3-1. )**2
D3X1P2= YPU/YCU*DX2C 2+D2X1P2
WRITE(3,3230) THV.'3 I R2,B2 1 P2,U2,C2,DX1U2,DX2C2,D2X1P2,D3X1P2
BT= (AIKT(10.*THW3)+1.)/10

73 B2= X1R2(RT)
B2r= X2B2(RT1,RT)
P2= X1P2(RT1,RT)
U2= X1U2(RT)
C2= X2C2(RT1,RT)
WRITE(3,3230) RT,R2,B2,P2,U2,C2
KD«rHT+G.l
DIF=:RT-AINT(RT)
IF( .NOT. (l.-DIF.LT. O.Ol. OR. DIF.LT. 0.01)) GO TO 73

72 R2= X1R2(RT)
B2= X2B2(RT1,RT)
P2_ X1P2(R'TJ.,RT)
U2= X1U2(RT)
C2= X2C2(RT1,RT)
WRITE(3,3230) RT,R2,B2,P2,U2,C2
BT=BT+1.
IF(RT.LE.20.) GO TO 72

75 IF(ICONT.NE.O) GO TO 80
PABAM=1
GO TO 5

C
C SIXTH PART »«*»• DRAW THE CONTOURS OF THE OBJECTIVE FUNCTION.

80 HEAD(1,1020) DELTS.DELTAY
CALL IS03AT

85 WRITF.( 3,32^0)
GO TO 1000

999 WR1TE(3,35^0)
1C00 STOP
1010 FORMAT ( 20A^/10A'0
1020 FOBMAT(6F10.0)
1041 FORMAT (3110)
1070 FORMAT ( if-PIC .0,110)
1080 FORMAT(2(E10.2,110))
3010 FORMAT ( 110 , 30AV///T55 , 5H*****/T55 , 6H*DATA*/T55 t 5H***»*//)
3020 FORHAT(19H FEED CONCENTRATION , 21X,'+KX1S0,F9. 2, 5H GK/L/

1 29H MAXIMUM SPECIFIC GROWTH RATE,11X,2HKA, F11.2 ,6H DAY-1/
2 20H SATURATION CONSTANT, 20X.2HKS .F11.2.5H GM/L/
3 l^H YIELD FACTORS, 26X,3HYAS,F10. 2/
*t 40X,3HYR3,F10.2/
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5 40X.3HYUS.F10. 2//)
30.30 FORMAT (29H MAXIMUM SPECIFIC GROWTH RATE , 11X , 2HKB , Fll . 2 , 6H DAY-1/

1 20H SATURATION CONSTANT , 20X.2HXR, Fll. 2, 5H GM/L/
2 14H YIELD FACTORS, 26X,3HYBR,F10. 2/
3 40X,3HYPR,F10.2//)

3040 FORMAT (29H MAXIMUM SPECIFIC GROWTH RATE , 11X , 2HKC , Fll . 2 , 6H DAY-1/
1 20H SATURATION CONSTANT. 20X.2HKU, Fll. 2, 5H GM/L/
2 14H YIELD FACTORS, 26X,3HYCU,F10. 2/
3 40X.3HYPU.F10. 2//)

3042 FORMAT (16H RESIDENCE TIMES , 24X.3HRT1 .F10.2/
1 40X.3HRT2.F10. 2/)

3050 FORMAT (18H SEARCH PARAMETERS/15H0DIMEN3IONALITY ,25X,4HMDIM,l6/)
3061 FORMAT (9H STRATEGY/)
30?0 FORMAT (11H REFLECTION, 29X, 5HALPHA.F8 .2/

1 12H CONTRACTION 28X.4HBETA, F9. 2/
2 10H EXPANXION 30X.5HGAMMA.F8 . 2/
3 T4l,'STEP' .F9.2/T41.5HIBARY.15/)

3075 FORMAT ( '1RECYCLE RATIO' ,T4l, 'R' , F13.3/
1 'CLARIFYEH EFFICIENCY' ,T4l, 'BET' , Fll. 3/
2 'CONTACT FACTOR' ,T4l , "CONTAC '

, F8 . 3//)
3076 F0RMAT('1THE CONTACT FACTOR IS NOT POSITIVE.'//)
3077 FORKAT( 'FICTITIOUS CONSTANTS 1 KB/KC/YBR/YCU/YFR/YPU' ,6f10. 2//)
3079 FORMAT( ' 0THI3 POLICY IS NOT FEASIBLE'///)
3080 F0RMAT(20H PRESCRIBED ACCURACY ,20X ,5HEPSIL,lPEll.l/

1 33H ACCURACY OF OVER ALL CONVERGENCE, ?X, 3HETA.1PE13.1/)
3061 FOHMAIOIH PENALIZATION FOR DISCHARGING S , 9X , 3HMOS , P12

.

k/
1 30X,1HR,9X,3HHUR,F12.4/
2 30X .1HU.9X

,
3HMUU.F12.4//)

3082 FORMAT ( 1K1 ,T56 , 9H****«****/T56 , 9H tt RESULTS*/T56 , 9H***»*«***///
1 47H CONCENTRATIONS ARE IN GM/L. TIMES ARE IN DAYS.///)

3083 FORMAT(36HODETSRMINATIOH OF THE OPTIMAL POLICY///)
3084 FORMAT (33HOTHE CHOSEN POLICY IS NOT OPTIMAL/

3085 FORMAT (46X.6H***** 14HOPTIMAL POLICY 6H *•***//
1 45X.30HDIFFERENTIAL CALCULUS APPROACH//)

3086 P0RMAT(1H 39X.6HTK10PT.1PE12.3/1H 39X, 5HTEST1 .1PE12. 2//
1 1H 39X,6KTH20PT,1PE12.3/40X,5HTEST2,1PE12.2//)

308? FORIiAT (5OX, 16HS IMPLEX APPROACH//)
3033 FORMAT ( 'INEGATIVE TEST FOR FEASIBILITY. THE CALCULATIONS ARE',

1 * STOPPED'//)
3039 FORMAT ( /// ' SOLID RETENTION TIME IN SECOND STAGE',

1 T4l,'SRT',F11.3//)
3100 FORMAT(31H CALCULATIONS ARE STOPPED AFTER, 15, 12H ITERATIONS.)
3109 POHMAT(35H CONVERGENCE HAS BEEN REACHED AFTER, 14, 11K ITERATIONS/)
3116 FC2MAT(27H OPTIMAL DFCISICN VARIABLES .1PE3I.3/1H 1PE57.3/)

1 40X , 4HX2A1 , F10 . 3/4 OX , 4,1X1111 , PIC . 3/40X , 4FX1U1 , F.I . 3/

)

3130 FORMAT (33:1 STATE VECTOR AT THE SECOND STAGE, 7X,4KXlR?.Flb. 3/
1 40X , 4HX1U2 , F10 . 3/40X , 4HX2B2 , F10 . 3/40X , 4HX2C 2 , F10 . 3/
2 40X.4HX1P2.F10.3/)

3140 FORKAT(2?H OPTIMAL OBJECTIVE FUNCTION, 1PE32. 4/)
3150 FORKAT(6ti AFTER, 15, 33H ITERATIONS, THE CRITERION EQUALS 1PE10.2/

1 2bh CALCULATIONS ARE STOPPED./)
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3180 FORMAT ( Utt, ^3X,6H****« 20HCONCENTRATION CURVES 6H »**•/////
1 55X.11HFIRST STAGE///
1 5X , 2HTH , 10X , 1J-HX1S1 , 11X , 4HX2A1 , 11X , *}HX1R1

,

2 3 IX , teXlUl , 10X , 5HDX1S1 , 10X , 5HDX2A1 , 10X , 5HDX1H1 ,10X, 5HDX1U1/

}

3190 FOHKAT(F8.3,F13.3i7F15.3)
3200 FORMAT (lHl,'!-5X,3'ffiSECOND STAGE BETWEEN THH2 AND THW3////

1 kX , 2HTH , 10X , 'I-HX1R2

,

2 11X

,

kSXZBZ ,11X, ^HX1P2 , 10X , 5HDX1H2 , 10X , 5HDX2B2 , 10X , 6HD1X1P2/

)

3210 F0RKAT(F?.3.F1'I-.3.5F15.3)
3220 FOBMAT(1H1,50X,23H3ECOND STAGE ABOVE THW3////

1 bX. , 2RTH , ] OX , 4HX1R2 , 11X , taX2B2

,

2 llX,4HXlP2,llX,'+HXlU2,12X l taX2C2, 7X.5HDX1U2, 7X.SHDX2C2, 6X,
3 6HD2X]F2,6X,6HD3X1P2//)

3230 FORMAT (F7. 3. F14. 3,^15.3,^12. 3)
32^0 FORMAT (19H1N0RHAL TERMINATION)
3^90 FORMAT (19H OBJECTIVE FUNCTION, F35. 3/)
3500 F0RMAT(1H0,52X,11HFIRST STAGE//14H WASH OUT TIME.F'MJ .3//

1 15H RESIDENCE TIME.F39.3/)
3520 FORMAT(lHO,52X12HSECOND STAGE//15H WASH OUT TIMES.F39.3/

1 1H F53.3//15H RESIDENCE TIME.F39.3/)
35^0 FORMAT ( 31H1NO RESIDENCE TIMES FOUND. STOP)

END
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SU3R0UTINE S IKPLE ( OBJ

)

C THIS SUBROUTINE FINDS THE MINIMUM OF THE OBJECTIVE FUNCTION GIVEN
C BY SUBROUTINE OBJ. THE ARGUMENT OF SIMPLE REQUIRES AN EXTERNAL
C STATEMENT IN THE CALLING ROUTINE.
C FOLLOWING. VARIABLES SHOULD BE PREVIOUSLY DEFINED AND STORED IN
C COMMON /SEARCH/
C NDIM.KDIM , TH , ALPHA , BETA , GAMMA , IBARY , EPSIL , LIMIT
C THIS S.NE DEFINES AND STORES INTO THE SAME AREA
C ICONV.TMIN.SMIN, NITER, CHIT "WHERE THIN IS THE OPTIMAL DECISION BECTOR.
C NEVAL IS DEFINED BY S.NE OBJ.
C IP THE SEARCH CONVERGED, ICONV=l. IF NOT, ICONV=-l AND THE BEST
C CURRENT POINT IS CONSIDERED AS OPTIMAL.
C DIMENSIONS T,SIGTH,TBAR,TREF,TEXP,TCON ,TMIN NDIM
C S,W KDIM
C TH NDIM.KDIM
C CHANGING THE DIMENSIONALITY OF THE SEARCH REQUIRES THE PROPER
C DIMENSION STATEMENT. THIS SUBROUTINE HAS BEEN TESTED FOR NDIM=1 , 2, 3,4, 20.
C PROGRAMMER JC BALTES KSU, CHEM ENG, FEB 68'

C
C SPECIFICATIONS.

COMMON /SEARCH/NDIM ,KDIM , TH , ALPHA , BETA , GAMMA , IBARY , EPS IL , LIMIT

,

1 IC ONV , TMIN , SMIN , NITER , C HIT , NEVAL
DIMENSION TH(2,3) ,T(2) ,S(3) ,SIGTH(2) ,TBAR(2) ,TREE(2) ,TEXF(2)

,

1 TCON(2) ,TMIN(2),W(3)
C

C INITIALIZATION
NITEB=0
ICONV=0

C
C COMPUTE INITIAL FUNCTION VALUES.

DO 30 J-l.KDIM
DO 40 1=1, NDIM

40 T(1)=TH(I,J)
30 CALL 03J(T,S(J))

C
C BEGINNING OF ITERATIONS.
C DEFINE THE POINT HAVING THE HIGHEST FUNCTION VALUE

41 SH -.: S(l)
JHhI
DO 50 J=2,KDIM
IF(S(J).LE.SH) GO TO 50
SH=S{J)
JHbJ

50 CONTINUE
C
C DEFINE THE POINT HAVING THE LOWEST VALUE OF THE OBJECTIVE FUNCTION.

51 SL=S(1)
JIc:l

DO 60 J^2,KDIM
IF(S(J).GS.SL) GO TO 60
SI«S£J)
JL-rJ

60 CONTINUE
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IF(IC0NV*IC0NV.EQ,1) GO TO 320
C
C DETERMINATION OF THE CEKTROID

IF(IBARY.NE.O) GO TO 90
DO 70 Ir.-a.NDIM
SIGTH(I)=0.
DO 80 Jt=1,KDIM
IF(J.EO.JH) GO TO 80
SIGTH( I )aSIGTH(I )+TH( I , J

)

80 CONTINUE
70 TBAR(l)=rSIGTH(I)/FLOAT(NDIM)

GO TO 130
90 SIGMAlfeO.

DO 100 J=1,KDIM
W(J)=S(JH)-S(J)

100 SIGMAW=SIGMAW+W( J

)

DO 110 I=1,NDIM
SIGTH(I)=0.
DO 120 J=1,KDIM

120 SIGTH( I )=SIGTH( I )+W( J )*TE( I. , J )

110 TEAR ( I )--SIGTH( I )/SIGMAW
130 CALL OEJ ( TEAR, SBAR)

C
C REFLECTION GIVES POINT (TREF)

DO 140 1=1,NDIM
I'lO TBEF( I)= (1 .+ ALPHA) *T3AH( I ) -AlPHA*TH(I,JH)

CALL OBJ(TBEP, SEEP)
IF (SRHF.LT.S(JL)) GO TO 160 .

DO 150 J=1,KDIM
IF(J.EQ.JH) GO TO 150
IF (STREF.GT.S(J)) GO TO 150
GO TO 180

150 CONTINUE
GO TO 220

C
C EXPANSION GIVES POINT (TEXP)

160 DO 170 I=1,NDIM
170 TEXP(I)= GAKI!A*TREF(I) + (l.-GAMMA)*TBAR(I)

CALL OBJ ( TEXP , SEXP

)

IF(SEXP.LT.S(JL)) GO TO 200
180 DO 190 I=1,NDIK
190 TH(I,JH)=TREF(I)

S(JH)=S3EF
GO TO 300

200 DO 210 I=1,NDIM
210 TH(I,JH)=TEX?(I)

S(JH)=SEXP
GO TO300

C
C CONTRACTION GIVES POINT (TOOK)

220 IP<8HEP.GT.S(JH)) GO TO 2'+0

DO 230 Ial.NDIM
230 toi{I,JH}=TBEP(I)
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2^0 DO 250 Ir.-1,NDIM
250 TC0N(1')=3ETA*TH(I,JH) + (1.- BETA)*T3AR(I)

CALL OBJ (TCON, SCON)
IF(SCON.GT.S(JH) ) GO TO 270
DO 260 I=1,NDIM

260 TH(I,JH)=TCON(I)
S(JH)=SCON
GO TO 300

2?0 DO 290 J=1,KDIM
IF(J.EQ.JL) GO TO 290
DO 250 I=1,NDIM
TB(I,J)= (TH(I,J)+TH(I,JL)0/FLOAT(NDIM)

280 T(I)=TH(I,J)
CALL OBJ(T,S(J))

290 CONTINUE
C
C CRITERION FOR CONVERGENCE.

300 SQDELS=0.
DO 310 J=1,KDIM

310 SQDELS=SQDELS+(S(J)-S3AH)**2
CRIT=SQRT(SQDELS/FLOAT(NDIM)
NITER=NITER+1
IF(CRIT.GS.EPSIL) GO 103*4-0

ICGSVatl
GO TO 51

3^0 IFiKITER.LT. LIMIT) GO TO kl
ICONV=-l
WRITE (3,3010) NITER

3010 FORMAT C+9H1THE SEARCH RETURNS THE BEST CURRENT POINT AFTER,
1 12HITERATION NO 15.31H. THIS IS NOT THE TRUE OPTIMUM.//)
GO TO 51

320 DO 330 I=1,NDIM
330 THIN(I)=TH(I,JL)

SMIN=S(JL)
RETURN
END
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FUNCTION QUAR(U)
REAL KA,KS,K3,KR,KC ,KU , MUS , MUR , MUU
COW.HON THW1 ,THW2,THW3,MUS ,MUR,MUU,KA,KS ,KB,KR,KC .KU.DELTS .DELTAY
QUART = MUB*KB«KB/{U*KB-1.}*»2 + MUU*KU*KC/(U*KC-.1« 0**2-1.
RETURN
END
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SUBROUTINE NEWTON ( ROOT

)

C
C THIS SUBROUTINE COMPUTES A ROOT OP QUART=0

REAL KA , KS , KB , KR , KC , KU , KUS , HUR , MUU
COMMON THW1,THW2,THW3,MUS ,KUR,MUU,KA,KS .KB.KR.KC .KU.DELTS .DELTAY
DQUART(U)= -2.*MUR*KH»KB*KB/(U*KB-1.)**3

1 -2.*MUU*KU*KC**2/(U*KC-1.0**3
C
C LOOK FOR AN INTERVAL WHERE FUNCTION QUART HAS OPPOSITE SIGNS.

Xl-_= 1./KC+O.01
5 X2= Xl+0.10

IF(QUAIiT(Xl)*QUART(X2) .LE.O.O) GO TO 10
X1=X2
GO TO 5

C
10 X2= XI ~(QUART(X1)/DQUART(X1))

IP(ABS(X1-X2).LT.1.0E-0^) GO TO 20
X1=X2
GO TO 10

20 ROQ&X2
RETURN
END
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SUBROUTINE 0BJ(T,3)
REAL KA , KS , KB ,KH , KC , KU , MUS , MUB , MUU
C OKKON THW1 , THW2 , TKW3 , MUS , MUB , MUU , KA , KS ,KB ,KR , KC , KU , DELTS , DELTAY
COMMON /SEARCH/ BICON( 20) .NEVAL
DIMENSION T(l)

IF(T(1).LT.THW1.0R.T(2) .LT.THW3) GO TO 10
X1S2= KS/IKA*T(1)-1.)
X1B2= KR/(KB*T(2)-1.)
X1U2= KU/ ( KC«T ( 2 ) -1 .

)

Sm (T(l)+T(2)) + MtJS*X182 + MUR*X1R2 + MUU*X1U2
NEVAIc NEVAL+1
GO TO 20

10 S-. l.OE+06
20 RETURN

END



SUBROUTINE ISOBAT
C
C SPECIFICATIONS.

HEAL KA,KS,KB,KE.KC,KU,HUS,MUR,MUU
INTEGER SilO
DIMENSION TITLE(30) ,TH(2,3) ,TMIN(2) ,DV(2)
COMMON IHW1 , THVJ2 ,THW3 , MUS , MUR , MUU ,KA ,KS ,KB ,KH ,KC ,KU .DELTS .DELTAY
C OHMON /SEARCH/HDIM , KDIi-I , TH , ALPHA , BETA , GAMMA , IBARY , EPS IL .LIMIT

,

1 ICONV ,TMIN , SHIN , NITER ,CRIT , NEVAL
C

WHITE(3,32ilO)
S= (AIKT(30.*SMIN)+1.)/10.
S110=0

76 DO 110 1=1,10
WRITE(3,3250) 5

C

C INCREASE Y.
Y= (AINT(TIIIN(2)*10.)+1.)/10
DO 80 J=l,25
IF(A3S(Y-l./KB).LT.l.OE-04.OR.ABS(Y-l./KC).LT.l.OE-0i|-) GO TO 79
A= Y+MUR«-KR/(K3*Y-1.) + KUU*KU/(KC*Y-1 . )

DISCR.-.- ((A--3}*KA-1.)**2 -4.*KA*(MUS*KS.!.S-A)
1F(DISCR.LT.0.) GO TO 81
XX-, (l.-(A-S)*KA + SQRT(DISCR))/(2.»KA)
X2= (l.-(A-3)*KA - SQRT(DISCR))/(2.«KA)
WHITE( 3, 3260 )X1 ,X2,Y

79 XWY+DELTAX
80 CONTINUE '

C
C DECREASE Y.

81 Y= (AINT(TKIN(2)*10.))/10.
DO 90 J=l,20
IF(ABS(Y-l./KB).LT.l.OE-0iKOR.ABS*Y-l./KC).LT.l.OE-0(f-) GO TO 89
A= Y+KUR*KR/(KB*Y-1.) + MUU*KU/(KC*Y-1.)
DISCR= ((A-S)«KA-1.)**2 -^.^KA«-(HUS^KS+S-A)
IF(DISCR.LT.O.) GO TO 100
XL= (l.-(A-S)»KA + SQRT(DISCR))/(2.»KA)
X2= (l.-(A-S)*KA - SORT(DISCR) )/(2.*KA)
SrffiITE(3,3260) X1.X2.Y

89 Y=Y-DELTAY
90 CONTINUE

100 SaS+DSXTS
IF(SllO.EQ.l) RETURN

110 CONTINUE
S110=l
S=1.10*SHIN
WRITE(3,325D
GO TO 76

3240 p0bmat(1h1,^9x,6h***** 8hcontouhs 6h **•**//)
3250 format ( 19hooeiective function , fl 2 . ?. , a'x , 2hx1 ,8x, 2hx2 , 8x , 1hy/

)

3251 pcr;:at( 34hocontour corresponding to i.i*shih)
3260 format (1h .f38.3.2f10.3)

END
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APPENDIX I

SLOPE OF THE CONCENTRATION CURVES AT THE
POINTS OF DISCONTINUITY

At the points of discontinuity of the concentration curves,

wash-out occurs for organism A, B or C. In order to draw these

curves with accuracy, it is useful to determine their slopes at

the wash-out residence times 6 , , 9 , and 6 -.
wj. w2 w3

In the first stage, wash-out occurs when 6=0 . Then.
1 wl

from equations (12), (14), (16) and (17), we obtain respectively

as.

deiKi
" K

S
k
A

(k
A

9
W1 - l >

dA

do!
"wl

f
A/S dG-

'wl

dR
__1
5et

dS,

3

wl
=

" R/3 d9
l wl

dU as.

de" e , u/s d@

"

1 1 wl 1 'wl

In the second stage, wash-out occurs for organism B and C

when < 8 < G
2 - v

When G <
w2

! <_ 6 , organism B alone grows

using organics B and yielding product P. Then, from equations

(19) i (?-4), and (27), we obtain respectively

dEg K k
R B

(k G „B w2
1)
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dB
d6„

'w2

dR,
L

B/R dj~|0
w2

and

dP "F/H dB
d3

2 |

9
W2 " Y

B/R " d
°2l

6w2

_dp
de„

P/R dB

°w3-
=

5
B/R

d9
2 w3-

When e > , both organisms B and C grow. Concentration U
2 w3 2

falls, yielding more product P. From equations (20), (25), and

(27), we obtain respectively

dU, K
u

k
c

w3
(k

c
e
w3 " 1}

dC_

d9_ Y
"w3+

C/U d6„
»3

dP _P/R _dB_

"av*" VR' de
2

YP/U dC

°W3
Y
C/U

" dS
2 [

e
w3
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APPENDIX II

GRAPHICAL DETERMINATION OF THE ROOTS
OF EQUATION f{ti ) =

Let us examine the function ^(Op) defined by equation (7^).

Fx'oa this equation we can deduce that when 9 •*• •;- ~, (* •> - 1

and when e„ * — or -i-, <2>» + ~. The sign of the. derivative
s- k$ k

—<- gives useful information about the function fib ). From

2
equation (7^). we obtain

Af " 9Z
R
K
R

k
B 2 *U % V ,„„

2 (kB e 2 - l) (kc e
2

- i)

The abscissa of the stationary points of function cKo ) are

given by
i

ASP. n ramd^ = ° l88J

Employing the expression given by equation (87) and rearranging

yields

f

k
C °2 " V Z

U
K
U
k
C

B 2 E
R
K
R

k
B

Let

zn K„ k* k 0* _ 1 3

~ - -
r

and (
-

) m &
ZR KR kB kB e - 1

Then
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,
z
u

K
u

k
c 1/3

Solving equation (88) for stationary points of function

</>(6
2

) gives

+ r = (89)

which may be written as

(<S> + f )i ®
z

- p® + ,» " ) = o

This equation breaks down into

<Sf * P = ° (90)

and

<3>
2

- p© + f
s

= o - (91)

Let us first consider equation (86). It is quadratic with

respect to Q> . Its discriminant is

p
2 _ i|f>

2 . _ 3f
» < o

Therefore, equation (91) has no real roots. Solving equation

(90) yields

<2>= -£~i— - - f

Hence

B
2 = 8

2m = kJ-V?¥- (92)
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Let us compare 9.- to —

.

2m K
B

2m ~ k
B kc

v
But _C is less than 1. Consequently

k
B

K > i
2H k

B •

Now, 6,, can be written as
2m

6 _ JL (__i_t_£_)

c
i + pe

which shows lnimedlately that

2m <
k7

Therefore, we have

k
B

e
2m k

c

It can thus be concluded that derivative ~£- vanishes once
0.9 o

in the interval (- «., + «,) for 9„ = 8„ . In addition, 9 lies
Z ZJ» 2m

between ~ and g~. Equation (53) gives the following additional
,B "C

information.

d <f>

dT
2
-

^ne
2
»-L ± c, «jj.»
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when 6 •> -— + 0, $J£ -> + »
2 kc

- a0
2

With this information we can set up the table for the variation

of function
f\9 ) (see Table 1). The numerical values which

appear in the second part of Table 1 are computed from the

numerical data given in Paragraph (IV. 2). 6„ turns out to be
2m

the abscissa of a minimum for the graph of function ^(8,) (see

Figure 19).

e
1+ t

2m - k
c

+ fkB

Thus

r 1.50 l.oo
M

o.5o'

= ^0.375

e = 0.720

, 1 + 0. 720 _ 1.720
2m

B
0.25 + 0.720 x 0.50

= OTSlO

L = + 2.82
2m

and the value of function <P is computed as follows j

f <* )
. 1-50 x 1.00 x 0.50

'
2M

(0.50 x 2.82 - l)
2

1.50 x 1.50 x 0.25
+ —* -"

i"

(0.25 x 2.82 - 1)

-- O.lbS + 0.087

= 4.^6 + 6.^6 - 1

fte 2m
) „ + 9.92.
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TABLE 1

VARIATIONS OF FUNCTION f(6 )

xi
e
n> k-

dej
0. + + > - oo - + + «> - co -

f -1 """"^

+ CO + «•

T ' m'
^^*-

- 1

e^ 2 2.82 ^ + «.

AS.
de

2

+ + co - co - + + oo - CO -

f
+ CO

-1

+ CO + oo\ /
+9.92

+ CO

-1
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10.

-0-

I

-2. -0.3760 2 2.82 4

Fig. IS) Function a ifi- )
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Function £>(9 ) is shown on Figure 19. Its graph intersects the

G - axis at two points. Therefore, equation (73) has two real

roots. The negative root is

e
2
= - 0.376

The positive root is

6
2

= + 7.183

Although 8 m -0.376 is the ordinate of two stationary points on

surface ( l) , this value may be discarded for the purpose of

optinlzation because it is negative.

Let us now check the two conditions of feasibility,

inequalities (76) and (78). The first one is

2
S

k
AV KS^° '

(76)

Substituting numerical values gives

1. x 6 x (10. f - 0.50 = + 599.5 >

The second one is

v v v e X k
"B**** ZV*V*C „ ! > (y8)

(kB ew3
- i)

2
(k

c
ew3 - 1)

At the first stage, 6 = 0.455. Thus, from equation (12)

s
i - o^HV.~ = °- 289

From equation (17), we have
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U = 0.20(10.0 - 0.289) = 1*9*2

Froia equation (59)

ew3 " ofe
(1 + rf# ^.09

From equation (7^)

-(7.09) o
1--5QX 1.00 x 1.50

+
1.50 x 1.50 x 0.25 _ -

L

(7.09 x 0.5 _ l)
E

, (7.09 x 0.25 - 1)
£

= 0.115 + 0.9^ - 1

f(7.0Q) = O.059 >

The two conditions for feasibility are satisfied at operating

point A.
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APPENDIX III

NATURE OF THE STATIONARY POINTS
OF RESPONSE SURFACE (E)

The first coordinate of stationary points is given by

equation (71)

A

Substituting numerical values for the parameters yields

e = + 0.455

8, » - 0.122

In addition, equation (73) gives the following two values for 9„

e
2

= + 7.18

»
2
« - 0.376

Therefore, response surface (£) has four stationary points

given below

i

At* 0.*55. + 7-18)

B(- 0.122, + 7.18)

C(- 0.122, - 0.376)

D(+ O.i+55, - 0.376)

The nature of each of these stationary points villi be examined

by evaluation of the Hessian matrix. As a general rule, the

necessary and sufficient condition that a square matrix be
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positive definite is that each of the principal minors of this

matrix be greater than zero. A necessary and sufficient condi-

tion for a square matrix to be negative definite is that the

signs of its principal minors be alternatively negative and

positive; that is the principal minor of rank r is negative if

r is odd and positive if r is even. We shall now test the

matrix H at the stationary points, namely A, B, C and D.

The general expression of the Hessian matrix of the objective

function J is

Let

H =

n
ll

i a j
2

<*«
x
)"

2 ye
l3

e
2

1 ,!,J
2 a^y

**j
2 ve,?1"2

1 _^_J_

(26 2 )

S J 1 3
2
J

12 - 2 i0
1
>S

2
" 2 29" 39

*22
1 » J

_

2
T 3 e

2 )

3

From equation (6?), we have

2_J
Ve

"

Z
S

K
S

k
A

(kA »x - i)

Dlf f erentlating this again with respect to 9 , we obtain
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Hence

h
11

=
(kA

e
x

- i)=

From equation ( 67 ) . we have

2h m i -
Z
R
K
R

k
B

z
u

K
u

k
c

* e
2 (k

B
e
2

- i)
s (k

c
e
2

- i)
:

Taking the derivative of this expression again with respect to

e o yields

/*2 _
2 Z

R K
R
k
B

+
2 Z

U KU *g

^°2 )2 " (k
B 6

2 " 1)3 (k
C

6
2 " 1 >

and

zR KR k| Z[J K„ k^
h
22

In addition

2,
3.

J
2

< kB
6
2 " 1 »

3 (k
C

9
2 " 1)3

Henc?

*V°2 "
°"

h
12 " h

21 - °'

Nov/, the general Hessian natrix at point (0-,i 6„) is
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H =

(kA 6a - 1)

(93)

Z
R
K
H

k
B

Z
U
K
U

k
C

(kg e
2

- l) (k
c

e
2

- i)

Point A (0.^5 5, 7.183)

Substituting the coordinates of point A in equation (93)

leads to

H =
A

1.0 x 0.50 x (6.)
a

(6.00 x 0.^55 - l)
3

1. 50x1. 00x ( 0. 50

?

3
1. 50x1 .50 x(0.?-5)

(0.50x7.183 - l)
3

(0.25x7.183 - X)

H
A
=

18

(1.73)

Finally

H
A

=
+3.W

o

_Oi27JL UK)

(2.59)
3

(0 796)
3

i,

+ 0.299

H is positive definite. The two principal minors are +3.^8 >
A

and (+ 2.48X+ 0.299) - > 0. Hence point A(+ 0.^55, + 7.183)

is a minimum en response surface (£). The procedure set up in

Section IV. 5 to generate the contours around this point has been
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implemented by. means of subroutine ISOBA'T (see Figure 20).

Point B (- 0.122, + 7.18)

Substituting e^ = - 0.122 end. 6
2

+ 7.18 in to equation (88)

yields

18

t-1.732

r

- 3-46

, Q.J15__ . o.i^o

(2.59)
3

(0.796)
3

+ 0.299

H is not positive nor negative definite because Its principal
s

minors are - 3.46 < and (- 3.46) (+ 0.299) < 0. As a result,

point B(- 0.122, + 7.18) is a saddle point on response surface

fc).

Point C (- 0.122,- 0.376)

This point has the abscissa of B and the ordinate 9 =
2

- 0.3?6. Thus

h
ll " " ?•*

and

22
0.375 0.140

[0.50 x (-0.376) - 1] [0.25 x (-0.376) - i;

0.375 O.lftO

(-1.188) (-1.094)"
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<>** )

Specifications

3=( AINT(10.*S; r;)+ i.)/ir>.
3110=0.

Do 110 1=1,10

y={m. r(r;:irug),.io.)-;-i.)/ij.
|

Zo 30 J=l,25

\j.j?; ti,x2,:: /

^L "©
. UEjHB

EM>

-'©

Figure 20(a). Flow - chart of subroutine ISOBAT
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T
|
Y=(AIHT(Ti-:iK(2)>10.))AO-.

Do po Jsl,20

<Y-l/lf3 <10"

or
5C-1/KC <

<C

3110 = 1.
3=i.io..s;:i

[S

Ye--

Yes

-CMID

Figure 20(b). Bad of flow - chart of subroutine TSORAT
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= - 0.331

The Hessian matrix at point C Is

- 3.46

- 0.331

:V

H is negative definite because its principal minors are

- 3.46 < and (-3.46) (-0.331) > 0. Therefore, point C (-0.122,

-0.376) is a maximum on (£).

Point D (+0.455,-0.376)

This point has the same abscissa as A and the same ordinate

as C. Matrix E can immediately be written as

+ 3.48

-0.331

H is neither positive definite nor negative definite because

its principal minors are +3.48 > and (+3.48) (-0. 331) < 0.

Therefore, point D is a saddle point on response surface (E).
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APPENDIX IV

COMPUTATIONAL SCHEME FOR THE
SEARCH TECHNIQUE APPROACH

Basic features of the s equential Simplex technique (11)

•

We consider, initially, the minimization of a function of n

variables, without constraints. P., P, , ..., P are the (n+1)

points of the current simplex in n-dimensiohal space. We write

y for the function value at P and define h as the suffix such

that

y = ma-(y )
h

t i

and £ as the suffix such that

y- = min (y )

* i
1

Further we define P as the centroid of the points with i
f.

h,

and write [P, P.,1 for the distance from P, to P.. At each stageL
i j i j

e

in the process P is replaced by a new point; three operations

are used - REFLECTION, CONTRACTION, and EXPANSION. These are

defined as follows i The reflection of P is denoted by P* f and

its co-ordinates are defined by the relation

P* = (1 + ol)P - aP
h

where a Is a positive constant, the reflection coefficient.

Thus F* is on the line joining F and F, on the far side of P

from P
h

with [p* f] . a[P
h

P], If y* lies between y and y„,
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then P
h

is raplac:ed by F* and we start again with 'the new simplex.

If y < y( , i . .e., if reflection has produc:ed a new minimum,

then we expand P* to P»* by the relation

P* <; a YP* + (i - y)p

The expansion coefficient y> which is greater than unity, is

the rat;i.o of the distance [ P** P] to [ P* f] . If y»« j. y We

repliace P by P«*
h

and restart the process ; but ! if
,F** > yp then

we have failed to find a better point by expansion , and we

repliace P
h

by F* before restarting.

If on reflecting P to P* we find that y* > y for all

i = h, i.e. that replacing P, by F* leaves y* the maximum, then
/ h

we define a new P to be either the old P, or P* , whichever has
h h

the lower y value, and form

P*« = 8P + (1 - p)P.

The contraction coefficient lies between and 1 and la the

ratio of the distance [P** P] to [P T], We then accept ?** for

P and restart, unless y9 * > min(y , y*), i.e., the contracted

point is worse than the better of F and P*. For such a failed
h

contraction we replace all the P.'s by (P + ?_^)/2 and restart

the process.

The criterion adopted to stop the search is to compare the

"standard error" of the y's in the form jz{y - y)
s /n with a

pre-set value.

The bcgm SIMPLE has been given to the corresponding FOflTHAM

subroutine for this search procedure.
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In order to perform a search the value of the objective

function should be available for a given decision vector. The

FORTRAN name of this subroutine is OBJ. Flow-chart of subroutine

SIMPLE appears in Figure 21.

Constraints on the volume to be searched

.

If, for example, one of the x must be non-negative in a

minimization problem, then the original sequential simplex

search method may be adopted as follows! The scale of the x

concerned can be transformed, e.g., the function can be modified

to take a large positive value for all negative x . In the latter

case any trespassing by the simplex over the border villi be

followed automatically by contraction moves which will eventually

keep it Inside. TM r, ftsthod is Illustrated in Figure 22. If

the reflected point P* trespasses the border line of the permitted

region, a contraction follows, which results in the new simple:':

V , Pp, F**. If the expanded point P ft* trespasses the border

line, P** is replaced by the reflected point P» which was within

the permitted region. In either case the new simplex is within

the constraint and the iteration process can be carried on.

Determination of the optimal policy by the empirical search

.

The various components of the optimization problem have

been stated in Section IV. The procedure consists of the follow-

ing steps

t

Compute 9, , by equation (72) and check the first
1 opt

condition, equation (76).
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Specification

. IT SH =
ICONV =

Initial functii
values

)eflne the woi
point r<JH)

Define the oe
point T(JL)

Figure 21 fa). Plow - chart of subroutine SBTPUE
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Yet

For definition
of eentroid , all vertices
are equally weighted

The best point
has the largest
weight

Coaput e coord i na t e

s

of REFLECTED POI1IT :

L 150 COl'TI U5

Yes

Figure 2Kb). Continuation
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Conpute coordinates
of CONTHACTSC POIOT SCO]:

I
Figure 21(c). Continuation
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(E>

Yes

Replace the worst
point by contracts

point

Contract the whole
Simpler towards the
best point

Joapute C I
1

JITE:w:TIT2K+l

Figure 21(d) . End of subroutine SIMPLE
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IlQs^_oJL_refLGct:on

— Old simplex

New simplex

Cass Qi expansion

Fig. 22. Treatment of inequality consents on the ind°D«nd*nvanao!;j
3 in simplex technique
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Determine 9_ . by solving equation (?3). Compute . and
£ opt w2

check the second condition, equation (?8).

Step 3

Initialize counters and set the first guess for optimal

solution.

Step h

In order to perform the search an Initial simplex and the

inequality constraints should be specified. Thus this step

consists of sotting the initial simplex in the neighborhood of

the optimal point already defined in Steps 1 and 2 and computing

corresponding to the initial guess for 9„ set in Step J.

Call the search technique. If the resulting point is close

enough to the initial guess, its coordinates constitute the

optimal policy. If not, the result of the search serves as

starting point for the next iteration.

Step__6

After convergence the corresponding state variables can be

computed using the performance equations.
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APPENDIX V

DESCRIPTION OF MAIN PROGRAM MICU20

The main program for solving this problem has been given

the name MICU20. In this paragraph all FORTRAN locations will be

written with capital characters.

The program MICU20 consists of six parts as illustrated in

Figure ?3.

Fi_r_st_gar1

1

It contains the speciffications, the definition of statement

functions needed in the remainder of the program, the input

statements for the physical and economical parameters and the

input statements of option parameters NOPT, ICURV and ICONT and

the search parameters. In addition, it performs the echo-check

i

of these data.

Second parti

It is devoted to the determination of the optimal policy.

Note that equation (73) which is of degree 4, has been solved by

the NEWTON method. The name of the subroutine which performs

this search is precisely NEWTON.

The values of the first members of inequalities given by

equations (76) and (78) are called respectively TEST1 and TEST2.

Th_irfi_parti •' '

This part deals with the case where the operating policy (9-j,

8
? ) Is fixed by user without being optimal.

It simply consists of reading the chosen decision variables,

and calling subroutine OBJ which gives the value of the objective

function.



CUnz)

10?

Specifications

[ Define statement functions

\ BEAD/.raiTE 7

\ XISO.KA.KS , ZAS , JTRS.rUS /
\ K3,KR,YB t.YPH /
\ :;c,ku,xcu,::pu /

READ/ ./..I ?E

ALPHA, 3SIA, fA! ..A

STEP.IHAJBX

HEAD/ IT
gpsTL r T

. I

Figure 23(a). Flow-chart of cain program UICU20
First part: Specifications, statenient functions

& data echo cheek
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X
Co route Ti 10?T, rESTl
CALL NBWTOH (TH20PT)
Compute r .

.'3

TSST2, QUA.HT(TH'J3)

\= XE10PT, TE3T1, IH20PT,

Initialize coun
Sot Initial gue S3 ,"

n
1., PH2

\ Set Initial simplex & inequa- /

\ 11ty constraints /

TWIN(l)- LTH1 <ETA
X 'J

:: I- (2)-KTH2 <S?A

G3D

Figure 23(b). Second part: Determination of optimal oolicy
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il = E-!IW(1)

EDI = I«H{1)

KT2 = T:_I/(2)

Confute r6;».T

\ WRITS LL.iC , ! :?1 , HT2 ,i.rl

Figure 23(c). End of second part
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\±Ei;ii±±/

DV(1) = HT1

DV(2) = BT2

Compute TH72'i EHW3

CALL ,?(DV, 3)

Figure 23(d). Third part: Case of non-cptinal policy



Hi

\'m "
is ^-^7

ail > ra -\

b t first
variab:
stage -/

\5ITS TE.^2 ,Ta 0. -/

Arcm-m*./

\ '.;,;I J.
r
i sts'.Se v-ri -:-]"'.

r: 7
\ at second stage /

Figure 23(e). Fourth part: State variables of optinal policy
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Figure 23(f). Fifth part: Concentration curves
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\hbad delts, deltax/

CALL IS03AT

•KOHIiAL TEl&aKATIOtJ

Figure 23(g). Part 5]: Drawing of contours

End of program ?TICU20
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Z?il£th part i

The state variables resulting from the previously chosen

policy are determined.

Fifth cart I

In this part the concentration curves are plotted. In

addition the slopes at the points of discontinuity are determined,

according to Appendix I.

Sixth parti

By calling subroutine ISOBAT various contours around the

optimal point are generated using the procedure described in

section IV. 5. The meaning of the symbols in Figure 23 appears

in Table 2. Table 3 contains the list of the required data cards.
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TABLE 2

MAIN FORTRAN SYMBOLS

Symbol Meaning or corresponding algebraic variable

MICU20

SIMPLE

NEWTON

ISOBAT

OBJ

QUART

KA, KB, KC

KS, KR, KU

ma, m'jr, kuu

THW1, THW2, THW3

DELTAS, DELTAI

NDIM

ALPHA, BETA, GAHHi

IBARI

EPSIL

LIMIT

ICONV

TMIM

NITER

Main routine

Subroutine for SIMPLEX search technique

Subroutine implementing NEWTON'S method for
root searching

Subroutine to generate the contours around
the optimal point on the response surface

Subroutine for computing objective function

Function f(Q ? )

Kg, K
H

, K
TJ

H
wl'

H
W2'

U
w3

Increment on objective function and 0„
respectively for contours drawing

Dimensionality of search

a, 3, Y

Option parameter for SIMPLE

Convergence criterion for SIMPLE

Maximum number of iterations to be performed
during the search

Convergence index

Optimal decision vector

Number of iterations actually performed in
SIMPLE

HEVAI Number of function evaluations
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TABLE 2 (Cont.)

X1S1, X2A1, X1R1,
X1U1

DELTAS

DELTAR

DELTAU

X1R2, X1U2, X2B2,
• X2C2, X1P2

R, BET

W2, W3

NOPT, 1CURV,
ICONS

ETA

MAXIT

TEST1

TE3T2

TK10PT, TH20PT'

LLAC

TH

ET1, RT2

S

DX131

DX2A1

DX1R1, DX1U1

S
i(

A, R
1

, 0,

S
" s

l

R
2

. U
2 , i, C, P

Recycle ratio and clarlfyer efficiency

e
w2'

e w3

Option parameters

Criterion for over-all convergence

Maximum number of iterations for optimisation
loop

Value of first member of inequality (76)

Value of first member of inequality (?8)

e
iopt'

6 2opt

Iterations counter

Current Simplex

Operating residence times

Objective function

de
i I e*i

4JLI
3i|e^de,

dRj^

aw:

dU,



TABLE 2 (Cont.)
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T

SH

SI,

TBAH

SBAR

TREF, SREF

TEXP

,

SEXP

Current decision vector in SIKPLE

Highest function value (y, )

h

Lowest function value (y .)

Coordinates of the centroid

Value of the objective function at centroid

Coordinates and function value at reflected
point

Coordinates and function value at expanded
point
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Card

TABLE 3

DATA CARDS

I and 2 Title

3 JOSO i EA, KS, YAS, YRS, YUS

k KB, KB, YBR, YPR

5 KC, KU, YCU, YPU

6 MUS, KUR, MUU

7 NOPT, ICURV, ICONT

8 R, BET
* If NOPT = and ICONT =

9 RTl, RT2
* If NOPT ^ and ICOMT =

10 ALPHA, BETA, GAMMA, STEP, IBARY

II EPSIL, LIMIT, ETA, KAXIT
* If NOPT / and ICONT ^

12 DELTS, DELTAY
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ABSTRACT

This work considers an anaerobic digestion process represented

by a two-step mechanism and carried out in a two-stage continuous

digester system. A mathematical formulation cf the kinetic and

flow models has been given, which allows simulation of the system.

On this "oasis, an objective function of economic type can be

constructed, the minimization of which yields the optimal design.

The analysis of the system by means of this mathematical

formulation also shows that wash-out times are important design

parameters. Finally, a contact process in which organisms are

recycled to the second stage is compared to the conventional

process. From this comparison it can be concluded that the

contact process has definite advantages over the conventional

process. t


