TS5E INFLUZNCE OF

ULTIVATE BEARING
SETTLEVENT

AN EXAMINATION OF

FOQUNDATION SIZE ON
CAPACITY AND

by A2 &S

WU-PO CHEN

Diploma, Taipei Institute of Technology,
Taiwan, China, 1959

A MASTER'S REPORT

submitted in partial fulfillment of the
requirements'for the degree

MASTER OF SCIENCE
Department of Civil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1970

Approved by:

W, Wl

¥Yajor(Rrofessor




LD
24

4
/1770
d 49, CONTENTS
I. INTRODUCTION
1. STATEMENT OF THE PROEBLEM
2. PURPOSE OF THE STUDY
3. SCOPE OF THE STUDY
II. REVIEW OF THE LITERATURE
A. ULTINMATE BEARING CAPACITY
B3, SETTLEMENT
C. NUMERICAL EXAMPLES
III. CONCLUSIONS
APPENDIX Al
APPENDIX A2
APPENDIX A3
APPENDIX B

REFERENCES

(=
[

wWowoonNo Ny



B B3

ACKNOWLEDGEMENTS

The writer wishes to express his sincere gratitude to
a number of people for their help in the completion of this
report. In particular, he is very grateful to Professor
Wayne W, Wiliiams, Dr. J. B. Blackburn, and Dr. Stuart E.
Swartz for their kindly suggestions, encouragement and enthusi-

astic instruction and help for this report.



I. INTRODUCTION

1. Statement of the Problem:

_ As is well known every foundation problem necessitates two
different studies; one concerning the ultimate bearing capacity
with regard to shear of the soil under the considered foundation,
the second concerning the limit of settlements. There are many
féctors which will influence the ultimate bearing capacity and
allowable settlement. Among these factors, the foundation
size is extremely important. As a2 consequence, in 1943, Taylor
(1) Observed that "The size of footing is a variable that might,
from intuition alone, be expected to have important effect on
the bearing capacity," he also requires "a true understanding
of the effects of size on both the ultimate bearing capacity
and the coefficient of settlement."

In 1957, Hough(2) pointed out that "Settlement due to soil
compression under a given loading intensity is greater for
large footings than for small footings.

In 1962, Balla(3) also said that “The bearing capacity
factors do not dépend solely on the angle of shearing resistance,
but also on other propertles of soil (cohesion,density) and
characteristic dimensions of the foundation (depth, width).

Tne width of the foundation has a greater influence on the
value of the bearing capacity."

In view of the above considerations, an examination of the
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influence of foundation size on bearing capacity and settlement
is one of the most significant and, from the view-point of
practical application, very important questions in the field

of foundation engineering.

2. Purpose of the Study:

Poundation problems have grown rapidly during the last
several years. The practical applications have become more
numerous and the amount of existing soil mechanics literature
has increased rapidly, but it is probable that no single book
has served for this specific problem. The purpose of this study
is to show the size effect of shallow foundations on the bearing

capacity and settlement.

3« Scope of the Study:

The heart of the report is part II and part III. Part II
consists of careful and adequate review of the important liter=-
ature on ultimate bearing capacity and settlement and will
especially include reviews of experience, theory and test
results. Part II1 deals with the writer's conclusions.based

on the literature review,
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I1. REVIEW OF THE LITERATURE

A, Ultimate Bearing Cavacitv:

The conventional method of foundation design is based on
the concept of bearing capacity, or allowable bearing pressure
of the so0il. 1In order to be able %o provide an adequate
factor of safety against foundation collapse, the so-called

Ultimate Bearing Capacity must be known.

Review of Bearing Capacity Analysis:
(2)s The Terzaghl Solution for Bearing Capacity:

Terzaghi (4) using his shallow foundation definition
derived a general solution for ultimate bearing capacity.
This method contains various assumptions. Figure (1) shows
"If the soil is fairly dense or stiff, the settlement curve
is similar to curve Ci," which was designated by Terzaghl as
the General Shear curve, the abscissa q is representing the
bearing capacity of the soil. "If the soil is loose or fairly
soft, the settlement curve may be similar to Cz2," which was
designated by Terzaghi aé the local Shear curve, in this case,
the bearing capacity is not always well defined. Terzaghi
states "We specify arbitrarily, but in accordance with current
conceptions, that the earth support has failed as soon as the
curve passes into a steep and fairly straight tangent".
Therefore, the bearing capacity is assumed to be the abscissa

q' of the point at which the settlement curve becomes steep



and straight.
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Figure (2) illustrates the basic principle of the Terzaghi
bearing capacity theory. When a load Q is applied centraily
on the footing, the footing undergoes a certain amount of
elastic and plastic settlement. An increase in the load Q
-tends to push the footing down, and a mass of soll within the
triangle abc also moves down with the footing. This downward
movement is resisted by the weight of the soil in the sliding
wedges acde and becde and by the shear resistance of the soil
along the slip surface cde. TFor each set of assumed slip
surface, we can compute the corresponding load Q that is
necessary to cause the failure.

To compute the ultimate bearing capacity of a shallow

continuous footing, Terzaghi neglected the shearing resistance



of the soil above the horizontal plane throush the baze of
the footing and replaced this with the surcharge, (a=yDf),
and assumed that the shear sitrength can be described by
Coulomb's equation. The shearing resistance of the soil

given by this equation is;

0]
|

= ¢ + ogtan ¢ (Coulomb lohr's theory of rupture)

where
¢ = cohesion

o = the normal stress on shear plane

¢ = the angle of internal friction
In applying this approach the shearing stresses at the

contact face ac are

D, = ¢ + P tang

p,, is the normal component of the passive earth pressure per

n
unit of area of the contact face.

The passive earth pressure on each one of these contact
face(ac or bec) consists of two components, Py and the adhesion
Cas

B
Cag = ———ou— "¢
cos g
The equilibrium within the zone abc of the elastic equili-

brium requires that the sum of the vertical forces including

the weight (W=k+2B.Btande Y= yB%tang) of the earth in the zone



should be equal to zero, such that

ZFv = 0
Q + W = 2Py - 20a sing = 0
Q +'Y32tan¢ -~ 2Pv =~ 2Bctang = 0

Q = 2Pv + 2Bctang - yB2tang

Where
Pn -
Py = = total passive earth pressure on the
Cosg
contact face
and,
h : > Kpr
Pn¥% = (cKpe + gKpq) + 1/2vh
sina sina
Where

Pn is the normal component of the passive pressure.
a is the slope angle of the contact Tace.
Kpc, Kpqy Kpr are coefficlents.

If ac in Figure (2a) represenis the contact face the

values h, a, and & contained in eguation (3) are equal to

h = Btang, & = 180 - ¢, & = ¢

Then, from equation (2) and (3) we get

(1)

(2)

(3)

Pn Btang yEtarfs Kor

Pv = = "(cKpe + gKpq) + 1/2°

cosd cos¢ sing cosgd

* .
¥

For derivation see Appendix Al.,

sing
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3 — . tang |
= (cK._. . + gKpg) 4 1/2.yB « Z2BF ¥ 4
cos<p pe +rq /2 cosg pY (%)

Combining equation (&) and (1) we get

O
I

EPv + 23ctanp - YB?tanﬁ

258 2 tang
Q = —(cK + gk_ ) 4 rBf —— [
c082¢ pc Pg cosép DYy

+ ZBctang - yB“tang

Q = 2Be(—=- 4 tang) + Bg—2— + yB tang(—2Y_ _ 1)

~ o, L]

cos“p cos<p cos<g

Q@ = ZBcNc 4 ZBgNg 4 2B°y+B NY
Sunstituting q = YDf, Thus
Q = 2B (eNe 4 yDyNg + YBNY) (5)

Equation (5) is called Terzaghi general ultimate bearing

capacity formula, The equation is valid on the condition that

the soll support fails by general shear,

In local shear failure the shear resistance of soll 1s

not mobilised along the full length of the failure surface

of Fig. (2a). No analytical solution for thls condition has

been obtained. Terzaghli has suggested emperical reductions

to the actual cohesion and angle of shearing resistance in

case of local shear failure as follows:

c! = 2/30



tang' = 2/3 tang
Therefore, the critical load Q' is egqual to the sum
Q' = 2B (2/3 eNc' + YDf Ng' + YBN, ') (6)

The coefficients Ne, Ng, Nr, and N'c, N'gq, NY are
called the bearing capacity factors, their values are given

in thecurves of Figure (3a) and Figure (3b) resvectively.
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Fig. 3. Coefficlients of the Terzaghl expressions
for ultimate bearing capacity
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(b). The Meyerhof Solution for Bearing Capacity;

The above analysis of Terzaghi's solution is based
on plastic theory and the corresponding zones of plastic
equilibrium in the material are shown in Figure (4a) for the
case of a rough foundation. Below the base 1s a central zone

ABC which remains in an elastic state of equilibrium,on

(a) (b)

Previous theory Present theory

Pig. 4. Plastic Zones of Shallow Foundation.

each side of this zone there are two plastic zones, 1. e. a
zone of radial shear ACD, and a zone of plane shear ADE.

In the case of Terzaghi's solution, the shearing strength of
the overburden is ignored and only its weight is taken into
account as an equivalent surchargé Py equal to TDf. This
method has been found to be conservétive, and "The assumed

mechanism of failure usually not in accordance with the
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observed ground movement."

In an attempt to overcome these limitations, kieyerhof
(5), in 1951 has extended the previous analysis of the plastic
equilibrium to shallow and deep foundations. According to
this theory, it is assumed to be divided into two main zones
on each side of the central zone ABC as shown in Figure (4b),
namely a radial shear zone BCD and a mixed shear zone BDEF in
which the shear varies between the limits of radial and plane
shear, depending iargely on the depth and roughness of the
foundation.

For the convenience of illustration, Meyerhof made the
zones of plastic equilibrium corresponding to the general
case as shown in Figure (5a), where the surface AE is inclined
at B and subjected to the stresses py and sg, normaliy and
tangentially, respectively.

In the plane shear zone ADE, with angle m at A, the plastic
equilibrium requires that along AD and DE the shearing strength
s1 under the normal pressure pj is fully mpbilized and 1is

equal to ¢ + pj tang.
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Fig. 5. Determination of general bearing capacity
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Hence from Mohr's diagram (Fig. 6),

. Se COSaA

cos (20 + ¢) = c + D ‘té.ng’:
g

- (c + py tang)cosg (7)
c +‘pl tang
and
¢ + pqtang [ ) . ]
pl = P sin(2n + 8) sing | + 1o (8)

In the radial shear zone ACD with angle 6, CD is a

logarithmic spiral surface, and along this surface and along

radial sections the shearing strength is fully mobilized.

Along AC the normal and tangential components of the passive

earth pressure are, respectively,

p' = (s - c) cotg (9)
D :
Sp' = (c_ + P 1-tan¢) 92 gtang ) (10 )

from which the bearing capacity is
Q' =p) + 8§ cot(45° - ¢/2) (11)

Substituting equations (8) to (10) into (11), we get

(1 + sing) e2® tang
% q? = = 4
4 g cotg&{ 1 - sing sin(2n + @) )

(1 + sing) e29tang
12
* _.P°|: 1 - sing sin(2n + 3) Vi,

The computation see Appendix AZ.



or g' = cNe + p Ng

Where Nc and Ng have the values given in the square brackeis
above.

Considering forces to the right of the foundation centre
line of Figure (5b), in order to obtain the minimum factor Nr,
Meyerhof used the logarithmic spiral method (Terzazhi 1943)
for locating the worst centre of the spiral. The plastic
equilibrium is found by balancing the moments about any point

0« Thus,

Ly Pp" =R L+ W Ip
P1 Iq+ Wq L2

Ptl____
p I3

This analysis is repeated for different centres 0 until
the minimum value of Pp“ is found which represents the total
passive earth pressure. This procedure is rather laborious
in practice since at least a dozen trials have to be made in
any given case to determine the minimum resistence from which

Meyerhof provided

9" = .y_B_[“ Pp" sin(h5° + 8/2) _ s tan(4s° + 5/2)| (13)

2 YB<

or q" = yB/2 Ny-

Where NY has the value given in the square brackets above.



The total bearing capacity is

q=q" +q"
q = cNe + pNg + YB/2 Ny

(14)

Where Nc, Nq and Ny are coefficients, their values also can

be given in the curves of Figure (7).
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(c). General Bearing Capacity Equation--Terzaghi-ileyerhof;
A simple and conservative analysis was extended by
Terzaghi and further modified by Meyerhof, is called Terzaghi-
Meyerhof method. The equation for bearing capacity can be

rewritten as:

Y3B .

Where

Qy1t = ultimate bearing capacity

Y = the effective soil unit weight
B = the foundation width

¢ . = cohesion

q = surcharge = YT

Nec, Ng, and NY are bearing capacity factors that are functions
of the angle of internal friction. The values of these factors

for different values of ¢ are given in Figure (8).
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Fig. 8. Bearing Capacity Factors for the
General Equation.

As can be seen by an examinationrof the géneral_bearing
capacity equation (Equation 15) and the curve of Figure(8),
the soil bearing capacity fbf both Terzaghi and Meyerhof
analyses depends on the angle of internal friction g, the
soil unit weight vy, the foundation width B, the cohesion c,
and the surcharge q. The angle of internal friction has by
far the greatest influence on all three bearing capacity
terms. All increase at a rapidly increasing rate when the
angle of internal friction becomes larger.

(a)s Cohesionless Soils:

¢ = 0, then equation (15) becomes

17



qult = YB/2N, + qNg

The first term of equation varies in direét proportion
to the foundation width, in cohesionless soils such as sands,
the above equation shows that the bearing capacity is greatly
_ influenced by the footing size and the surcharge. This means
that the bearing capacity of small foundations is low and
that of large foundation is high. This relationship may be
expressed by the statemént that for a footing on the surface
of sand, the bearing capacity is directly proportional to the
size of the footing. Further, thé bearing capacity goes up
significantly as the depth of the footing below the surface
increases. The importance of these two variables(footing size
and depth below the surface) is illustrated in the numerical
example (1) which will be shown later.

(b). Clay Soils:

p=0, then the values of the NY and Ng aye very small,

the first term and third term of the equation (15) approaches
zero, and the soil cohesion becomes the major point of the

bearing capacity, then, the equation (15) becomes,
qQu1t = c¢Ne

This means that the contribution of the foundation and sur-
éharge to bearing capacity is small and that may be negligi-

ble for soils with a small angle of internal friction such as



saturated clays.
For Plate-Load Test:
According to Sowers's test (6) results;
(a)s Cohesionless Soils
Sowers stated that "In sands and gravels the bearing
capacity increases in direct proportion to the width of the

loaded area," such that

Luit

width foundaiion
width test plate

(foundation) = q,;¢(load test)-[

(b)e Clay Soils
Sowers stated that "The bearing capacity of footings
on a clay soll is independent to the width of the loaded
area, the critical pressure determined by the load test is

the same for all footing size," such that

quit (foundation) = quit (load test)



Be Settlement:

Settlement of the soil producted by loading comes from
two soures; (1), The Immediate Settlement (Pi)EZSkempton,(?i
or The Contact Settlement [ Sowers, (6)] takes place during
application of the loadiﬁg as a result of elastic deformation
of the soil without change in water content. (2). The
Consolidation Settlement (Pc) [ Skempton,(7)]or The Compression
Settlement [ Sowers, (6)] takes place as a result reduction of
the soil caused by extrusion of some of porewater from the
soils The Final Settlement (Pf) is the sum of Pi and Pe.
~ (1). The Immediate Settlement or Contact Settlement:

This method assumes that the soil is perfectly
elastic and isotropic, and is in current use for the predic-
tion of immediate settlement in clays.

(a)s Cohesive Soils:
According to theory of elasticity, Terzaghi(h)

and Skempton(7) provided the expression;

1 =gB . 2 . Ip - (16)

Where
q = net foundation pressure
B = width of the foqndation or diameter of the
loaded area

Al = Poisson's ratio
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E = modulus of elaéticity
Ip= influence value, depending on the shape of the
loaded area and the depth of the clay bed
The typical range of values for Poisson's ratio M is
given in Table (1). And the influence wvalues for some condi-

tions of leading are given in Table (2).

Type of soil M
Clay, saturated Oe&-0.5
Clay, unsaturated . 0,1-0.3
Sandy clay 0.2=0.3
Silt 0.3-0.35
Sand (dense) ' 0.2-0.4
~ Coarse (void ratio=0.4-0.7) 0.15
Fine-grained(void ratio=0.4-0.7) 0.25
Rock 0.1=-0.4

Table (1). Typical range of values for Poisson's

ratio.d



Flexible Rigid
Shape
Center Corner Average

Circle 1.00 0.64 0.85 0.83
Square 1.12 0.56 0.95 0.82

Rectangle |
L/B=1.5 1.36 0.68 1.20 1.06
2 1.53 0.77 1.31 1.20
5 2,10 . 1.05 1.83 1.70
10 2.52 1.26 2425 2.10
100 3.38  1.69 2.96 3440

Table (2). Influence values for various=-shaped

members (Ip).

For saturated clays, there is no volume change so long
as there is no dissipation of pore pressure. Consequently

in calculation of immediate settlement .M = 0.5, thus

0.75

i
Sowers (6) stated that "The distortion settlement (or
immediate settlement) occurs because of a change in shape of
the soil mass rather than because of a change in void ratio."”

He divided this into two parts to express the immediate

[aN]

)
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settlement;
1. Flexible Foundation: For a loaded square area of
width B, the settlement P3j of a corner-and of the center

are given by the formulas;

0.42gB
(pi)cor =_E—q' (188.}
0.84qB
2., Rigid Foundation:
0.6qB
(9;) = ——-E—q— (18¢)

Sowers also according to the load test to determine the
immediate settlement (or distortion settlement) for saturated

clays as following;

B{(foundation) ] (19)

P. (foundation) = ?o(test plate)e.
- P : B(plate)

Looking at the formulas above which given by Skempton
and Sowers, Although there exist some differences, in general,
they all indicate that the immediate settlement (or distort-
ion settlement) of the saturated clays are directly pro-
portional to the width of the foundation.

Skempton and Sowers are assuming that the clay is per-
fectly elastic, it is only applicable for low loads. For

this reason, a semi-empirical relatinnéhip was provided by



Housel (8) based on simplifying assumptions that "If founda-
tions having different sizes are supported by the same purely
cohesive soil, the foundation pressure P can within limits be
compared with foundation size for the same magnitude of

settlements in each case by the eguation" ;

P =P + ge ¥ (20)

A

Where

P = the foundation contact pressure within limits

A = area of the foundation

Pr = the perimeter of the loaded area A

Pe and s are empirical constants which vary with the
type of soil and with the magnitude of the settlement. Their
values can be found from loading tests using plates having
different sizes.

This formula is valid within limits for circular, sguare,

and rectangular foundations on clays. This method has been
uged successfully on cohesive subgrades for roads and aero=-

drome runways. An example is shown in Figure (9).
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From Figure (9) we can see that wifhin the same contact
pressure, the wider the foundation is, the greater settlement
will be. | | |
(b). Cohesionless Soils:

The settlements of foundations in granular soils
- such as sands. Bond (9) intfoduced a statistical correlation
of 1limited data provided the relationship of Figure (10) tb
separate that portion of settlement due to compressibility
from that due to latgrai deformation. Although this was not

of significant practical use, it did serve to show that "For



a given shape of foundation on cohesionless soil and for
any particular value of load per unit area, there is one
size of foundation for which the value of settlement is a

minimum."

’E:_‘ 1.0
Q
ey
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QO
=
B 3
o 0.5
D
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78]
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°
a |/
0 . 100 200

B = Diameter (cm)

Fig. 10. The Influence of Lateral Deformation
on Settlement in Cohesionless Soils.

Using the settlement observations of the above expressicn,

Terzaghi and Peck (10) recommended an empirical formula:

S (21)

Where



f = the settlement of a 1 ft square test plate under
a given load g per unit of area (in)

'ﬁ = the settlement at the same load per unit of area
of a footing with a width B (in})

B = the width of the foundation (ft)

Bond (9) indicated that "This method is the only practi-
cal method which exists at present for computing settlements
in sand with foundation size, its application is restricted."
It is based on a statistical correlation of limited data.

It is not applicable to plate sizes of less than 12 in. and
for sizes above 12 in. it possibly gives the upper limits of

values of settlement in sand, as shown in Figure (11).

values of pilb/sgin. !
‘T‘;‘ it {J?er::aghi S 23 _ )2
2.0 T "‘ [jL iz e .
I:5
o
1 1.0 :
,Aﬁ” Sand A, airdry dooze (Rh=.876) -~
0 P Dense sand (Kogler& Scheidid 1338)—
-2 A Colecuvlated Jettlemertt
e Sand A, molstare conlent 6.8 %
- " Headim denslty (FD=.386) —--—
0 ==t 1 1 |
. 9 12 15 18 21 24 27 30
Biin.

Fig. 11. Values of p/pl compared with B for sand for
particular values of p.



Sowers extended Terzaghi and Peck'®s work and develoned

the following expression;j

31 (Bp+1 )

2
fi (foundation) = f (test plate)-[ ] (22)

Where

Bf = the width of the foundation (ft)

Bp

-~

the width of the plate (ft)

i

If we let Bf = 1 ft, the result is same as Terzaghi and
Peck's formula,

Terzaghi &‘PeCk and Sowers' equations (equ. 21 and 22)
indicate that if the foundation is not too small, the immediate
settlement is approximately directly proportional to the width
of the foundation; if the foundation is too small, it may
occur great amount of lateral deformation cause. for settlement.

(2). The Consolidation Settlement or The Compression
Settlement:
To compute the compression settlement of the
clay layer below each of the selected points. According to
Terzaghi and Peck's one-dimensional consolidation theory (Ref.

10, pp 209),
dfieq = Myog dz
Then

5 .
=J mya0 4z (23)

fzed o
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where

mn

» the coefficient of volume compressibility
aq= vertical pressure at any depth Z bzlow the point
at which the settlement is to be computed

dz = the thickness of the element

Skempton (7) expressed by an analogous equation

dpc = mg-u°dz

o =‘J m,eusdz (24)
c o
where
pc = the consolidation settlerent
*mv = the coefficient of volume compressibility
dz = the thickness of the element

u = B [403 + A(Af?l -40-3)]= pPore pressure

Skempton, A. W. (11) provided that B and A are the
pore pressure coefficients., And according to his test results

in the saturated soils where B=1;

u=A034-Abal—am3)
—ac -[A-ﬂﬁi (1 - A)}
: 1
A7
where
agq = vertical stress at any depth below the point
at which the settlement is to be computed

&¢73 = the confining pressure at that point

%3 Typical values of the coefficlent m see Appendix B.



Hence, equation (24) becomes

Pe =JZ my *a0l [A + 221 - a)Jdz (25)

A0]

Upon comparing equations (23) and (25), Skempton

postulated that the two can be related by a factor U, such

that
Po =U * Poea
Where
Z Al
. 50 my vac] *[A + ZE%(i'A)] dz
- jzmv-éaldz
o}
=A+a(1—A)
[? ag, az
O ° 3

- fz agy dz

The values of a has been provided by Skempton (7) as

shown in Table (3).



e | e | s,
0 1.00 1.00
0.25 0.67 0. 74
0.5 1 0.50 0.53
i 0.38 00 37
T2 0.30 0.26
B 0.28 0.20
10 0.26 0.1k
o 0.25 0.00

Table (3). Values of g in the equation U = A + a(l-4)

The values of U can be determined by the values of A and
a, Figure (12) is also sufficient to enable an approximate

values of U to be chosen.
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Fig. 12. Values of the Factor U.

Therefore, the consolidation settlement 1is

A
fo = Ujomv es5 0] ¢ 4% (26)
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Values of &gy have been tabulated by many diiferent
formulas. The followings are recommended:

(a)s The Boussinesq Equation; (Ref.l, pp. 252)

o = Q . 3/21m . Q
LU 1w (of2)2)77% E

Ng (27)

where Np = Boussinesq index
(b). The Westergaard Equation; (Ref.l, pp. 258)

Q _];_fl-Zu

2mM A2 - 21U

=T [1 - 2u T -2}3/2 (28)

TR

When u = 0 then

Q 1/ Q

7 L s2ea)r 22 ¥ s

9

In Figure (13). a plot of Ny and Ny, as a function of

r/Z is given.
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Fig. 13. Chart for determing vertical stresses
caused by surface point loads.

(¢}« The Love Equation; (12)
For stresses below a uniformly loaded area, Love
based on Boussinesqg's equation, dividing the loaded area into

small parts, and then equation (27) Dbecomes

5/2
S3dda 1
Lt R 2nz2 l: 1+ (r/2)% ] (30)

The vertical pressure 40y due to the distributed load
on the entire area of radius R is obtained by integrating

equation (30), replacing dA with 2urdr, then



2

: R 5/2

3q(2mrdr) 1
£ ] AUl = 5 3

217 (L + (r/2)
1 - e
= - - 2
d 1+ (R/2)2 (31)
For square foundation, R= é}

(d). Hough's Approximate Eguation;

The analysis of stress beneath a footing can not
always be made by difecf application of the Boussinesg equa-
ﬁion. This is particularly true for conditions when Z is
very small, since as Z approaches zero, the,stressrincrement
approaches an infinite value. Because of this and other
difficulties encountered in practice, Hngh's (13) appro%imate
method of analyzing the stresses was déveloped.

It is assumed that the stress increment at successive
dépths beneath the footing is also distributed uniformly over
a finite area, as shown in Figure (14a). The intensity of
the stress increment at any depth is assumed to be equal to
the total load P, on the footing divided by the area As. 1In
applying this approximation, Hough assumed the inclination
of the bounding area is 63%° rather than 60° as shown in

Figure (14b). On this basis, if one dimension of the footing

#; The computation see Appendix A3 (a).



Area A T i)
o o i
60 60 A 63%
/ {ﬂrea AE \ /| L3 N\
: Lf——- B 4+ Z

(a) (0)

Fig.(14). Hough's Approximation for Stress due to Footing.

is B, the corresponding dimension of the area A, becomes
(B + 2)., For a square footing the area A, is (B + Z)%, and

the stress intensity at depth Z is eXpressed as

Ba
(B +2)=

a0y = 'q | (32)

If substitute equations (31) and (32) into (26), we get;

Skempton-Love Equation.

%
Po =m, Uq l-l+](-R/Z)2 - lag (33)
o
and
Skempton-Hough Equation
Z 5@
Pc=vaqj o | (34)
0

By integrating equations (33) and (34), then Skempton-

Love Equation



£ 8 = z Z® + 2R® ..
c:“vaq = (z% + R?) Q—ZR (35)
Skempton-Hough Equation
# P 4 ' 3
c =" VAT 7R . (36)

From examination of equation (35) and (36), it is seen
that settiement is directly proporticnal to foundation size.
(e)s The Newmark Influence Chart:

Using the influence chart for computing vertical
stress is a simple, rapid, and accurate method for calcula-
tion, and is sufficiently accurate for all practical purposes.
This concept and the infiuence charts were presented by
Newmark (l4). The use of the chart is based on a factor
termed the "Influence value," determined from the number of
units into which the chart is subdivided. (For example, if
the series of rings are subdivided so that there are 400 units,
often made approximate squares, the influence value is
1/400 = 0.0025).

The following equation is provided for computing the

stress at the depth 2

A£Gy = q elieT (37)

#; The computation see Appendix A3 (b), (c).



Where
4, = foundation contact pressure
M = number of units counted (partial uﬁits are esti-
mated)
I = influence factor of a particular chart used
It is also indicated that the vertical siresses 4 g; and
the settlements under the footing at the same depth are
directly proportional to the foundation size.
(3) The Final Settlement:
The final settiement is the sum of the corrected values
of the immediate settlement and the consolidation settlement,

t.c.

Pp = 05 + P, ‘ (38)
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umerical Examvples:

F
clearer und
Lambe (15)
footing siz
- Example 1,

Given:

Find:
(a).
(bl
(c)e
(d)s

Where B

D

or the convenience of the illustration and a
erstanding, the following examples are taking from
in an'attempt to illustrate the influence of

e on bearing capacity and settlement.

A round footing resting on sand with ¢ = 341°
and 7T= 100 -1b/ft
The bearing capacity for

B=3 ft, DT

i

0

B=3ft, Df =2 ¢t

B=61ft, Df =0

B=6ft, Df =2 f%
= diameter of the round footing

f = depth of the footing below surface

Solution:

For round footing on sand, ¢ = 0 and equation (15)

becomes

Quit

= 0.3 TBNy + gqNg

From Figure (3a2) get Nr = Ng ='35, then

(a).

(bl

Df =0, g =0, B=3 ft

Quilt = 0.3(100)(3)(35) = 3.15 kips/ft?

Df = 2 ft, ¢ = (100)(2), B = 3 ft

0.3(100)(3)(35) + (100)(2)(35) = 10.15 kips/ft?

Qult



Lo

(¢)e Df =0, q =0, B =6t
0.3(100){(6)(35) = 6.3 kips/Tt?

Il

Qult
(d). Df =2 ft, g = (100)(2), B = 6 %

0.3(100)(6)(35) = (100)(2)(35)
13.3 kips/ft

The illustration of example 1 may be presented by the

1l

Quit

statement that "For footings on the surface of sand, the
bearing capacity 1s directly proportional to the size of the
- footing. Further, the bearing capacity goes up significantly
as the depth of the footing below the surface increses.”
Example 2,
Given: A 48-ft-higﬁ tank is built on sand with 7= 129pcf
and A = 0.45,
Find: The settlement of the center of the tank when
filled with water for the following conditions:

(a)s B = 100 ft, E constant and equal to 4000 kxips/f%?

(b)e. B = 200 ft, E constant and equal to 4000 kips/ft°

(c). B =100 ft, E variés as o7 and equal to

| 4000 kips/Tt® at Df = 75 ft. |

(d). B = 200 ft, E varies as o and equal to
4000 kips/ft® at Df = 75 ft.

Solution:

For settlement at center of the tank, the equation (16)

becomes

R .
F:: q_'f- 2 (l - ua)



}.O
i

R = radius of the loaded area

average stress over the loaded area

g = 48 ft x 62.4 1b/ft® = 3.0 kips/Tt?

2(1 = m3) = 2(1 - 0.452) = 1.6

(50)(1.6)
g Sl S A

(a). T = 0,06 ft
_ (3)(100)(1.6) ..
(b). P = = = 0.12 ft

{(c). Since E varies as oy and of

E varies as depth, 1l.e. E%m

o _ (3)(50)(1.6)

(d). Now Egor = E150rt = 2 x 4000
L (3)(100)(1.6) _ o . e
2 x L4ooo

The illustration of example 2 may be

varies as depth, so

= Epsrt = 4000 kips/Tt?

kips/ft?

presented by the

statement that "For footings on the surface of sand, if E is

constant with depth, settlement is directly proportional to

foundation size., If the modulus E varies directly with the

vertical confining stress, the settlement is independent of

foundation size."

In view of the above expressions, it

is showing that

reasonably good agreement is seen to exist between these expre-

ssions and those of which presented in the preceding sections.



III. CONCLUSIONS:

Previous theories of the ultimate bearing capacity and
settlement analysis have been reviewed. The analysis indi-
cates that in general the bearing capacity increases with size,
depth and roughness of the base, and depends on the shape of
the foundation. Settlement increases somewhat with increasing
footing size.

The above considerations lead to the conclusion that

For Cohesionless Soils:

In a cohesionless soil, the ultimate bearing capacity
is proportional to the width of the footing. That issthe ulti-
mate bearing capacity increases as the footing size increase.
Under the same contact pressufe(E is constant), settlement is
directly proportional to foundation size, as shown in Figure
(15b). |

For Cohesive Soils:

In a cohesive soil, the ultimate bearing capacity is a
constant and is‘independént of the width of the footing. That
is, foundafion size has no effect on the ultimate bearing
capacity. If the contact pressure is constant(E is constant),
settlement is directly proportional to foundation size, as

shown in Figure (15a).
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APPEEDIX £1

Fig. A.

The normal component p of the passive earth pressure
n
ver unit of area of a plane contact face (ab, Fig. A) at depth

Zz below a can be expressed approximately by the linear equation

. = cK + gX +'TZK

n pc pg P
_ ' n
= P ¥ pn
' = cK X
Py pe ¥ Ypq
H
1 H
Pp' = sinm‘go Pt 4z = Tinw (cKpc + quq)
I 5
Pn _‘Tzﬁp

(H
P*=—2| p"dz=1/27H? or
- n - 7 sinx

H
sin«x

o (] "o
P = Pn - Pn =

7 (cKpc + gK_ )

Pq

2 Koy
+ 1/2TH r=rT £3)



I
i

APPENDIX A2

b, = = ‘;Ozétan” [Sin(ZTL-r-?f)}- sinf 4 p_ (8)
pp' = (sp' - ¢). cotg (9)
sp' = & # pltan¢) 826t3n¢ (10)
Q' = '+ st cot(45° - ¢/2) (11)

Substituting equations (8) to (10) into (1l), then

From (8),

plcos¢ a1 B pltanﬁ) [sin(2%+¢) - sing] + pooos¢

plcos¢ - pltan¢ [sin(2n4+8)=sing] = c[sin(2n+¥)-singd] + pocos¢

¢ [sin(21+8) - sing] + p cosy

P = ~Cosp < tang Lsin(21+2) - sing |

tang {c [sin(2n4+8) - sing] + pocosﬁ}

P tan@=

From (10),

1 cos@ ~ tang [sin(2q+¢) - sing]

- sing {c [sin(2n4+8) - sing] pocosﬁ}
ang = :

P [1 - sing sin(2148)]

s ' = (c 4+ p_tang) ezet&nst

P 1

28tang 20tang
= ce s pltan¢ e

20tang  sing{c[sin(21+8) - sing] + pocosﬁ}e‘et3n¢
-’

= Ce — . . .
[1 - sing sin(zng)]
ot 20t .\ _28tang ;
S ce® ang_ - an¢sin¢sin(2&+@)+ce‘ tan951n¢313(21+9)
P ' [1- sing sin(21+9) ]

- ezetan¢c'sin2¢ + e20T8Py sing cosp




20t 6 tan; 5, Otar
e an¢_ ce2 anﬁsindp o ez B posin¢ cosp

g8 ' = ;
p 1 - sing sin(2n+¢)

" & . , z8tany
o § o ce‘etan¢(l - sin‘g) . p,Sing cosg e
I [1 - sing sin(2Q+¢)J [i - sing sin(2 +¢ﬂ

A ; . 28tang

et
< ce? ang cos 2d posin¢ cosP e

» 7 [1 - sing sin(zr+8)] ¥ [1_- sing sin(20+9)]

Then eguation (11) becomes,

q' = p " + s 'cot(45° - 4/2)
jo) D.

= sp'cot¢ - ¢ cotf + sn'cot(&So - g/2)

_ ' _ ' e |1 + sin
o sp cotp ¢c cotP + sp [—_3353_2]

s 0 [cot¢ cosp + 1 4 sin#] - c cotg
o cos@

NV | FURS S
1 - singsin(zr+@) J cospsing

posinﬁrcosﬁ ezeuan91 [— 1l + sing
1 - sing sin(21+¢)J [_cos¢ sinp

20tang

c cotd e (1+8ind) - ¢ cotd 4 ¢ cotdsingsin(29+8)

[} - sing sin(2m+¢ﬂ

92etan¢ (1 4 sing)
+ Po|T = sing sin(2n+8)

20tany

(1 + sing) -[1 = Sin¢sin(2‘l+;5):]
[1 - sing sin(2ﬂ+?)]

z6tang

¢ cotg g

1

(1 + sing) e
0 | 1 - sing sin(20+8)

4+ P



' = o | cotg{ L+ sind) e R
9" = _ 1 - sinp sin(27+ P)

(1 4+ sing) ezetangi
* Py | T <= sing sin(zn+ 9)

}-s

(1

)



APPENDIX A3

(a). The computation of equation (31):

=
o

B _JR 3q( 27 rdr) 1 5/2___ 3q }Rr 1 _P/zdr
1 222 |1, (/22|  22Jo | 22, 2|

72 |
3925 (B 5 <« 1-572 | B
_ q rdr _ jqzj (25 4+ %)
22 5 (Zd & rd 5/" Z = 5 _l o
2 2,-3/2 | ® B » X e
- 3‘1243 (Z 4 I ) - qzj (Zé - Pé) _ (ZC)"B/L‘,
-3 o L
3 1 1
= = G0 -
| = ]:(zz+ r2)3/2 (g%)¥/2
N I8
o301 3/2( 1
= = qZ (zz) 5 -1
14+ (R/Z)
3/2
= g1~ — (31)
1 4+ (R/Z)
Applied Formulas; udu = (uZ e 32)_1-1‘1/2 c
(u2 e a2)n/2 Z=-n



(b)-

pC
Xz

(o]

L9

The conmputation of Equation (35), from eguation {33)

(33)

e[l

1
1+ (BR/Z)2

J‘z . }3/2}

m_Ug = 5 dz
¥ o 1+ (.d./Z)
3/2) yA
1l - »dz = .
J o
Z 23 =3
1l - (Zz . Rz)aﬁ dz =

7
N il _ R3(3-1) 7772 45
o | (3-3+1)(2% + R%)3/2-1  3-3+1 (z%.52)3/2

C

)

Z - Z
= Z - - 2R S — — dz
(z4m?)1/2 Jo (z2,52)5/2 B
_ < ) =
Zz ~ z (Z‘:-i-B‘)l-B/z
= & =< 5 - 2R .
(22+RZ) /2 i 2 s 3 o
e o
- Z - g ~ 2% = |
L_(zz-;-BZ)l/‘ (22+RZ)1/2 j
[ .2 2
_(Z2+Rz)1/2
' 3/2
U : 1 - 1 dz
e P = q - '
Al 1+ (B/2)%
2 2
R
=nUqd 2 - i +§1/2- 2R (35}
(27 + B7)
Applied formulas:
~ r
2du -1 iaz(m-l) " “du
—3 = - = e l ~ -~
) (uZpa2)n/2 (m—n+1)(u21._a2)n/2 1 (m-mel) ] (y2,,2y0/2
vdu _ (u2ia2)1-n/2 + C
(uziaz)n/z 2=-n




(c)o

50

The computation of equation (36), from equation (34).

Z 82
Po = B0 | ———mdz (34)
& ¥ (B + 2)2
o
zZ P
___B__dz'
o (B4 2)%
Let B4 Z2=x, Z2=Xx - 3B, 4z = dx
Z 32 ﬁz ~
— dz = 3¢ | x “ dx
o (B + 2%) o
7 Z
2[--1 2 1
=B‘~— =-B B'Zr
X |0 - o
_ _32 i _ 1 BZ Z
- B+ Z B =~ B4+ Z- 14 Z/B
zZ -
g a U (36)
_pczmqu ) > Z=qul_z7§ 3
o(B‘i'Z)



APPENDIX 3

(Taking from Ref. 16)

51

Compressibility of Various Tyves of Clays

gualitative Coefficient of
Type description Vol.compressivility
(mv) £t per ton
Heavily over-consolidated Very low Below 0.0C5
boulder clays (e.g. many conpressib-
Scottish boulder clays) and |ility’

stiff weathered rocks(e.g.
weathered siltstone), hard
London Clay,Gault Clay and
Oxford Clay (at depth)

3ouwlder clays (e.g.Tees-side,

Cheshire) and very stiff
"plue" London Clay, Oxford
Clay, Keuper Harl

Low compre-
ssibility

0.005 to 0.01

Upper "blue" London Clay,-
weathered "brown" London
Clay, fluvio-glacial clays,
Lake cleys,weathered
Oxford Clay, Weathered
Boulder Clay, weathered
Keuver larl, normally
consolidated clays (at
depth)

Hedium con-
pressibility

0.01 to 0.03

Normally-consolidated all-
uvial clays(e.g.estuarine
clays of Thames, Firth of
forth, Bristol Channel,
Shatt=-gl-Arab, Niger Delta,
Chicago Clay), Norwegian
"Ruick" Clay

High compr-
essibllity

0.03 to 0.15

Very organic alluvial
clays and peats

Very high
compressib-
ility

Above 0.15
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ABSTRACT

The object of this rgport is to present methods for the
examination of the influence of foundation size on bearing
capacity and settlement.

The first part presents a theory of bearing capacity based
on elastic and plastic equilibrium of shallow foundations.

The bearing capacity of foundations in purely cohesive material
is found to be a constant and 1s independent of the width of
the footing while in cohesionless material, bearing capacity
increases rapidly with foundation size,

The second part is concerned with the settlement of a
foundation. If the contact pressure is constant, settlement is
directly properticnal to the foundation size.

In cohesive soils settlement consists of an "immedlate"
settlement without volume change and the more important
"consolidation™ occuring by the dissipation of excess pore
pressure over a long period of time. In cohesionless soils all
settlements are of the "immediate" type =ince eXcess pbre
pressure can not develop. In all soils the amount of settlement
is a function of the contact pressure, the slope of the

compression curve, and the initial wvoid ratio.



