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CHAPTER

INTRODUCTION AND PRELIMINARIES

In this thesis we present the implication algebras of

Abbott [1] . These are algebras of type (2,0) such that the

operations and axioms model implication and truth in classical

logic. In these structures the interval above each element is

a Boolean algebra. We then present the generalization of this

by Hardegree [4] and Godowski [3] . In the Hardegree system the

intervals above each element are orthomodular lattices and in

the Godowski system such intervals are orthomodular posets.

We then develop the generalized orthomodular lattices of

Janowitz [5] . We show that dual generalized orthomodular

lattices correspond to the Hardegree system.

0.1 Definition . An Orthocomplemented Poset is a poset P,

with a least and greatest element and 1 respectively,

which admits a mapping': P * P such that for all x,y e P we

have the following:

(i) x < y y
1

< x 1

(ii) x" = def (x'

)

1 = x

(iii) x 1 is complement of x.

0.2 Definition . An Orthomodular Poset (OMP) is an ortho-

complemented poset P such that

(i) a £ b 1 =4 a Vb exists in P, and

(ii) a < b and avb' = 1 =^ a = b.

1
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0.3 Definition . An Orthomodular Lattice (OML) is an

orthomodular poset which is a lattice.

0.4 Definition . Let (P, 1

) be an orthomodular poset. For

a,b e P we say a is compatible with b,a C b, if there exist

mutually orthogonal elements a, ,b^,c e P such that a = a-j^ v c

and b = b^v c.

0.5 Theorem . [6, pp. 20-23], Let L be an orthomodular

lattice. These are equivalent.

1) a C b

2) a = (a A b) v (a a b*

)

3) a Cb'

4) b C a

5) (avb')Ab = aAb.

One of the most important tools in orthomodular lattice theory

is the following:

0.6 Theorem . (Foulis-Holland) [6, p. 25]. Let L be an

orthomodular lattice. The sublattice generated by three elements,

one of which commutes with the other two, is distributive.
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CHAPTER ONE

IMPLICATION ALGEBRAS

In this chapter, we give the definition of an implication

algebra, introduced by J. C. Abbott in [1] , and prove some

basic results.

1.1 Definition . An Implication Algebra (IA) is a pair <I,->,

where I is a set, and "•" is a binary operation on I,

satisfying, for all a,b,c e I,

Al) (a-b)-a = a, (contraction);

A2) (a'b)'b = (b-a)-a, (quasi-commutative);

A3) a* (b-c) = b- (a«c) , (exchange) .

Henceforth we write ab for a«b.

1.2 Example 1 . One can show that if B is a Boolean algebra

and ab is defined to be a'V b, then <B,*> is an IA.

Similarly we may use ab = a' A b, and again obtain an IA.

Thus every Boolean algebra <I,V ,A,',0,1> determines two

implication algebras.

(1) <I,->> where a -» b = a'v b, (Implication algebra),

(2) <I,-> where b - a = a' A b, (Subtraction algebra).

1.3 Lemma . For any two elements a,b in an implication algebra

I we have the following:



(i) a(ab) = ab

(ii) aa = (ab) (ab)

Proof

(i) a(ab) = [ (ab) a] (ab) = ab.

(ii) aa = [(ab)a]a= [a(ab)](ab) - (ab) (ab)

.

1.4 Theorem . There exists an element lei such that for

all a e I.

(i) aa = 1;

(ii) la = a;

(iii) al = 1.

Proof

.

(i) aa - (ab) (ab) - [ (ab) b] [ (ab) b] = [ (ba) a] [ (ba) a]

= (ba) (ba) = bb.

Hence I contains a constant 1 = aa independent

of a

.

(ii) la = (aa)a = a.

(iii) al = a(aa) = aa = 1

.

1.5 Theorem . For any two elements a,b in an implication

algebra I we have

1) a(ba) = 1;



2) [ (ab)b]b = ab;

3) [ (ab)b] a = ba;

4) a[ (ab)b] = b[ (ab)b] = 1;

5) (ab) (ba) = ba.

Proof .

1) a(ba) = b(aa) - bl = 1

.

2) [(ab)b]b = [b(ab)](ab) = l(ab) = ab.

3) [(ab)b]a = [(ba)a]a = [a(ba)](ba) = l(ba) - ba.

4) a[(ab)b] = a[(ba)a] - 1, b[(ab)b] = 1.

5) (ab) (ba) = b[ (ab) a] = ba.

1.6 Corollary . For a,b in an implication algebra I, we have

the following:

(i) ab = ba iff a = b, (anti-commutative);

(ii) ab = b iff ba = a;

(iii) ab = a iff a = 1.

Proof .

The proof follows immediately from the preceding Theorem.

1.7 Theorem . For any three elements a,b,c in an implication

algebra I we have the following:
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1) (ac) (be) = (ca) (ba)

;

2) [ (ab)c]c = [ (ab)c] (ac)

;

3) (ab) { [ (ac)b]b} = 1;

4) cb = 1 ab = [(ac)b]b;

5) a (be) = (ab) (ac) ,
(quasi-distributive);

6) [(ab)c]c = a[(bc)c], (quasi-associative);

7) { [ (ab)b]c}c = { [ (cb)b]a}a;

8) ab = 1 =y (be) (ac) = 1.

Proof .

1) (ac) (be) = b[(ac)c] =b[(ca)a] = (ca) (ba) ;

2) [(ab)c]c= (c(ab)](ab) = [c (ab) ] [a (ab) ] = [ (ab) c] (ac) ;

3) (ab) { [ (ac)b]b} = (ab) { [ (ac)b] (ab) } = 1;

4) (i) (ab) { [ (ac)b]b} =1 by 3;

(ii) { [ (ac)b]b} (ab) - a< { [ (ac) b] b}b>

= a[(ac)b] = (ac) (ab) = (ac)[l(ab)]

= (ac) [ (cb) (ab) ] = (ac) [ (be) (ac) ] = 1

5) (i) [a(bc) ] [ (ab) (ac) ] = (ab) { [a (be) ] (ac) }

= (ab) { [b(ac) ] (ac)

}

= (ab) { [ (ac)b]b} =1 by 3;

(ii) [ (ab) (ac) ] [a(bc) ] = [ (ab) (ac)
] [b (ac)

]

=
[ (ac) (ab) ] [b(ab) ] = 1;



6) [(ab)c]c = [c(ab)](ab) = [a(cb)](ab) = a[(cb)b]

= a [ (be) c] ;

7) {[(ab)b]c}c= (ab)[(bc)c] by 6;

= (ab) [ (cb)b] = (cb) [ (ab)b]

= (cb) [ (ba)a] = { [ (cb)b]a}a;

8) (be) (ac) = (cb) (ab) = (cb) 1 = 1.

1.8 Theorem . Let (I,*) be a set • satisfies A1,A2

and the quasi distributive law [1.7 (5)], then I is an

implication algebra.

Proof .

We need to show that the exchange axiom (A3) holds.

Applying 1.7(8) to b(ab) = 1 gives

[ (ab) (ac) ] [b(ac) ] - 1 so [a (be) ] [b (ac) ] = 1.

Similarly, [b (ac) ] [a (be) ] = 1. So the result follows from

the anti-commutative law.

1.9 Theorem . Every implication algebra <I,*> determines

a poset <!,<_, 1> with greatest element 1 under

a < b <==> ab = 1

.

Proof .

(i) aa = 1 => a < a; hence < is reflexive,

(ii) a <_ b and b < a =^> ab = ba = 1 , hence a = b.
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Thus <_ is anti-symmetric.

(iii) a <_ b and b <_ c =^ ab = be = 1

.

So ac = a(lc) = a[(bc)c] = a[(cb)b] = (cb) (ab)

= (cb)l = 1.

Hence a <_ c . Thus <_ is transitive.

1.10 Example . Here is an example of an implication algebra

which is not a lattice. Let A = {l,a,b} and define "•"

as follows

lab
1 1 a b

a 1 1 1bill
This is the Hasse diagram for the above example

1

o

a b

1.11 Theorem . For all a,b,c in an implication algebra I

with a _< b we have ca _< cb and be _< ac

.

Proof

.

(i) a < b =? ab = 1. Hence (ca) (cb) = c(ab) = 1.

Thus ca < cb.
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(ii) (be) (ac) = (cb) (ab) = 1. Thus be < ac.

1.12 Theorem . If a,b are in an implication algebra I, then

a <_ b iff b = xa, for some x e I.

Proof

.

(i) Let a <_ b. Then ab = 1 . So b = lb = (ab)b = xa

where x = ba.

(ii) Let b = xa for some x e I. Then ab = a(xa) = 1.

Now we define a j oin semilattice to be a poset in which

any two elements have a least upper bound.

1.13 Lemma . The poset [!,•,<) is a join semilattice in

which avb = (ab)b.

Proof

.

The proof is clear.

1.14 Theorem . For all a,b,c in an implication algebra I,

if c _< b, then ab = (ac) v fc>.

Proof .

(ac) v b = [(ac)b]b= [b(ac)](ac) = [a(bc)](ac)

= a[(bc)c] = a[(cb)b] = a(lb) - ab.

1.15 Theorem . For all a,b,c e I. a(b v c) = (ab) v c = (ab) v (ac)

.
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Proof .

a(bvc) = a[(bc)c] = [(ab)c]c = (ab) v c

= [c(ab)](ab) = [a(cb)](ab) = (ab) V (ac)

.

1.16 Corollary . If c <_ a,b, then aAb = [a(bc)]c is the

greatest lower bound for a and b.

Proof .

The proof follows immediately from preceding theorems.

1.17 Theorem . If a,c e I with c <_ a. Then ac is a

complement of a in the principal filter [c,l].

Proof .

[Note: [c,l] = {x : c <_ x} = {x : x = cy for some

y e I}] .

We have to show (i) a v ac = 1 and (ii) a A ac = c.

(i) a v ac = [a(ac)](ac) = 1;

(ii) since c < a, ac , a A ac = {a[(ac)c]}c = lc = c

.

1.18 Theorem . For any a £ I, the principal filter [a,l]

is a Boolean algebra.

Proof .

Let b,c,d e [a,l]. Then it is sufficient to prove the

distributive law: b a (c v d) = (bAc) v (b Ad). Let

r = (bAc) v (b Ad) and s = bA C then s <_ r, so that

bs < br. But since s <_ b,c we can write s = bAc = [b(cs)]s.
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Hence bs = b{[b(cs)]s} = [b(cs)](bs) = [c(bs)](bs) = bs v c = be.

Therefore c <_ be = bs _< br. Similarly d <_ br, so that

c Vd < br, i.e., (cvd) (br) =1. Finally r = lr = [ (c v d) (br) ] r

= b a (c v d) , since r < b, (cvd). Thus r = (b A c) V (b A d)

= b A (c V d) .

Hence every implication algebra <I,*> determines a

poset <I r <> which is a join semilattice in which every

principle filter is a Boolean algebra.
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CHAPTER 2

2.1 Quasi Implication Algebras

Quasi Implication Algebras (QIA) are intended to generalize

orthomodular lattices in the same way that implication algebras

generalize Boolean lattices. Gary M. Hardegree [4] has defined

a QIA in the following way:

2.1.1 Definition . A Quasi Implication Algebra is a set Q

together with a binary operation "•" satisfying the following:

HI) (a-b) -a = a;

H2) (a-b)'(a-c) = (b-a).(b-c);

H3) t(a-b) • (b-a)] -a = [ (b-a) • (a-b) ] -b.

Henceforth a-b is written as ab.

2.1.2 Theorem . Every implication algebra is a quasi implication

algebra

.

Proof .

Given an IA <I,->, v/e wish to show Hl-3 hold.

HI) Is equivalent to Al in IA.

H2) (ab) (ac) =a(bc) =b(ac) = (ba) (be)

.

H3) [(ab)(ba)]a = {b[(ab)a])a - (ba)a - (ab)b

= (a[ (ba)b] )b = [ (ba) (ab) ]b.

2.1.3 Theorem . Let L be an orthomodular lattice and let
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"•" be the binary operation on L defined by ab = a 1 v (a a b)

Then <L,*> is a quasi implication algebra.

Proof .

It is sufficient to show that <L,*> satisfies axioms

Hl-3 . Here we show

(HI) (ab)a = (ab)' V (ab A a) = [a' V(aAb)]' /{[a' .' (a A b) ]

= [a A (a' V b' ) ] V { [a' V (a A b) ] A a}

- [a A (a' Vb' )] V (a Ab) = a Al = a .

(H2) (ab) (ac) = (ba) (be) :

(ab) (ac) = (ab) ' v
[ (ab) A (ac) ] = [a A (a 1

/ b' ) ] V

V { [ (a' V (a A b) ] A [a' 'V
( a a c ) ] }

= [a a (a 1 V b' ) ] v [a' M (a a b Ac) ]

= { [ (a A (a' / b' ) ] / a* } V (a A b A c)

=
[ (a v a* )

A (a' 7 b' V a' ) ] V (a A b A c)

= [a' / b' ] / (a A b A C ) = (a Ab)c.

By analogous reasoning, one shows (ba) (be) = (bAc)c

(H3) [(ab)(bc)]a= [(ba)(ab)]b:

First of all, (ab) (ba) = a V (a' Ab 1
). Thus,

[ (ab) (ba) ] a = [a v (a' A b 1

) ] a = a - b . By analogous

reasoning, one shows [ (ba) (ab)]b = b -/a. Thus L

is a quasi implication algebra.

2.1.4 Theorem . For every a,b,c e Q where Q is a quasi

implication algebra v/e have the following:

1) a(ab) = ab
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2) aa = (ab) (ab) = bb =, , 1
der

3) la = a, al = 1

4) (ab) (ac) = a[(ab)c] = a[(ab)(ac)]

5) ab - ba <=} a = b

If now we define a <_ b to mean ab = 1, we have

6) a <_ b =^ a(bc) - ac

7) <Q/£,1> is a partially ordered set bounded above by 1

8) b <_ c ab < ac

9) a < (ab)b

10) a < b <=*> (ab)b = b.

Proof .

1) a(ab) = [ (ab)a] (ab) = ab.

2) aa = [ (ab) a] a = { (ab) [ (ab) a] } a = { [a(ab) ] [ (ab) a] }a

by H3 = { [ (ab)a] [a(ab) ] } (ab) = [a(ab)](ab) = (ab) (ab)

.

3-6 are clear.

7) (i) a <_ a is clear.

(ii) a < b and b <_ a. Then ab = ba = 1 (by 6) .

Hence by 5 a = b.

(iii) a < b and b <_ c. Then be = 1. ac = a(bc)

= al = 1. Thus a < c.
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(iv) a <_ 1 is clear.

8 & 9 are clear.

10. ) Suppose a <_ b. Then ab = 1 . Therefore,

(ab)b = lb = b.

( <*=) Suppose (ab)b = b. Then ab = a[(ab)b] = 1

(by 10) . Thus, a < b.

2.1.5 Lemma . Let Q be a quasi implication algebra. Then

for all a,b c Q we have [(ab)b]a = ba.

Proof

.

[(ab)b]a =
[ ( ab) b] [ (ab) a] - (H2) = [b(ab)](ba) = l(ba) = ba.

2.1.6 Theorem . Let I be a quasi implication algebra satisfying

the exchange axiom: a(bc) = b(ac). Then I is an implication

algebra

.

Proof .

We need to show that the quasi commutative law holds,

i.e. , (ab) b = (ba) a.

[ (ab)b] [ (ba)a] - (ba) { [ ( ab) b] a} = (ba) (ba) = 1 by 2.1.5.

And similarly [ (ba) a] [ (ab) b] = 1. Hence (ab)b - (ba)a, and

I is an implication algebra.
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2.2 Compatibility in Quasi-Implication Algebras

In the theory of orthomodular lattices, one can define

a binary relation C of compatibility as follows.

(C) aCb =
df a = (aAb)v(aAb')

This is a restatement of Definition 0.4.

It may be noted that C can be defined on general ortho-

lattices, and the relation C is symmetric on an ortho-

lattice L (aCb iff bCa) if and only if L is ortho-

modular. It is a further result of Foulis and Holland that

C is universal on an ortholattice L (aCb for all a,b £ L)

if and only if L is Boolean. Thus, what distinguishes

Boolean lattices from more general orthomodular lattices is the

existence in the latter of a non-trivial compatibility relation.

Now, whereas classical implication algebras correspond

to Boolean lattices, quasi-implication algebras are intended

to correspond to orthomodular lattices. One might therefore

expect the notion of compatibility to generalize to quasi-

implication algebras. In particular, we seek a binary re-

lation C definable on general quasi-implication algebras,

which has the following properties: (1) In the case of QIA's

induced by orthomodular lattices, the implicational compatibility

relation coincides with orthomodular compatibility. (2) In

the case of general QIA's, every QIA in which every pair

of elements is compatible is an IA.

Concerning the criterion (1), we note the following theorem

of orthomodular lattices.

(T) a = (aAb) v(aAb') iff a < b' v(bAa)
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Proof .

(=^ ) Suppose a = (a A b) v (a a b' ) . Then, since

(aAb)v(aAb') < b' V(bAa), a <_ b' v (b A a) .

( <= ) Suppose a < b' v (b A a) . Then a = a a [b' v (b a a) ] .

But (b a a) is compatible with both b' and a, so by the

Foulis-Holland theorem, {(b Aa),b' ,a} is a distributive triple.

Therefore, a A [b 1 v (b A a) ] = (a A b' ) V ( (a a (b A a) ) = (a A b) V

v ( a A b ' ) . Thus, a= (aAb)v(aAb').

In light of Theorem (T) , and in light of the definition

of compatibility and quasi-implication in orthomodular lattices,

we see that the following holds in an OML:

(T*) aCb iff a < ba.

With this in mind, we introduce the following definition.

Definition. aCb a < ba
df —

2.2.1 Lemma. aCa (ref lexivity)

.

Proof .

a £ 1 = aa.

2.2.2 Lemma . aCab.

Proof

.

a < a = (Ql) = (ab)a.

2.2.3 Lemma. aCl.



18

Proof .

a <_ a = la.

2.2.4 Lemma . a <_ b implies aCb.

Proof .

Suppose a <_ b. Then by 2.1.4(b), a(ba) = aa = 1. Thus,

a _< ba , i.e., aCb

.

2.2.5 Lemma. a <_ b implies bCa.

Proof .

Suppose a < b. Then ab = 1 , so b < ab, i.e., bCa.

2.2.6 Lemma . Let aCb. Then the following hold:

1) a(bc) = (ab) (ac)

,

2) bCa; (symmetry)

,

3 ) a (be) = b (ac) ,

4) (ba) (ab) = ab.

Proof .

The proof is clear.

2.2.7 Theorem . Let Q be a quasi implication algebra. If

aCb holds for each a,b e Q, then Q is an implication algebra.
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Proof .

Al) Is equivalent to HI.

A2) By Lemma 2.2.6 ab = (ba) (ab) and ba = (ab) (ba) .

Therefore, (ab)b = [(ba)(ab)]b = (H3) = [(ab)(ba)]a =

= (ba)a. Thus (ab)b = (ba)a.

A3) Is equivalent to 2.2.6(3). Hence Q is an

implication algebra.

2.2.8 Lemma . Let Q be a quasi implication algebra. Then

for all a,b e Q,

(i) a < (ab) (ba)

.

(ii) If a < b, then b = (ba)a.

Proof .

The proof is clear.

2.2.9 Lemma . a £ b implies b(ac) = ac.

Proof .

Suppose a < b. Then ab - 1 . Also by Lemma 2.2.5, bCa.

Therefore by Lemma 2.2.6(1), b(ac) = (ba) (be) = (H2) = (ab) (ac)

= l(ac) = ac.

2.2.10 Theorem . Let Q be a quasi implication algebra. Then

1) (Q,<) is a join semi lattice with aVb = [(ab)(ba)]a
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2) If b <_ x, then x E
def

xb """ S a comPlement f°r

x in Q[b,l].

3) (Q [b, 1] , # (b) ) is an orthomodular lattice,

4) If b < a < x, then x
# (a)

= x
#(b) va,

5) If x,y >_ b, then xAy exists in Q.

Proof .

1) By Theorem 2.1.4(7) Q is a poset. Therefore we

need only show a,b <_ [(ab)(ba)]a and if a,b <_ c,

then [(ab) (ba]a < c. First note that by Lemma

2.2.8 (i) a< (ab) (ba) . Hence by Theorem 2 . 1 . 4 ( 4

)

a{ [ (ab) (ba) ] a} = aa = 1. Thus a < [ (ab) (ba) ] a and

by symmetry and (H3), b < [(ab)(ba)]a. Now let

a,b < c, then by Lemma 2.2.4 aCc and bCc. There-

fore abCc and aVbCc. Furthermore since a <_ aVb,

by Lemma 2.2.4, aVbCa. Hence aVbCca. Now since

a <_ c, by Lemma 2.2.8(ii), c = (ca)a. Thus we have

{ [ (ab) (ba) ] a}c = (ca) [ ( ab) (ba) ] ; so in order to show

avb <_ c, it is sufficient to show ca < (ab) (ba) .

But by Lemma 2.2.8 (i) a < (ab) (ba) ; then

ca < c [ (ab) (ba) ] . So c[(ab)(ba)] = (ab) (ba) and

hence [ (ab) (ba) ] a <_ c .

2) (i) x v x # (b)
= x V xb = { [x(xb) ] [ (xb)x] }x = xx = 1.

(ii) We delay the proof that x A x = b, for

x >_ b, to the next paragraph.
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3) (i) x #(
b )#( fa

) = (xb)b = 2.2.8(ii) = x.

(ii) To show b < x < y implies y*
(b)

< x* (b)

we note xy = 1 , since x <_ y. Now b < x for

all x e Q; so in particular, b <_ (yx)b. There-

fore, yb <y[(yx)b]. But y[(yx)b] = (yx) (yb) =

= (xy) (xb) = xb. Thus yb < xb, i.e.

y
#(b) lx#(b)

<

(iii) (3i) and (3ii) show that # (b) is an involution

on Q[b,l]. It follows that the De Morgan Laws

hold in Q[b,l] . Therefore, since

l.u.b {x
#(b)

,y
#(b)

} exists for b < x,y, we
Q[b,l]

know that g.l.b {x,y} exists also and equals
Q[b,l]

l.u.b {x
#(b >,y*( b >} #< b >. Thus Q[b,l] is

Q[b,l]

an involution lattice. In particular for

b < x, we have g.l.b {x,x #(b) } =

Q[b,l]

= l.u.b {x,x # <b >} #< b > = l#<
b

> = b, which
Q[b,l]

complete the proof of (2ii)

.

(iv) It is also clear that if b < x < y and

yAx = b, then x = y. Thus Q[b,l] is

an OML.

4) Let b < a < x. We want to show x # (a) = x
#(b) y a.

(i) Since b < a, xb < xa; so x # (b)
< x # (a

'

a < x
#(a)

. Hence x
#(b)

V a < x # (a)
.

Also
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(ii) x # (a)
(x

# (b) V a) = (xa)(xbva) =

= (xa) ({ [a(xb) ] [ (xb)a] }a) = (ax) { [ (a (xb) ] [ (xb) a) ]

:

= { [a (xb) ] [ (xb) a] }x = [ (xa) x] x = xx = 1 . Hence

x
#(a) £x #(b)

y a> Thus x
#(a) = x

#(b) Va>

5) Let x,y >_ b, then x,y e Q[b,l], so z = g.l.b {x,y}
Q[b,l]

exists. Next we show z = g.l.b {x,y}. If q e Q

with q <_ x,y, we want to show q <_ z . But

qVb <_ x,y implies q <_ q V b < z.

2.3 Orthoimplicative algebras.

2.3.1 Definition . (R. Godowski [3]).

Let (A,-, 0,1) be an abstract algebra of type (2,0,0).

For all a,b e A, we denote a-b by ab and aO by a'.

We call A an orthoimplicative algebra (OIA) if for all

a,b,c e A the following hold:

G(l) (ab)a = a

G(2) a(ba) = 1

G(3) (ab)b - (ba)a

G(4) a[c(ba) ] = 1

G(5) 0a = 1

G(6) a(ab) ' = ab

'

G(7) (a'b) ( ( ( (ac)c)b)b) = 1

G(8) [ (ac)b] (c'b) - [ (ac)b]b.
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2.3.2 Lemma. Let (A, -,0,1) be an orthoimplicative algebra.

We define a < b = ab = 1; then for all a,b e A

we have the following:

1) la = a

2) a < (ab)b

3) [ (ab)b]b = ab

4) ab = b iff (ab)b = 1 iff ba = a

5) ab = 1 iff (ab)b = b

6) a(ab) = ab

7) aa' = a'

8) a" = a.

Proof .

The proofs follow from preceding definition.

2.3.3 Lemma . Let (A, -,0,1) be an orthoimplicative algebra.

Then for any a , b e A the following are equivalent.

1) a < b

2) a' = ab'

3) b' < a'

4) b - b'a.



24

Proof .

1 + 2: If a <_ b, then ab = 1. Thus (ab) 1 = and so

a(ab) ' = a'. Hence by (G6) a 1 = ab *

.

2 3: b'a' =b'(ab , )=l. Hence a' = ab ' .

3 * 4 and 4 -* 1 are equivalent to 1 2 and 2 -> 3

2.3.4 Definition . In an orthoimplicative algebra we write

a
J_

b when a <_ b ' .

2.3.5 Corollary . For any a,b e A we have a ]_ b iff a 1 =

a|b iff a < b' iff a' = ab" = ab.

2.3.6 Theorem . Let (A, -,0,1) be an orthoimplicative algebra

respectively

.

Proof

.

Then

(i) < is a partial order relation,

(ii) The poset (A,<_) with the operation a f— a

'

is

orthomodular

,

(iii) If a C b, then ab = a 1 v b.
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Proof .

(i) 1) aa = 1 implies a < a; hence »<_' is reflexive,

2) a < b and b < a imply ab = ba = 1 . Thus by

2.3.3(5) (ab)b = b and (ba) a = a. Therefore

by (G3) a = b. Hence '<_' is anti-symmetric.

3) a < b and b < c imply b = b'a and c = c'b

by 1.3.4. Hence ac = a(c'b) = a[c' (b'a)] = a

by (G4). Thus <• is transitive.

(ii) We have to show the following conditions.

1) a" = a

2) a < b =J> b' < a*

3) If a <_ b', then the least upper bound a v b

exists in A.

4) a v a' = 1

5) a < b and a V

b

1 = 1 imply a = b.

We have proved that conditions 1 and 2 held. Now we show

the other conditions.

3) If a
J_

b then a'b = (ab)b. By 2.3.2 we have

a <_ (ab)b and b < (ab)b. Now if a < c and

b < c then {[(ac)c]b}b = (cb)b = c, and then

(a'b)c = 1 by (G7). So (ab)b < c. Therefore

(ab) b = a v b.

4) Since a ]_ a', aVa' = (aa')a' = a'a' = 1.

5) If a < b, then a
J_

b 1

. a'b" = 1 since

a V b' = 1, hence a 1

< b' , so b <_ a. Therefore

a = b.
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(iii) Observe that if x
J_ y, then by 2 . 3 . 5 xy = x 1 and

x'y = xVy. Now let a C b. Then there exist mutually

orthogonal a,b,c e A such that a = a_
L

v c and

b = b
1
v c . Hence ab= (a^ c) (bjV c] = (a'c) (b»c) =

=
[ (a

1
b
1

) c] (b|c) . Therefore by (G8) ab = [(a-jb^cjc =

= (a'c)c = a' = a' v b.

2.3.7 Theorem . In an orthoimplicative algebra if we write a*^
for the orthocomplement of a in [z,l], then y < x < a

implies a
#(x)

= a # (y) v x.

Proof .

First since x
J_ a

# (y) in [y,l] , then xva #(y) exists. Now

we need to show

(i) a
#(x)

> a #(y) Vx and (ii) a
# (x)

< a # (y) v x.

(i) Since x < a # (x)
we only need to show a # (y) < a

#(x)

# (x) # (y)or (a
) 1 a which is (ax)y <_ a which is

[(ax)y]a = 1. Since a ^ x,y and xQy, we have

[(ax)y]a = [ (a
# (y) V x)

# (y
> v y]

# (y) v a = a v

y

# (y) =

= (a #(Y) )

#(Y)
v v #(y) - a #(y >v # ^> i\ d i V Y -a-'y-i =l since

a#(y)< y
#(Y). Therefore a #(y) < a

#(x)
, hence

a
#(x)

> a
# ( y >y x.

(ii) To show a
#(x)

< a #(y) v x we need a*
(x)

(a
# (y) v x) = 1

but a*( x >(a #(y >Vx) = (a
#(x)

)

#(X)
, a #(y ),/x = 1.

Hence a*
(x)

< a* (y)
v x. Thus a

# (x)
= a* (y)

/ x.
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CHAPTER 3

GENERALIZED ORTHOMODULAR LATTICES

3.1 Definition . A generalized orthomodular lattice (GOML)

is a lattice L with least element on which there is

defined an orthogonality relation
"J_" satisfying:

Jl) a I a iff a =

J2) a ]_ b implies b
J_

a

J3) a
J_

b and c <_ a imply c
J_

b

J4) a
J_

b and a
J_

c imply a I b V c

J5) If a,b e L with a < b. There exist an x e L

such that a
J_

x and av x = b.

Remark . Notice that if (L,<, ',0,1) is an orthomodular lattice

and we define a
J_

b iff a < b', then (L,<,0,1) is a

generalized orthomodular lattice. Hence generalized orthomodular

lattice generalize orthomodular lattices. The kernel of a

congruence relation on an OML is a GOML but not necessarily

a OML. This is one reason for the interest in GOMLs.

3.2 Lemma . In a generalized orthomodular lattice if a
J_ b

and avb
J_

c, then a
J_
bvc.

Proof .

We have avb
J_

c and a <_ avb. Therefore a I c by

(J3) and a [ bvc by (J4) .
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3.3 Theorem. Every generalized orthomodular lattice has the

following properties:

Ql) If b e L, then L[0,b] is an orthomodular lattice.

Q2) If x < a < b for all x,a e L[0,b], then

x
#(a) = x

#(b)
A a where for all y £ L [o,b], x #(Y)

is the orthocomplement of x in L[0,y].

Proof .

We first show that L[0,b] is an orthocomplemented lattice.

Therefore we must show there is a mapping # (b) : L[0,b] * L[0,b]

such that

(i) L[0,b] is bounded

( ii) a
#(b)#(b) = a Va e L[Q/b]

(iii) a
1

< a
2

implies a
* (b)

1 a*
(b)

^ a
1

' a
2

e L C0,b]

(iv) aVa#{b)
= b and a a a

# (b) = 0.

(i) It is clear that every interval is bounded.

(ii) It is enough to show there is a unique x e L[0,b]

such that a | x and avx = b for all a e L[0,b],

For suppose x
1

' x
2

are such elements. So by (J5)

there exist a q e L such that

q J_
x
2

and (*) qvx
2

= x^x^

Since a
J_
x^x^ by (J4) a

]_
x^^v x

2
= qVx 2< Now

q J_
x
2

and a
J_
qvx

2
implies q J_

aVx
2

= b by (3.2)
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So q J_
b and q < b implies q J_ q which mean

q = 0. Thus by (*) x
2

= x
2

so x-^ < x
2

and

by symmetry x
2

< x 2> Therefore x
1

= x
2

and hence

for all a e L[0,b] there exist a unique x e L[0,b]

such that x
J_

a and xva = b. Now define a

to be the above unique x e L[0,b].

(iii) Let a lf a
2

e L[0,b] with a
1

< a
2

. Since a
1 J_

a*
(b)

and a
2 1 a#

(b)
, ai 1 a#

(b)
and then a

±
1 a#

(b)
v a#

(b)

But a
±
v(a* (b) v a#

(b)
) > ^ v aj

(b)
= b soby(ii)

a
#(b) Va #(b) = a

#(b)
B Rence a

#(b) la #(b }>

(iv) First note that by (J3) a a a
# (b)

J_
a, a # (b)

so

aAa#(b)
1 ava #(b)

= b and since aAa #(b) <b,

a Aa#(b)
1 aA a #(b) . Thus aAa #(b) =0. And this

completes the proof that L[0,b] is an ortho-

complemented lattice.

Now before showing L[0,b] is an OML we prove (QO

using the fact that in L[0,b] we have

a
1

< a*
(b) iff a

x
a
2

.

) Let a
1

< a*
(b)

, so by (J3) &1 ]_
a

.

( <=) Let a
1 J_

a
2

, so by (J2) a
2 J_

a
1

and then a
2 J_

a
n
v a?

(b)
l

2
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Since a
2

V (ai Va#
(b)

< a
2
va# (b)

= b, a#(^ = alVa * (b
) and

thus a^j^ * a
2

< a
2

Now we show (Q2)

.

(a) Since x # < a
> 1 x = (x

#(b)
)

#(b
\ x#< a) < x #

<
b >

thus x
#(a)

< x
#(b) Aa.

(3) Since x
#(b) Aa < x # ( b ), x # ( b

) Aa | x = (x
# (^)

#(a)

thus x
#(b>Aa < x

#(a
>. Hence x* <b > A a = x #

<
a

>
.

Now to show (Ql) . We already know that L[0,b] is an

OCL, so we need to show the orthomodular identity holds, i.e.,

x,y £ L[0,b], x < y y = x v (y A x # (b)
) but by (Q2)

x #(Y) = y A x
#(b) and y = x V x # (y) therefore y = x v (y A x # (b)

)

Let L be a generalized orthomodular lattice and for each

subset M of L, let M^" = {x e L : x
J_ y , Yy e M} . if

-L j_
x
1
,x

2
£ M then x^v x

2
e M and also for x

3 <_ x.^ we have

x
3

e M therefore M is an ideal of L. Now let I(L)

denote the lattice of ideals of L, and J
x

denote the

principle ideal generated by x and finally let M be the

set of those ideals I of L such that I = J or
x

j.

I = J for some x e L.

3.4 Lemma . If I e M then I = (I~
L

)

J
~.

Proof .

(i) If I = J then clearly I = (I ) .
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J. J.

(ii) If I = J then let a e I and work in

L[0,aVx] which by (Ql) is OML, so we have x e L with

J_ . -L
,

J.
x v x = a V x wxth x

J_
x and a

J_
x . This

implies a x and hence (I ) CI and I £• (I )

_L -L
so this implies (I ) =1.

3.5 Theorem. M is a sublattice of I (L)

.

Proof .

Given I^I^ e M we must show 1^ V 1^ e M and i £ M

where I
2

= {z : z £ xVy,x e I-|_/y e I
2
>.

Case 1: T
l = J

x'
X
2 = V

Then I
x
v i

2
, J

x
Vj

y
= Jxvy £ M and I/^ - J, Ay e «.

-L _L
Case 2: I, = J and I_ = J .1 x 2 y

(a) We want to show I, V I = J
X

. First note that
1 2 x a y

-L X _L

(I, V I ) = I, ,\ I = J A J = J . Now let a x A y andl £. i z x y x A y -»- J

work in L[0,ayx vy] which is an OML. We have a I x a y and

J_ J. _L J_
a < a vx Vy hence a £ (x A y) = x V y , where (x a y) is the

orthocomplement of x,\y in L[0,avxvy], Therefore

I, v i = (i v i ) = e M

.

l z l z x A y

(3) Note that a e I^Ij iff a ]_ x and a
_[ y iff

1 x V y. Thus I A i = j e M.
1 x V y

Case 3 : I, = J and I n = J .
1 X 2 y

(a) Let x vy = yV y with y | y
1

where y^ is the

orthocomplement of y in L[0,xvy]

Claim: I^I^J^^
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Let a e I^A so a <_ x and a
J_ y. Thus

JL -L
a £ x Vy, aj_y puts a <_ y and hence a <_ x A y . If

a < x A y and a e I
n
a i then I, A I = J -1- e M

.

— * 12 1 2 x A y
J_ _L -L -L

(3) Note that I
2 ) - I

i
Al 2

= J
x

A Jy'
-L

. -L
Let x v y = x v x with x

J_
x and by interchanging

j_
the role of x and y in (a) we see that J a j = j J-

J y x y a x

Thus (I^Ij) =JyAx--

Claim: I^I^ (^A
X

=
A ^.

Let a
J_ y a x . Working in L [ , a v x v y ] , if we let

denote the orthocomplement of x, then by (Q2) we have

x #

X = x A (x v y) . Now a ]_ x Ay implies a < (x A y) =

= x v y = ( (x v y) A x ff

)

ff

v y = x V y . This puts

a e I
1
V I_ = J ; J and establishes (I, v I_) =1-/1.

3.6 Theorem. M is an orthomodular lattice,

Proof .

By definition of M, IeM^l^eM and by the Lemma,

I > I is an involution on M. Since I fi = (0), this

involution is actually an orthocomplementation. Now we have to

show M(I,I ) holds for all I e M. This will be established

by showing that iM(J -J ) and M(J ,J ) both hold for eachXX XX
x e L; an OCL is an OML if orthogonal pairs are modular pairs

[6, p. 100]

.

J- ±
[M(J

x
,J

x ) is equivalent to I <_ J"
x

implies (I Vj^) A J = I] .

Claim 1: M(J^,J ) holds.

Let I < J
x , then if a e ( I s/ J

x ) A J
x , a < b v c with

b e I and c
J_

x. Since a < x we have a < (b Vc)A x =
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= b v (c ax) = b. Thus (I V/J ) A J = I and thereforeX X

M(J^,J ) holds.
A X

Claim 2: M(J ,J
J
") holds.

x x
-L _L

Let I £ J
x

. If a e (IV J
x

) A j then a [ x and

a < b V x with b £ I C J
x ; hence a V b

J_
x and

a < (b v x) A (a v b) = b v (x A (a v b) ) = b £ I. Thus M(J ,J
X

)X X

holds. Therefore M is an orthomodular lattice.

3.7 Definition . An ideal I of an orthomodular lattice is

said to be prime if a
f
b e I implies a £ I or b e I.

3.8 Lemma . Let J be a nonempty subset of an orthomodular lattice

K such that: (a) 1 fL J and (3) J is closed under the

formation of finite suprema. Then J is a prime ideal of

K iff for each x e K either xej or x'eJ. A proper

prime ideal is maximal.

Proof

.

If J is a prime ideal of K, then x a x' = e J

forces x e J or x* e J. Suppose conversely that for each

x e K, either x £ J or x" £ J. Then 1 £ J implies £ J.

If a £ J and b <_ a we must have b £ J, since otherwise

b" £ J would imply that 1 = avb' e J, a contradiction.

This shows that J is an ideal of L. Now if aAb £ J,

a t J, b t J, then a' £ J, b' £ J. Once again this forces

1 = (aAb)va'vb' £ J, a contradiction.
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We conclude that J is a prime ideal of K. An easy argument

that J is maximal is [6, p. 88]

.

Returning now to our situation we have

3.9 Theorem. L is isomorphic to a prime ideal of M.

Proof

.

The mapping x + J
x

is clearly an isomorphism of L

onto a sublattice of M. Also, by definition of M, either

I = J or I = J for each I e M. By Lemma 4,X X

{J
x
|x e L} is a prime ideal of M.

Notice that the mapping x -> of L into M preserves

arbitrary suprema and infima whenever they exist in L. The

assertion concerning infima is obvious, so let x = v x
a a

exist in L. Then J D J holds in M for each index a.X X
a

If I e M and I > all J , then I Pi J > all J . But— X X — X
a a

I H j < j forces I Pi J = J for some y e L. But nowx 2\ x y

J > J
x

implies y > x , and since this holds for every
a

a

choice of a, we have y > x = v x . Thus I Ci J = J < I,— a a xx—'
so J

x
= V

a
J
x

in M '

a

3.10 Corollary . M is an orthocomplemented modular lattice

if and only if L is modular.

Proof

.

M is a sublattice of I (L) and L is an ideal of M.

The Corollary follows from [2, pp. 13, 113].
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3.11 Theorem. Let L be a lattice such that for each x e L.

L[0,x] with the induced order and orthocomplementation

#(x) : L[0,x] -* L[0,x] is an orthomodular lattice. Suppose

also that if a , x ,
y e L and a _< x _< y, then

a#(
x

) = a *^ A x. Then L is a generalized orthomodular

lattice if a ]_ b is defined by a < b
#(av b)

.

Proof .

To show L is GOML we have to show Jl-5 holds.

(Jl) a
J_

a a < a
#(a) = a = .

(J2) a 1 b =» a < b
#(aVb)

=* a
#(aVb)

> b, since

L [ , a V b] is an OML.

(J3) a _[ b and a
±

< a. So a, <_ a < b
# (a

'
V b)

we want

#(a
1
v b) #( a;L b)

a^ _< b since b £ a, v b <_ a - b, b

= b
#(av b)

A (a^ b). We have a
±

< b
# (a V b)

, ^ „

b

# fa / b) # (a
l

/ b)
so a

x
< b

ff ia °' A (a
x

'/ b) = b hence a
± J_

b

(J4) a 1 b and a ]_ c H> a < b
# (a J b)

, c
# (a v c)

we have

b _< a v b < a v b V c. Hence by (Q2) we want a
J_ b V c.

b
#(a -b) m b

#(avbuc) Mavb) lb#(avbvc) and

hence a < b # (a Y b)
< b # (a V b 1 c)

. Similarly since

c < a v c < a b v c, we have a < c
# (a v c)

< c
,(a,,bv

Therefore a < b # (a v b u c)
A c

# (a b ; c) =

, , . # ( a , b > c ) ,
i , , .

(b j c)
v hence a | (b < c)

.
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(J5) Let a, b e L with a < b. We want to show that

there exist x e L with a
J_

x such that a V x = b.

By Gl, L[0,b] is an OML, and so we have aV a*^ = b,

Set x = a* ^ . Then a V x = b so it remains to

# (b)
*^

show that a
J_

x. Notice that a <_ a = (a )

= x
x(b) = x

#(aVx)
sQ a < x

#(aV X)> Thus aJ_
x<

Hence L is a generalized orthomodular lattice.

3.12 Lemma . In an orthomodular lattice, define a«b as

follows: ab = a'V (aAb). If x _< a,b and # is relativized

orthocomplementation in [x,l], that is y = y' v x. Then

ab = a* V (a A b) .

Proof

a V (aAb) = (a'V x ) V (aAb) = a' V (a ,\ b) = ab,

3.13 Remark . Let (P,<) be a poset. Then the dual of P

written SP is the poset formed by P with the partial

ordering defined by x ^^y iff y £ x. Note that the

dual of a lattice is a lattice and the dual of an orthomodular

lattice is an orthomodular lattice.

3.14 Theorem . Let L be the dual of a generalized orthomodular

lattice. Then
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(6Q1) If b e L then L[b,l] is an orthcmodular lattice,

(6Q2) If x > a > b for all x,a e L[b,l]. Then

x
#(a) = x

#(b)
y ^ where for all y e L[b ,l] x #(y)

is the orthocomplement of x in L[y,l].

Proof

.

The proof is dual to the proof of Theorem 3.3.

3.15 Theorem . The dual of a generalized orthomodular lattice

is a quasi implication algebra with ab ;=
^e f

a
#( aA b) where

a
#(aAb) _ a , y ( a /\b) and ' is the orthocomplementation

on [x,l], for any x < a,b.

Proof .

Let L be a <5 GOML and let a,b,c e L. By 4.10 for

any x e L, [x,l] is an OML. For y e [x,l] let y*

^

be the orthocomplement of y in [x,l]. Then we have to

show the following

(i) (ab) a = a

(ii) (ab) (ac) = (ba) (be)

(iii) [(ab)(ba)]a= [(ba)(ab)]b.

„ , # (a a b) , .

(i) (ab)a = a
#(aAb ) a = (a

#(aAb), # « a a)
=

, #(a^b) # (aAb)
- (a ) = a.
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(ii) (ab) (ac) - (ab)
#Ub A ac)

. But

abA ac = a
#(aAb)

A a
# (a A c)

= [a' v (a A b) ] A [a' v (a a c) ]

= a'v(aAbAc) =a'

where 1 is the orthocomplementation of [a b c,l].

So (ab) (ac) - (ab)
#(a,) = (ab)'va' = [a '

v
( a A b) ]

' V a

'

= a ' v b ' and by symmetry (ba) (be) = a' v b' hence

(ab) (ac) = (ba) (be) .

(iii) t(ab)(ba)]a= [ (ab) (ba)

]

# [ (ab) (ba) A a]
. But

#(a A b) ,#(a Ab) .

(ab)(ba) = (ab)
#(abAba) = (a

#(aAb)
)

and a
#(aAb)

A b
#(a Ab) = [ a ' 7 ( a A b ) ] A [ b ' y ( a A b ) ] =

= (a a b) v (a 1

A b' ) . Therefore (ab) (ba) =

= [a 1 v ( a a b ) ]
' v ( a A b ) v ( a ' \ b 1

) = [aA(aAb)']V

v (a A b) / (a* A b' ) =aV(a , Ab'). Hence

[(ab) (ba)]a = [a V (a 1
a b ' )

]

# C (a '
{a '

A b '

} }

A

a] =

= [as (a' A b')]
#(a)

= [aV(a'Ab')]'V a -

= [a 1 A (a V b) ] V a = a V b and by symmetry

[ (ba) (ab) ]b = a V b. Thus [(ab)(ba)]a =

= [(ba)(ab)]b. Therefore every dual GOML is a QIA.



As a consequence of Theorem 2.2.10 and the preceding

Theorem, we see that quasi implication algebras overgeneralize

dual generalized orthomodular lattices only to the extent that

two elements in a QIA which are not bounded below need not

have an infimum.
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Abstract

An implication algebra, introduced by J. C. Abbott [1],

is a pair <!,•> where I is a set and for all a,b,c e I

• : ixi -* I satisfies

Al) (a-b) -a = a

A2) (a-b) -b - (b-a) «a

A3) a- (b-c) = b« (a-c) .

If one begins with a Boolean algebra <B , v , A,
1

, , 1> and defines

a*b to be a'v b for all a,b e B then <B,*> is an

implication algebra.

In the other direction, we show that every implication

algebra <I,«> possesses a distinguished element lei such

that V a e I, aa = al = 1 and la = a. Thus, by defining

a <_ b <=# ab = 1 , we obtain a poset (T,<) with distinguished

element 1 such that [a,l] = {x e I : a <_ x <_ 1} is a Boolean

algebra

.

In Chapter 2, we discuss quasi implication algebras, which

generalize orthomodular lattices as the above implication

algebras generalize Boolean algebras. In particular, we show

that each implication algebra is a quasi implication algebra,

and each quasi implication algebra satisfying the exchange

property a'(b'c) = b-(a-c) Va,b,c el is an implication

algebra. Moreover, if one begins with an orthomodular lattice

(rather than a Boolean algebra as above) and defines a-b to be

a 1 v (aAb) , then <I,*> is a quasi implication algebra.

Chapter 2 concludes with a discussion of orthoimplicative

algebras, and their relation to orthomodular partially ordered

sets

.

Al
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Chapter 3 continuen with t ho study of ijonornlizod ortho-

modular lattices introduced by Janowitz in [2] . These are

lattices L with a least element and binary relation

j[ c Lxl called orthogonality and satisfying, for all a,b,c e L;

Jl) a ]_ a <=} a =

J2) a[b =) b[a
J3) a

J_
b and c <_ a =4 c

J_
b

J4) a [ b and a
J_

c 4 a { (bVc)

J5) a,b e L,a _< b =^ there is an x e L such that

a
J_

x and a v x = b

where we have written a
J_

b for <a,b> e We show that there

is in fact a unique element satisfying the conclusion of J5,

and denote it by a
# ^

. If we let [0,b] denote

{ x e L : <_ x <_ b}, it then follows that the mapping a * a^ ^
is an orthocomplementation on [0,b] making [0,b] an ortho-

modular lattice. In addition, the following "relativization

property" holds: if x < a < b then x # (a)
= x # (b,

A a.

Conversely, we have the following

Theorem : Let L be a lattice. Suppose that for each x e L,

[0,x] is an orthomodular lattice with orthocomplementation

#(x) : [0,x] + [0,x] . Suppose further that the relativization

property holds. Define C LxL by <a,b> e iff

a <_ b#(
a Vb)^ Then <L,0,J_ > is a generalized orthomodular

lattice

.

Chapter 3 continues with a discussion of the embedding

of a GOML in an orthomodular lattice, and concludes with a

proof of the following
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Theorem: Let L be a dual generalized orthomodular lattice.

Let # (x) denote the orthocomplementation on [x,l] and define

a*b to be a #(
aAb )

> Then <L,«> is a quasi implication

algebra

.


