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INTRODUCTION

"I have sometimes thought that the profound mystery which envelops our
conceptions relative to prime numbers depends upon the limitations of our
faculties in regard to time, which like space may be in its essence poly-
dimensional, and that this and such sort df truths would become self
evident to a being whose mode of perception is_according to superficially

as distinguished from our own limitation to linearly extended time."
J. J. Sylvester

The theory of numbers is one of the oldest of the presently "respectable"
mathematical disciplines, and the study of prime numbers one of its funda-
mental topics. While this paper culminates wiﬁh viggo Brun's theorem on the
convergence of the harmonic series of the twin primes, the major portion is
ﬁedicated to a systematic development of the fundamental theorems which lead
to this important result.

As might be expected, the paper begins with Euclid's theorem on the
number of primes and then proceeds to a study of the harmonic series of primes.
fhe major result here is Euler's theorem which proves that this so-called
Euler series is divergent. Also develoﬁed are two O-estimates (see Appendix)

of its partial sums. One,

1
Z -E- ~ loglog X,
P=x

is obtained from Legendre's theorem, m(x) = o(x) as x =+ =. (Theorem 6)

The other,



Y e ( )
L P log log x + C+ 0 for x = 2

1
log x
p=<x

is derived from Chebyshev's theorem, m(x) = O Zng_;j .  (Theorem 10)

The Legendre and Chebyshev theorems are developed in turn from earlier
estimates of the arithmetic function m(x), which represents the number of
positive primes p < x where x is some real number.

Analogously, Brun's theorem is obtained from an estimate of the function

log log x

%
T (x) < Cx ( T &

) for x > 3

where T * (xX) represents the numbe; of twin primes not exceeding x, and C
is a positive constant.

Tt will be noted that a theorem concerning the number of twin primes
is conspicuously absent, since it has yet to be shown if their number is
infinite. (According to Landau, "One would certainly place one's bet on

a 'yes' answer').



ELEMENTARY METHODS

In this section we look at several proofs of Euclid's theorem dealing with
the fact that there are an infinite number of primes. A second theorem =-=-
usually called Euler's theorem -- demonstrates that the harmonic series of the
prime numbers is divergent, which is a much stronger result, and proves Euclid's
theorem as a corollary.

Let us consider first the simplest and earliest proof of Euclid's theorem:
Euclid's own.
THEOREM l.a: There exist an infinite number of primes.

Proof: Suppose there exist only k primes
2,3,5, ... 320
and consider the number
(2+3.5° ... -pk) + 1,

This number is certainly not divisible by any of the k primes, for such
a supposition would lead immediately to the conclusion that 1 was also
divisible by that prime. Hence the number is either itself a prime or
is divisible by some prime which is larger that Py " either of which
results lead to a contradiction of the originél assumption, thus proving
the theorem.
The second proof -- due to Polya =-- depends on the fact that the Fermat
numbers are relatively prime in pairs. The Fermat numbers are, of course,

numbers of the form

F o= 2o 41,



The following preliminary is necessary.
IEMMA 1: No two distinct Fermat numbers have a common divisor greater than 1.

Proof: Consider Fn and Fn+k’ where k > 0. Suppose the following is true.

: 2n
Then if we let x = 2, we see that

Fn+k -2 ) 22n+k -1
H o 1 q
s
_ (E_n)Ek -1
pf 4 3
e
x+1
= x2k -1 - 1512]&-'2 + ... =1
Therefore Fnl(Fn+k - 2) and hence
man+k ~and ml(Fn+k - 2)

which implies that m12. However, since Fn+k is odd, it follows that m - 1.

The proof of Euclid's theorem now follows very easily.
THEOREM l.b: There exist an infinite number of primes.

Proof: Since each of the numbers Fl’F ,Fn is divisible by an odd prime

o3 eee
(perhaps the number itself) which does not divide any of the others, it
follows that there are at least n odd primes which do not exceed Fn. Thus,

since the result holds for all n, the number of primes must be infinite.

Euclid's theorem can be proved in a stronger form by noting that every

integer is representable as the product of a square and a square-free number.



Definition: An integer is said to be square-free if the multiplicities of the
primes in its standard factorization dc not exceed one,
LEMMA 2: Every integer n = 1 can be expressed as the product of a square and
a square-free number.
Proof: Recalling the fundamental theorem of arithmetic, we can represent n as
follows:
a. a a
n=p, 1p2 2 .. P n
Now every exponent is either of the form 2k or 2k + 1. Thus, (reindexing
if necessary)

2k 2k2 2k, 2k, ,+1 2kn +1
nn = pl p2 LR P. Pj+l LI Pn

Ekl 2k
LI Pn pj+1 e e pn

|
o
Ll

B )

P Po Pn Piy1Py4e =00 Py

THEOREM 2: 7(n) = A log n, where 7(n) represents the number of primes not
exceeding n, and where A is a positive constant.

Proof: Let PysPps =e- 5P be the primes less than or equal to n, i.e., r = m(n).

By lemma 2 we can write
n= (nl)2 m

where m is square-free. Since the square-free integers are composed of
primes which appear only to the first power, the number of square-free

integers < n does not exceed

(3) () (1) -5



Since m =2 1, it also follows that 0y < /n, and thus there are no more than

/0 values that n, can assume. Therefore

1
ns=s 2r Jn
or
log n
res log 2

Finally
m(n) =2 A logn

which is the desired result.
It may be noted at this point that Euclid's theorem follows easily by letting
n increase without bound in the final expression above.

The following lemma, often called Legendre's identity, will be of use in
later chapters, and will be used here to prove an interesting result.
LEMMA 3: (Legendre's Identity) Let e(p,n) be the uniquely determined non-

negative integer such that
p |n! and pe+%4h!

where p is a prime and n is any natural number. Then

o+ T 5]
a0 P

where [t] is the greatest integer < t for all real t and the summation

extends over all natural numbers a.

Proofs of this lemma can be found in most texts on elementary number theory
and a detailed treatment can be found in [1].

Employing this lemma, we note the following:



I I Pe(p n) o I I Pe(p’n) (for n > 1)

P n! Pp<n

Since [x] = x, we have

o - T[] = i-%= :
a=1 a=1

and thus

Yar< T L»o?*
P=n

It is well known that

hence

lim 2 I p = o
n+= p s=n

Since this product diverges to infinity,its logarithm must also, thus

hm Z _m
But since p = 2
1ogp Z logp
p=n psn

Therefore
11 ;E lep - a
il P
psn

We now conclude with the following result, which we state as a theorem.
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THEQREM 3: Ez ——%—B = w, where the summation is taken over all prime numbers.
P
We now present two similar elementary proofs for Euler's theorem which
were advanced by Erdos.

THEOREM 4: The series

1, _ i 1 1
Z"{f‘ > T3 ts ..
P

is divergent
Proof: (I): Suppose the series converges. Then we can select j so that the

. . ; 1 .
remainder of the series after j terms is less than - L€y

1 1 1
+ +”.<T

j+1 Pit2

P

Now let us define the following quantity.
N(x) = number of n =< x which are not divisible by any of
Pj+l’ Pj+2’ ... , where x is any positive integer.
Hence, since the number of n < x which are divisible by a prime p is [—%—] 5

the quantity (x - N(x)), which is the number of n < x divisible by at

least one of the primes larger than pj, has the following property.

x-N(x)s[ = ]+[ X ].;.

Pi+1 Pie2
Bt e i A B -—;-
Pi+l Pi+e

or N(x) > -g— .

Claim: N(x) = ol /x

Proof: Let 2,3,4,...,pj be the first j primes, and let n be any number not



exceeding x which is not divisible by p > pj. Then by Lemma 2 we can

express n in the following manner:
_ 2
n= (nl) il

where m is a square-free integer. In other words

where all of the a, are either 0 or 1. Then certainly there are at most

2 numbers m. Furthermore,

n, < /o < /x
and so there do not exceed x values of n,. Therefore

NG < 23 /5

Combining this with the previous result for N(x), we obtain

X < 22J+2.

But this limitation on x is certainly contradictory. The result follows.

The second proof is essentially similar.

Proof: (II): The following inequality is certainly true.

1 1 1 1 1
Z-'§'<T+ 53 + 3G + 75 + .ee
R |
P
1 1 1 1 1 1 1
‘T+(T"3_)+('3_'T)+(4 =) * -



Now if we assume that the Euler series converges, then we can find j such

that the remainder of the series after j terms is less than -%— , L.e.
¥ S
P 3
Then if we consider the number of square-free integers not exceeding n
which are composed only of the primes 2,3,5,...,pj, we can establish the
following inequality.
] - 2. S . JL-ZL
e =zn ZEPEJ ZEPJEn Z 2 P
>D .
J B pJ

P=p. PSPj P P>P.

]

j+ g . . ; ivs
But this implies n < oJ 3 which is again a contradictory restriction,

establishing the desired result.



THE SIEVE OF ERATOSTHENES AND LEGENDRE'S THEOREM

Tn this section we consider certain approximations to the function m(x),
which represents the number of primes not exceeding x.

The method developed will also be used to sharpen the Euler Theorem.
Eratosthenes (circa 300 b.c.) found a method of detecting the primes in the
sequence of natural numbers. It depended on the fact that any proper divisor
of a number must precede the number, but cannot be 1. Thus 2 is the first
prime. After 2, no multiple of 2 can be prime, so all even numbers are
stricken out. Thus three is the next prime. After all multiples of 3 are
removed, 5 is left as the next prime, and so on. This method is known as the
sieve of Eratosthenes. Even more can be concluded from this procedure. If a
number n is composite, at least one of its divisors must be less than or equal
to the square root of n. Then if we have found all primes not exceeding /1
and deleted their multiples, all the remaining numbers up to n must be prime,
i.e., the primes between /T and n are found by eliminating the multiples of
primes less than or equal to /m.

Direct application of the sieve of Eratosthenes to problems of prime num-
ber distribution has not been successful so far, bur various analytic refine-
ments have been used with success and have yielded interesting results. In
this section, sieving methods will be used to prove Legendre's theorem about
the density of the prime numbers. Later they will be utilized to prove Viggo
Brun's very ingenious theorem concerning the convergence of the series of the
reciprocals of the twin primes.

We first establish the following theorem -- a specia; case of which will
yield the sieve we need.

THEOREM 5: Let S be a set of N distinct elements, and let Sl’ ces ,Sr be
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arbitrary subsets of 5§ containing Nl’ s ’Nr elements, respectively. For

lgsi<gj< o <k=sr, let N, ., be the number of elements in S_,

ij...k Tjasck’
Then the number of elements not in any of Sl, aa ’Sr is
K=N-z N, + z N., - + (-DN
i : ij e 12...r°

I<i<r l=<i<i<r

Proof: Let a certain element s of S belong to exactly m of the sets Sl""’sr'
Ifm=0, i.e., if s does not belong to any of the sets Si’ then s contri-
butes 1 to K since it is counted once in N and nowhere else.

Suppose 0 <m < r. Then s is counted once, or ( g ) times, in N,

( T ) times in the terms Ni’ ( 2 ) times in the terms Nij’ etc., Hence the

total contribution to K by s is
m m m m/ m
(5)-(3)+(3)- -+ (3)

( o )1“‘ . ( ‘]‘_‘)1‘“'11 + ( . )1""212 v 3aa B GelE ( = )1“‘

(1 - DT = 0.

Thﬁs an element of S contributes 1 to K only if it is not in any of the Si’
while all other elements contribute nothing. Thus the expression for K
satisfies the requirements.

Remark: To obtain the product formula for the Euler g-function, that is, the
formula which gives the number of integers not exceeding an integer n and
relatively prime to n, take S to be the set of integers 1,...,n, and for

1 <k <r, take S, to be the set of elements of S which are divisible by

k

the prime Py > where

2
n=p Py v P g



il

If din the number of integers not exceeding n which are divisible by d is

193
—. Hence
d

¢ (n)

[}

n - Ez LI ZZ = . ...
P P;P.

lisr © l<i<j<r t
=n ] a--1.
p|n P
A result which will be moét useful is the following. If p(x,r) is the
number of numbers not exceeding an integer x and which are not divisible
by any of the first r primes Pyse=ssPos then

p(x,r) = [x] - z [-IJXT]-'- z [fﬂ] & s

lsi<r l<i<j<r

It is these formulations of the sieve, plus the following lemma, which will

be used to prove Legendre's theorem.

1 1
LEMMA 4 I (l-?)<ﬁ

P <X
Proof: Let x = 2 (x integral). Then

1.-1 1 1
! ] (1——}?—-) = [ (1+T'+—2-+...)
P=XX psX

P

But, in accordance with the fundamental theorem of arithmetic, this is
simply the sum of the reciprocals of all integers whose prime factors do
not exceed x. Then certainly

T o™
P <x P

e
= -

T~

1
By regarding the sum as the area bounded by a step function, we can esta-

blish the following inequality:
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x X
1 du
ZT>I - —ima
k=1 1
I, |
Thus | | 1-—) > 1ln x,
P <X P

or

1 1
i - -E-) = In x

P <X

We now have the necessary means to prove Legendre's Theorem. (The theorem can
be proved without using the sieve process, however the sieve is more appro-
priate here due to the fact that a refinement of the sieving method will be

used in the proof of Brun's Theorem in a later chapter.)

THEQREM 6: The prime numbers have zero density, i.e.,

1gm ) o g

X
X—=

or, equivalently, m(x) = o(x).
Proof: Recalling the function p(x,r) to be the number of numbers not exceeding

x which are not divisible by Py>e++sPp> the inequality
m(x) < p(x,r) + 1T

holds since all primes not exceeding x are counted in p(x,r) with- the

exception of the r primﬂs.pl,...,pr. Moreover,

p(x,r) = [x] - z [-Pi-]-‘- e .

l<isr

g ; T r
Then, since the number of square brackets involved is 1 + ( 1 ) + ( 5 ) +

( ; ) Aowwa F ( z ) = (1 + l)r = 2r, and since the error involved in the

removal of a square bracket is less than one, we can conclude that
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p(x,r) < x - Voo Eoe,,, ws
£ Py
l<i=r
Ir

i
]
~~
r—l
1
vIH
e
+
N

H

or,

mx) <

™

1 T
l1-—)+2 +1r.
| ( o )

PSP,

Now by the previous lemma, for any € > 0 we can choose r = r(e) such that

*T“—W—- 1 1
(l-?)<T€

P =P,

and T(x) < ) ex +2° +r<x (—E— 40 4 ry < X (—5- + —) =ex for

2 2 2 2
sufficiently large x. In particular, since this holds for any positive ¢,
it follows that

lim
X

al®) .,
X

This theorem can be sharpened somewhat if Lemma 4 is used. We can get - by

similar methods -
X
THEOREM 7: 'ﬂ'(x) = O(W)

Proof: Recall

mx) sr+2 +x | | (1-—11;-)

p<p_
1
52r+1+X|[ (1——;)
~ pep,

Then by Lemma 4,
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Now since r is an independent variable, suppose. we let r = log x. We get

=2

lo
™ PR S & g x
(x) < fom o +2 g

_ X log 2

" Tog log x £ Bex )

(since 2108 * = xlog 2

)

The last term above is O(XI-E) for some € > 0, and thus is certainly

(g Ter %)
log log x/ °

= of —* -
Hence m(x) O(log log x) * o(log log x)

_ X
h 0(1og log x)

Euler's theorem can now be strengthened by finding an asymptotic relation-

ship for the partial sums of the Euler series, which will be shown to be

I :

~ ~ log log x
EE P & E
p=x

We begin with the following theorem.

1
THEOREM §: EE —Eg—g ~ log x
p=x

or, more specifically,

-log p _ - ( log x )
EZ 5 = log x + 0 T2 1os &
psx

Proof: It is known for real x and for all natural numbers k that
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[1- %]
k k
A proof of this can be found in [7] p.76 or in most other elementary texts.

Thus by Legendre's identity, we know that

I 5

P =X

and so

log [x]! = z [%] log p + z ([‘—_xé_] + E%]+ ...) log p
p<x

g P P

X X
— | 1 < z (—) lo
Now z [ P ] og p ? g P
P=xX

p=<x
and likewise

T ICERES

pP=x

L 5 rne- § e
p=x - PSx

v

z-i;-logp-longl.
p=x p=x

Moreover
o= Y ([F]+[F]+-)wsrs L (FrS.) s
p=x F P sz P P
Thus
= | ¥ 1 + 0 (1 +.L+ )10 )
log [x]t = § & log p+0(MG) log® +0Gx ) (g + =5 + ... )l ®

pex psx g



LEMMA 5: Let A LA ... be a non-decreasiﬁg, unbounded sequence, and ¢

16

= X y 12%-2 + 0(m(x) log x) + 0( Ej log P)

L .
p=x P=X
Now z 108 X _ (1) since it i t seri
NO X(X*l) since 1 15 a convergen S5€ries, so0

X

_ log P ( x log x )
log [x]' z 5 log 3 + 0(x)

. where the results of theorem 6 have been applied to the second term. On

the other hand, it is shown in [4], §16 that

log [x]! = x log x + 0(x)

Combining these two expressions, we obtain

log p & O( x log x

longx) =x log x + 0(x)

- or

log p (__1_0_3__:*_) = ,
5 +0 Tog 1og = log x + 0(1)

Finally

log p _ ( log x )
E: e log x +0 TEE_TEE—E

p=x
In order to prove the next theorem, we will need the following partial

summation lemma, a proof of which may be found in [57 p.103.

12%p0 juComens

be an arbitrary sequence of real or complex numbers. If f(x) is a function

having a continuous derivative for x = kl, and if we define
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cky = ) .
n
(A =x)

then for x 2 )\l

x
2 €, f(?\n) = C(x) f(x) - jJ\ c(t) f'(r) drt.

n 1
(=)

Having these results, we can now prove the following theorem:

THEOREM 9: z —;- ~ log log x
p<x
Proof: S + z (108 P, 1
P 2 P log p
p=x 2<p=x
log 2, 1
If we utilize the lemma.by letting )\n =p.,c, = b , and f(t) = T
we obtain
X
1 1 log p log p -dt 1
P log x P B 3 P 1 )2 " e 2
t
p=x . e<p=x pst t(log
Then by Theorem 6,
11 - 1ogx)f‘ (”mgt) dt 3
Z_ﬁ—_logxlng+O(1oglogx+ 1ogt+010glogt 2+t 3
p<x 3 t(log t)

¥ a4 ® 1
e — d
_0(1) +f3 t log t +I3 O(t log t log log t) £

X
1
log log x + O(1) +I3 O(t Toz € 1oz 1og t) dt

But

% X dt
= 3 t log t log log t

® 1
j\3 O(t log t log log 1:) dr
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By definition of the O-symbol. Thus

}: -&— = log. log x + 0(log log log x)

psx
and the proof is complete.
We conclude this section by noting that Theorems 6 and 7 both yield results

that are more than sufficient to prove Euler's theorem.
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Chebyshev's Theorem and a Refinement of E: -%f
psx

In order to prove Chebyshev's theorem -- the strongest result concerning

m(x)with which we shall deal -- the following lemmas are necessary.

IEMMA 6: [x] - 2[—%#] <1 for all real x.

Proof: We consider two cases:

A. x=2n+a2a, n an integer, 0 £a <1

[x] = 2n
a a 1
[‘”?] 025 <3

(=]
= [n]
2[—’%—] = on

0

L |
»
et
1
no
i
o]
L
Il

B. x=2n+1+a, n an integer, 0 sa <1

x 7 _ 1 a a 1,
[_2']'[‘”’_2""'5']’ 0= 5 <73

The proof is complete.

2n

IEMMA 7: (
e el

n ‘s .
) = 2, n a positive integer.

. 2n\ _ (o+l) (o+2) (n+3) ... (n+n)
Eroots (n)“ 1.-2-3+ ... °n

n-+a
a




LEMMA 8: (2&1) = 22n’ n a positive integer.
—_— n

2n
Proof: (2’“) < Z (2“) = (1 = I3 = 278
—_— n a

a=0

THEOREM 10: (Chebyshev's Theorem) There exist positive constants €13Cos such

that, for x > 2,

m{x)
P ;- A
il ( x )<°2
log x
Proof: (Note: The ci's contained in the proof are suitably chosen positive
constants.) Let n = 2 be an integer. For each p < 2n there exists a
unique integer rp such that

r r +1

P P <onc P P .

It is evident that
T » | &%
P | nin!
n<p<en
since any prime between n and 2n must be a factor of (2n)! but cannot be
a factor of n!
Now by Legendre's Identity, the exponent of the highest integral power of

p that divides (2n)! is
T

P
2[211
m
m=1 P
. ; 2 4
_ while the corresponding exponent for (n!)  is

o3 [3].



(2n) !
(a)?

3203 - ) (248

Ir r

P - P

) [B)-d&] =) 1-s
m m p

m=1 P P

m=1

Hence the highest power of p which divides (Eﬁl) =

and, therefore

2n rp
( n ) l g =
P <2n
We can now state the following;
2n rp
[T e=(2)= T T »
n<p=en P €2n
But it is evident that
Am@n)-m@)} _ "
n<p<n
, T m(2n) r

and that p P o (en) (recalling that p P < 2n).

P <2n

It then follows that
2n
(m(2n) - m(n)) log n < log ( o ) < m(2n) log 2n,

and we can now apply the results of lemmas 7 and 8.

Thus {m(2n) - m(n)} log n < 2n log 2,

which implies m(2n) - M(n) < ¢ (L)

-
3 log n

Likewise, m(2n) log 2n =z n log 2



N
n

n 5
or m{2n) > C4 ']zé—_a (d)

Letting x =z 4 and applying (2), we get

w0 2 £]) > <,

But since m(x) =2 1 for 2 < x < 4, the result is also true for x = 2. Thus

1og 5 log x

| A | ——

ol o]

| S | ¥

LAY
(lo: x) CI

(The constants c, are positive. Aside from that, their values are of

no concern in this paper.)

letting vy = 4 and applying (1), we get

) - () = mn - ([ L))
w(e[-%-] +1 - W([

W
~—
I'D[“<1
| |
S

L+
2 y
<c ” [_Z_] + 1< e Tog 3
& L2
Thus, for v = 2, m(y) - n(-z—) < c b
d * 2 7 log vy
Noting the obvious fact that W(—%—) < —%— , We get

and

m(y) log y - W(—%—) log y = m(y) log y - n(—?;—) 103(%)

) log y - (%) 1og(%) = (m» - (L)} teg vy + w{ L) log 2

- log vy + -%%

A
o
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I1f we now let y = oy , where m = 0 and & g i , certainly y = 2 is
m ) Yy
2

satisfied., Furthermore

ﬂ(—}f—-)log—}{—-ﬂ(){)loc x~.<c =
2m 2m 2m+l m+1 g 2m

Summing over all permissible values of m, the left side of the inequality

"telescopes" in such a manner that only the terms

x x
m(x) log x - n(;ﬁ:i) log EE;T

X

remain (where oM 5 < 2“+1), while on the right side we obtain a term of the

form x times a convergent series, i.e.,

X X
m({x) log X = ﬂ(éﬁ) log ;-m < c2 X

X x
— = )=
But 2U+l 2, so ﬂ(2M+1) 0.

Therefore m(x) log x < c, X

Hence we conclude

and the proof is complete.

The results of this theorem allow us to improve on the results of theorems 6

and 7 in a straightforward and simple manner. These results are due to Mertens.
THEOREM 9:

EZ 12%—2 = log x + 0(L).

=X

Proof: By re-examining the proof of theorem 6, we note, (in the first expres-



sion for log n!) an error term that is O(m(n) log n). By the theorem just
proven, this can now be replaced by 0(n) and the result of this theorem

follows immediately.

THEOREM 10: There exists a constant C such that

1 1
z ?—lgg logx+C+0(1ogx).
pP=x

Proof: By applying the results of theorem 9 to the proof of theorem 7, we get

the following:

T - o o) o ) e e
ol 2 t(log t)
+‘J‘X (z 105_?__13 - log 1:) _‘Et_e
2 ek t(log t)
=1+ O( L ) + log log x - log log 2
Io & g log g log
[-- I -]
+J’ (z logp_logt> dt E_J" 0(1) dt2
2 P t{log t) x t(log t)

pst

where the first integral is convergent and the second is 0(10; x) . Thus the

result follows.

In the next sections we will see a very interesting analogue to these

theorems.



BRUN'S THEOREM

In earlier sections we proved that the primes occurred frequently enough
that their harmonic series diverged, while in the last sectioms it was shown
by various methods that they are scarce enough that their density is zero. In
this section we prove a theorem due to the Norwegian Mathematician Viggo Brun
which is analagous to Chebyshev and Euler's theorems except that it deals not
with all the primes, but with the twin primes - that is pairs of integers of the
form n, n + 2, such that both n and n + 2 are prime. It is not known whether
the number of such primes is finite or infinite, but the following theorem can
be established.

THEOREM: The series

1

=y o
5
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1 1 1
7wt ts *

-%—+—§-—+ +-%—+-l-11-+-ll§+

of the reciprocals of the twin primes converges.

Remark: 3,5,7 is the only prime triplet, since one of any three successive odd
numbers must be divisible by 3.

A. The sieve.

rin proving this theorem, we will develop a refinement of the sieve used

earlier. This sieve will exclude numbers n where either n or n + 2 is com-

posite.

Definition: Let T(x) be the number of odd primes p < x such that p + 2 is
prime as well. |

Definition: Let U(x;pl,pg,---pr) be the number of odd numbers n < x for which

n(n + 2) is not divisible by any of the odd primes P;,***,P.-

T {pl,---,pr} is the set of all primes p; < /X + 2, then U(x;pl,---,pr)

‘counts only the first members p of the twin primes lying between /x + 2 and



and x + 2. This follows by a simple argument: unless both n and n + 2 are
prime, n > /X + 2, then one of them (and hence their product) must have some
prime divisor p < /X + 2 by the argument in the previous section. Since some

twin primes may be found among P1>*" 5P then the following inequality holds.
T(x) = U(x;pyst++,p) t+r.

Note: If we take for the sieving process only odd primes p; €y < /x + 2,
the inequality still holds. This follows from the fact that U(x;pl,---,pr)

may now contain some odd numbers which are not the first members of twin

primes.

Let us simplify the notation as follows: for Py>t 5P, all odd primes

p; £y, where y < JE+ 2, let
Ux;pystee ,pr) = U(x;y)

(We observe for later use that 2r = y).

Now let B(x;pipj-o-pk) be the number of odd number n = x for which n(n + 2)

is divisible by the product pipj---pk. Then

U(x;y) = [ x;rl ] - Z B(x;p,) + Z B(xspipj)

l<i<r l<i<j<r
v - » e e | - £ = LI ]
). BGsppip) + (-1)7 B(x;p p.) -
lsi<j<ksr

This is established in a manner exactly analagous to that in section 2 once we

x+1
note that

5 ] is simply the number of odd numbers n < X.

(£)

Suppose we let p represent a number which is the product of f different
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prime numbers. Then

T
5y = E T Bimee®
Ueesy) = (254 ) DT ) Baset)
f=

where the inner sum runs over all possible products of f of the primes 3,5,

R D

The following lemmas are now stated without proof:

LEMMA &:
bk
2(-1):\(:> =0 form = £ >0
A=0 >0 for m< £, m even
< 0 for m < £, m odd.
LEMMA 5:

Let p be an odd number and v(p) the number of its different prime factors.
Then the number B(x:p) of odd numbers n < x for which n(n + 2) is divis-

ible by p is

X

Basp) = 2V X

+5 , || =1

Note: For large p, the term E%; will be dominated by the magnitude of §, so it
is advisable to stop the sum in the expression for U(x;y) at some m < T
which, for our purposes, we choose to be even. (Landau proved that failure

to restrict the summation results in a situation that cannot possibly lead

to the desired proof.)

We now obtain



+ [ ]+ i(—l)f IR
f=

T(x) =r
1 p(f)
mn
_ x+1 £ v A x
—r+[2]+2(-1) 22 {-§+e}
f=1 p(f)
' m £ m
_ x+l X g a WEY o
—r+[2]+22(1) (f+52(1)22
£=1 o (D e £= o ()
xib X T £ oF c £ £
=r+[2]+-—-2-2(-1) —(f-j'TBZ(-l)ZE-X-e
£=0 p(f)p £=0 p(f)
m £ m
x £ @ £
Sr+—2—z(-l) /. F'{'z z 2
£=0 (£) P £=0 (£)

where p(o) = 1 and V(p(f)) = f

B. First estimates.

Unlike the problem in Chapter 2, this formulation is not in a readily
usable form. Thus we wish to derive certain estimates of the terms under the

summations which will allow us to complete the proof.

(D)

I. Let us consider the third term first. Since p is made up of all pos-

sible products of f distinct prime factors taken from the first r odd

primes,
m m
L e (3)7
f=Op(f) £=0

But by induction,



m m m
S N B £ wmHl T _f
z ( £ ) 2" < /, (2r) < 2 L T
£=0 £=0 £=0
and
o m+l ol mtl
m+1 f m+l r -1 {2r) -2 ool
> E()-e — —— < (2x)
£=0
m r T
£ £ £
£ ot £ g 2
FTs z GD" ) -Z ey s L (-1) =5
£=0 5 (D P £=0 o (0 e f=mtl p(f) P

By direct multiplication, we see that
2 £
f 2 2
Y'Y T a-w)
£=0 p(f)p i=1 i

For convenience, let us define

Therefore

r

r
T(x) St o] 1[ (1 - -1-)2?) = Z -1y -1 5, + o

L f=m+1

Note: We observe that S, is nothing more than the f-th elementary symmetric

£
; ; 2 2 2
function of the r rational numbers =5 5 ,p—~ . It can be esta-
r

blished simply by multiplying that

Sl-Sfa(f+1) St £f=1,2,0+

(where Sr+1 = Sr+2 = e = 0).

Moreover, the following iterative results can be established

29

1



S S S
1 1 1
88 =5 By S 37 S £ T
We also deduce that
5S¢ 2 5:n
provided
f-l-lel
We also note that
2 2 g _s% 1
ST tE v TEL
T
3=<p=y

and that S1 therefore depends on our choice of y. In light of the above

conclusions, we pick m such that

m+ 1z S1 ‘
Thus it follows that
r - Slmfl
Z (-7 " 8 =S;41 = w1
f=m+1
Slm'*'l es. \wtl
Claim: -(mTl)—! < (m—)
5 n2 n3 ot nn
Proof: 6=1+n+—2—!—+—3!—'+---+-a-i-—+--.>n'
n

n
or n! < (———)
e

Thus the claim is proven.

C. Second estimates.

LJ
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It is now evident that estimates for the terms

: r
5: _l_ and ‘ 1 (1 - 2
fa p i 1 P.

3<psy i= i

are needed, since the first will give an estimate for S1 and the second is

the only term in our sieve formulation that remains indefinite.

By Theorem 10, we see that

s, =2 Z -;—=2loglogy+0(l).

3=p=y
Let us further refine m + 1 so that

2
e Sl <m+ 1< 951 .

which is certainly in keeping with our earlier bound.

Recalling

r

T‘(_l)f . < ( eS1 )m+1

£ 1 —s)

f=m+1
it now becomes evident that
r
mt1 2
- =S

Z(-l)fsls(—i'-) Rl P

f=m+l
. . -X
Furthermore, by observing the series expansion for e =, we see that the

following relation is true for real x.
-X
l-xx<e

Therefore



Combining these results, and using our earlier observation that 2r sy, we
conclude that

-5 981
T(x) <y +xe + y "

.Choice of the parameter.

Now, for y sufficiently large, by our expression for Sl we have

2 log logy - M< S, <3 log log vy,

1

for some positive constant M. Thus the above expression for T{x) can be

replaced by

T(x) £y + EM pd 5 " y2? log log y .
(log y)

"
Now suppose we let y = x' where 0 < vy < —%— . This implies y < /% which

certainly agrees with our earlier restriction on y, i.e., ¥y = /x + 2 .

Thus

1
M b3 27 v log log x
T(x) < x + e zy—l—ag—x—)‘z‘i'x

Tt is evident that if we allow y to be a constant, we will not obtain a
convergent bound for T(x), for the third term in the above equation will

increase faster than will x. Let us choose

1

i for x =2 3 ,
30 log log x

Y

which is always positive and has —%— as an upper bound. Thus

2
1/2 log log x). " x9/10 ,

T(x) < X s =

+ 900 eMx(
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where, for sufficiently large x, the second term will predominate.
Now let T (x) be the number of all twin primes not exceeding x. Then

certainly
242
T (x) =2 T(x).

These results can be combined in the following theorem.

THEOREM: There exists a positive constant C such that T*(x), the number of

twin primes not exceeding x, satisfies

2

* log log x)
T(x)<Cx(logx ,

for x > 3.

Completion of the proof of Brun's Theorem.

We now proceed to the final step - the convergence of the harmonic series

of the twin primes - which follows easily from the preceding theorem. Let

S(x) = Z—%—

p twin prime
p=x

Then

S(x) = E % (T*(n) - T (n - 2)) fo. 0dd)
3<n=<x

This relation follows easily if we note that T*(n} - T(n - 2) is 1 if n is
either the first or second member of a pair of twin primes, and 0 for all

other odd numbers. Now, therefore,

s = ) =T - ) o T

3znsx 3=nsx-2



3<n<x J<n=x
- Y e (- 25) T ()
L T® AT - o)t T
I<nsx
where n = 2[ x;l ] + 1 is the largest odd number which does not exceed x.

Thus, by the theorem,

27 o (sha) + (Rl )

Sy log x

S(x)

O( E (log log n)e)

2
4 s n(log n)

But it is easily shown by the integral test that
< 1
j 1+

" is convergent for € > 0, so it follows that

Ez (log log n)2

2
e n(log n)

is also.
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APPENDIX

DEFINITION: Given function f,g, where g is always positive, we say that:

1 £

2)

0(g) if ‘f‘ < Ag for some constant A,

Fh
il

f
if — -0,
o(g) _1 s

3y fog if —;—- + 1 (read "f is asymptotic to g.'")
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ABSTRACT

The purpose of this paper is to present certain fundamental theorems
regarding the distribution of prime numbers. The paper begins by proving
the existence of an infinite number of primes, and then sharpens this
result by proving Euler's theorem of the divergence of the harmonic series
of the prime numbers. In the second section, sieve methods are used to
show that the primes have density zero, and to give estimates of the order

of T(x) and Ei 1/p. Section three deals with Chebychev's theorem, and
P

further refines the estimates of section two. The final section is devoted
to the proof of Brun's theorem and uses results and methods developed in

earlier sectioms.



