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INTRODUCTION

Determination of the characteristic roots of a matrix is

often of fimdaraental importance in the theory of matrices. The

power method is commonly used when the matrix has a single dominant

root.' Tlais method can also be generalized to determine any num-

ber of equally dominant roots. The main deterrent to its use is

that the multiplicity of the dominant root must be known in ad-

vance. Since this information is rarely available, the develop-

ment of some method to determine the niomber and form of the

dominant characteristic roots in advance would permit selection .

of the appropriate nvimerical procedure.

The power method was applied to matrices with predetermined

dominant roots and the behavior of the results observed through

several iterations. It was the objective of this research to

identify those factors which give definite indication of the

size, multiplicity and form of the dominant roots. Then the

dominant roots of a general matrix might be predicted by ob-

serving the effect of these factors when the power method is

applied to the general matrix.
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:' THE POWER I4ETH0D .'

'

This discussion is drawn from class notes used in Leonard

Puller's course, "Theory of Matrices", at Kansas State University.

If r>i , r2, ...» rj are the distinct characteristic roots

of. the square matrix A, let them have the ordering:

lr-,1 ^ IV2I ^ ... ^ It. I .

J

The minimum polynomial for A (the monic polynomial of least de-

gree satisfied by A) may be written:

m(x) = (x-ri)^1(x-r2)^2 ... (x-r^O^j .

If /rii -^ 'r2i, then (x-r^ ) is defined to be the dominant

elementary divisor of the matrix A. If /ri/ = /r2l = ... =

|rkl ^ Iric+lL then (x - ri )
'^

, (x-r2) ^, ..., (x-r^) ^ are th(

k dominant elementary divisors.

Theorem I. If the matrix A has the k dominant ele-

mentary divisors (x-r^ ) , (x-r2) > ..., (x-r^j) ^,

then for a specified accuracy, there exists an N

such that, for all m -^ N,

(1) A^(A-r-,I)^'' ... iA-r^I)^^ ^ Z .

The matrix Z is the zero matrix, with all components equal to

zero. The power method is developed from a simplification of

this basic theorem.



Theorem II . If the matrix A has a single dominant

root and the dominant elementary divisor is linear

(i.e. /r^i -> Ir2l, k = 1, t^ =1), then for a speci-

fied accuracy there exists an N such that, for all

m -^ N, .

(2) A (A-r^I) ai- Z or A sci^ r^A .

Corollary. For any matrix satisfying the conditions

of the theorem and for any vector Y not in the null

space of any power of A, A^Y is a nonzero character-

istic vector of A corresponding to r-j .

Define: Yq = Y

siYi = AYi-1, i = 1,2,... .

The product AYj__i is "norxaalized" by dividing each of the com-

ponents of AYj__i by a given component. This component is called

the normalizing factor. The product AYj__'] is now expressed as

the product of the normalizing factor Sj_ and a new vector Y^

.

It can be shown that siS2 ••• s^iYm = A^ and

m+1 +1 ^
(n sk)Ym+1 = A^ 'y = AA^ s:iriA^ = ri (n sk)Ym .

k=1 -

, . k=1

This reduces to:

and is called the vector equation. If m is large enough so that

Yfn+I is approximately equal to Yj^, then for any component of Ym,



To apply the power method, an arbitrary nonzero vector Y is

chosen. The vector is multiplied by A and the product normalized

to determine a new vector Y-j . This vector Y^ is in turn multi-

plied by A and the result normalized to get Y2. This procedure

is repeated \intil the same normalizing factor and the same vector

(to a specified degree of accuracy) are obtained for at least two

consecutive iterations. The normalizing factor at this point

will equal r-j and the vector is a characteristic vector corre-

sponding to this root.

Normalization can be done in several acceptable ways. For

this specific investigation, the component of largest absolute

value in AYo was determined. Normalization was then fixed on

this component throughout the iterative procedure. This method

of normalization must be used in order to derive a system of

equations from the vector equation for the solution with multiple

dominant roots.

PREPARATION OP DATA

i

j
Discussion

!

The objective of this research was to determine a way to pre-

dict the dominant characteristic roots of a matrix when the

power method was applied to the matrix. In an attempt to restrict

the variable factors in the problem, the data matrices were

specialized in several ways. ",
.



The results are limited to companion matrices, which were

constructed in the following manner. The roots for the matrix

were selected and the characteristic polynomial formed by taking

the combined product of corresponding linear factors:

_ ^nf(x) = (x-ri )(x-r2)...(x-rn) = x an-ixn-1 -aix - ao

Tlie companion matrix for this polynomial then has the form;

1

1

&2
1

an-2 ^n-l

The companion matrices tested, listed by included roots and

letter code used for reference, are displayed in the following

section.

To facilitate comparison of behavior patterns in the nor-

malizing factors, dominant roots had the same absolute value in

all matrices. The values ±10, ±8+6i, ±6+8i, and +10i were used

as dominant roots; the pair of roots ±2 was also used in each

matrix.

The letter code of a matrix has no inherent significance.

In the explanation of results that follows, a matrix will be

labeled by its dominant roots enclosed in parentheses. Unless

othervrise indicated, it may be assumed that the matrix also has

the roots ±2

.



The power raothod was applied to each of the 5^4- matrices and

for each matrix results were obtained through 99 iterations.

The initial Y vector used in the normalizing process had all com-

ponents equal to one. In addition, some of these matrices wore

tested with different initial vectors. The degree of accuracy

used to determine convergence was ±.00005'

In the ensuing discussion, normalizing factors will fre-

quently be referred to as "S". "Even S" or "odd S" are normal-

izing factors generated at even- or odd-numbered iterations, re-

spectively. -.

To facilitate discussion of the results from matrices with

complex roots, some convention must be understood in referring

to the "sign" of a complex nxomber. Because of the similarity in

the patterns produced by the normalizing factors, it has been

decided to give a complex number the sign of its real part.

Thus, in the ensuing discussion, the pair of complex conjugates,

8±6i, can be thought of as a pair of "positive" numbers.

Reference will be made to the "balance" or "division" in

the signs of the roots. If there is an equal member of positive

and negative roots, the division in signs is equal. If there

are more roots of one sign than the other, there is an lonequal

division or imbalance in the signs of the roots. As the ratio

of roots of one sign to roots of the opposite sign is increased,

the imbalance in the signs is increased.



List of Matrices Tested

Included Roots

10, 10, 2,-2.
.

•

9, 10, 2, -2

10, 10, 5, -2

10, -10, 2, -2

9, -10, 2, -2 .
:v

-10, -10, 2, -2

8+6i, 2, -2

-8±6i, 2, -2

6+8i, 2, -2

-6±8i, 2, -2

+10i, 2, -2

10, 10, 10, 2, -2

10, 10, 10, $, -2

5, 5, 5, 2, -2 ,
-

20, 20, 20, 2, -2

10, 10, -10, 2, -2

10, 10, -10, 5, -2

10, -10, -10, 2, -2

-10, -10, -10, 2, -2

10, 8i6i, 2, -2

10, 6+8i, 2, -2

10, -8±6i, 2, -2

>

'

7

ed

Code Letters

X

V 1

1C .

I

w

Y

Z

u

1A

IB

ID

AA

NN

PP

QQ

BB

00

CC

DD

GG

KK

II

1

(

i
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List of Matrices Tested.--Continued

Included Roots Code Letters

10, ±10i, 2,-2 RR

-10, 8±6i, 2, -2 ' .

JJ

-10, 6±8i, 2, -2 LL

-10, -8±6i, 2, -2
.

HH

-10, -6±8i, 2,-2 MM

-10, +10i, 2, -2 SS

10, 10, 10, 10, 2, -2 ;

"

AAA

10, 10, 10, -10, 2, -2 BBB

10, 10, -10, -10, 2, -2 CCC

10, -10, -10, -10, 2, -2 DDL

-10,-10,-10, -10, 2, -2 EEE

10, 10, 8+6i, 2, -2
.
FPP

10, 10, 6±8i, 2, -2 QQQ

10, 10, ±10i, 2, -2 000

10, 10, -8±6i, 2,-2 GGG

10, 10, -6±8i, 2, -2 RRR

10, -10, 8±6i, 2,-2 HHH

10, -10, 6±8i, 2, -2 WV

10, -10, ±10i, 2, -2 . PPP

10, -10, -8±6i, 2, -2 III

-10, -10, 8±6i, 2, -2 ' JJJ

-10, -10, -8+6i, 2, -2 KKK



List of Matrices Te3ted--Continued

Included Roots Code Letters

-10, -10, ±10i, 2, -2 WW

8±6i, 8i6i, 2,-2 LLL

8±6i, 6i8i, 2,-2 TTT

8±6i, -8±6i, 2, -2 l^MM

8i6i, -6±8i, 2, -2 ' " ':.
^^^

6±8i, -6±8i, 2, -2 ^ _ SSS

-8±6i, -8±6i, 2, -2 • NNN

ilOi, ±10i, 2, -2 •

'^'. XXX

±10i, 8±6i, 2,-2 ^
' YYY

±10i, -8±6i, 2,-2 ,
ZZZ
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ANALYSIS OP EFFECTS OP DOMINANT ROOTS

Discussion

The output results have been sorted into four groups,

according to the dominant roots of the matrix: (1) all real,

(2) all complex, (3) both real and complex, and (I|.) imaginary

roots. Within each of these four major groups are two subgroups

determined by the signs of the roots. Roots with all signs the

same form one subgroup. The subgroup formed by roots with both

positive and negative signs can be further classified according

to the balance in the nuraber of positive and negative roots.

Three principal patterns emerged when normalizing factors

were compared. For matrices with all dominant roots real,

imaginary, or a mixture of real and imaginary, the normalizing

factors increase or decrease monotonically. When the normalizing

factors are graphed with the corresponding iteration numbers, the

resulting curves approach the real root as a limit asymptotically.

For matrices whose dominant roots are all complex conjugate

pairs, a zig-zag or "sawtooth" curve results when the normalizing

factors are graphed. For matrices with both real and complex

dominant roots, the curve formed by the normalizing factors has

either the "sawtooth" pattern or the appearance of a damped wave.

If there are more complex than real roots, the curve is a

"sawtooth". It is also a "sawtooth" when there is an equal num-

ber of real and complex roots but an unequal division in their

signs. The daraped wave pattern occurs when there is an equal
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number of real and complex roots and their signs are all the

same or evenly divided.

The balance in the number of positive and negative roots

has a definite effect on the appearance of the curves. 1i/hen all

the roots of the matrix have the same sign, the normalizing

factors form a single curve. If signs of the roots are mixed

there are two separate but very similar patterns formed by the

odd- and even-numbered normalizing factors. The separation of

the two curves is determined by the balance in the signs of the

roots. It is greater when the division of signs is close or

equal and is lessened considerably when the imbalance in signs

is more pronounced.

With just two exceptions, matrices whose dominant roots are

additive inverses of each other produced curves which are re-

flections with respecf to the X-axis. All later references to

such reflections may be understood to mean reflections with re-

spect to the X-axis. .,. .

The angle between the complex conjugates a+bi is defined

to be the angle enclosed by the two vectors emanating from the

origin and terminating at the points a±bi . This angle is a

definite factor in the results. Its effect is most clearly

noted in the appearance of stronger "outlining" curves which

overlay the basic curves. The nuraber of the "outline" curves

seems to be deteririined by the multiple of the angle vxhich gives

360°.
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Three other factors were investigated but not exhaustively:

the actual numerical value of the root, the effect of the

smaller, non-dominant roots, and the effect of the initial

vector. These factors were checked only in matrices with all

roots real.

A more detailed description of the results from each ma-

trix tested follows.
, . .

= *"
^ f-^^^f ^-

,

Results

The figures referred to belox^r are in the following section

entitled "Graphs".

* \ All roots real

The norraalizing factors of matrices with all roots real

follow a pattern of monotonic convergence. If all signs are

the same, there is a single curve generated. Matrix (10, 10)

produced a monotonically decreasing sequence of normalizing

factors. When graphed, the curve approaches the value 10

asymptotically from above (fig. 1). At the 99th iteration, the

value of S is 10.10226i|. It may be assiomed that if the proced-

ure were continued long enough, the process would eventually

converge, within the desired range of accuracy, to the value 10,

For comparison purposes, the matrix (9,10) was tested--the

sequence of normalizing factors converged to 10 after 75

iterations . .
"
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Almost identical curves are produced by matricoa (10,10,10)

and (10,10,10,10), except that they are delayed or lag behind

that for (10,10) (fig. 1). The first differences for (10,10,10)

are approximately twice the first differences for (10,10). For

(10,10,10,10) the first differences are approximately three times

those for (10,10). It appears from figure 1 that the curvature

is decreased with increasing multiplicity of the root.

When the smaller roots are changed from ±2 to $, -2 in

matrices (10,10) and (10,10,10) the curves for matrices with

roots (10,10,5,-2) and (10,10,10,5,-2) are almost identical with

the curves for (10,10) and (10,10,10) but lag behind by approxi-

mately one iteration.

I'Jhen the real dominant roots are numerically the same but

opposite in sign, the normalizing factors generated are numeri-

cally the same but opposite in sign. The curves of the normal-

izing factors for negative roots are the same as would be pro-

duced by rotating the curves for the positive roots through 180°

with respect to the X-axis. The normalizing factors approach

-10 asymptotically through monotonically increasing negative

values. Because of this correspondence, graphs for (-10, -10),

(-10,-10,-10) and (-10,-10,-10,-10) have not been included.

Matrices {$,$,$) and (20,20,20) were tested to observe the

effect of the size of the dominant root on the rate of conver-

gence. Values of S from (10,10,10) are just twice those for

i$>S>S)' Normalizing factors from (20,20,20) are four times the

corresponding S-values in {$,$,$)- Thus the curves are similar
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in shape to that for (10,10,10) but are spaced on a graph in

relation to the limiting values. The decimal portion of S for

(5,5j5) is almost identically equal to the decimal portion of

S from (10,10), As a consequence, these two curves are nearly

identical but separated by five unitB on the vertical axis.

Graphs have nou been included because there is too much loss in

detail in adjusting the scale on the vertical axis to include

all the curves.

If the roots of the matrix are all real and equal in abso-

lute value, but of different sign, a variation in the basic

monotonic asymptotic pattern develops. The normalizing factors

for even- and odd-nxxmbered iterations form two separate conver-

gences, each having the monotonic and asymptotic properties.

Tfllhen there is an equal number of positive and negative dominant

roots, the two sequences converge to separate values. If the

division of signs is uneven, the two sequences converge to the

same value, but at differing rates.

In r.iatrix (10,-10) even S (normalizing factors of even

index) converge to 1 — in fact, after the eighth iteration the

value of the even normalizing factors remains constant at

0.999999. Odd S (normalizing factors of odd index) converge to

TOO—after the 13th iteration they have the constant value

100.000030. For matrix (10,10,-10,-10) the limiting values of

the two sequences are the same, but at iteration 52 even S

begin to go beyond 1 . However, the rate of increase is so slow

(5-6 iterations to produce a .000001 increase in the normalizing
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factor) as to suggest the possibility of round-off error in the

calculations. Graphs for (10,-10) and (10,10,-10,-10) have not

been included. The .curves for both are essentially two hori-

zontal lines, one at 1 and one at 100. • .

When the division of signs in the real dominant roots is

uneven, odd and even S each form convergent sequences which

have the same limiting value, but the rate of convergence is

different. The limit is always the root with the greater multi-

plicity. In general, the convergence of the even S seems more

rapid than that for odd S. .- •

'

For matrix (10,10,-10) both sequences decrease monotonically

toward 10 (fig. 2). The first differences of odd S are approxi-

mately 10 times as large as the first differences of even S. For

matrix (10,10,10,-10) the pattern of convergence is the same but

the first differences of odd and even S are approximately equal.

The curves for these two convergences are very close to each

other and lag a little behind the curve formed by even S of

(10,10,-10) (fig. 2). _ .. .. ,
.

It was stated above that matrices whose roots are additive

inverses produce curves which are reflections of each other.

Matrix (10,-10,-10) is an exception to this general rule. Both

sequences approach -1 00, but the even S decrease monotonically

from above and odd S increase monotonically from below (fig. 3).

Thus the curves are not the reflection of those for (10,10,-10)

(fig. 2). The curves formed by the even S of both (10,10,-10)

and (10,-10,-10) are essentially the same but separated vertically
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by 20 units on the graph. The rate of convergence of odd S of

(10,-10,-10) is somewhat slower than that for the odd S of

(10,10,-10). Thus, these curves are reflections of each other

in shape but are displaced horizontally. The normalizing factors

of matrix (10,-10,-10,-10) have a pattern which is the same as

that for (10,10,10,-10) with all signs reversed. Both sequences

for (10,-10,-10,-10) increase monotonically to -10 and odd and

even first differences are approximately equal. The two curves

for (10,-10,-10,-10) are quite similar to and somewhat precede

the curve for odd S of (10,-10,-10) (fig. 3).

Prom figures 2 and 3, it is indicated that as the imbalance

between positive and negative roots is increased, the separation

is lessened between the two curves generated.

A matrix with dominant roots (9,-10) was tested but conver-

gence was not obtained in 99 iterations. It was assumed that the

pattern of convergence would be similar to that for (10,-10);

however, the results were more similar to those obtained from

(10,-10,-10) (fig. 3). Even S decrease monotonically to -10;

odd S increase monotonically to -10. Unlike matrix (10,-10,-10)

though, the two curves of (9,-10) are almost reflections of each

other with respect to the value -10.

The effect of the smaller roots was again tested by changing

the roots ±2 in matrix (10,10,-10) to 5, -2. The resulting effect

was a smaller separation in the two convergences—values were

consistently higher for even and lower for odd S. However, this

variation between the normalizing factors of the two matrices

decreased with increasing iteration number.



n

A brief test was made of the effect of the initial vector.

Tne initial vector used with all the matrices had all components

equal to one. Matrix (10,10,-10) was also tested with an

initial vector with components (1,15>1*1»1)« In this case, the

rate of convergence of both even and odd S was slower and the

odd S increased monotonically to 10, rather than decreasing

(fig. i;). The resulting curves are thus more widely separated

than the original pair. When a vector with components (1,1,1,15*1)

was used with matrix (10,10,-10), the even S increased monotoni-

cally and the separation in the two curves is increased. How-

ever, the separation is not as great as when initial vector

(1 ,15,1,1 ,1 ) is used. •
. ,

The same vectors were also tested with matrix (10,-10,-10).

The effect with vector (1 ,15>1 ,1 j'' ) t^^-s to slow both convergences

and thus produce a greater separation in the curves. With

vector (1,1,1,15,1) the rate of convergence for even S was

slower but the rate for odd S was increased. However, even S

were also reversed in direction of approach. The net result was

to bring the two curves closer together.

Matrix (10,-10,-10,-10) was tested with vectors (1,15,1,1,1,1)

and (1 ,1 ,15,1 ,1 ,1 ) • The two curves for this matrix with the

original vector have very little separation (fig. 3). Using

either of the two new vectors produced only small variations in

this general pattern.
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All Roots Complex ;

The angle between, a pair of 'complex conjugates appears to

have a definite influence on the behavior of the normalizing

factors. In particular, the actual factor is the multiple of the

angle ^^hich gives 360°. Results obtained from matrices with com-

plex roots have in common two features v;hich indicate such influ-

ence. The general pattern produced by. the normalizing factors is

interrupted by an irregularity; then the pattern begins to repeat

itself. It is tentatively theorized that these irregularities

occur because the angle between the complex roots is not a perfect

divisor of 360°— the interruption is in a sense a "correction"

factor. In most matrices studied, the irregularity occurred each

time after a sequence of l\]4. iterations; however, this phenomenon

was sometimes noted after sequences of 39 iterations.

The second feature is the appearance of "outlining" curves

which dominate or supersede the curves anticipated from the data.

The number of these outline curves is directly related to the

multiple of the angle between the complex conjugates which gives

360°. The complex roots 8±6i enclose an angle of approximately

73° i|ij.'; when 360° is divided by 72°, the quotient is 5. The

complex roots 6±8i enclose an angle of approximately 106° I6';

when 360° is divided by 120°, the quotient is 3. In results

described below, the factors of $ and 3 will repeatedly appear

in the results for ±8±6i and ±6±8i, respectively. However, when

the matrix contains both, the resultant factor is [j..
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It was stipulated above that the sign of a complex niomber

is that of its real part. The normalizing factors generated by

matrices whose dominant roots are all pairs of complex conjugates

with the same sign produced a pattern designated as "sawtooth".

Because of the rather large spread in numerical values of the

normalizing factors, it was difficult to construct graphs with

any real degree of accuracy. But the general pattern referred

to as "sawtooth" can be illustrated by figure S» which is the

graph of the normalizing factors of matrix (8±6i). A "sawtooth"

curve has several values, decreasing in absolute value, followed

by a single value of opposite sign. The number of values in a

group appears to be a function of the angle between the complex

conjugates. The grouping of values is repeated with noticeable

"drift". It is broken at definite intervals by an irregularity

(discussed above), usually a group of fewer values. Following

such an interruption, the initial value of the next group pro-

duces a new extreme peak and the cycle is begun again.

For matrix (8+6i) (fig. 5)* there are five values in each

group: four positive values, decreasing in absolute value, and

a single negative value. The sequence, containing nine peaks,

appears to have a cycle of iji). iterations. The cycle is illus-

trated by the portion of the curve between iterations 50 and 9if.

The pattern for matrix (8+6i, 8±6l ) is very similar to that of

matrix (8±6i) but the peak values are more extreme. For matrix

(6±8i) (fig. 6), the same sawtooth pattern occurs, but there are

only two or three values of the same sign, followed by one value
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of opposing sign. This produces a sawtooth graph with "teeth"

which are more frequent and irregular in shape. It is thus more

difficult to note the irregularity which interrupts the sequence.

The drift of the peaks is also reversed. For xtiatrix (8±6i)

the peaks within a given sequence are lower with increasing

iteration; for (6±8i), the peaks are higher as the iteration

monber increases. This drift appears to depend upon the angle

between the complex conjugate roots. For 8±6i, the angle is

slightly larger than the nearest integral divisor of 360°. The

drift is downward. For 6±8i the angle is somewhat smaller than

the nearest integral divisor of 360°. The drift is upward.

However, another pattern seems to dominate the sawtooth for

(6±8i). It is formed by joining those values of S whose itera-

tion numbers have the formula yen. + j, m = 0,1,2, ... and

j = 0,1, and 2, forming three separate sawtooth curves (fig. 7).

This phenomenon occurs many times with complex roots; the curve

anticipated from the data is dominated or superseded by a

stronger set of curves.

Changing the "signs" of the complex roots produces curves

which are just reflections of the original curves. However,

correspondence of actual numerical values is not as close as for

real roots, particularly at the peaks. Thus the curves for ma-

trices (-8i6i), (-8±6i, -8±6i ) and (-6=t8i) are simply the re-

flections of those for their positive counter parts, discussed

above. The graph for matrix (-8+6i) (fig. 8) has been included

for later reference.
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The norraalizing factors of matrix (8±6i, 6±3i ) produced a

nearly level sawtooth curve with almost no drift. Apparently

the opposing drifts for 8±6i and 6±8i "cancel" or negate each

other when the roots appear in the same matrix. There are four

values in each group; the second and third values are usually

approximately 8.0 and 2.0 and the initial value is approximately

16.0, except when extreme peaks are generated.

As in the case of real roots, when the roots of the matrix

have different signs, even and odd S produced separate patterns.

For matrices (8+6i, -8+6i ) and (6+8i, -6+8i ) even S were constant

at .999999 or 1 .000000, and odd S produced a variation of the

sawtooth pattern. For (8+6i, -8+6i ) there are five values in a

group: two positive, one negative, one positive, one negative.

This grouping of five values is repeated, with downward drift in

the values, then interrupted by an extra pair: one positive, one

negative. Then the pattern is begun again. Rather than relating

to its ovm roots, the results from matrix (8+6i, -8+6i ) more close*

ly resemble the reflection of the results for matrix

(6±8i, -6±8i). The pattern formed by the odd S of (8±6i, -8±6i

)

is very similar to the curve for matrix (6±8i) (fig. 6). The

curve for(8±6i, -8±6i ) has two outline curves, formed by joining

every other odd S. These two curves resemble the three outline

curves for matrix (6±8i) (fig. 7). For matrix (6i8i, -6±8i)

the pattern is the same as the curve (8±6i, -8±6i ) with all

signs reversed, but numerical values do not particularly corre-

spond. The odd S of matrix (6±8i, -6±8i ) have a pattern very
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similar to that for matrix (-6±8i). The two outline curves are

very similar to the three outline curves for (-6±8i).

Matrix (8±6i, -6+8i ) produced a sawtooth curve which is

much like that for matrix (6+8i) (fig. 6). There are four out-

line curves, one of which is nearly constant at 3*0. The other

three curves are similar to the outline curves for (6±8i) (fig.

7). These curves each shov; a cycle of l^.^. iterations.

Both Real and Complex Roots

One real root, one complex conjugate pair

For all matrices with three dominant roots, one real root

and one pair of complex conjugate roots, the pattern exhibited

by the normalizing factors is some variation of the sawtooth

curve which was produced in the case of the complex conjugate

pair alone. 'When all signs of the roots are the same, there are

more values in each group. This gives the appearance of having

"stretched" the curve (figs. 8 and 9). For matrix (10, 8+6i

)

the single negative value in a group does not occur; all nor-

malizing factors are positive. For (10, 6±8i ) there is an oc-

casional negative value, but not with every group. The graphs

for both are similar to each other, but peaks occur more frequently

for (10, 6±8i). The graphs for (-10, -8±6i ) (fig. 9) and

(-10, -6±8i) are also similar, except for frequency of peaks.

They are almost exact reflections of (10, 8±6i ) and (10, 6±8i

)

except that the peaks are more extreme.
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I;nien the signs' of the roots are not the sarae, there must be

an uneven division of signs, since there are only three dominant

roots. As with a matrix with all roots real, odd and even S

form tx>ro separate sequences. The shape is determined by the

complex roots. The patterns produced by matrices (10, -8±6i

)

and (-10, 8±6i ) are essentially negatives of each other. For

matrix (10, -8+61) (fig. 10), odd and even S each form a sawtooth

curve similar to that for (-8±6i) (fig. 8). The curves produced

by matrix (-10, 6±8i ) (fig. 11) are similar to the curves gener-

ated by matrix (6±8i) (fig. 6). Again, a pattern of three curves,

formed by joining every third normalizing factor (fig. 12),

seem^s to overlay this pattern, as was the case with matrix

(6±8i) (fig. 7).

Two real roots, one complex conjugate pair

When the matrix has four dominant roots, two real roots and

one complex conjugate pair, there is one of three patterns gen-

erated. If all signs are the same, a single damped wave- type

curve results (fig. 13)» If signs are equally divided, there

are two wave-type curves (fig. li].). If there is an imbalance

in the signs of the roots, there are two sav/tooth curves

(fig. 18). • •

For matrix (10,10,8+6i) (fig. 13), all normalizing factors

are greater than 10. The curve oscillates above a baseline of

10 and is damped asymptotically from above. When the curves for

matrices (10,10) and (10,10,10) (fig. 1) are superimposed on
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this graph, the curve for (10,10) appears to bisect the wave and

the curve for (10,10,10) seems to be tangent to the peaks of the

wave. Matrix (-1 0,-10, -8+6i ) produces a curve which is a re-

flection of that for (1 0,1 0,8±6i ) . The curve generated by matrix

(10,10,6±6i) has the same general struct\jre as that of

(10,10,8i6i) but peaks occur more frequently. Eight values form

an individual wave for (10,10,8±6i) and there are six values in
,

an individual wave in (l 0,1 0,6+8i )

,

If the signs of the roots are mixed but equally divided be-

tween positive and negative (i.e. both real roots have the same

sign), even and odd S each produce a damped wave- type curve,

which oscillates around the curve generated in the case of the

real roots alone. The peaks of one curve coincide with the

valleys of the other. This is illustrated by matrices

(10,10,-8±6i) (fig. lif) and (1 0,1 0,-6±8i ) (fig. 16). For matrix

(-1 0,-1 0,8±6i ) the curves are reflections of those for

(1 0,1 0,-8±6i ) . This is the expected result if conclusions are

extrapolated from previous cases. However, in sketching these

curves, others predominate. For matrix (1 0,10,-8±6i ) there are

five outline curves, formed by joining every fifth normalizing

factor (fig. 15)« Three decrease monotonically and asymptoti-

cally, one increases monotonically and asymptotically, and the

fifth may be either monotonic increasing or have a slight wave

form. The appearance of outline curves is even more dramatically

illustrated in matrix (1 0,1 0,-6+8i ) (fig. 17). Dominating the

wave-type curves formed by odd and even S are three other wave-
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type curves, formed by joining every third normalizing factor.

The results from this matrix first called attention to the out-

line curves in other results. Again, the niimber of outline curves

apparently bears a direct relationship to the size of the angle

between the complex roots.

If the division of signs in the roots is uneven (i.e. the

two real roots have different signs), odd and even S form

separate curves and each has the sawtooth shape. The two curves

are very similar; the curve for odd S is displaced just one

iteration behind that for the even S. It was noted in the

discussion of real roots that matrices with greater imbalance in

the signs of the roots generated curves with a smaller separa-

tion. This same effect can be noted with mixed roots by com-

paring the results for matrices (10,10,-10) and (10,10,10,-10)

(fig. 3) with those for matrices (10,-8±6i) (fig. 10) and

(10,-10,-8=61) (fig. 18). For matrix (1 0,-10, -8±6i ) (fig. 18),

the curves have a shape very similar to that for ( -8±Di ) (fig. 8),

indicating again that the shape is determined by the complex

roots. Matrix (1 0,-10, 6±8i ) produced a pair of curves similar

in shape to that for (6±8i) (fig. 6). The curves of matrix

(1O,-10,8±6i) are reflections of those for (1 0,-1 0,-8+6i )

.

'-.,.' '. Imaginary Roots

Matrices that have Imaginary dominant roots give responses

which may be either like those for real roots or those for com-

plex roots. For matrix (+10i) even 3 are constant at 1.0 and
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odd S constant at -100.0. The two sequences of the nor]:Tializing

factors of (+10i,+10i) have the same limits, but the even 3 of

this matrix begin to go below 1.0. At the 98th iteration S has

the value .999992. This is probably due to round-off error.

These two patterns are very similar to those for matrices

(10,-10) and (10,10,-10,-10). '^

For matrix (10,i10i) there are four separate sequences

formed by the normalizing factors, converging monotonically to

fo;ir different limits. After iteration I).5, the four limits

have the constant values: 3-66571^6, 182.797110, 10.91+5287, and

1 ,363456. Two of the four limits are negative for matrix

(-10,+IOi): 8.992830, -221.200370, -9.OI4.52II, 0.555775. These

values are constant after the 17th iteration. For matrix

(10,-10,+1 Oi ) there are four separate curves decreasing mono-

tonically to the values 1.0, 2000.0, 1.0, and 5.0.

Matrices (10, 10,+IOi) and (-1 0,-10, + 1 Oi ) also show four

separate convergences but to the same limiting value: the value

of the real root. For matrix (10,10,±10i) (fig. 19) there are

foxir curves decreasing monotonically and asyiaptotically toward

10. Ivhen this graph is superimposed upon the graph for matrix

(10,10,-10) (fig. 2), the four curves for (10,10,±10i) "bracket"

the two curves from (10,10,-10). As with matrix (10,-10,-10)

(fig. 3)} the curves for matrix (-1 0,-1 0,+10i ) are not reflections

of those for (1 0,1 0,±1 Oi ) . Three of the curves for ( -1 0, -10,+IOi )

,

increase monotonically and asymptotically to -10, but one curve

approaches -10 through monotonically decreasing values.
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In all these cases, the product of the four limiting values

is 10,000. The n\amber of curves generated by these matrices has

particular significance. Imaginary numbers have an argument of

90°, which divides 360° into J4., and there are four curves gener-

ated.

If the matrix has both complex and imaginary roots, a very

irregular sawtooth curves results, but there is a definite cycle

in the pattern. For matrix (±10i,8+6i) the sawtooth curve has

a cycle of 3k- iterations. Matrix (±10i, -8±6i ) produced a curve

which is essentially the reflection of that for (+10i,8+6i).
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Graphs

All of the graphs in this section are of curves resulting

\Aien. the normalizing factors of a matrix are plotted corresponding

to the iteration ntmiber. Vertical axes are labeled "S" and

horizontal axes labeled "N" . Portions of the curves are occasion-

ally deleted in order to maintain a scale on the axes which would

permit the characteristic shape of the curve to be displayed.

The matrices whose normalizing factors are plotted in each graph

are listed below with the figure number. Not all matrices tested

have graphs included in this section.

10,10), (10,10,10), (10,10,10,10)

10,10,-10), (10,10,10,-10)

10,-10,-10), (10,-10,-10,-10)

10,10,-10)— tvxo different initial vectors

8+6i

)

6±8i)

6±8i ) --outline curves

-8±6i)

-10,-8±6i)

10,-8±6i)

-10,6±8i)

-10,6+8i)—outline curves

10,1C,8±6i)

10,10,-8+6i), (10,10) -.

10,10,-8±6i)— outline curves

Pigure 1 (
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Figure 16 (10,10,-6x31), (10,10)

.' 17 (10,10,-6±8l )— outline curves

.18 (10,-10,-8±6l)

,19 (10, 10, ±101)

w^i.
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CONCLUSIONS

The largest matrices tested were of dimension six and had

four equally dominant roots. Extrapolation of results and con-

clusions to non-companion matrices or to matrices with greater

than four equally dominant roots can only be suggested.

The power method is applied to a matrix and the pattern

produced by the normalizing factors over several iterations is

noted. Because of the cyclical behavior noted, a minimum number

of 50 iterations should probably be used. Based upon the data

matrices discussed above, the following predictions might be made

about the dominant characteristic roots of the matrix.

If the method converges, the matrix has a single real domi-

nant root.

A curve which approaches a limit monotonically and asymptoti-

cally indicates real or imaginary roots. If there is just a

single curve, there are two or more real roots with the same

sign. The limit is the value of one of these roots.

Two such curves can be formed by the odd and even normal-

izing factors approaching different limits. If the limits have

the same sign, there are an equal number of positive and negative

real roots. If the two limits have opposite sign, the roots are

pairs of imaginary numbers. If there are two curves approaching

the same limiting value, the roots are real and there is an im-

balance in their signs. The limit is the value of the root with

the greater multiplicity. The separation between the two curves
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gives some indication of the division in signs. The separation

is decreased as the imbalance is more pronounced.

If there are four monotonic curves approaching four limits,

there are both real and imaginary roots. If there is more than

one real root, the signs will be mixed. If there are four such

curves approaching the same limit, the roots are a mixture of

real and imaginary and the real roots have the same sign. The

limiting value is that of a real root.

A sax^tooth curve indicates the presence of complex conjugate

roots. Tliere will be a cycle in the pattern which repeats it-

self. There may also be outlining or dominating curves. The

length of the cycle, the "drift" of the curve, and the number of

outlining curves are thought to be determined in some manner by

the angle between the complex roots.

If there is a single sawtooth curve, the roots can be all

complex or complex and imaginary or complex and real. If real

roots are present, they will have the same sign as the complex

conjugate pair.
'

If there are two sawtooth curves, forraed by the odd- and

even-numbered normalizing factors, there are both real and

complex roots and the signs are mixed. The separation in the

two curves gives some indication of the imbalance in signs . If

the two curves are evenly spaced, there is one real root,

opposite in sign to that of the complex pair. If the two curves

are separated by just one iteration, there are two real roots

which are additive inverses.
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A wave-like curve indicates both real and complex roots,

with an equal n^oiaber of each. If there is a single curve, the

roots all have the same sign. The curve oscillates above a

baseline equal to the real root..

If there are two curves, formed by odd and even normalizing

factors, the signs of the real roots are the same and opposite

to those of the complex roots. The two curves oscillate around

the curve generated by the real roots alone

.

The Sk- matrices tested are only a small portion of the possi-

bilities iniierent in research of this nature. Within the limi-

tations of this study are several suggested extensions.

For real roots, fig. 1 would probably be enhanced by the

addition of the curve generated by the matrix \iith roots

(10,±2). It would also be of interest to determine if the curve

approaches a straight line as the multiplicity of the dominant

root is increased beyond k.. If matrices with more than L|.

equally dominant roots were tested, the effect of the balance in

the signs of the roots could be further analyzed. The only

ratios possible in this study were 2:1 and 3:1 . The influence

of the angle between a pair of complex conjugate roots could be

further investigated by choosing complex conjugates vrhose in-

cluded angle is som.e factor of 360*^ other than 3 or 5 •

Such factors as the actual numerical value of the root,

the effect of the smaller, non-dominant roots, and the effect

of the initial vector were mentioned but certainly not
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investigated exhaustively. Each factor in. itself might provide

material for extensive study. .
-'

The behavior of non-companion matrices has not even been

attempted in this research. "
,

The ultimate goal, of course, would be the derivation of

one or more formulas incorporating all essential factors.

These formulas would then be used to predict the multiplicity

and character of the dominant roots of any matrix.
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EXTENSION OF THE POVffiR METHOD

Two Dominant Roots

The power method can be expanded to determine any number of

equally dominant roots. If the matrix A has two linear dominant

elementary divisors, the procedure is developed from the approxi-

mate equation:

A^(A-rTl)(A-r2l) ^ Z .

This equation can be viewed either as a simplification of equa-

tion (1) or an expansion of equation (2). Applying the iterative

procedure to this equation yields the vector equation:

corresponding to equation (3)«

^Tnen m is large enough, then for any component of the Y^:

(6) Sj^+2Sm+1 - (^1 - ^2) %+1 + ^^^2^ ,

corresponding to equation {l\.) .

Itoen a matrix has two equally dominant roots in its minimvua

polynomial, ir-^1 = lr2i and three possibilities exist:

r^ = r2; r-j = -r2; or r-] - '^2' Substitution into equation (6)

of each of these possibilities provides the three specialized

equations:

2 '

(7) Sni+2Sm+1 " Sr^Sja+l + r-i ^ .
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. 2
(8) s^+2Sm+1 - r^ ^

2 2
(9) s ,oS ,. - 2as ,^ + a + b «^ ,
^ ' m+2 m+T m+1 *

where a+bi has been used to denote a pair of complex conjugates.

If r^ ~ ^2' ^^® matrix A actually has a single dominant

elementary divisor which is quadratic. Thus equation (7) is

also derived from Theorem I (p. 2) with k = 1 and t^ = 2.

Equations (8) and (9) can be derived from Theorem I with

k = 2, t-j , t2 = 1 , and the appropriate relationship of the two

roots

.

For a matrix with a single dominant root, solving for the

root is fairly straightforward, because the normalizing factor

generated at each iteration _is an approximation to the root.

For multiple dominant roots, finding the roots necessitates

first generating the normalizing factors and then solving a

system, of linear equations. Two consecutive equations like

equation (7) can be generated by increasing the index on the

normalizing factors by one. The solution of this pair of equa-

2
tions, linear in r^ and r-^ , can be obtained and compared for

accuracy with the solution obtained from the preceding pair of

equations. The same method is used to find a pair of complex

conjugate roots (equation (9)). When the real roots are addi-

tive inverses (equation (8)), the procediire is somewhat simpler.

At each iteration an approximation to the root can be obtained by

taking the square root of the product of two successive normalizing

factors, '
' * • ;.
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When the root has been approximated to the desired degree of

accui-'acy, a double chock should bo made with the vector equation

to assure convergence.

It must be Imovm in advance that the matrix has just two

dominant roots if this procedure is to be applied. Knowing the

form of the roots simplifies the work somewhat by indicating

which equation (7,8,9) is applicable. Plowever, a solution can

be obtained from the general equation (6).

Three Dominant Roots

A matrix with three equally dominant roots in its rainimiim

polynomial requires procedures much like those for tv;o dominant

roots. The equations become more complicated and three consecu-

tive equations must be generated to obtain a solution. Corre-

sponding to equations (5) and (6) are the equations:

(10) Si^+3Siii+2Sm+1^m+3 " ^^1 + ^2 + r3) s^+2Sin+iYm+2

+ (rTr2 + r2r3 + rir3)sm+lYia+1 - rTr2r3Yra ^

(11) 3Di+3Sin+23m+1 " ^^ + r2 + r3)sm+2Sm+1

+ {v^v^ + ^2!'^3 "^ ^1^3)sm+1 ~ 3?-ir2r3 th .

When there are three equally dominant roots in the minimum

polynomial, I r^ I =!r2l -Iroj and there are three possible rela-

tionships: r-j = r2 = r3; r^ - V2 - -^3? ^^ real, V2 = ^3. For

these possibilities equation (11) has the three separate forms:
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2
"^

(12) 3^+33^1+2 3^1+1 - 3ri3j^+23m+1 + 3r'>i 3r^+i - v^ ^

2 3
(13) 3m+3^m+2Sm+1 " ^1 Sm+23m+1 " ^1 3^+^ + r-, ^^

%+3Sra+2Sra+1 ' (2a + r^ )sj^+2Sm+1

2 2 2 2
+ (a + b + 2ar>i )Sj,^+-^ - r-] (a + b ) ^ .

2 2 2
The last equation can be simplified by noting that a + b = r^ :

^^^) 2m+3^m+22m+1 " ^^a + ^^ )s^+2^m+1 "^ ^l^^a + r^ )s^^>, - v^^ ^ 0,

Theorem I can be used to derive these same three equations.

If ri = r2 = r-^, equation (12) is obtained by setting k = 1,

t^ = 3« In this case, the matrix A has a single cubic dominant

elementary divisor. Wnen r-] = r2 = -r3, k = 2, tl =2, t2 - 1 ,
'

equation (13) is the result. The matrix has two dominant ele-

mentary divisors, one quadratic and one linear. Equation (lij.)

evolves when ri is real, r2 = r'3, k = 3, ti = t2 = t3 = 1 . The

matrix in this case has three linear dominant elementary divisors.

Equations (12) and (I3) are linear in r^ , r>| , and v^^ , In

equation (lij.) the ratio of the factors r^ (2a + r^ ) and (2a + r^ )

gives an approximation to r^

.

After obtaining a solution to the accuracy desired, the re-

sults should be checked with the vector equation.

By extrapolation from the double and triple root cases just

described, it is obvious that the power method can be extended to

determine dominant roots of any multiplicity. Thus the dominant

roots of a matrix could be determined by applying the power
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method successively for 1,2, ..., n roots imtil convergence is

obtained. However, such a method would be both tedious and

highly impractical for matrices of large dimension.

Computer Programs

A program for the IBM 1I|.10 computer executing the pox-/er

method for a single dominant root was already available when this

research was vmdertaken. Six other computer programs were written

to permit determination of each of the three separate cases for

two or three equally dominant roots. Ihis required only minor

changes in the basic program and the addition of the algebra

necessary for the solution of a system of equations in each

particular case. The method of generating the normalizing fac-

tors remains the same for all seven programs. The only differ-

ence in the programs is in the determination of the dominant

roots

.

Incorporated in the program for two dominant roots, r^ = '^2'

are formulas to give corresponding characteristic vectors for

both roots. These formulas are:

P^i = r^Yij; + Sic+^Yiji+i = riYii + AY^, corresponding to r^ , and

?2 - 2^2Yk - sic+iYic+i = r^Yic - AYk, corresponding to r2

.

When the power method has converged for the roots r-] = -r2,

vectors of alternate index will be equal: Y^^ = Yi^+2* ^® prod-

uct of two normalizing factors equals the square of the root or
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2
the negative of the product of the two roots: 3i^+^ si^+2 =1*1 =

-r^r2. Using this information and the definition, s.Y.= AY. _-, ,

it can be verified that these are characteristic vectors:

AP-i = A(rTYk + Sk+lYk+i) = r-jAYk + s^+lAYk+i

2

= r^Cr^Yic + Sic+iYic+i) = r^f^i;

AP2 = ACr^Yk - Sk+iYk+i ) = riAYk - Sk+iAY^+i

= ^isk+l^'k+1 - Sk+lSk+2Yk+2 = -r2Sk+1^k+1 + ^1^2Yk

= ^Z^^'l^k - 2k+1^k+l) = ^2P2-

Similarly, since normalizing factors of alternate index will be

equal, it can be shovjn that the formulas:

^2 ^l\+1 " ^k\ ^l\+1 " ''^'^k-l

will also give characteristic vectors.

Matrices (10,10,10) and (10,10,10,10) were tested in the pro-

gram v;ritten to determine two equal dominant roots . The value

computer for the root in (10,10,10) is very close to the value

of the normalizing factor for (10,10) at the same iteration.

The values computed for the root in (10,10,10,10) are close to

the values of the normalizing factors for (10,10,10). However,

when matrix (10,10,10,10) was tested in the program for three

equal dominant roots, no similar correlation was noted.
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\^Qlen matrices (10,10,10), (-10,-10,-10) and (10,-10,-10)

were first tested in the programs for finding three equally

dominant roots, the process did not converge. VJhen the required

degree of accuracy was reduced from ±.00005 to +.005, convergence

was obtained in all three cases after 12 or 13 iterations. With

the accuracy level at +.00005, matrix (10,10,-10) converged after

J4.I iterations; with the lower accuracy requirement, it converged

in 12 iterations. The degree of accuracy obtainable in the pro-

grams can be increased by increasing the number of significant

digits carried by the computer. For these programs, provision

was not made to increase the eight significant digits normally

handled by the lij.10.
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KSU 1410 CQ.vpUTlNG Cfi^Tik PA'iE

MONT.$ JUB FIND DOKTNA,\r CHAR. ROUT AND CORi<ESP. VlCTOk

D[:'i[:.NSIO,MA( 10, 10) ,Y(1G) ,Z(10) tCOMPdO)
14 Fg<<.MAT{ lHl,39X,i.-iHDUMINANT CHARACTERISTIC ROOT AND CORRESPUNOING V

1 EC TGi-<

)

1 FORMAT (2 15)
2 F0RMAT(3Fia.3)

17 FuRiMAT(10Fa.6)
3 FORMAT

{

1HL,62X»BHMATRIX A)
4 FORMAT ( lHK,10FiJ.3)

12 FOKMATC lHL,62X,9hIN[TIAL Y)
13 FGKKAr(lHK,60X,FlG.6)

'3 F0R.MAT(lHu,37X,iH.\,t>X,7HAY{iM-l) , 7X ,4HY( N ) , lOX , 1 HS , 8X , IIHS ( ^ )-S ( N-1

t, F0K^'lAT(//34X,l 5,4il3.6)
7 F0R,«AT{39X,2FI3.6)
8 FORMAT (//IH ,12HKr.SULT AFTt;R,I3,llH ITERATIONS)
9 F0RiMAT(1H:<,10X,5HR( l) = ,F13.6,5X,e)HP{l) = ,F13.6)

lu F0R^AT{39X,F13-6)
11 FORr-iAT[lH:<,22H-.GNCOriVERGENCE ON S(l))

C READ IN N, THE DI^.Ej\SItJN OF THE SQUARE MATRIX A, AND M, THt
C MAXIMUM NUMBER OF ITERATIONS.

175 R£AD(1,1)N,M
C THE PROGRAM TERMINATES WHEN THE LAST CARD, WHICH MUST BE BLANK, IS
C R c A C.

IF(N.EQ.G) GOTO 150
WRIT£(3,t4)

C READ IN THE ELEMENTS OF THE MATRIX A, ROW-WISE.
D015I=i,N

15 REA0{l,2)(A(I,J),J=i,N)
C READ IN THE INITIAL Y VECTOR

READ(1,17) (Yd ) ,I = 1,N)
STaRE=0.
WRTT£(3,3)

C PRINT CUT THE MATRIX A.
00301=1,

N

30 W;<ITE(3,4) (Ad ,J),J = 1,N>
WRITE! 3, 12)

C PRINT CUT INITIAL Y.
0G3ir=l,N

31 WKI rr(3,13)Yd )

.V^RrTc(3,5)
00100KK=1,H
DU4UI=1,N
Z(I)=0.

C COMPUTE AY AND PLACE THE RESULT IN Z.
D0 4CK=1,N

40 Z( I ) = Z( I )+Ad,..)*Y{K}
C IF FIRST ITERATIO;^, FIX THE ELEMENT OF LARGEST ABS. VALUE IN Z, S.

IF(KK.,-iE.l)GQT027
S=^.BS(Z{ 1) )

IT = 1

00^01=2,

N

IF(S.LT.ABS{Z( I ) ) )GOT0160
50 CONTINUE
2/ S=/.(1T)

C COMPUTE Y=:Z/S FOR ALL ELEMENTS OF Y AND Z.
00^-01 = 1,N ...

60 Yd )=Zd )/S
IFCKK.EQ.l )GOTc.70

'

OIFF=S-STORE
GnTu--io

160 S=:\8S{Z( I) )

IT=I ' ••
. .

GOTOGO • '

'

70 OIFr=0.
C PRINT OUT THE ITERATION NUMBER, N, AY(N-1)-Z, Y(N), S, AND THE
C DIFFERENCE BETWEEN THE VALUES OF THE CHAR. ROOT,S, FROM THIS
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C ITTRMION AND TWr PREVIOUS I TERAT I UN, I FF.
fiO WKITE( 'i,6)!NK,/. ( I ) ,Y(1) ,S,01FF

W.UIL-( J, 7) (Z( I ) ,Y{I ),!=?, N)
rr(KK.EC.l )G0rL.:>10

C IF THt ABSDLUrt: VALLE OF OlFF IS LESS THAN .00005 CHECK THL' CHAR.
C VFCTOR.

IF( Af^S(0 IFF). GE.. 00005)00103 10
C IF I'HE DIFFERC.\CE BETWEEN THE ABSOLUTE VALUES OF ALL THE
C CORRESPONDING ELEMENTS OF THE CHAR. VECTOR, Y, FROM THIS ITERATION
C AND THE PREVIOUS 1 T ERA T lON.COMP , IS NOT LESS THAN .00005 CONTINUE
C THE ITERATIVE PKCCEDURE.

00 3 20 I = I, N
320 IF( A3S{Y( I )-COKP( I) ) .GE .. 00005 ) G0TU3 10

G0To200
C STORE THE CHAR. VECTOR IN COMP.

310 00 3 30 1=1,

N

330 CO>-,P( I )=Y( 1 )

C STOKE THE CHAR. ROOT IN STORE.
100 STOREYS

C iM HAS BEEN EXCEEDED WITH NONCONVERGENCE OiN S(l).
WRITE! 3, 11)
G0rul75 ^^^

C PRINT CUT RESULTS, ITERATION NO. » CHAR. ROOT AND VECTOR.
200 WRI rE( 3,B)KK
125 WRIT={3,9)S,Y( i)

WRITH{3tI0) (Y( n,I = 2,N)
. G0T0175

150 STOP '-

,

END
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•

MONf.p JOn T'^O CGUAL CHARAC TCR I ST I C ROHTS .

nIM}:^JSION^( to, io ,y(io) .cg.mpk lO) ,cump;!(io) ,z( i o)
I FUKMAl (2 IS)
Z FUKNAKSFIO. 3)
i FUI<i'iAT(10F,^.6)

11 FORMAK lHl,4eX,2AHTlNU !"QUAL DOMINANT ROOTS)
12 FOKi^.AT( lHL,62X,b^*i^lA FR IX A)
13 Fa;<.M<VT( lHK,10ri3.3)
14 FU;<,VAT( lHL,62X,9HiNITIAL Y)
I'j FOKnAV( 1HK,60X,F10.6)
16 Fi]R)^lAT( lHL,30X,iH.\,'i)X,7HAY(N-l ) ,7X,4HY(N) , lUX, 1HS,12X ,IHR,8X,11HR(

IN)-R(N-l))
17 FGRhAT(//27X,l'5,'iF13.6)
IS FO.-'-.-;AT{32X,2Fr3.6)
19 FORMAT ( IHK, 14Hi\UNC0!\iV!: RGENCF )

20 FURi\A7(//iH ,12HRlSULT AFTER, 15, IIH ITEkATIGNS)
2 1 F JRMAT ( IHK , lOX , bHK ( 1 ) = , F13. 6 , t)X,5HP ( 1 ) = , Fi3.6 )

22 FnRMAT{39X,F13.6)
C READ IN N, THl OliMENSION OF THE SQUARE MATRIX A, AND ;•i, THE
u MAXIMUM NUMBER CF ITERAJIGNS

175 R£Al;( l,l),Ni,M
THE PROGRAM TERMINATES WHEN THE LAST CARD, WHICH MUST BE 3LANK,

c IS kEAD.
IF( N.EQ. 0)GCTG15v.
WRITE{3,11) •

c REAL, IN THE ELEMtWTS OF THE MATRIX A, ROW-WISE
D0?5I=1,N

25 REAC(1,2) (Ad, J),J=i,N)
c READ IN THE INITIAL Y VECTOR

REA0(1,3){Y(I) ,I=1,N)
STU(<£ =
dif:—
POiFF=G
PRlijR=0

c PRINT OUT THE iV.AtKlX A
WMITE(3,12)
Du30I=l,iM

30 WR [TE(3,13) (A{ I,J),J=i,N)
c PRINT GUT THE liNilTIAL Y VECTOR

WRI!E{3,14)
D031I=1,N

31 WRI rr(3, 15)Y(1 )

WR1TE(3,16)
DU100i<K=l,M
D040!=1,N
/-(I)=0

c CO/.PUTE AY AND PLACE THE RESULT IN Z.
Da4 0K=l,N

40 Z{ I )=Z(I )+A(I,;U«Y(K)
c IF FIRST ITERATION, FIX THE ELEMENT OF LARGEST ABS. VALUE IN Z. S-

IF{KK.NE.l)G0r027
S=AES(Z{1))
IT-1
Dnb0I=2,N
IF( S.LT.ABS(Z( i) ) ) GOTO 160

5 CONTINUE
27 S = Z( ID

c COMPUTE Y=Z/S FOR ALL ELEMENTS OF Y AND 7.
00601 = I, N

60 Y{ I ) = Z( I )/S
c COMPUTE THE DOMINANT ROOT 8Y SOLVING A PAlK OF LINEAR

IF(-<:<.LT.'i)CGTu8C
OIFF=S-STGXE
R00T=.5«ST0RE»( JIFF+PDIFF)/P0IFF'
IF{K:<.EC.3JG0fuaC
VAR=RU0T-PRIuR

EQUATIONS.
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16

C

C
c

c
c

c
c

3

Gcr
S=A
IT-
GO r
PR I

THC
[

47t>

310

510

100

200

150

UAl
IF(
IF(
IF
ACC
DC4
IF(

1.00
GOT
SHI
AMD
00 5

CGr
CO"
STG
NOR
POI
STO
PR t

M H
WKI
GO I

PR I

VI R I

W R I

WRI
GOT
STo
END

u80
BS(Z( I)
I

oso
i\T OUT
DIFFER
TG{3,17
T-(3aB
KK.LT.A
ABSIVAa
THE ROO
URACY {

7r>l = l,\'
A8S{S*S
C0'3)GaT
020
FT THE
STORE
10I=1,\
Pl( I)=C
P2( I )=Y
RE THE
MALIZIN
FF=OIFF
K':-s
GR-^ROOT
AS BEEN
T5{3,19
0175
!\T OUT
r£(3,20
i"E( 3,21
TE{3,22
L.175

THE IlERAriGM NUMBER N, AY(;M-I) = Z, Y(iM), S, ROOF, AND
LiNCG BFTWFEi^ THIS AND THE PRIOR APPRUX. TO THE RCCT, VAK
)KK,Z{ 1) ,Y(1 ) ,S,RCOT,VAR
) {Z( 1) ,Y( I), 1-2,1^)
) GO ru3 10
).GE..000C5)GnTO310
T HAS nt£N APPROXIMATED TO THE DESIRED DEGREE OF
.00005), CHEC.'; THE VECTOR EQUATION.

TCRr»Yri)-2.*RCOT»STORE*COMP2( I ) + ( RCQT*»2 ) »C0M?1 ( I) ) .GE.
0310

STORED VECTORS, DISCARDING THE VECTOR OF LOWEST INDEX,
THE CURRENT VTCTOR IN C0^iP2

G.MP2 (I )

( I )

DIFFEREi^CE uF THE NORMALIZING FACTORS IN PDIFF, THE
G FACTOR, S, IN STORE, AND THE ROUT IN PRIOR.

EXCoEOED WITH NONCONVERGENCE,

THE RESULTS, ITERATION NUMBER, CHAR. ROOT, AND VECTOR.
)KK
)RQOr,Y{l)
) (Y( 1),I = 2,N)
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MO.\$S JOB TWO EQUAL DOM. ROOTS, NEGATIVES

^prMhNSiaNA{10,10),Y(10) ,Z ( 10), COMP ( 10 ), PI ( 10 ).P2{ 10 ),CHECK{ 10), SHI

1 FUi'iMAK 2 15)
Z F0^,v^T(8FL0.3)
j> FOni.SArC 10F3.6)

ll^^g'<''-JJI(fHl,38X,55HTW0 DOMINANT ROOTS, EQUAL ABSOLUTE VALUE, OPPGSI

12 FURMAt'c 1HL,62X,8HMATRIX A)
13 FO.-<i-lAr( LHK, lOF13.i)
14 FOKt^AK lHL,62X,9HiNITIAL Y)
13 FCIKNAT( lHK,60X,Flu.6)
l^^Fy^|J"^TaHL,30X,iH.\i,5X,7HAY(N-l),7X,4HY{N),l0X,lHS,12X,lHR,8X,llHR(

17 'fO!<MAT(//27X,I5,5F13.6)
15 FJRMAT( 32X,2Fi3.6)
19 FG.^.MAK 1HK,39H>; HAS BEEN EXCEEDED WITH NONCONVERGENCE

)

20 F0<.MAT(//1H ,12HRESULr AFTER, 15, UN ITERATIONS)
21 FORMAT (IHK,! OX, 5HR{ 1 )= , F13.6 , 5X, 5HP ( 1 ) =, F13. 6 , 5X, 6H-R ( 1 ) = ,

F

13 . 6, 5X
l»5HP(2)-tF13.6)

2Z FuR,-iAT(39X,Fl3.6,34X,Fr3.6)
C READ IN N, THE DIMENSION OF THE SQUARE MATRIX A, AND M, THE
C MAXlMlJiM NUMBER OF ITERATIONS.

175 RL-A0(1 , l)N,M
C THE PROGRAM TERMINATES WHEN THE LAST CARD WHICH MUST BE BLANK,
C IS <\CAU.

IF(iN|.E0.O)r.QTO150
Wi<[rE(3,ll)

C REAU IN THE ELEMENTS OF THE MATRIX A, ROW-WISE
002 5I=1,N

25 REAC(l,2)(An,J),J=l,N)
C READ IN THE INITIAL Y . VECTOR

READ(1,3) (Yd) ,1 = 1,N)
RQar=o
STaRE=0
SAVt=0

C PRINT OUT THE MATRIX A
WKITl{3,12)
D030I=1,N

30 WK1TE(3,13)(A(I,J),J=1,N)
C PRINT OUT THE INITIAL Y VECTOR

WRITE (3, 14)
DQJ1I=1,N

31 W.<[TE(3, 15)Y(I )

W;<irE(3,16)
DQ100KK=1,M
D040I=1,N
Z(l)=n

C COMPUTE AY AND PLACE THE RESULT IN Z.
D040:<=1,N

40 Z( I) = Z(1 ) + A{ I,K)»Y(K)
C IF FIRST ITERATION, FIX THE ELEMENT OF LARGEST ABS. VALUE IN Z, S.

IF(Ki<.NE.l)G0Tu27
S=ABS(Z(1))
IT=1
DG5GI=2,N
IF{S.LT.ABS{Z( I ) ) )G0r0l60

5 Cu.\iTi:.UE .
t

2 7 S = Z (I T

)

C COi'-i^^UTE Y=Z/S FOR ALL ELEMENTS OF Y AND Z.
Di-;60I = i,N

60 Y( I ) = Z( I )/S
C CQ.iPUTE THE SQUARE ROOT OF THE PRODUCT OF THE CHAR. ROOT FROM THIS
C ITERATION AND ^^>r PREVIONS ITERATION

IFIKK.EQ.DGOTGTO
ROuT=SQRT( STORE'S) '

DIFF=ROOT-SAVE
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Pl( I) =UUUT»COMP( I )+/( I

)

350 P?( n=KOOT*ClJMP( I )-£(!)

160 S^ABS(Z( I)

)

ir=i
GJru5G

70 oiFr=o
C PRINT OUT THE irrRATIUN NUMRER N, AY(N-1)=Z, Y ( N ) , S,
C SQr;T(S{N)»S(N-l) )=RGGT,AND THE DIFFERENCE BETWEEiM THIS AND THE
C PRIu,-^ APPRUXIMATIuN TO THE ROOT, DIFF.

80 W!UrE{3, 17)KK, Z(l) , Yd ) ,S, ROOT, DIFF
WRITE{3, 18) (Z( I) ,Y( I), I=2,N)
IF(Ki<.LE.3)GOTU310

C IF TWU SUCCESSIVE APPROXIMATIONS FOR ROOT ARE WITHIN THE DESIRED
C RANGE OF ACCURACY, (.00005), CHECK THE CHAR. VECTOR. IF IT IS NOT
C WirHl.\ THE DESIRED ACCURACY RANGE, (.00005), CONTINUE THE
C ITfkATIVG PROCEOUKfc

IF

(

A3S(DIFF).G £,.00005 )G0TU310
IF( ARS(VAR) .G£.. 00005 )G0T0310
DG320[=1,N

320 IF{ .\nS(Pl( I)-CHECK{ I)) .GE..00005)GOT0310
G01u200

C STUKE Y(N) AND THE APPROX. TO THE CHAR. VECTOR.
310 Da510I=l,N

COMP{I)=Y(n
CHrC:<( I)=SHIFT{ i)

510 SHIFT( I)=P1( 1)
C STORE THE CHAR. ROOT, S, IN STORE, THE GEOM. MEAN, R, IN SAVE, AND
C DIFF irvj VAR.

VA;< = DIFF
STu;<i::-=S

100 SAVt: =KOOT
C N HAS BEEN EXCEEDED WITH NONCONVERGENCE

W,U 1E(3,19)
G0rol75

C PRI.\T OUT RESULTS, ITERATION NUMBER, CHAR. ROOTS, AND CHAR. VECTOR
200 SECUi"\ID=-ROOT

WR ITF( 3,20)KK
WRIT6( 3, 2 U ROOT, PI ( 1) , SECOND, P2(l)
WRITE(3,22) (PI ( I),P2(I ) ,I=2,N)
GCTLil75

150 STUP
END
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MON$$ JOB IWO DLMINANT ROUTS COMPLEX CONJUGATES

DIMCNSIONAdO, 10),Y(10) ,Z(10) .COMPKIO) ,CGMP2(10)
1 FUH.MAT(2I5)
2 FaKMAT(8Fl0.3)
3 FO:<iMAT( IOFO.6)

11 FUK,MAT( iHl,48X,38HrW0 DOMINANT ROOTS COMPLEX CONJUGATES)
12 FG:<i'iAT( 1HL,62X,8HMATR1X A)
13 rO:;i-iAr( 1HK,10F13.3)
14 F0K.MAT(lHL,62X,9HiNITIAL Y)
lb FOlUiAK lHK,60X,Flu.6)
lo FOK^.AT{ lHL,2 4X,lH.\,5X,7HAY(N-l),7X,4HY{N),l0X,lHS,10X,4HReAL,BX,4H

1IMAG,6X, 11HC{,N)-C(N-1) )

17 FaRiVAT(//21X, I t),6Fl3.6)
18 FURi-,AT(26X,2Fl 3.6)
19 FOKi']AT( IHK.lAHNUiNCGWVFRGENCE)
20 FGi</-iAT{//lH ,12HRlSULT AFTER, 15, IIH ITERATIONS)
21 FOK,SAT( 1H.<,10X,10HREAL COOR= ,F 13. 6 , 5X , lOHIMAG C00R=,F13.6, 5X, 5HP ( i

1)=,F13.6)
22 FQ:<<\AT(72X,F13.6)

C RSAJ IN N, THE DIMENSION OF THE SQUARE MATRIX A, ANO M, THE
C MAXIMUM NUMBER OF ITERAIIQNS.

175 READ(1,1 )N,M
c THt PROGRAM TERMINATES WHEN THE LAST CARD, WHICH MUST BE BLANK,
c IS kEAD.

IF(.\.£Q.O)GOT0150
W;<[rL{3, 11)

c READ IN THE ELEMENTS OF THE MATRIX A, ROW-WISE.
DG2bI=l,N

2,5 READ{1,2){A{ I, J),J=1,N)
c READ IN THE INITIAL VECTOR, Y. . .

ReAD(l,3)(Y(I) ,I=i,N)
STU.-lt =
OlFF^O
PuIFF=0
PRIuR=0
VA:^=0
P.<t:V=0
REAL=0
XiyiAG =

c PRINT OUT THE MATRIX A.
WRITE (3, 12)
DG30I=1tN

30 WRfTE(3,13)(A(I,J),J=l,N)
c PRINT OUT THE INITIAL Y VECTOR.

WiUTE(3,l4)
DO 31 1 = 1,

N

31 Wr<ITE(3,15) {Y( I) )

WRITE (3, 16)
DQ100KK=1,M
00401=1,

N

Z{ t )=0
c COMPUrE AY AND PLACE THE RESULT IN Z.

0040:<=i,N
40 Z{ I)=Z( I )+A(I,K)«Y(K)

c IF FIRST ITERATION, FIX THE ELEMENT OF LARGEST ABS. VALUE IN Z, S.
IF(KK.NE.1)G0TU27
s=Aas{Z(i))
IT-l
DUS0I=2,N

'

IF(S.LT.ABS(Z{ I) ))G0T0160
50 co;-iriNUE
27 S=Z(iT)

c COMPUTE Y=Z/S FOR ALL ELEMENTS OF Y ANO Z.
DU>'.Oi = l,N •

•

60 Y{ I )=Z( I)/S
K0 COMPUTE THE DOMINANT ROOT BY SOLVING A PAIR OF LINEAR EQUATIONS.

IF{KK.LT.3)G0TO80
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j'agi

DIFF=S-STU:<E
RtAL = .3*STUf^E» {OIFF+PDlFF)/PDIFF
XIMAG=SQRT{?.«KHAL»STQR0-S»STORE-REAL«»2)
IF(KK.EQ.3)GGrU8Q
V4r1-REAL-PRIG!<
G0rG30 .; . ,

160 S= \3S(Z{ I )

)

.

.

:

ir-i
.

C PRIi^T OUT THE ITERATION NUMBER N, AY(N-1)=Z, Y{N), S, REAL, XIMAG,
C AND THE DIFFEkENCl BETWEEN THIS AND THE PRIOR APPROXIMATION TO THE
C REAL PART OF The COMPLEX ROOT, VAR.

80 WKITE( 3, I71KK, Z(l) ,Y(1) , S, KE AL , X I MAG, VAR
WRnE{ 3,18) (Z( I) ,Y( n, I = 2,N)
IF(KK.LT.4)GOTU310

C WH'IN THE REAL AND I MAG CQEFF OF THE COMPLEX ROOT HAVE DEEN
C APPROXIMATED TO THE DESIRED DEGREE OF ACCURACY (.0000b), CHECK
C TH- VECTOR EGUATIGN.

IF( ABS( VAR) .GE.. 00005 )G0T03 10
IF(ABS{XI>^AG-PREV).GE..00005)GOT03IO

47 b IF( ARS(S»SrORE»Y(I)-2.*REAL»STORE»COMP2( I)*COMPU I ) •

(

REAL»*2 + X I MAG
1»*?) ).G£..0000 5)GOT080
Gorozoo

C SHIFT THE STORED VECTORS, DISCARDING THE VECTOR OF LOWEST INDEX,
C AND STORE THE CURRENT VECTOR IN C0MP2.

310 D05i0i=l,N
co<MPi( I )=coMP2 { n

510 C0MP2{ I)=Y( I)
C STOKE THE OIFFbKENCE OF THE NORMALIZING FACTORS IN POIFF, THE
C NORMALIZING FACTOR, S, IN STORE, THE REAL PARI OF THE COMPLEX ROOT
C IN PKIOR, AND THE IMAGINARY PART IN PREV.

POrFF=OIFF
STOREYS • ,-

,
.:,

,PRiGR=REAL
100 PREV=XLMAG

C M HAS BEEN EXCEEDED WITH NONCQNVERGENCE.
WRITc{3,19)
GO TGI 75

C PRI.\T GUT THE RESULTS, ITERATION NO., CHAR. ROOTS, AND VECTOR.
200 WRITE( 3,20)KK

Wi< ne(3,21)REAL,XIMAG,Y{l)
W,U rE{3,22) {Y( I),I = 2,N)
G0TG175

150 STOP
END
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MON$$ JOB THRtE EQUAL DOMINANT ROOTS

DliMENSIONAdO, 10) ,Y{10) , VECT 1 ( 10 ) , VECT2 ( 10 > , VECT3 ( 10 ) ,Z ( 10 )

1 FQ*<MAl (215)
? F0.^wXAT(8FlJ.3)
3 FO;</,AT( 10F8.6) .

' '

li Fu!^,>',AT(lHl,47X,26HTHREF EQUAL DOMINANT ROOTS)
12 F0K,X.\r(lHL,62X,Sl-I.MArKIX A)
13 FG^MAK IHK,10F13.3)
iH FO'<,vM{ 1HL,62X,9H INITIAL Y)
lb FU;<kAT( 1H:<,60X,FLG.6)
16 FORXAK lliL,2'VX,lHi>j,5X,7HAY{N-l),7X,4HY(N),10X,lHS,8X,llHS(N)-S(N-l

1) ,8X, 1HR,8X, llhi<(iv)-R{N-l) )

17 F0KMAT(//21X, I5,6F13.6)
16 FGi<;-iAT(26X,2F13.6)
19 FO;^KAT( 1HK,14HN0NCUNVERGFNCE)
20 F0RMAT(//1H ,12HRESULT AFTER, 15, IIH ITERATIONS)
21 FO^.vAK lHK,10X,bHK( 1)=,F13.6)

C READ IN N, THE DIMENSION OF THE SQUARE MATRIX A, AND M, THE
C • MAXIMUM NUMBER OF ITEKAIIONS.

175 REAU( I, 1)N,M
C THE PROGRAM TERMINATES WHEN THE LAST CARD, WHICH MUST BE BLANK, IS
C READ.

IFCwEO.OGOTUlSO
WRI rE( 3, 11)

C READ IN THE ELEMENTS OF THE MATRIX A, ROW-WISE.
Da2 5I^l,N

25 READ(1,2) {A( I, J),J=1,N)
C READ IN THE INITIAL Y VECTOR.

R£AO( 1,3) {Y{ I) ,I=1,N)
ES? =
ES3=0
ES4 =
0IF2=0
DIF3=0
OIF'^=0
D[FF=0
RQuT=G
PRIUR=0
VAi<=n

C PRIiMT CUT THE rtATRiX A.
Wi<IT;-(3,12)
DU3CI=1,N

30 WRiTE{3,13)(A(I,J),J=l,N)
C PRINT OUT THE IiMTIAL Y VECTOR.

WRITE (3, 14)
00311=1,

N

31 WRITE(3, 15)Y{ I )

WR nE( 3, 16)
D01G0KK=1,M
L)QhOI=1,N
Z( i )=0

C COMPUTE AY AND PLACE THE RESULT IN Z-
DC4CK=ltN

AG LI I ) = Z( I ) + A{ I,K)»Y{K)
C IF FIRST ITERATION, FIX THE ELEMENT OF LARGEST ABS. VALUE IN Z, S.

IFtKK.NE.l)G0Tu27
S=ABS{Z( I)

)

iT = i '.
;

D0S0I=2,N
IF(S.LT.AOS(Z{ I) ))G0T0160

50 CONTI.'vUE : -
'

• .

2 7 S=/ (ID '

C COMPUTE Y=Z/S FUR ALL ELEMENTS OF Y AND Z.
Da6 0I=l,N

6o Y{ I)=Z{ I )/S
C CO^iPUTE THE DOMINANT ROOT BY SOLVING A SYSTEM OF THREE LINEAR
C EQUATIONS.
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IF(KK.LT.5)GOTUflO •

DIFF=S-CS4
RUU r= { ES 3« ( ES2 » {0IF4 + 1J r F3 + I F? )»(UIF3 + D I F2)-DIF2*(ES4»(D IF F+a I F4) +

lES3»{CIF4 + L)rFi)+ES2*{0IF3+DIF2) )) ) / ( 3.0» ( ES2» ( D I F3 + 0I F2 ) ••2-UI F2« (

lESi»(DIF4*-DIF3)+ES2«(DlF3+0IF2) ) ) )

IF(KK.EQ.5)G0TG80
VAR='^C0T-PRIUK '•

. GOTuno • -.
,

160 S=ABS(Z( I)

)

ir=i
GGTU^O

C PHIi\T OUT THE ITtUAnON NO. N, AY(N-1)=Z, Y(N), S, S { N ) -S ( iN-1 ) ,

C ROUT, A,MD THE DIFFERENCE BETWEEN THIS ANO THE PRIOR APPROXIMATION
C . TO [HE HOOT, VAK.

80 WR[T!7(3, 17)KK, Z( I) ,Y(1) ,S,DIFF,ROOT,VAK
W^TTE(3,13) (Z( I) ,Y(1), I=2,N)
ir(KK.LT.6)GOru310
IF{ ABS{VAR).GE..0u5)G0TC310

C IF THl ROCr HAS REEN APPROXIMATED TO THE DESIRED DEGREE OF
C ACCU;^ACY, CHECK THE VECTOR EQUATION.

D0A75I=1,N
47 5 IF{ ABS{S*ES4*ES3ftY( I)-3.0*R00T»ES4»£S3»VECT3{ I ) »-3. 0» ( R00T»»2 ) ESS*

1VECT2( I )-(R00T*»3)»VECTl( I) ) .G£ . . 005 ) G0T031
GQT0200

C SHIFT THE STORlD VECTORS, DISCARDING THE VECTOR OF LOWEST INDEX,
C ANH STORE THE CURRENT VECTOR IN VECT3.

310 D05iOI=l,N
VECTK I)=VECT2{ I)
V£CT2{ I )=VECT3{I)

510 Vhr.T3( I )=Y{I)
C SHIFT THE STORED NORMALIZING FACTORS AND DIFFERENCES, DISCARDING
C THGSti UF LOWEST INDEX, AND STORE THE CURRENT FACTOR AND DIFFERENCE
C IM £S4 AND DIF4. SOTRE THE ROOT IN PRIOR.

ES?=tS3
, ES3 = ES4 •

.,

£S4 = S
DIF2=DIF3
0IF3=DIF4
0IF4=DIFF

100 PR1GR=R00T
C M HAS BEEN EXCEEDED WITH NONCONVERGENCE.

WKITf:{3,19)
G0TQ175

C PRI,\T OUT THE RESULTS, ITERATION NUMBER AND ROOTS.
200 WRITE(3,20)KK

WRITE(3,21)R00T
G0T0175

150 STOP
END
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KSU 1410 CO.";PUni\G CtMciR fAGC

MO,M$$ JOB THREH RLAL COM ROOTS, MIXED SIGNS

D I MANSION A ( 10, iU) ,Y(10) ,VECT1{ 10) ,VECT2(10) , VcCT3 ( 10 ) , Z ( 10

)

1 FaK.«,AT{2I5)
2 FC-^MAT(8F10.3)
S FGK.MAK 1 OF 8.6) V ^.

11 FOI<WAT(1HI,30X,62HTHK£E DOMINANT ROOTS, EQUAL IN ABSOLUTE VALUEr S
IIGN DIFFEKirNCE )

12 FO;<MAT( 1HL,62X,BHMATR1X A)
13 FORMAK lHK,lCFi3.3)
14 FU;<.XAT( 1HL,62X,<)HINITI AL Y)
lb FOr<KAT{ lHK,60X,Flu.6)
16 FOK,MAr( 1HL,24X, IHN, 5X, 7HAY(N-1) ,7X,4HY(N) , lOX , IHS , 8X , 1 IHS ( N )-S ( N-1

1) , 8X, 1HR,8X, llHR(,'>i)-R{N-l))
17 FU.<NAT(//2lX,i t),6F13.6)
ly F0R,XAr(26X,2F13.6)
19 FORMAT ( 1H[<,14HN0MCU^JVERGENCE)
20 F0RKAT(//1H ,12HRlSULT AFTER, 15, IIH ITERATIONS)
21 FOiU-lAT( IHK, lOX, lOHRd) , .< ( 2 ) = ,F 13. 6 , 5X , 5HR ( 3 ) = , F13 . 6 )

C READ IN N, THE DIMENSION OF THE SQUARE MATRIX A, AND M, THE
C MAXIMUM NUMBER UF ITERATIONS.

175 READ! 1,1 )N,M
C THl PROGRAM TERMINATES WHEN THE LAST CARD, WHICH MUST BE BLANK, IS
C READ.

IF(;...E0.0)GOTU150
V>(KI[E{3,11)

C READ IN THE ELEMENTS OF THE MATRIX A, ROW-WISE.
DG2!)I = 1,N

2 5 READ( 1,2) (A( I, J),J=1,N)
C READ IN THE INITIAL Y VECTOR.

REAU{1,3)(Y(I) ,I=1,N)
ES?=0
ES3 =
ES^=0
DIF2=0 ••

DIF3=0
Dir4=0
oiFr=o
ROUT^O
PRIGR=0
VA?.=0

C PRINT OUT THE MATRIX A. .

WRIi!f{3,12)
Oa3CI=l,N

30 WK[TE(3,13)(A{I,J),J=1,N)
C PRINT OUT THE INITIAL Y VECTOR.

WKI rE{3, 14)
0Q31I=1,N

31 WRITE(3, 15)Y{ I

)

WR I lf:(3,16)
OOIGOKK=1,M
0D4GI=1,N
7A\)=0

C COMPUTE AY AND PLACE THE RESULT IN Z.
0Q4 0K=1,N

40 Z( I ) = Z( I )+A( I,K)*Y(K)
C IF FIRST ITERATION, FIX THE ELEMENT OF LARGEST A8S. VALUE IN Z, S.

IF(KK.NE.l )G0TU27
S=vBS{Z{I) )

•

IT-1 .
,

00-3GI = ?,N - .

IF(S.LT.A8S(Z{ I) ) )G0T0I60 --

50 COiiriijUE
2 7 S = Z { I T )

C CGMPUrC Y=Z/S FOR ALL ELEMENTS OF Y AND Z. •
'

OOOOI^ItN
60 Y( n=Z(I )/S

C COMPUTE THE DOMINANT ROOT BY SOLVING A SYSTEM OF THREE LINEAR
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K.SU lAlO COMPUTING CEMTtK- PA'^^

C EOUATIONS.
IFCKK.LT.bJGOrOaC
DIFP=S-ES4
RU0r-(ES3»{ES2*(0IFA+0IF3+DIF2)»(DIF3+UIF2)-DIF2»{ES4»{DIFF+DIF4)+
1ES3»(DIF4+DIF3)+E32»(DIF3+0IF2) ) ) ) / ( ES2» { D I F3+0I F2 ) •2-DI F2» ( bS3»

(

1DIF'^ +0IF3)+ES2»(DIF3+UIF2) ) )

IFIKK.EQ. 5)001080
VAR-KOOT-PKIOK
GOTUBO

160 S=ABS(Z( I)

)

IT=I •

GOT050
C PKIiMT OUT THE ITERATION NO. N, AY{N-1) = Z, Y(N), S, S{N)-S{N-1),
C ROUT, AND THE DIFFEKENCE BETWEEN THIS AND THE PRIOR APPROXIMATION
C TO THE ROOT, VAR.

8 WP.ITE( 3,17)KK,Z(1)tY(1) , S , D I FF , ROOT, VAR
Wr(IT£(3, 18) (Z( I) ,Y( I), I=2,N)
IF{KK.LT.6)GaT0310
IF( ABi,( VAK).GE..Oa5)GOTn310

C IF THE ROOT HAS BEEN APPROXIMATED TO THE DESIRED DEGREE OF
C ACCURACY, CHECK THE VECTOR EQUATION.

DU47^^I = 1,N
A7 5 IF( ABS(S*£SA»£S3»Y( I)-RC0T»ES4»ES3*VECT3 ( I

) -( R0aT»*2 ) »ES3»V£CT2 { I)
l + (KijaT»*3)»VECTl( I) ).GE..005)GOT0310
GOrG200

C SHIFT THE STORED VECTORS, DISCARDING THE VECTOR OF LOWEST INDEX,
C AND STORE THE CURkENT VlCTOR IN VECT3.

310 DC 5 10 1=1,

N

VECTK I )=VECT2{ I)
VECT2( I )=VECT3(n

510 VECT3{ I )=Y( I )

C SHIFT THE STORED NORMALIZING FACTORS AND DIFFERENCES, DISCARDING
C THOSE OF LOWEST INDEX, AND STORE THE CURRENT FACTOR AND DIFFERENCE
C IN ES4 AND DIF4. SCTKE THE ROOT IN PRIOR.

ES2=ES3
ES3=lS4
ES''h=S
D[F2=0IF3
DIF3=DIF4
DIF4=0IFF

100 PRIGr<=ROOT
C M HAS BEEN EXCEEDED WITH NONCONVERGENCE.

W;< ITE( 3,19) .

GUTU175
C PRINT GUT THE RESULTS, ITERATION NUM8ER AND ROOTS.

200 0?P=-RUGT
WRITE(3,20)KK
WKITE( 3,21)R00T,0PP • •

Gorui75
150 STUP

END
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KSU UIO COMPUTING CEhTrR PAC;E

MOiNSi. JOB THKEE DOM ROOTS, ONE REAL, COMPLEX CONJ PAIR

OIMGXStONAt 10, 10),Y(10) .VECTKIO) ,VECT2{ 10) , VECT3 ( 10 ) , Z ( 10 )

1 FGi<MAr{2 15)
2 FG:^HAT(8F10.3)
i FGR.^^T( 10F8.6)

11 FORiXATl 1H1,35X,53HTHREE DOMINANT ROOTS, COMPLEX CONJUGATES AND ONE
1 KlAL)

12 FORMAT

{

lHL,62X,aHMATRIX A)
13 fOi<K\\ { lHi<, lOFl i. J)
14 Fa.'<MAT( lHL,62X,gHi.\ITIAL Y)
It) FOil.-',AT( 1HK,60X,F1U.6)
16 F0,H,MAT(1HL,7X, IH.M , 5X , 7HAY( N- 1 ) ,7X,4HY(N) , lOX, IHS , 8X , 1 IHS ( .M ) -S ( N-1

)

l,7X,lHK,7X,llHk{N)-k(N-i) , 5X , 4HREAL , bX, 1 3hK£ ( iM ) -RE ( N-1 ) ,AX,4HIMAG)
17 Fi]l</-;AT{//4X, IS,9F13.6)
18 F0R«AT{9X,2F13.6)
19 FORMAT ( lHK,14Hi\LNC0\VERGENCE)
2D FOfti^;AT(//lH ,12HR£iSULT AFTER, 15, IIH ITERATIONS)

1=,F13.6)
21 FURXAT( 1HK,5X,5HR( 1 ) = ,F13.6,5X,I0HREAL COOR= , F13. 6 , 5X , lOH I MAG COOR

C READ I.\ :\, THE DIMEMSION OF THE SQUARE MATRIX A, AND M, THL
C MAXIMUM NUMBER OF ITERATIONS.

175 READ( 1,1)N,M
C THF PROGRAM TERMINATES WHEN THE LAST CARD, WHICH MUST BE BLANK, IS
C K '^ A U .

IFVN!EO.O)GOT01t.O ''''•

WRI1E(3,11)
C REAO IN THE ELEMENTS OF THE MATRIX At ROW-WISE.

0a2bl=l,N
25 REAC( 1,2) (AC I, J) ,J = 1,N)

C REAC IN THE INITIAL Y VECTOR.
R£AD(1,3) (Yd ) ,l = i,N)
ES2=0
ES3=0
ESA=0
DIF2=0
0IF3=0 - '

DIF4=0 . .

DIFi-=0
ROJT=0
PR[uR=0
VA <=0
pRrv=o
REAL=0
CHNG=0
OLl; =

C PRIwf OUT THE MA IRIX A.
W1UTE( 3,12)
DOiOI=i,N

30 WK ITE{3,13) {A( I,J) ,J = 1,N)
C PRINT OUT THE INITIAL Y VECTOR. .

'^•^11^(3,14)
0U31I=1,N

31 W;<ITE{3, 15) Y( I ) ,..•.•

WRITE(3,16)
DG100i<i<=l,M .; .

> •. .

DG40I-1,N \ .

Z(l)=0 .',:-.
C CO.'.PUrt AY AND PLACE THE RESULT IN Z.

D04GK.= i,N '

40 Z( I )=Z{ I )+A{ I ,K)»Y(K)
C IF FIRST ITERATION, FIX THE ELEMENT OF LARGEST ABS. VALUE IN Z, S.

IF(K:<.;\E.1 )G0T027
s=ABS(Z( I ) ) - . :

:-:' •

I T=l
D;JSCI = 2,N
IF(S.LT.ABS(Z( I) ) )G0T0160
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KSU KIG CUMPUTI>JG CEMf-R PAGE

50 CONTINUE
2 7 S = Z { I T )

C Ca,\PUTE Y=Z/S f-uR ALL ELEMENTS OF Y AND Z.
DLi<'.OI=L,N

C CO:\PUtE THE DOMINANT ROOT BY SOLVING A SYSTEM OF THREt LINTAK
C EOUATICNS.

IF(KK.LT.5)G0TC80

niNl=?is3»(ES2*(CIFA+DIF3+0IF?)»(0IF3+DIF2)-DIF2*(ES4«(DIFF+0IFA)+
•lES3»{DlF4 + niF3)+[:i.2«(DIF3 + DIF2))) ) / ( ES2* ( D I F3+-D I F2 ) ••2-UI F 2» ( i::.3« (

lDIF4 + UlF3)+FS2«(LilF3 + tJlF2) ) ) ^^. ,

DU;:2=(ES3*FS2*( ( D IF-^ + D I F3 + DI F2 ) { ES3» (01 F4 + DI F3 ) +ES2»( DI F3*-DI F2 )
-

l(0IF3 + 0IF2)»(CS4»(DiFF + iJlF4)+ES3»(DlF4*-DIF3)+CS2»(aiF3*DIF2) ) ) )/(L
IS2»(0IF3+0IF2)»*2-D1F2*{ES3»(DIF4+UIF3)+ES2*(DIF3*UIF2) )

)

ROOT=OUM2/DUM1
RtAL=.'5»(DUMI-R0Q1 )

X IM.Vo=SQRT{RQ0T*«2-R£AL»»2)
IF(KK.eQ.5)G0TG8C
VAR=RUOT-PRIUR
CHNG=REAL-HREV
Gniuao --

160 S=ABS(Z(I) )

IT=I
. .

C PRINT OUT THE ITEkATION NO.N, AY(N-I)=Z, Y(N), NORMALIZING FACTOR
C S, ROUT R, REAL AND IMAG. COEFF. FOR THE COMPLEX ROOTS, AND
C FIRST DIFFtKENCtS FCR S, R, REAL. ^ , .^

80 WKirE(3, 17)KK,Z(U, Yd) ,S,OIFF, ROOT, VAR, REAL, CHNG.XIMAG
WRITEl 3,13) (Z{ I) ,Yin, I=2,N)

C WHEn'^THE'rOOT^AND^REAL and IMAG. COEFF. HAVE BEEN APPROXIMATED TO
C THJ DESIKFD OEGKEt GF ACCURACY (.00005), CHECK THE VECTOR EQUATION

I F ( A'3i ( VAK ) .GE . . 00005 ) GGTG310
IF ( ABS (CHNG) .GE .. 00005 ) (,OT0310
IF( ARSUIMAG-GLD ).GE.. 00005) G0T0310

475 IMABsIs«'eS4*ES3»Y( I )- ( 2 . 0«REAL + ROOT) *ES4»ES3 •VECT3 ( I ) + ( RGGT*» 2 + 2.

10»RtAL«R00T)*ES3*VECT2( I
) -{ R00T«*3 ) VECTl ( I) ) . GE. . 00005 ) GUTG3 10

C SHIFT THE STORFD VECTORS, DISCARDING THE VECTOR OF LOWEST INDEX,
C AND STORE THE CURRENT VECTOR IN VECT3.

310 005101=1,

N

VECTK I)=VECT2(I)
VECT2{ I )=VECT3(I)

C
^^^

SHIFT^THE^STORFO NORMALIZING FACTORS AND DIFFERENCES, DISCARDING
C THOSE OF LOWEST INDEX, AND STORE THE CURRENT FACTOR AND DIFFERENCE,
C IN ES4 AND DIF4. STORE ROOT IN PRIOR, REAL IN PREV, AND XIMAG IN

C OLD.
ES2=ES^
ES3=ES4
ES4 = S
DIF2=DIF3
0IF3=0IF4

"

DIF4 =0IFF •" ^ . ,

•
•

OLD = >!IMAG
PRhV=KEAL '

100 PRICR^ROOT ^ ^ ^. ^^
C M HAS BEEN EXCEEDED WITH NONCUNVERGbNCE.

WRITE (3,19)

C P:4INT GUT THE RESULTS, ITERATION NUMBER AND ROOTS.
20 WRI rE(3,20)KK " '

WRI TE{3,21)R00T,REAL,XIMAG
G0TU175

150 STOP
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Determination of the characteristic roots of a matrix is

often of fiindanental importance in the theory of matrices. The

power method is commonly used when the matrix has a single domi-

nant root. This method can also be generalized to determine any

number of equally dominant roots. The main deterrent to its use

is that the multiplicity of the dominant root must be known in

advance. This information is rarely available.

The pov;er method was applied to matrices with predetermined

dominant roots and the behavior of the results observed through

several iterations. It was the objective of this research to

identify those factors which give definite indication of the size,

multiplicity and form of the dominant roots.

The power method for a single dominant root is described

and restrictions placed upon the matrices tested. The results

are limited to companion matrices of maximum dimension six and

no more than four equally dominant roots. To facilitate compari-

sons, dominant roots had the same absolute value in all matrices.

Three principal patterns emerged when normalizing factors

were compared. For matrices with all dominant roots real,

imaginary, or a mixture of real and imaginary, the normalizing

factors increase or decrease monotonically . The resulting

curves approach the real root as a limit asymptotically. For

matrices whose dominant roots are all complex conjugate pairs,

a zig-zag or "sawtooth" pattern results when the normaling fac-

tors are graphed. For matrices with both real and complex

dominant roots, the curve formed by the normalizing factors .



has either the "sawtooth" pattern or the appearance of a damped

wave. '

.

\Vhen all the roots of the matrix have the same sign, the

normalizing factors forin a single curve. If signs of the roots

are mixed, there are two separate but very similar patterns

formed by the odd- and even-numbered normalizing factors. The

separation of the two curves is determined by the balance in the

signs of the roots.

With Just two exceptions, matrices whose dominant roots are

negatives of each other produced curves which are reflections

with respect to the X-axis. „;.'. ••,,:

The angle betv;een the complex roots also is a definite fac-

tor. Its effect is most clearly noted in the appearance of

stronger "outlining" curves which overlay the basic curves. It

also produces a cyclical pattern in the curve.

A detailed description is given of the results obtained from

each matrix tested, and graphs are included for several. Based

upon these results, predictions might be made about the dominant

characteristic roots of any matrix when the pov;er method has

been applied. .

*

Tlie pov/er method is extended to solve for two or three

equally dominant roots. Computer programs for execution of the

power method for one, two or three dominant roots are included.


