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Abstract 

Veterinary drugs are used extensively for disease prevention and treatment in food 

producing animals. The residues of these drugs and their metabolites can pose risks for human 

health.  Therefore, a withdrawal time is established to ensure consumer safety so that tissue, milk 

or eggs from treated animals cannot be harvested for human consumption until enough time has 

elapsed for the residue levels to decrease to safe concentrations. Part of the process to establish a 

withdrawal time involves a linear regression to model drug residue depletion over time. This 

regression model is used to calculate a one-sided, upper tolerance limit for the amount of drug 

residue remaining in target tissue as a function of time. The withdrawal period is then determined 

by finding the smallest time so that the upper tolerance limit falls below the maximum residue 

limit. 

Observations with measured residue levels at or below the limit of quantitation (LOQ) of 

the analytical method present a special challenge in the estimation of the tolerance limit. Because 

values observed below the LOQ are thought to be unreliable, they add in an additional source of 

uncertainty and, if dealt with improperly or ignored, can introduce bias in the estimation of the 

withdrawal time. The U.S. Food and Drug Administration (FDA) suggests excluding such data 

while the European Medicine Agency (EMA) recommends replacing observations below the 

LOQ with a fixed number, specifically half the value of the LOQ. However, observations below 

LOQ are technically left censored and these methods are do not effectively address this fact. As 

an alternative, a regression method accounting for left-censoring is proposed and implemented in 

order to adequately model residue depletion over time. Furthermore, a method based on 

generalized (or fiducial) inference is developed to compute a tolerance limit with results from the 

proposed regression method.  A simulation study is then conducted to compare the proposed 



  

withdrawal time calculation procedure to the current FDA and EMA approaches. Finally, the 

proposed procedures are applied to real experimental data.  
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Chapter 1 - Introduction 

The history of animal consumption by humans’ dates back to 2.6 million years ago 

(Pobiner 2013). From then on, human beings started to demand more and more animals and 

animal products. In 2016 the total beef consumption in major food production countries (U.S.A., 

China, India, Brazil, etc.) reached 5.87 million metric tons (United States Department of 

Agriculture (USDA) Foreign Agricultural Service, 2017). Additionally, the total amount will 

increase by 1 million metric tons in 2017. In 2015, total U.S beef consumption was 24.8 billion 

pounds (USDA Economic Research Service, 2017a). However, beef is not the most highly 

consumed animal product. In the U.S. consumption of poultry and its products (mainly eggs) is 

considerably higher than for beef (USDA Economic Research Service, 2017b). The U.S. poultry 

industry is the world’s largest producer and second largest exporter of poultry meat and is a 

major egg producer. More and more animal farms are founded to supply rapidly increasing 

demand for animal and animal products (egg, milk, etc.). At the same time, how to ensure supply 

by protecting animals from sickness and weakness has become a big question.  

Veterinary medicine is a broad discipline that deals with disease prevention, diagnosis 

and treatment of animals. In order to help protect the health and welfare of animals and ensure 

food safety of animal products, such as egg, milk, meat, organs, etc., the food supply industry 

utilizes a range of veterinary drugs. These drugs are an important contributor to continuous 

industry growth. Administration of these drugs may result in drug residues in food. Residue is 

defined as "pharmacologically active substances (whether active principles, recipients or 

degradation products) and their metabolites which remain in foodstuffs obtained from animals to 

which the VMPs in question have been administered" by the European Medicines Agency 
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(EMA), a European Union agency responsible for the protection of public and animal health 

through the scientific evaluation and supervision of medicines (Beyene, 2016). Public health is 

directly related to the quality of food (Ames, 1983), and in particular to animals and animal 

products. The risks associated with veterinary drug residues that remain in the edible tissues of 

treated animals or animal products (egg and milk) can be a big health hazard to consumers.  

Food safety of animals and animal products is a large concern of public health agencies 

around the world. Agencies such as EMA’s Committee for Medicinal Products for Veterinary 

Use (CVMP) and the U.S. Food and Drug Administration’s (FDA) Center for Veterinary 

Medicine (CVM regulate veterinary drugs to ensure the safety of animal products’ consumption. 

When a veterinary drug gets approved, the drug label needs to show the active ingredients, 

identification of the animal(s) to be treated, adequate directions for proper use, and 

cautions/precautions including milk and meat withdrawal times, etc. Normally, the application of 

veterinary drugs has to follow the labels’ guidelines. However, there is an exception, extra-label 

drug use (ELDU). An ELDU refers to the use of an approved drug in a manner that is not in 

accordance with the approved label directions, including drug use in other species, use with 

different a dose or frequency, or use via a different route of administration. But all ELDU must 

follow the conditions set forth by the Animal Medicinal Drug Use Clarification Act of 1994 

(AMDUCA) and the U.S. Food and Drug Administration (FDA) regulations. Veterinarians must 

assure that the identity of the treated animal(s) is carefully maintained and establish a 

substantially extended withdrawal period supported by appropriate scientific information prior to 

marketing milk, meat, eggs, or other edible products from the treated animals(s). Predicting the 

concentration of drug residue is an important procedure to establish withdrawal period.  
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Withdrawal times are established to ensure consumer safety, which means that edible 

tissue, milk or eggs cannot be harvested for human consumption until enough time has elapsed 

after treatment for residue levels to deplete to safe concentrations. Since withdrawal periods are 

very important in veterinary medicine research to ensure public health, the calculation procedure 

has been well established by the FDA, EMA and other agencies, but with a slightly different 

tolerance interval setting. However, it is common to have drug residue data below the limit of 

quantitation (LOQ) and/or the limit of detection (LOD) due to the measurement limitations of 

analytical instruments. The LOQ is the lowest concentration that can be reliably detected and at 

which some predefined goals for bias and imprecision are met. On the other hand, LOD is the 

lowest concentration that can be distinguished from the highest apparent analyte concentration 

expected to be found when replicates of a blank sample containing no analyte are tested. Finding 

an adequate approach to analyze data at and below the LOQ and/or LOD still obsesses regulatory 

officers and professional researchers. 

We propose a left censored data regression to estimate the withdrawal period with data 

that fall below the LOQ. We will also compare the withdrawal period with this approach to those 

estimated using the recommended methods from the FDA and EMA. In addition, we will apply 

this approach to the real experiment data which can be found in EMA-CVMP (2016). 
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 1.1 Limit of quantitation (LOQ) 

In drug and chemical studies, the purpose of an analytical method is the delivery of a 

qualitative and/or quantitative result with an acceptable uncertainty level (Şengül 2016). The 

minimum concentrations of an analyte that can be realizably detected or measured in an 

analytical procedure are important performance indicators of certain assays (Lawson 1994). In 

practice, precision, trueness, selectivity/specificity, linearity, operating range, recovery, limit of 

blank (LOB), limit of detection (LOD), limit of quantification (LOQ), sensitivity, 

ruggedness/robustness, and applicability are all terms used to describe the smallest concentration 

of an analyte that can be realizably measured by the analytical procedure (Armbruster and Pry 

2008). These terms are important not only to evaluate the analytical performance of each 

laboratory but also to determine dynamic range or analytical measurement range. In addition, 

clinical laboratorians may deal with the analytical issue of when the ability of a laboratory test to 

detect a small amount of analyte is clinically significant. For example, this situation can arise 

when the medical decision level (such as maximum residual level) is at or below the analytical 

limits. It means the clinical action will depend on measurements of low concentration.  In ELDU 

studies in certain tissues such as eggs, the FDA requires a zero-drug concentration withdrawal 

period. This analysis relies on low concentration measurements. LOB, LOD and LOQ are widely 

used by analytical chemists that test for abused drugs (Lawson 1994).  

In 2004, the Clinical and Laboratory Institution (CLSI) published “Protocol for 

Determination of Limits of Detection and Limit of Quantitation” to standardize methods for 

determining LOB, LOD and LOQ (CLSI 2004). The LOB is the highest apparent analyte 

concentration expected to be found in replicates of a sample containing no analyte. It can be 
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described by 𝐿𝑂𝐵 = 𝑚𝑒𝑎𝑛𝑏𝑙𝑎𝑛𝑘 + 1.645𝑆𝐷𝑏𝑙𝑎𝑛𝑘, where SD is standard deviation and 1.645 is 

the upper 0.05 critical value from a standard normal distribution. LOB is the upper 95% 

confidence limit of blank samples. For analytical procedures, the LOD is the threshold below 

which measurements are not significantly different from a blank signal with a given probability 

(Armbruster, Tillman and Hubbs 1994). It is the lowest analyte concentration to be reliably 

distinguished from LOB and at which detection is feasible. As defined in EP17, the LOD can be 

described by  𝐿𝑂𝐵 = 𝐿𝑂𝐵 + 1.645𝑆𝐷𝑙𝑜𝑤 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒  (CLSI 2004), where SD is the 

standard deviation of replicate tests of samples known to contain low concentrations of the 

analyte. LOQ is the lowest concentration of analyte can be measured with certain pre-defined 

precision at which the analyte cannot only be reliably detected but also at which some goals for 

bias and imprecision are met. It can be expected that the LOQ is equal to or larger than LOD but 

cannot be lower than LOD. Even though data below LOQ cannot meet certain precision criteria, 

there is some information within the data defined to be below LOQ. Therefore, we should find a 

way to deal with such data, especially for research based on low concentration data. 

Based on FDA-CVM (2016), in the US FDA suggests eliminating data below LOD and 

LOQ. The EMA recommends using half of the LOQ to replace measurements that fall below the 

LOQ (EMA-CVMP 2016). In fact, there are more methods to handle situations where data fall 

below the LOQ. Using data that fall below the LOQ as measured, without any adjustment, has 

been demonstrated to be a bad approach (EMA-CVMP 2016). Maximum likelihood estimates, 

which determine the depletion curve that would maximize the likelihood of the observed data is 

also not recommended, based on the results of a simulation study by the EMA (EMA-CVMP 

2016). Approaches using order statistics have been studied by Yan (2014). There are additional 

approaches to dealing with data below LOQ (Beal 2001; Senn and Hockey 2012): discard LOQ 
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data and estimate using remaining values as if they came from a full distribution; discard LOQ 

data and estimate by treating the remaining values as forming a ‘truncated’ sample; calculate the 

likelihood of all remaining samples conditional on the value being greater than the LOQ; ignore 

any actual values of the LOQ data and estimate by treating the sample as a whole as one in 

which LOQ values are censored; calculate the likelihood of the LOQ sample assuming that the 

value is less than the LOQ; estimate the likelihood as in last method but add an additional 

constraint that all LOQ values must be positive; calculate the likelihood of all values conditional 

on their being greater than zero with the additional constraint for LOQ values that they are less 

than the LOQ; impute LOQ data by one-half the LOQ and estimate as if all the values were real; 

when measurements are taken for a given individual over time, impute as for last method for the 

first LOQ measurement and discard all subsequent LOQ data; impute LOQ values by zero and 

estimate as if all the values were real. 

Censored data has been studied extensively in environmental research (Helsel 2011). This 

dissertation proposes using left censored data regression to handle data below LOQ. The details 

are discussed in chapter 2. 
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 1.2 Withdrawal Period  

The withdrawal period is the necessary interval between the last administration of the 

drug under normal conditions of use and the time when treated animals or animal products can 

be consumed by the public. The U.S. Food and Drug Agency’s (FDA) Center for Veterinary 

Medicine (CVM) regulates the evaluation of every veterinary drug in each food animal species 

for human food safety. The withdrawal period is one of the important steps in this evaluation 

approach. A detailed flow diagram of food safety evaluation approach is shown in Figure 1.1 

(FDA 1994; FDA-CVM 2016). All legally approved drugs are evaluated by this process. 

Withdrawal period can be established for specific marker residues in a given target tissue.  

 

Figure 1.1: Flow Diagram Illustrating the General Approach for the Human Food Safety 

Evaluation. The dashed lines indicate that the component applies to new animal drugs with 

antimicrobial activity. ADI means Acceptable Daily Intake. ARfD means Acute Reference Dose. 

(FDA-CVM, 2016) 
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However, for extra-label drug use, there is no legally proved withdrawal period to follow 

for consumers, researchers, backyard farmers, etc. Hence, estimating withdrawal period becomes 

very important for extra-label veterinary drug use to make sure edible animal product are safe 

since there is no official guided information. This shows the importance of our research since 

some drugs are used extra-label and no withdrawal period has been established for its marker 

residue.  

For regular data, which does not contain data below LOD and LOQ, the EMA’s 

Committee for Medicinal Products for Veterinary Use (CVMP) and the U.S. Food and Drug 

Agency (FDA)’s Center for Veterinary Medicine (CVM) provide clear regulatory guidelines to 

establish drug withdrawal periods. Here is an example to show how to establish withdrawal 

period using regular data. Following FDA computation recommendations, a veterinary drug 

withdrawal period in liver tissue was established with an R program provided by CVM. The 

withdrawal period is the time when the upper one-sided tolerance limit with a given confidence 

is below a certain limit. Normally, we use the maximum residue limit (MRL) as this certain 

critical limit. Assume a limit of 5.2 ppm was used in this case based on FDA guidelines for a 

drug marker residue in target tissue. From the Figure 1.2, it is clear that the withdraw period is 

24 hours. It was rounded up from 23.6689 hour, since the FDA and EMA require to rounding up 

to next day when the calculated withdrawal period is not a full day. 
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Figure 1.2: The drug residue depletion regression and withdrawal period estimate in example. 

The withdrawal period is 24 hours. 

From this example, it is clear that, in order to construct withdrawal periods, we have to 

establish linear regression using experimental data and calculate a regression tolerance band. 

Establishing the MRL is also very important; however, this dissertation focuses on statistical 

model and method development for the estimation of withdrawal periods that can be applied 

using any value of MLR. Establishing the MRL requires professional drug and toxicology 

knowledge and thus tends to fall within veterinary research rather than statistical. In order to 

focus on the statistical aspects of estimating a withdrawal period, this study uses 5.2 ppm as the 

MRL. Here the 99th percentile tolerance band is 99% upper tolerance limit with 95% confidence 

level (FDA 1994; FDA-CVM 2016). This concept will be explained in more detail in Section 
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1.5. Moreover, we will develop new approach to establish the tolerance limit; this will be shown 

in Chapter 3. 

Since our data contains observations below LOQ, a left-censored data linear regression 

was estimated to handle LOQ issue. The new tolerance limit approach will be applied to this 

regression to establish 99% upper tolerance limit with 95% confidence level. This is slightly 

different from the tolerance limit calculated using EMA and FDA guidance (EMA-CVMP 2016; 

FDA-CVM 2016) which will be explained in Section 1.5. 
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 1.3 Linear Regression to Predict Drug Residue Over Time 

It is clear that withdrawal time is the time at the point of intersection between the target 

residue concentration and the upper 99th percentile tolerance band (99% tolerance limit with a 

95% confidence level based on FDA guidance). In order to establish the withdrawal period, 

besides determining the critical drug residue limit, the other important step is estimation of the 

upper tolerance limit. According to the pharmacokinetic compartment model theory, the 

relationship between drug concentration and time through all phases of absorption, distribution 

and elimination is usually described by multi-exponential mathematical terms (EMA-CVMP 

2016), 

𝐶𝑡 = ∑𝐶0,𝑖𝑒
−𝜆𝑖𝑡

𝑛

𝑖=1

 

where 𝐶𝑡 is the concentration at time t, 𝐶0,𝑖 is the extrapolated concentration at time 𝑡 = 0, and 

𝑖𝑡ℎ exponential term, and 𝜆𝑖 is the constant rate corresponding to the 𝑖𝑡ℎ exponential term. Here 

the exponential term is the compartment. In the pharmacokinetic compartment model, the 

compartments are tissues or function organs. Here, the compartment can be viewed as a target 

tissue. 

The FDA’s CVM makes a simplifying assumption for the analysis of residue data that the 

depletion curve, during the phase of the depletion closest to the established tolerance, can be 

represented by a single exponential equation. The EMA-CVMP (2016) also claims that with a 

one compartment model,  

𝐶𝑡 = 𝐶0𝑒
−𝜆𝑡  , 
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linearity of the plot ln(𝐶) versus time indicates that the model for residue depletion is applicable 

and linear regression analysis of the logarithmic transformed data can be considered for the 

calculation of withdrawal periods. So, the natural logarithm transformation of concentration can 

be fitted in a linear regression, which 

ln(𝐶𝑡) = 𝛼 − 𝜆𝑡 

where ln(𝐶𝑡) is the log of concentration at time t and 𝛼 is the intercept in which 𝛼 = ln (𝐶0). The 

term 𝜆 is the rate constant. Hence, EMA and FDA use linear regression to predict drug residue 

depletion over time with a logarithmic transformation of concentration. 

Based on a lognormal assumption, it is clear that the logarithmic transformation of 

concentration follows normal distribution. Hence, the left censored data regression model 

developed in this study focuses on cases with the assumption of a normal distribution.  
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 1.4 Tolerance Interval  

Regression models have been used for prediction for a wide range of purposes. However, 

only reporting the predictions is not satisfactory. Statistical intervals are needed to quantify the 

uncertainty about the scalar quantity. There are many types of intervals available, such as 

confidence intervals, prediction intervals, tolerance intervals, and so on. The method to choose a 

certain interval depends on the problem, assumptions and application (De Gryze, Langhans, & 

M. Vandebroek, 2007). Several measures of statistical intervals (limits) are used to describe the 

possible range of values given the variability among the observations (FDA-CVM 2016). 

However, there are certain disadvantages with these intervals (limits) (Myers 1990). For 

example, the commonly used 95% confidence interval means we are 95% confidence data falls 

into the interval at time t, which does not mean 95% of the data falls into the interval. The 

confidence interval provides a range of values that we can believe, with a given level of 

confidence, contains the true value of a variable in the larger population that is being estimated 

by the sample in a particular study (Hahn & Meeker, 2001). However, the probability coverage is 

not 95%, which means the 95% confidence interval does not indicate that there is a 95% 

probability that the population parameter lies within the interval, i.e. a 95% probability that the 

interval covers the population parameter (Rasmussen, Staggs, Beard & Newman, 1998; De 

Gryze et al., 2007). On the other hand, prediction intervals consider the accuracy with which we 

can predict the targets themselves (Heskes, 1997). The probability coverage of the 95% 

prediction interval is also not 95% (De Gryze et al., 2007).  

Tolerance intervals can provide a range that contains a specific proportion or more of the 

sampled population (Krishnamoorthy & Mathew, 2009), which means the probability coverage 
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of a 95% tolerance interval is 95% with certain level of confidence. Sample size is relevantly 

small in drug residue research due to financial, labor and equipment limitations. The tolerance 

interval also works great well with small sample sizes (De Gryze et al., 2007).  

De Gryze et al. (2007) denoted the tolerance interval at 𝑥𝑛+1, which contains a proportion 

p of the individual responses 𝑦|𝑥𝑛+1 with confidence 1 − 𝛼 is defined as the interval 𝐼𝑇(𝑥𝑛+1) 

around the predicted response 𝑦̂|𝑥𝑛+1 for which 

𝑃𝑟(𝑃𝑟(𝑦|𝑥𝑛+1 ∈ 𝐼𝑇(𝑥𝑛+1)) ≥ 𝑝) = 1 − 𝛼 

There are two probability parts in in the tolerance interval. The probability 

𝑃𝑟(𝑦|𝑥𝑛+1 ∈ 𝐼𝑇(𝑥𝑛+1)) is called the coverage of the interval  𝐼𝑇(𝑥𝑛+1). Hence, the tolerance 

interval can cover a fixed proportion of the population. Based on the definition equation, the 

upper tolerance limit can be computed subject to the condition that at least 95% of the population 

response levels are below the limit, with a certain confidence level 1 − 𝛼.  

The FDA’s CVM suggests 99% setting for the proportion p with 95% confidence level. 

In another words, the FDA requires the tolerance limits to cover 99% population with 95% 

confidence. There is a slight difference in the EMA guidance. Instead of 99% setting for 

proportion p, a 95% population coverage with 95% confidence is required to calculate the 

tolerance limit. The tolerance limit is the one side boundary of the tolerance interval. In drug 

withdrawal period studies, we focus on the upper boundary of tolerance interval. The general 

tolerance limit, FDA tolerance limit and EMA tolerance limit will be explained in detail in 

chapter 3. 
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Chapter 2 - Left Censored Data Regression 

In chemical concentration data studies, it is very common to have values that are below 

defined thresholds such as the LOQ and LOD (USEPA 2009; Boeckel et al., 2015; Ichihara et 

al., 2017). Such data sets are viewed as censored data. Censored data sets have unknown values 

beyond a limit on either end of the number line. In other words, a series of samples contains 

censored data if some of the observations that are below or above a specific threshold value. 

However, censored data is different from truncated data. In truncated data, all values that exceed 

some limit are not recorded. In this dissertation, we focus on data below LOQ, which will be 

considered to be censored data and not truncated. 

 Even though measurements below the LOQ are less accurate, they still contain 

information. At a minimum, we know these data fall below a certain level. Statistical methods 

for dealing with censored data have a long and strong history in survival analysis and life testing 

research (Kalbfleisch & Prentice 1980; Glasziou, Simes & Gelber 1990; Kelly& Lim 2000; 

Miller 2011; Cox 2018). Survival analysis is focused mainly on right censored data analysis 

since the censored observations are above certain time limit. Our research is different from 

survival data in that it is focused on observations that contain data below certain level, such as 

LOQ. 

In order to predict drug residue depletion process during time, a left-censored data 

regression model was developed to handle data below LOQ issue in this dissertation. The details 

are introduced in the following sections. 
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 2.1 Likelihood Function 

In the most general case for censored data, the likelihood function is the product of two 

components: one for the censored data and another for uncensored data. Based on this theory, 

Aitkin (1981) used function (2.1) to define the likelihood for right censored survival data by 

considering n items as detected data and m items that survived until a cut off time point. That 

means there are 𝑚 observations which are censored because of the limitation of clinical trials. 

Observations 𝑦𝑖 , (𝑖 = 1, 2, 3,⋯ , 𝑛, 𝑛 + 1, 𝑛 + 2,⋯𝑛 + 𝑚), are independent and normal 

distributed lifetimes with mean 𝜇𝑖  and variance 𝜎2.  

𝐿 =
1

𝜎𝑛
∏ 𝜙(𝑧𝑖) ∏ 𝜓(𝑧𝑖)

𝑚

𝑖=𝑛+1

𝑛

𝑖=1

          (2.1) 

Where, 𝑧𝑖 =  
(𝑦𝑖−𝜇𝑖)

𝜎
 , 

            𝜙(𝑦) =
1

√2𝜋
𝑒−1/2𝑦2

 and  

            𝜓(𝑦) = ∫ 𝜙(𝑡)𝑑𝑡
∞

𝑦
. 

In 2011, Hesel used this concept to develop likelihood for censored data. He summarized 

the likelihood function for censored data as the product of three parts. One part is still for 

detected observations. Here, the censored part includes two parts: one represents for left 

censored data and the other for right censored data. Hence, the likelihood function can be written 

as 

𝐿 = ∏𝑝(𝑥)∏ 𝐹(𝑥)∏𝑆(𝑥)           (2.2) 
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where, 𝑝(𝑥) is the probability density function of the uncensored data. It indicates the frequency 

of having detected observation 𝑥. 𝐹(𝑥) and 𝑆(𝑥) are both for the censored data. 𝑆(𝑥) is survival 

function, which shows the probability of observations exceeding value 𝑥. Observations greater 

than value 𝑥 are called right censored data; thus, 𝑆(𝑥) is determined by right censored 

observations. 𝐹(𝑥) is very similar to 𝑆(𝑥). Instead of showing the probability of observations 

exceeding value 𝑥, 𝐹(𝑥) describes the probability of observations equal to or less than value 𝑥. 

This portion of data is called left censored observations. 𝐹(𝑥) is determined by left censored 

observations. The relationship between 𝐹(𝑥) and 𝑆(𝑥) is 𝐹(𝑥) = 1 −  𝑆(𝑥).  

In our study, below limit of quantitation (BLOQ) data is left censored data since it is data 

below limit of quantitation. Based on previous studies, this research defines the likelihood 

function for data including left censored observations as  

𝐿 = ∏𝑓(𝑦𝑖)
𝜏𝑖

𝑛

𝑖=1

𝐹(𝑦𝑖)
1−𝜏𝑖           (2.3) 

where, i = 1, 2, 3,⋯ , 𝑛 

 𝑓(𝑦𝑖) is the probability density function of detected data, which are the observations 

above the LOQ,  

𝐹(𝑦𝑖) is the cumulative density function of censored data, which are the observations 

equal to or less than the LOQ,  

𝜏𝑖 is an indicator variable where 𝜏𝑖 equals 1 when observation 𝑖 is above the LOQ and 𝜏𝑖 

equals 0 when observation 𝑖 is equal to or less than the LOQ 
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Now, we assume observations 𝑦𝑖 are independent and normally distributed with mean i 

and common variance 2, then the likelihood function can be defined as 

𝐿 = ∏ 𝑓(𝑦𝑖)
𝜏𝑖

𝑛

𝑖=1

Φ(
𝑎 − 𝜇𝑖

𝜎
)
1−𝜏𝑖

           (2.4) 

where, 𝑎 = 𝐿𝑂𝑄, 

𝑓(𝑦𝑖) =
1

√2𝜋𝜎2
𝑒

−(𝑦𝑖−𝜇𝑖)
2

2𝜎2 , 

𝐹(𝑦𝑖) = ∫ 𝑓(𝑡)𝑑𝑡
𝐿𝑂𝑄

0
= Φ(

𝐿𝑂𝑄−𝜇𝑖

𝜎
) = Φ(

𝑎−𝜇𝑖

𝜎
),  which is a cumulative density function 

(CDF) of a standard normal distribution 𝑧𝑖 = (
𝑎−𝜇𝑖

𝜎
) 

𝜏𝑖 = 0, when observation 𝑦𝑖  is equal to or less than the LOQ, which is left censored  

𝜏𝑖 = 1, when observation 𝑦𝑖 is above the LOQ, which is detected 

Compared to the methods from Aitkin (1981) and Thompson and Nelson (2003), the big 

advantage of this proposed likelihood function is reduced data pre-process steps: it is not 

necessary to sort the data set first, all of the censored and uncensored data can be pooled 

together, and the analysis can be done with the whole dataset after setting a threshold number, 

which in our study is the LOQ. 
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 2.2 Maximum likelihood estimations 

Maximum likelihood method is one method to calculate the desired estimates (Haley & 

Knott 1992). In addition, maximum likelihood estimation (MLE) is increasingly used in a variety 

of research (Bańbura & Modugno, 2014; Efron 2018; Améndola, Drton & Sturmfels, 2015). 

When the distribution can be assumed from prior knowledge outside the dataset, the MLE 

method can perform very well even with small sample sizes (Helsel 2011). In this dissertation, 

we know the natural logarithmic transformation of drug residue concentration should follow 

normal distribution. It is therefore appropriate to use MLE in this research. 

 Suppose 𝑌 is a dependent variable with observations 𝑦𝑖 (i = 1, 2, 3,⋯ , 𝑛), where 𝑦𝑖  can 

be an observed detected value or an inaccurate number below LOQ. In addition, the 𝑦𝑖 terms are 

independent from each other and normally distributed with mean 𝜇𝑖  and common variance 𝜎2.  

The 𝑋𝑗 terms are explanatory variables with observations 𝑥𝑖𝑗 for the 𝑗𝑡ℎ explanatory variable and 

𝑖𝑡ℎ observation item. Then in linear regression setting, with 𝑥𝑖0 = 1, we can have 

𝜇𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

          (2.5) 

Now, based on function (2.4), the likelihood function 𝐿 in a linear regression model for left 

censored data can be described by 

𝐿 = ∏ 𝑓(𝑦𝑖)
𝜏𝑖

𝑛

𝑖=1

Φ(
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
)

1−𝜏𝑖

           (2.6) 
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where, 𝑎 = 𝐿𝑂𝑄,  

𝑓(𝑦𝑖) =
1

√2𝜋𝜎2
𝑒

−(𝑦𝑖−∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0 )2

2𝜎2  , 

 Φ (
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
)   is a CDF of a standard normal distribution which 𝑧𝑖 = (

𝑎−∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0

𝜎
) 

𝜏𝑖 =0, when response variable observation 𝑦𝑖  is equal to or less than the LOQ, 

𝜏𝑖 =1, when response variable observation 𝑦𝑖 is above the LOQ 

MLE is commonly used in the survival analysis (right censored data) to estimate 

parameters (Wingo 1993; Bhattacharyya 1985; Miller 2011). It is based on the likelihood 

function 𝐿. By solving arg max
𝜃∈Θ

𝐿(𝜃), we can get MLE of parameter  , the   which maximizes 

likelihood function. In practice, it is very convenient to work with the natural logarithm of the 

likelihood (log-likelihood) function instead likelihood function. Then the MLE of   can be 

easily calculated by solving equation 
∂ log 𝐿(𝜃)

∂θ
= 0. 

Here, the log-likelihood function for left censored data in a linear regression setting 

should be  

log 𝐿 = ∑ 𝜏𝑖 log 𝑓(𝑦𝑖) + (1 − 𝜏𝑖) log Φ(𝑧𝑖)

𝑛

𝑖=1

          (2.7) 

where,  𝑓(𝑦𝑖) =
1

√2𝜋𝜎2
𝑒

−(𝑦𝑖−∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0 )2

2𝜎2 , 𝑧𝑖 = (
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
) 

log 𝑓(𝑦𝑖) = −
1

2
log 2𝜋 −

1

2
log 𝜎2 −

1

2𝜎2 (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0 )

2
 and 

logΦ(𝑧𝑖) = log Φ(
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
). 
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Then maximizing the log-likelihood function can be achieved by taking the partial 

derivative of log 𝐿 with respect to parameters 𝛽𝑗  and 𝜎 equals to zero. That means in order to get 

MLE of 𝛽𝑗 , we need to have 
𝜕 log 𝐿

𝜕𝛽𝑗
= 0. On the other hand, by solving equation 

𝜕 log𝐿

𝜕𝜎
= 0, MLE 

of  can be obtained. Steps in detail are showed below. 

For parameter 𝛽𝑗 , in order to get MLE of 𝛽𝑗 , we can solve the function (2.8)  

0 =
𝜕 log 𝐿

𝜕𝛽𝑗
=

∑ 𝜏𝑖 log 𝑓(𝑦𝑖) + (1 − 𝜏𝑖) logΦ(𝑧𝑖)
𝑛
𝑖=1

𝜕𝛽𝑗
          (2.8) 

 

In order to make calculation easier, let’s compute  
𝜕 log 𝑓(𝑦𝑖)

𝜕𝛽𝑗
 and 

𝜕 log Φ(𝑧𝑖)

𝜕𝛽𝑗
 first. 

𝜕 log 𝑓(𝑦𝑖)

𝜕𝛽𝑗
=

𝜕 log
1

√2𝜋𝜎2
𝑒

−(𝑦𝑖−∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0 )

2

2𝜎2

𝜕𝛽𝑗
 

=
𝜕 −

1
2 log 2𝜋 −

1
2 log 𝜎2 −

1
2𝜎2 (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0 )

2

𝜕𝛽𝑗
 

=
1

𝜎2
(𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

) ∙ 𝑥𝑖𝑗                   (2.9) 

 

𝜕 log Φ(𝑧𝑖)

𝜕𝛽𝑗
=

𝜕 logΦ(
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 )

𝜕𝛽𝑗
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=

𝜕Φ(
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 ) 𝜕𝛽𝑗⁄

Φ(
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 )

 

=

−
1
𝜎 𝑓 (

𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0

𝜎 ) ∙ 𝑥𝑖𝑗

Φ(
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 )

  

=
1

𝜎2
∙

(

 
 

−𝜎 ∙

𝑓 (
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 )

Φ(
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 )

∙ 𝑥𝑖𝑗

)

 
 

 

=
1

𝜎2
(−𝜎𝑆 (

𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0

𝜎
) + ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

− ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

) ∙ 𝑥𝑖𝑗 

=
1

𝜎2
(𝑤𝑖 − 𝜇𝑖) ∙ 𝑥𝑖𝑗                    (2.10) 

where,  𝑆 (
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
) =

𝑓(
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
)

Φ(
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
)

  and 𝑤𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0 − 𝜎𝑆 (

𝑎−∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0

𝜎
). 

 

By citing function (2.9) and (2.10), function (2.8) can be extended to function (2.11) 

0 =
𝜕 log 𝐿

𝜕𝛽𝑗
= ∑𝜏𝑖

1

𝜎2
(𝑦𝑖 − ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

) ∙ 𝑥𝑖𝑗 + (1 − 𝜏𝑖)
1

𝜎2
(𝑤𝑖 − ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

) ∙ 𝑥𝑖𝑗

𝑛

𝑖=1

 

= ∑(𝑦𝑖
∗ − ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

) ∙ 𝑥𝑖𝑗

𝑛

𝑖=1

                               (2.11) 
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where,  𝑦𝑖
∗ = {

𝑦𝑖 , 𝜏𝑖 = 1 𝑤ℎ𝑒𝑛 𝑦𝑖 𝑖𝑠 𝑎𝑏𝑜𝑣𝑒 𝐿𝑂𝑄 𝑣𝑎𝑙𝑢𝑒 𝑎 
𝑤𝑖 , 𝜏𝑖 = 0 𝑤ℎ𝑒𝑛 𝑦𝑖 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑜𝑟 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝐿𝑂𝑄 𝑣𝑎𝑙𝑢𝑒 𝑎

 

 

So, the MLE of parameter 𝛽𝑗  is equivalent to the least square estimate of 𝛽𝑗  with 𝑦𝑖
∗, which the 

response variable 𝑦𝑖
∗ are censored observations 𝑤𝑖 = ∑ 𝛽̂𝑗𝑥𝑖𝑗

𝑘
𝑗=0 − 𝜎𝑆 (

𝑎−∑ 𝛽̂𝑗𝑥𝑖𝑗
𝑘
𝑗=0

𝜎̂
) and original 

detected observations 𝑦𝑖.  

Further, in order to get the MLE of 𝜎, we can solve the function (2.12), shown below 

0 =
𝜕 log 𝐿

𝜕𝜎
=

∑ 𝜏𝑖 log 𝑓(𝑦𝑖) + (1 − 𝜏𝑖) logΦ(𝑧𝑖)
𝑛
𝑖=1

𝜕𝜎
          (2.12) 

 

Similar to the calculation process for the MLE of 𝛽, we compute  
𝜕 log 𝑓(𝑦𝑖)

𝜕𝜎
 and 

𝜕 logΦ(𝑧𝑖)

𝜕𝜎
 first.  

𝜕 log 𝑓(𝑦𝑖)

𝜕𝜎
=

𝜕 log
1

√2𝜋𝜎2
𝑒

−(𝑦𝑖−∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0 )

2

2𝜎2

𝜕𝜎
  

=
𝜕 −

1
2

log 2𝜋 −
1
2

log 𝜎2 −
1

2𝜎2 (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0 )

2

𝜕𝜎
 

= −
1

𝜎
+

1

𝜎3
(𝑦𝑖 − ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

)

2

                (2.13) 

 

𝜕 logΦ(𝑧𝑖)

𝜕𝜎
=

𝜕 logΦ(
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 )

𝜕𝜎
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=

𝜕Φ(
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 ) 𝜕𝜎⁄

Φ(
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 )

 

=

𝑓 (
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 )

Φ(
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎 )

∙
−(𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0 )

𝜎2
 

=
−(𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0 )

𝜎
∙
1

𝜎
∙ 𝑆 (

𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0

𝜎
)                   (2.14) 

where, 𝑆 (
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
) =

𝑓(
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
)

Φ(
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
)

 . 

 

Hence, by using function (2.13) and function (2.14), function (2.12) can be written as  

0 =
𝜕 log 𝐿

𝜕𝜎
= ∑ 𝜏𝑖 (−

1

𝜎
+

1

𝜎3
(𝑦𝑖 − ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

)

2

)

𝑛

𝑖=1

 

+(1 − 𝜏𝑖)
−(𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0 )

𝜎
∙
1

𝜎
∙ 𝑆 (

𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0

𝜎
) 

= ∑ −
𝜏𝑖

𝜎
+

𝜏𝑖

𝜎3
(𝑦𝑖 − ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

)

2

− (1 − 𝜏𝑖)𝑧𝑖 ∙
1

𝜎
∙ 𝑆(𝑧𝑖)

𝑛

𝑖=1

 

= −
∑ 𝜏𝑖

𝑛
𝑖=1 + ∑ (1 − 𝜏𝑖)𝑧𝑖𝑆(𝑧𝑖)

𝑛
𝑖=1

𝜎3

∙ (
∑ 𝜏𝑖

𝑛
𝑖=1 (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0 )

2

∑ 𝜏𝑖
𝑛
𝑖=1 + ∑ (1 − 𝜏𝑖)𝑧𝑖𝑆(𝑧𝑖)

𝑛
𝑖=1

− 𝜎2)                (2.15) 
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where, 𝑧𝑖 = (
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
).  

 

Then, by solving function (2.15), we can calculate MLE of 𝜎2 with 

𝜎2̂ =
∑ 𝜏𝑖

𝑛
𝑖=1 (𝑦𝑖 − ∑ 𝛽̂𝑗𝑥𝑖𝑗

𝑘
𝑗=0 )

2

∑ 𝜏𝑖
𝑛
𝑖=1 + ∑ (1 − 𝜏𝑖)𝑧̂𝑖𝑆(𝑧̂𝑖)

𝑛
𝑖=1

                    (2.16) 

where, 𝑧̂𝑖 = (
𝑎−∑ 𝛽̂𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎̂
).  
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 2.3 EM algorithm  

It is easy to see 𝛽̂𝑗 and 𝜎2̂ can’t be calculated directly based on function (2.11) and (2.16). 

In order to solve this problem, the expectation–maximization (EM) algorithm will be introduced 

in this section. The EM algorithm is an iterative computational method which is used to find 

MLE of parameters when equations can’t be solved directly. Dempster, Laird and Rubin (1977) 

originally explained and established the EM algorithm for maximum likelihood estimations. The 

EM algorithm contains two steps: an expectation (E) step and a maximization (M) step. In 

general, the E step is to calculate conditional expectation of the complete log likelihood given 

current estimated parameters from M step. At the same time, the M step finds estimates, which 

maximize the expected complete log likelihood calculated from E-step. Then E step and M step 

will be repeated until the result can pass certain criterion.  

In our study, we can get MLE using the following iterative method. First, we set the 

initial estimates of 𝛽𝑗  and 𝜎2 by using all observations as uncensored data. We pretend censored 

observations (equal to or less than LOQ) are detected observations. Then the new response 

variable 𝑦𝑖
∗ can be established by the original detected observations 𝑦𝑖 and 𝑤𝑖 = ∑ 𝛽̂𝑗𝑥𝑖𝑗

𝑘
𝑗=0 𝑖

−

𝜎𝑆 (
𝑎−∑ 𝛽̂𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎̂
) . The new estimate of 𝛽𝑗  will be least square estimate by solving function 

(2.11), which  ∑ (𝑦𝑖
∗ − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0 ) ∙ 𝑥𝑖𝑗

𝑛
𝑖=1 = 0. Then we can compute 𝑧̂𝑖 by 𝑧̂𝑖 = (

𝑎−∑ 𝛽̂𝑗𝑥𝑖𝑗
𝑘
𝑗=0

𝜎̂
).  

Based on 𝑧̂𝑖 and 𝛽̂𝑗 ,  𝜎2̂  can be obtained by 𝜎2̂ =
∑ 𝜏𝑖

𝑛
𝑖=1 (𝑦𝑖−∑ 𝛽̂𝑗𝑥𝑖𝑗

𝑘
𝑗=0 )

2

∑ 𝜏𝑖
𝑛
𝑖=1 +∑ (1−𝜏𝑖)𝑧̂𝑖𝑆(𝑧̂𝑖)

𝑛
𝑖=1

. Then the new 

estimation of parameters 𝛽̂𝑗,  𝜎 2̂ will be inserted into calculation function 𝑤𝑖 = ∑ 𝛽̂𝑗𝑥𝑖𝑗
𝑘
𝑗=0 𝑖

−
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𝜎𝑆 (
𝑎−∑ 𝛽̂𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎̂
) to generate response variable 𝑦𝑖

∗ . This iterative process will keep going until 

convergence. 

Based on the EM algorithm theory from Dempster, Laird and Rubin (1977), in the E step, 

we mainly calculate the conditional expectation of certain sufficient statistics for all observations 

with the censored observations (incomplete data, data below LOQ) replaced by the conditional 

expectation using the parameters 𝛽𝑗  and 𝜎2 which were obtained in the last iteration of the M 

step.  Then the new parameters can be calculated from the expectation of sufficient statistics in 

this iteration M step. 

Here is an example which shows the EM algorithm in detail. At the (𝑟 + 1)𝑡ℎ iteration, 

the E step should be given observed data (𝑦𝑖) and parameters (𝛽𝑗  and 𝜎2 ) estimations from 𝑟𝑡ℎ 

iteration of the M step to calculate conditional expectation of sufficient statistics. This 

dissertation used ∑ 𝑥𝑖𝑗𝑦𝑖
𝑛
𝑖=1  and ∑ 𝑦𝑖

2𝑛
𝑖=1  as sufficient statistics for the parameters in the complete 

data (Aitkin 1981; Thompson & Nelson 2003).  

𝐸 (∑ 𝑥𝑖𝑗𝑦𝑖

𝑛

𝑖=1

) = ∑ 𝜏𝑖𝑥𝑖𝑗𝑦𝑖

𝑛

𝑖=1

+ (1 − 𝜏𝑖)𝐸(𝑦𝑖|𝑦𝑖 < 𝑎, 𝜷, 𝜎2))                    (2.17) 

 

𝐸 (∑𝑦𝑖
2

𝑛

𝑖=1

) = ∑𝜏𝑖𝑦𝑖
2

𝑛

𝑖=1

+ (1 − 𝜏𝑖)𝐸(𝑦𝑖
2|𝑦𝑖 < 𝑎, 𝜷, 𝜎2))                    (2.18) 

where,  
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               𝐸(𝑦𝑖 |𝑦𝑖 < 𝑎,𝜷, 𝜎2) = ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

− 𝜎𝑆 (
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
) 

   𝐸(𝑦𝑖
2|𝑦𝑖 < 𝑎, 𝜷, 𝜎2) = 𝑣𝑎𝑟(𝑦𝑖

2) + 𝐸2(𝑦𝑖) 

= 𝜎2 + (∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

− 𝜎𝑆 (
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
))

2

 

= 𝜎2 + (∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

)

2

+ 𝜎𝑆 (
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
)

2

− 2𝜎𝑆 (
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
) ∙ ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

 

= 𝜎2 + (∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

)

2

+  𝜎𝑆 (
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
) ∙ (𝜎𝑆 (

𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0

𝜎
) − 2∑ 𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

) 

= 𝜎2 + (∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

)

2

+ 𝜎𝑆 (
𝑎 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
) ∙ (𝑤𝑖 + ∑𝛽𝑗𝑥𝑖𝑗

𝑘

𝑗=0

) 

with 𝑤𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0 − 𝜎𝑆 (

𝑎−∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=0

𝜎
). 

 

Then, in the (𝑟 + 1)th  M step, new estimate 𝜷(𝑟+1) can be estimated by replacing the 

censored data 𝑤𝑖  in the complete data set 𝑦𝑖 by  ∑ 𝜷(𝑟)
𝑗
𝑥𝑖𝑗

𝑘
𝑗=0 − 𝜎(𝑟)𝑆 (

𝑎−∑ 𝜷(𝑟)
𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎(𝑟)
). And the 

new estimate 𝜎(𝑟+1)
2  can be estimated by replacing two parts. First, as above, we use 

∑ 𝜷(𝑟)
𝑗
𝑥𝑖𝑗

𝑘
𝑗=0 − 𝜎(𝑟)𝑆 (

𝑎−∑ 𝜷(𝑟)
𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎(𝑟)
) to replace censored data 𝑤𝑖  in complete data set 𝑦𝑖. 
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Second, σ(𝑟)
2 + (∑ 𝜷(𝑟)

𝑗
𝑥𝑖𝑗

𝑘
𝑗=0 )

2
+ 𝜎(𝑟)𝑆 (

𝑎−∑ 𝜷(𝑟)
𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎(𝑟)
) ∙ (𝑤𝑖 + ∑ 𝜷(𝑟)

𝑗
𝑥𝑖𝑗

𝑘
𝑗=0 ) is used to 

replace the censored part in 𝑦𝑖
2.  

In sum,  𝑛𝜎(𝑟+1)
2 = ∑ 𝜏𝑖(𝑦𝑖 − ∑ 𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘
𝑗=0 )

2
𝑛
𝑖=1 + (1 − 𝜏𝑖)(𝑦𝑖 − ∑ 𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘
𝑗=0 )

2
 

with  

      (𝑦𝑖 − ∑𝛽𝑗
(𝑟)

𝑥𝑖𝑗

𝑘

𝑗=0

)

2

= 𝑦𝑖
2 + (∑𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘

𝑗=0

)

2

− 2𝑦𝑖 ∑𝛽𝑗
(𝑟)

𝑥𝑖𝑗

𝑘

𝑗=0

 

= 𝜎(𝑟)
2 + (∑𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘

𝑗=0

)

2

− 𝜎(𝑟)𝑆 (
𝑎 − ∑ 𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘
𝑗=0

𝜎(𝑟)
) ∙ (𝑤𝑖 + ∑𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘

𝑗=0

)  

+ (∑𝛽𝑗
(𝑟)

𝑥𝑖𝑗

𝑘

𝑗=0

)

2

− 2 (∑𝛽𝑗
(𝑟)

𝑥𝑖𝑗

𝑘

𝑗=0

)

2

+ 2∑𝛽𝑗
(𝑟)

𝑥𝑖𝑗

𝑘

𝑗=0

𝜎(𝑟)𝑆 (
𝑎 − ∑ 𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘
𝑗=0

𝜎(𝑟)
) 

= 𝜎(𝑟)
2 − 𝑤𝑖𝜎(𝑟)𝑆 (

𝑎 − ∑ 𝛽𝑗
(𝑟)

𝑥𝑖𝑗
𝑘
𝑗=0

𝜎(𝑟)
) − ∑ 𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘

𝑗=0

𝜎(𝑟)𝑆 (
𝑎 − ∑ 𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘
𝑗=0

𝜎(𝑟)
)  

+2∑ 𝛽𝑗
(𝑟)

𝑥𝑖𝑗

𝑘

𝑗=0

𝜎(𝑟)𝑆 (
𝑎 − ∑ 𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘
𝑗=0

𝜎(𝑟)
) 

= 𝜎(𝑟)
2 − (𝑤𝑖 − ∑ 𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘

𝑗=0

)𝜎(𝑟)𝑆 (
𝑎 − ∑ 𝛽𝑗

(𝑟)
𝑥𝑖𝑗

𝑘
𝑗=0

𝜎(𝑟)
) 

= 𝜎(𝑟)
2 (1 − 𝑧𝑖

(𝑟)
𝑆(𝑧𝑖

(𝑟)
)) 

where 𝑧𝑖 = (
𝑎−∑ 𝛽𝑗𝑥𝑖𝑗

𝑘
𝑗=0

𝜎
). 
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By the end, the iteration algorithm will stop when 𝜎(𝑟)
2 = 𝜎(𝑟+1)

2 . Then the MLE will be  

𝜎2̂ = 𝜎(𝑟)
2 = 𝜎(𝑟+1)

2 . 
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Chapter 3 - Tolerance Limit 

A tolerance limit is the one-sided boundary of a tolerance interval. In drug withdrawal 

period studies, we focus on the one-sided upper boundary of the tolerance interval, which is the 

upper tolerance limit. I will introduce the classical approach to obtain tolerance limit, the FDA 

tolerance limit and the EMA tolerance limit in detail in this chapter. Moreover, a generalized 

variable approach with generalized pivotal quantities method is conducted to obtain tolerance 

limit. By the end, the generalized tolerance limit based on left censored data regression will be 

developed. 

Suppose 𝐹(𝑥) is the cumulative distribution function (CDF) of a continuous random 

variable 𝑋, 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥). The inverse CDF can be written as the following function (3.1) 

by giving 𝑝 (0 < 𝑝 < 1), the inverse CDF 

𝐹𝑋
−1(𝑝) = inf {𝑥: 𝐹𝑋(𝑥) ≥ 𝑝}          (3.1) 

where, 𝑝 is the proportion of the population with the CDF 𝐹(𝑥) which is less or equal to 𝑞𝑝, 

𝑞𝑝 indicates the 𝑝 quantile, 

𝐹𝑋
−1(𝑝) is the value of  𝑥 which 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) = 𝑝. 

Now, we can assume 𝑋1, 𝑋2, 𝑋3,⋯⋯ , 𝑋𝑛 to be a random sample from a CDF 𝐹𝑋(𝑥). Then 𝑿 can 

be denoted as 𝑿 = (𝑋1, 𝑋2, 𝑋3,⋯⋯ , 𝑋𝑛). The one-sided tolerance interval for 𝑝 content and 

(1 − 𝛼) confidence is  

𝑃𝑿{𝑃𝑥(𝑋 ≤ 𝐼(𝑿)|𝑿) ≥ 𝑝} = 1 − 𝛼          (3.2) 
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where, 0≤ 𝑝 ≤ 1, 0 ≤ 𝛼 ≤ 1, and 𝛼 is the significant level. Here, 𝐼(𝑿) shows that at least 𝑝 

proportion is less or equal to 𝐼(𝑿) with the confident level (1 − 𝛼). Then (−∞, 𝐼(𝑿)] is the one-

sided tolerance interval and 𝐼(𝑿) is the upper tolerance limit. Since 𝑞𝑝 is the 𝑝 quantile of a 

distribution, we can know the above function (3.2) is able to be written as  

𝑃𝑿{𝑞𝑝 ≤ 𝐼(𝑿)} = 1 − 𝛼          (3.3) 

Based on function (3.2), there is one important property (Krishnamoorthy & Mathew 

2009). Let 𝑋 follow a normal distribution with zero mean and variance 𝜎2 , 𝑋~𝑁(0, 𝜎2). It is 

independent to 𝑄~
𝜒𝑚

2

𝑚
, where 𝜒𝑚

2  is a chi square random variable with degree of freedom 𝑚. 

Suppose that 0≤ 𝑝 ≤ 1, 0 ≤ 𝛾 ≤ 1, and Φ is the standard normal distribution function, then we 

can have a constant factor 𝑘 satisfying  

𝑃𝑋,𝑄(Φ(𝑋 + 𝑘√𝑄) ≥ 𝑝) = 𝛾          (3.4) 

where 𝑘 is given by, 

𝑘 = √𝜎2 × 𝑡𝑚;𝛾 (
𝒵𝑝

√𝜎2
)           (3.5) 

Here, 𝒵𝑝 is the 𝑝 quantile of standard normal distribution Φ, 𝑡𝑚;𝛾 (
𝒵𝑝

√𝜎2
) is the 𝛾 quantile of the 

noncentral t distribution with degree of freedom 𝑚 and noncentral parameter 
𝒵𝑝

√𝜎2
 .  

This property can be proven by the following approach. We can see that the inner 

probability inequality part Φ(𝑋 + 𝑘√𝑄) ≥ 𝑝 in function (3.4) will hold if and only if 𝑋 +

𝑘√𝑄 ≥ 𝒵𝑝. So, we can rewrite function (3.4) as  
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𝑃𝑋,𝑄(𝑋 + 𝑘√𝑄 ≥ 𝒵𝑝) = 𝑃𝑋,𝑄 (
𝑋 − 𝒵𝑝

√𝑄
≥ −𝑘) 

= 𝑃𝑋,𝑄 (√𝑐
−𝑋/√𝑐 + 𝒵𝑝/√𝑐

√𝑄
≤ 𝑘) 

= 𝑃𝑋,𝑄 (√𝑐
𝑋/√𝑐 + 𝒵𝑝/√𝑐

√𝑄
≤ 𝑘) 

= 𝛾                 (3.6) 

where 𝑐 is the variance 𝜎2.  

Note that the 𝑋 and −𝑋 are identically distributed, so that 𝑃𝑋,𝑄 (√𝑐
−𝑋/√𝑐+𝒵𝑝/√𝑐

√𝑄
≤ 𝑘) =

𝑃𝑋,𝑄 (√𝑐
𝑋/√𝑐+𝒵𝑝/√𝑐

√𝑄
≤ 𝑘) in function (3.6). Since 𝑋~𝑁(0, 𝜎2), 𝑋/√𝑐 follows a standard normal 

distribution, i.e. 𝑋/√𝑐~𝑁(0,1), 𝑐 = 𝜎2. In addition, 𝑋/√𝑐~𝑁(0,1) and 𝑄~
𝜒𝑚

2

𝑚
 are also 

independent to each other. Then, we can have  

𝑋/√𝑐 + 𝒵𝑝/√𝑐

√𝑄
~𝑡𝑚(

𝒵𝑝

√𝑐
) 

where  𝑡𝑚(
𝒵𝑝

√𝑐
) is the noncentral t random variable with non-centrality parameter 

𝒵𝑝

√𝑐
 and degree of 

freedom m. Hence, factor 𝑘 satisfies function (3.4), 𝑃𝑋,𝑄(Φ(𝑋 + 𝑘√𝑄) ≥ 𝑝) = 𝛾. 

For the normal population, let’s assume 𝑋1, 𝑋2, 𝑋3, ⋯⋯ , 𝑋𝑛 be a sample from a normal 

distribution 𝑁(𝜇, 𝜎2). Here mean 𝜇 and variance 𝜎2 are unknown. Then, the sample mean 𝑋̅ and 

sample variance 𝑆2 can be written (De Gryze, Langhans & Vandebroek 2007) as 
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𝑋̅ =  
1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

 

𝑆2 =
1

𝑛 − 1
∑(𝑋𝑖 − 𝑋̅)2

𝑛

𝑖=1

 

Then the 𝑝 quantile of the normal distribution 𝑁(𝜇, 𝜎2) is  

𝑞𝑝 =  𝜇 + 𝒵𝑝𝜎 

where 𝒵𝑝 is the 𝑝 quantile of a standard normal distribution 𝑁(0,1). Note the upper confidence 

limit with 1 − 𝛼 confidence level for 𝑞𝑝 is the one-sided upper tolerance limit for a normal 

distribution with (𝑝, 1 − 𝛼 ). In general, the upper limit for 𝑞𝑝 can be obtained by 𝑝 > 0.5 

(Krishnamoorthy & Mathew, 2009).  
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 3.1 Classical Approach 

Described in this section is the classic approach to calculate one-sided upper tolerance 

limits in a normal distribution setting. First, let’s assume that the (𝑝, 1 − 𝛼) one-sided upper 

tolerance limit can be written as the form of 𝑋̅ + 𝑘𝑆, 𝑘 is the constant factor which we explained 

in the previous paragraphs. The one-sided upper tolerance limit is to determine that at least a 

proportion 𝑝 of the population are less or equal than 𝑋̅ + 𝑘𝑆 with confidence level 1 − 𝛼. The 

following function (3.7) shows what we just described here.  

𝑃𝑋,̅𝑆{𝑃(𝑋 < 𝑋̅ + 𝑘𝑆|𝑋̅, 𝑆) > 𝑝} = 1 − 𝛼               (3.7) 

where 𝑋~𝑁(𝜇, 𝜎2). In addition, suppose 𝑍 =
𝑋−𝜇

𝜎
 ~𝑁(0,1), 𝑍𝑛 =

𝑋̅−𝜇

𝜎
 ~𝑁(0,

1

𝑛
), and 𝑈2 =

𝑆2

𝜎2 ~
𝜒𝑛−1

2

𝑛−1
. 𝜒𝑛−1

2 is the chi-square random variable with degree of freedom 𝑛 − 1.  

Then the function (3.7) can be rewritten as  

       𝑃𝑍𝑛,𝑈{𝑃(𝑍 < 𝑍𝑛 + 𝑘𝑈|𝑍𝑛, 𝑈) > 𝑝} 

=  𝑃𝑍𝑛,𝑈{Φ(𝑍𝑛 + 𝑘𝑈) > 𝑝} 

= 1 − 𝛼               (3.8) 

Since 𝑍𝑛 =
𝑋̅−𝜇

𝜎
 ~𝑁(0,

1

𝑛
) and 𝑈2 =

𝑆2

𝜎2
~

𝜒𝑛−1
2

𝑛−1
 are independent to each other, based on function 

(3.4) and (3.5), we can have a constant factor 𝑘, which  

𝑘 =
1

√𝑛
𝑡𝑛−1;1−𝛼(𝒵𝑝√𝑛)               (3.9) 
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where 𝜎2 =
1

𝑛
 , 𝛾 = 1 − 𝛼 , and 𝑚 = 𝑛 − 1. Here the 𝑡𝑛−1;1−𝛼(𝒵𝑝√𝑛) indicates the 1 − 𝛼 

quantile of a non-central t distribution with degree of freedom n − 1 and the non-centrality 

parameter 𝒵𝑝√𝑛.  

So, we can have the (𝑝, 1 − 𝛼) one-sided upper tolerance limit  

𝑋̅ + 𝑘𝑆 = 𝑋̅ + 𝑡𝑛−1;1−𝛼(𝒵𝑝√𝑛)
𝑆

√𝑛
. 

Actually, we can extend the (𝑝, 1 − 𝛼) one-sided upper tolerance limit from normal 

population to linear regression. 𝑌𝑖 is the response variable for the 𝑖𝑡ℎ observation. 𝑥𝑖 represents 

the covariates. Under normality assumption, the linear regression model can be represented as  

𝑌 = 𝑋𝛽 + 𝜀 

where, 𝜀 is the residual with 𝜀~𝑁(0, 𝜎2), 𝑌 = (𝑌1, 𝑌2, 𝑌3,⋯ ⋯ ,𝑌𝑛) is the 𝑛 × 1 vector of the 

observations and X is 𝑛 × 𝑚 matrix with 𝑖𝑡ℎ row observation 𝑥𝑖′. Then we can know the mean of 

𝑌𝑖 is 𝑥′𝛽. Let 𝛽̂ be the least square estimator of 𝛽, 𝛽̂ = (𝑋′𝑋−1𝑋′𝑌). 𝑆2 is the residual mean 

square with 𝑆2 =
(𝑌−𝑋𝛽̂)′(𝑌−𝑋𝛽̂)

𝑛−𝑚
.  

Now, let 𝑘(𝑥) be the tolerance factor which can be calculated to have the one side upper 

tolerance interval with the form (−∞, 𝑥′𝛽̂ + 𝑘(𝑥)𝑆]. Here 𝑥′𝛽̂ + 𝑘(𝑥)𝑆 is the upper tolerance 

limit. Based on the theory we just shown above, given 𝛽̂ and 𝑆2 the content of the one side upper 

tolerance interval for linear regression is  

𝐶(𝑥; 𝛽̂, 𝑆) = 𝑃𝑌(𝑥)(𝑌(𝑥) ≤ 𝑥′𝛽̂ + 𝑘(𝑥)𝑆| 𝛽̂, 𝑆)               (3.10) 

Then, the constant tolerance factor 𝑘(𝑥) should satisfy 
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𝑃𝛽̂,𝑆( 𝐶(𝑥; 𝛽̂, 𝑆) ≥ 𝑃) = 1 − 𝛼               (3.11) 

Note that 𝛽̂ = (𝑋′𝑋−1𝑋′𝑌), 𝑌~𝑁(𝑋𝛽, 𝜎2𝐼). Then expectation of 𝛽̂ is 

 𝐸(𝛽̂) = 𝐸((𝑋′𝑋)−1𝑋′𝑋𝛽) = 𝛽. The variance of parameter 𝛽 can be written as 𝑣𝑎𝑟(𝛽̂) =

(𝑋′𝑋)−1𝑋′𝜎2𝐼[(𝑋′𝑋)−1𝑋′]′ = 𝜎2(𝑋′𝑋)−1 .  

So we can have 𝑍 =
𝑌(𝑥)−𝑥′𝛽̂

𝜎
 ~𝑁(0,1), 𝑍𝑥 =

𝛽̂−𝛽

𝜎
 ~𝑁(0, (𝑋′𝑋)−1),  𝑈2 =

𝑆2

𝜎2 ~
𝜒𝑛−𝑚

2

𝑛−𝑚
 and 

all random variables are independent. 𝜒𝑛−𝑚
2  is the chi-square random variable with degree if 

freedom 𝑛 − 𝑚.  

Then we can rewrite function (3.10) as  

𝐶(𝑥; 𝛽̂, 𝑆) = 𝑃𝑧(𝑧 ≤ 𝑥′𝑍𝑥 + 𝑘(𝑥)𝑈 | 𝑍𝑥, 𝑈)                (3.12) 

Note that 𝑣𝑎𝑟(𝑥′𝑍𝑥) = 𝑥′𝑣𝑎𝑟(𝑍𝑥)𝑥 = 𝑥′(𝑋′𝑋)−1𝑥. Hence, 𝑥′𝑍𝑥 follows normal distribution 

which 𝑥′𝑍𝑥~𝑁(0, 𝑥′(𝑋′𝑋)−1𝑥).  

Let 𝑑2 be the variance of 𝑥′𝑍𝑥,  𝑑2 = 𝑥′(𝑋′𝑋)−1𝑥, and 𝜐 =
𝑥′𝑍𝑥

𝑑
. So 𝜐 is a standard 

normal distribution, 𝜐~𝑁(0,1). Now, function (3.10) can be rewritten as  

𝐶(𝑥; 𝛽̂, 𝑆) = Φ(𝑑𝜐 + 𝑘(𝑑)𝑈) = 𝐶(𝑑; 𝜐, 𝑈)               (3.13) 

where, Φ is the cumulative density function (cdf) of a standard normal distribution. 𝑘(𝑑) is the 

new notation instead of 𝑘(𝑥) since 𝑑 is a function of 𝑥. Based on function (3.13) and (3.11), the 

constant tolerance factor 𝑘(𝑑) will satisfy  

𝑃𝜐,𝑈(Φ(𝑑𝜐 + 𝑘(𝑑)𝑈) ≥ 𝑃) = 1 − 𝛼 
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Let 𝑋 = 𝑑𝜐 and 𝑄 = 𝑈2 =
𝑆2

𝜎2, so that 𝑋~𝑁(0, 𝑑2) and Q~
𝜒𝑛−𝑚

2

𝑛−𝑚
. With function (3.5), we 

can know the constant tolerance factor 𝑘(𝑑) can be calculated by 

𝑘(𝑑) = 𝑑 × 𝑡𝑛−𝑚;1−𝛼(
𝒵𝑝

𝑑
) 

where  𝑡𝑛−𝑚;1−𝛼(
𝒵𝑝

𝑑
) is the 1 − 𝛼 quantile of a noncentral t distribution with degree of freedom 

𝑛 − 𝑚 and the non-centrality parameter 
𝒵𝑝

𝑑
. 

In the simple linear regression, we can have 

𝑑2 =
1

𝑛
+ 𝑐2                (3.14) 

where 𝑐2 =
(𝑥−𝑥̅)2

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

  . It can be proved by the following steps. Let 𝑥 = (
1 𝑥1

⋯ ⋯
1 𝑥𝑛

), so that 𝑥′ =

(
1 ⋯ 1
𝑥1 ⋯ 𝑥𝑛

). Then we can have 

𝑥′𝑥 = 

(

  
 

𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1 )

  
 

 

(𝑥′𝑥)−1 =
1

𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1 )2

[
 
 
 
 
 ∑𝑥𝑖

2

𝑛

𝑖=1

−∑𝑥𝑖

𝑛

𝑖=1

−∑𝑥𝑖

𝑛

𝑖=1

𝑛
]
 
 
 
 
 

 

𝑥′(𝑥′𝑥)−1𝑥 =
∑ 𝑥𝑖

2𝑛
𝑖=1 − 2𝑥 ∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑛𝑥2

𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1 )2
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In addition, we can know 

∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

= ∑𝑥𝑖
2

𝑛

𝑖=1

+ 𝑛𝑥̅2 − 2 ∑𝑥𝑖𝑥̅

𝑛

𝑖=1

 

= ∑𝑥𝑖
2

𝑛

𝑖=1

−
(∑ 𝑥𝑖

𝑛
𝑖=1 )2

𝑛
 

and 

(𝑥 − 𝑥̅)2 = 𝑥2 + 𝑥̅2 − 2𝑥𝑥̅ 

= 𝑥2 + (
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
)2 − 2𝑥

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
. 

Then  

𝑥′(𝑥′𝑥)−1𝑥 =

𝑛 (𝑥2 − 2
𝑥
𝑛

∑ 𝑥𝑖
𝑛
𝑖=1 + (

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛 )
2

− (
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛 )
2

+
∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛 )

𝑛(∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 )

 

=

 𝑛 ((𝑥 − 𝑥̅)2 − (
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛 )
2

+
∑ 𝑥𝑖

2𝑛
𝑖=1

𝑛 )

𝑛(∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 )

 

=
(𝑥 − 𝑥̅)2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

+
∑ 𝑥𝑖

2𝑛
𝑖=1 −

(∑ 𝑥𝑖
𝑛
𝑖=1 )2

𝑛
𝑛(∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1 )
 

=
1

𝑛
+ 𝑐2 

so that we have proven 𝑑2 =
1

𝑛
+ 𝑐2, where 𝑐2 =

(𝑥−𝑥̅)2

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

 for the simple linear regression.  
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 3.2 FDA and EMA Tolerance Limit 

The FDA’s CVM suggests 99% setting for the proportion 𝑝 with 95% confident level. In 

other words, the FDA requires the tolerance limits to cover 99% of the population with 95% 

confidence. However, the EMA guidance suggests a 95% population coverage with 95% 

confidence. The proportion 𝑝 is set as 0.95 instead of 0.99. In general, the FDA tolerance interval 

will have bigger range than EMA approach. It may lead to more conservative withdrawal period.  

The FDA (2005) specified guidance on how to calculate the tolerance limit, which is 

shown below. 

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝑘(𝑑)𝑆𝑥𝑦 

where, 𝑘(𝑑) = 𝑑 × 𝑡𝑛−𝑚;1−𝛼(
𝒵𝑝

𝑑
), 

𝑑2 =
1

𝑛
+

(𝑥−𝑥̅)2

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

, and 

𝑆𝑥𝑦 is the residual error, 𝒵𝑝 is 99th percentile of standard normal distribution with 𝑝 =

0.99, 1 − 𝛼 is 95% confidence level with 𝛼 = 0.05, 𝑛 is sample size and 𝑚 = 2 . 

It is clear that the FDA tolerance limit is as same as we described in last section. In 

addition to the different setting on proportion 𝑝, where 𝑝 = 0.95, the EMA tolerance limit is 

based on Kurt (1971) tolerance limit instead of the approach we just described before. However, 

the two approach are very similar. The results are close to each other when they are based on 

same proportion 𝑝 and confidence level 1 − 𝛼 (EMA-CVMP 2016). The function below shows 

the EMA tolerance limit in detail.  

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝑘𝑡𝑆𝑥𝑦 
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where,  𝑘𝑡 =
√(2𝑛−4)

(2𝑛−4)−𝒵1−𝛼
2 (√(2𝑛 − 4)𝒵1−𝛾 + 𝒵1−𝛼𝑊𝑛 

𝑊𝑛 = √𝒵1−𝛾
2 + ((2𝑛 − 4) − 𝒵1−𝛼

2 )(
1

𝑛
+

(𝑥 − 𝑥̅)2

𝑆𝑥𝑥
) 

𝑆𝑥𝑥 = ∑ 𝑥𝑖
2

𝑛

𝑖=1

− 
1

𝑛
(∑𝑥𝑖

𝑛

𝑖=1

)

2

 

𝑆𝑥𝑦 is the residual error. 𝒵1−𝛾 and 𝒵1−𝛼 are (1 − 𝛾) and (1 − 𝛼) percentile of standard 

normal distribution. Here (1 − 𝛾) = (1 − 𝛼) = 0.95 based on EMA guidance.  
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 3.3 Generalized Variable Approach 

Beside the classical approach, there are additional procedures to obtain the one-sided 

tolerance limits. In fact, for a normal distribution 𝑁(𝜇, 𝜎2), the computation of the (𝑝, 1 −

𝛼) one-sided upper tolerance limit is equivalent to the computation of the 1 − 𝛼 upper 

confidence limit for the 𝑝 quantile of the normal distribution (Krishnamoorthy & Mathew 2009), 

𝑞𝑝 =  𝜇 + 𝒵𝑝𝜎. The modified large sample (MLS) confidence interval approach was proposed 

by Graybill and Wang (1980) and studied by Burdick and Graybill (1992). Unfortunately, the 

large sample method does not perform well for small sample sizes which is often the situation in 

practice (Borror, Montgomery & Runger, 1997). An alternative method is called the generalized 

variable approach. It contains two important concepts: the generalized p-value approach for 

hypothesis testing, which was introduced by Tsui and Weerahandi (1989) and the generalized 

confidence interval (Weerahandi, 1995).  

Based on the generalized p-value and the generalized confidence interval, the generalized 

variable approach (generalized inference procedure) is founded. The generalized variable 

approach has been proven to be extremely useful to obtain confidence intervals for complex 

situations when the standard or classic approaches are hard to apply (Krishnamoorthy & 

Mathew, 2009). In order to conduct the generalized confidence interval, we will introduce the 

generalized pivotal quantity approach (GPQ). 

Let 𝑋 be a random sample from a distribution 𝐹𝑋(𝑥;  𝜃, 𝛿). 𝜃 is the scalar parameter we 

are interested in. 𝛿 is the other nuisance parameter.  𝑥 is an observation, which represents the 

data. The generalized confidence interval for interest parameter 𝜃 can be obtained by using the 

percentile of the GPQ, such as 𝐺(𝑋; 𝑥, 𝜃). Here 𝑋, 𝑥, and 𝜃 satisfy two conditions.  
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First, given 𝑥, the distribution of 𝐺(𝑋; 𝑥, 𝜃) is free of all unknown parameters. Second, 

the observed value of the distribution 𝐺(𝑋; 𝑥, 𝜃) is 𝜃, which is the parameter we are interested in, 

when 𝑋 = 𝑥. Note that since the interest parameter 𝜃 is an unknown parameter, it is not 

observable. When both conditions hold, the  1 − 𝛼 confidence interval for 𝜃 is the 𝑝 quantile of 

𝐺(𝑋; 𝑥, 𝜃). For example, (𝐺𝛼

2
 , 𝐺1−

𝛼

2
 ) is the 1 − 𝛼 confidence interval for 𝜃 when 𝐺𝑝 is the 𝑝 

quantile of 𝐺(𝑋; 𝑥, 𝜃). Then, (𝐺𝛼

2
 , 𝐺1−

𝛼

2
 ) is the generalized confidence interval.  

For the location scale family, GPQ has a useful property. A continuous distribution 

belongs to location scale family if its probability density function (pdf) can be written as in the 

following form 

𝑓(𝑥;  𝜇, 𝜎) =  
1

𝜎
𝑔 (

𝑥 − 𝜇

𝜎
)               (3.15) 

where −∞ ≤ 𝑥 ≤ ∞, −∞ ≤ 𝜇 ≤ ∞ and 𝜎 ≥ 0. 

The function 𝑔(∙) is a completely specified pdf. The terms 𝜇 and 𝜎 are location and scale 

parameters for the pdf. For example, the normal distribution is a location scale family since we 

can write the normal distribution pdf in the form 

𝑓(𝑥;  𝜇, 𝜎) =  
1

𝜎
𝜙(

𝑥 − 𝜇

𝜎
) 

where 𝜙 (
𝑥−𝜇

𝜎
) =

1

√2𝜋
𝑒−

𝑥2

2   .  
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Now, let 𝑋1, 𝑋2, 𝑋3,⋯⋯ ,𝑋𝑛 be a sample from a certain distribution with location and 

scale parameter 𝜇 and 𝜎. The estimators 𝜇̂(𝑋1, 𝑋2, 𝑋3,⋯ ⋯ ,𝑋𝑛) of 𝜇 and 𝜎(𝑋1, 𝑋2, 𝑋3,⋯⋯ , 𝑋𝑛) 

of 𝜎 are equivariant if for any constant number a and b, a > 0, 

𝜇̂(𝑎𝑋1 + 𝑏, 𝑎𝑋2 + 𝑏,⋯⋯ , 𝑎𝑋𝑛 + 𝑏) = 𝑎𝜇̂(𝑋1, 𝑋2,⋯⋯ , 𝑋𝑛) + 𝑏 

𝜎̂(𝑎𝑋1 + 𝑏, 𝑎𝑋2 + 𝑏,⋯⋯ ,𝑎𝑋𝑛 + 𝑏) = 𝑎𝜎(𝑋1, 𝑋2,⋯⋯ , 𝑋𝑛) 

This indicates that the sample mean 𝑋̅ and sample variance 𝑆2 are equivariant estimators 

for a normal mean and variance. If the sample is from a location family,  𝑋1, 𝑋2, 𝑋3,⋯⋯ , 𝑋𝑛 is 

from a continuous distribution with pdf in the form of function (3.15), and 

𝜇̂(𝑋1, 𝑋2, 𝑋3, ⋯⋯ , 𝑋𝑛) amd 𝜎̂(𝑋1, 𝑋2, 𝑋3, ⋯⋯ , 𝑋𝑛) are equivariant estimators of  𝜇 and 𝜎, then 

𝜇̂−𝜇

𝜎
 , 

𝜎̂

𝜎
 and  

𝜇̂−𝜇

𝜎̂
 are all pivotal quantities. That means their distributions do not depend on any 

parameters.  

We can prove this by assuming 𝑍𝑖 =
𝑋𝑖−𝜇

𝜎
, 𝑖 = 1,2,3,⋯⋯ ,𝑛. The sample 

𝑋1, 𝑋2, 𝑋3,⋯⋯ , 𝑋𝑛 is from a location scale distribution family. The joint distribution of 𝑍𝑖 =

𝑋𝑖−𝜇

𝜎
 are free of unknown parameters. Because 𝜇̂(𝑋1, 𝑋2, 𝑋3, ⋯⋯ , 𝑋𝑛) and 

𝜎(𝑋1, 𝑋2, 𝑋3,⋯⋯ , 𝑋𝑛) are equivariant, we can have  

𝜇̂(𝑋1, 𝑋2, 𝑋3,⋯⋯ , 𝑋𝑛) − 𝜇

𝜎
= 𝜇̂ (

𝑋1 − 𝜇

𝜎
,
𝑋2 − 𝜇

𝜎
,⋯ ⋯ ,

𝑋𝑛 − 𝜇

𝜎
) 

= 𝜇̂(𝑍1, 𝑍2, 𝑍3,⋯ ⋯ , 𝑍𝑛)  

𝜎(𝑋1, 𝑋2, 𝑋3,⋯⋯ , 𝑋𝑛) − 𝜇

𝜎
= 𝜎 (

𝑋1 − 𝜇

𝜎
,
𝑋2 − 𝜇

𝜎
,⋯⋯ ,

𝑋𝑛 − 𝜇

𝜎
) 

= 𝜎(𝑍1, 𝑍2, 𝑍3,⋯⋯ , 𝑍𝑛) 
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Then we know 
𝜇̂−𝜇

𝜎
  and  

𝜎̂

𝜎
 are pivotal quantities. Since 

𝜇̂−𝜇

𝜎̂
=

𝜇̂−𝜇

𝜎
×

𝜎̂

𝜎
 , 

𝜇̂−𝜇

𝜎̂
 is also a 

pivotal quantity. Then the GPQ of interest location and scale parameters 𝜇 and 𝜎 can be 

developed as the following functions based on pivotal quantities. Assume  𝜇0̂ and 𝜎0̂ are 

observed values of the equivariant estimators 𝜇̂ and 𝜎̂. Then the value of GPQ for 𝜇 should be 𝜇 

when (𝜇̂, 𝜎) = (𝜇0̂ , 𝜎0̂) based on the second condition for GPQ we mentioned before.  

Hence, the GPQ for 𝜇 can be written as 

𝐺𝜇(𝜇̂, 𝜎̂; 𝜇0̂ , 𝜎0̂) = 𝜇0̂ − (
𝜇̂ − 𝜇

𝜎
) 𝜎0̂               (3.16) 

Here, the value of function (3.16) is 𝜇 at (𝜇̂, 𝜎) = (𝜇0̂ , 𝜎0̂). Keeping in mind, since 
𝜇̂−𝜇

𝜎̂
 is a 

pivotal quantity, given 𝜇0̂ and 𝜎0̂, the distribution of 𝐺𝜇 does not depend on any unknown 

parameters. In addition, the GPQ for scale parameter 𝜎2 can be written as  

𝐺𝜎2(𝜎2; 𝜎0̂
2) =

𝜎2

𝜎2
𝜎0̂

2                (3.17) 

Similar as  𝐺𝜇, 𝐺𝜎2  does not depend on any parameters since 
𝜎2

𝜎̂2 is pivotal quantity. Both 

𝐺𝜇(𝜇̂, 𝜎; 𝜇0̂ , 𝜎0̂) and 𝐺𝜎2(𝜎2; 𝜎0̂
2) satisfy the two conditions for GPQ. So, 𝐺𝜇(𝜇̂, 𝜎; 𝜇0̂ , 𝜎0̂) and 

𝐺𝜎2(𝜎̂2; 𝜎0̂
2) are GPQ for location parameter 𝜇 and scale parameter 𝜎2.  

GPQ has another great property that the normal and non-normal parameters of the GPQ 

for any function of (𝜇 , 𝜎2) can be easily obtained by substitution of the function for (𝐺𝜇  , 𝐺𝜎2). 

For example, if we want to conduct any inference for the function of 𝑓(𝜇 , 𝜎2), we can then have 

GPQ by calculating 𝑓(𝐺𝜇  , 𝐺𝜎2) (Krishnamoorthy & Mathew 2009). This property can easily 
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help us make inference on normal and non-normal parameters in the future. Let’s see some 

examples. Suppose 𝑋1, 𝑋2, 𝑋3,⋯⋯ , 𝑋𝑛 is a random sample from a normal distribution  𝑁(𝜇, 𝜎2). 

We can define the sample mean 𝑋̅ and sample variance 𝑆2 to be  

𝑋̅ =
1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

, 𝑆2 =
1

𝑛 − 1
∑(𝑋𝑖 − 𝑋̅)2

𝑛

𝑖=1

 

Let 𝑥̅ and 𝑠2 be the observed value of 𝑋̅ and 𝑆2. Then we can have 𝜇̂ = 𝑋̅ , 𝜎̂2 = 𝑆2, 

𝜇0̂ = 𝑥̅ and 𝜎0̂
2 = 𝑠2. Based on function (3.16), the GPQ for the mean can be written as  

𝐺𝜇 = 𝐺𝜇(𝜇̂, 𝜎̂; 𝜇0̂ , 𝜎0̂) = 𝜇0̂ − (
𝜇̂ − 𝜇

𝜎
) 𝜎0̂ 

= 𝜇0̂ −
(𝑋̅ − 𝜇)

𝑆
𝑠 

= 𝜇0̂ −

√𝑛(𝑋̅ − 𝜇)
𝜎
𝑆
𝜎

𝑠

√𝑛
 

= 𝜇0̂ −
𝑍

𝑈

𝑠

√𝑛
 

= 𝑥̅ +
𝑍

𝑈

𝑠

√𝑛
                (3.18) 

where 𝑍 =
√𝑛(𝑋̅−𝜇)

𝜎
, which follows standard normal distribution, 𝑍~𝑁(0,1). Also 𝑍 and −𝑍 have 

same distribution. 𝑈2 =
𝑆2

𝜎2 ~
𝜒𝑛−1

2

𝑛−1
.  𝑍 and 𝑈2 are independent of each other. Since  

𝑍

𝑈
~𝑡𝑛−1, the 

function (3.18) can be written as  

𝐺𝜇 = 𝐺𝜇(𝑋̅, 𝑆; 𝑥̅, 𝑠) = 𝑥̅ + 𝑡𝑛−1

𝑠

√𝑛
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Then the generalized confidence interval with significance level 𝛼 is ( 𝑥̅ + 𝑡𝑛−1;
𝛼

2

𝑠

√𝑛
 ,

𝑥̅ + 𝑡𝑛−1;1−
𝛼

2

𝑠

√𝑛
 ). It is clear to see this generalized confidence interval is as same as a common t 

interval. Similar to GPQ for normal mean, based on function (3.17), the GPQ for normal 

variance can be written as 

𝐺𝜎2(𝜎2; 𝜎0̂
2) =

𝜎2

𝜎2
𝜎0̂

2 =
𝜎2

𝑆2
𝑠2 =

𝑠2

𝑈2
                (3.19) 

where  𝑈2 =
𝑆2

𝜎2 ~
𝜒𝑛−1

2

𝑛−1
. Then the generalized confidence interval for 𝜎2 with significant level 𝛼 

is ( 
(𝑛−1)𝑠2

𝜒
𝑛−1;1−

𝛼
2

2  ,
(𝑛−1)𝑠2

𝜒
𝑛−1;

𝛼
2

2   ), which is the regular interval for 𝜎2.  

We can see that the generalized variable approach can help us get the exact inference for 

normal parameters. The solutions are reduced to usual intervals. Because of this property, we 

mentioned that the GPQ for any function of (𝜇 , 𝜎2) can be easily obtained by substation of the 

function for (𝐺𝜇 , 𝐺𝜎2). For example, let’s obtain the lognormal mean. Note that if Y follows 

lognormal distribution then 𝑋 = ln (𝑌) is a normal distribution with parameters 𝜇 and 𝜎2. The 

lognormal mean is 𝐸(𝑌) = exp ( 𝜇 + 
𝜎2

2
). Then the GPQ for the lognormal mean 𝐸(𝑌) can be 

obtained by GPQ for parameters 𝜇 and 𝜎2, with 𝜏 =  ( 𝜇 + 
𝜎2

2
).  

Let 𝑋̅ and 𝑆2 be the mean and variance of the normal distribution which are obtained by 

log transformation from the log normal distribution. The GPQ for 𝜏 should be 

𝐺𝜏 = 𝐺𝜇 +
𝐺𝜎2

2
= 𝑥̅ +

𝑍

𝑈

𝑠

√𝑛
+

(𝑛 − 1)𝑠2

2𝑈2
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which is the GPQ for the function of (𝐺𝜇 , 𝐺𝜎2). This property can help in future studies when we 

assume the distribution is not normal or want to have inference on 𝑓(𝐺𝜇 , 𝐺𝜎2).  

Compared to the classical approach, the generalized variable approach one-sided upper 

tolerance interval for normal population is quite simple. Since the computation of the (𝑝, 1 −

𝛼) one-sided upper tolerance limit for the normal distribution 𝑁(𝜇, 𝜎2) is equivalent to the 

computation of the 1 − 𝛼 upper confidence limit for the 𝑝 quantile of the normal distribution, 

𝑞𝑝 =  𝜇 + 𝒵𝑝𝜎 (Krishnamoorthy & Mathew, 2009), we can generate the generalized variable 

approach using the following steps.  

Based on the GPQ property we mentioned before, the GPQ for 𝑞𝑝 =  𝜇 + 𝒵𝑝𝜎 can be 

written as 

𝐺𝑞𝑝
= 𝐺𝜇 + 𝒵𝑝√𝐺𝜎2   

= 𝑥̅ +
𝑍

𝑈

𝑠

√𝑛
+ 𝒵𝑝√

𝑠2

𝑈2
 

= 𝑥̅ +
𝑍

𝑈

𝑠

√𝑛
+ 𝒵𝑝

𝑠

𝑈
 

= 𝑥̅ +
𝑍 + 𝒵𝑝√𝑛

𝑈

𝑠

√𝑛
 

= 𝑥̅ +
1

√𝑛
𝑡𝑛−1(𝒵𝑝√𝑛)𝑠 

where 𝑍 =
√𝑛(𝑋̅−𝜇)

𝜎
, which follows standard normal distribution, i.e. 𝑍~𝑁(0,1). 𝑈2 =

𝑆2

𝜎2 ~
𝜒𝑛−1

2

𝑛−1
 

with 𝑍 and 𝑈2 independent. 𝐺𝜇 and 𝐺𝜎2  are from functions (3.18) and (3.19) respectively. Hence, 

the distribution 𝐺𝑞𝑝
 does not depend on any unknown parameters. The percentile of  𝐺𝑞𝑝

 is the 
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confidence limit for 𝑞𝑝 = 𝜇 + 𝒵𝑝𝜎 . For example, the one-sided upper tolerance interval with 

generalized variable approach can be obtained with the 1 − 𝛼 quantile of the 𝐺𝑞𝑝
 by 𝑥̅ +

𝑡𝑛−1;1−𝛼(𝒵𝑝√𝑛)𝑠.  
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 3.4 Generalized Pivotal Quantity for Left Censored Data Regression  

For censored data, we can use pivotal quantities to make inference and the results seem to 

be satisfactory for small sample sizes (Schmee, Gladstein & Nelson, 1985). Here, we will 

develop the GPQ approach for the left censored data regressing setting to generate the (𝑝, 1 − 𝛼)  

one-sided upper tolerance limit. As we mentioned before, the (𝑝, 1 − 𝛼) one-sided upper 

tolerance limit is the 1 − 𝛼 upper confidence limit for the 𝑝 quantile of the distribution,  𝑞𝑝 =

 𝜇 + 𝒵𝑝𝜎. Now, we need to construct the 1 − 𝛼 upper confidence limit for the 𝑝 quantile of the 

distribution,  𝑞𝑝 =  𝜇 + 𝒵𝑝𝜎. Here, the 𝒵𝑝 is the p quantile of a standard normal distribution.  

Let’s assume 𝜇0̂ and 𝜎0̂ are observed values from left censored data regression MLE of 

(𝜇̂, 𝜎). Note that 𝜇̂ = 𝑋𝛽̂ in the regression setting. Then the GPQ for left censored data 

regression is 

𝐺𝑞𝑝
= 𝐺𝜇 + 𝒵𝑝𝐺𝜎  

= 𝜇0̂ −
𝜇̂ − 𝜇

𝜎
𝜎0̂ + 𝒵𝑝

𝜎

𝜎
𝜎0̂ 

= 𝜇0̂ + 
𝒵𝑝 − (𝜇̂ − 𝜇)/𝜎

𝜎/𝜎
𝜎0̂ 

= 𝜇0̂ +
𝒵𝑝 − 𝜇̂∗

𝜎∗
𝜎0̂ 

= 𝜇0̂ + 𝒵𝑝
∗ 𝜎0̂ 

where  𝜇̂∗ =
𝜇̂−𝜇

𝜎
,  𝜎∗ =

𝜎̂

𝜎
 and 𝒵𝑝

∗ =
𝒵𝑝−𝜇̂∗

𝜎̂∗ . 

Now, let 𝒵𝑝;𝛼
∗  be the 𝛼 quantile of 𝒵𝑝

∗. Then we can define the ( 𝑝, 1 − 𝛼)  one side upper 

tolerance interval as  



51 

𝜇0̂ + 𝒵𝑝;1−𝛼
∗  𝜎0̂                (3.20) 

Right now, we can use resampling methods to estimate the percentile of 𝒵𝑝
∗. The 

following paragraphs describe the resampling method in detail.  

1. Since 𝒵𝑝 is the p quantile of a standard normal distribution, we generate a sample 

𝒵1, 𝒵2, 𝒵3, ⋯⋯ ,𝒵𝑛  from a standard normal distribution, 𝑁(0,1). Then sort the 

sample in ascending order as 𝒵(1), 𝒵(2), 𝒵(3), ⋯⋯ ,𝒵(𝑛). So, we can calculate the pth 

quantile of a standard normal distribution 𝒵𝑝. 

2. Calculate 𝜇̂∗ and 𝜎̂∗ based on 𝜇̂∗ =
𝜇̂−𝜇

𝜎
 and  𝜎̂∗ =

𝜎̂

𝜎
 , where 𝜇̂ = 𝑋𝛽̂. 𝜇̂ and 𝜎̂ are 

MLE from left censored data regression. 

3. Obtain 𝒵𝑝
∗ =

𝒵𝑝−𝜇̂∗

𝜎̂∗ . 

4. Repeat steps 1-3 for a large number of times. Here 10,000 repetitions were used. 

Then, the 1 − 𝛼 percentile of such 10,000 simulations of 𝒵𝑝
∗ is the 𝒵𝑝;1−𝛼

∗ .  Now, we can have 

the ( 𝑝, 1 − 𝛼) one-sided upper tolerance interval with 𝜇0̂ + 𝒵𝑝;1−𝛼
∗  𝜎0̂ . 
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Chapter 4 - Simulation and Results 

To evaluate the performance of the proposed approaches, simulation studies are 

conducted in this chapter in two sections. One is for left censored data regression based on data 

below LOQ. The other is with respect to an upper tolerance limit using parameter estimates from 

a left censored data regression. In section 4.1, simulation studies will be shown to compare the 

model performance between left censored data regression and some existing methods with 

observations below the LOQ under different scenarios. This portion of work indicates that the 

proposed left censored data regression method provides results that are comparable to currently 

used approachs, such as the EMA’s approach of assigning values below the LOQ to half the 

LOQ and the FDA’s approach of omitting value below LOQ.  The performance of left censored 

data regression with varying proportions of LOQ data in the total data is also studied. Through 

these analyses we can explore the advantages and disadvantages for left censored data 

regression. In section 4.2, a simulation study is conducted to evaluate generalized pivotal 

quantity tolerance limit performance and compare it to the FDA and EMA tolerance limits. 

The guideline entitled “The General Principles for Evaluating the Safety of Compounds 

Used in Food-Producing Animals” (FDA 2005) claims that for the studies of residue in tissue, 

sufficient residue data are generally provided from the target tissue of 20 animals with five 

animals being slaughtered at each of four evenly spaced time points. The FDA also suggests that 

data below the LOQ should be excluded. Then the minimum sample size above the LOQ should 

be 20.  The guideline “Approach Towards Harmonization of Withdrawal Periods” (EMA-CVMP 

2016) recommends that, depending on the drug, the type of study and animal species, 4-10 

animals in each time point are required. In addition, it should be kept in mind that 3 time points 



53 

are necessary to allow a meaningful linear regression analysis. In general, from a statistical 

standpoint, residue data from a minimum of 16 animals with four animals being euthanized at 

each of four appropriately distributed time intervals are recommended 

(EMA/CVMP/VICH/463199/2009). A sufficient number of birds should be used to obtain at 

least 6 samples at each slaughter time for tissue residue studies in poultry 

(EMA/CVMP/VICH/463199/2009). 

With these considerations in mind, the lowest sample size was set at 24, which satisfies 

both regulatory guidelines. In this case, there will be 6 samples at each of the four evenly spaced 

time points. This should ensure an adequate sample size even after excluding data below LOQ. 

For example, when approximately 15% of the data is expected to be below LOQ, the expected 

amount of observations above LOQ is 20 in which case the recommended sample sized under 

both regulatory guidelines is obtained. The 4 evenly spaced time points studied here are at 6, 12, 

18, and 24 days after dosing.  
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 4.1 Left Censored Data Regression 

In order to set up the simulation parameters in this section, a realistic true linear 

regression model must be specified to represent the drug residue depletion over time. Let 𝜎 = 1 

and  𝜇(𝑡) = 𝛽0 − 𝛽1𝑡, where 𝛽1 > 0 and 𝑡 is the variable which indicates time after dosing, 

assume that 𝑌(𝑡)~𝑁(𝜇(𝑡), 1). Then 𝑍 =  
𝑌(𝑡)−𝜇(𝑡)

1
= 𝑌(𝑡) − 𝛽0 + 𝛽1𝑡 should follow a standard 

normal distribution, i.e. 𝑍 ~ 𝑁(0,1). Since there are 4 time points, each time point contains 25% 

of the total observations. In addition, it is possible for observations below LOQ to occur not only 

at the last sampling time point but also at earlier time points with a certain low probability. Here, 

we assume the probability that the observations below LOQ occur at the last time point is 0.95. It 

indicates that the probability which the observations below LOQ occur at the third time point is 

0.05.  

First, let us assume there are 5% of data below LOQ. At the last sampling time point t = 

24, the LOQ data should be 20% (5%/25%) of samples. In addition, we assume the probability 

LOQ data occurs at this last sampling point is 0.9. Then the probability 𝑃(𝑍 ≤ 𝐿𝑂𝑄 − 𝛽0 −

𝛽1𝑡) = 𝑃(𝑍 ≤ 𝐿𝑂𝑄 − 𝛽0 − 𝛽1 × 24) =
0.05×0.9

0.25
= 0.18. We then obtain a z-score of 𝑍0.18 =

−0.915. At the third sampling time point t = 18, the probability of LOQ data occurring is 0.1. 

Then the probability 𝑃(𝑍 ≤ 𝐿𝑂𝑄 − 𝛽0 − 𝛽1𝑡) = 𝑃(𝑍 ≤ 𝐿𝑂𝑄 − 𝛽0 − 𝛽1 × 18) =
0.05×0.1

0.25
=

0.02. This results in a a z-score of 𝑍0.02 = −2.054. Now there are two equations to solve: 

𝐿𝑂𝑄 − 𝛽0 − 𝛽1 × 18 = −2.054 

𝐿𝑂𝑄 − 𝛽0 − 𝛽1 × 24 = −0.915 
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For simplicity, assume LOQ = 1. Then, we obtain 𝛽1 = −0.2, 𝛽0 = 6.7 . This means our true 

linear regression is  

𝑌(𝑡) = 6.7 − 0.2𝑡 

Next, we need to reset LOQ level to have 10% of data below LOQ, which  

𝐿𝑂𝑄 − 6.7 + 0.2 × 24 = 𝑍0.1×0.9

0.25

= −0.358. 

Then, the LOQ is 1.542. Based on the same calculation process, the LOQ should be 2 with 15% 

of data below the LOQ, which 𝐿𝑂𝑄 − 6.7 + 0.2 × 24 = 𝑍0.15×0.9

0.25

= 0.1.   

For each scenarios described above (5, 10 and 15% of data below the LOQ) the total 

sample sizes was set to 24 observations (6 samples at each of four evenly spaced time points), 32 

observations (8 samples at each of four evenly spaced time points), 40 observations (10 samples 

at each of four evenly spaced time point.) and 48 observations (12 samples at each of four evenly 

spaced time points).  

Three approaches of handling LOQ data are compared in this section. These are the 

newly proposed left censored data regression, the EMA’s approach (assigning values below the 

LOQ to half the LOQ) and the FDA approach (omitting value below LOQ). After n = 1000 

simulations, the bias and root mean square error (RMSE) of parameter estimations are computed 

and then reported in Table 4.1. 

According to our simulation results, when sample size increases, the bias and RMSE of  

𝛽0 and 𝛽1 both decrease over all three approaches. Left censored data regression performs very 

well when the sample size is 48, with the bias of 𝛽0 smaller than 0.001. When the proportion of 

LOQ data increases, the bias and RMSE of  𝛽0 and 𝛽1 both increase. However, left censored data 

regression always has lowest RMSE for  𝛽0 and 𝛽1 of the three approaches. In addition, the 
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amount of increase in the RMSE of  𝛽0 and 𝛽1 as the proportion of LOQ data increases with left 

censored data regression is very small – much smaller than with the other two approaches. Based 

on the two results above it is clear that the left censored data regression has a more stable 

estimation of  𝛽0 and 𝛽1 than the others.  

Regardless of simulation settings, the approach of omitting LOQ data preforms the worst 

with highest bias and RMSE for  𝛽0 and 𝛽1. This finding is as same as the conclusion given in 

EMA-CVMP (2016). The half LOQ method performs better than the omission approach in all 

simulation scenarios. However, the proposed approach, i.e. left censored data regression, 

performs the best. It resulted in the lowest bias and RMSE for 𝛽1 and 𝛽0 especially when the 

proportion of LOQ is large. The only exception is the bias of  𝛽0 with 5% LOQ, where left 

censored regression has a larger bias than the half LOQ approach. However, the RMSE of  𝛽0 

with left censored data regression is still smaller than the half LOQ method.  

In summary, the left censored data regression preforms the best of the three studied 

approaches. It has much smaller bias and RMSE for 𝛽0 and 𝛽1 than the half LOQ and omitting 

LOQ approaches, especially when large proportions of the data are below the LOQ. 
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Table 4.1 Simulation Results.  

LCR is the proposed approach, left censored data regression. Half LOQ is the EMA’s approach 

(assigning values below the LOQ to half the LOQ). The omit is FDA approach (omitting value 

below LOQ). 

(a). Sample size = 24, 𝛽0 = 6.7, 𝛽1 = −0.2  

 
 𝛽0  ̂ 𝛽1  ̂ 

  Bias RMSE Bias RMSE 

5% 

LCR 0.008 0.414 -0.001 0.004 

Half LOQ -0.004 0.426 0.001 0.004 

Omit -0.147 0.517 0.015 0.021 

10% 

LCR 0.002 0.424 -0.001 0.005 

Half LOQ 0.015 0.437 -0.002 0.006 

Omit -0.237 0.557 0.027 0.032 

15% 

LCR -0.002 0.424 -0.001 0.005 

Half LOQ 0.041 0.457 -0.005 0.011 

Omit -0.318 0.596 0.038 0.043 

 

(b). Sample size = 32, 𝛽0 = 6.7, 𝛽1 = −0.2  

 

 
 𝛽0  ̂ 𝛽1  ̂ 

  Bias RMSE Bias RMSE 

5% 

LCR 0.008 0.359 -0.001 0.003 

Half LOQ -0.002 0.369 0.001 0.004 

Omit -0.144 0.454 0.015 0.020 

10% 

LCR 0.003 0.367 -0.001 0.005 

Half LOQ 0.017 0.378 -0.002 0.006 

Omit -0.239 0.502 0.027 0.031 

15% 

LCR -0.001 0.367 <0.001 0.001 

Half LOQ 0.043 0.399 -0.005 0.010 

Omit -0.322 0.544 0.038 0.042 
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(c). Sample size = 40, 𝛽0 = 6.7, 𝛽1 = −0.2  

 

 
 𝛽0  ̂ 𝛽1  ̂ 

  Bias RMSE Bias RMSE 

5% 

LCR 0.006 0.323 -0.001 0.003 

Half LOQ -0.002 0.332 0.001 0.004 

Omit -0.145 0.414 0.015 0.019 

10% 

LCR 0.002 0.329 -0.001 0.004 

Half LOQ 0.017 0.340 -0.002 0.006 

Omit -0.242 0.466 0.027 0.030 

15% 

LCR -0.001 0.330 <0.001 0.001 

Half LOQ 0.043 0.357 -0.006 0.010 

Omit -0.328 0.516 0.039 0.042 

 

(d). Sample size = 48, 𝛽0 = 6.7, 𝛽1 = −0.2  

 

 
 𝛽0  ̂ 𝛽1  ̂ 

  Bias RMSE Bias RMSE 

5% 

LCR 0.001 0.296 <-0.001 0.002 

Half LOQ -0.006 0.303 <-0.001 0.003 

Omit -0.149 0.385 0.015 0.018 

10% 

LCR -0.001 0.301 <-0.001 0.003 

Half LOQ 0.013 0.311 -0.002 0.005 

Omit -0.247 0.440 0.027 0.030 

15% 

LCR -0.004 0.302 <-0.001 0.001 

Half LOQ 0.039 0.328 -0.006 0.009 

Omit -0.337 0.494 0.039 0.042 
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 4.2 Tolerance Limit  

To evaluate the left censored data regression tolerance limit, the limit’s coverage in the 

simulation will be discussed first. Based on the simulation described in section 4.1, the left 

censored data regression model is 𝑌(𝑡) = 6.7 − 0.2𝑡 +  𝜀, 𝜀~𝑁(0,1). In this section, we focus 

on four tolerance limit settings. They are 95% tolerance limit with 95% or 99% confidence levels 

and 99% tolerance limit with 95% or 99% confidence levels. Then coverage probabilities of 

these tolerance limits are compared based on left censored data regression. The simulation 

consists of the following steps: 

1. Set four time points, t = 6, 12, 18 and 24. Based on the left censored data regression 

model, generate 10 corresponding responses at each time point with  𝜀~𝑁(0,1).   

2. Fit the left censored data regression with the data from step 1 and LOQ=1.  

3. Calculate the tolerance limits using two settings: 95% tolerance limit with 95% 

confidence level and the 99% tolerance limit with a 95% confidence level 

4. Calculate the coverage of the tolerance limit at a given time. It is the probability of 

finding a response value under the tolerance limit. Since the LOQ data is the most 

likely to occur at the last time point than others, with time t = 24. It means that 𝑦|𝑡 =

24 ~ 𝑁(𝜇𝑦|𝑡=24 , 1) , 𝜇𝑦|𝑡=24 = 1.9 

5. Repeat steps 1 thru 4 1000 times to estimate how often a certain coverage occurs.  

Figure 4.1 and Figure 4.2 show the histogram plots of coverage probability for this 

simulation. Table 4.2 shows summary results of the coverage probability from the four tolerance 

limits. After running this simulation, the average coverage probability of the 95% tolerance limit 

with a 95% confidence level is 83%. The average coverage probability of the 99% tolerance limit 
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with a 95% confidence level is 92%. 99% tolerance limit with a 95% confidence level offers the 

highest coverage probability with 100% median coverage probability. However, in practice, the 

99% tolerance limit with 99% confidence level may be too wide. It may result in too 

conservative withdrawal period. In order to study this, we set up the second simulation.  

 

Table 4.2: Summary of Coverage Probability 

Settings Coverage Probability 

Tolerance 

Limit 

Confidence 

Level 
25 Percentile Mean Median 75 Percentile 

95% 95% 0.782 0.834 0.921 1.000 

99% 0.795 0.845 0.935 1.000 

99% 95% 0.916 0.923 1.000 1.000 

99% 0.920 0.931 1.000 1.000 

 

 

We set the maximum residue level MRL=2. Based on the left censored data regression 

model 𝑌(𝑡) = 6.7 − 0.2𝑡 +  𝜀, 𝜀~𝑁(0,1), we can estimate the 95-percentile limit band. The 

time point of the intersection of MRL and the limit band is viewed as true withdrawal period. So, 

the true withdrawal period is 25.1 (time units). The simulation consists of the following steps: 

1. Set four time points, t = 6, 12, 18 and 24. Based on the left censored data regression 

model, generate 10 corresponding responses at each time point with  𝜀~𝑁(0,1).   

2. Fit the left censored data regression with the data we got from step 1 and LOQ=1.  

3. Calculate the tolerance limits using two settings: 95% tolerance limit with 95% 

confidence level and 99% tolerance limit with 95% confidence level 
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4. Calculate the withdrawal period with MRL=2. 

5.  Repeat steps 1 to 4 1000 times.  

6. Calculate percentage of withdrawal period below and above true withdrawal period. 

The simulation results are showed in Table 4.3. It is clear to see that the estimated 

withdrawal period increases when the tolerance limit and confidence level increase. The 95% 

tolerance limit with a 95% confidence level establishes the shortest withdrawal period which is 

25.102.  This withdrawal period is very close to the true withdrawal period. The 99% tolerance 

limit with a 99% confidence level establishes the longest withdrawal period which is 26.128. 

Depending on the research purposes, researchers can choose different tolerance limit settings in 

order to have moderate or conservative drug withdrawal periods.  

Table 4.3: Withdrawal Period Simulation Summary 

Settings Estimated Withdrawal Period 

Tolerance Limit Confidence Level Mean Standard Deviation 

95% 95% 25.102 0.881 

 99% 25.172 0.896 

99% 95% 26.103 1.040 

 99% 26.128 1.067 

Assumed True Withdrawal Period is 25. 
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Chapter 5 - Application 

In this chapter, I applied the left censored data regression and GPQ tolerance limit to 

establish the withdrawal period based on a publicly available data from EMA-CVMP (2016).  

This data was constructed from an empirical residue depletion study on cattle treated with 

a veterinary drug. It was used to demonstrate the applicability of the statistical model for the 

estimation of withdrawal periods. The residue data are for the drug residue in the target tissue 

liver.  

An average daily intake (ADI) of 35 μg per day for a 60 kg person has been assumed for 

the total residue. Then, the maximum residue level (MRLs) for the marker residue have been set 

at 30 μg/kg for the liver respectively (EMA-CVMP 2016). There are 48 non-missing 

observations. 12 liver samples are measured at time 7, 14, 21, 28 days. All liver drug residue 

concentration data were transformed to log scale. Then we use log (2) = 0.7 as LOQ in log scale. 

There are 5 observations, 10% of the dataset, below LOQ.  

A left censored data regression model is fitted for this data set. The model is   

𝑌(𝑡) = 5.64 − 0.16𝑡, 

where 𝛽0 = 5.64, 𝛽1 = −0.16 and 𝜎 = 0.95. The 95% GPQ tolerance limit with 95% 

confidence interval is established. Based on MRLs = 30 μg/kg (3.4 in log scale) the withdrawal 

period is 25.4 days (Fig. 5.1). Based on the FDA’s policy, we need to round withdrawal period to 

the next day (FDA-CVM 2016). So, the final withdrawal period is 26 days, meaning the drug 
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treated cattle should be safe for human to consume after 26 days. From Table 5.1 it can be seen 

that the drug residue concentrations drop below MRL (30 μg/kg) after 26 days.  

 

Figure 5.1: Withdrawal Period on Application Data Set. LCR is left censored data regression 

line. LOQ is log scaled limit of quantitation, which is 0.7. MRL is maximum residue level, 

which is 3.4 (log 30 =3.4). TL is 95% tolerance limit with 95% confidence interval based on left 

censored data regression. WT is withdrawal time, which 26 days. 

 

Table 5.1: Drug Residue Concentrations at 24, 25, 26 and 27 Days.  

 Time (Days) 

 24 25 26 27 

Concentrations (ug/kg) 37.7 32.1 27.4* 23.3* 

MRL is 30 ug/kg.  

* indicates the drug residue below MRL. 
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At 21 days, there is one data point far above main group and above the upper tolerance 

limit. Based on the data available, we don’t have enough evidence to show it is an outlier; thus, it 

was kept in the model as regular observation point. In practice, if we can confidently determine a 

certain data point is an outlier, we can exclude it. Otherwise, such data points remain in the 

model. However, extreme data points will have effects on the regression model. The EMA 

suggests fitting models with and without outliers or high leverage points and comparing the 

results. Perhaps in the future, a left censored data regression method can be developed to deal 

with high leverage observations.   

 

Figure 5.2: Residual Analysis.  There are 12 residuals for each time point 7, 14, 21, 28 days.  
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In addition, Figure 5.2 shows the residual analysis plot. The residuals may not be 

homogenous as they appear to increase over time. The FDA and EMA do not have any guidance 

with respect to heterogeneous variance issues. Hence, future work might focus on a heterogenous 

setting for left censored data regression.   

 

  



66 

Chapter 6 - Conclusion 

This dissertation study focuses on solving a real-world problem. In veterinary drug 

residue research, the situation where a dataset includes observations below LOQ occurs 

frequently. Currently, FDA recommends excluding all observations below LOQ. Considering 

limited research funding and resources, the loss of information resulting from this approach 

makes an inferior option. Based on our simulation results in section 4.1, the approach of omitting 

observations below LOQ resulted in high bias and RMSE of the parameter estimates. The half 

LOQ approach is recommended by the EMA to handle data below the LOQ. According to our 

simulation results, this approach performs better than the “omit” approach, which is in agreement 

with the findings of EMA studies (EMV-CVMP 2016). Of the three approaches considered, the 

proposed left censored data regression method performs the best.  It has much smaller bias and 

RMSE of 𝛽0 and 𝛽1 than the half LOQ and omitting LOQ approaches, especially when a large 

proportion of the data falls below the LOQ. 

The tolerance limit estimates of the GPQ approach have very good performance for left 

censored data regression. The median of coverage probability of the 95% tolerance limit with a 

95% confidence level is 92%. The median of coverage probability of the 99% tolerance limit 

with a 95% confidence level is 100%. These results demonstrate that the GPQ approach 

tolerance limit can cover the population very well. In the tolerance limit simulation study, it 

appears that the 99% tolerance limit with a 95% confidence level may be too wide. The 

withdrawal period constructed by this limit is more conservative than the one established by the 

95% tolerance limit with a 95% confidence level. Also, the estimated withdrawal period with 

95% tolerance limit with a 95% confidence level is very close to true withdrawal period.  
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Also note that the maximum likelihood was used to estimate all parameters. However, 

MLEs of variances tend to be biased. Future work might focus on developing robust unbiased 

estimation approaches. In practice, it is possible that the drug residue concentration does not 

follow a log normal distribution over time. Future study focusing on other distributional 

assumptions should be undertaken.  

Finally, the physiologically-based pharmacokinetic (PBPK) model has been used in 

veterinary drug depletion studies. Pharmacokinetic (PK) originated from the scientific basis of 

modern pharmacotherapy. Pharmacokinetics is the study of the rate and extent of drug transport 

in the body to various tissues, beginning from the time of its administration to its absorption, 

distribution, metabolism, and excretion, commonly abbreviated by ADME (Peters, 2012). The 

PBPK model was developed to capture key physiological, biochemical, and physicochemical 

determinants for the time course of ADME of chemicals and their metabolites in the body using 

a set of mathematical equations. Hence, PBPK models could be used to simulate data sets which 

are closer to real data than those simulated here. The PBPK model is introduced in more detail in 

Appendix A. Specific PBPK models are shown for complicated drug depletion processes in eggs 

with and without metabolism. In the future, it may be possible to develop a left censored data 

regression model based on possibly more reliable simulated data sets from PBPK models, 

especially for complex drug depletion processes.  
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Appendix A - Physiologically Based Pharmacokinetic (PBPK) Model 

of Drug Residue Depletion 

Pharmacokinetic (PK) is from the scientific basis of modern pharmacotherapy (Meibohm 

and Derendorf, 1997). Pharmacokinetics is the study of the rate and extent of drug transport in 

the body to the various tissues, beginning from the time of its administration to its absorption, 

distribution, metabolism, and excretion (ADME) (Peters, 2012). Put simply, it is a study to 

describe "what the body does to the drug" (Meibohm and Derendorf, 1997). Hence, PK modeling 

is the quantitative modeling of the time course of ADME of chemicals and their metabolites in 

the body using a set of mathematical equations. In order to capture key physiological, 

biochemical, and physicochemical determinants in model, the physiologically-based 

pharmacokinetic (PBPK) model was developed. It is built using a similar mathematical 

framework as the PK model, but it is parameterized using known physiology and consists of a 

larger number of compartments, which correspond to the different organs or tissues in the body 

(Andersen et al., 1987). PBPK model provides more specific model prediction by species-

specific physiological parameters and chemical-specific parameters than the general PK model. 
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 A.1 Mathematical Description on Chemical Movement 

Here is an example of a simple two compartments PK model structure (see Figure A.1). It 

describes how one certain chemical distribute in the different body compartments. Those body 

compartments can be theoretical compartments or physiological organs or tissues. Normally, 

researchers use a rate equation to describe the movement of chemical into a compartment, out of 

a compartment, or between compartments.  

The first order (the rate is proportional to the concentration) rate of one chemical 

movement process is 𝑅𝑎𝑡𝑒 =  𝐾 × 𝐶1  =  𝐾 ×  𝐶, which can be written as 
𝑑𝐶

𝑑𝑡
= 𝐾 × 𝐶, where 

C is concentration. For example, the rate of the chemical move from compartment 1 to 

compartment 2 is 
𝑑𝐶

𝑑𝑡
= 𝐾12 × 𝐶1 by the first-order process, where 𝐶1  is the compartment 1 

concentration. That means the chemical concentration in compartment 1 changes by 𝐾12 × 𝐶1  

per time unit causing by compartment 2.  

There is another method to describe the chemical movement process, which the rate is 

constant and does not depend on the concentration. It is called zero-order process. The rate is 

𝑑𝐶

𝑑𝑡
= 𝐾 × 𝐶0. The way to choose which method depends on chemical characteristics, research 

assumptions, etc.  

If there are more than one chemical involved in the process, we can use saturable method, 

which can describe metabolism transport across membranes. We can use this in the drugs that 

has metabolic process. The saturable process rate is 
𝑑𝐶

𝑑𝑡
=

𝑉𝑚𝑎𝑥+𝐶

𝐶+𝐾𝑚
, where 𝑉𝑚𝑎𝑥 is the maximum 

rate, 𝐾𝑚is the substrate concentration that is required for the reaction to occur at half of 𝑉𝑚𝑎𝑥.  
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Figure A.6.1: Two compartments PK model. X0 = Dose of drug (mg), Ke = elimination rate 

constant (ℎ−1), K12= rate of transfer from compartment 1 to compartment 2 (ℎ−1), K21= rate of 

transfer from compartment 2 to compartment 1 (ℎ−1). 

 

 

Figure A.6.2: An example of PBPK model structure. IV is intravenous, IM is intramuscular, SC 

is subcutaneous. (Meibohm and Derendorf, 1997) 

 

The PBPK model structure is more complicated than PK model structure. A PBPK model 

structure example is showed in Figure A.2. From this figure, it is easier to understand PBPK 

model. It describes the absorption, distribution, metabolism, and elimination (ADME) of 
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environmental chemicals, drugs, or nonmaterial in an organism based on interrelationships 

among key physiological, biochemical, and physicochemical determinants using mathematical 

equations. The compartments are blood, liver, kidneys, muscle, lungs, etc.. We can include 

species-specific physiological parameters (e.g., body weight, cardiac output, organ mass, etc.) 

and chemical-specific parameters (e.g., partition coefficients, permeability coefficients, 

metabolic rate constants, etc.) in the model to increase model prediction accuracy. Overall, no 

matter which model to use, the chemical transport rates are all based on the three calculate 

methods we introduced above in our research. 
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 A.2 Eggs Specific PBPK Model 

Reproduction is a complex process. Chickens lay an egg roughly every 24 hours 

(Goetting et al., 2011). It takes several days for each egg to develop in vivo (Etches et al., 1996). 

Eggs consist of three main compartments: yolk, albumen, and shell. Of these three parts, the egg 

yolk has the longest development time. The yolk and albumen develop at different stages of the 

egg formation process. The formation of the yolk takes 8 to 10 days. However, the formation of 

the albumen only takes approximately 10 hours (Hekman and Schefferlie, 2011) following after 

yolk formation process. An active laying hen can have several yolk follicles at different 

development stages before ovulation at the same time. After ovulation, the albumen proteins are 

deposited in the magnum and electrolytes. Water are "pumped" in to the albumen in the distal 

parts of the oviduct (isthmus, uterus) (Schefferlie and Hekma,n 2016). The egg shell is added 

after this process (Etches et al., 1996). The egg development process is similar across species 

(Whittow, 1999).  

The detailed diagrams of a chicken reproduction system and a chicken egg is shown in 

Figure A.3 and Figure A.4. Drug deposits in the egg yolk rapidly accumulate during the rapid 

growth stage in 8 to 10 days. After egg yolk gets developed well, egg albumen accumulates drug 

residue in the oviduct for roughly 10 hours. Since humans normally do not consume egg shell, 

egg yolk and egg albumen are the two residue accumulation sites of our research concerns. The 

egg yolk and egg albumen are developed in a different time range (egg albumen starts to develop 

after egg yolk form process done), so these two egg components are distinct in physiological 

process. In addition, it has been reported that drug residue profiles are different between egg yolk 
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and egg albumen (Chu et al., 2000). Therefore, the drug disposition into each component (yolk 

and albumen) should be described separately in models. 

 

Figure A.6.3: A typical bird reproduction system. Source:  http://www.bhwt.org.uk/produce/ 

 

 

Figure A.6.4: A detailed illustration of developing egg components (Goetting et al., 2011) 
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Actually, it has been proven that the traditional pharmacokinetic (PK) model, which is 

used to describe the time dependent course of drug residue in plasma and tissues, fails to in egg 

drug residue depletion studies (Schefferlie and Hekman, 2016). It is clear that drug residue 

concentration in eggs is highly related to egg formation stage, which is described in the last 

paragraph. The model should correspond to this factor. The disposition of drugs into the egg yolk 

and egg albumen is through a filtration-process rather than through a concentration-gradient 

driven process (Hekman and Schefferlie, 2011). This indicates the drug movement does not 

depend on concentration difference. It continues moving to egg if there is still any drug in 

plasma. Hence, the physiology of egg yolk and albumen formation factor must be involved in the 

model. 

Moreover, plasma concentration is recognized as an important influence on drug 

disposition by many researchers (Hekman and Schefferlie, 2011). Therefore, drug residue 

models of eggs should consider the yolk and albumen formation stage, plasma concentration and 

physicochemical properties of the drug. In 2011, P.Hekman and G.J.Schefferlie developed a 

PBPK model to meet all these requirements. The model structure is shown in Figure A.5. 

 

 

Figure A.6.5: PBPK model structure for drug residue in egg (Hekman and Schefferlie, 2011) 
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And, the transport rate equation of drug into egg yolk and egg white is: 

𝑑𝑄𝑦

𝑑𝑡
= 𝐶𝑃(𝑡) × 𝐾𝑦 ×

𝑑𝑊𝑦

𝑑𝑡
               (𝐴. 1) 

𝑑𝑄𝑤

𝑑𝑡
= 𝐶𝑃(𝑡) × 𝐾𝑤 ×

𝑑𝑊𝑤

𝑑𝑡
             (𝐴. 2) 

where, 
𝑑𝑄𝑦

𝑑𝑡
 and 

𝑑𝑄𝑤

𝑑𝑡
 are the rate of drug deposition into yolk and albumen. 𝐶𝑃 is plasma 

concentration. Ky and Kw are transport constants into yolk and albumen (white). 
𝑑𝑊𝑦

𝑑𝑡
 and 

𝑑𝑊𝑤

𝑑𝑡
 

are the yolk and albumen (white) formation rate (g/day), describing its growth stage. 

We can develop PBPK model for drug residue depletion study in eggs based on this.  

In order to estimate
𝑑𝑄𝑦

𝑑𝑡
 and 

𝑑𝑄𝑤

𝑑𝑡
, we need to understand each part (𝐶𝑃(𝑡), Ky, Kw, 

𝑑𝑊𝑦

𝑑𝑡
 

and 
𝑑𝑊𝑤

𝑑𝑡
) and know how to calculate them. 𝐶𝑃(𝑡) is a plasma concentration function depending 

on time, which 𝐶𝑃 is experiment measured observations. We don’t have to worry about this part. 

Next are the egg formation rates. Let’s talk about yolk formation ( 
𝑑𝑊𝑦

𝑑𝑡
 ) rate first. 

Based on published papers (Geertsma et al. 1987; Kan and Petz 2000), the rate of egg 

yolk formation (
𝑑𝑊𝑦

𝑑𝑡
) is not linear depending on time. The rapid yolk growth period is an 

exponential distribution during the last 8 - 10 days before ovulation (Geertsma et al., 1987). 

Hekman and Schefferlie (2011) claimed that the time dependent of egg yolk weight was 

sigmoidal shape (shown in Figure A.6). At time t = tlay (an egg laid time), the yolk weight can 

be written as: 

𝑊𝑦(𝑡) =
𝐴𝑦

1 + 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))
            (𝐴. 3) 
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where, tlay is the time of egg lay, tlag is time between ovulation and egg lay (approximately one 

day), Wy is weight of yolk at given time, Ay is apparent maximum yolk weight, s is maximum 

daily yolk growth rate constant and tsig is pre-ovulation time of maximum yolk growth rate 

(approximately 1-3 days before ovulation). Ay, s and tsig can be estimated by experiment data 

from Geertsema et al. 1987. In this case, it has Ay = 25, s = 1 and tsig = 2. 

 

Figure A.6.6: Egg yolk formation rate by Hekman and Schefferlie (2011) using data from 

Geertsema et al. 1987.Time 0 is ovulation time. Before time 0, the yolk is rapidly growing. The 

weight of egg yolk stops increasing shortly after ovulation. 

 

After taking first derivative of sigmoid function Wy(t), the egg yolk formation rate can be 

written as: 

𝑑𝑊𝑦

𝑑𝑡
=

𝐴𝑦 × 𝑠 × 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))

(1 + 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔)))2
                (𝐴. 4) 

Hence, inserting function A.4 in to function A.1, the rate of drug deposition into 

yolk is: 

𝑑𝑄𝑦(𝑡)

𝑑𝑡
=

𝐶𝑃(𝑡) × 𝐾𝑦 × 𝐴𝑦 × 𝑠 × 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))

(1 + 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔)))2
                (𝐴. 5) 
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Since the drug only goes into yolk without coming out (Figure A.5 and the yolk stops 

development after ovulation, the accumulated amount of drug in yolk when it laid should be 

integral of 
𝑑𝑄𝑦(𝑡)

𝑑𝑡
 with time interval [0, tlay − tlag], which can be written as: 

𝑄𝑦(𝑡𝑙𝑎𝑦) = ∫
𝑑𝑄𝑦(𝑡)

𝑑𝑡
𝑑𝑡

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔

𝑡=0

 

= 𝐾𝑦 × 𝐴𝑦 × 𝑠 × ∫
𝐶𝑃(𝑡) × 𝐾𝑦 × 𝐴𝑦 × 𝑠 × 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))

(1 + 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔)))2
𝑑𝑡

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔

𝑡=0

             (𝐴. 6) 

Also, based on function A.3, the yolk weight at egg laying time is (when t = tlay): 

𝑊𝑦(𝑡𝑙𝑎𝑦) =
𝐴𝑦

1 + 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))
=

𝐴𝑦

1 + 𝑒−𝑠×(𝑡𝑠𝑖𝑔+𝑡𝑙𝑎𝑔))
                (𝐴. 7) 

Then, the egg yolk drug concentration at laying time can be calculated with 
𝑄𝑦(𝑡𝑙𝑎𝑦)

𝑊𝑦(𝑡𝑙𝑎𝑦)
 , 

which can be represented by: 

𝐶𝑦(𝑡𝑙𝑎𝑦) =
𝑄𝑦(𝑡𝑙𝑎𝑦)

𝑊𝑦(𝑡𝑙𝑎𝑦)
 

=

𝐾𝑦 × 𝐴𝑦 × 𝑠 × ∫
𝐶𝑃(𝑡) × 𝐾𝑦 × 𝐴𝑦 × 𝑠 × 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))

(1 + 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔)))
2 𝑑𝑡

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔

𝑡=0

𝐴𝑦

1 + 𝑒−𝑠×(𝑡𝑠𝑖𝑔+𝑡𝑙𝑎𝑔))

 

= 𝐾𝑦 × 𝑠 × (1 + 𝑒−𝑠×(𝑡𝑠𝑖𝑔+𝑡𝑙𝑎𝑔)))

×
∫ 𝐶𝑃(𝑡) × 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔

𝑡=0

(1 + 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔)))
2 𝑑𝑡               (𝐴. 8) 

where, Cy(tlay) is observed data from experiment. Hence, Ky can be estimated by function A.8. 

Even though the formation rate of egg albumen is different than yolk, the procedure to 

get formation rate is quite similar. The albumen is only deposited in egg after ovulation. The 

only difference is that albumen only takes several hours to rapid formation and does not exist 
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before ovulation. Hence, when we take the derivative of the function, the time interval should 

start from after ovulation, which should be bigger than 8 days. Similar as Ky estimation process, 

Kw can be estimated by flowing steps. 

We know egg albumen only takes 8-10 hours to be added onto egg after ovulation. This 

process is much shorter than egg yolk. It is not necessary to use sigmoid function here. We can 

just use a constant rate to describe albumen formation rate, which can be written as: 

𝑑𝑊𝑤

𝑑𝑡
= 𝐴𝑤                 (𝐴. 9) 

where Aw is egg albumen constant formation rate (g/day). Then, function A.2 can be developed 

to: 

𝑑𝑄𝑤

𝑑𝑡
= 𝐶𝑃(𝑡) × 𝐾𝑤 × 𝐴𝑤                 (𝐴. 10) 

As same as drug moves into yolk, the drug does not come out if it goes into albumen. 

Also, the albumen only develops after ovulation. So, the accumulated amount of drug in albumen 

when it laid should be integral of 
𝑑𝑄𝑤(𝑡)

𝑑𝑡
 with time interval [tlay − tlag, tlay − tlag + talbumen], 

which can be written as: 

𝑄𝑤(𝑡𝑙𝑎𝑦) = ∫
𝑑𝑄𝑤(𝑡)

𝑑𝑡
𝑑𝑡

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔+𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔

 

= 𝐾𝑤 × 𝐴𝑤 × ∫ 𝐶𝑃(𝑡)𝑑𝑡
𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔+𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔

                (𝐴. 11) 

where talbumen is albumen development time (8-10 hour). Since the egg albumen formation rate 

is constant Aw (g/day), the albumen weight at laying time is 

𝑊𝑤(𝑡𝑙𝑎𝑦) = 𝐴𝑤 × (𝑡𝑙𝑎𝑦 − 𝑡𝑙𝑎𝑔 + 𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛) − 𝐴𝑤 × (𝑡𝑙𝑎𝑦 − 𝑡𝑙𝑎𝑔)  

= 𝐴𝑤 × 𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛                (𝐴. 12) 
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Then, the drug concentration in egg albumen at laying time should be 
𝑄𝑤(𝑡𝑙𝑎𝑦)

𝑊𝑤(𝑡𝑙𝑎𝑦)
 , which 

can be written as: 

𝐶𝑤(𝑡𝑙𝑎𝑦) =
𝑄𝑤(𝑡𝑙𝑎𝑦)

𝑊𝑤(𝑡𝑙𝑎𝑦)
 

=
𝐾𝑤 × 𝐴𝑤 × ∫ 𝐶𝑃(𝑡)𝑑𝑡

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔+𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔

𝐴𝑤 × 𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛 
 

=
𝐾𝑤

𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛 
× ∫ 𝐶𝑃(𝑡)𝑑𝑡

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔+𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔

                (𝐴. 13) 

Hence, Kw can be estimated by function A.13 based on observed plasma and drug 

concentration in albumen data. 
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 A.3 PBPK Model for Non-metabolic Drug Residue Depletion in Eggs 

Actually, for on metabolic drug, the PBPK model structure is shown in Figure A.7.  

 

 

Figure A.6.7: Physiologically-based pharmacokinetic (PBPK) model structure of simple (non-

metabolic) drugs in eggs. Ka is absorption rate. Ky and Kw are transportation constants from 

plasma into yolk and albumen (white). Fy and Fw are formation rate of yolk and albumen 

(white), where 𝐹𝑦 =
𝑑𝑊𝑦

𝑑𝑡
 and 𝐹𝑤 =

𝑑𝑊𝑤

𝑑𝑡
. Kr is transportation constants into rest of body 

compartments from plasma. Kp is transportation constants into plasma from rest of body 

compartments. 

 

Based on the discussion in last section and in Hekman and Schefferlie (2011), we know 

the rate of drug deposition into egg yolk and albumen are: 

𝑑𝑄𝑦

𝑑𝑡
= 𝐶𝑃(𝑡) × 𝐾𝑦 × 𝐹𝑦                (𝐴. 14) 

𝑑𝑄𝑤

𝑑𝑡
= 𝐶𝑃(𝑡) × 𝐾𝑤 × 𝐹𝑤                (𝐴. 15) 

where 𝐹𝑦 =
𝑑𝑊𝑦

𝑑𝑡
 and 𝐹𝑤 =

𝑑𝑊𝑤

𝑑𝑡
. Then, based on function (A.4) and (A.5), we can have 

𝐹𝑦 =
𝑑𝑊𝑦

𝑑𝑡
=

𝐴𝑦 × 𝑠 × 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))

(1 + 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔)))2
 

𝐹𝑤 =
𝑑𝑊𝑤

𝑑𝑡
= 𝐴𝑤 
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where tlay is the time of egg lay, tlag is time between ovulation and egg lay (approximately one 

day), Wy is weight of yolk at given time, Ay is apparent maximum yolk weight, s is maximum 

daily yolk growth rate constant and tsig is pre-ovulation time of maximum yolk growth rate 

(approximately 1-3 days before ovulation). Ay, s and tsig can be estimated as Ay = 25, s = 1 and 

tsig = 2 by experiment data from Geertsema et al., (1987). Aw is egg albumen constant 

formation rate (g/day). Also, based on function (A.8) and (A.13) we already know how to 

estimate parameter Ky and Kw by  

𝐶𝑦(𝑡𝑙𝑎𝑦) = 𝐾𝑦 × 𝑠 × (1 + 𝑒−𝑠×(𝑡𝑠𝑖𝑔+𝑡𝑙𝑎𝑔)))
∫ 𝐶𝑃(𝑡) × 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔

𝑡=0

(1 + 𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔)))
2 𝑑𝑡 

𝐶𝑤(𝑡𝑙𝑎𝑦) =
𝐾𝑤

𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛 
× ∫ 𝐶𝑃(𝑡)𝑑𝑡

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔+𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔

 

Moreover, Ka, Kr and Kp can be estimate by the model. ke= 0.28/hour with SD ± 0.09 

(Souza et al., 2017). The only thing we need is the data right now. The experiment data we have 

does not have plasma drug concentration. However, we find a set of useable data with plasma, 

egg yolk and egg albumen concentration with oral administration of a single dose of the certain 

veterinary drug (1 mg/kg PO once) (Souza et al., 2017). So, we can build the PBPK model with 

it and evaluate the model by research data. The PBPK model is built and ran by Berkley Mandan 

(version 9.0.127) and R (Version 1.0.153 − c 2009-2017 RStudio, Inc.). 
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 A.4 PBPK Model for Metabolic Drug Residue Depletion in Eggs 

For certain drugs that has two metabolites: M1 and M2. Hence, PBPK model for this kind 

of drug in laying hen eggs is more complex than non-metabolic drugs. The model structure might 

be more complicated (Figure A.8). 

 

 

Figure A.6.8: Physiologically-based pharmacokinetic (PBPK) model structure in eggs. The 

bottom part is for parent drug Upper left is M1 and upper right is M2. Ky and Kw are 

transportation constants from plasma into yolk and albumen (white). Fy and Fw are formation 

rate of yolk and albumen (white), where 𝐹𝑦 =
𝑑𝑊𝑦

𝑑𝑡
 and 𝐹𝑤 =

𝑑𝑊𝑤

𝑑𝑡
. Kdiet is transportation 

constants from diet into stomach. Kst is transportation constants from stomach into intestine. 

Kint is elimination rate from body to colon.  
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As same as PBPK model of the non-metabolic drugs, we will use same estimate structure 

to get Fy, Fw, Ky and Kw.  𝐹𝑦 =
𝑑𝑊𝑦

𝑑𝑡
=

𝐴𝑦×𝑠×𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))

(1+𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔)))2
, 𝐹𝑤 =

𝑑𝑊𝑤

𝑑𝑡
= 𝐴𝑤,  𝐶𝑦(𝑡𝑙𝑎𝑦) =

𝐾𝑦 × 𝑠 × (1 + 𝑒−𝑠×(𝑡𝑠𝑖𝑔+𝑡𝑙𝑎𝑔)))
∫ 𝐶𝑃(𝑡)×𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔))𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔
𝑡=0

(1+𝑒−𝑠×(𝑡−(𝑡𝑙𝑎𝑦−𝑡𝑠𝑖𝑔−𝑡𝑙𝑎𝑔)))
2 𝑑𝑡 and 𝐶𝑤(𝑡𝑙𝑎𝑦) =

𝐾𝑤

𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛 
× ∫ 𝐶𝑃(𝑡)𝑑𝑡

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔+𝑡𝑎𝑙𝑏𝑢𝑚𝑒𝑛

𝑡=𝑡𝑙𝑎𝑦−𝑡𝑙𝑎𝑔
. For other PBPK model rate, we can get from 

literature reviews.  
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Appendix B - R Code 

# Simulation: Left censored data regression  

## Omit  

#### This is an example for sample size =24, n=1000, 5% data below LOQ 

##### For sample size 32, 40, 48, the points will be 8, 10, 12, nrow=32, 40, 28 

##### For 10% or 15% data below LOQ, the LOQ=1.542 or 2 

points <- 6 

nrow<- 24 

mean1 <- 5.3322 

mean2 <- 4.1934 

mean3 <- 3.0546 

mean4 <- 1.9158 

sd <- 1 

LOQ <- 1 

result <- data.frame(matrix(nrow = 1000, ncol = 2)) 

colnames(result) <- c("i", "beta0", "beta1") 

for (sim in 1:1000) { 

  df <- matrix(, nrow = nrow, ncol = 3) 

  df[,1] <- rep(1,2nrow) 

  df[,2] <- rep(c(6,12,18,24), each=points) 

  set.seed(sim) 

  data1 <-  rnorm(n=points,mean=mean1,sd=sd) 

  set.seed(sim) 

  data2 <-  rnorm(n=points,mean=mean2,sd=sd) 

  set.seed(sim) 

  data3 <-  rnorm(n=points,mean=mean3,sd=sd) 

  set.seed(sim) 

  data4 <-  rtruncnorm(n=points,mean=mean4,sd=sd) 

  df[,3] <- c(data1,data2,data3,data4) 

  df <-data.frame(df) 
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  df <-subset(df, X3 > LOQ) 

  X <- df[,1:2] 

   lm <-lm(df$X3~ df$X2)                                                              

  betas.1 <- as.matrix(coef(lm)) 

  result[sim, 1] <- sim 

  result[sim, 2] <- betas.1[1,1] 

  result[sim, 3] <- betas.1[2,1] 

} 

beta0here <- 6.471 

beta1here <- -0.1898 

beta0bias <- mean(result$X2)-beta0here 

beta0RMSE <- result %>% 

  dplyr::mutate(newcol = (X2 - beta0here) ^ 2 ) %>% 

  dplyr::summarize(rmse = sqrt(sum(newcol) / 1000)) 

beta1bias <- mean(result$V3)-beta1here 

beta1RMSE <- result %>% 

  dplyr::mutate(newcol1 = (V3 -beta1here) ^ 2 ) %>% 

  dplyr::summarize(rmse1 = sqrt(sum(newcol1) / 1000)) 

summarize_result5 <- data.frame(matrix(nrow = 2, ncol = 2)) 

colnames(summarize_result5) <- c("beta0","beta1") 

rownames(summarize_result5) <- c("Bias", "RMSE") 

summarize_result5[1,1] <- beta0bias 

summarize_result5[1,2] <- beta1bias 

summarize_result5[2,1] <- beta0RMSE 

summarize_result5[2,2] <- beta1RMSE 

summarize_result5 

 

## Half LOQ  

#### This is an example for sample size =24, n=1000, 5% data below LOQ 

##### For sample size 32, 40, 48, the points will be 8, 10, 12 
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##### For 10% or 15% data below LOQ, the LOQ=1.542 or 2 

points <- 6 

mean1 <- 5.3322 

mean2 <- 4.1934 

mean3 <- 3.0546 

mean4 <- 1.9158 

sd <- 1 

LOQ <- 1 

nrow<- 24 

result <- data.frame(matrix(nrow = 1000, ncol = 2)) 

colnames(result) <- c("i", "beta0", "beta1") 

for (sim in 1:1000) { 

  df <- matrix(, nrow = nrow, ncol = 3) 

  df[,1] <- rep(1,nrow) 

  df[,2] <- rep(c(6,12,18,24), each=points) 

  set.seed(sim) 

  data1 <-  rnorm(n=points,mean=mean1,sd=sd) 

  set.seed(sim) 

  data2 <-  rnorm(n=points,mean=mean2,sd=sd) 

  set.seed(sim) 

  data3 <-  rnorm(n=points,mean=mean3,sd=sd) 

  set.seed(sim) 

  data4 <-  rtruncnorm(n=points,mean=mean4,sd=sd) 

  df[,3] <- c(data1,data2,data3,data4) 

  X <- df[,1:2] 

  df <-data.frame(df) 

  df$Y <- ifelse (df$X3 > LOQ, df$X3, LOQ/2 ) 

  lm <-lm(df$Y~ df$X2)                                                              # by treat censored data as 

uncensored data 

  betas.1 <- as.matrix(coef(lm)   

  result[sim, 1] <- sim 
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  result[sim, 2] <- betas.1[1,1] 

  result[sim, 3] <- betas.1[2,1] 

} 

beta0here <- 6.471 

beta1here <- -0.1898 

beta0bias <- mean(result$X2)-beta0here 

beta0RMSE <- result %>% 

  dplyr::mutate(newcol = (X2 - beta0here) ^ 2 ) %>% 

beta1bias <- mean(result$V3)-beta1here 

beta1RMSE <- result %>% 

  dplyr::mutate(newcol1 = (V3 -beta1here) ^ 2 ) %>% 

  dplyr::summarize(rmse1 = sqrt(sum(newcol1) / 1000)) 

summarize_result5 <- data.frame(matrix(nrow = 2, ncol = 2)) 

colnames(summarize_result5) <- c("beta0","beta1") 

rownames(summarize_result5) <- c("Bias", "RMSE") 

summarize_result5[1,1] <- beta0bias 

summarize_result5[1,2] <- beta1bias 

summarize_result5[2,1] <- beta0RMSE 

summarize_result5[2,2] <- beta1RMSE 

 

## LCR  

#### This is an example for sample size =24, n=1000, 5% data below LOQ 

##### For sample size 32, 40, 48, the points will be 8, 10, 12 

##### For 10% or 15% data below LOQ, the LOQ=1.542 or 2 

points <- 6 

mean1 <- 5.3322 

mean2 <- 4.1934 

mean3 <- 3.0546 

mean4 <- 1.9158 

sd <- 1 

LOQ <- 1 
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nrow<- 24 

result <- data.frame(matrix(nrow = 1000, ncol = 2)) 

colnames(result) <- c("i", "beta0", "beta1") 

for (sim in 1:1000) { 

  df <- matrix(, nrow = nrow, ncol = 3) 

  df[,1] <- rep(1,nrow) 

  df[,2] <- rep(c(6,12,18,24), each=points) 

  set.seed(sim) 

  data1 <-  rnorm(n=points,mean=mean1,sd=sd) 

  set.seed(sim) 

  data2 <-  rnorm(n=points,mean=mean2,sd=sd) 

  set.seed(sim) 

  data3 <-  rnorm(n=points,mean=mean3,sd=sd) 

  set.seed(sim) 

  data4 <-  rtruncnorm(n=points,mean=mean4,sd=sd) 

  df[,3] <- c(data1,data2,data3,data4)   

  X <- df[,1:2] # X with 1 in 1st column 

  lm.1<-lm(df[,3]~ df[,2]) 

  betas.1 <- as.matrix(coef(lm.1)) 

  sigma.1 <- sigma(lm.1) 

  i<-1  

  # step 2: While loop for E step and M step 

  while(T){ 

    ### E Step### 

    # Calculate expextation of sufficient statistics E(∑〖x_ij y_i 〗) and E(∑〖 y_i^2 〗) with 

consored y_i replaced   

    df <-data.frame(df)   

    df$mu.1 <- betas.1[1,1]+ df$X2 * betas.1[2,1] 

    df$Y.1 <- ifelse (df$X3 > LOQ, df$X3,  

                      df$mu.1 - sigma.1 * (dnorm(((LOQ-df$mu.1)/sigma.1), 0,1))/(pnorm(((LOQ-

df$mu.1)/sigma.1), 0, 1)))  
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    ### M-Step for beta ### 

    lm.2<-lm(Y.1 ~ X2, data=df) # using detected y and estimated censored y 

    betas.2 <- as.matrix(coef(lm.2)) 

    ### M-Step for sigma ### 

    detect.df <- filter(df,X3 > LOQ) 

    censored.df<-filter(df,X3 <= LOQ) 

    sigma.square.2 <- 1/(nrow(df)) * (sum((detect.df$Y.1-detect.df$mu.1)^2)+ sigma.1^2 *  

                                        sum(1 - ((LOQ-censored.df$mu.1)/sigma.1)* 

                                              (dnorm(((LOQ-censored.df$mu.1)/sigma.1), 0,1))/ 

                                              (pnorm(((LOQ-censored.df$mu.1)/sigma.1), 0, 1)))) 

    sigma.2 <- sqrt(sigma.square.2) 

    #Stopping Rule 

    if (sigma.2 - sigma.1 < 1e-6 & t(betas.2-betas.1)%*%(betas.2-betas.1) < 1e-6 | i>1000) break  

    #update initial value for next iteration 

    betas.1 <- betas.2 

    sigma.1 <- sigma.2 

    #Print information for each iteration 

    i<-i+1 

  } 

  result[sim, 1] <- sim 

  result[sim, 2] <- betas.1[1,1] 

  result[sim, 3] <- betas.1[2,1] 

} 

beta0here <- 6.471 

beta1here <- -0.1898 

beta0bias <- mean(result$X2)-beta0here 

beta0RMSE <- result %>% 

  dplyr::mutate(newcol = (X2 - beta0here) ^ 2 ) %>% 

  dplyr::summarize(rmse = sqrt(sum(newcol) / 1000)) 

beta1bias <- mean(result$V3)-beta1here 

beta1RMSE <- result %>% 
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  dplyr::mutate(newcol1 = (V3 -beta1here) ^ 2 ) %>% 

  dplyr::summarize(rmse1 = sqrt(sum(newcol1) / 1000)) 

 

summarize_result5 <- data.frame(matrix(nrow = 2, ncol = 2)) 

colnames(summarize_result5) <- c("beta0","beta1") 

rownames(summarize_result5) <- c("Bias", "RMSE") 

summarize_result5[1,1] <- beta0bias 

summarize_result5[1,2] <- beta1bias 

summarize_result5[2,1] <- beta0RMSE 

summarize_result5[2,2] <- beta1RMSE 

 

######################################## 

#Tolerance Limit simulation 

## Part one 

### This is an example of 95% tolerance limit with 95% CI with p=0.95 

#### For 99% tolerance limit with 95% CI, p=0.99 

mean1 <- 5.3322 

mean2 <- 4.1934 

mean3 <- 3.0546 

mean4 <- 1.9158 

points <- 12 

LOQ <- 2 

nrow <-48 

each<-12 

sd<-1 

result1 <- data.frame(matrix(nrow = 10, ncol = 2)) 

colnames(result1) <- c("i", "up", "cov","ZPQ") 

for (sim in 1:1000) { 

  df <- matrix(, nrow = nrow, ncol = 3) 

  df[,1] <- rep(1,nrow) 

  df[,2] <- rep(c(6,12,18,24), each=each) 
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  set.seed(sim) 

  data1 <-  rnorm(n=points,mean=mean1,sd=sd) 

  set.seed(sim) 

  data2 <-  rnorm(n=points,mean=mean2,sd=sd) 

  set.seed(sim) 

  data3 <-  rnorm(n=points,mean=mean3,sd=sd) 

  set.seed(sim) 

  data4 <-  rtruncnorm(n=points,mean=mean4,sd=sd) 

  df[,3] <- c(data1,data2,data3,data4) 

# Fit LCR 

X <- df[,1:2] # X with 1 in 1st column 

lm.1<-lm(df[,3]~ df[,2])  

betas.1 <- as.matrix(coef(lm.1)) 

sigma.1 <- sigma(lm.1) 

i<-1 

while(T){ 

  df <-data.frame(df)   

  df$mu.1 <- betas.1[1,1]+ df$X2 * betas.1[2,1] 

  df$Y.1 <- ifelse (df$X3 > LOQ, df$X3,  

                    df$mu.1 - sigma.1 * (dnorm(((LOQ-df$mu.1)/sigma.1), 0,1))/(pnorm(((LOQ-

df$mu.1)/sigma.1), 0, 1))) 

  lm.2<-lm(Y.1 ~ X2, data=df) # using detected y and estimated censored y 

  betas.2 <- as.matrix(coef(lm.2)) 

  detect.df <- filter(df,X3 > LOQ) 

  censored.df<-filter(df,X3 <= LOQ) 

  sigma.square.2 <- 1/(nrow(df)) * (sum((detect.df$Y.1-detect.df$mu.1)^2)+ sigma.1^2 *  

                                      sum(1 - ((LOQ-censored.df$mu.1)/sigma.1)* 

                                            (dnorm(((LOQ-censored.df$mu.1)/sigma.1), 0,1))/ 

                                            (pnorm(((LOQ-censored.df$mu.1)/sigma.1), 0, 1)))) 

  sigma.2 <- sqrt(sigma.square.2) 

  if (sigma.2 - sigma.1 < 1e-6 & t(betas.2-betas.1)%*%(betas.2-betas.1) < 1e-6 | i>1000) break  
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  betas.1 <- betas.2 

  sigma.1 <- sigma.2 

  i<-i+1 

  beta01<-betas.1[1,1] 

  beta11<-betas.1[2,1] 

  sigma11<-sigma.1 

}   

# Tolerence limit 95% 95% 

# 1.Zp p quantile of N(0,1) 

ZPresult <- data.frame(matrix(nrow = 1000, ncol = 2)) 

colnames(ZPresult) <- c("i", "Zp") 

for (seed in 1:1000) { 

  times = 1000 

  p=0.95 

  set.seed(seed) 

  x <- rnorm(n=times,mean=0,sd=1) 

  zp <- quantile(x, p)  

  # 2. muhat* 

  beta0here <- beta01 

  beta1here <- beta11 

  sigmahere <- sigma11 

  Time <- 24 

  muhat <- (beta0here + beta1here*Time - 3)/1 

  sigmahat <- sigmahere/1 

  # 3.Zp 

  Zp <- (zp-muhat)/sigmahat 

  ZPresult[seed, 1] <- seed 

  ZPresult[seed, 2] <- Zp  

} 

# ZP (p,q), q=1-a 

p=0.95 
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q=0.95 

ZPQ <- quantile(ZPresult$Zp, q) 

#coverage 

set.seed(sim) 

datahere <- rtruncnorm(n=points,mean=mean4,sd=sd) 

numberup<-sum(datahere>ZPQ) 

cov <- 1-(numberup/12) 

result1[sim, 1] <- sim 

result1[sim, 2] <- numberup 

result1[sim, 3] <- cov 

result1[sim, 4] <- ZPQ 

} 

 

## Part two 

### This is an example of 95% tolerance limit with 95% CI with p=0.95 

#### For 99% tolerance limit with 95% CI, p=0.99 

mean1 <- 5.3322 

mean2 <- 4.1934 

mean3 <- 3.0546 

mean4 <- 1.9158 

points <- 12 

LOQ <- 1 

MRL<-2 

nrow <-48 

each<-12 

sd<-1 

resultwt95 <- data.frame(matrix(nrow = 10, ncol = 2)) 

colnames(resultwt95) <- c("i", "wt") 

for (sim in 1:1000) { 

  df <- matrix(, nrow = nrow, ncol = 3) 

  df[,1] <- rep(1,nrow) 
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  df[,2] <- rep(c(6,12,18,24), each=each) 

  set.seed(sim) 

  data1 <-  rnorm(n=points,mean=mean1,sd=sd) 

  set.seed(sim) 

  data2 <-  rnorm(n=points,mean=mean2,sd=sd) 

  set.seed(sim) 

  data3 <-  rnorm(n=points,mean=mean3,sd=sd) 

  set.seed(sim) 

  data4 <-  rtruncnorm(n=points,mean=mean4,sd=sd) 

  df[,3] <- c(data1,data2,data3,data4) 

  # Fit LCR 

X <- df[,1:2] # X with 1 in 1st column 

lm.1<-lm(df[,3]~ df[,2])  

betas.1 <- as.matrix(coef(lm.1)) 

sigma.1 <- sigma(lm.1) 

i<-1 

while(T){ 

  df <-data.frame(df)   

  df$mu.1 <- betas.1[1,1]+ df$X2 * betas.1[2,1] 

  df$Y.1 <- ifelse (df$X3 > LOQ, df$X3,  

                    df$mu.1 - sigma.1 * (dnorm(((LOQ-df$mu.1)/sigma.1), 0,1))/(pnorm(((LOQ-

df$mu.1)/sigma.1), 0, 1))) 

  lm.2<-lm(Y.1 ~ X2, data=df) # using detected y and estimated censored y 

  betas.2 <- as.matrix(coef(lm.2)) 

  detect.df <- filter(df,X3 > LOQ) 

  censored.df<-filter(df,X3 <= LOQ) 

  sigma.square.2 <- 1/(nrow(df)) * (sum((detect.df$Y.1-detect.df$mu.1)^2)+ sigma.1^2 *  

                                      sum(1 - ((LOQ-censored.df$mu.1)/sigma.1)* 

                                            (dnorm(((LOQ-censored.df$mu.1)/sigma.1), 0,1))/ 

                                            (pnorm(((LOQ-censored.df$mu.1)/sigma.1), 0, 1)))) 

  sigma.2 <- sqrt(sigma.square.2) 
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  if (sigma.2 - sigma.1 < 1e-6 & t(betas.2-betas.1)%*%(betas.2-betas.1) < 1e-6 | i>1000) break  

  betas.1 <- betas.2 

  sigma.1 <- sigma.2 

  i<-i+1 

    beta01<-betas.1[1,1] 

    beta11<-betas.1[2,1] 

    sigma11<-sigma.1 

  }   

  # Tolerence limit 95% 95% 

  # 1.Zp p quantile of N(0,1) 

  ZPresult <- data.frame(matrix(nrow = 1000, ncol = 2)) 

  colnames(ZPresult) <- c("i", "Zp") 

  for (seed in 1:1000) { 

    times = 1000 

    p=0.95 

    set.seed(seed) 

    x <- rnorm(n=times,mean=0,sd=1) 

    zp <- quantile(x, p)  

    # 2. muhat* 

    beta0here <- beta01 

    beta1here <- beta11 

    sigmahere <- sigma11 

    Time <- 24 

    muhat <- (beta0here + beta1here*24 - 3)/1 

    sigmahat <- sigmahere/1 

    # 3.Zp 

    Zp <- (zp-muhat)/sigmahat 

    ZPresult[seed, 1] <- seed 

    ZPresult[seed, 2] <- Zp 

  } 
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  # ZP (p,q), q=1-a 

  p=0.95 

  q=0.95 

  ZPQ <- quantile(ZPresult$Zp, q) 

  dfhere <- data.frame(matrix(nrow = 40, ncol = 2)) 

  dfhere$Time <- seq(1:40) 

  dfhere$y <- beta0 + beta1* dfplot$Time 

  dfhere$TL <- dfhere$y + ZPQ*0.95 

  wt = (beta0-MRL)/-beta1here + ZPQ 

  resultwt95[sim, 1] <- sim 

  resultwt95[sim, 2] <- wt  

} 

mean95<- mean(resultwt95$wt) 

sd95<- sd(resultwt95$wt) 

resultwt95$truewt<-rep(25,1000) 

resultwt95$diff<-resultwt95[,2]-resultwt95$truewt 

over<-subset(resultwt95, resultwt95$diff>0) 

same<-subset(resultwt95, resultwt95$diff==0) 

under<-subset(resultwt95, resultwt95$diff<0) 

overestimate<-sum(resultwt95$diff>=0)/1000 

underestimate<-1-overestimate 

oversd<-sd(over$diff) 

undersd<-sd(under$diff) 

undermean<-mean(under$diff) 

overrmean<-mean(over$diff) 
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