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Abstract 

 

Silicon wafers are the most widely used substrates for fabricating integrated circuits. There have 

been continuous demands for higher quality silicon wafers with lower prices, and it becomes 

more and more difficult to meet these demands using current manufacturing processes. In recent 

years, research has been done on electrolytic in-process dressing (ELID) grinding of silicon 

wafers to explore its potential to become a viable manufacturing process. This paper reviews the 

literature on ELID grinding, covering its set-ups, wheel dressing mechanism, and experimental 

results. It also discusses the technical barriers that have to be overcome before ELID grinding can 

be used in manufacturing. 
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1. Introduction 

 

Single crystal silicon is used to manufacture more than 90% of the semiconductor devices [1]. 

About 150 million silicon wafers of different sizes are manufactured each year worldwide [2]. As 

shown in Fig. 1, the major manufacturing processes for silicon wafers include crystal growth, 

slicing, flattening (grinding or lapping), etching, and polishing [3]. More information on these 

processes can be found elsewhere [4-7]. 

 

Grinding is one of the important methods in manufacturing of silicon wafers and in thinning of 

completed device wafers. Fig. 2 illustrates the wafer grinding process. This wafer grinding 

process is referred to conventional wafer grinding in this paper. During grinding, the diamond 

grinding wheel and the wafer rotate about their own rotation axes simultaneously, and the wheel 

is fed towards the wafer along its axis. The rotation axis for the grinding wheel is offset by a 

distance of the wheel radius relative to the rotation axis for the wafer. The challenges in grinding 

include the grinding marks and subsurface cracks generated on the ground wafer surfaces. These 

cracks could, in some cases, penetrate up to 20 µm deep into the wafer [1]. In order to eliminate 

them, a large amount of silicon material has to be removed by the subsequent processes (such as 

polishing).  

 

In order to reduce the surface roughness and subsurface damage on ground wafers, grinding 

wheels with smaller diamond grains are desirable. As shown in Figs. 3 and 4, better surface 

roughness and less subsurface damage can be obtained by using smaller diamond grains. 

However, when the diamond grains become very small (for example, 1 µm), it is very difficult for 

 2



the wheel to maintain self-dressing ability [8]. (Self-dressing ability refers to the wheel’s ability 

to release worn grains and expose new grains without any external means.) 

 

The main benefit of ELID (electrolytic in-process dressing) grinding is that the grinding wheel is 

continuously dressed even if the grains are very small (up to #3,000,000 mesh size) [9-11]. The 

first appearance of ELID grinding in the literature is probably in 1985, when Murata et al. [12] 

reported ELID grinding of ceramics using metal-bond diamond wheels with grain sizes smaller 

than #400. Afterward, the ELID technique was further improved by Ohmori and Nakagawa [13]. 

Since 1990, studies have been done on ELID grinding of silicon wafers [1,11,13-17]. 

Experiments on 100 mm [13], 150 mm [16,17], and 300 mm [1,16] silicon wafers were reported. 

Diamond wheels with very small grain sizes (mesh #1200 ~ #3,000,000) were used in ELID 

grinding [1,11,13-17]. And it has been reported that mirror surfaces on silicon wafers could be 

achieved with ELID grinding [10,13,14,16,17].  

 

However, ELID grinding has not been accepted by the silicon wafer industry as a manufacturing 

process. This review paper aims to answer the following questions. What is the wheel dressing 

mechanism in ELID grinding? What is the state of the art? What are the technical barriers for its 

acceptance in manufacturing? 

 

This paper is organized into five sections. Following this introduction section, Section 2 discusses 

the mechanism of wheel dressing in ELID grinding. Section 3 summarizes the set-ups for ELID 

grinding. Experimental results are presented in Section 4. The technical challenges for the 

manufacturing application of ELID grinding are discussed in Section 5. 
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2. Wheel dressing mechanism in ELID grinding 

 

The explanation of the ELID mechanism will need some background knowledge on 

electrochemistry (a field of science concerned with the relationship between electricity and 

chemical changes, and with the conversion of electrical and chemical energy). In a water solution, 

the molecules of an acid, base, or salt are dissociated into positively and negatively charged ions. 

These ions allow electric current to be conducted, playing the same role that electrons play in 

metallic conduction. The ionized solution is called an electrolyte. Electrolytic conduction requires 

that current enter and leave the solution at electrodes. The positive electrode is called the anode 

and the negative electrode is the cathode. At each electrode, some chemical reaction occurs, such 

as the deposition or dissolution of material. Electrolysis is the name given to these chemical 

changes occurring in the solution. 

 

During ELID grinding, the electrically-conductive grinding wheel is connected to the positive 

terminal of a power and a negative electrode is put near the wheel surface. By supplying the 

current and electrolytic fluid into the small gap between the electrode and the grinding wheel, 

electrolysis is generated and the dressing process starts.  

 

The ELID mechanism is illustrated in Fig. 5 [10,13,14,18]. Before grinding, a pre-dressing 

process using the ELID method is required for the purpose of maintaining the protrusion of 

diamond grains on the wheel surface. As shown in Fig. 5(a), the bond material on the wheel 

surface is dissolved electrolytically, and the non-conductive diamond grains are exposed. During 

the dressing process, an insulating film comprising iron oxide is formed on the surface of the 
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wheel, and the electric resistance of the wheel is then increased. The film formation causes both 

the electric current and the dissolution of the bond material to decrease. As shown in Fig. 5(b), 

the electrolytic phenomenon is gradually reduced and stabilized towards the end of the dressing. 

During grinding, the insulating film and diamond grains are scraped off and removed, as shown 

in Fig. 5(c) and (d). The insulating film is worn off from the wheel surface, resulting in a decrease 

of the wheel’s electrical resistance and an increase of the electric current between the wheel and 

the electrode. Therefore, the dissolution of bond material increases and the exposure of diamond 

grains restarts. This ELID cycle continues during the ELID grinding process [19]. 

 

It was suggested that this process not only helped expose new sharp diamond grains, but also 

reduced bond strength of the wheel surface by electrolysis [20]. According to Fathima et al. [20], 

the reduction of bond strength would reduce the depth-of-cut of diamond grains and improve the 

surface finish. 

 

 

3. Set-ups for ELID grinding 

 

As shown in Fig. 6, the basic ELID system consists of a diamond grinding wheel, an electrode, a 

power supply, and electrolytic fluid.  

 

3.1. ELID grinding wheels 

 

For ELID grinding, either straight [11,14,16,21] or cup-shaped [9,13] wheels have been used. 

These two shapes are illustrated in Fig. 7.  

 5



 

Diamond has been exclusively used as the abrasives in the grinding wheels for ELID grinding of 

silicon wafers. The diamond grain sizes ranged from #1200 (average grain diameter ≈ 7 µm) to 

#3,000,000 (average grain diameter ≈ 5 nm) [11,14]. As shown in Fig. 8, the diamond grains used 

in ELID grinding were much smaller than that used in conventional wafer fine grinding.   

 

The bonds used in ELID wheels were mostly metal bonds [9,13,14,16]. Both cast iron and copper 

have been used as the bonding material for metal-bond wheels [22].  

 

However, Ohmori et al. [23] reported that ELID grinding using metal-bond wheels had problems 

of workpiece "chipping" and "scratches" on the workpiece by the chips. And the obtained ground 

surfaces merely had a Rmax of about 18 to 20 nm. To solve this problem, metal-resin bond wheels 

with a variety of diamond grain sizes (#8000, #120,000, and #3,000,000) were developed [11,23]. 

Using wheels with mesh #3,000,000, surface roughness with Rmax of 2.8 nm [11] and 1.85 nm [23] 

could be achieved on ground silicon wafers.  

 

In addition, in ELID grinding, the metal ions in the metal-bond wheels would dissociate in the 

grinding fluid during the electrolytic dressing. The waste fluid containing these heavy metal ions 

could result in environmental pollution [21]. Moreover, these metal ions (particularly, copper and 

tin) could cause poor device performance when ELID grinding device wafers [21]. In order to 

prevent contamination of the device wafers by metal ions, Itoh and Ohmori [21] developed a 

carbon-based metal-free conductive bond wheel for ELID grinding. They used diamond abrasives 

(#8000; average diameter of 2 µm), carbon, and phenol resins to make the wheel. The mixing 

ratio of carbon to resin was 1:5.  
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3.2. Electrode and power supply 

 

Arc-shaped electrodes were used in ELID grinding for both straight and cup type wheels [22]. 

The length of the electrode could be 1/4 or 1/6 of the perimeter of the grinding wheel, and the gap 

between the electrode and the grinding wheel was 0.1 to 0.3 mm [22]. Usually, copper or graphite 

was selected as the electrode material [22].  

 

The power supply controls the electric current, voltages and pulse width for the ELID process 

[22]. The typical values of the applied voltage were 60~90 V [9,11,14,16-18]. 

 

3.3. Machine set-ups 

 

An important feature of the ELID grinding is that it can be retrofitted on conventional grinding or 

lapping machines [13]. Table 1 summarizes the type of machines that have been used for ELID 

grinding of silicon wafers.  

 

Itoh et al. conducted ELID grinding of silicon wafers on a lapper [11]. In their set-up, as shown in 

Fig. 9, the wafer was pressed onto a grinding wheel that was in the place of the lapping plate. The 

wheel was connected to the positive terminal of a power supply by a brush. The negative 

electrode was fixed above the wheel at a distance of about 0.3 mm. A conductive fluid was 

provided between the negative electrode and the wheel surface. The set-ups of this kind are, 

generally speaking, not practical for manufacturing of large diameter wafers, since the wheel 

diameter needs to be at least twice as large as the wafer diameter. 
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In addition, ELID grinding of silicon wafers was done on a horizontal spindle surface grinding 

machine using a straight type wheel [16], as shown in Fig. 10. This set-up would make it possible 

to grind a large wafer without using a large grinding wheel. The silicon wafer (workpiece) was 

held on a rotary table. The speed of the rotary table would have to change according to the 

position of the wheel to keep the relative speed at the interface between the wheel and the wafer 

(approximately) constant.  

 

ELID grinding has also been applied to double side grinding [24]. As shown in Fig. 11, the 

driving rollers were rotated by the driving device, and they were individually pressed against the 

periphery of the wafer to rotate the wafer. During the grinding process, both sides of the wafer 

were ground simultaneously by a pair of wheels. In this way, the surface of a large wafer (400 

mm for instance) can be ground without using a large wheel. Note that this double side grinding 

set-up is different from the simultaneous double side grinding process used in silicon wafer 

manufacturing [25].  

 

For the above two set-ups, it is very difficult to achieve super flatness on ground wafers. Note 

that either the wheel or the wafer has to move constantly in order to grind the entire wafer surface. 

Furthermore, the (vertical) position of the wheel has to be constantly adjusted to compensate the 

wheel radial wear. 

 

The layout of the vertical spindle surface grinding machine using a cup-type wheel is shown in 

Fig. 6. The wafer center is offset by the wheel radius from the wheel center. The silicon wafer 

(and the work spindle) rotates at a relatively lower speed, and the wheel rotates at a higher speed. 
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This set-up is similar to the conventional wafer grinding shown in Fig. 2. 

 

 

4. Experimental results  

 

Several experiments (as summarized in Table 2) have been conducted on ELID grinding of 

silicon wafers. These experiments are presented in this section according to the following aspects 

of grinding performance: surface roughness of ground wafers, subsurface damage introduced in 

the ground wafers, material remove rate, and flatness of ground wafers. 

 

4.1. Surface roughness 

 

When studying the effects of diamond grain size, some researchers used straight wheels on a 

lapping machine [11,14,21], while others used straight [16] or cup-type wheels [9,13] on vertical 

spindle surface grinding machines. These researchers reported consistent results: with smaller 

diamond grains, better surface roughness could be achieved on ground wafers (as shown in Fig. 

12). Using resin-metal bond wheels with the diamond grain size of #3,000,000, a surface 

roughness of 1.85 nm in Rmax was achieved [23].  

 

Islam et al. [17] studied the ground wafer surfaces using different injection flow rates (31.41 l/h 

and 92 l/h) of electrolyte (also used as coolant). The experiment was carried out on a CNC 

machining center. The wheel used was a metal-bond cup wheel. The diamond grain size of the 

wheel was #8000, and the wheel diameter and width were 200 mm and 5 mm, respectively. 

Silicon wafers with thickness of 0.75 mm and diameter of 152.4 mm were used. They reported 
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that ELID grinding with lower injection flow rate generated smoother ground surfaces on silicon 

wafers. The surface roughness of the ground surface was 2 nm in Ra.   

 

In summary, experiments have demonstrated that ELID grinding could achieve very good surface 

roughness. Rmax of less than 2 nm has been reported [9,11,13]. Note that typical surface roughness 

obtained with conventional wafer grinding using #2000 resin-bond wheels was 10 nm in Ra [3]. 

 

4.2. Subsurface damage 

 

Ohmori and Nakagawa [9] studied subsurface damage in ELID ground silicon wafers by means 

of X-ray. When ground by #2000, #4000, #6000, and #8000 wheels, subsurface damage (cracks) 

existed in ground surfaces with Ra of several namometers. In order to evaluate the cracks 

generated by different diamond grain sizes, the ground wafer surfaces were polished and treated 

with a chemical etching. As shown in Fig. 13, the depth of cracks could be reduced by using 

smaller grain sizes, and the #8000 wheel could reduce the crack depth to below 1 µm [9].  

 

Ohmori and Nakagawa [9] also evaluated the depth of subsurface damage on ELID ground 

wafers by step-etching. They found that the damaged layer caused by the metal-bond wheel of 

diamond grain size of #40,000 was completely removed after 1 µm thick of silicon was removed 

from the ground surfaces by etching. 

 

Such level of subsurface damage has not been achieved in conventional wafer grinding. Typical 

values for the depth of subsurface cracks induced in conventional wafer grinding were 2 µm and 

above [26,27]. 
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4.3. Material removal rate 

 

As diamond grains get smaller, ground surfaces get smoother and the depth of subsurface cracks 

gets smaller; but the material removal rate will be slower (as shown in Fig. 14).  

 

Itoh et al. [11] showed that, under the same grinding condition, wheels with smaller diamond 

grains would remove material at a lower rate (see Fig. 15). The wheels used were metal-resin 

bond wheels. All the wheels tested (including the one with #3,000,000 diamond grains) showed 

stable grinding. However, the material removal rate became much smaller when the diamond 

grains were smaller. 

 

Itoh and Ohmori [21] compared metal-free conductive-bond wheels and metal-bond wheels (both 

with diamond grain size of #8000) using a lapping machine. Fig. 16 illustrates the relationship 

between the grinding pressure and material remove rate (the thickness of silicon removed from 

the wafer surface per minute). It can be seen that material removal rate of the metal-free 

conductive-bond wheels was much lower than that of the metal-bond wheels.  

 

In summary, the material removal rate in ELID grinding (about 1µm/min even for #8000 

diamond grains) was much lower than that in conventional wafer grinding (typically, more than 

10 µm/min) [28,29,30]. 

 

4.4. Flatness 
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As the starting materials for fabrication of most integrated circuits, silicon wafers must be very 

flat in order to print circuits on them by lithographic processes [31]. The flatness of silicon wafers 

directly impacts device line-width capability, process latitude, yield, and throughput [32,33]. 

Wafer flatness can be characterized in terms of a global or site parameter. The global parameter 

most commonly used is GBIR, or total thickness variation (TTV). A frequently used parameter to 

measure the site flatness is SFQR (site flatness, front reference surface, best-fit reference plane, 

range) [34]. It is the sum of the maximum positive and negative deviations of the surface in a 

certain area of the wafer from a theoretical reference plane that is determined by the best-fit 

method. Typical size of the area is 26 x 33 mm2. The flatness requirements in recent years are 

shown in Table 3 [34]. 

 

No experimental data are available to demonstrate that ELID grinding can achieve the flatness 

requirements on silicon wafers. Note that none of the grinding experiments reported (see Table 1) 

was conducted on the industry standard wafer grinders. These grinders include various models 

from Disco [35], G&N [36], Koyo [37], Okamoto [38],  and Strasbaugh [39]. These wafer 

grinders can routinely produce a flatness of less than 1 µm in TTV on 200 mm and 300 mm 

wafers.  

 

Unless ELID grinding can produce super flat wafers, its acceptance in silicon wafer 

manufacturing will remain questionable. 

 

 

5. Concluding remarks 
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For silicon wafer grinding (especially fine grinding), it is desirable to use grinding wheels with 

very small diamond grains to achieve better surface roughness and less subsurface damage on 

ground wafers. However, it is very difficult, if not impossible, to manufacture grinding wheels, 

using diamond gains smaller than #4000 mesh, with sufficient self-dressing ability. 

 

Because an ELID grinding wheel is dressed continuously by the electrolysis mechanism, it can be 

made from very small diamond grains (such as #3,000,000 mesh). Experimental results have 

shown that ELID grinding can achieve better surface roughness and less subsurface damage than 

those obtained by conventional wafer grinding.  

 

However, several technical barriers associated with ELID grinding have to be overcome before it 

becomes a viable manufacturing process. For example, no evidence is available to show that 

ELID grinding can achieve the super wafer flatness that conventional wafer grinding can 

routinely achieve. Furthermore, the material removal rate with ELID grinding is very low 

compared to conventional wafer grinding.  

 

Another challenge with ELID grinding is that, as the wheels are dressed during the grinding 

process, the wheel wear must be compensated in order to obtain high dimensional accuracy [20]. 

Furthermore, the macrofracture of the oxide layer (shown in Fig. 5(b)) has been reported as a 

problem with ELID grinding. If the thickness of the layer removed from the wheel surface during 

macrofracture was greater than the grain size of the wheel, the sharp new diamond grains were 

also removed along with the fractured layer [20]. This would waste diamond grains and result in a 

shorter wheel life [20]. The friction and wear properties of the oxide layer are not well understood 

yet [40]. 
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Fig. 1. Major manufacturing processes for silicon wafers (after [3]). 
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Fig. 2. Illustration of conventional wafer grinding (after [31]). 
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Fig. 3. Relationship between diamond grain size and surface roughness when grinding 
ceramics (after [41]). 

 19



 

 
 
 Fig. 4. Relation between diamond grain size and maximum depth of cracks [42]. 
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Fig. 5. Mechanism of ELID grinding (after [13,14,16,18,40]). 
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Fig. 6. Basic ELID system (after [9]). 
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(a) Straight type 
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Fig. 7. Two types of diamond wheels for ELID grinding.
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Fig. 8. Diamond grain sizes (mesh sizes) for ELID grinding and conventional wafer fine grinding 

(after [1,11,25]). 
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Fig. 9. ELID grinding on a lapper (after [11,14]). 
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Fig. 10. ELID grinding using a straight wheel on a horizontal spindle (after [16]). 
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Fig. 11. ELID double-side wafer grinding using a pair of straight wheels (after [24]). 
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Fig. 12. Effects of diamond grain size on surface roughness of ground silicon wafers (after [9]). 
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Fig. 13. Relation between the depth of subsurface cracks and diamond grain size in ELID 
grinding (after [9]). 
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Fig. 14. Effects of diamond grain size on surface roughness and material removal rate (after [14]). 
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Fig. 15. Effects of diamond grain size on material removal rate (after [11]). 
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Fig. 16. Comparison of metal-free conductive-bond wheels and metal-bond wheels (after [21]). 
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Table 1  

Machines and wheel types used in ELID grinding of silicon wafers 

Machine Machine model Wheel type References 
 [14] 

 [21] 
Lapping machine 

 

Straight 

[11] 
 
Horizontal spindle surface 
grinder 
 

 
SS-501 (Amada Wasino) 

 
Straight 

 

 
[16] 

 
Double side grinding 
 

  
Straight 

 
[24] 

RGS-60 (Nachi-Fujikoshi) [13] 
 [9] 

Vertical spindle surface 
grinder 

RGS20N (Nachi-Fujikoshi)

Cup 
 

[1] 
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Table 2  

Summary of experimental results on ELID grinding of silicon wafers 

Output variable studied References 
[13] 
[9] 
[14] 
[11] 
[16] 

Roughness 
 

[21] 
 

Subsurface damage 
 

 
[9] 

[11] Material removal rate 
[21] 

 

 34



Table 3   
 
Flatness requirements for 300 mm silicon wafers (year 2004 to 2006) (after [34]) 
  

 Flatness Parameter 2004 2005 2006 

Global flatness (GBIR) for 300 mm wafers 

(also known as total thickness variation TTV) 

< 1 μm < 1 μm < 1 μm  

Site Flatness (SFQR) (26 mm x 33 mm) < 90 nm < 80 nm < 70 nm
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