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snosoraxca

!3appin£ configurations froa ono piano to anothor, and

tho 3toroo£raphic projection of circles aro thoroughly dis-

cus aod in the ordinary textbooks on functiono of a conplex

variable

•

In tilla paper wo have established tho well known re-

lationships between tho points of tho ootaplex plane and

tiie tangent sphore* Using those relationships wo have pro-

jected several slnple configurations upon Hi sphei'e, ro-

tated the sphere about any dianotor, and projected thou

back upon tJio plane. We were especially interested in tho

tran3fornotion of a parabola by those nothods.
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TRANSFORATION EQUATIONS FOR STEREOGRAPHIC PROJECTION

Conpl*;; numbers are commonly given geometric signifi-

cance by interpreting theia as points on a plane, but it is

frequently convenient to Interpret them as points on a

sphere. The desired result nay be accomplished by assuming

the complex plane as before and supposing that we have a

sphere tangent to this plane at the origin, We shall refer

to the point of tangency as the south pole of the sphere,

while the opposite polo will be spoken of as the north

pole. If wo now take the north pole 0* (Fig* 1)

Fig. 1
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as the center of projection wo can project in a definite

manner every point of the plane upon the sphere. Thus in

Fig* 1 the point P in the complex plane corresponds to the

point P* of the sphere. In this way there corresponds to

each point of the plane a definite point of the sphere, and

conversely* This method of mapping the complex plane upon

tho sphere is called stereographic projection.

In order to determine the character of a configuration

on the sphere and Its relation to the corresponding config-

uration in the plane, wo deduced the equations of trans-

formation by means of which the cartesian space coordinates

of any point upon tho sphere can be expressed in terms of

the cartesian coordinates of the corresponding point in the

plane. Let f , >/ , £ denote the coordinates of a point on

the sphere. Let the £-axis and the V[ -axis coincide respect-

ively with the axis of reals and the axis of imaginaries

of the plane. Let the £-axis be perpendicular to the ccaa-

plex plane. Suppose the radius of the given sphere to bo

The equation of the sphere is

If we now denote by x, y the coordinates of any point P in

the plane, the coordinates f , yj , £ of the projection P » upon

the sphere of the point P are readily found in terms of



7» **, whero r » Vx2 ^ y
2
*

In Pls» 1 frees Mm aliailar triangles o«DP, 0«0P, wo

Got

& ±Jt n 1 ana r s 31*
D?» r 1- t

Squaring each el do of the equation wo £©t

r2 | J23f but "H?^ * i
c ^ )1

2 • £(1-5) and r2 I £ .

A^aln from Pi£. 1 In tlic -plane wo havo

r 1 1^1

and frees the ^ -piano

Aloo, wo con aolvo for and £©t

£ *£?* ^fe

SOKE COIIPIGUIUTIO!IS in STSB10ORAPTIIC PROJECTION

Tbo oquation of a circle In tlio plane nay bo written

2 4 j
2 4 2cx 4 2fy 4 o « 0.

flhon projocte.1 on the sphere it bocaioo

il + ge j 4 2f g i - o



but fron the equation of tho sphere %
2 *

>l

2 «

Replacing £
2 # )}

2 by this value, and sjultiplyinc tern

by we got

2g§+ 2fW c(l-£) • 0.

?hia la tlie equation of a plane, and the curve of inter-

section of tliis plane and the civon sphere is a circle. So,

any circle on the piano projects into a circle of the

sphere.

Let us now consider the following proposition:

Great circles through tlxo ends of a fixed dianeter of

a sphere project into a fonlly of coaxal circles, and the

swell circles whose pianos are perpendicular to this dia-

neter project into tlie orthogonal systeta of circles.

To prove this statement, lot us uso the sphere

g2 4, ^2 a £(l-£) whoso £-axis and >]-a-;ls coincide respect-

ivoly with the x-axis and y-axis of tlie plane; and let

(a,b,c) be the apace coordinates of one end of tlie fixed

diariotor. Tlie equation of the planes through tlie center

of the sphere, O,0#£), is

§ + A)j 4 B(£-&) «

whore A and are any constants* If theso planes are also

to pass through (a,b,c) wo can write

a + Ab + D(c-i) | 0.

tflion I is olininatod botweon those two oq uations wo have



6

§ (l-2c) 4 A)j(l~2c) 4 2j(a+Ab) - (Ab4a) « C (1)

which Is the equation of a sheaf of planes through (0,0,^)

and (a,b,c). Projected on the plane we have

(x24y2 )(Ab4a) 4 x(l-2c) * Ay(l-2c)-(Ab4a) 0. (2)

Equation (2) defines a family of circles with centers at the

points A(2c~l)
# Ag A takeg difrorent values these

Ab*a Ab4a
points define a line of slope &ls&3sj . Hence, the circles

b(l-2c)

(2) are coaxal.

Let the equation of the family of parallel planes

which are perpendicular to the sheaf (1) be

S*«fc+*j»0 (3)

where H and I are constants to bo determined. One of these

planes must pass through the point (a,b,c); so (3) nay be

written

a 4 lib 4 Ec * (4)

for a particular plane. How if equations (3) and (4) are to

represent perpendicular planes, their coefficients must have

this relationship*

(l-2c) 4 MPl Mi 4 2E(a+Ab) M 0. (5)

Solving equation (5) for in terns of a,b,c,A,E and sub-

stituting this value Into (4) we can solve for I In terns

a,b,c,A. Substituting tills value in (3) we got

* See Roberts and Colpitts, Analytic Geometry, Art. 116.
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£ jk( Ac-4Ac2+4Ac3-2ab+4abc-2Ab2+4Ab2 c
)]

- >jpU4Aabc+4a2c-2Aab-2a2+4c3-4c2+c
)]

+ f jA(4Aac+4bc
2-4Aac2-4bc-Ac+b)j « (G)

which ia the equation of the parallel planes perpendicular

to the sheaf (1). When the circles of intersection of those

planes and the sphere are projected upon the plane we have

(x^y2 ) Jft
(4Aac+4bc2-4Aac2-4bc-Ac+b

)]

fx fv(Ac-4Ac
2
f4Ac

3-2ab+4abc-2Ab2+4Ab2c

^

-y jA(4Aabc+4a2c-2Aab-2a2*4c3-4c2+c )j

-A(4Aac+4bc2-4Aac2-4bc-Ac+b) =0 (7)

which Is a family of circles in the plane.

If the equations of two circles are represented by

x2«*-y
2
-t-2f

1
X4.2£;

1
y+c

1
=

x2+y2+2f2x+2£;2y+c2 1

then the circles are orthogonal if 2f
1
f
2+2s1s2-c1-c2

8 0.-*

Applying this test to equation (2) and (7) we prove the

two families of circles are orthogonal. This result Is ob-

vious in light of the fact that mapping by stereographic

projection is always ccjnforiaal.**

Let us now prove tliat if z^
2

are the 3teroographic

projections of the ends of a dianeter of the sphere, then

zlz2
= "1# 6% *a toe conjugate of Zg.)

See W. 3. Snith, "Co-ordinate Geometry, Art. 81.
*» See Townsend, Functions of a Complex Variable, Art. 40.



3

Lot (a,b,c) and («a,-b,-c) be the coordinates of the

ends of the given diameter. Substituting for these values

their values after projection on the plane we get

i a a o z, 8 a+ib
1-c

i "a v z a -a-ib F - -a4ib

z r a a+ib -a+ib - -a2-*)2 = _x
* 2 1-c 1+c "T^2

"

since a,b,c satisfy the equation of the sphere.

STEREOGRAFHIC PROJECTION A1TD ROTATION OP THE SPHERE

Let us consider now the following proposition:

If the sphere be rotated through an angle $ about any

diameter the corresponding transformation of the complex

plane is given by

£^2l a (cos e + 1 sin o)5z£I (8)Z'-Zg z-z2

where z± and z^ az*o the projections of the end3 of the dia-

meter.

In proving this it Is easily seen that when the sphere

Is rotated any point moves along a circle of the family (G),

hence, its projection on the plane must necessarily move

along a circle of the family (7), say circle C, Pig. 2.



In Fig. 2 (we are here usins the notation of ordinary geo-

metry for points, lines, and angles.) Zz^Oz Zz-^Oz, and

lOzz^ s ^Oznz since each is measured by one-half of the

sane arc. Therefore, AOz-^z ffw ^OZgZ and Oz^Oz 0z:0z
2

.

But Oz s OR, and the circlo C divides line z^z
2

so that

Oz^tOR « 0R:0z
2

. Tien from elementary geometry the ratio

z-^PtZgP is a constant where P 13 any point on the circle C.

It follows that z^s'iz'Zg = z^zxzZg, or (using the notation

of complex variable)
|

zt "z
1 I a

\

z"zlL
|z«-z

2
f I s-z

2
I

How consider the amplitudes of equation (8). liquation

(1) is a sheaf of planes intersecting the sphere in the

great circles through the ends of the diameter of rotation.

If the sphere Is rotated through an angle ©, a point on the

sphere moves from one of these circles to another separated

from the first by angle e. The projection of this point in

the plane nust move between the projections of these two

circles (S and 3', Pig. 2) along one of the circles (7),

(C, Pig. 2). Since stereographic projection Is confornal,

« Is the angle between the tangents to S and S» at their

points of intersection, and is therefore the angle between

their radii at those points.

KANSAS STATE COLLEGE LIBRARIES
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Fi£. 2.

Proa Pig« 2,

i^z^Hz^z = /Lz^T (10)

subtracting (10) fros (0)

/.2
1
Z
2
2»+/Z

2
2
1
2»-/Z

1
Z2Z-/Z2212

* /

2

2
Q»T '-/ZgQT (11)

substituting In (11) frcsa tho figure we got

/.K^'f^ZZgZ' * Z.Q2
2
Q». (12)
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How we rewrite (8) to read

z'-zi z-z = cos e 4 i sin ©•
z-z^ z»-z2

Pron the figure we write

anp
2t "zl »Zzz-,z', ai:;p

2~z2 = /zz z', ai:p(co3 ©+i sin ©) -©
z-zx

* z »-z2

and compare with (12). The proposition is therefore proved.

It is interesting to note that if (0) is solved for «'

we get

z' = z [zl"z2^ cos Q + 1 sin 6)] - Jz1z2-Ziz2 (co3 6 4- i sin Q)J

z[l-(cos © + i sin ©)]- ^-z^coa © + i sin ©)]

and on dividing each term of the right member by

cos(£© amp z^* i sin + amp z1 ) we get a transformation

of the form z' «£5±b where d = tr and b = -ST; hence, we can
cz+d

write z« i az-cT,

To project configurations from the plane to the sphere,

rotate the sphere, and project back on the plane, it would

seen desirable to solve (8) for x* and y' in terms of zl9

z2$ and ©, (z=x+ly, z1«x1+iy1 , 22=x2+iy2 ) but we get

x' a ^jxg+x^-cos «(x14x2 )+ sin e(y2~'/l?J

^ [x2+3t1+ain ©(yg^)- coa ©(xg^)]

IM f4xiX2+coa «(2x1x2-2y1y2^+^2-x5+^)]

m [-2x271-2xi72*«ln e( 2̂+3
2-x|-32

2
)+2 cos •fr|py%Jfcjj

-Sin w(x|y
1-^% +yl3|-yfy2 )

-cos )



12

over this denominator

(x2+yS) (2-2cos ©]

fx^2(cos © -1) (x2+x1 )+2ain ©(yg-yi)/

+y[2(cos © -DCy^ygJ^ailn ©(x^Xg)] (13)

+xp+yf+x£+3£-2cos ©(x1x2+y1y2 )f23in ©(x^-x^)

and y* is a similar expression:

y» * f(x,y) (14)

In those equations we can replace © by -©, interchange

x 1 and x, and y» and y, and have transformation equations

solved for x and y. (For if a rotation of the sphere

through an angle © transforms x into x', then another ro-

tation through an angle-© will put x* baclc to its original

position, x,) Now wo can write the equation of a config-

uration in the plane, replace x and y by their values in

equations (13) and (14), and have the equation of the curve

resulting froti a rotation of the sphere. But equations (13)

and (14) are so unwieldy this would be a laborious method

of procedure. Me can get the same effects by a less ted-

ious method.

ELLIPTIC TRANSFORMATIONS

When the sphere is rotated about a diameter, the pro-

jections of the ends of the diameter, and z2 , remain in-

variant in the plane. The projection of any other point on
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the sphere trill novo along on© of the circles of equation

(7) around either B± or %M Tills circular notion of points

in the plane about two, finite, distinct, invariant points

is an elliptic transforation of the plane by definition.

If %i and So are not finite and distinct, the dianoter of

rotation ctuat be vortical . We disregard this special cose,

W$ will now refer to the transforcaatlon represented by a

rotation of tlio sphoro about a diaxietor as an elliptic

transformation of the plane*

It is easily shown* that the equation

a» s „ . 1 (15)

represents an elliptic transformation of the plane when u

is any conplex nunbor, and v ro1* whore r a 1, 9 jf 0.

If wo write u I a+Ib, v « c+ld, and solve (15) for

(a^+b2 } (;c2+y2 J+Sxfao^bdJ+SyCad-cbJ+c^d2

ft s „— , fe&ribggJteteH . (ic)
(

a

2*b2 } (iPef* )+2x (ec+bd } +2y (ad-cb ) *c2+d2

If wo solve (15) for x and y, we got

x « — (acVjd)U*2*y'2 )«K^»+dy*
(a2^b2 ) (x »2*y »2 )-2ax »+2by »+l

j « ( cb-ad | U S*g ,2 )+dx+c;r
( ^7)

(a2*b2 ) ( x 35J

»

2 )-2ax »+2by »+l

> See E. J. Townaond, iMnctlons of a Coaplex Variable, Art .41*



Now we can write the equation of a curve in the plane

as

fu, r)
s

<18)

and substituting for x and y their values in (17) we have

the equation of the curve resulting from the transformation

(15),

Observe that in (17) x and y are of first decree, and

the right members are of second degree in x» and y*. In

general then, a curve of degree n in x and y will become of

degree 2n in x» and y f aftor an elliptic transformation.

Circles, however, are an exception to this general rule for

all circles transform into circles. It is here understood

that a straight line is to be considered a circle of infin-

ite radius.

If any point is transformed into itself by the trans-

formation (15), we must have z * «gJL| that 13 z2u+z(v-l) I 0.

Tills equation has two roots, and ~p* These are the poiris

which remain invariant by the transformation. Hence a curve

through either of these points passes through the same point

aftor transformation.

If we let z 1 » °°in (15), we get z » _ X. This is the

point which goes to infinity by the transformation. Hence

a curve through this point becomes Infinite after transfor-

mation.
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If we let z « °*in (15), we g«t z' = L This Is the

point Into which infinite values of z are transformed.

In the case of a parabola, either branch of the curve

is infinite for infinite values of z. Therefore the trans-

formation puts each branch of the parabola through the point

jL Now the two tangents to a parabola are parallel for In-
u
finite values of z. Hence, by confornal napping the trans-

formed curve must have two parallel tangents through the

point i, i.e., a cusp at that point

We now assign specific values to u and v and oxanine

the transformation of a few simple curves.

We find It convenient to plot these curves in paramet-

ric form, i.e., assigning to x and y values satisfying (10),

and substituting these values in (1G) we get the correspond-

ing points on the transformed curvo.

For u » 1 and v « 1

y 5 x transforms Into a circle through (0,0), (1,0), (0,1);

y = -x * w m «. (0,0), (1,0), (0,-l)j

x - 1 * " * * (1,0), (i,-i), (1,-1);

x - -1 " i « (1,0), (|,£), (1,1);

r*a - n tt d,o)* (3/4,^), iho);

y = -1 " the line x« = $f

x2+y2 r i I « « x' s |;
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x2+y2 a 4 transforms into a circle through (2/3,0), (2,0),

(4/5, 2/5);

y2 s x "the quartic (Plate I, Fig, 1*);

y2 * -x mm • ( " I, Pig. 2.);

x2 = y I « " ( " I, Fig. 3.);

x2 - -y • « «
(

" I, Fig. 4.);

x2-x(2+y/2-+y2+2xy transforms into the

quartic ( " II, Fig. 1.);

;;^+::/2^yf2+y
2-2xy = trans forms into the

quartic (
n II, Fig. 2.);

for u » 1 and v fcjfl

y2 x transforms into the quartic (
n II, Fig. 3.);

for u * 2 and v • i

y2 x transforms into the quartic (
H II, Fig. 4.).







CONCLUSION

If tbo 3phere bo rotated through an angle © about a

fixod diameter, the corresponding transforation of the

plane is given by

—0. a (cos 9 * i sin <5)—

1

Z '-So Z-Zo

where z-j. *** s2 tliC ateroographic projections of the

ends of the fixed dlanotor.

The transformation of the plane corresponding to a ro-

tation of tho sphoro about a diaiaeter Is always elliptic,

and nay be written

s SL
uz+>v

wlien u Is any complex number, and v roie with r * 1 and

3 J* 0.

3y an elliptic transformation a parabola becomes a

quartio with a cusp at the point into which Infinite values

of z are transformed.
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