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ABSTRACT 
 

We investigated spatial variation in fish assemblage and food web structure in the Kansas 

River, USA in relation to habitat changes.  Fishes were collected at ten sites throughout the 

Kansas River for assessing assemblage structure in summer 2007 using fish community metrics 

and at 3 sites in 2006 for food web structure using stable isotope analysis.  Satellite imagery 

indicated riparian habitat on the Kansas River was dominated by agriculture in the upper reaches 

(>35%) and tended to increase in urban land use in the lower reaches (>58%).  Instream habitat 

complexity also decreased with increased urban area (<25%) becoming more channelized.  

Jaccard’s similarity and percent similarity indices suggested that large-bodied fishes show 

changes in species presence and composition longitudinally within the river.  Also, reaches 

directly above Bowersock Dam in Lawrence, Kansas and below the Johnson County Weir, near 

Kansas City, Kansas had low percent similarity compared to other reaches, suggesting the dam 

and the weir affect community composition.  Canonical correspondence analysis indicated that 

species that prefer high velocity flows and sandy substrate (blue sucker and shovelnose sturgeon) 

are associated with the upper river reaches.  Also, there was a higher abundance of omnivorous 

and planktivorous fish species in the lower more channelized river.  The lower reaches contain 

more tolerant, macrohabitat generalist species and the upper river contained more intolerant, 

fluvial specialist species.  Fish, macroinvertebrates, and detritus were collected at three river 

reaches classified as the heterogeneous instream habitat (>40% grass islands and sand bars) 

intermediate (22% grass islands and sand bars), and homogeneous (6% grass islands and sand 

bars) instream habitat reaches in June 2006.  Riparian land use (proportion as agricultural and 

urban) was related to instream habitat with homogeneous areas having more urban riparian area 

compared to the heterogeneous and intermediate reaches.  The heterogeneous habitat reach had 
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higher variability in δ13C for fish classified as piscivores/invertivores (P=0.029) and 

macroinvertebrates (P=0.004) suggesting the complex habitat in the heterogeneous habitat reach 

provided more variable food sources.  The δ15N values also indicated that ten of the twelve fish 

species tended to consume prey at higher trophic levels in the heterogeneous habitat reach 

suggesting a more complex food web.  Land use practices are leading to homogenization of 

instream habitat and this homogenization of habitats may be related to food web diversity and 

trophic position of fishes.  Conserving intolerant, native species in the Kansas River may require 

maintaining suitable habitat for these species and restoration of impacted areas of the river.   
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Chapter 1 
 

Longitudinal differences in habitat complexity and fish assemblage structure 
of a Great Plains River. 

 
ABSTRACT 

We investigated the spatial variation in the fish assemblage in the Kansas River, USA to 

study how the fish community structure changes with habitat complexity in a large river.  Fishes 

were collected at ten sites throughout the Kansas River for assessing assemblage structure in 

summer 2007.  Satellite imagery indicated riparian land use in the Kansas River was dominated 

by agriculture in the upper reaches (>35%) and tended to increase in urban land use in the lower 

reaches (>58%).  Instream habitat complexity (number of braided channels, islands, etc.) also 

decreased with increased urban area (<25%).  Jaccard’s similarity and percent similarity indices 

suggested that large-bodied fishes show changes in species presence and composition 

longitudinally within the river.  Also, reaches directly above Bowersock Dam in Lawrence, 

Kansas and below the Johnson County Weir, near Kansas City, Kansas had low percent 

similarity compared to other reaches, suggesting the dam and the weir affect community 

composition.  Canonical correspondence analysis indicated that species that prefer high velocity 

flows and sandy substrate (blue sucker and shovelnose sturgeon) are associated with the upper 

river reaches.  Also, there was a higher abundance of omnivorous and planktivorous fish species 

in the lower river.  Principal components analysis indicated the lower reaches contain more 

tolerant, macrohabitat generalist species and the upper river contained more intolerant, fluvial 

specialist species.  Conserving intolerant, native species in the Kansas River may require 

maintaining suitable habitat for these species and restoration of impacted areas of the river. 
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INTRODUCTION 
 

Habitat alteration has had a substantial effect on river fishes throughout the world and has 

caused the decline of many native fishes and the homogenization of fish communities within 

rivers.  The major anthropogenic affects that have caused the reduction of habitat in streams and 

rivers includes agriculture, urbanization, channelization, creation of dams, removal of snags, and 

pollution (Miller et al., 1989; Sheehan and Rasmussen, 1993; Gore and Shields, 1995; Johnson et 

al., 1995; Ligon et al., 1995; Sparks, 1995; Kanehl et al., 1997; Richter et al., 1997; Ricciardi and 

Rassmussen, 1999; Warren et al., 2000; Paukert and Makinster, In press).  Many specialist 

species in Great Plains rivers have been extirpated because of these anthropogenic disturbances 

(Karr et al., 1985; Pegg and McClelland, 2004; Galat et al., 2005; Haslouer et al., 2005; Simon et 

al., 2005; McClelland et al., 2006).  For example, seventeen species have been extirpated from 

the Maumee River, Ohio and eight species from the Illinois River, Illinois and planktivores and 

omnivores have become the dominant mid-river species, due to human influences on the 

watersheds (Karr et al., 1985).  The reduction of specialist species has led to the homogenization 

of river fish communities which makes it difficult to determine the more recent effects of 

different disturbances on the fish communities (Rahel, 2000; 2007).  Bramblett and Fausch 

(1991a) found that it is difficult to determine the status of the fish communities for Great Plains 

streams and rivers because many of the species within the systems are tolerant generalists that 

occupy many different habitats and can withstand many types of disturbances. 

Although many rivers have homogenized communities, some still have community shifts 

spatially usually due to distinct habitat changes (e.g. dams, weirs, channelization; Karr et al., 

1985; Pegg and McClelland, 2004; Pyron and Lauer, 2004; Galat et al, 2005; Gillette et al., 

2005; McClelland et al., 2006).  The Missouri and Illinois Rivers have suffered from various 
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human alterations, but species richness is highest in mid-river to downriver reaches, which is 

related to more diverse tributaries in the lower Missouri River and the less impacted lower 

reaches of the Illinois River (Galat et al., 2005; Pegg and McClelland, 2004).  In the upper 

reaches of the Missouri River invertivores and herbivores are the most abundant trophic guilds, 

whereas omnivores and benthic invertivores become more abundant downstream (Pegg and 

Pierce, 2002; Galat et al., 2005).  The species that prefer moderate to high velocity flows and 

specific habitats (shovelnose sturgeon, Scaphirhynchus platorynchus, blue sucker, Cycleptus 

elongatus; Quist and Guy, 1999; Eitzmann et al., 2007) were also more abundant in the upper 

Missouri River which is the relatively unimpacted area of the river, and the generalist fishes that 

prefer slow water (bigmouth buffalo, Ictiobus bubalus, river carpsucker, Carpiodes carpio, and 

freshwater drum, Aplodinotus grunniens) appear to be found in the highly impacted, channelized 

lower river (Galat et al., 2005).  McClelland et al. (2006) found the community in the lower 

Illinois River consisted of mostly generalist species not affected by sediment loads and the upper 

river contained both generalist and specialist species.  They also noted that predator abundance 

in the lower river was higher and forage fish abundance was higher in the upper reaches of the 

Illinois River.  Although, Karr et al. (1985) noted that mid-river omnivores have become the 

dominate fishes in the Illinois River.  Therefore, highly impacted areas of rivers tend to be 

dominated by omnivorous and generalist species. 

The Kansas River has also been highly impacted by human alteration such as agriculture, 

channelization, levees, dredging, and urbanization (Sanders et al., 1993, Paukert and Makinster, 

In press), but little research has been conducted to determine how these disturbances have altered 

the fish community within the river.  Within the Kansas River there are 14 species that are listed 

of special concern, threatened or endangered.  Of the 14 listed species, seven are believed to be 
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extirpated from the river or not reproductively viable in the river (Cross and Collins, 1995; 

Haslouer et al., 2005), suggesting declines in native, fluvial specialist species.  In the 1950s 

species such as the speckled chub, Macrohybopsis aestivalis, plains minnow, Hybognathus 

placitus, and western silvery minnow, Hybognathus argyritis, were among the top ten most 

abundant species in the lower Kansas River, but declined to relatively few numbers by 1980 

(Cross and Moss, 1987).  Many other species also declined or disappeared from the lower 

Kansas River from 1950-1980 (e.g. pallid sturgeon, Scaphirhynchus albus, flathead chub, 

Macrhybopsis gracilis, sicklefin chub, Macrhybopsis meeki, sturgeon chub, Macrhybopsis 

gelida, etc., Cross and Moss, 1987).  Therefore, the objective of this study is to determine the 

fish community structure within the Kansas River and how the structure differs spatially and may 

relate to anthropogenic disturbance.  We predict species richness will increase in the lower river 

similar to the Illinois and Missouri Rivers.  Also, the community structure above the Johnson 

County Weir and Bowersock Dam will consist of mostly macrohabitat generalist and tolerant 

species that can inhabit fast and slow moving water due to distinct habitat changes and creation 

of reservoir-like environments upstream of these structures (Gillette et al., 2005; Falke and Gido, 

2006).  We also hypothesized the Kansas River will be similar to the Missouri River with more 

herbivores and invertivores in the upper, less impacted reaches and the channelized lower 

portions of the river will contain more omnivores and benthic invertivores.  The lower, 

channelized river reaches will contain more macrohabitat generalist species, and the upper, 

relatively less impacted river will contain more fluvial specialist species.     

 
 

MATERIALS AND METHODS 
 
Study area 
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The Kansas River is a shallow (typically <1.5 m depth), sand bed river that begins near 

Junction City, Kansas and flows east 274 km to the Missouri River (Makinster and Paukert, 

2008).  The Kansas River watershed contains eighteen federal reservoirs (>650 ha) and about 

13,000 small impoundments that have caused more stable flows and a decrease in sediment 

loading downstream (Sanders et al., 1993).  However, Bowersock Dam (a low-head dam at river 

kilometer, rkm 83) is the only dam partially restricting the movement of fish on the main channel 

of the Kansas River (Quist and Guy, 1999), and created a low velocity, reservoir environment for 

about 5-6 km upstream.  Although, Johnson County Weir (a small rock water intake structure 

used to divert river flows) at rkm 27 may also restrict fish movement at low discharge (Eitzmann 

et al., 2007) and also creates a reservoir environment for about 5-6 km upstream.  The river is 

braided with many shallow side channels, and sandy islands usually overgrown with willows and 

grasses (Quist et al., 1999; Eitzmann et al., 2007).   

 

Riparian and instream habitat 

Ten reaches of the Kansas River were sampled throughout the study (Table 1.1; Fig. 1.1).  

Each reach was approximately 32 km apart throughout the river (except for at Bowersock Dam 

where one reach was directly above the dam and another reach was directly below the dam) and 

were selected to represent the entire Kansas River.  Within each reach, all sampling was 

conducted within a 6 km section (Table 1.1).   

To identify instream (stream width, number of channels, and proportion as channel, grass 

islands, and sand bars) and riparian (proportion as agriculture, forest, and urban land use) habitat 

in each reach, we used 1-m resolution satellite imagery from images taken on September 24, 

2006 (Paukert and Makinster, In press).  Imagery from 2007 was not available and we assumed 
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in one year that instream and riparian habitat would not significantly change.  Transects were 

created perpendicular to the river channel at 0.8 km intervals within the ten reaches, and riparian 

habitat (200 m on each side of the bankfull height) was measured along the transect.  ArcGIS 

was used to calculate the length of each transect that was agriculture (pasture grassland and row 

cropland), forested (larger trees and vegetation), and urban land (obvious roads, paved parking 

lots, sand pits, and other man-made disturbances; Paukert and Makinster, In press).  Bankfull 

width (m) was calculated as distance between the two most distinct banks along the transect 

(Armantrout 1998; Paukert and Makinster In press).  Within the bankfull width, the number of 

channels (areas containing flowing water), grass islands (grass and forested areas surrounded by 

water), and sand bars (sand and vegetated areas between the bankfull mark and the channel) were 

calculated.  Bankfull width was then used to estimate the proportions of the different instream 

habitats. 

 

Field collections 

The ten reaches were sampled for fishes and instream environmental variables from June 

26 to August 22, 2007.  Boat electrofishing and shoreline seining were used to assess the fish 

community as these gears collected >90% of the species available (Eitzmann and Paukert, 2007).  

An attempt was made to have consistent effort in each reach for each gear to facilitate 

comparisons among reaches.  Electrofishing was conducted in three habitats (main channel 

border, rock eddy, and channel crossover) and seining was conducted in two habitats (main 

channel border and backwater) in each reach.  Six randomly selected samples were taken in each 

habitat with each gear at all reaches unless habitat was limited in which case all available habitat 

was sampled.  Daytime pulsed DC electrofishing (7-11 A, 400-500 V, 40-60 pulses s-1) was 
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conducted for approximately 300 seconds for each sample in all habitats using a Coffelt Model 

VVP 15 electrofisher powered by a 5,000-watt, single phase, 240-volt AC generator with a 

Wisconsin ring electrode with 8 droppers attached to one boom.  All electrofishing was 

conducted in one day at each reach.  A 6.0 m long and 1.2 m deep straight seine with 0.64 cm 

mesh was fished parallel to shore for 25 m in all habitats to collect small-bodied fish.  All seining 

was conducted in one day in each reach.  Fish collected with seines were fixed with 10% 

formalin and identified in the laboratory.  A sub sample of 25 fish of each species in each sample 

were measured (total length, TL, mm) in the laboratory.  All fish collected with electrofishing 

were identified, measured and released in the field near the site of collection.  

We collected instream and shoreline environmental variable data at each site sampled 

with electrofishing and seining.  The instream environmental variables collected include 

conductivity (μS), depth (m), flow (bottom, middle, surface flow; m sec-1), Secchi depth (cm), 

substrate penetration (cm), and temperature (oC).  Shoreline environmental variables included 

visual proportion (within seine haul and electrofishing sites) of shoreline as mud bank, rip-rap, 

vegetation, or woody debris.  Depth, flow, and substrate penetration data was collected on three 

transects perpendicular to shore and three points were measured along each transect.  Substrate 

penetration was measured by suspending a 3 meter long, 1.3 cm diameter rebar 30 cm above the 

substrate, releasing it, and then measuring the distance the rebar penetrated the substrate.  

Conductivity, Secchi depth, and temperature were only taken at the beginning of each sample.  

Shoreline habitat was based on the shoreline present within each sample.   

 

Data analysis 



 8

A multivariate analysis of variance (MANOVA) was used to test if mean proportion of 

riparian and instream habitat differed among reaches.  If the MANOVA was significant an 

analysis of variance (ANOVA; Proc Mixed in SAS) was used to test which habitat variables 

differed among sites (Littel et al., 1996).  Statistical significance was declared at P ≤ 0.10, and 

least squares means tests were used to determine where means differed if the ANOVA was 

significant. 

 Catch per unit of effort (CPUE) was calculated as catch per unit of area (e.g. fish m-2) for 

seines and catch per hour of electrofishing (e.g. fish hour-1).  Shannon-Weiner diversity 

(diversity) was calculated using CPUE from each individual sample for electrofishing and 

seining data separately.  An ANOVA was used to test if mean species richness or diversity 

differed among reaches for each gear.  Least squares means tests were used to determine where 

means differed if the ANOVA was significant. 

 Jaccard’s similarity and percent similarity indices (PSI) were calculated for every 

combination of pairs of reaches for both the electrofishing and seining data separately to test how 

similar the community composition was among reaches.  A two-way Mantel test (Mantel, 1967) 

was used to determine if distance between sites and similarity values were associated for both 

similarity indices.  A significant, negative correlation would indicate that sites farther apart were 

less similar in species presence (Jaccard’s) or composition (PSI).  We also wanted to test if 

reaches impacted by the Bowersock Dam (reaches 7 and 8) and the Johnson County Weir 

(reaches 9 and 10) were less similar to other reaches so similarity of those sites to all other sites 

was compared to the mean similarity of all other sites combined using an ANOVA. 

Canonical correspondence analysis (CCA) was used to compare species CPUE for each 

individual site to the 13 environmental variables, the proportion of instream and riparian habitat, 
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and distance from the Missouri River confluence (rkm).  This analysis was done separately for 

seining and electrofishing.  Only the species that accounted for >1% of the total catch for each 

gear were used in the analysis (Ostrand and Wilde, 2002).  The manual forward selection 

procedure in CANOCO 4.5 was used to decrease the number of environmental variables by only 

including the environmental variables that account for a significant amount of the variation 

(P<0.10) within the data set (ter Braak and Smilauer, 2002).  The final CCA used the log 

transformed fish community data and the set of selected environmental variables.  A CCA was 

also used to determine if feeding guild abundance was associated with environmental variables 

in the Kansas River.  Species were assigned a feeding guild based on Pflieger (1997) and 

Thomas et al. (2005; Table 1.2).  Methods used for the CCA are the same as listed above. 

 Principal components analysis (PCA) was conducted to determine which environmental 

variables best characterize the ten reaches.  Species were assigned a habitat and tolerance guild 

based on Pflieger (1997), Galat et al. (2005), and Thomas et al. (2005; Table 1.2).  As with the 

CCA, analysis of seining and electrofishing data was conducted separately.  A t-test was 

conducted to determine if mean principal component scores differed when fish in habitat and 

tolerance guilds were present or absent. 

 

RESULTS 

Riparian and instream habitat 

Riparian and instream habitats differed among reaches (Wilks’ lambda = 0.193, d.f. = 36, 

327, P < 0.001), with the upper reaches (1-3 and 5) of the river dominated by agriculture and 

forested areas with less than 10% urban area (Fig. 1.2A).  Agricultural crop land decreased from 

upriver to downriver with reach 10, near the urban areas of Kansas City, Kansas not containing 
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any agricultural crops (Fig. 1.2A).  Urban areas generally increased downstream (reaches 6-10), 

with reaches 1-3 having <5% urban but reaches 7, 9, and 10 have >20% urban land (Fig. 1.2A).  

In reaches 1-5, the amount of instream habitat (grass islands and sand bars) ranged from 25 to 

40% and in reaches 6-10 instream habitat ranged from 2 to 25% (Fig. 1.2B).  Mean channel 

width and the mean number of channels available were also greater in the upper reaches of the 

river.  Mean channel width and number of channels ranged from 171 to 332 m and 1.4 to 1.8 

channels in reaches 1-5 and was 156 to 267 m and 1.0 to1.4 channels in reaches 6-10 (Fig. 1.2C).  

In the reach immediately above Bowersock Dam (reach 7) the area had increased urban land use 

compared to adjacent reaches (Fig. 1.2A).  A decrease in instream habitat was also evident in 

reach 7 with relatively few secondary channels (Fig. 1.2B, C).  Between Bowersock Dam and the 

Johnson County Weir there was an increase in the number of channels and mean channel widths 

similar to the upriver reaches 3 and 4 (Fig. 1.2C).  Below the Johnson County Weir the riparian 

area was dominated by urban land use, and the instream habitat was almost non-existent with a 

narrow and relatively unbraided channel (Fig. 1.2).    

 

Field collections 

A total of 334 fishes were captured in the electrofishing samples (21 species, 146 

electrofishing sites; Table 1.3) and 13,490 fishes were captured in seine samples (30 species, 83 

seine hauls; Table 1.3) in the Kansas River in summer 2007.  Electrofishing captured 8 unique 

(species only captured with this gear) species and seines captured 18 unique species (Table 1.3).  

Electrofishing consisted of 85.3% large-bodied individuals (TL>100 mm) and seine samples 

consisted of 99.8% small bodied individuals (TL<100 mm).  The dominant species captured with 

electrofishing (75.1% of the total catch) included common carp, Cyprinus carpio, flathead 
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catfish, Pylodictis olivaris, freshwater drum, river carp sucker, and white crappie, Pomoxis 

annularis.  The dominant species captured with the seine (91.5% of the total catch) include 

bullhead minnow, Pimephales vigilax, river carpsucker, red shiner, Cyprinella lutrensis, and 

sand shiner, Notropis stramineus. 

Electrofishing mean species richness ranged from 1.00 to 1.65 but did not differ among 

reaches (ANOVA; F=0.76, d.f.=9, 136, P=0.653).  Species diversity averaged 0.32 (range: 0.17 

to 0.48) and did not differ (F=0.89, d.f.=9,136, P=0.538, Fig. 1.3) throughout the reaches in the 

Kansas River.  Mean species richness differed throughout the Kansas River for the seine hauls 

(F=2.35, d.f.=9, 73, P=0.022; Fig. 1.3) with mean species richness highest in reaches 1 and 5 

(Fig. 1.3).  Seine haul species diversity ranged from 0.68 to 1.22 and did not differ across reaches 

(F=1.06, d.f.=9, 73,P=0.400).   

The Mantel test showed no correlation with the distance between sites for Jaccard’s 

similarity (r=0.100, P=0.738) or PSI values (r=-0.181, P=0.140) for the seining data.  However 

for the electrofishing data Jaccard’s similarity (r=-0.208, P=0.097) and PSI (r=-0.220, P=0.087) 

were correlated with distance between site.  There was higher similarity for large bodied species 

presence and composition for sites that were closer together.  The mean PSI values for 

electrofishing and seining comparing all reaches are 0.49 and 0.62, respectively, and the mean 

Jaccard’s similarity values for electrofishing and seining comparing all reaches are 0.45 and 

0.52, respectively, suggesting that sites are about 50% similar throughout the river.  Reach 7 had 

a mean PSI of 0.27 when compared to all other sites and reach 10 had a mean PSI of 0.47 in 

species composition when compared to all other sites for the seining data.  This was due to the 

low abundance of red shiner in both reaches.  Reach 7 and 10 consisted of <20% red shiner, 
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whereas all other reaches were >44% red shiner (Table 1.3).  Excluding reaches 7 and 10, all 

other sites had a mean PSI of 0.78 for fishes collected by seines. 

Total variation explained by all CCA axis from the electrofishing species data was 

28.1%, with axis one explaining 8.3% of the variation and axis 2 explaining 7.2% of the 

variation (Fig. 1.4).  Species associated with areas with more agricultural land use included blue 

sucker, shovelnose sturgeon, and smallmouth buffalo, Ictiobus bubalus.  These areas consisted of 

areas of increased sand bars, conductivity, and higher velocity flows (Table 1.1; Fig. 1.4).  The 

lower river had a higher proportion of channel catfish, Ictalurus punctatus, common carp, 

freshwater drum, and longnose gar, Lepisosteus osseus.  These reaches were characterized by 

less sand bars and deeper, more channelized areas (Table 1.1; Fig. 1.4).  Total variation 

explained by the species data for the seine samples CCA was 34.7%, with axis 1 explaining 

12.6% and axis 2 explaining 9.1% of the variation in the species data.  Gizzard shad, Dorosoma 

cepedianum, were found in areas highly characterized with rip-rap banks and an increase in 

urban land use.  Sand shiners were the dominate species in many lower river reaches.  The up-

river consisted mostly of red shiners, Western mosquitofish, Gambusia affinis, bluntnose 

minnow, Pimephales notatus, and bullhead minnow.  These sites were characterized with greater 

proportion of agricultural land and instream habitat (Fig. 1.4).  The lower reservoir like reach (7) 

and the highly modified reaches (9 and 10) were more characterized by rip-rap banks, and urban 

and channelized areas (Fig. 1.2).  Reach 8 (directly below Bowersock Dam) consisted of both 

urban and agricultural land and was intermediate in the proportion of that reach that was 

channelized and containing sand bars (Fig. 1.2) 

The proportional abundance of feeding guilds collected by electrofishing indicated that 

omnivorous species were more associated with the lower, more impacted reaches (Fig. 1.5).  
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Total variation explained in the CCA by the feeding guild data for the electrofishing samples was 

14.3%, with axis 1 explaining 6.5% and axis 2 explaining 5.4% of the variation in the species 

data (Fig. 1.5). The omnivores were associated with the reaches with more urban land use and 

higher proportion of channelization (Fig. 1.5).  The invertivores tended to be associated with 

higher proportions of sand bars but appeared to be found throughout the river (Fig. 1.5).  

Piscivores and detritivores were associated more with the upper river reaches with more diverse 

habitat (Fig. 1.5).  The seining data CCA also showed similar patterns (Fig. 1.5).  Total variation 

explained by the feeding guild data for the seine samples was 34.8%, with axis 1 explaining 

20.4% and axis 2 explaining 9.7% of the variation in the species data (Fig. 1.5).  Planktivores 

were associated with the reaches with more urban land use and higher bottom water level flows 

(Fig. 1.5) that tended to be near down river reaches.  Herbivores, invertivores, and piscivores 

were more associated with the upper river reaches and areas with increased number of channels 

available (Fig. 1.5).  Detritivores were also associated with the upper river and areas of high 

conductivity (Fig. 1.5).  Therefore, omnivores (electrofishing) and planktivores (seining) were 

associated with more impacted areas with increased urbanization and channelization. 

The habitat PCA of electrofishing data indicated that PC1 was an index of increased 

flows, sand bar habitat, and conductivity and accounted for 25% of the variation among sites 

(Table 1.4).  Sites with high component loadings on axis 2 consisted of high proportion of log 

jams, increased Secchi depth, and deeper substrate penetration and explained 16% of the 

variation among sites electrofished (Table 1.4).  Mean PC1 score was higher when fluvial 

specialists were present (P=0.014) and when intolerant species were present (P=0.002; Fig. 1.6).  

Fluvial specialist and intolerant species were present in sites with increased flow, sand bars, and 

conductivity (Fig. 1.6).  Mean PC1 was lover when macrohabitat generalists were present 
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(P=0.051) and when tolerant species were present (P=0.009; Fig. 1.6).  Macrohabitat generalists 

and tolerant species typically were found in areas with increased temperature and deeper water 

(Fig. 1.6). 

The habitat PCA of the seining data showed that sites that scored high on PC1 consisted 

of high flows, rip-rap habitat, and Secchi depth and accounted for 22% of the variation among 

sites (Table 1.4).  The number of sand bars had the only high component loadings associated 

with axis 2 (Table 1.4).  Mean PC1 was lower when fluvial specialist species were absent 

(P<0.001), whereas mean PC1 was lower when tolerant species were present (P=0.008; Fig. 1.6).  

Fluvial specialist species were in areas of increased flow, rip-rap banks, and conductivity (Fig. 

1.6).  Macrohabitat generalists were present in every site (Fig. 1.6).  Intolerant species were 

associated with increased sand bars though mean PC score did not significantly differ from when 

species were absent (P=0.140; Fig.1.6). 

 

DISCUSSION 

Land use and instream habitat alterations can cause significant changes in fish 

community structure (Karr et al., 1985; Roth et al., 1996; Poulton et al., 2003; Galat et al., 2005; 

McClelland et al., 2006) and it is important for conservation and management to determine what 

habitat alterations have the greatest effect on the fish community.  In the Kansas River instream 

and riparian habitat differed longitudinally changing from diverse habitat areas to channelized, 

urban-dominated areas.  In the lower river, deeper and narrower channels with fewer braided 

channels and islands were present, which is consistent with Paukert and Makinster (In press) 

who documented homogeneous habitats in the urban reaches of the Kansas River.  The reduction 

of instream habitat in mid to lower reaches of the Kansas River suggests homogenization of the 
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habitats, which is consistent with other studies (Lenat and Crawford, 1994; Schueler, 1994; 

Arnold and Gibbons, 1996; Booth and Jackson, 1997; May et al., 1997; Yoder et al., 1999; 

Paukert and Makinster, In press) and was linked to the fish community differences within the 

Kansas River.   

  Great Plains river fish communities consist of many species that are tolerant or 

moderately tolerant to a wide range of physicochemical conditions (Cross et al., 1986; Cross and 

Moss, 1987; Matthews, 1988; Bramblett and Fausch, 1991a; b; Fausch and Bramblett, 1991).  

However, our study found changes in habitat was associated with changes in fish communities 

even within this relatively homogeneous assemblage.  Species richness and diversity in the 

Kansas River varied little throughout the Kansas River, which is consistent with Gillette et al. 

(2005) who also found no change in species richness throughout the Neosho River, Kansas.  

However, large-bodied fish presence and composition tended to vary longitudinally and also, 

localized disturbances such as Bowersock Dam (reach 7) and the Johnson County Weir (reach 

10) in the lower urban area near Kansas City, Kansas had lower similarity of small-bodied fishes, 

suggesting that these barriers are affecting the fish community within those reaches.  Low-head 

dams cause localized reservoir affects above dams and therefore causes the fish community 

directly above dams to consist of lentic fish species (Gillette et al., 2005).  The fish community 

in the reaches in between Bowersock Dam and the Johnson County Weir were similar to the 

upper Kansas River which is likely due to more variable habitat and the increase in the number 

of secondary channels within these reaches.  The site below the Bowersock Dam serves as a reset 

point, changing the fish community to more riverine species below the dam, which was similar 

to the prediction by Ward and Stanford (1983).  The presence of the low-head dam altered 

stream characteristics such as flow, number of channels, and availability of instream habitat 
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above the dam, which likely caused the differences in the fish communities in these areas 

(Gillette et al., 2005). 

There still were subtle longitudinal differences in fish communities that may be related to 

habitat modification.  The lower Kansas River consisted of channel catfish, freshwater drum, 

common carp, longnose gar and white crappie, which are species that prefer low velocity habitats 

(Cross and Collins, 1995; Pflieger, 1997).  Species that preferred low velocity habitats in the 

Missouri River were most abundant in the lower highly impacted areas of the river (Galat et al., 

2005), which is consistent with this study.  The upper Kansas River reaches consisted of mostly 

blue sucker, river carpsucker, smallmouth buffalo, shovelnose sturgeon, bluntnose minnow, 

bullhead minnow, red shiners, and western mosquitofish.  Shovelnose sturgeon and blue sucker 

prefer high velocity habitats (Galat et al., 2005) and showed highest abundances in the upriver 

reaches suggesting the diverse habitat and fast flows in the upper river is beneficial to these 

species (Quist and Guy, 1999; Eitzmann et al. 2007).  Also, in the Wabash River, Indiana, fish 

species that preferred sand substrates and had body morphologies suitable for fast water were 

found in higher abundance in the upper, less impacted portions of the river (Pyron and Lauer, 

2004).  Smallmouth buffalo, bluntnose minnow, bullhead minnow, red shiners, and western 

mosquitofish tend to inhabit many different areas but prefer habitats of lower velocity (Cross and 

Collins, 1995; Pflieger, 1997), also suggesting that habitat in the upper reaches is more diverse 

allowing for higher abundance of many native riverine species. 

Omnivores were highly associated with the lower channelized reaches of the Kansas 

River.  In highly impacted rivers, different feeding guilds tend to occupy different areas of the 

river (Karr et al., 1985; Pegg and Pierce, 2002; Pyron and Lauer, 2004; Galat et al., 2005; 

McClelland et al., 2006) suggesting that loss of habitat in the impacted areas affects species and 
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guild composition in large rivers.  In the Missouri River herbivores and invertivores are in higher 

abundance in the upper unchannelized river and omnivores and benthic invertivores are in higher 

abundance in the lower highly impacted area of the river (Pegg and Pierce, 2002; Galat et al., 

2005), which is similar to our study.   

Moderately tolerant and tolerant fish species comprise 87% of the fish community in the 

Kansas River with 71% of the tolerant species sampled were considered macrohabitat generalist 

species.  However the relatively few intolerant fish species were typically associated with upper 

reaches of the river with more sand bars and high velocity habitats, suggesting these areas are 

important to intolerant species.  Also, within the Kansas River 14 species are listed as state or 

federally endangered, threatened, or of special concern (Cross and Collins, 1995; Haslouer et al., 

2005).  Of the listed species only one (blue sucker) was collected, suggesting the other species 

have been extirpated from the river or are in relatively low abundance.  Ten of the fourteen 

species historical range in the Kansas River only consisted of the lower river, which is the most 

impacted segment of the Kansas River.  Therefore, it was not surprising to have collected none 

of these species in our study.  Of the species that were among the top 10 most abundant fishes in 

1950 (plains minnow, speckled chub, and western silvery minnow; Cross and Moss, 1987), we 

did not capture any.  The channelized lower river impacts created a homogeneous fish 

community of more tolerant generalist species.  These habitat changes, coupled with species 

introductions, play a large part in the homogenization of fish faunas (Rahel, 2000).  Currently the 

two intolerant species (blue sucker and shovelnose sturgeon) that were captured in high 

abundance in the river were captured in the upper river reaches that were less impacted by 

urbanization and channelization.  Therefore, preserving the upper river may be important for the 
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survival of these species.  However, restoration efforts in the lower river need to be considered in 

the context of high urbanization and invasive species introductions. 
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Table 1.1.  Mean and range of instream environmental variables measured in the Kansas River in summer 2007.  Rkm is river km 
from confluence of Missouri River. 
                                

  Depth (m) 
Channel width 

(m) Flow (m sec-1) Secchi (m) 
Substrate 

Penetration (m)
Conductivity 

(μS cm-1) 
Temperature 

(C)  
Reach Rkm Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range Mean Range 

1 269-274 1.14 0.13-2.72 96 90-109 0.54 0.02-0.70 0.25 0.15-1.70 0.21 0.08-0.32 1992 550-2689 25.5 21.9-26.4
2 229-235 1.28 0.17-4.00 153 90-206 0.29 0.03-0.64 0.22 0.20-0.25 0.17 0.00-0.35 1502 326-1703 24.2 22.7-25.1
3 216-222 0.79 0.18-1.43 160 127-187 0.31 0.02-0.55 0.31 0.30-0.32 0.10 0.00-0.23 1592 1410-1676 27.2 26.1-28.1
4 202-208 1.05 0.19-1.69 132 115-150 0.38 0.08-0.58 0.32 0.17-0.35 0.14 0.03-0.57 1175 1039-1531 28.5 26.7-29.7
5 167-173 0.91 0.16-1.57 202 166-241 0.33 0.03-0.56 0.22 0.21-0.25 0.14 0.01-0.25 1083 928-1152 27.4 25.8-29.1
6 120-126 1.33 0.20-2.46 147 114-194 0.32 0.02-0.46 0.20 0.17-0.27 0.15 0.05-0.40 827 727-1031 29.9 29.5-30.9
7 83-89 1.16 0.21-2.57 212 137-279 0.28 0.01-1.66 0.22 0.22-0.22 0.19 0.03-0.33 1027 968-1131 27.0 25.2-29.5
8 76-82 1.02 0.25-2.03 178 163-205 0.23 0.02-0.44 0.24 0.22-0.30 0.10 0.00-0.33 968 942-979 26.8 26.1-27.0
9 24-60 1.27 0.14-2.62 220 181-251 0.11 0.01-0.26 0.45 0.45-0.50 0.14 0.00-0.33 1166 1085-1212 28.4 27.6-29.4

10 3-9 1.31 0.25-2.58 146 114-207 0.21 0.01-0.66 0.50 0.45-0.55 0.07 0.00-0.15 1101 972-1182 30.0 29.5-30.7
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Table 1.2.  Habitat guild, feeding guild and tolerance level of all species captured in seine and 
electrofishing sites in the Kansas River in summer 2006 (Pflieger 1997, Galat et al. 2005, 
Thomas et al. 2005).  Species codes are given for the species used in canonical correspondence 
analysis.   
Species Species Code Habitat Guild Feeding Guild Tolerance 
Bigmouth buffalo  Macrohabitat generalist Planktivore  
Black crappie  Macrohabitat generalist Invertivore  
Blue catfish  Fluvial specialist Omnivore  
Bluegill  Macrohabitat generalist Invertivore  
Blue Sucker Cycelo Fluvial specialist Invertivore Intolerant 
Bullhead minnow Pimvig Macrohabitat generalist Omnivore  
Bluntnose minnow Pimnot Macrohabitat generalist Detritivore Tolerant 
Creek chub  Macrohabitat generalist Invertivore Tolerant 
Channel Catfish Ictpun Macrohabitat generalist Omnivore  
Common Carp Cypcar Macrohabitat generalist Detritivore Tolerant 
Central stoneroller  Fluvial specialist Herbivore  
Emerald shiner Notath Macrohabitat generalist Planktivore  
Fathead minnow  Macrohabitat generalist Detritivore Tolerant 
Flathead Catfish Pyloli Fluvial dependent Piscivore  
Freshwater drum Aplgru Macrohabitat generalist Invertivore  
Goldeye  Fluvial dependent Invertivore Intolerant 
Green sunfish  Macrohabitat generalist Invertivore Tolerant 
Gizzard shad Dorcep Macrohabitat generalist Detritivore  
Johnny darter  Macrohabitat generalist Invertivore  
Longear sunfish  Macrohabitat generalist Invertivore  
Largemouth bass  Macrohabitat generalist Piscivore  
Longnose gar Leposs Fluvial dependent Piscivore  
Orangespotted sunfish  Macrohabitat generalist Invertivore  
Quillback  Macrohabitat generalist Detritivore  
River carpsucker Carcar Macrohabitat generalist Detritivore  
Redfin shiner  Fluvial specialist Invertivore Intolerant 
Red shiner Cyplut Macrohabitat generalist Omnivore  
Smallmouth bass  Macrohabitat generalist Piscivore Intolerant 
Smallmouth buffalo Ictbub Macrohabitat generalist Detritivore  
Shorthead redhorse  Fluvial dependent Invertivore  
Shortnose gar  Macrohabitat generalist Piscivore  
Shovelnose sturgeon Scapla Fluvial specialist Invertivore Intolerant 
Suckermouth minnow Phemir Fluvial specialist Invertivore  
Sand shiner Notstr Fluvial specialist Omnivore  
White bass Morchy Fluvial dependent Piscivore  
White bass hybrid Morchy hyb Fluvial dependent Piscivore  
White crappie Pomann Macrohabitat generalist Piscivore  
White sucker  Fluvial dependent Detritivore Tolerant 
Western mosquitofish Gamaff Macrohabitat generalist Invertivore   
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Table 1.3.  Total species captured in seining and electrofishing sites, sampled in the Kansas 
River in summer 2006.  The number in parenthesis represents individuals captured in the 
electrofishing samples, whereas the adjacent number is the individuals captured by seining. 

   
 

 Species\Reach 1 2 3 4 5 6 7 8 9 10 Total
Bigmouth buffalo 0 0 0 0 0 0 0 0 0(1) 0 (1)
Black crappie 1 0 0 0 0 0 0 0 0 0 1
Blue catfish 0 0 0 0 0(1) 0 0 0 0 0(1) (2)
Bluegill 2 0 0 2 2 0 1(2) 0 5 2 14(2)
Blue Sucker 0 0 0(3) 0(1) 0 0 0 0 0(1) 0(1) (6)
Bullhead minnow 61 28 89 47 217 49 10 31 13 3 548
Bluntnose minnow 24 32 1 3 45 14 0 1 1 0 121
Creek chub 1 0 0 1 0 1 1 0 0 0 4
Channel Catfish 0 0(1) 1(1) 0 1(4) 3 2(2) 0(2) 0(3) 0(3) 7(16)
Common Carp 0(4) 0 1 0(10) 0(9) 0(6) 0(14) 0(1) 0(1) 0(2) 1(47)
Central stoneroller 0 0 1 0 3 0 0 0 1 0 5
Emerald shiner 4 8 1 7 0 84 11 94 2 24 235
Fathead minnow 0 3 1 0 8 0 1 0 0 0 13
Flathead Catfish 0(10) 0(3) 0(13) 0(13) 0(9) 0(24) 0(9) 0(11) 0(7) 0(4) (103)
Freshwater drum 4(3) 0(1) 0(4) 1(2) 49(4) 0(2) 5(5) 0(7) 1(1) 0(3) 60(32)
Goldeye 2(1) 0 0 0 0 0 0 0 0 0 2(1)
Green sunfish 0 0 0 0 2 0(1) 0 0 2 0 4(1)
Gizzard shad 100 32 0 13 42 2 12 2 59 81 343
Johnny darter 1 0 0 0 1 0 0 0 0 0 2
Longear sunfish 0 0 0 0 0 0 0 1 0 0 1
Largemouth bass 3 0 0 3 5 0 0 0 3 0 14
Longnose gar 0(2) 0(3) 1 0 0(3) 0 0 1(2) 0 0 2(10)
Orangespotted 
sunfish 0 0 0 13 6 4 2 0 1 0 26
Quillback 0 0 0 0(1) 0 0 0 0 0 0 (1)
River carpsucker 444(4) 14(9) 257(29) 96(5) 87(2) 37 4(1) 4(3) 8(1) 60 1011(51)
Redfin shiner 1 0 0 0 0 0 0 0 0 0 1
Red shiner 686 1433 977 833 1319 1148 84 540 795 60 7875
Smallmouth bass 0 0(1) 0 0 0 0 0 0 0 0 (1)
Smallmouth buffalo 0(1) 0(4) 5(1) 1(4) 0 0 0(2) 0 1(1) 0(2) 7(15)
Shorthead redhorse 0 0(2) 0 0 1 0 0 0 0 0 1(2)
Shortnose gar 0 0 0 0 0 0 0 0 0 0(1) (1)
Shovelnose sturgeon 0 (2) (4) (3) (1) (1) 0 0 0 0 (11)
Suckermouth 
minnow 29 4 0 11 51 1 7 0 1 0 104
Sand shiner 170 230 161 104 367 353 1018 144 304 63 2914
White bass 13(1) 20 2 5 11(1) 2 6 4(2) 0(1) 3(3) 66(8)
White bass hybrid 0(5) 0 0 0 0 0 0 0 0 0 (5)
White crappie 0 0(1) 2(4) 7(1) 8(1) 0 7(10) 0(1) 8 0 32(18)
White sucker 0 0 0 0 0 0 1 0 0 0 1
Western 
mosquitofish 6 12 17 19 2 7 4 0 2 6 75
Total 1553(31) 1818(24) 1520(59) 1170(40) 2232(35) 1711(34) 1183(45) 830(29) 1216(17) 312(20) 13490(334)
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Table 1.4.  Component loadings from two principal components analyses (PCA) using shoreline and 
instream environmental variables collected in the Kansas River in summer 2007.  Separate PCAs 
were conducted for electrofishing and seining. 
  Electrofishing Seining 
Variable Habitat 1 Habitat 2 Habitat 1 Habitat 2
Proportion shoreline rip-rap -0.355 -0.453 0.333 -0.278
Proportion shoreline log jam 0.006 0.465 -0.117 0.018
Proportion shoreline sand bar 0.403 -0.016 -0.328 0.461
Depth (m) -0.334 -0.082 -0.084 -0.253
Bottom flow (m/s) 0.361 -0.326 0.478 0.480
Mid-water flow (m/s) 0.274 0.041 0.487 0.462
Secchi depth (m) 0.014 0.424 0.394 -0.363
Substrate penetration (m) 0.300 0.388 -0.132 -0.031
Temperature (C)  -0.372 0.265 0.306 -0.196
Conductivity (μS/cm) 0.407 -0.251 -0.172 0.176
     
Eigenvalues 2.54 1.65 2.17 1.87
Variance Explained (%) 25 16 22 19
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Figure 1.1
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Chapter 2 
 

Spatial variation in habitat: effects on food web structure of a Great Plains 
River. 

 
ABSTRACT 

  We investigated the spatial variation of habitat and food web structure of the fish 

community at three reaches in the Kansas River, USA to determine if δ13C variability and δ15N 

values differ longitudinally and are related to riparian land use practices and instream habitat.  

Fish, macroinvertebrates, and detritus were collected at three river reaches classified as the 

heterogeneous habitat (>40% grass islands and sand bars), intermediate (22% grass islands and 

sand bars), and homogeneous habitat (6% grass islands and sand bars) reaches in June 2006.  

Riparian land use (proportion as agricultural and urban) was related to instream habitat with 

homogeneous habitat areas having more urban riparian area compared to the heterogeneous 

habitat and intermediate reaches.  The heterogeneous habitat reach had higher variability in δ13C 

for fish classified as piscivores/invertivores (P=0.029) and macroinvertebrates (P=0.004) 

suggesting the complex habitat provided more variable food sources.  The δ15N values also 

indicated that fish species tended to consume prey at higher trophic levels in the heterogeneous 

habitat reach suggesting a more complex food web.  Channelization and reduction of habitat is 

leading to homogenization of instream habitat and this homogenization of habitats may be 

related to food web diversity and trophic position of fishes. 

 
 

INTRODUCTION 

Anthropogenic influences have had major effects on streams and rivers worldwide (Ward 

and Stanford, 1989).  Agriculture impacts in the United States are prominent, and six major river 
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basins in North America (Lower Mississippi, Upper Mississippi, Southern Plains, Ohio, 

Missouri, and Colorado) have over 40% of the land area as agriculture (Allan, 2004).  The 

Kansas River is no different with about 53% of the watershed as agricultural row crop and 43% 

cattle grazed pastures (US Geological Survey, 1994).  The primary impacts from agriculture 

include increased pollutants, sediments, nutrients, and pesticides, but can also cause reduction of 

riparian and stream channel habitat and altered flows (Lenat, 1984; Osborne and Wiley, 1988; 

Cooper, 1993; Johnson et al., 1997; Allen, 2004).  Therefore, these agricultural effects also may 

affect fishes in these areas.  Roth et al. (1996) found that the proportion of agricultural land in the 

watershed was negatively correlated with Index of Biotic Integrity scores in a Midwestern 

watershed.  Berkman and Rabeni (1987) also determined that increase in sedimentation from 

agriculture reduced aquatic insect diversity and density which negatively influenced the feeding 

and reproductive strategies of specialized fish species.  Karr et al. (1985) noted that agriculture 

has the broadest impact on riverine communities but localized urban effects can be more intense. 

Urbanization occupies only small percentages of land along streams and rivers (10% or 

more of the catchment area in 10 of the 150 large river basins in North America; Benke and 

Cushing, 2004), but has been shown to have pronounced effects on streams and rivers relative to 

land area (Allan, 2004).  Urbanization causes river degradation due to the amount of impervious 

surface area (Paul and Meyer, 2001), which causes increased erosion, channel destabilization and 

widening, which leads to loss of habitat from channelization, excessive sedimentation, increases 

in temperature, and reduction in large woody debris in streams (Lenat and Crawford, 1994; 

Schueler, 1994; Arnold and Gibbons, 1996; Booth and Jackson, 1997; May et al., 1997; Yoder et 

al., 1999; Wang and Kanehl, 2003; Paukert and Makinster, In press) causing more homogeneous 

instream habitats.  Fish and macroinvertebrate diversity and density tends to decrease with 
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increase in impervious surface cover and urban areas (Klein, 1979; Jones and Clark, 1987; 

Steedman, 1988; Limburg and Schmidt, 1990; Horner et al., 1997; Wang et al., 1997; Yoder et 

al., 1999; Whiles and Dodds, 2002).  Also, Poulton et al. (2003) found that macroinvertebrate 

diversity and the percent of large river fish specialists tends to decrease with increase in 

urbanization in the channelized portions of the Missouri River.  These alterations to the habitat 

and macroinvertebrate community also affect fishes. Yoder et al. (1999) found a decrease in 

abundance of invertivorous fish with an increase in urbanization and suggested this was due to a 

disruption in the aquatic food web.  In the Illinois River Karr et al. (1985) found all feeding 

guilds have species declining in abundance except for omnivores and relates this to habitat 

modifications due to urban areas.  Also, growth of flathead catfish (Pylodictis olivaris) is slower 

in areas with less instream habitat diversity, which suggests less food available or an increase in 

intraspecific competition in areas of homogeneous habitats (Paukert and Makinster In Press).  

Also, fish growth of two Great Plains River fishes was related to habitat and substrate affects on 

macroinvertebrate abundance (Quist and Guy, 1998; Quist and Guy, 1999).  

Carbon stable isotope signature in fishes can be related to flow longitudinally (Finlay et 

al., 1999; Fry, 2002) and laterally (Gido et al., 2006) within rivers.  Finlay et al. (1999) 

determined that δ13C varied with current velocity, and noted that isotopic distinction among 

habitats could be useful when determining the affects of different anthropogenic effects.  Gido et 

al. (2006) determined δ13C values in secondary channels of the San Juan River, New Mexico and 

Utah were less variable than primary channels, suggesting fishes in secondary channels converge 

on the same resources, and habitat homogenization in the secondary channels may be related to 

the less variable δ13C values.  Therefore using δ13C values may be a useful tool to determine if 
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fish and macroinvertebrates are affected by urbanization and agricultural land uses, which likely 

decrease riparian and instream habitat heterogeneity.  

Stable isotope δ15N values are used to determine trophic position (TP) of organisms as 

well as food sources.  Trophic position is determined by the concentration of δ15N in fish tissue 

relative to that in basal food sources, and is assumed to be greatest in fishes that consume high 

trophic level prey items with an enrichment of 3.4‰ per trophic level (Cabana and Rasmussen, 

1996).  The δ15N values in fish tissue have been shown to increase with increase in agricultural 

land, but tend to increase at all trophic levels at the same rate (Anderson and Cabana, 2005).  

Therefore, δ15N values can be used to test if trophic position of species differs across different 

land uses and if agricultural land use has any affects on δ15N enrichment. 

Density dependent processes may also affect food habits of fishes.  Olson et al. (2003) 

found in two populations of bluegill that low density populations tended to be specialist feeders 

and the high density populations tended to forage on a wider range of prey and suggested that 

high-density populations need to be less selective in their prey choice.  If increased species or 

feeding guild density is causing competition at the reaches we would expect to see less 

enrichment of δ15N or lower TP due to the species having to eat lower quality (i.e., less δ15N 

enriched) prey items. 

The objectives of this study were to determine if habitat differs spatially within the 

Kansas River and are the differences related to land use.  Also, does trophic structure differ by 

anthropogenic disturbances (e.g. land use and instream habitat) or fish density within a large 

river.  We hypothesized that 1) reduction of instream habitat would be related to increased 

channelization due to urban land use, 2) trophic position of individual fish species would 

increase in areas with more instream habitat, 3) fish in areas of high habitat heterogeneity would 
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have higher variability in δ13C values, and 4) increased fish density would result in lower trophic 

position because of increased competition for food resources.   

 

MATERIALS AND METHODS 

Study area 

The Kansas River begins near Junction City, Kansas at the confluence of the Smoky Hill 

and the Republican rivers and flows east 274 km where it joins the Missouri River.  The Kansas 

River drainage area is approximately 155,000 km2, running from the High Plains of Eastern 

Colorado westward to Kansas City, Kansas (Colby et al., 1956) and consists of about 12% of the 

Missouri River watershed (Metcalf, 1966).  The Kansas River watershed contains eighteen 

federal reservoirs and about 13,000 small impoundments that affect discharge in the river system 

causing more stable flows and a decrease in sediment loading downstream (Sanders et al., 1993).  

Bowersock Dam (a low-head dam at river kilometer, rkm, 83) is the only dam restricting the 

movement of fish on the main channel of the Kansas River (Quist and Guy, 1999; Eitzmann et 

al., 2007).  Sand is the dominant substrate throughout the river with few gravel beds.  The river 

consists of many shallow side channels, and sandy islands usually overgrown with willows and 

grasses (Quist et al., 1999) particularly in upriver reaches.  Mean depth is typically <1.5 m 

throughout the river most of the year (Makinster and Paukert, 2008).  

Three reaches of the Kansas River were sampled for fishes, riparian and instream habitat, 

and macroinvertebrates. The fish and macroinvertebrates were collected from June 12th to June 

29th, 2006, and the riparian and instream habitat was collected from satellite imagery from 

images taken on September 24, 2006.  The reaches were chosen as representative of reaches 
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throughout the Kansas River and are classified as the reach 1 (rkm 230 to 236), reach 2 (rkm 120 

to 126), and reach 3 (rkm 25 to 31). 

 

Riparian and instream habitat 

We used 1-m resolution satellite imagery to classify instream and riparian habitat in each 

reach (Paukert and Makinster, In press).  Transects were created perpendicular to the river 

channel at 1.6 km intervals within the three reaches and addition 9.6 km above each reach, and 

riparian habitat (200 m on each side of the bankfull height) was measured along the transect.  

The length of the transect that was agriculture (row cropland and pasture grassland), forested 

(larger trees and vegetation), and urban land (obvious roads, paved parking lots, sand pits, and 

other man-made disturbances, Paukert and Makinster, In press) was calculated for each transect 

using ArcGIS 9.0.  Bankfull width (m) was calculated as distance between the two most 

pronounced banks along the transect (Armantrout, 1998; Paukert and Makinster, In press).  

Within the bankfull width, the number of channels (areas containing flowing water), grass 

islands (grass and forested areas with a channel present on each side), and sand bars (sand and 

vegetated areas between the bankfull mark and the channel) were recorded.  The proportion of 

each instream habitat was calculated as the proportion of each transect within bankfull width in 

each habitat.  We estimated the proportions of the different instream habitats by using the 

bankfull width. 

 

Field collections 

Multiple gears were used in each reach to collect all fishes at each location.  The gears 

used in collection included daytime boat electrofishing (7-11 A; 400-500 V; 40-60 pulses), gill 
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nets (30.5 m x 1.8 m deep, 4-7.62 m panels of 1.9, 3.8, 5.1, and 7.6 cm bar meshes), large hoop 

nets (1.1 m diameter, 3.8 cm bar mesh), small hoop nets (0.6 m diameter, 0.48 cm bar mesh), and 

a straight seine (4.5 m x 1.2 m, 0.64 cm mesh).  All species were collected from the main 

channel and main channel border areas and depth (m) was recorded at each site sampled.  

Sample sites within each reach were selected randomly unless habitat was limited in which case 

all available habitat was sampled. 

Stomachs and dorsal muscle tissues were removed in the field from the large-bodied 

adult fish and placed in ice and transported to the laboratory.  The smaller bodied adult fish were 

kept whole, placed in ice in the field, and the dorsal muscle and stomachs were removed in the 

laboratory.  Muscle and stomachs were taken from an average of 4 adult fish (range 1-6) of each 

species at each reach for stable isotope and stomach content analysis.  Only adults were used to 

account for any possible diet shifts between age classes. 

Macroinvertebrates were collected opportunistically within each reach using 

macroinvertebrate nets and sieves to capture all available taxa.  Macroinvertebrates were taken 

from the substrate and from woody debris in the main channel and main channel border.  All 

aquatic macroinvertebrate taxa available at each reach were collected and classified to order.  

Jardine et al. (2005) determined that gut contents should be removed from predatory 

macroinvertebrates before conducting stable isotope analysis.  Therefore, all macroinvertebrates 

were kept alive for 24 hours to allow them to expel unwanted material.  

 

Stable Isotope Analysis 

White dorsal muscle was used for stable isotope analysis because it best represents the 

isotope signature of fish (Rounick and Hicks, 1985; Hesslein et al., 1993), has the lowest 
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variability with respect to diet of δ13C and δ15N, and does not require the removal of inorganic 

carbonates (Pinnegar and Polunin, 1999).  All samples of muscle and macroinvertebrates were 

dried at a constant temperature (60 oC) for 48 h prior to grinding into a fine powder with a mortar 

and pestle or a coffee grinder.  All fish and macroinvertebrate stable isotope analysis was 

conducted in the Stable Isotope Mass Spectrometry Laboratory (SISML) at Kansas State 

University or at North Carolina State University in the Analytical Services Lab - Stable Isotope 

Mass Spectrometry (ASL-SIMS) with a Thermo-Finnigan Delta Plus mass spectrometer with a 

CE 1110 elemental analyzer and Conflo II interface in continuous flow mode (CF-IRMS).  

Stable isotope ratios were calculated in standard notation: 

δ15N = [(15N/14Nsample/15N/14Nstandard)-1 x 1000] 

δ13C = [(13C/12Csample/13C/12Cstandard)-1 x 1000]  

Data are reported on a per million (‰) basis.   

Although δ15N values primary consumers may vary across site, Anderson and Cabana 

(2005) showed that trophic levels vary similarly across sites, and support the use of primary 

consumers as a baseline source for calculating trophic position (TP).  Therefore, TP was 

calculated similar to methods in Cabana and Rasmussen (1996) by using a dominant primary 

consumer as the baseline, assuming a 3.4‰ increase in δ15N with an increase of one trophic level 

(Minigawa and Wada, 1984; Post, 2002): 

TP = [(δ15N fish - δ15N primary consumer)/3.4] + 2 

We chose chironomids as our baseline primary consumer because they were abundant in all three 

reaches and were similar to other primary consumers (i.e., ephemopterans; Gido and Franssen, 

2007), and the baseline δ15N value was based off the chironomid samples taken in each reach.   
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Stomach Content Analysis 

  Stomach contents were analyzed for all fishes to the lowest possible taxon.  Contents of 

the stomachs were allowed to dry at 60o C for 24 hours, and each individual item was weighed to 

obtain a percent diet by dry-weight for each item for each individual fish.  Data were 

summarized as mean percent by dry weight of each diet item for each species at each reach.  In 

addition, diet data were summarized by fish feeding guilds from Plieger (1997; Table 2.1).   

TP was also calculated using the diet items found in each individual fish.  In order to 

calculate TP, each diet item was identified as detritus and plant matter (TP=1), 

macroinvertebrates (TP=2), and fish (TP=3).  TP was then calculated using the equation in 

Vander Zanden et al. (1997)   

TPdiet = 1)( +∑ iiTV  

where Vi is the percent dry weight of the ith prey item and Ti is the TP of the ith prey item.   

 

Data Analysis 

A multivariate analysis of variance (MANOVA) was used to test if mean proportion of 

riparian and instream habitat differed among reaches with measurements from each river km as 

the replicates.  If the MANOVA was significant an analysis of variance (ANOVA; Proc Mixed in 

SAS) was used to test which habitat variables differed among reaches (Littel et al., 1996).  

Statistical significance was declared at P≤0.10, and least squares means tests were used to test 

where means differed if the ANOVA was significant. 

Biplots of mean δ13C and δ15N values for each fish species and macroinvertebrate taxa 

were plotted to assess the trophic structure of fishes among the three reaches.  Coefficients of 

variation (CV), range, and standard error of the δ13C and δ15N values were calculated by the 
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different trophic levels of macroinvertebrates and fishes among all locations.  An ANOVA was 

conducted to test if mean δ13C and δ15N values differed among reaches for each feeding guild to 

test where enrichment was highest.  To test if variance in δ13C and δ15N differed across reaches 

for the different feeding guilds a Levene’s test for homogeneity of variance was used.  An 

ANOVA was also used to test if mean stable isotope TP differed among reaches for the different 

feeding guilds collected in all reaches.   

Linear regression was used to test if stable isotope TP of all species from all sites and 

stomach content TP of all species were associated.  A slope of 1 would indicate that TP for both 

methods was the same.  Due to only having three reaches we visually assumed how TP was 

related to fish density.  Abundance of individuals was calculated by taking the catch per unit of 

effort (CPUE) for each guild and multiplying it by a standard amount of effort making effort 

equal across locations (since effort was relatively equal for each gear in each reach).  For 

example, if total abundance of a species was 10 and effort was 10 minutes of electrofishing at 

that reach, then CPUE at that reach would be 1 fish per minute.  After calculating CPUE at all 

reaches we can standardize the effort and then calculate the estimated total abundance with 

standardized effort.  Therefore if our standardized effort was 5 minutes of electrofishing the 

estimated abundance of the species would be 5 from the example.     

 

RESULTS 

  Riparian and instream habitat 

Riparian and instream habitats differ among reaches (Wilks’ lambda=0.193, d.f.=14, 42, 

P<0.001).  Riparian habitat consisted of 46% agricultural land in reach 1 which tended to have 

more agricultural land than reach 2 (37%) and reach 3 (30%; Fig. 2.1A).  Reach 1 had 
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significantly more forested area (49%) and less urban land (5%) than reach 3 (28% forested, 41% 

urban; Fig 2.1A) .  Reach 2 did not significantly differ from reach 1 or reach 3 in the amount of 

agricultural, forested or urban land use (Fig. 2.1A).   

  Instream habitat also differed among reaches with the reach 1 having a higher proportion 

of bankfull width as islands and sandbars (Fig. 2.1B).  Reach 2 was narrower and has fewer 

channels than reach 1 and reach 3, although reach 3 had the greatest mean depth.  Reach 1 also 

had less main channel area (59%) than reach 2 (77%) and reach 3 (93%).  Reach 1 also has more 

grass islands (21%) than reach 2 (0%) and reach 3 (1%; Fig. 2.1B).  Reach 1 and reach 2 

appeared to have more variable instream habitat than the reach 3 (Fig. 2.1B).  Therefore, the 

reach 1 has more islands and sand bars and will now be referred to as the heterogeneous habitat 

reach, whereas reach 3 was homogeneous with few braided channels or islands in its instream 

habitat and was deeper and more channelized and will be referred to as the homogeneous habitat 

reach.  Reach 2 had less instream habitat than the heterogeneous habitat reach but had more than 

the homogeneous habitat reach and will be considered the intermediate reach. 

 

Fish and Macroinvertebrate collection 

A total of 157 individuals accounting for 12 species were used for stable isotope analysis.  

We captured at least 3 individuals of each species in each reach except for blue sucker, Cycleptus 

elongatus, in the intermediate reach (1 fish), emerald shiner, Notropis atherinoides, in the 

heterogeneous habitat reach (2 fish) and the homogeneous habitat reach (1 fish), and shovelnose 

sturgeon, Scaphirhynchus platorynchus, in the homogeneous habitat reach (2 fish).  Woody 

debris contained many of the macroinvertebrate taxa (Chironimidae, Ephemeroptera, Hemiptera, 
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Megaloptera, Odonata, Plecoptera, and Trichoptera).  Of the macroinvertebrates sampled only 

plecopterans were not collected in all three reaches. 

 

Primary Consumers 

The δ13C values varied among reaches for each species.  The δ13C values of 

macroinvertebrates ranged from -27.3 (Ephemeroptera) to -20.4 (Chironomids; Fig. 2.2) in the 

heterogeneous habitat reach, from -25.0 (Megaloptera) to -23.2 (Hemiptera; Fig. 2.2) in the 

intermediate reach, and from -25.8 (Trichoptera) to -24.2 (Plecoptera; Fig 2.2) in the 

homogeneous habitat reach.  Mean δ13C values of macroinvertebrates did not differ among 

reaches (P=0.771), but variance was higher in the heterogeneous habitat reach than the other 

reaches and had a much wider range of values (Table 2.2; P=0.004).  The range of δ13C in the 

heterogeneous habitat reach was 3.8 to 4.3 times higher for the intermediate and homogeneous 

habitat reaches.  

The mean δ15N values for macroinvertebrates were highest in heterogeneous habitat 

reach for all macroinvertebrate taxa (P=0.014).  The δ15N values were >12.0 in the 

heterogeneous habitat reach for four of the seven macroinvertebrate taxa, and were <12.0 for all 

taxa in the intermediate and homogeneous habitat reaches (Fig. 2.2).  Macroinvertebrate taxa in 

homogeneous habitat reach appear to be the least enriched with δ15N with values ≤11.0 for five 

of the seven taxa (Fig. 2.2).  However, variability of δ15N did not differ among reaches 

(P=0.442). 

 

Detritivorous and omnivorous fishes 
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Similar to primary consumers, the range in δ13C values for detritivorous and omnivorous 

fishes varied by reach.   The heterogeneous habitat reach had the widest range of δ13C values 

with a total range of 2.6‰ (Table 2.2; Fig. 2.2).  The intermediate reach δ13C values had a range 

of 2.2‰ and showed a wider range in δ13C values than the homogeneous habitat reach which had 

a total range of 1.4‰.  The overall range of δ13C values for the detritivorous and omnivorous 

fishes only ranged from -24.4 to -21.8 (Table 2.2; Fig. 2.2).  All reaches showed enrichment in 

δ13C from macroinvertebrates to detritivorous and omnivorous fishes except for in the 

heterogeneous habitat reach where chironomids and hemipterans were more enriched in δ13C 

than the fishes (Fig. 2.2).  The δ13C values had the widest range (2.6) in the heterogeneous 

habitat reach but variability did not differ among reaches (Table 2.2; P=0.409).  In contrast, the 

homogeneous habitat reach has the narrowest range (1.4) and the CV was half the heterogeneous 

habitat reach CV. 

  Mean δ15N values of the detritivorous and omnivorous fishes are more enriched δ15N 

compared to natural sources in the heterogeneous habitat reach than in the intermediate and 

homogeneous habitat reaches (P<0.001) with all species values ranging from 14.0 to 15.8 (Fig. 

2.2; Table 2.2).  The intermediate reach and the homogeneous habitat reach had similar ranges 

with δ15N values ranging from 12.7 to 14.1 and 12.0 to 14.3 respectively (Fig. 2.2; Table 2.2).  

However variability in δ15N did not differ among reaches (P=0.976).  The heterogeneous habitat 

reach also showed higher stable isotope TP throughout most of the detritivorous and omnivorous 

species with 6 of the seven species showing higher TP in the heterogeneous habitat reach 

compared to the intermediate and homogeneous habitat reaches.  The intermediate and 

homogenous habitat reaches show the detritivorous and omnivorous species consuming prey at a 

significantly lower TP compared to the heterogeneous habitat reach (P<0.030; Fig. 2.3).  
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Piscivorous and invertivorous fishes 

Piscivorous and invertivorous fishes δ13C values range from -23.7 to -20.9, -25.0 to -21.8, 

and -23.7 to -22.3 in the heterogeneous, intermediate, and homogeneous habitat reaches 

respectively (Table 2.2; Fig. 2.2).  The intermediate reach shows the widest range in values, but 

the heterogeneous habitat reach had the highest enrichment in δ13C values (Table 2.2, P=0.003).  

Similar to detritivorous and omnivorous fishes, the homogeneous habitat reach had lower 

variability of δ13C, about half compared to the heterogeneous and intermediate habitat reaches 

(Table 2.2, P=0.029). 

  The heterogeneous habitat reach had significantly higher (P<0.001, Table 2.2) 

enrichment in δ15N for piscivorous and invertivorous fishes than in the intermediate and 

homogeneous habitat reaches, with the heterogeneous habitat reach values >15.8 and in the 

intermediate and homogeneous habitat reaches all values were <15.7 except for longnose gar 

(Lepisosteus osseus; Table 2.2).  Piscivorous and invertivorous species in the heterogeneous 

habitat reach typically consumed food at higher TPs than in intermediate and homogeneous 

habitat reaches (Fig. 2.3).  Four of the five piscivorous and invertivorous species consumed prey 

at a higher TP in the heterogeneous habitat reach, with species in the intermediate and 

homogeneous habitat reaches tending to consume prey at a significantly lower trophic level.   

 

Stomach content and feeding guild analysis 

Stomach content analysis revealed that literature-based feeding guilds matched with the 

stomach contents.  Detritivorous fish had greater than 50% of diet as algal/detritus, where 

piscivorous fish had 95-100% of diet as fish.  Omnivorous fishes had a varied diet, but still had 
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41-64% algae/detritus (Table 2.3).  The TP calculated through stable isotope analysis was related 

to TP calculated by stomach content analysis (P=0.076; Fig. 2.4).  However, the slope differed 

from 1 (P=0.038) because TP calculated by the stable isotope analysis tended to be higher than 

the stomach content TP for detritivores and omnivores and TP was higher than the stable isotope 

TP for the piscivorous species (Fig. 2.4).   

  In general, guilds with high abundance (detritivores and omnivores) had low δ15N and 

consumed food at lower trophic levels (Fig. 2.5).  However, no density dependent patterns were 

evident within feeding guilds.  For example, invertivores in the heterogeneous habitat reach had 

higher abundance than invertivores in the intermediate and homogeneous habitat reaches, but 

still had higher TP and δ15N values.  For the piscivores, detritivores, and omnivores there is no 

pattern suggesting that increased abundance was related to lower δ15N enrichment or TP (Fig. 

2.5). 

 

DISCUSSION 

Land use and instream habitat alterations may cause significant changes in the food web 

of the Kansas River fish community.  Instream and riparian habitat differed throughout the river 

changing from agriculturally dominated, heterogeneous instream habitat areas to areas 

dominated by an urban riparian zone with homogeneous instream habitat.  This corresponded to 

urban areas having a deeper and narrower channel with fewer braided channels and islands, 

which is consistent with Paukert and Makinster (In press) who documented more variable habitat 

with areas of islands, log jams, rip rap, and more channels in the heterogeneous reach of the 

Kansas River.  The reduction of instream habitat in urban areas of the river suggests 

homogenization of the habitats, which is consistent with other studies (Lenat and Crawford, 
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1994; Schueler, 1994; Arnold and Gibbons, 1996; Booth and Jackson, 1997; May et al., 1997; 

Yoder et al., 1999; Paukert and Makinster, In press).   

  Agricultural areas typically cause high nitrogen loading into river and stream ecosystems 

due to the application of industrial fertilizers and animal wastes (Kreitler, 1979; Högberg, 1990; 

Heaton, 1986; Kendall 1998) and higher enrichment of δ15N compared to natural sources may 

occur, which is consistent with our study.  Anderson and Cabana (2005) found at 82 different 

sites in the St. Lawrence lowlands that increased agricultural land use showed increased 

enrichment of δ15N values for primary and secondary consumers.  This also indicated that 

primary and secondary consumers are enriched at the same rates with increased agricultural area, 

suggesting that though δ15N values are enriched, the calculated TP should not be affected.  Our 

study also indicated an increase in δ15N values in agricultural areas.  However, data collected 

from the Kansas Department of Health and Environment indicated that nitrate levels at three sites 

on the Kansas River (one site within 16 km downstream of each of our reaches) from 2006 did 

not differ throughout the river and total nitrogen was actually highest in the homogeneous habitat 

reach that contained more urban riparian area (A. Stahl, KDHE unpublished data).  Therefore the 

high δ15N values in the heterogeneous habitat reach, which contains more agricultural land, may 

not necessarily be due to high nitrogen loads from agriculture.  Species tended to feed at a higher 

trophic level in the heterogeneous habitat reach suggesting that the loss of instream habitat in the 

intermediate and homogenous habitat reaches has more of an effect on the food web structure 

than increased nitrogen values.  This is consistent with other studies (Dvorak and Best, 1982; 

Cyr and Downing, 1988) who showed that habitat complexity is positively correlated with 

availability of food resources.  
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Enrichment of δ15N for fishes and macroinvertebrates typically followed what was 

expected in the literature.  However, two of the fish species appeared to be more enriched 

in δ15N than would be expected (e.g. blue sucker and river carpsucker).  These two fish were 

classified as invertivores and detritivores, respectively, but TP indicated blue sucker to be 

piscivorous and river carpsucker to be omnivorous.  A few possible reasons for this are (1) there 

was an unmeasured δ15N enriched food source, (2) the species have diet shifts throughout the 

year, or (3) blue sucker and river carpsucker possibly fractionated δ15N >3.4‰.  The first 

explanation is less likely for blue sucker because their stomach samples contained mostly 

trichoptera larvae, but stable isotope analysis indicated a TP similar to piscivores.  Although, the 

trichopteran larvae the blue suckers were consuming may have been occupying the deep, high 

velocity areas that blue sucker inhabit, which were not sampled.  The second reason is possible 

for both species because the stomach content analysis was only a snap-shot of what these species 

were consuming at that instant in time.  Therefore, it is unknown what the species were 

consuming weeks or months before the time of collection.  The river carpsucker consumed 

mostly algae (which were not measured) and detritus.  The third explanation is possible for both 

species because of variability in enrichment.  Post (2002) indicated that a trophic position 

enrichment of 3.4‰ of δ15N is only an observed average over many trophic pathways with 

enrichment ranging from ~2 to 5‰.  Also, Mill et al. (2007) found that 15N/14N fractionation was 

significantly higher than 3.4‰ for herbivores.  Therefore, blue sucker and river carpsucker may 

show higher fractionation of δ15N than other taxa or were feeding on diet items that were not 

collected for stable isotope analysis leading to increased and biased TP.   

  There was lower variation in δ13C in the homogeneous habitat reach for all feeding 

levels, which suggests the reduction of habitat affects food web variability.  Finlay et al. (1999) 
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related δ13C values to flow indicating that habitats with higher flows were more depleted in δ13C, 

and related this to the increase in the supply rate of CO2 to benthic algae because discrimination 

against δ13C occurs during photosynthesis with increase in CO2 (Calder and Parker, 1973; Pardue 

et al., 1976).  Although enrichment of δ13C was similar among reaches, there was higher 

variability in δ13C in the heterogeneous habitat reach suggesting higher variability in flows, 

which is likely due to increase in the habitat complexity (e.g. more channels and islands) in the 

heterogeneous habitat reach documented in our study.  The algal sources in the heterogeneous 

habitat reach are most likely assimilating the δ13C at different rates in the different habitats 

therefore causing the higher variation in the δ13C values (Finlay, 2001; Finlay, 2004).  This is 

similar to findings by Gido et al. (2006), who found higher enrichment and less variability 

in δ13C values in secondary channels and suggested this was due to low velocity and a narrow 

range of habitats in the secondary channels, causing most of the organisms in the secondary 

channels to feed on similar items.  In contrast, the homogeneous habitat reach had reduced 

habitat complexity (based on our instream and riparian analysis) and the lowest variability in 

δ13C for all taxa suggesting that carbon is from similar basal algal sources and species are 

converging on the same resources. 

  Abundance of fish within each feeding guild had less of an effect on TP than habitat.  

Piscivores, omnivores, and detritivores typically fed at higher trophic levels in the heterogeneous 

habitat reach regardless of abundance.  Therefore, changes in the feeding habits of these feeding 

guilds may be due other abiotic (anthropogenic effects) factors related to habitat.  However, 

invertivores are eating at an 11 and 7% lower trophic level in the intermediate and homogeneous 

habitat reaches, respectively, where the invertivore abundances are almost a magnitude lower in 

those reaches versus the heterogeneous habitat reach.  This is consistent with Yoder et al. (1999) 
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who found relative abundance of invertivores to be negatively correlated with increase in 

urbanized and channelized streams near Columbus, Ohio, and suggested this was due to a 

disruption in the food web.  Also in the Kansas River, Paukert and Makinster (In press) found 

flathead catfish growth to be fastest in areas with high agricultural land use and more diverse 

instream habitat.  Therefore, the piscivores eating at a higher trophic level in the heterogeneous 

habitat reach may be reflecting why growth is faster in that area.  

  Although many studies have determined the effects of land use and instream habitat on 

density and diversity of taxa (Yoder et al., 1999; Poulton et al., 2003; Walters et al., 2003; Allan, 

2004), relatively few studies have evaluated the effects of land use and instream habitat on the 

food web.  Our study suggests that urbanization and channelization reduce habitat variability in 

the system and also reduces variability in the food web.  Homogenization of habitat reduces 

diversity of species within a community (Klein, 1979; Jones and Clark, 1987; Steedman, 1988; 

Limburg and Schmidt, 1990; Horner et al., 1997; Wang et al., 1997; Yoder et al., 1999) and may 

be linked to the homogenization of the food web.  The reduction of instream habitat causes a 

reduction in variability of carbon resources thereby narrowing the food web and causing species 

to converge on the same diet items.  Habitat diversity is essential for native fluvial fishes in large 

rivers (Galat and Zweimüller, 2001), and our study indicates that habitat diversity may be related 

to food web diversity and trophic position of fishes.  Therefore, restoring natural habitats (e.g. 

sand bars, grass islands, secondary channels, etc.) in the Kansas River may increase food web 

diversity and native species diversity. 
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Table 2.1.  The species sampled in summer 2006 and the feeding guild they represent based on 
literature (Pflieger, 1997; Thomas et al., 2005). 
Common Name Species Species Code Feeding Guild 
Blue sucker Cycleptus elongatus Cycelo Invertivorous 
Bullhead minnow Pimephales vigilax Pimvig Omnivorous 
Channel catfish Ictalurus punctatus Ictpun Omnivorous 
Emerald shiner Notropis athernoides Notath Detritivorous/Planktivorous
Flathead catfish Pylodictis olivaris Pyloli Piscivorous 
Freshwater drum Aplodinotus grunniens Aplgru Invertivorous 
Longnose gar Lepisosteus osseus Leposs Piscivorous 
Red shiner Cyprinella lutrensis Cyplut Omnivorous 
River carpsucker Carpiodes carpio Carcar Detritivorous 
Sand shiner Notropis stramineus Notstr Omnivorous 
Shovelnose sturgeon Scaphirhynchus platorynchus Scapla Invertivorous 
Smallmouth buffalo Ictiobus bubalus Ictbub Omnivorous 

 



 60

Table 2.2.  The mean, range, and coefficient of variation (CV) of δ 13C and δ 15N values for the 
heterogeneous habitat reach (rkm 229 to 235), intermediate reach (rkm 120 to 126), and 
homogeneous habitat reach (rkm 24 to 30) sampled in the Kansas River in summer 2006.  The 
taxa include piscivores (Pisc), invertivores (Inse), omnivores (Omni), detritivores (Detr), 
macroinvertebrates (Invert), leaves (Leaf), and woody debris (WD).  Species codes are given in 
Table 2.1.  P-values indicate if mean isotopic signature or isotopic signature variance differed 
among reaches for each taxa group for δ 13C and δ 15N values. 

  
Heterogeneous 

reach Intermediate reach Homogenous reach     

Carbon Mean Range CV Mean Range CV Mean Range CV 
P-Value 
Means 

P-Value 
Variance

Pisc/Inse -22.31 2.9 5.10 -23.25 3.3 4.84 -23.16 1.2 2.16 0.003 0.0292
Pyloli -22.08 1.1 1.96 -23.07 3.2 4.66 -23.04 0.8 1.58   

Leposs -20.87 1.2 2.14 -22.43 1.3 2.90 -23.17 0.8 1.74   
Scapla -21.1 -- -- -21.75 0.7 1.12 -22.25 0.1 0.32   
Cycelo -23.73 1.8 3.24 -25.00 -- -- -23.67 0.5 1.06   
Aplgru -23.35 3.0 5.71 -23.45 3.5 5.75 -23.5 1.7 2.62   

Omni/Detr -22.51 2.6 4.52 -23.38 2.19 3.59 -23.81 1.4 2.09 <0.0001 0.4092
Pimvig -21.78 1.3 2.77 -22.75 1.2 2.28 -23.93 0.7 1.38   
Ictpun -22.63 1.1 2.12 -23.78 3.5 5.18 -23.35 1.3 1.99   
Notath -23.00 0.4 1.23 -24.31 0.79 1.67 -23.7 -- --   
Cyplut -24.38 1.9 3.95 -23.73 0.9 1.59 -24.4 1.1 1.90   
Carcar -22.07 1.0 1.85 -23.25 1 1.67 -23.6 1.0 1.59   
Notstr -21.90 0.8 1.67 -22.13 1 2.07 -23 1.9 4.53   
Ictbub -21.93 2.2 4.67 -24.14 3.1 5.14 -24.22 2.3 3.74   

Invertebrate -24.26 6.9 10.65 -24.43 1.8 2.72 -24.74 1.6 2.74 0.7705 0.0035
       

Nitrogen                       
Pisc/Inve 16.72 2.6 4.89 15.23 4.0 6.55 15.34 3.8 6.60 <0.0001 0.9984

Pyloli 16.6 1.8 4.57 14.52 1.8 4.10 15.32 0.4 1.07   
Leposs 17.57 1.1 2.35 17.23 0.5 1.46 17.33 0.1 0.33   
Scapla 16.9 -- -- 15.05 2.3 5.18 15.45 0.7 3.20   
Cycelo 17.18 2.1 5.41 15.7 -- -- 14.73 0.8 3.13   
Aplgru 15.8 0.7 2.00 15.03 0.5 1.50 14.63 1.5 3.88   

Omni/Detr 15.04 4.1 6.43 13.45 5.2 7.85 13.06 3.0 7.14 <0.0001 0.9763
Pimvig 14.8 1.0 3.07 13.45 1.6 5.61 12.88 0.4 1.33   
Ictpun 13.95 1.2 4.24 12.78 5.2 14.5 12.52 1.2 3.17   
Notath 14 0.6 3.03 13.68 4.33 14.06 13.4 -- --   
Cyplut 15.58 2.9 8.68 12.68 0.8 3.05 12.02 0.8 2.91   
Carcar 15.55 1.2 8.68 14.07 0.6 1.47 14.36 0.8 2.23   
Notstr 15.85 1.4 3.62 14.08 0.6 1.96 12.45 1.3 4.93   
Ictbub 14.78 2.4 6.91 13.64 2.0 5.60 14.02 0.7 2.10   

Invertebrate 12.03 2.2 7.13 11.4 1.5 5.17 10.79 1.8 5.55 0.0141 0.4417
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Table 2.3.  The mean proportion of diet items consumed by each fish feeding guild in the 
heterogeneous reach (1, rkm 229 to 235), intermediate reach (2, rkm 120 to 126), and 
homogeneous reach (3, rkm 24 to 30) sampled in the Kansas River during summer 2006.  Values 
in parenthesis represent 1 standard error. 

Reach Guild Fish 
Aquatic Macro-
invertebrates 

Terrestrial Macro-
invertebrates Zooplankton 

Algae/ 
Detritus 

1 Detritivore 0.0 1.2(0.7) 0.0 24.4(16.0) 74.4(16.3)
2 Detritivore 0.0 44.7(17.6) 5.4(5.4) 0.0 50.0(18.9)
3 Detritivore 0.0 4.9(4.9) 0.0 0.0 95.1(4.9) 
1 Omnivore 6.8(5.8) 28.7(9.4) 1.5(1.3) 18.7(9.2) 44.3(10.5)
2 Omnivore 0.3(0.3) 21.6(7.5) 4.5(4.4) 9.9(6.8) 63.7(9.5) 
3 Omnivore 11.0(7.5) 21.3(8.9) 5.8(5.1) 20.8(9.5) 41.0(11.3)
1 Invertivore 7.7(7.7) 49.3(10.8) 0.0 0.0 43.0(10.6)
2 Invertivore 4.7(4.7) 65.7(10.4) 0.0 0.0 30.0(9.3) 
3 Invertivore 0.0 56.1(12.8) 4.9(4.9) 0.0 39.0(11.6)
1 Piscivore 100.0(0) 0.0 0.0 0.0 0.0 
2 Piscivore 95.5(4.5) 4.5(4.5) 0.0 0.0 0.0 
3 Piscivore 97.0(3) 3.0(3) 0.0 0.0 0.0 
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Appendix 1.  List of diet items (percent by dry weight) of the 12 species collected for stable isotope analysis in the Kansas River in 
summer 2006 in the heterogeneous (hetero), intermediate (Inter), and homogeneous (homo) reaches.  The values in parenthesis 
represent 1 standard error.   

                                   
     Shovelnose sturgeon  Longnose gar  Red shiner  Emerald Shiner 
 Reach  Hetero Inter Homo  Hetero Inter Homo  Hetero Inter Homo  Hetero Inter Homo 
Fish                 
 Bullhead minnow      35.2(35)           
 Channel catfish                 
 Red shiner                 
 White crappie                 
 Fish eggs                 
 Unidentified fish      64.8(35) 100.0(0)          
 TOTAL  0.0 0.0 0.0  100.0 100.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 

Aquatic Macroinvertebrates               
 Chironomidae  41.5(14) 56.9(17) 100.0(0)       6.4(4)      
 Corixidae            50.0(50)  2.5(2) 68.5(19) 19.4(0) 
 Crayfish                 
 Ephemoptera  0.1(0)               
 Mollusc                 
 Odonata  0.4(0)               
 Ostrecoda                 
 Trichoptera  2.2(1) 5.0(3)        52.0(26)      
 Other            12.5(13)   20.7(20)  
 TOTAL  44.1 61.9 100.0  0.0 0.0 0.0  0.0 58.4 62.5  2.5 89.2 19.4 

Terrestrial Macroinvertebrates                         
 Coleoptera                 
 Diptera               10.8(10)  
 Isopoda                 
 Lepidoptera                 
 Orthoptera                 
 Other                 
 TOTAL  0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  0.0 10.8 0.0 

Zooplankton                 
 Zooplankton          57.7(42)  37.5(37)  97.5(3)   
Algae/Detritus/Plant Matter                
 Algae/Detritus  56.3(15) 38.1(15)       42.3(42) 41.6(25)     80.6(0) 
 Morus spp. fruit                 
  TOTAL   56.3 38.1 0.0   0.0 0.0 0.0   42.3 41.6 0.0   0.0 0.0 80.6 
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Appendix 1 continued. 
                                   
     Sand shiner  Bullhead minnow  River carpsucker  Blue sucker 
 Reach  Hetero Inter Homo  Hetero Inter Homo  Hetero Inter Homo  Hetero Inter Homo 
Fish                 
 Bullhead minnow                 
 Channel catfish                 
 Red shiner                 
 White crappie                 
 Fish eggs                 
 Unidentified fish                 
 TOTAL  0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 

Aquatic Macroinvertebrates               
 Chironomidae   2.0(2)   1.0(1) 1.0(1)   0.7(0)    0.1(0)   
 Corixidae   0.1(0)   41.6(25) 0.1(0) 28.1(28)         
 Orconectes spp.                 
 Ephemoptera          0.1(0)    0.3(0)   
 Mollusc                 
 Odonata                 
 Ostrecoda       3.1(3)          
 Trichoptera  8.6(6) 31.1(21) 9.7(9)  40.7(16) 19.8(12) 5.3(5)   0.1(0)   44.5(19) 23.8(0) 24.0(15) 
 Other                 
 TOTAL  8.6 33.0 9.7  83.3 23.8 33.3  0.7 0.1 0.0  44.7 23.8 24.0 

Terrestrial Macroinvertebrates                         
 Coleoptera                 
 Isopoda                 
 Lepidoptera                 
 Orthoptera                 
 Other                 
 TOTAL  0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 

Zooplankton                 
 Zooplankton  41.4(22)  50.0(29)  0.1(0) 46.9(27) 33.3(33)         
Algae/Detritus/Plant Matter               
 Algae/Detritus  50.0(23) 67.0(23) 40.3(25)  16.7(10) 29.3(17) 33.3(33)  99.3(1) 99.9(0) 100.0(0)  55.3(19) 76.2(0) 76.0(15) 
 Morus spp. fruit                 
  TOTAL   50.0 67.0 40.3   16.7 29.3 33.3   99.3 99.9 100.0   55.3 76.2 76.0 
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Appendix 1 continued. 
                                   
     Smallmouth buffalo  Channel catfish  Flathead catfish  Freshwater drum 
 Reach  Hetero Inter Homo  Hetero Inter Homo  Hetero Inter Homo  Hetero Inter Homo 
Fish    
 Bullhead minnow    7.0(7) 10.1(10)
 Channel catfish    33.3(33)
 Red shiner    26.5(26) 25.9(25) 33.3(33)
 White crappie   20.0(20)  29.3(29)
 Fish eggs    33.3(33)
 Unidentified fish   25.5(21) 3.0(3) 19.6(19)  66.7(33) 66.7(33)
 TOTAL  0.0 0.0 0.0 25.5 3 39.6  100 92.5 96 33.3 10.1 0

Aquatic Macroinvertebrates  
 Chironomidae   0.4(0) 1.3(1) 0.1(0)  1.3(1) 0.3(0) 2.7(2)
 Corixidae    20.2(20) 0.3(0) 30.2(17)
 Orconectes spp.    7.5(7) 4.0(4) 25.4(17)
 Ephemoptera   1.2(1) 0.2(0)  7.8(8) 18.0(14)
 Mollusc  21.5(0) 0.7(0)  21.6(21) 24.9(17) 9.5(9)
 Odonata   3.4(3)  10.1(10) 0.1(0)
 Ostrecoda    
 Trichoptera   0.2(0) 1.0(1) 5.8(5) 19.9(19)  13.6(11) 17.7(9) 4.4(2)
 Other   2.2(2)  8.2(8)
 TOTAL  21.5 1.3 2.1 10.4 0.2 22.2  0.0 7.5 4 66.8 76.5 73.1

Terrestrial Macroinvertebrates            
 Coleoptera   0.8(0) 41.7(41)  
 Isopoda   4.7(4)  
 Lepidoptera   0.8(0)  
 Orthoptera   8.2(8)  
 Other   12.8(10)  
 TOTAL  0.0 0.0 0.0 5.5 42.5 21  0.0 0.0 0.0 0.0 0.0 0.0

Zooplankton    
 Zooplankton   0.1(0) 46.9(27) 33.3(33)  
Algae/Detritus/Plant Matter  
 Algae/Detritus  78.5(0) 98.7(1) 97.9(1) 36.5(23) 5.2(5) 17.2(17)  13.4(9) 26.9(12)
 Morus spp. fruit   22.2(22) 49.0(49)  
  TOTAL   78.5 98.7 97.9  58.6 54.3 17.2   0.0 0.0 0.0  0.0 13.4 26.9

 
 
 
 


