A STUDY OF FAULT TREE ANALYSIS FOR
SYSTEM SAFETY AND RELIABILITY

by
WEN-SHING LEE

B.S. (Industrial Management), National Cheng-Kung University,
Tainan, Taiwan, 1973

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE
Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

Approved by :

(i Do u sl
Co-Major Pfbofessor

Co-Majér Professor

SPrC
Coktl
LD

2p68

k9
1982 ACKNOWLEDGEMENTS

EL
.

The author wishes to express his sincere appreciation
to his major professors, Dr. C.L. Hwang and Dr. Doris Grosh,
for their valuable guidance and creative advice in the

course of this work. He also acknowledges the encouragement

and helpful comments from Dr. D.S. Chung.

The author wishes to extend his deep gratitude to his
parents for their constant help ard imnspiration, to his

vife, Sharon, for her continued support and patience

throughout this work.

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH THE ORIGINAL
PRINTING BEING
SKEWED
DIFFERENTLY FROM
THE TOP OF THE
PAGE TO THE
BOTTOM.

THIS IS AS RECEIVED
FROM THE
CUSTOMER.

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
- COPY AVAILABLE

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

iii

TABLE OF CONTENTS

page
ACKNCLEDGEMENTS
CHA’PTER ONE IHTRODUCTION'.‘.I.......II.I.I..I-.. 1
CHAPTER TWQ FAULT TREE ANALYSIS-A STATE-OF-THE-ART

BEVIEW«eescovovnccscsocsacacnassennsns 10
2.1 IntroductioB.sscesssscasssassssnnuss 10
2.2 System DefinitioN..ceccececcaccnacessn 23
2.3 Pault Tree ConstructiOB.ccccccccnces 24
2.4 Qualitative EvaluatioD.c.cevicncnsces 28
2.5 Quantitative EvaluatioN.eccecececaasn 32
2.6 Available Computer Codes for Fault
Tree ANalySiS.ccciescceccanssoscacaas 43
2.7 Concluding RelBarkSacecesccccscasscasas 45
CHAPTER THREE FAULT TREE COBSTRUCTIONececcescsaswse 47
3.1 IntroductioN.ccicecescscecassccoansna 47
3.2 Haasl's Structuring Process for
Fault Tree ConstructioNeccecccecceacas 50
3.2.17 IptroductioDecseeccceccccccss 50
3.2.2 ExaBpleccceccccccosccscsnccnas 56
3.3 Fussell's Synthetic Tree Model (STHM) 60
3.3.1 Imtroductiof.cscascscesecsone €0
3.3.2 Examplec.i.ciscescnanasassanuva 69
3.4 Powers and Tompkins' Fault Tree

Synthesis for Chemical ProcesS...... 75

d=841 Introductiolssscsvasamonavios 75
3.4.2 EXaBpPle...cceccccccencscocsoces 84
3.5 Salem et al's Computer-Oriented
Fault Tree Construction............. 89
3.5.7 IntroQuetdofieesssswsssws s 89
J5:Du2 EXARPLSw aw wom v o o0 b 608 a0 o 98
3.€ Lapp and Powers' Computer-Aided
Synthesis of Fault TreeSeeececeeecss.. 106
3.6.1 IntroductioD.cececeeccsceaasss 106
3.6.2 EXABPlesvevesssswnnecssannwen V12
3.7 cCamarda et al's Efficient Algorithm
of Fault Tree Construction.......... 118
3.7.1 IntroductioNesececcccecccasses 118
3. 7s2 EX8ADlEciisissiseasnsnssansnes 119
3.8 Concluding ReMarkS.e.ccecccesscccanses 1204
CHAPTER FOUR QUALITATIVE EVALUTIONS QOF FAULT
TREEScceccasncascasenasnasnscnansansace 128
4.1 Introductioleacssncsssccsscnssvscenas 128
4.2 Minimal Cut Sets/Path SetS.eeeeceses. 129
4.2.1 Monte Carlc SimulatioR....... 131
4,2.2 The Deterministic Approach... 135
4.3 Common—-Cause Failure Analysis....... 150
8.3.1 COHCANasvewsnnssassnsssnrsnsses 151
4.3.2 HNew Approach for Automated
Common-Cause AnalysSiS.....-.. 15€&

4.3.3 Quantitative Considerations

CHAPTER FIVE

CHAPTER SIX

for Common-Cause Failure
ARalySiSeeecescnccccsacnssnas
QUANTITATIVE EVALUATIOCNS OF FAULT
PREEBScaascasavacsssassaasnsanssancsnes
Introductiol. cesesunesevacvoscssevacns
Probabilistic Evaluations of Fault
PrECESececcssecscacaccaccssancsasnanacsns
5.2.1 Coherent Structure Theory for
Fault Tree Evaluation........
5.2.2 Monte Carlo Simulation for
Fault Tree Evaluation........
5.2.3 Analytical Method for Fault
Tree EvalutioNecececcccnacens
5.2.4 oOther Computer Codes for
Fault Tree EvaluaticoD.eecceeee.
Measures of Importance of Events and
Cut Sets in Fault TreeS<c.cceccsseass
5.3.1 Probabilistic Expressions
that Measure Importance of
CORPONENtScecec srcasvacnsnanns
5.3.2 Cut Set INportanC€eceecececcae
5.3.3 Importance of Components when
Repair is Permitted..........
5.3.4 Computer Code for Measures of
INpOrtanCe.ecss sacsencacssasscsa

CONCLUSIONS ANRD RECOMMENDATIONS FOR

162

1€5

165

1€€

1€7

175

183

201

207

208

213

214

214

PUTURE HORK‘.I.‘....'I.....I.II.III..
6.1 COnClUSiONSeiccecsvcccsnsnceancccnceaas
€.2 Possible Future WOIK:. ecececsssonaoeae

BEFEBEHCES.....l-....--'---.--..IIIIUQIIIII.IIDIIDI-.CIQ

vi

218
218
220
222

CHAPTER CHNE
INTRODUCTION

System safety analysis is an analytical process that
identifies and analyzes potential safety and reliability
problems existing within a system. BReliability is a measure
of the system's capability to function during the systeam's
mission wunder prescribed specifications. Safety is
concerned with the risk or danger posed to personnel or to

the public when the system performs its task.

Basically, the problem we wish to comnsider is how to
deal with a large coalition of components which act as a
unit to provide some desired function. We are concerned not
only with the likelihood of failure of this system, but also
with the possible causes of failure, and the various
potential failure modes. There are two formalized methods
in system safety and reliability, dinductive and deductive

analysis.

Inductive analysis involves postulating a possible
state of components and/or subsystems and determining its

overall effect on the systen. Among the inductive

approaches, event trees have attained wide usage, especially
in the recent Reactor Safety Study (99). This is a

methodology whereby an initiating event or signal is traced

through a systen, creating new branches each time that

events with multiple outcomes are encountered. A single
event, then, coupled with various subseguent occurremnces,
may create a number of paths leading to different <final
results. Another inductive method of modeling a systenm
is the reliability block diagram (112). Here the systenm is
reduced to a schematic +type form in which the specific
information flow paths connect the building blocks. The
purpose of this type of diagram is to permit the tracing of
a sigqnal as it proceeds from beginning to end through the
system in order to calculate +the system reliability. A
Preliminary Hazards Analysis (PHA) is a broad, all-
encompassing inductive study performed at the conceptual
stages of the system design (46). Its objectives are to
identify hazardous conditions inherent in a systema and to
determine the effect of any potential accidents. A major
goal of PHA is to prevent accidents that have occurred in
identical or similar systems. Failure Modes and Effect
Analysis (FMEA) is also a detailed inductive analysis
performed at the design stages of a system (68). %
systematically analyses all contributory component failure
modes and identifies the resulting effect on the system. The
purpose of FMEA dis to identify areas in the design of
hardware where improvements are reguired to ensure that the
system will be reliable and safe for its intended use. One
final inductive method of analysis 1is called Markov

Apalysis. While Failure Modes and Effect Analysis is a

single-thread inductive analysis, i.e., the effect of each
component state of the system is considered independently,
Markovian analysis, on the other hamd, considers multiple
effects and in a multi-thread inductive analysis. This
process can be used for operational simulations; however the
complexity of the analysis makes hand calculation
impractical, and the performance of accurate simulations
Iegquires expensive equipment. Markov amnalysis and its
application tc engineering problems are discussed in

(103,108)

Deductive amnalysis, on the other hand, takes an
opposite approach. It involves postulating a possible state
of the overall system and identifying those component states
that may contribute to its occurrence. Fault Tree

Analysis (FTA) is the only deductive approach in general use.

Fault tree analysis is a technique of reliability
analysis and is generally applicable to complex dynamic
systems. Fault tree analysis provides amn all inclusive,
verstile, mathematical tool for analyzing complex systen.
Its application cam include a complete plant as well as any
of the systems and subsystems. Fault tree analysis provides
an objective basis for analyzing system desigmn, performing
trade-off studies, analyzing common cause failures,
demonstrating compliance with safety reguirements, and

justifing changes or additions. The fault tree itself is a

graphical representation of Boolean logic associated with
the development of a particular system failure, called the
TOP event, to basic failures called primary events. For
exemple, +the TOP event could be the failure of the reactor
scram systerm to operate during an excursion with the primary
events being failures of the individual scram system

components.

Fault tree analysis was first developed at Bell
Telephone laboratories to aid imn the safety analysis of the
Minuteman missile system in 1961 (12). Furthur development
was done at +the Boeing company in the mid-19€0's(€7), and
since that time it was recognized that fault tree analysis
could be successfully extended from the aerospace
technology to nuclear reactor reliability, safety and
availability technclogy, and to various other commercial
operation such as the chemical processing industry . The
importance of fault tree analysis in the nuclear industry is
rointed out in the Reactor Safety Study (99), where a full

1300 pages deals specifically with fault tree analysis.

Fault tree analysis is of major value in (50):

1) Directing the amnalyst to ferret out failures
deductively;

2) Pointing out the aspects of the system important
with respect to the failure of interest;

3) Providing a graphical aid giving visibility to those

in system management who are removed from the system design
changes;

4) Providing options for gualitative or quantitative
system reliability analysis;

5) Allowing the analyst to concentrate on one
particular system failure at a time;

6) Providing the analyst with genuine insight into

system behavior.

Fault tree analysis consists of two major steps: 1) the
construction of the fault tree, and 2) its evaluation. The
evaluation of the fault tree can be gualitative,
quantitative, or both, depending upon the scope and

extensiveness of the analysis.

The objectives of this report are :

1 to present a critical review and classification of
all fault +tree analysis methodologies which have been
rroposed with their specific purposes in past two decades;

2) to illustrate the theoretical concept and the
practical formula required or the various methodologies to
make fault tree a tool for decision making in system
analysis;

3) to provide a tutorial format of fault tree analysis
to show an insight into its formal procedure and structure;

4) to relate the theory of mathematicl reliability

pertinent tc fault tree analysis with an emphasis on

engineering interpretations and applications.

A state—-as-the-art review of the literature related to
fault tree analysis is presented in chapter 2. The
literature is classified as follows :

1 fault tree constructicn

2) fault tree evaluation: gualitative amnalysis

pinimal cut sets
common -cause failure analysis

3) fault tree evaluation: guantitative analysis

probabilistic evaluations of fault trees

measures of importance of events and cut sets

Chapter 3 describes in detail the current usage of
fault tree construction methodologies in the 1U.S. and
elsewhere. Those methodologies discussed are :

1 synthetic tree model (STM)- J.B. Fussell in 1973
(50)

2) fault tree synthesis for chemical processes- G.dJ.
Powers & F.C. Tompkins in 1974 (9¢)

3) computer-oriented approach to fault tree
construction {CAT)-S.lL. Salem, G.E. Apostolakis & D.Okrent
in 187¢ (105)

4) computer-aided synthesis of fault trees— S.A. lapp &
G.J. Powers in 1977 (80)

5) fault tree automatic synthesis from the reliability

graph- P. Camarda, F. Corsi & Trentadue in 1978 (27)

The graphical symbology and general structuring process
(67) of a fault tree will also be described previous to

above discussion.

Chapter 4 discusses the methodologies of gqualitative
fault tree analysis. This is an integral part of fault tree
evaluation. In this chapter, we first discuss the methods of
finding minimal cut sets. That is usually an intermediate
step for most of the gquantitative fault tree analysis
techniques. Those methods discussed are :

1) PREP- W.E. Vesely in 1969 (119)

2) MOCUS- J.B. Fussell in 1974 (56)

3) MICSUP- P.K. Pande, M.E. Spector, P.Chatterjee in
1975 (93)

§) ELRAFT- S.¥. Semanderes in 1971 (110)

5) SETS- E.B. Worrell im 1974 (134)

Other methods with regard to prime implicants (minimum
cut sets) of non-coherent fault trees will also be

discussed.

The usefulness of qualitative procedures is not
confined to determining minimum cut sets. Indeed, it is
potentially wuseful through the evaluation process. For
example, an area of recent concern is the effect upon a
system of some common event, i.e., an event that does not
appear in the fault tree but directly affects some of the

kasic event that do appear. Interest centers around the

development of techniques for ferreting out such dependence
and evaluating its impact on +the operation of the systen.
Two common-cause analysis nethoéologies.are presented in the
second part of qualitative analysis :

1) COMCON- G.R. Burdick, N.H. Marskhall, J.R. W#ilson in
197¢ (21)

2) NEW APPROACH- D.P. Wagner, C.1. Cate, J.B. Fussell

in 1977 (126)

In chapter 35, we put fault tree evaluation in a
guantitative analysis perspective. PRecent emphasis on the
quantification of performance and safety of nuclear pover
generation facilities and c¢ther industries as well, has
resulted in an increasing need for probabilistic engineering
system analysis. This concern ijs divided into two
categories, probabilistic evaluations of fault trees and
measures of importance of events and cut sets in fault

trees.

For probabilistic evaluation of fault trees, we discuss
the methods of evaluation in terms of coherent structure
theory (10), time-dependent methodology of <fault tree
evaluation by Vesely (120), recent development in Germany
i25) , and Monte Carlo computer program for systenm
reliability analysis (72). We will also discuss the
reliability gquantification technigue used in the Reactor

safety study (99), known as the Rasmussen study, and other

evaluation codes.

As to the measures of importance of events and cut
sets, we present the theory of probabilistic importance and
the mathematical expressions that are required to compute
importance. The purpose of computing probabilistic
importance is to generate a numerical ranking for assessing
weaknesses in a system. Such a ranking is analogous to a

sensitivity analysis (77).

A brief conclusion and recommendations for future study

is given in chapter 6.

To cover all the fault tree methodologies in a
discussion of this sort is practically an impossibility,
since fault tree analysis technigues are still in the

process of evolution and we are continually learning more.

10

CHAPTER THO

FAULT TREE ANALYSIS --- A STATE-QF-THE-ART REVIEW

2.1 Introduction

Fault tree analysis was first conceived by H.A.HWatson
of Bell Telephone Laboratories im connection with amn Air
Force contract to study the Minuteman Missile launch control
system (12). At the 1965 Safety Symposium, sponsored by the
University of Washingston and the Boeing company, several
papers were presented that expounded the virtues of fault
tree analysis (67). The presentation of these papers marked
the beginning of a widespread interest in the possibility of
using fault tree analysis as a system safety and reliability
tool in the nuclear recator industry. In the past two
decades, great efforts have been made in the solution of
fault trees to obtain complete reliability information about
relatively complex systems. The importance of fault tree
analysis in the 1industry application is pointed out in
REeactor Safety sStudy (99), where a full 1300 pages deals

specifically with fault tree analysis.

The fundamental concept in fault tree analysis is the
decomposition of a physical system into a logic diagram, or
fault tree, in which certain specified causes lead to one
specified TOP event of interest. This logic diagram is

constructed using the symbols found in Figure 2-1 and 2-2.

11

No.

Symbol

Dengmination

Meaning

Rectangle

Variable Descripticn

Circle

A primary variadle delengi
o an independant 2

Octagon

A primary variabie belongin
to a da2pendent componant

Diamond

A non-primary variadle which
would require dissacticn in
more basic variablas, but tha:
for some reasons has not bean
furcther dissectad.

House

A variable whose sample snace
contains only one memdbar, that
is a variable which is conszant
and always takes either the
value I or Q. MNote: this symbol
is used only as inpur to an

AND gate.

Transfer IN

A conneccing or transier symbol
indicating 3 var:tablie entering
the fault cree. '

el [100

Transfer
ouT

A eonnecting or transfer symbol
indicating a variabls zoing out
from the fauir trae,

Fig.

“2-1.

Table of variahl-:s(ZB)

12

mm.Nv "SI J1swyg JO ajqel,

2388 2y Buriviua pio0jaq pajelon

81 arqueiaea andut a3 1eyl sueow mud v jo andut ayz jo andur ayy e 1mmod pmpaew vy Toj08
. ‘O Bnyna - Nl
oyl myuy-saossadapoxd e j1 Ljuoe i . =
puv j1 g anpea oyl pue ‘g oangea ayy | (<,...<"d<vxq5nm Y \/”nm
fa)el sanssadapaxd 241 jJo auo 38Pa| u
o[oanjuea a4y sayesy nding Ho £
() anjea
21 soNv) srossadopaid ayy jo ouon {u --
=
182A1 q¢ J1 () IN[UA Ayl pum '| aniwvaA u " 1 q
._ Jv (1 11 p 1 1 (<...m<._<v:_Eu= v -a
22 el saossaszapoard (e j1 Ljpuo
pue J1 | anfea a3 sayey inding u (INV z
"BB13A DDA
pur () eniea 9S4l sl 10ss0dapaad
J1 1 anfea aa saxel Indang V-1=1 Y= LON 1
a1qQonL YyIna, diysunriega uetrielo
taml. 4 L LS) 124 LIEA0N UO1 170 1ou | _D:._.hm TON

M3 JO uoTINISU) Yl 10) Sapny

sanduy / indang

Unarooyg

13

The two basic units involved are the AND and OR gate.
Another, less often used element is the NOT gate. TOP events
can be taken from a preliminary hazard analysis, or by
intuition. These events are usually undesired system states
that can occur as a result of subsystem functional faults. A
sanple fault tree, along with its corresponding circuit

diagram is shown in Figure 2-3.

The following four steps generally can be presented in
a fault tree amalysis (58).

1) system definition

2) fault tree construction

3) gualitative evaluation

4y guantitative evaluation

2 state-of-the-art review of the literature related to
fault tree analysis of each of these steps is discussed in
this chapter. Table 2.1 gives the gemeral classification of
related references for fault tree analysis. Takles 2.2 and
2.3 present the references for fault tree construction and
evaluation with regard to various methodologies. Table 2.4
summarizes the available computer codes for all the phases
of fault tree analysis from construction to evalaation.
Table 2.5 shovws the applications of fault tree methodologies

in real world problesms.

14

Rotor
s L) R
- :L‘sr Motcor ctar
‘nge cci //_\\
Plug M‘MU!OI 2
z LI
N Mo
l g
i o coul
l ¢
! , Swite* i
- L o—-—z i
A4 B
Circuit Diagram
Rator Finger in
n path of
motign rotor

l I |

Cannsctmaa Carcunt Protective Finger
cover n ’
power saurce completed ot HIESTEC TN
in place bean cup
neh
Short Swue
assembled
across rosed b
swilch b ¥
manuiacturer

Broken
wire creates
short 1

across
switch

Fig. 2.3 3ample fault tree and its circuit diagram (69)

Conductive Moisture
cebris creates creates path
path across across
switch swatch

Incorrect
connection

Table 2.1 General Classification

15

Class

References

Fault tree introduction

Fault tree construction

Qualitative evaluation

in. cut sets

Common._cause analysis

Quantitative evaluation

Probabilistic evaluation

6, 7, 12, 19, 29, 43, 50, 58
68, 69, 75, 76, 79, 86, 100,
109, 138

1, 4, 51, 52, 54, 59, 67, 70
76, 78, 80, 81, 82, 23, 91,
95, 96, 97, 104, 105, 106,
107, 113, 115, 116, 117, 136
137

2, 14, 23, 24, 32, 56, 60,
61, 62, 63, 71, 74, 8L, es,
90, 93, 98, 110, 118, 123,
127, 128, 129, 131, 132 133,
134, 135

2, 20, .21, 30, 4u, 87, 124,
126 |

3, 5, 8, 10, 13, 15, 17, 18,
22, 23, 25, 26, 28, 31, 33,
34, 35, 36, 37 38, 39, 4o,

45, 47, L8, 53, 55, 57, 6L,

72, 73, 76, 88, 89, 92, 101,
102, 119, 120, 121, 123, 125
130

Table 2.1 Cont'd
i.easures of importance

Fault tree application

16

9, 16, 53, 76, 77, 92

12, 25, 26, 27, 41, 42, 43,
54, 57, 66, 69, 75, 76, 79,
go, 81, 96, 97, 99, 121, 122,
123

17

Tatle 2.2 Fault Tree Construction

Construction Technique References

faasll's structuring process 67

Fussell's 3T (DRAFT code) 51, 52, 54

Powers and Tompkin's method 95, 96, 97

Salem et al.'s CAT 104, 105, 106, 107, 136

Lapp and Povers' computer-aid syn. 78, 80, 81, 82, 83, 137
Comarda et al.'s efficient algor. .1, 27

Taylor's CCD 91, 113, 115, 116, 117

Table 2,3 Fault Tree Evaluation

Technique References
Qualitative evaluation : MCS
1) Monte Carlo simulation
PREP (FATE option) 125
2) Deterministic Method

PRE? (COMBO option) 125
MOCUS 56,60
ALLCUTS 118
MICSUP 32, 93
EIRAFT 110
FAUTRAN 131
SETS 132, 133
FATRAM 98
DICOMIC 62
Kumanoto & Henley 74, 84
Nakashima & Hattori 90
GO 129

Qualitative evaluation : common cause

failure analysis
COMCAN 20. 21
BACFIRE 30
Wagner et al's new approach 126

Table 2.3 Cont'd

Quantitative evaluation : prob.

evaluat

Cohe

lont

Anal

ion of fault tree

rent structure theory

e Carlo simulation
RELY 4

AFTE

[)]

SALPLI_VASH 1400

CROSEZTTL'S code
ytical method
KITe

Caldarola & Wickenhauser

Other methods

Quantitative ewaluation : measures

of impo

ARl

GO

NOTED

WA _BAILI

PARTEC

SALP

Diagraph Technique

Bit ianipulation

rtance

19

3, 6, 8, 30, 1%, 33, 3”1

35, 47, 47, 49
38, 72, 88

64

99

73

38, 39, L0

119, 120, 121, 125
22, 23, 24, 25, 26

89
65
130
b5
18
5
31
127

9, 16, 53, 76, 77, 92

20

Table 2.4 Available Computer Codes for Fault Tree Analysis

Computer Code References

Fault tree construction
DRAFT 51, 52, 5k
CAT 104, 105, 106, 107, 136
L&P 78, 80, 81, 82, 83, 137

Taylor's CCD
Qualitative evaluation
1) iinimal cut set
PREP
OCUS
ALLCUTS
LIE3YP
ELPAFT
FAUTRAY
SETS
FATRAL
DICO:IC
BAM_CUTS
BUP_CUTS
2) Common cause analysis
COLICAN
EACFIRE

o1, 117, 1il, 118, 117

125
56, 60
118
32, 93
110
131
132, 133
98

62

b3

90

20, 21
30

Table 2.4 Cont'd
Quantitative evaluation

1) Probabilistic evaluation

EELY 4 72

SAFTE 6L

SALPLE 99

REDIS 73

CROSETTI'S code 38, 39, 40

KITT 119, 120, 121, 125

Caldarola & VYickenhauser 22, 23, 2L, 25, 26

PL_L0D 92
ARLIL €9
GO 65
I'0TED 130
JALI_EAL L5
PARTZC 18
SALZ 5

2) Leasure of importance

iLFORTAICE 76

22

Table 2.5 Applications of Fault Tree Analysis in Feal .Jorld

Problems

Svstem analyzed by fault tree analysis References
Aerospace safety study 12
Zlectrical system 27, 54
Chemical processing system 8o, 81, 96, 9f
Yuclear reactor safety study 25, 26, 42,
57, 66, 79, 9¢
121, 122 123
Product safety 41, 43, 69
Decision making in system analysis 75. 76

23

2.2 System Definition

System definition is often the most difficult task
associated with fault tree amnalysis. In order to perform a
meaningful fault tree analysis, two basic types of systenm
information are mneeded (10€) :

1) component operating and <failure modes 2 A
description of how the output states of each component are
influenced by the input states and internal operational
modes of that component. PFailure Modes and Effects Analysis
can be applied here.

2) system chart : A description of how the various
compcnents of the system are interconnected, +that is, how
the inputs and outputs of each component are connected to
other components. Of primary importance is a functional
layout diagram of the system of interest showing all
functional interconnections and identifyintg each system
component. An example might be a detailed schematic diagram

or a fprocess flow chart.

A further step in the system description , then, is
to estaklish the system boundary conditions (£2). These
define the situation for which the fault tree is to be
drawn. A most important system boundary condition is the TOP
event which is defined as the major system failure of
interest. Initial conditions are then system boundary events

that define the component configurations for which the top

24

event is applicable.

System boundary conditions also include any fault event
declared to exist or to be not-allowed for the duration of
the fault tree construction. These events are cailled
existing system bcundary conditions or not-allowed systenm
boundary conditions. An existing system boundary condition
is treated as certairn to occur and a not-allowed systen
boundary condition is treated as an event with 1o
possibility of occurring. Finally, in certain cases,
partial development of the TOP event, called the Tree Top,
is also required as a system boundary condition. If the tree
top system boundary condition is required, it is not
considered as part of the fault tree construction process

because it is obtained by inductive means.

2.3 Fault tree ccanstruction

Fault tree construction is gemerally the most tedious
and most critical aspect of fault tree analysis. Since the
computer codes of fault tree evaluation allow a rapid
solution of fairly large fault trees, the bulk of time is
currently spent in the actual construction of the fault
tree. For instance, the construction of a recent fault tree
for a nuclear safety system required over 25 man-years (99).
Thus, several Tresearchers have attempted to automate this
pkase of the analysis. Haasl (67) has described some general

concepts for construction methodology . Fusell (51)

25

presented a computer code, DRAFT, for electrical systeams .
Powers and Tomgkins (97) developed a safety simulation
language for chemical processes . Salem, Apostolakes, and
Okrent (104) devised a nev methodology for +the computer-
constructrion of fault trees {(CAT). Lapp and Powers (80)
rroposed a computer aided synthesis of fault trees. Camarda,
Corsi, and Trentadue (27) originated an efficient simple
algorithm for fault tree automatic synthesis from the
reliakility graph. Finally, Taylor (11€) initiated a failure
mode analysis of control systems which is later used as a

basis for cause-consequence analysis (91).

David Haasl formalized the +thought process involved in
the constrution of the fault tree. He devised a structuring
process that establishes rules to determine the type of gate

to use and imputs to the gate (€7).

In the DRAFT code, Fussell (51) has employed a
methodology called Synthetic Tree Model (STH), which 1is a
systematic method for constructing fault trees either by
hand, or via the DRAFPT program. The basic idea behind STHM is
the modeling of each device in +the system by a failure
transfer functiom. Then, by tracing through the schematic,
these transfer functions for various components are combined

and edited to form the final fault tree.

Powers and Tompkins' method (96) is an automated fault

tree construction method for chemical systems. Here the

26

investigators are dealirng mnot only with a system of
mechnical components, but one also involving complex
chemical interactions. Their approach, as in the other
methodologies, is first to break down a system into
constituent blocks, and define +their operations via unit
models, finally coupling these tcgether systematically to

form the tree.

Salen, Apostolakis and Okrent's CAT code ({105)
presented a general, computer-implemented approach for
modeling nuclear and other conmplex systems involving
mechanical, electrical, hydraulic and human interactions and
common cause effects as well. This is based on the use of
decision tables as component modeling (107), and a step by
step editing procedure of coupling components and tracing
through the system in order to construct the fault tree.
Given sufficient information concerning the specific system
to be analyzed, and a library of component models, this
approach allows the rapid, systematic construction of a

fault tree in standard forsm.

lapp and Powers' Fault Tree Synthesis program (FTS)
{80) is acccmplished by first generating a diagraph
(directed graph) for system representation, and then using
fault tree synthesis algorithm to deduce the fault tree from
the diagraph model of the system being analyzed. The diagaph

for a complete system is constructed from a flow sheet of

27

the system amnd input/ output models for the components in
the system. The fault tree synthesis algorithm is performed
by selecting the mode representing the top event and usin
the appropriate operator (depending on whether negative
feedback or feedforward loops pass through the current node)
to logically connect the local causes until all the causes

are developed to their primary events

Camarda, Corsi and Trentadue's simple efficient
algorithm (27) for the automatic construction of fault trees
concerning complex 2-state, non series—-parallel system
begins with the probabilistic graph of the system, i.e., a
graph which shows all possible ways of correct systenm
operation. The minimal tie sets of the reliability graph are
then obtained and readily transformed to minimal cut sets.
This results in a suitable form of fault tree that can be

used in any available method of numerical evaluation .

Taylor's method (116) uses algebraic models for
components with gqualifiers to indicate which eguations
describe the operation or failure of the component. These
gualified equations are then written for each component and
the resulting collection forms the system model. This model
can then be used to determine the consequences of any
deviation in the input variables. The method involves more

cause-consequence than fault tree analysis.

28

2.4 Qualitative Evaluation

Qualitative fault tree analysis consists of determining
the minimal cut sets/minimal path sets and the common-cause
failures. A minimal cut set is a set of basic events whose
occurrence causes the top event to occur; it can not be
reduced and still insure occurrence of the top event. A
common—-cause failure is a failure caused by a common event
that does not appear in the fault tree but directly affect

some of the basic events that do appear.

The minimal cot sets of simple fault +trees may be
obtained by inspection. However, large, complex fault trees
involve hundreds of gates and events, and result inp
thousands of cut sets. An inspection procedure to determine
the cut sets (and path sets) is not practical. In such
cases systematic computer-aided procedures are necessary to
reduce fault trees. Two major approaches used for computer
reduction are Monte Carlo simulation and deterministic

methods.

The Monte Carlo simulation procedure for f£finding
pinimal cut sets first assigns a time to failure for each
component based ufon an exponential failure distributiomn.
These times to failure are choosen by first generating a
uniformly distributed random number lying between 0 and 1, n
for each component, and then finding t, the time to failure,

from the following relatiom :

29

l-e"i'i

1= e xi'

where T is a missicn length which guarantees that t < T. 1In
one Monte Carlo run, a time ¢t is generated for each
component, then the components afe failed, one at a time in
order of increasing t , until the top event is produced.
This produces a cut set which is then reduced to a minimal

cut set (125).

The basic idea behind the deterministic approach is
direct expansion or reduction of the top event of a fault
tree in terms of the constituent basic events using Boolean
algekra. One of the earliest computer program using the
deterministic method is the PREP program developed by Vesely
and Narum (125). The program uses a direct, combination test
algorithm by deterministically failinmng each component
individually, then each pair, each group of three
components, etc., but this rapidly becomes a huge problem
for large numbers of components. Thus, Fussell and Vesely
(60) developed an alternate algorithm which does not require
the combination testing. It is based on the fact that an AND
gate always increases the number of events in the cut set,
and an OR gate always increases the numke of cut sets.
Fussell, Henry and Marshall (56) used this algorithm in
their fault tree analysis program, MOCUS. This is a top-

down oriented allgorithm and is designed to accept only AND

30

and OR gates. MICSUP (93) is, on the other hand, a bottom
up algorithm. It starts with the lowest level gates that
have basic events as input only, £finds the minimal cut sets
to these gates and then successively subsitutes these cut
sets to these gates. The procedure is repeated until the

minimal cut sets to the top event are found.

Semanderes (110}, in the <computer <code ELERAFT ,
introduced the concept of prime number representation of
basic events for reduction of fault trees. This concept is
useful in storing the cut sets and eliminating the superset.
The idea is to assign a unique prime number starting from 2
for each basic event. The cut sets are then represented by
the product of the prime numbers of the basic events in the
set. Each cut set is therefore stored as a unique number.
Since the fgroduct can be factorized uniquely to the
component prime pumbers, the components of the cut sets are

readily obtained.

While the above methods of finding minimal cut sets are
applicable for coherent fault trees, i.e., the fault trees
that are restricted to contain AND and OR gates only, the
SETS computer code (132) finds the prime implicants to a
non-coherent fault tree. The prime implicants are like
pinimal cut sets except that they may contain complemented
basic events. Kumamoto and Henley (74) also developed a top-

down algorithm for obtaining prime implicant sets of non-

3

coherent fault trees.

Strictly, common cause failure is any occurrence or
condition that results in multiple component failures. A
significant common cause event is, then, a cause of
secondary failure that is common to all basic events in one
or more hardware minimal cut sets. The effect of common-
cause events could be studied by altering the fault tree so
that these events are explicitly represented in the tree,
and then finding the minimal cut sets for the tree. Done in
this way, the number of mimnimal cut sets would tend to
increase substantially. Worse still, many of the minimal cut
sets would be nmixtures of basic events and common cause
events that would be somewhat difficult to interpret (137)..
Therefore, two pmethodologies for locating common cause

analysis have been developed.

The first one, called COMCAN (21), was developed by the
Aerojet Buclear Ccmpany for the U.S. Energy BResearch and
Development Administration. The program requires as imput
wvhatever minimal cut sets have been selected from the fault
tree and the generic cause susceptibility for each basic
event in each category. The algorithm then searches for
those minimal cut sets that are comprised of Lasic events
that are all susceptible to the same generic cause, and this
search is repeated for each category. Nevertheless, for

complex systems, determining the list of minimal cut sets

32

becomes a difficult and often an impossible task. Computer
time and storage capacity become prokibitive. The above
method that requires all the list of minimal cut sets as
input is restricted. To overcome this difficulty a new
procedure, proposed by Wagner et al., (126), was developed.
This approach, without examining all the minimal cut sets,
would locate minimal cut sets of any order which could fail

due to common cause failure.

For gquantitative amalysis of common cause failures,
W.E. Yesely (124) developed a statistical estimation
technique by specializing the multivariate exponential

Marshall-Olkin mocdel (87).

2.5 (Quantitative Evaluation

The fault tree is useful not orly as a tool to
visualize the various combinations of events in a systen,
but also as a convenient fcrmat for the probability
evaluation of the undesired event and all the combinations
of events that are most likely to cause the top event. This
probability information can then be used to rank the various
paths and to calculate the overall probability for the top
event. Since the introduction of fault tree analysis, the
area receiving the most research and deveopment effort has

been the quantitative evaluation of fault trees.

The first step in the gquantitative evaluation of a

33

fault tree is to find the structural representation of the
top event in terms of the basic events. Pinding the minimal
cut sets is omne way of accomplishing this step. If the rate
of occurrence and fault duration for all kasic events are
known and the statistical dependency of each basic event is
known {or assumed), then the mathematical expectation or

probability of the top event can be determined.

The Boolean representation of fault trees provides the
link with cohereat structure theory (10). When systen
success, rather than failure, is stressed, the coherent
structure theory is the foundation of reliability theory. A
coherent structure, in the context of fault trees, is
nondecreasing in each basic event, i.e., that the occurrence
of a basic event cannot cause a system transition from a
failed state to an unfailed state. This implies that we do
not allow complemented events; that is, no NOT type function
are existed. A coherent structure then contains, by
definition, all relevant basic events, i.e., the occurrence
of each basic event nmnust contribute in some way to the

occurrence of the top event (10).

The minimal cut sets/path sets of a coherent fault tree
can be obtained by using one of the available codes
(56 ,93,125). The system unavailakility can then be
calculated either a) exactly by using the minimal cut

sets/path sets to write the structure function of the tree

34

as a sum of products of basic events provided that the basic
events are not replicated im cut sets and all kasic events
are statistically independent, or b) approximately by using
cne of the follcwing standard methods (10) :

1) the inclusion-exclusion method of finding successive
upper and lower bounds to the prokability of +the top event
in terms of the mirimal cut sets.

2) the minimal cut upper bound and min path lower bound
given fault tree of statistically independent basic events.

3) the min-max bound for statistically dependent basic

events, i.e., associated basic events.

Inproved bounds for the above methods can sometimes be

obtained by using modular deccmposition (10,34).

The analysis of noncoherent fault trees proceeds in a
similar way. Instead of finding the minimal cut sets in
coherent structures, we identify the prime implicants in
noncoherent <fault trees. The prime implicants are 1like
minimal cut sets except that they may contain complemented
basic events Algorithms for obtaining the prime implicants
are discussed imn (74,132) P It is proved that all the
methods applicable to coherent fault trees, except the
minimal cut (path) bounds, can be extended to noncoherent

fault trees (35).

By the late 1960's sophicated computer programs were

available to obtain probabilistic information akout the top

event from probabilistic information about the kasic events
by using +the Monte Carlo method. Such programs have been

described by P. Crcsetti (38) and H.E. Kongsoe (72).

A typical Monte Carlo simulation program involves the
following steps (39) :

1) assignment of failure data to input fault events
within the tree, and if desired, repair data.

2) representing the fault tree on a computer to provide
quantitative results for performance of the overall systen,
subsystems and the basic input events.

3) 1listing of the failure that leads to the undesired
event and identification of minimal cut sets contributing
event results.

4) computation and ranking of basic input failure and

availability performance results.

In accomplishing these steps, the computer progranm
simulates the fault tree. Using the input data, it randomly
selects various parameters from an assigned statistical
distribution, and then tests whether or not the specified
final event occurred within the specified time period. Each
test is a trial, and these trials are run until the desired
quantitative resclution is obtained. Thus, thousands or

millions of trial years of performance can be simulated.

The simulaticn technique, as described above, is

commonly called direct simulation, i.e., all the failure

36

rates, repair rates and failure probabilities have the
original values. The accuracy of the method increases with
the number of trials but the method has the disadvantage
that the reqgquired computation time for a given accuracy of
the result increases tremendously, when the failure rates

decrease or the number of basic events increases.

In order to reduce the computer run time to an
acceptable 1level, yet the accuracy still holds. A
statistical sampling procedure called importance saapling is
used in Monte Carlo analyses (3€). This technique depends on
kiasing the simulation through the use of another
distribution so that the component or the combination of
components that cause the unlikely event are emphasized in
the sampling. So as not to bias the end result, correctioms

are made in the end.

The computer program RELY 4, developed by H.E. Kongsoe
(72) , consists of four different versions. Versions 1 and 3
use importance sampling and versions 2 and 4 use direct

simulaticn.

In 1970, W.E. Vesely (119) made a most important
advance in gquantitative evaluation of fault trees by
developing an analytic methodology, called Kinetic Tree
Theory (KITT) ., for fault trees containing repairable
compcnents. The cutput from computer programs exercising

Vesely's method {(125) contains complete guantitative

37

information about the top event which includes the
following, all as a function of time :

1) the probability of occurrence of the top event

2) the expected number of top event ocurrences per unit
time

3) the hazard rate for the top event

4) the expected number of cccurrences of the top event
during the time interval 0 to t.

Similar information is also obtained for the minimal

cut sets and primary (basic) events.

L. Caldarola and A. VWickenhauser (26€) also developed
an analytical computer program for fault tree evaluation .
This program can evaluate coherent systems assuming binary
component states with four different classes of components.
The program locates minimal cut sets deterministically using
a downward algorithm like that developed by Fussell (60).
Computational technigques are based on those derived by
Vesely (119). Besides bhaving the capability to rapidly
determine a variety of reliability characteristics for
coherent systems, the program can perform a two-phase phased
mission analysis. System unavailabvility is calculated for
the first time period (phase) and system unreliability is
calculated for the second phasq. A second computer progran
is also developed for solving noncoherent systems with

multistate components (23,24).

38

The application of reliability and fault tree analysis
methods has rapidly increased in many industries that employ
systems whose failure would have serious economic and safety
consegquences. Fault tree analysis is not necessarily a
replacement for other forms of system reliability analysis
but rather in many cases can be used in conjunction with
inductive techniques to generate a unified system
Teliability and safety analysis as has been suggested by
B.J. Garrick (64). In WASH-1400 Reactor Safety Study (99},
fault trees were used for the individual system analysis,
while event trees were used to construct the accident chains
for nuclear power plant. Bach defined system failure from
the event trees served as a top event of a fault tree which
w#was then constructed for the particular system. The result
of the system reliability computation was an interval
estimate of the reliability characteristic of interest. 2
Monte Carlo program called SAMPLE (99), vwas used to compute
the uncertainty distribution on the system reliability
characteristic of interest using the simplified
mathematical model (based on exponential failure
distribution for the system components) and wusing the
uncertainty distribution on the parameters of the component

failure and repair distribution .

The SAFTE codes by B.d. Garrick (64) are also
exapmles of Monte Carlo simulation programs. The SAFTE-1

program utilizes sampling techniques to simulate time

39

dependent failure-repair fault tree models and to perform
relevant systems reliability analysis, while the SAFTE-2
program has been written to consider the simpler case of no
repair. SAFTE-3 is a Monte Carlo program capable of handling
systems with or without redundancy and wutilizes either

direct or importance sampling techmniques.

The REDIS program (73), developed in Denmark, is based
on simulation of the direct type.The program is particularly
designed for standby systems taking into consideration the
various kinds of errors that can cause failure durirg both
operating and standby conditions. It allows for
uncertainties in data and produces a top event failure
probability with a standard deviation. Furthermore, various

types of interderendencies between components are allowed.

R.C. Erdmann et al. (45), also develop the WAM series
of computer codes to provide flexibility as well as accuracy
in the analysis of system reliability. By utilizing a common
input deck, the WAM codes can provide information about
systems modeled by any Boolean function. The information
includes the point estimates of system as well. A draving of
the fault tree as input to the evaluation codes can also be

obtained.

Several computer codes for different approaches are
also available to analyze fault trees guantitatively. Tke

SALP computer series , developed by M. Astolfi et al. (5),

Lo

in Italy, are based on the use of 1list processing
techniques for the direct manipulation of graphs. The
algorithms dintroduce the NOT operator amd gqualitative
information at the level of gates and primary events, W®hile
the SALP-3 is used for routine analysis of AND/OR fault

trees, the SALP-4 can deal with AND-OR-ROT fault trees.

The PATREC code by A. Blin et al. (18), is also based
on list processing techniques, which is realized by
recognizing and replacing known subtrees or patterns by
equivalent leaves with the corresponding unreliability/
unavailability. By repeatedly pruning the fault tree, it is
finally reduced to a single leaf which represents the system
unreliability <for umrepairable systems and wunavailability
for repairable systems. The code is oriented towards direct
computation of the top event availability without the use of

minimal cut sets.

M.F. Chamow (31) suggests a new approach involving
well-defined, closed-form methods for guantitative
evaluations of fault tree logic. The method is based on
directed graphs (diagraphs) and related matrix methods and
depends im a major sense on the digraph representations
developed for the basic OR and AND logic elements. The
benefit of +this method arises because +the Bpathematical
solutions are readily performed by standard matrix

techniques, which can be implemented either manually or with

b1

the aid of a computer.

Finally, for the utilization of computer on camputation
and storage requirements, the fault tree analysis using bit
manipulation suggested by D.B. Wheeler et al., (127), shows
the effectiveness in producing minimal cut sets and top
event probability through analysis of fault trees of various

sizes.

The measure of importance of events ard cut sets in
fault trees is another important feature of guantitative
fault tree analysis. While the evaluation of the top event
provides us with systen reliability/ availability
information, the computation of probabilistic importance
allows us to dgenerate a numerical ranking to assess
weaknesses in a systen. Such a ranking is analogous to a
sensitivity analysis. The practical applications of
importance measures are for upgrading system designs,
locating diagnostic sensors, and for generating checklists

for system diagnosis (76) .

Several probabilistic methods carn be used to compute
the importance of basic events and cut sets in the fault
tree. A fundamemtal guantity in computing probabilistic
importance is Birbaum's measure of importance (1€). He
defined the reliability importance of a component as the
rate at which system reliability improves as the reliability

of a component improves. Iin other words, Birkaum's measure

L2

of importance is the probability that the system is in a
state in which the occurrence of event 1is critical.
However, it is possible that a failure of a component can
contribute to system failure without being critical. So
Vesely and Fussell define +the probabilistic importance as
the probability that a component is contributing to system
failure, given that the system has failed by specified time

t. (53).

Barlow and Proschan (9) examined components as they
fail sequentially in time . They consider the way components
fail sequentilly in time to cause system failure, and then
define +the probabilistic importance as the conditional
probability that a component causes the system to fail by
time t. This is termed sequential measure of importance and
gives specific information about the way system <failure

occurred.

Definitions of cut set importance are described by
analogy to methods that determine component (kasic event)

importance.

BE.E. Lambert (76) developed a computer code IMPORTANCE
toc compute various measures of probakilistic importance of
tasic events and cut sets to a fault tree. The code requires
as input the minimal cut sets, the failure rates and the
fault duration time (the repair times) of all Lkasic eveats

contained in the minimal cut sets. The output of the code

43

includes seven measures of basic event importance and two
measures of cut set importance by assuming statistical

independence of basic events.

2.6 Available Computer Codes for Fault Tree Analysis

Numerous computer codes are available for processing
faulit trees. They are presented in Table 2.4. In the
construction phase of the analysis, Fussell (1) pioneered
the work with his DRAFT code for electrical systems. Salem
et al. (105) produced the CAT code based on the application
of the decision table. Lapp and Powers (80) developed the
Fault Tree Synthesis (FTS) code for chemical processing
systen. Tayior and Hollo (118) use algekraic component
models to construct a Cause-Consequence Diagram (CCD) which
extends the fault tree methodology to better describe the
the sequential effects of accident <chains and to increase

their visibility in the amnalysis procedure.

For qualitative evaluation, Vesely and Narum (125) made
available a PREP cede that obtained the minimal cut sets (or
minimal path sets) for the fault tree. Because of the time
consuming nature of the algorithms used in PREP, several
newer and more efficient codes have been vwritten employing
faster deterministic routines not requiring Monte Carlo
methods. The MOCUS code by Fussell (56) starts at the top
of the fault tree and proceeds down while the MICSUP code by

Pande et al. (93) starts at the bottom of the tree and

proceeds up. In dgeneral, MICSUP requires less memory storage
space in the computer than MOCUS since MICSUP stores all cut
sets in a single array. For fault trees containing NOT gates
{became non coherent), Worrell (132) developed the SETS
computer code to find the 'prime implicants' for the fault
tree. The prime implicants are like minimal cut sets except
that they may contain complemented basic events. Other
well-known deterministic programs for determining minimal
cut sets are ALLCUTS (118), ELRAFT (110), FAUTRAN (131),
FATRAM (S90), DICOMIC (€2), BAM-CUTS {(45) and BUP-CUTS (90).
For ccmmon cause failure analysis of qualitative fault tree
evaluation, two computer codes have been developed using
minimal cut sets as input : COMCAN (21), developed at INEL,

and BACFIRE (30), developed at the University of Tennessee.

The early computer codes for gquantitative <fault tree
evaluation vere available to obtain probabilistic
information about the top event by using the Monte Carlo
method. Such codes are RELY 4 (72) and Crosetti's code (38).
SAFTE (64) , REDIS(73) and SAMPLE (99) can also be classified
in this category. For analytic methodology of guantitative
evaluation, Vesely and Narum (125) provided the KITT code
for probabilistic fault tree evaluation starting from
primary failure information to top failure information.
Caldarola and Wickenhauser (26) also produced an analytical
computer program similar to that of Vesely and Narum. The

PL-MOD code by Olmos and Wolf (92) performed the step by

bs

step modularization of fault trees trhrough an extensive use
cf the list processing tools available in PI-1. Other
computer codes developed by many industry users and research
institutions and serving similar evaluation interests are
ARMM (89), GO (€5), NOTED {(130), WAM-BAM (45), PARTEC (18),
and SALP (5). PFinally, for the measure of importance of
events and cut sets in fault trees, Lambert (75) developed a
very comprehensive computer code, IMPORTANCE, which computes
various measures of probabilistic importance of Lkasic events

and cut sets to a fault tree.

2.7 Concluding Remarks

Fault tree analysis 1is a versatile reliakility tool
that has rapidly won favor with those involved in
reliability and safety calculations. But fault tree models
do have disadvantages. Probably the most outstanding one is
the cost of development in first +time application to a
system. Some inductive analysis technique, like Pailure-
Mode-and-Effects Apalysis (FMEA), is a much simplier amnd
more cost effective technique to apply in analyzing small
systems when a single failure analysis is adeguate.
However, as systems become more complex and the consequences
of accidents become catastrophic, a technique such as fault
tree analysis should be applied. Fault tree analysis can
efficiently direct the efforts of an analyst ir comsidering

only those basic events that can contribute to system

L6

failure and represent the relationship of human error and
environmental conditions in causing system <failure. In
addition, as the fast progress of automated fault tree
analysis, this technique can be a more effectively and

sophisticated analytical reliability tool.

A nmajorx difficulty with qguantitative fault tree
evaluation is the lack of pertinent failure rate data.
Nevertheless, quantitative evaluations are particularly
valuable for comparing systems designs that have similar
components. The results are not as sensitive to the failure
rate data as is an absolute determination of the systenm
failure probability. Because of uncertainties in failure
rate data, quantitative fault tree analysis has its greatest
value when relative rather than absolute determinations are
made. Fault tree analysis is then best applied during the

detailed design stages of a systes.

Fault tree analysis can be a most simple or a most
sophisticated amalytic reliability +tool depending on the
needs of the analyst. FPor system safety analyst, fault trees
provide an objective basis for analyzing failure modes and
probabilities and evaluating overall reliability. Simple
logic applies to both systems and subsystems, and is an
effective visualization +tool for management as well as
engineering; and fer the process control or aerospace system

analyst as well as the nuclear reactor design engineer.

L7

CHAPTER THREE

FAULT TREE CONSIRUCTION

3.1 Introduction

A fault tree 1is a deductive logic model that
graphically represents the various combinations of possible
events, both fault and normal occurring in a system that
lead to the top event. The goal of fault tree construction
is to nodel the system conditioms that can result in the
undesired event. Before the construction of the fault tree
can proceed, the analyst maust acquire a thorough
understanding of the system. In fact, a system description
should be part of the analysis documentation. The analyst
must carefully define the undesired event under
consideration, called the top event. To make his analysis
understandable to others, <the analyst should clearly show
all the assumptions made in the construction of the fault
tree and the systenm description used. Practical
considerations require that he scope the analysis, setting
spatial and temporal bounds on the systen. He should
determine the limit of resolution, identify potential system
interfaces and realize the constraints of the analysis in

terms of the available resocurces, time and money.

Fault +tree construction is commonly the most time

consuming task. While much of the statistical and cut set

analysis has been automated, actual construction of the
fault tree is usually done by hand. Manual construction of
the tree can be extremely tedious; a substantial fraction of
25 man-years of effort was required in the Nuclear Reactor
Safety study (99). In addition to the time involved, the
possibility exists that different analysts will produce
different fault trees either by incorrect logic or ommission
of certain events. 1A computer aided comstruction technique
would prove valuable in alleviating both of +the above
Problems. Any system of constructing fault trees should have
the fcllowing four characteristics (80} :

1) Handle complex systems efficiently. A complex system
is one with feedback or feedforvard loops and over 20
compcnents.

2) Consider system topology as vwell as actual
components in ccnstructing the tree.

3) Handle multivalued logic, i.e., consider the
direction and magnitude of deviations in process variables
in addition to component failures.

4) During fault tree construction, make checks to

ensure consistency among events.

The automation of the construction phase of fault tree
analysis has attracted considerable attentiom im recent
years. Several methodologies have been proposed differing in
the modeling of components or variables and in their

objectives. Haasl (67) described some general structuring

49

processes for fault tree comnstruction. Fussell (51)
developed the Synthetic Tree model for electrical systenms.
Povers and Tompkins (95-97) started the use of input/ output
models for describing the local cause and effect
relationships betvween variables and failure events for a
single component of a systen. Salem et al., (104-107) used
decision tables to aid in generaticm of fault trees. lapp
and Powers (80-82) developed the multiple edged digraph
method of modeling of cause and effect, and invented an
algorithm which ccnverts the digraph into a fault tree.
Camarda, et al., (27) imnitiated an algorithm for fault tree
automatic synthesis from the reliability graph. Taylor
(113-117) has also developed an algol-like language for
describing the cause and effect relationships for a system

componen t.

In the sections that follow, we will discuss the above

methodologies of fault tree construction in detail.

50

3.2 Haasl's Structuring Process for Fault Tree Constrution

3.2.1 Introduction

David Haasl (6€7) formalized the thought process
involved in the construction of the fault tree. He devised a
structuring process that established rules to determime the
type of gate to use and inputs to the gate. The structaring
process is used to develop fault flows in a fault tree when
a system is examined on a functicnal basis, i.e., when
failures of system elements are considered (see Figure 3.1)..
At this level, schematics, piping diagrams, process flow
sheets, etc., are examined for cause-and effect types of
relationships, to determine the subsystem and component
fault states that can contribute to the occurrence of the
undesired event. At this point, the flow of energy through
the system is followed in a 1reverse sense from some

undesirable outcome to its source.

3.2.1.1 Structuring Process

The structuring process requires that each fault event
be writtem to include the description and timing of the
fault event at some particular time. This means that each
fault event must be written to include what the fault state
of that system or component is and when that system is in
the fault state. The established procedure answers two

principle questions : 1) Is the event a state-of-comfponent

pi 3 A

Segments of Faﬂ:eg.;ee
analysis development —_—
Top
undesired
event
Top
[' structure
Accident definition Undesired
of top event subevents
System -1
phases l
Structuring process Ma%or
begins { — | b
levels
Fault L
flows i
!
[Component
rfault
states
{ A0 gate? {or gated
Subsystem .
. and detailed
J hardware flow
a dary©
The output of an AND gate occurs E.e‘??" ary
only if all the inputs exist. drires
oa.d
®The output of an OR gate occurs if any of the Inhibit
inputs exist. gate r

“out- -of-tolerance failure of a system element —

failure due to excessive operational or environmental
stress,

d,
An inhibit gate is a special case of the
AND gate. The oval indicates a conditional event

FIG. 3,1 Levels of Fault Tree Development (75)

52

or state-of-system fault ? 2) What is immediately necessary

and sufficient to cause the event ?

In a state-of-component fault event, three failure
mechanisms or causes are identified that can contribute to a
component being in a failed state :

1) 2 primary failure is due to the internal
characteristics of the system element under consideration.

2) A secondary failure is due to excessive
environmental or coperational stress placed on the systen
element.

3) A command fault is an inadvertemnt operation or non-
operation of a system element due to failures of initiating
elements to respond as intended to system conditioms.

The above failure mechanisms describe +the fundamental
process involved in or responsible for a comporent failure

node.

We see that in the case of the first two failure
pechanisms, the system element is nc longer akle to perform
its intended function {unless the element is repaired). In
the case of the third failure mechanism, the system element
can operate as intended if +the initiating elements are

returned to their normal states.

He use Figure 3.2 to demonstrate these failure-
mechanism concepts. The primary event is indicated in

circle. The command fault is shown in the rectangle. Some

53

Motor
does not
start

Circuit fails Secondary failure

to supply of motor
current to

motor

Command
Primary fault
failure

v Motor
casing cracks
due to excess.
temp. or external
vibration

Motor seizure
due to inadequate
lubrication
of bearings

Secondary failures

Operational stress Environmental stress

FIG. 3,2 Fault Tree Showing Development of
State-of-Component Fault Event (76)

out-cf-tolerance failure mechanisms for the motor are 1)
inadequate maintenance of motor and 2) excessive temperature
or external vibration. The fault tree im Figure 3.2 is a

simplified motorcircuit-switch system failure scheme.

Any fault event that can be described in terms of the
failure mechanisms described above is said to be a state-of
component fault event. In this case, the system element
under examipaticn is the sole cause of the fault event,
i.e., the event results from the action of a single

component.

An OR gate is always used to combine the input at a
lower level which consist of the three failure mechanisams or
causes as described above. Examples of state-of-component
fault trees are, 1) failure of motor to start,2) failure of
motor to turm off, 3) switch fails to open, and 8§) switch
fails to close. Events that have a more basic cause that
cannot be described in terms of a simple compomnent failure
are termed state of system fault events. In this case an OR
gate, AND gate, inhibit gate, or no gate at all can be used
to combine the events at the next lower level. In state-of-
system fault events, the immediately necessary and
sufficient fault input events must be specified. For each
newly developed event other than primary causes the
structuring process is repeated until each event is

developed to its limit of resolution.

55

3.2.1.2 levels of Fault Tree Development

A complete or global safety analysis using the fault
tree technigue on an extensive system such as nuclear power
Flant or chemical processing plant normally requires three
levels of fault tree development as shown in Fig. 3.1. The
upper structure, called the top structure, includes the top
event and the undesired subevents. These events such as
fire, explosion, release of radiocactivity are potential
accidents and hazardous conditions and are immediate causes
of top event. There is no structuring process at this level
to tell the analyst what gate to use or what inputs are
specified. The top structrure is actually a list of the
functions vwhose loss constitutes a major accident as
specified by the top undesired event. David Haasl claims
that structuring the fault tree at the top level is an art

in outlining.

The next level of the fault tree divides the operation
of the system intoc phases and subphases, until the system
environment remains constant and the system characteristics
do not change the fault environment. In this second level of
fault tree development, the analyst examines system elements
from a functional point of view. Hence, the structuring
process is used to develop fault flows within the system
that deductively lead to subsystem and detailed hardware

fault flow, which is the third level of the fault tree. At

56

the third level, the analyst is faced with one of the most
difficult aspects of fault tree analysis. He must show any
external failure mechanisas that can simultaneously fail two
or more system elements, and restructure the fault tree
accordingly. The effects of coamon environmental or
operational stresses are studied, as well as the effects of
the human factor in the testing, manufacturing,

maintainence, and operation of the systen.

To illustrate further the concepts of the structuring
process, a fault tree for a simrle electrical systenm is

given below.
2.2.2 Example

As an examRple, a sample system is given in Figure 3.3.
This system 1is a standby system that is tested once every
month. It comnsists of a battery, two switches in parallel,
and a motor. To start the motor, two push buttons are
pressed to close the two switch contacts 1 and 2. To stop
the motor at the end of test, two push buttons are
depressed. Periodically, say every six months, the operator
must recharge the hattery and perform routine maintenance on

the motor.

57

Push buttons
Switch 1

Battery——— Switch 2

-l- Motor

FIG. 3.3 Sample System

We assume that the wires or connections do not
contribute to system failure. Pre-existing faults are
allowed, e.g. the switch contacts may be failed closed as
initial conditions. We also assume that all components are

properly installed.

A detailed fault tree for the sample system is
generated via the structuring process and is shown in Figure
3.4. The top event appears as failure of the motor to stat
on test. Each gate event is labeled as to the event type,
either state cf component or state of system fault event. We
see that all command faults and secondary failures vwhen
developed are state-of-system fault events. An inhibit gate
is shown in +the development of the secondary failure,
overrun of battery. It is interesting to note that two types
of failure are shown for the switches. Switch 1 and 2 can
fail to close upon demand or they can fail to open from the

previous test and cause the battery to discharge. Close

S0C

SOC

Failyre of moptor
to start on test

58

A

No current to
motar on test

] 508

No current thru
switches on test

A

$as

|

Bath switches fail
ta close on test

&)

L 1

soc

Switeh 1 fails
to close an test

Switch
i conticts
f11l ta

zlose

Switch 2
ta close on test

fails

Switch

Secondary 2 contacts
failure of fail 0
switer 1 close

Inhibit
gate

Yote: 50C demotes state-of-
component fault event

SO0S denotes state-of-
system fault event

switch 2

Secandary
faflure of

— 505

Yo current tg
swilcnes on test

%0 current from
battery on test

505

Secondary
failure af
battery

Overryn of
battery between
scheduled racharge]

3attery operates
suffictently long

g
to discha
505 rae
Battery operates 9

for an extended
period of time

e}

Either switch is
closed for an
extended perfod of time

A

53¢ I
Switch 1 zipsed
for an estended
pertod of time

Switch
1 contacts
fail =0

Secondary
failure of
switch |

Cperator fails
to depress
push botton

S0C

Switzh 2 closes
for an =xiended
arigd of time

Switch
2 camtacis
fail to

cpen

Operator fails
ta deprass
oush potton

Secondary
failure of
switch 2

Detailed Fault Tree of Sample System

Generated via Structuring Process (76)

28

examination of the Fig.3.4 fault tree shows that human error
can play a key role in system failure. The operator can
forget to recharge the battery or fail to depress the push
buttons after the test. Fault trees that include only
hardware failures will overpredict the capability of
performance of the systen. Bealistic assessments of systenm

failure must include human error and secondary failures.

60

3.3 Fussell's Synthetic Tree Model (STH)

3.3.1 Introduction

Fussell's methodology for fault +tree comstruction is
rrogrammed in a computer code called DRAFT (51) that
automatically constructs fault trees of electrical
schematics to the level of primary hardware failures. The
tasic building blocks of the methodology are component
failure transfer functions. These are mini fault trees for
components in a fault state. The information contained in
them can be derived from a failure mode analysis which is
independent of the particular system considered. With proper
editing, the fault tree is automatically comnstructed from
the component failure transfer functions. A hierachical
scheme is developed that identifies fault events according
to order. The information required as input to the code is
1) a schematic of the electrical system, 2) when applicable,
the initial operating state of each component and 3)
boundary conditions that can impose restrictions on the top
event and events developed withinm its domain. The computer
then finds +the series circuit paths for each component in
the schematic, called component coalitions, and identifies
the order of each event requiring development. Events are
considered up to fourth order. It then imposes new boundary
conditions when necessary and them constructs the fault tree

accordingly. The flow chart illustrating the methodology of

61

STM is given in Figure 3.5.
3.3.1.1 Bvent Description

In the STH, there are two parts to the event
desription, a) the incident identification and b) the entity
identification. The entity identification is the subject of
the fault event and refers either to a comronent or +to a
compcnent coalition. The incident identification describes a
node of failure or fault state. For example, consider the
situation where current is inadvertently applied to the coil
of a relay causing its contacts to close. In the fault
statement relay contacts close inadvertently, the wentity
identification is relay contacts, and the incident

identification is close inadvertently.
3.3.1.2 Component Failure Transfer Functions

There are several important facets of component failure
transfer functions to be considered. First, the functioms
for any component must be dependent on the operational and
failure characteristics of that component alome, and cannot
depend upon the system itself. This insures +that the
transfer functions will be applicable regardless of the
system in which the component is used. Actually, this is not
only a requirement for STH, but for any fault tree amalysis,
unless component modeling is done only for a specific

system. Secondly, the transfer functions consist of € parts,

Read
and

e.d!t

input

T

Jetermine
the
component
coalitions

Tailor the
dary conditi

inter-correlation)
for the
system

[y
the top
event 3
first order
ault event?

gengrate correct
boundary
condi tions

Chocse next
event

w0
develap

1 i
Locate all tne Search for Locate the
component an COmpOnents
coalitions appropriate then fnput
containing the trans fer to the component
event function of interest
there any
mre usetul
transter -
Sukject possibie Functions? Subject the
second order transfar
fault avents functions
t0 the to the
tpundary Censor the boundary
conditions trans fer conditions
finction gr
zauple it into
the tree
E o
Couple gate
into fault Generate
tres actarding new Set wp
to the class boundary new gate
of the third conditions

Is
there

Yes
another event

to
develop?,

FIG. 3.5 Flowchart for DRAFT Computer Code (51)

62

63

as indicated by FPiqure 3.6. The first element is the output
event, or failure mode of the component. There is a unique
failure transfer function for each failure mocde of the

compcnent.

Secondly, e€each transfer functiomn has an output gate
which couples the tramsfer fumction to the rest of the tree.
Beneath the output gate, the transfer functiomn itself is
defined in terms of internal events and logic gates.
Finally, these internal gates are coupled to the tree
beneath via the input events. A sixth factor, the
discriminator, is a flag which specifies which of the
various transfer functions for a specific component can
exist simultaneously in the fault tree. For instance,
current and current too long can exist in a single

component, but no current and current too long cannot.

Primary failures are always part of the component
failure transfer functions . The logic gate used in the
failure transfer function depends upon the type of failure
considered for the component. For example, an electrical
component such a fuse can fail in such a manner as to cause
the output event +to occur implying CR logic for the output
gate. In another case, an electrical component can transmit
an overload or inadvertently transamit current. Coexistence
of another fault event is necessary for the output event to

occur. In this case, the logic for the output gate is ARD.

r -

QUTPUT
EVENT

-t - —-==-9

INTERNAL |
EVENT |

INTERNAL !
GATE

!
]
|
}
|
P | EvenT
]

|

L

Fig. 3.6 Failure Transfer Function Structure

|

l

|

! |
INTERNAL INTERNAL| |
!

|

|

-

EVENT

INPUTS

64

65

This situation is common with protective devices that fail
in such a manner to allow out-of-tolerance conditions to
exist, e.g. a fuse failing to open when a current overload
exists within the circuit. Figure 3.7 illustrates failure
transfer functioms for electrical contacts. We can see that
state-of-component fault events are embodied within these

transfer functioms.
3.3.1.3 Component Coalition Schenme

Within the context of the STM, a component coalition is
a series circuit path in which components share an alliance
with respect to current flow. If any one comporent fails to
pass the current, then no current can flow imn that
coalition. However, any component may appear in more tham
one coalition. That component, +then may receive and pass
current via one coalition, even if mno flow exists in the
other. In sample system, f£fig.3.3, there are two component
coalitions, 1) +the battery, switch 1 and the motor amd 2)
the tattery, switch 2 and the motor . This means there are
two paths by which the motor can receive current <fronm
battery. If +the switch 1 £fails, no current flows in
coalition 1, but may still flow in coalition 2 if the three
appropriate components each allow current to pass. However,
if the tattery or the motor fail, =mno current can flow in
either coalition, since these components are common to botk.

While this scheme is easily applied to electrical systenms,

current

_
SN e—

! No current : Contacts
| for cther | remain
1 reasons apen

e p—

Contacts

fail to
close

FIG. 3.7

1

Contacts
nat closed
by
external
force

66

Current
*00
long
e-——t- 1
i Current toc | fantacts
| long for | rema‘r
| Other reasons closea
SO P
1
contacts
Contacts not open
fail to by
open external
force

Failure Transfer Functions for Electrical

Contacts, (51)

67

it may be difficult to break down other types of systems

into coalitions such as these.

3.3.1.4 Ordering of Fault Events

In contrast to Haasl's structuring process in which
there are two basic fault events, state-of-component and
state-of-system fault events, Fussell's methodology divides
the construction of fault trees into four levels, or orders
of fault events, 1) first-order, 2) second-order, 3) third-
order and 4) fourth-order fault events. The following
paragraphs describe the ordering of +the fault events in the

STH. It is helpful to refer to the flowchart in Figure 3.5.

Third and fourth-order <fault events in +the STHM are
command faults. For the development of third-order fault
events, components are examined with respect to energy input
from all series circuit paths that contain these components.
This amounts to examining the state of each component
coalition that is a source of emergy or current to a given
compcnent. Events such as component receives no current
when needed and component receives current inadvertently
are examples of third order fault events. If a component is
producing a fault event because of mechanical 1linkage with
another component, such as a relay coil and its associated
contacts or a pressure switch and its ceontacts, them such an
event is referred to as a fourth-order fault event. Because

of direct component interplay, fourth-order fault events

68

always require component failure transfer functions as input
events. Events such as no current in a compcnent coalition,
inadvertent flcw of current in a component coalition are

second-order fault events.

The develcrment of third-order fault events always
requires as input second-order fault events. In examining
the fault state of each compoment coalition, we must examine
each compoment in the coalition. Hence, the development of
second-order fault events always requires as input failure
transfer functions. If +these failure transfer functioms
require third or fourth order fault events as imnput, then
the above process is repeated until there are no more
second-, third-, or fourth-order events that require
development. The fault tree is completed when all events

are developed to the level of primary hardware failures.

In some cases the top event is of first order,i.e., an
event that requires development to the level of subsysten
functional faults. In this case the analyst must manually
construct the fault tree to the level where events are
second order or higher. This procedure is analogous to the
construction of the upper structure of the fault tree
mentioned in the previous section. Fussell calls the upper

structure the tree top boundary condition.

69

3.3.2 Example

ds an examgle of the synthetic tree methodology, ve
again construct a fault tree for the sample system in
Figure 3.3. In the STM, the initial conditiomns must describe
the system in an unfailed state. The system boundary
conditions must describe the system in an unfailed state.
The system boundary conditioms are :

TOP EVENT = Motor fails to start on test

L]

Initial Conditions Switches open

Not-allowed Events Wiring or comnnection failures

Existing Conditions = None

The fault +tree is shown in Figure 3.8. HNote that a
l1ittle more detail is shown on the switch contacts in Figure
3.8 in order to illustrate the development of fourth-order
fault events. The hierarchical scheme illustrating the
ordering of fault events is evident in Figure 3.8. Also,
note that the <circled events bear an almost exact

resenktlance to the component failure transfer function given

in Figure 3.7 with initial conditions contacts open.

Second-order fault events such as no current in
component coalition impose restrictions on events placed im
their domain; e.g., if in the subsequent development of this
event, We consider the component coalition again, events
like current in component coalition are not allowed. Because

of this restriction, component failure transfer functions

70

Motor fails
to start Top event
on test first order
UppeF
Structure
or TREE
Top Boundary
| condition
No
current Third grder
to fault event
motor

Q/‘—
4]

[—
Ho current N
. NO current
‘"csg??g?e"t / in N Second prder
on coalition fault evens
no. |) no. 2 \\
1 | [\
Soad 5:;“? J Swi tch \ Failure
battery fFails to : "?- 2 Dead transfer
ails to i
close I close battery ; function
- Linkage does ’ Linkage does . \
Switch Aot &1 not close SwLLeh \
ae. | itch ose] ’ switch no. 2 no. 2
entacts fail swrtcn: no. il contacts]
v EloEn contacts \ £4i 16 //
to ciose
A -
—— ———

Linkage
to switch
no. 1
contacts
defective

F1G. 3.8

Fourth order
fault event

inkage

to switch
no. 2

contacts

Push-
button
no. 2
Jjammed

Fault Tree of Sample System Illustrating
Synthetic Tree Methodology (76)

71

with output event current are equally not allowed. Fussell
calls these restrictions, event boundary conditions. Such
conditions are of consequence when we +try to develop the
secondary failure overrun of the battery. As we see in
Figure 3.4, the battery discharges when the motor operates
for an extended period of time. This further implies there
is current in either component coalition 1 or 2. In the
context of the STM we cannot place the secondary failure of
the Lattery in the domain of the second-order fault events
given in Figure 3.8. Instead, we must consider the system in
a different operating state and construct a new fault tree
with different +tree top boundary conditions. The boundary
conditions in this case are :

TOP EVENT = Battery operates for extended period of

time

Initial Conditions Switches closed

n

Not-allowed Events Wiring or connetion failures
Existing Conditions = Motor operating
The tree top boundary condition and the fault tree are

given in Fiqure 3.9.

Fussell further assigns third order fault events to
classes. In Figure 3.9, a component (in this case, the
motor) can inadvertently receive current {or an overload)
from any coalition containing the component, implying OR
logic as shown. This type of third order event is assigned

to class I. On the other hand, in Figure 3.8, a component

—

Current in
component
¢cpalition

Nc. | too lang

Current in
switch 1
toc long

72

3attery f
operates
for extended ‘
9e::od of Upper
e Structure
or TREE
Uotor Top Soundary
operates for Condition
extended
period of
time
Existing
condition
.
Current in
component ~
co3lition Vs
No. 2 ton leng
e
7
/
/
y.
!
Switeh 1 Switeh 2 ! Zurrent to
contacts fail contacts fail switch 2
to open Lo open too long
N
~
~
~
~
~

Switch 1
zontacts
fail

FIG. 3.9

Linkage
to switch 1
contacts

defective

Linkage

contacts
defective

Fault Tree for Secondar

Failure of Battery (76

to switch 2

Switch 2
contacts
fail

o
apen

73

receives no current when needed if all coalitions containing
the component have no current, implying AND logic as shown.
This type of third-order fault event is asigned to class II.
In the DRAFT computer code, identification of the class of
third-order event is necessary for determination of the

proper logic gate to use, see Figure 3.5.

We see that for the sample system in Figure 3.3, if
switch 1 or 2 is closed, we would expect the motor to
operate. The event current to switch too long in Figure 3.9
is an existing condition and can be removed frcm the fault
tree. The AND gate can also be removed; the fault then can

simply be cascaded from one event to the other.

Additional editing concerns are also a part of STHM and
DRAFT. These deal with the replacement of identical events
within a tree by traansfers. Any gates which are repeated
within a tree may be immediately eliminated and replaced by
transfers, which greatly simplify the form and evaluation of

complex fault trees.

The DRAFT code, however, was designed specifically to
analyze electrical systems and, as such, may not be capable
of handling certain types of mechanical compoments. The
applicability of STM, and thus the DRAFT code, depends upon
the ability to define events higher thamn first order fault
events ,which is npot always possible in any but electrical

systems. PFurthermore, the DRAFT code has the disadventage

7%

that the computer memory storage may be exceeded for large
fault trees. This is due to the fact that the ccmputer must
store all the event boundary conditions that are generated

during the course of fault tree development.

75

3.4 Powers and Tompkins! Fault Tree Synthesis for Chemical

Processes

3.43.1 Introduction

The work by Power and Toampkins is an automated fault
tree constructicn method for chemical systems (95-97). The
fault tree generation procedure uses information om 1) +the
description of the system (detailed flowsheet) 2) physical
and chemical properties of materials im and around the
system, and 3) unit models which describe the behavior of
the units within the system and which are assembled +to
describe the behavior of the conplete system. The unit
models are connected to form amn information flow structure
for the complete processing system. Unit failure models are
also defined for common chemical units. By systematically
defining hazard states and searching the dinformation flow
structure for the system, it is possible to generate fault

trees for the complete process.

3.4.1.1 Unit Modeling and Unit Failure Models

In handling chemical interactions, Powers and Tompkins
have attempted to incorporate balance equations (material,
momentum and energy)., describing the tehavior of the
variables (species) which propagate +throughout the systenm.
In doing so, they have defined +three levels by which the

behavior of some output event (i.e., the products of some

76

reactions) can be determined as dependent on input events
(reactants). The simplest level is to specify merely whether
the output is dependent upon any specific inputs. The next
level allows one to ascertain the sign of the dependence.
With this information it is possible to investigate the
direction of variable changes which could lead to a
hazardous event. Finally, the quantitative behavior of the
output as function of the input constitutes the highest
level of modeling of the equation describing the
interactions. Although modeling of this level would
vndoubtedly lead to a large and complex program, the depth

of the results might well justify such an effort.

As an example of the second level of modeling, an
abbreviated matrix of coupled variables for a liquid/ligquid
countercurreent heat exchanger is shown in Figure 3.10. The
sign indicates the change in the dependent variable for a
positive change in the independent variable. With these
models, it is possible to reveal a great deal about the
safety behavior of a chemical processing systen. The
variable interactions and signs are sufficient for
preliminary analysis. The sign and magnitude of the

interaction are required for more detailed studies.

In order to perform the fault tree anmalysis, not only
must models be generated for system performance as designm,

but models must be developed for describing failure modes.

77

rll—, T4, mé
m2,P2,T2 - ANNVNNINANAAANNNNN- P1,T1,#1
Hot Liquid
m3,P3,13

Cold Liquid

Dependent Variables

mi m3 T2 T4 u
T1 0 0 + + c
T3 0 C + + 0
u 0 0 =] + X
A 0 0 - + C
P1 + 0 + + +
P2 - 0 = & -
P3 0 + - - +
Ph4 0 - + + -

Fig.3.10Variable coupling matrix for a liquid/liquid heat
exchanger. (96)

78

In line with the modular approach, a failure model will be
assoclated with each unit performance model. In terms of the
descriptive framework for the unit models (steady state
material, momentum, and energy balances) , the failure modes
may conveniently be classified for each unit as material,
momentum, and energy balance failures. General failure modes
for each category (material, Mcmentum and energy) are
presented in Table 3.1. HNote that the entries in Table 3.1
represent immediate causative factors, not necessary primary
failures. The general failure modes provide the framework
within which specific failure models for a particular unit

(reactor separator, pump, etc.) may be formulated.

3.8.1.2 Pault "Tree Generationm

The general methodology for the generation of fault
trees is the successive identification of predecessor events
from the top node of the tree (the final hazard event) +to
the outermost mnodes (the sequence-initiating or primal
events). Fault tree generation starts with the definition
of final hazard states. The first step in generating is then
to obtain a mini-fault tree for the hazard imn guestion.
These fault trees have been defined for a wide range of
possible hazards and are stored in the prograa's library.
The fault tree for ome type of explosion is shown in Figure
k[. The fault tree indicates that for this type of

explosion to occur, at the location in question, the correct

79

Table 3.1 General Failure Modes for Chemical Processing Equipmen’

I. HMaterial balance failures (species related)

A.
B.

D.

Routing._(wrong flow path)
Flow '

1. Low

2. High

3. Wrong direction
Leakage

1. Internal

2, External

Species (not normally present in system or environs)
Reaction

1. Undesired side products
2. Incorrect conversion

3. Wrong location

L, Wrong reaction

I11. Momentum balance failures (pressure related

A.

B.
c.
D.

Reaction

1. Gas release

2. Gas consumption
Pressure sources

Species (Vapor pressure)

Pressure sinks

. Leakage

1. Internal

Table 3.1 Cont'd

F.

Phase changes

III.Energy balance failures (temperature related)

A.

Reaction

1. Endothermic

2. Exothermic
Internal heat sources
Phase changes
External heat sources

Frictional heat sources (rotating equipment)

Leakage
1. Internal
2. ExXternal

Fouling of transfer surfaces

80

Explosion

Species

Fig. 3.11 Simplified hazard fault tree for an "Explosion"

Concentration

Ignition
Source

Pressure

Temperature

81

82

species, concentrations, temperatures, pressures, and
ignition source must be present. This version of the fault
tree for explosion is simplified and more complicated

versions can be utilized.

The top of the complete fault +tree is hence defined by
the logic required for the occurrence of +the final hazard.
The tree is then ccnstructed downwards, as usual, by using
the unit models to determine the species, temperatures and
Fressures required to produce the +top. The sign of any
dependencies can be obtainped from the proper matrix, thaus
determining roughly the concentraticns necessary. Then the
species required can be trace backwards through the systen
to determine via what paths they could have arrived. This
might involve both mechanical and chemical fprocesses :
opened valves, previous reactions to be backtracked etc..
Factors such as materials and age of components might be
factored in, as well as the inclusion of data on reactivity
of various chemical species under variaus conditiomns, and/or
models to predict their behavior. During the investigation
of these processes, the fault +tree is being constructed,
combining mini fault +trees at each intermediate step as
failure states are defined. Once the fault tree has been
completed, it is in standard form employing AND and OR
gates, and is readily evaluated by any of the fault tree
evaluation codes described in chapters 4 and 5. The overal

strategy for generating fault trees is shown in Figure 3.12.

83

Describe System Generate,Evaluate, and
and = Rank Hazards

Species Propertiis
'

Start Fault Tree Construction for
the Most Hazardous Event

’1.

Obtain Mini Fault Tree for Hazard

B

Unit Find Information Flow Pathways
Models Leading to each Precursor Event

For Each Infeasible Information
Flowpath Add a Mini Pault
Tree for Component Failure

O

Stop

Fiz.3,12The overall strategy for generating fault trees. (95)

84

After definition of system hazards, a mini fault tree for
the hazard is defined (see Figure 3.11). For precursor
variables in the hazard, information flow paths for normal
and failed states of the system are searched out. Mini fault
trees which represent specific failure modes of equipment

are used to bridge gaps in the imnformation flow paths.

3.4.2 Example

Powers, Tompkins and lapp developed a safety simulation
language, called SESIL, for chemical processes by utilizing
above discussed synthesis method (97). The language provides
a general means for producing simulation models for a wide
range of chemical processing systems. Boolean models which
describe the safety performance of individual chemical
processing units are linked together to describe the
performance of complete processing systens. Data on
properties of mateials and equipment within the process are
used to formulate Boolean equations for potential systenm
hazards (explosion, fire, overpressure, release of toxic
material, etc.). These hazards are evaluated to determine
their economic importance. The primal events (valve failure,
pover failure, etc.) which could <cause each hazard are
determined by symbolically solving the Boolean equations

which simulate the process. This solution is a fault tree.

Given the process description ard species data of the

systen, the first step in the analysis is to define

85

potential hazards of interest for the process. Once these
hazards are identified, they are converted into Boolean
hazard equations. For example, it is known that butadiene
and air will combine very rapidly under certain conditioms
t0 cause an explosion. These conditions are defined by the
physics and the chemistry of this reaction. The usual
conditions are :

1) butadiene and oxygen must be present;

2) the butadiene concentration must be above 2% (by
volume) and less than 12%;

3) the phase must be vapor; and

4) the temperature must be above 450 C or an ignitiom
source present. These conditions can be formed into a

Boolean hazard equation :

Explosion (at locatiom X) = {(Butadiene Present) AND
(Oxygen Present) AND (Concentration Butadiene greater than
2%) AND (Concentration Butadiene less than 12%) ARD (Vapor
Phase)) AND (({Temperature greater than 450 C) OR (Ignition

Source))

This equation defines the top of the fault tree. The
SESIL system contains over twenty types of hazard equatioms.
These equations are directly 1linked to the property data
file. The link is made so that the hazard eguation describes

the correct conditions required for the event.

The basis of the SESIL language is a set of unit models

which describes how failures are initiated and propagated in
cach piece of equipment which might be found in a chemical
process. These models are sets of Boolean difference
equations which are derived directly from the steady state
constitutive equations (mass, energy, and momentum balances)
and from failure experience for the processing unit. An
example is shown in Figure 3.13 for a simple counter-current
shell and tube heat exchanger. The first set of eguations
describes how the ocutput variables could deviate from their
normal operating variables due to changes in input
variables. The second set of equations describes how the
output variables could deviate from their normal values due
to events which are initiated within the heat exchanger.
These models are formulated so that recycle of informationm,

comron mode failures, and human errors can be considered.

For the fault tree synthesis, the variables in the
hazard equation (temperatures, concentrations, pressures,
phases, etc.) are the same as the variables in the Boolean
equations for the unit models. These unit models have been
linked together to form a 1larger set of Boolean egquatiomns
for the complete process. A fault tree is the Boolean
equation which relates the hazard to the primal events in
the systen. Hence one can sclve the large set of Boolean
equations which describes the process, for the variables in
the hazard egquation; a fault tree is the result. The SESIL

system has two means for solving these equations; one is a

87

'&-Tv"‘q
R.T { ! P .T
ma.Fa.la — (AL
T HOT LIQUID
ma.Pl,T:
COLD LIQUID
OQUTPUT EVENT INPUT EVENTS
T2+ = Til+ U T3+« U MI+ U M3I-
ENERGY T2- = Ti- UT3I- U MI=- U M3+
BALANCE T4+ = Ti+ U T3+ U MI+ U M3I-
T4 - = Ti- UT3I- U MI=- U M3+
(P2 + = MI+ U PI +
P2 - = MI- U PI -
MOMENTUM | M2 + = M+
BALANCE M2 - = MI- where U= logical “or” operotor
M4 + = M3+
| Ma - = m3-
rc; * = C:Q-
MASS € ~ = ¢C -
BALANCE Ch o+ = Cy+
Co — = Cq-

FAILURE EVENT

M2+
M4+
T2+
Ta+
P2+
P4+
& #

G, o+

EF = EXTERNAL FACTOR (FIRE WEATHER.ETC }

- -

s ELy NIPR<P) UILY N (P <P
- -

* ELS NP« P) UIL*N (P <R

L

UNIT FAILURES REQUIRED

= EF* U RI,U RI_U PLy UPHS. UEL, N (P<P]
= EF" U RILURILU IL"N (P <P,)
* ELE N (P<P U ILY N (P, <P) +R3,
: ELg NIP.<P) UIL* N (P <P)+R3,
< IL® NP, <R N (Ch< CI U ELL NIP,<Pg) N (C,<Cyd U RPY

-] 1 - 1
= ILY NP <P N (CL<C) + ELZN(P, <P} N (CL<C,) URP,

where U 8 OR

N @ AND

EL = EXTERNAL LEAK

IL =
PHS =

H& HOT STREAM

1 = SPECIES i

INTERNAL LEAK
SOLID PHASE FORMATION

C = COLD STREAM
= ® PRIMAL EVENT

PL = PLUGGING
RI = EXQTHERMIC REACTION
R3 & GAS RELEASE REACTION

RP'= REACTION WHICH GIVES
SPECIES

€ = ENVIRONMENT

FIGe 3e13Boolean performance and failure model for a counter-
current neat exchanger.

(97)

88

path-finding method and the other is based on the d-
algorithm for finding faults in a logic circuit. The detail

of the algorithm is discussed in (97).

89

3.5 Salem et al's Computer-Oriented Fault Tree Construction

3.5.1 Introduction

The current approach of Salem, et al. (104-106) is a
general computer oriented method of modeling complex systems
of mechanical, electrical and hydraulic components, allowing
for human interactions and common cause effects as well.
This method is based on the use of decision tables for
component modeling (107). These tables are used to describe
each rossible output state of a component as a complete set
of combinations of states of inputs and intermnal operational
or failed states. Given a method of describing the specific
system configuration including initial system states, and a
means of defining a top event of interest, the decision
table models are used for the appropriate components within
the system and are combined and edited to form a complete
fanlt tree for the top event desired. The methodology has
been implemented by the development of a computer code,
called CAT, which, following several stages of editing,

rroduces a fault tree in conventional format.

3.5.1.1 Component Modeling : Method of Decisiomn Table

For the purpose of comnstructing fault trees, component
models in terms of sub-fault trees, as used in the other
automated approaches (51,96), would seem to be an immediate

solution. However, a method which would involve a simple,

90

tabular scheme, readily usable by those unfamiliar with
fault tree analysis, would be especially appropriate.
Moreover, a numerical rather than logic model might suggest
alternate construction schemes, and possibly avoid some of

the complications of other approaches.

Decision tables are an extension of <truth tables in
that they allow any number of states to be used for each
entry in the table. Although the binary logic of the truth
table is very simple, it is often insufficient for use in a
complex system. For example, a three-state variable might be
required to describe the water pressure in certain water-
injection systems (no pressure, 1low pressure, and high

fressure).

The decision table, then, would be used to describe
each possible output state as a complete set of combinatioms
of states of inputs and internal operational or failed
states. As an example, a complete decision table for the

fuse is shown imn Table 3.2. We can see that :

Table 3.2 Complete Decision Table for Fuse

Row No. Input State Internal Mode Output State
1 0 0 0
2 0 1 0

9

4 1 0 1
5 1 1 0
€ 1 2 1
7 2 0 0
8 2 1 0
9 2 2 2

Signals : 0 = no signal, 1 = normal, 2 = overload Internal

¥odes : 0= good, 1= failed open, 2 = failed closed

1

(shorted)

1) State 2 occurs at the output ik only one way : input
overload and fuse failed shorted (row 9).

2) Output state 0 ocurs whenever the input is G0,
regardless of the internal mode. Thus, the first three rows
can be replaced by one row : 0 - 0, where the '-' means
that the center column has no effect on the output.

3) State 0 also occurs whenever the fuse fails open,
regardless of the input state. Thas, ro¥ 2,5 and 8 can be
replaced by one row : - 1 0, showing that the input has no

effect if the fuse has failed open.

Table 3.3 shovws the result of using 2) amd 3} to
simplify Table 3.2. Now, we can consider the extension of
these reduction methods to general, multi-state decision

tables. In order to produce a 'don't care' entry, we must :

1) Search for rows with identical output states. If a

92

component has more than ome cutput, all outputs must be
checked.

2) PFor rows with identical output states search for
£hose rows which agree in all but one coluamn.

3) A 'don't care' situation then occurs if, in the
reraining column, every possible state is represented by one
of the rows found in step two. Thus, eliminate all but omne
of +the rows and include a '-' state in the appropriate
‘colunn of the one remaining rou.- One of the Xkey points in
this procedure is that in gemneral only input and internal

states can be reduced to 'don't care! states.

Now we will see how the reduced decision tables would
be used in practice to generate fault trees. For the first
step, some desired output state is necessary, for example,
the event 'no output from fuse'. This might be the top event
of a tree, or some intermediate event that would be required

to produce a zero input to a succeeding companent.

TABLE 3+3 REDUCED DECISION TABLE FOR FUSE

Row Input Internal Qutput
no. state mode state
1 0 - 0

o N B W N
N N et et

N O N O -
N O — — O

93

Given the desired output state, a search is made for
rows with the correct state, in this case row 1, 2 and 5 of
the completely reduced table, Table 3.3. Since any of these
rovs has the correct output, they are connected by an OR
gate, each row being a single input. Now the three input
events must be developed. Row 1 has only a single defined
state, 'no input to fuse', in addition to a 'don't care'
state. Thus, row 1 is replaced by that single event. Row 2
has a 'don't care' input, and internal mode of 1 (failed
cpen) . This is a primary failure and thus becomes a direct
Frimary input event. The development of row 5, however,
indicates a more general situation. Here there are two
states defined, both of which must be true for the output
state to be zero. The result is an AND gate with the two
appropriate inputs. The fault tree for this development is

shown in Figure 3. 14.
3.5.1.2 Definition of Systenm

The method of decision tables has allowed the modeling
of the operation and failure of each individual component in
a system. Now it remains to determine a method of coupling
conponents and tracing through the system im order to
construct the fault tree. This can be done by defining a set

of 'nodes' and their corresponding system states throughout

the system.

No output
from fuse

No input
to fuse

use
failed

open

l

—

Overload Fuse
at input good

Figure 3.14 Sub-Tree for Event: "No Output from Fuse"

94

95

2 node will be defined as any point in the systenm at
which the output c¢f a component is connected to the inputs
of one or more succeeding components. That is, a node or
junction rerresents the point of interconnection between
component inputs and outputs. A system state which consists
of a specific condition of the system will ke defined at the
node. Thus, in constructing the +tree, all events being
traced at a particular moment must be compatible with system
states already defined. When a specific event is being
developed, that event (a system state) is first checked and
then set as a fixed state at the appropriate node, and all
subsequent events are checked against the system states at
the correspoanding nodes. The concepts of system nodes and
system states, in combination with the use of decision
tables, will now be illustrated by a short example. Figure
3.15 shows a single powver supply connected to two
components, omne directly, and one through a fuse. The
numbers 1 through 4 indicate the system nodes, which could

be identified systematically by the following scheme :

Power 1 2
Supply ' Component 1 ——
2 C t 2
Fuse omporien __L[,._

Fig. 3.15. lNode numbering scheme for sample system.

96

Power Supply : Type = 101, Output = 1

]
Do

Component 1 : Type 102, Input = 1, Output

I
&=

Component 2 Type 102, Input 3, Output

Fuse : Type 103, Input = 1, Output = 3

This is essentially all the input required by a code
such as CAT, and defines both the interconnections of all
input and output nodes, and specifies the +type of each
component. For example, Node 1 is defined as the output from
the power supply, and input to both component 1 and the
fuse. The type numbers would assign specific decision tables
to each component and, in this example, would indicate that
Component 1 and 2 were identical, modeled by the same

decision table.

In addition to system states which are defined as the
tree is generated, other states may have been defined as
initial or boundary conditioms. Although these ternms
represent slightly different concepts, their effct is the
same, and the term boundary condition will be used for both.
Both are states of the system which are defined initially
and continue to exist throughout +the entire fault tree;
gquite often they will be used to qualify the top event

description. Meanwhile, the top event is essentially a set

97

of boundary conditions which have the added function of

starting the construction process.

3.5.1.3 Editing Concerns

In the CAT code, the editing is divided into three

phases :

1) Editing while in the process of constructing a gate.
This includes checking events for consistency with pre-
defined system states and deleting them as required.

2) Removing excess, redundant, or contradictory gates
or events after each gate or group of gates has been
completed.

3) Final editing after the tree has teen constructed.
This includes checking for transfers, renumbering gates and

cther operationms.

In the editing during construction of a gate, the basic
concern is that no events be developed, or allowed to exit,
which contradict existing events. The method of editing is
based upon the utilization of component decisiom tables in

conjunction with the system states as already defined.

The intermediate or 'post-gate' editing will take place
each time the final branch of a gate has been completed.
This editing generally comnsists of two phases. First is the
elimination of single input gates which have resulted from

the deletion of other inputs during previous editing steps.

98

Then follows a search for events which may have bleen
rendered redundant or contradictory due +to the removal of

the single input gates.

Once the top gate of the fault tree has been completed
and intermediate editing accomplished, the tree itself is
finished and is in standard form suitable for further

analysis.

3.5.2 Example

In order to demonstrate some of the techniques
described above, an example tree will be constructed
manually. The simple electrical circuit used will be in
Figure 3.1€6. S1 and S2 will be signals, defired to be in
existence as boundary (initial) events. 'P.S.' will be a
povwer supply closing SW3, the relay switch defined by Table
3.4. The decision table for the power supply will be defined

simply by power supply good gives signal out, power suplly

failed produces no signal.

We will develop the decision table for switch 1 and 2.
These will be standard two position (on/off) switches which

will have two internal mechanisms : position (1 = off, 2 =

on) , and mechanical (0 = good, 1 failed open, 2 = failed
closed). For no signal input, we can immediately realize
that there will be no signal output, regardless of the

position or mechanical state. The rows remaining to be

99

Fig 3.16 Sample System

TABLE 3.4 DECISION TABLE FOR RELAY SWITCH _

Row Signal '_ Coil Internal Output
No. Input Input Coil Contact Signal
1 1 - - 2 T

2 1 1 0 0 1

3 1 - 2 0 1

4 0 - - - 0

5 - - - 1 0

6 - 0 - 0 0

7 - - 1 0 0

100

considered, then, will all begin with a signal input state.
There will be € possible rows correspoading to the 2 x 3 = 6
possible combinations of internal states, and the result is
Table 3.5. By applying the reduction rules of Section
3.5.1.1, the final reduced decision table for switches 1 and
2 is shown in Table 3.6. The junction which connects the
outputs of switches 1 and 2 to the input of switch 3 is the
OR gate of Table 3.7. That is , switch 3 receives a signal

if either switch 1 or switch 2 transmits a signal.

Having labeled the system nodes in Figure 3.16, Wwe now
proceed to define the top event as no signal at point 7,
which might actually be an inmtermediate event as required
by scome larger system, as shown schematically to the right.
Furthermore, let us define switches 1 and 2 as being on, in

addition to signals 1 and 2 being present.

de begin generating the tree with the TOP event which
specifies node 7, the output from switch 3. Using decision
Table 3.4 for the relay switch, we search for a zero output
state, finding rows 4, 5, 6 and 7. Row 4 requires a zero
signal input (node 5), row 5 has a contact failed open, row
6 regquires mno input to coil (node 6) and a good contact,
while row 7 needs a coil failed open and good contact. That

is :

Table 3.5 Decision Table for Switch 1 and 2

Signal
Row Input Position Mechanical Output
1 0 - - 0
2 1 1 0 0
3 1 1] 0
4 1 1 2 1
5 1 2 0 1
6 1 2 1 0
7 1 2 2 1

TABLE 3,6 DECISION TABLE FOR ON/OFF SWITCH

Row Input Position Mechanical Qutput
1 0 - - 0
2 - 1 0 0
3 - - 1 0
4 1 - 2 1
5 1 2 0 1

TABLE 3+7 DECISION TABLE FOR OR GATE

Input |

Tnput 2 Output

0
1

0

0
1
1

101

102

TOP

A

lSigna1=0

Signal=Q] (Contac Cojl Contac
node 6 good ?g? good

i
i

To evaluate branch 1, we note that node 5 is the output
from the junction (OR gate), and from Table 3.7, no output
Iequires no signal at both inputs (nodes 2 and 4). This

rroduces :

Signal = 0
node 5

— p—

Signal = 0 Signal

L__node 2 node
' i

E]
o

Tracing the left branch, node 2 is output from switch
1. Table 3.€ has three rows with an output of zero. BRow 1,
no signal at switch input (node 1), contradicts the initial
condition sigﬁal at point 1. BRow 2 requidres the svitchk to

be off, which again contradicts an initial condition. Row 3,

103

(switch failed open), however, is valid, and is the only

row left, thus leaving the following :

|

Signal =
node 2

0

SW 1
row 3

These two single input gates, however, reduce to the single
primary input itself. Furthermore, we develop the event
signal = 0 at mnode 4 in the exact same manner, but for

suitch 2. The resulting branch 1 of the top gate is :

Signal = 0
node 5
[]
Signal = 0 Signal = 0
node 2 node 4
SW 1 ?H
fails oélis

104
The final remaining branch is signal = 0 at node €. uodé €
is the output from the power supply, and the event no output
rroduces the single primary event power supply fails. Thus ,

the entire tree is :

TOP

Signal=0
node 5

Signal=0 Signal=0

node 2 node 4
SW 1 SW 2
fails fails
open open

This is the final form of the fault tree, unless it is
desired to remove the event contact good. The approach may
be employed if it is assumed that the probabkility of contact
failure is sufficiently small (P<<1). In this case, the
event contact good is defined as almost sure to cccur and is
deleted from the two ARD gates. The gates, themn, are both
left as single 1input gates, and their inputs are inserted
directly into the top OR gate. The final form of the fault

tree for sample system is shown in figure 3.17.

TOP

Signal =
node 5

0

Signal =
node 2

0

Signal = 0
node 4

SW 1

fails
open

Fig

SW 2

fails
open

3.17 Final Tree for Sample System

105

106

3.€ Lapp and Powers' Computer-aided Synthesis of Fault Trees

3.6.1 Introduction

In order to synthesize fault tree automatically, it is
first necessary to develop a satisfactory representation of
the system under study. This representation must be general
so that any type cf process may be anal yzed. At the same
time, it mnust be suited for ease of computer processing.
lapp and Powers' synthesis methodolcqy (80) uses a digraph
{directed graph) as system representation to satisfy the
needs. The digraph describes the normal, failed, =~ and
conditional relationships which exist between variables and
events in the system. The fault tree is deduced directly
from a digraph model of the system being analyzed. A
computer program was developed to perform the fault tree

algorithm.

3.6.1.1 Process Representation-Digraphs

A digraph is a set of nodes connected by directed
edges. The nodes of digraphs used in fault tree synthesis
represent process variables and certain types of failures.
In the case of chemical systeas, these would be
temperatures, pressures, flow rates, etc.. Relations among
the various nodes are embodied in the edges connecting then.
If a deviatiom in one variable cauase a deviation in a

second variable, then a directed edge is drawn from the node

107

representing the first variable to the node representing the
second. A number is assigned to the edge depending on the
direction and magnitude of the second deviation relative to
the first. If a moderate deviation im the first variable
causes a moderate deviation in the second, a value of '1' is
assigned to the edge, on the othker hand, 3if the second
deviation is very 1large compared to the first, a value of
'10" is assigned. If the second deviation is very small
compared with the first, no edge connects the nodes. The
sign of +the number reflects +the relative direction of the
deviations. If they are in similar directions, the number is

positive, othervese it is negative.

As an example, consider a comtrol valve with spring
action AIR TO CLOSE. We wish to represent the J:elationship.
between the air pressure on the valve (denoted by P1) and
the flow path rate of fluid through the valve (M2). Since a
rositive deviation in P1 causes a negative deviation in M2,

the diagraph is as follows :

o6

Suppose the valve has quick-closing characteristics. Then a

rositive deviation in P1 causes a very large negative

deviation in M2, and the digrarph is thg following :

108

-10
Pl _

The number associated with the edge can be interpreted as a
partial deviative (9M2/9P1) and is termed the gain between
the variables. Thus far, we hLave concerned ourselves only
with the usual relationship between variables. How do we
model failures which alter these usual relationships? One
answer is simply to include additional edges between the
variables that represent the failed gains. Ccnsider the
valve again and suppose we wish to include the failure
REVERSED VALVE ACTION. In this case, increasing P1 will
increase M2. The following digraph embodies the additional

failure :

REVERSED
+1VALVE ACTION

Sl

In addition, if we wish to include the failure VALVE STUCK
(increasing P1 has no effect on M2), then we would use the

following digraph =
REVERSED
+1VALVE ACTION

0 VALVE STUCK

109

Edges with =zero gains are drawn only if these edges
represent failures. If zero-gain represents the normal

relationship, no edge is drawn between the nodes.

The rules for constructing the system digraph from the

component digraphs are :

1) start at the top event (output) variable.

2) get the component model from which the variable is
the output

3) Work backwards through the component models to its
inputs assembling the system digraph. (Do not trace any of
the output variables to other variables at this time.)

4) For each input variable on the resulting digraph,
repeat step 3 until variables are encountered which have no
inputs (system boundary or failure modes).

5} The variables in the component digraph models are
labeled by their location in the system Zflow diagranm.
External variables in the same location are 1labeled as the
same variable. Components manufactured by the same company
are given the same variable for certain failure modes. This
leads to discovery of common-cause situations. Extension of
the analysis to common systems such as power supply,
instrument air, or a single operator results in numerous

common variable situations. These are deduced directly from

110

the interconnections shown in the flow diagranm.

€) If loops exist in the process, it is possibdble to
pass through the same component digraph twice. The same
rules given in steps 3 and 4 should be followed. Do not
trace variables that have already been developed.
- 7) Variables that are conditions on edges are developed

in the same mranner as input variables.
3.6.1.2 Fault Tree Synthesis Algorithm

The process description is in the form of a digraph
after the system digraph was constructed. The task nov is
directly deduce the fault tree from the digraph. This is
accomplished by a synthesis algorithm which 1is based on
local conversion of the digraph variables, events, and edges
into a partial development of the fault tree. In order to do
this, +three basic conversions of digraphs into fault tree
are performed :

1) They are based on whether negative feedback loops or
negative feedforward loops pass through the digraph
variatle.

2) They depend on the value of the deviation of the
output variable. The range of operation of the loops is
used to select the operator.

3) The fault tree 'operators' are shown in FIgure 3.18.
They are applied recursively until all nodes in the digraph

have been develored.

111

FOR NEGATIVE FEEDBACK LOOP VARIABLES

The Vlaria.ble
CR
| |
| |

Large or Fast Re;rsal Input Variable
Disturbances off NFEL Events on NFBL
Normal Di_lst:urbances i
o i |
off NFBL Zero Gain Input Variable
Events on NFBL Value = 0

FOR NEGATIVE FEEDFORWARD LOOP VARIABLE JUST BEFORE START OF LOOF

The &;a.riable
OR
f I i
Variables
ofE NEFL P

o 1
Variable which Fail other Side(s)
starts NFFL of NFFL

OTHERWISE

The Vlariab le
OR

|
r | 1
Input Variables

Fig 3,18 Boolean Expressions for Digraph Variables (81)

112

The consistency of loop variables are checked against
conditions developed in the tree. (e.g. previous conditions

and the domain of AND gates.)

A general alqgorithm is described as follows :

1) Generate digraph and find all negative feedback and
feedforward locgs.

2) Select node representing top event.

3) Determine local cause of this event by noting the
inputs to the node of the digraph.

) Delete any local causes which violate comnsistency.

5) Select the appropriate operator depending on whether
negative feedback or feedforward loops pass through the
current node. Use this operator to connect logically the
remaining local causes. If negative feedback or feedforward
loops are involved, store the appropriate event for later
consistency checks.

6) Select a node corresponding to an undeveloped event

and return to step 3. If only primal events remain, stop.

3.6.2 Example

Consider the flow controcl loop shown inm Figure 3.19.
The system senses the flow and adjust the valve position to
maintain flow at the set point value. The controller may be

placed on manual. When on manual the controller

113

Controller "" Point

@4'
Flow @

Sensor

Ay

Air
(to Open)

Fig 3.19 Flow Control System

Contraller
Fails
High

Lossof
Instrument
Air

Fig. 3.20 Digraph for a Flow Control System (81)

114

maintains the output of the controller at its last value.
Changes in the input to the controller do not cause changes
in the output when in manual operation. The controller may
also be made reverse acting by either explicitly changing
the action Dby activating a switch on the contrcller or by
increasing the 1loop gain or dead time (or reset rate or
derivate rate if integral or derivate acticon is present in
controller). The digraph for the flow control system is
shown in Figure 3.20. The digraph was contructed by starting
at the TOCP event (in this case flow out of the system H3)
and working backwards through the digraph models for each
component in the system. The procedure is illustrated in

section 3.6.1.1.

The algorithm of fault tree synthesis is then, as
described in secticn 3.6.1.2, based on the logical (AND, OR,
FOR) combinations of digraph variables (and their values)
shich could cause a particular deviation in amn output
variable. The Boolean exrressions for a digraph variable
given in Figue 3. 18 were based on a detailed study of how
negative feedback loops and negative feedfoward loop might

fail. The negative feedback loop Eoolean expression has

115

three major terms. The leftmost branch shown in Figqure 3.18
indicates that a 1large or fast deviation in amn input
variable to a negative feedback loop will pass through the
loop. That is, an OR gate is indicated. The second term
(center branch) denotes the fact that if a normal deviation
in an input variable enters a negative feedback loop that it
is also necessary (AND) to fail the feedback 1loop by
inactivation. The third term (right kranch) of the Boolean
expression for a negative feedback loop indicates that the
loop can directly cause the deviation in output variakle by
becoming a positive <feedback 1loop. As noise is always
present in these loops we assume that reversal of the loop
is all that is necessary to cause the loop to go unstakle.
However, if two reversals occur they cancel each other amnd
the 1loop remains negative. Hence the exclusive OR gate

indicates on reversal event or another but not both.

The negative feedforward loop Boolean equation has two
major terms (branches). The Ileftmost branch indicates that
if the disturbance variable entering the loop does not send
signals down all sides of the negative feedforward loop, the
loop will not cancel out the disturbance (hence an OR gate).
The right hand term indicates that if a deviatiod in an
input varible activates all sides of the negative
feedforward loop. It is necessary to have the disturbance

AND fail the other sides of the loop.

116

If the digraph variable is not on any negative feedback

or feedforward loops, use an OR gate.

The fault +tree derived from the flow «control digraph
(Figure 3.20) is shown in Pigure 3.21. Gates 3, 4, and 5 are

due to the feedback loop operator.

117

(18) woIsks To13uc) MOTA ® a0y 2011 Inwd [Z*C W

no1 s1yed saanjdny
ucmf—ﬂm () auy1
|
pasaan’ly ot d—u
u_oaﬂum ((1- Vuzv_
3 Ron3s
5 ﬁvu 208Y9S (0)ygu)
€1 ¥ Ienum o
; Ia11033u0)
(1H)ra pPos1aAay Ew! - L &
x
o.:ou_ucou Z1 Lo Ao:__m
01 W
usH _
‘3ad ySw syyed MOMIS (0)sd
6 W s asTioxpuoy PATPA |
| a+)
uadp s1TRA
8 posionsy L L ? 1 el)
Qt_.ma SATEA s o

118

3.7 Camarda et al's Efficient Algorithm of Fault Tree

Synthesis from the Reliability Graph

3.7.1 Introduction

The fault tree automatic synthesis introduced by
Camarda et al {27), deals with 2-state systems which have a
considerable number of components. The approach begins with
the probabilistic graph of the system, i.e., a graph which
shows all possible ways of correct system operation, and
results in a suitable form of fault tree that can be used in
any available method of numerical evaluation. The general
algorithm for this approach is described as follows:

1) Represent the system by means of its reliability
graph G. Choice of terminal node S & T corresponds to
selecting the particular system failure of interest (TOP
event).

2) Investigate all minimal tie-sets Letween S & T in
G. To perform this, a simple method is employed for removing
the nodes of the reliability graph one by one and resulting
in a transmission function F* which is the union of all the
tie-sets between S & T.

3) Simplify F*, eliminating all nominal tie-sets, and
obtain F as a function of all +the minimal tie-sets. The
indempotence and absorption law of Boolean algebra are used
here.

) logically invert the S-0-P (sum of product)

119

expression of F by means of DeMorgan's law yielding F as a
P-0-S (product of sum) expression.

5) oOrder the minimal tie sets according to the number
of their components and then gather those components that
are common to the greatest number of minimal tie-sets. This
will lead to the final multilevel expression, F (no longer

in P-0-S form) fcr the fault tree.
3.7.2 Example

The system has reliability block diagram and corresponding
graph as shown in FPigure 3.22a and b.

1 The branches a, b, d, are unidirectional; c, e are
bidirectional. HNodes 1 and 4 are the input and output nodes
respectively.

2) Remove mnode 2 from the graph; the modified graph is
shown in Figure 3.23a. BRemove node 3; this is the final
result and is shown in Figure 3.23b. The tie-sets of the
system are :

a.b, c.d, c.e.b, a.e.d, a.e.c.b

3) Simplify the nonminimal tie-sets; the minimal tie-
sets are :

a.b, c.d, a.e.d, c.e.b

F in the S—-0-P expression is :

F=a.b +c.d + a.e.d + c.e.b

4) logically invert F

F=(a+Dd).(C+a).(2 +&+ d).(C+e + D)

120

A B
(a) LE ! E _ 5
e | . F“;_'

(b)

Fig.3.22 Reliability Block Diagram and Reliability
Graph {27)

121

1 ab 4
b
(a) - d+eb
3
1 F¥- ab+(c+ae)(d+eb) 4
(b) -

Fig.3.23 Reliability Graph after Removal of (a) node 2
(b) node 2 and 3 (27)

122

5) Factor @ from factors 1 and 3 in above eguatiom, and
C from factors 2 and 4.

F = (at b.(e + d)).(C + d.(e + b))

This form corresponds to a 4-level representation of
the fault tree, as shown im Fiqure 3.24a. Figure 3.24b is a

two-level fault tree obtained from exrression (4).

123'

a) 3 i
":\5 !/:\'
.|“-"@\ (N
N e L

. [

<
(&)
()

Fig. 3.24 (a) Two Levels Fault Tree for the Example Considered
Fig. 3.24 (b) Multilevel Fault Tree(27)

124

3.8 Concluding Remarks

In order to reduce the cost and time of adequate fault
tree construction and to avoid oversights of some failure
sources, automated treatment is required. On the other hand,
it has some disadvantages, €.g. human errors amnd
environmental effects usually cannot be considered, but it
can be a rapidly executed initial procedure, to be focllowed

by a more detailed fault tree analysis.

Generally the automatic fault tree development requires
three main steps :

1) to find a fproper system or component modeling method
which is suitable for computer programmings;

2) to develop an algorithm for fault tree coastruction;

3) to implement these algorithm cn computers.

Up to the present, algorithms published on automated
fault tree construction are rather limited. As for the
methodologies discussed above, Hassl's structuring process
(67) marks a starting point of fault tree construction
technique. No ccmputer program was frovided at this stage.
Fussell (51) pioneered the work of automatic comnstruction
with his Synthetic Tree Model (STM). Features were :

1) primarily for electrical systen;

2) logic models used as component transfer functions;

3) Discriminator flags used to ensure internal

consistency;

125

4) Computer code produced.

Powers and Tompkins (96) concentrated primarily on
defining a methodology for synthesis of process-plant fault
trees. The basic theme was similar to Fussell's STM except
that a functional model was defined which showed the
interactions between process variables. No computer code was

produced.

Salem et al.(105) produced the computer Automated Tree
code (CAT). Features are :

1) Decision table models contains multiple input and
ocutput states suitable for non-binary systems.

2) The code can synthesize trees containing AND gates.

Earlier codes dc¢ mot do this.

Lapp and Powers (80) produced the Fault-Tree Synbthesis
(FTS) code. Features are :

1) A 2-step method bases on constructing a fault tree
from a digrapk which represents the system interactioms. 1
computer program is now being developed which will aid in
generating fhe digraph;

2) Multiple-state values comnsidered for both nodes and
links;

3 Automatic detection of feedback and feedforwgrd

loops and use of this information in the synthesis.

Nevertheless, some controversy exists concerning this

approach. A number of papers have been writtem commenting on

126

various aspects of the L & P algorithm (70,78,82.83).

Camarda et al (27) proposed an efficient algorithm for
fault tree automatic synthesis from the reliability graph.
The reliability graph representation is, for large systenms,
generally much easier to obtain than the fault tree, because
the ways in which a physical system can operate are much
fewer than those in which it can fail. However, this
approach can only handle those complex 2- state, non series-

parallel systems, and no computer code was provided.

Finally Taylar and Hollo(116) use algebraic component
models to construct a Cause-Consequence diagram (CCD) (91).
The Cause-Consequence Diagram is the most ccmprehensive
representation and has recently received widespread interest
as a method for reliability and safety analysis of complex
systenms. It extends the fault tree methodology to Letter
describe the sequential effects of accident chains and to
increase their wvisibility in the analysis procedure. The
CCD methods is based upon the fact that the paths from
several independent fault events pass to their consequences
through focal nodes representing 'focal events'!, which very
often have been identified during plant design. The 'focal
events', therefore, will generally release som -limiting
action. By selecting expedient ‘'critical events! as 'focal
events' a cause search, as well as a consegquence search,

will be facilitated in a systematic way.

127

The cause diagram of CCD is the same as the
conventional fault tree. The fault tree (cause diagram)
construction algorithm suggested by Taylor and Hollo (116)
is similar in principle to those described by Fussell (51)
and by Powers and Tompkins (96). It works by tracing the
course of events backwards through a component network. At
each stage it takes a given event established in the fault
tree and looks among component transfer functions for a
combination of an input event and component variable
conditions, which can lead to the already established event.

For detailed explapation, consult references (113-117).

There has been considerable interest in the use of
computer codes for fault tree construction because it is a
complex and time-consuming task. The work on fault
propagation and its representation has reached a point where
the basic methodology 1is reasonably well understood and
tested. However, there are a 1lot of difficulties in fault
tree synthesis which still remain unsclved (4). The
published algorithms are not yet of sufficiently high
quality for general use. Criteria need to be established so

that algorithms can be evaluated.

128

CHAPTER FOUR
QUALITATIVE EVALUATIONS OF FAULT TREES
0.1 Introduction

The fault tree can be used as a visual medium in
communicating and supporting decisions based on the
analysis. Either the analyst or the management can inspect
a fault tree and determine by engineering Jjudgement the
most likely sets of basic events leading to the top
event. A qualitative Jjudgement can be made regarding the
safety of the system and the identification of critical
system elements if the system 1is to be upgraded. A
qualitative evaluation can also take into account many
practice considerations and assumptions that at times may
be difficult to incorporate in quantitative calculations.
Moreover the qualitative evaluation usually serves as an
intermediate step to the gquantitative evaluatioms. The
results of a gqualitative evaluation, however, are less
manageable due to the subjective nature of decisions based
on gqualitative judgement. Certain gualitative ©procedures
that were developed as a part of fault tree analysis are
presented in this chapter. They are divided into two
categories : finding minimal cut sets path sets, and common

cause failure analysis.

129
4.2 Minimal Cut Sets / Path Sets

The first step in a gqualitative evaluation is +to
determine the minimal cut sets and the minimal path sets of
the fault tree. 1A cut set is a set of basic failures which
‘are collectively sufficient to cause the undesired event. If
all the numbers of a cut set are not only sufficient, but
also necessary to cause the undesired event, then such a cut
set is called a minimal cut set. A path set 1is a set of
basic successes which are collectively sufficient to assure
the undesired event. If all the nunkers of the set are not
only sufficient, but also necessary to assure such a
succéss, then such a path set is called a minimal path set.
The minimal path =sets of a fault +tree are the same as the
minimal cut sets of the dual fault tree, which is
constructed by interchanging the AND and OR logic gates and
changing the basic failure to basic successes in the orginal

tree.

TOP
EVENT

| |

562

Fig.4.,1 Fault tree example

130

The minimal cut sets of simple fault trees may be
obtained by inspection. Consider the fault tree given in
Figure 4.1. By inspection the £following combinations of

basic events (cut sets) are found to cause the top event:

cs1 : E1, E1

cs2 : E1, E3
Cs3 : E1, E4
Cs4 : E2, E1
cs5 : B2, E3
CSé& : E2, E&

Al1 the above cut sets, however, are not minimal cut
sets and the supersets have to be eliminated. This also may

be accomplished by inspection.

In CS1, the event E1 is duplicated, and it may be
reduced to E1l. CS2, €CS3 and CS4 are supersets of CS1. (S5
and CS6 are neither supersets of CS1 nor of each other, and
so they are retained. Thus, the minimal cut sets of this

simple fault tree are :

BCS1 : E1

MCs2 : E2, E3

L]

MCS3 : E2, E4

large complex fault trees involve hundreds of gates and

events, and result in thousands of cut sets. An inspection

131

procedure to determine the cut sets and path sets is not
practical. In such cases systematic computer-aided
procedures are necessary to reduce fault trees. Two methods
used for computer reduction are Monte Carlo simulation and

deterministic metheds.

4.2.1 Monte Carlo Simulation

The Monte Carlo simulation procedure for finding
minimal cut sets/ path sets may be summarized as follows :

Step 1: generate n independent random numbers R
(i=1,24ee<<,0n), uniformly distributed between 0 and 1. (n is
the number of basic events)

Step 2: if 0<r <P (j=1,2,....n), the jth event E

is triggered where P is the probability of occurrence of E

Step 3: decide if the combination of the triggered
events caused the top event.

Step 4: if the top event occurs, store the combination
of the triggered events; this is a cut set. If the top event
does not occur discard the combination of the +triggered
events. Step 1 to Step 4 constitute a trial.

Step 5: after a sufficient number of trial are
prerformed, compare the stored cut sets with each other and

retain only the minimal cut sets.

In order to illustrate the above procedure, consider

the fault tree shown in Figure 4.1. Let the probabilities of

132

occurrence of the basic events by:

P1 : 0.4
P2 : 0.55
P3 : 0.5
P4t : 0.6

Ten trials are conducted, and their outcomes are given
in Table 4.1. The cut sets are given in the last column.
After eliminating the supersets, the minimal cut sets found

are

MCS1 : E1

MCS2 : E2, E4

Comparing these minimal cut sets with those obtained
by inspection, it becomes evident that one of the minimal
cut sets, namely, (E2, E3) was missed by the simulation
procedure. If, however, more trials are conducted, the above
minimal cut set also may be obtained. This is illustrated in
Table 4.2 in which ten more trials are conducted. From the

total of 20 trials, all the cut sets are obtained.

In the above example, the fault tree is simple and the
event failure probabilities are high. Therefore, all the
minimal cut sets are obtained imn just 20 +trials. But most
practical problems involve large fault trees and small
failure probabilities, and therefore thousands or even

millions of trials may be required to determine the dominant

123

ATdVL WOOINVYH wous N3MvL 3uv SHIGWNNN WOGNVY 3HL
HN220 LON §300 AN3A3 N
SHMID0 IN3A3 A

2 % A Al n] Al w cvosz- | voeze- »SOSI- oL22s-
38 H A Al A | » | w fosvl- | 19E¥y 0z9¥Z- 21819
3% A Al N a] a gzue- | 2sess cseIz: 1£80% -

23 Y3 A M N x| a Sii9- 16919 £rze!- £9061:

e N W] n| w| w 19z96- | cie20- | 96s06: y6c6L
R Bl A Al a]l 2| w 1wy wELl- £98.0- z2vze-

'3 A | n| n]| a 81889 | B9vYE: L5¥50- 1Ls
- N n| | a] w S1620 vesl6 | SOWEE: 9E0LL-
383 3 A Al a | al w v508Y- s2052- oLLL)- 19v58-
38 % A Al A a] w seroe 900Lb- 21z s1208-
138 1nd aor |¥ “a u.mu.. nou_...f.__.._- & v, £ 2 1
*3] €a] za| 3

(19) 14 3w

134

ATV WOINVYH wou4 N3NVL 38V SHIGNNN WOONVH

ML
HNJI20 LON S30Q LN3A3 N
SUNDD0 INIAT A
3 nu _m A A A N A 2829%’ Liliby’ 1E686° 28160° oz
- N Al a]l N N] sezex s98IE 658.8° eevsy’ | 61
b3 %23 5 A Al N A | A | azess | esece £2620° S¥L.0 8l
£3 & A N| o] a| ~n| eooze ve92!’ vovsy' 1e82y’ 2
— N N] N|] N]| N]| vzoee 00109" 20889" 6vL26° 9l
e N n| N| N| N 9zzIe’ 90156 | wwoge vecze | s
— N Nl | a] W I£218° 861" 91187 ooes’ | ¥
— N Al N N N| sosee Zveee £eL2L cools" | €
- N Nl N &]| N] soue TR 180° zeces | 2
— N N| A N| N 2008.° 20£90- 2c6v0- £oI69: "
138 1N 4ol a.n“_ n..nM_ B.m.w_“n__] £,) VB Bt

(19)z*H 3w

135

cut sets. Bowever, this problem may be overcome by
incorporating an appropriate importance sampling procedure
(88) in the simulation. Vesely's PREP code (125) wused the
Monte Carlo simulation with importance sampling in finding
the minimal cut sets for fault trees. The method has the
feature that the most important minimal cut sets, those most

likely to occur, are found first.

Howe ver, the Monte Carlo method does have its
disadvantages :

1) even for a qualitative analysis, basic failure
probabilities are needed.

2) the method does not guarrentee the determination of

all the minimal cut sets.

In spite of these drawbacks, it 1is still a very
powerful technique, and is capable of analyzing complex
fault trees involving 1logics which are not amenable +to

deterministic methods.

4.2.2 The Deterministic Approach

The basic idea behind the deterministic approach is
direct expansion or reduction of the top event of a fault
tree in terms of the constituent basic event using Boolean
algebra. In the example given in Figure 4.1, it is easy to

show ¢

TOP EVENT = G1 + G2

136

]

(E1 + E2) . (E1 + E3 + E&b)

E1 + E1 E3 + E1 E4 + E1 E2 + E2 E3 + E2 E4

The right hand side of the equation gives the cut sets of
the top event. The elimination of the supersets reduces the
above equation to the minimal cut sets. The Boolean
expansion given above is from top down. The cut sets could
also have been determined by Boolean reduction of the tree

from tkottom up.

Determination of the cut sets of 1large fault trees
would be impractical without the use of a computer. Several
computer codes for finding minimal cut sets have been

developed in past two decades.
4.2.2.1 PREP (COMBC optionm)

one of the earliest computer programs using the
deterministic methods is the PREP program developed by
Vesely and Narum (125). The program, except the Monte Carlo
option (FATE) described above, uses a direct, combinatin
testing algorithm (COMBO) for its deterministic approach.
First, one by one the basic events are tested to see if they
could cause the undesired event. Those that could do so are
one event minimal cut sets. Then the two-event combinatiomns
(e.g., E1 and E2, E2 and E3, E1 and E3, etc.) are tested.
In the two-event combination testing, the events which are

already found to be one-event minimal cut sets are not

137

included, since any combination containing them could only
te a superset. The procedure is repeated with three-event
comrbinations and so on, until all the possible combinations
are tested. The user may stop the testing after a specified
level of combinations, say two-event combination, are
tested. In such a case the algorithm will give all the

minimal cut sets to that level.

Though the combination testing algorithm is straight
forward and gives all the minimal cut sets directly, the
number of combinations to be tested becomes unmanageably
large in a large-sized fault tree. For example, the number
of two event combinations for a tree with 2000 basic events
is about 2 million (2000!/21 (2000-2)!=1999000). The number
of three event combinations for the same fault tree is over
1.3 billion. Testing such numbers of combinations can be
prohibitive. Hence the combination testing algorithm is not

suited for large trees having high redundancy.

4.2.2.2 MOCUS

Fussel and Vesely (60) developed an alternate
algorithm which does not require the combination testing. It
is based on the fact that an AND gate always increases the
order of the cut sets (number of events in the cut set), and
an OR gate always increases the number of cut sets. The cut
sets obtained by the algorithm are called Boolean Indicated

Cut Sets (BICS). The BICS are not necessarily minimal cut

138

sets, and Lence they have to be compared Wwith each other and
the supersets elimirated. Though the determination of the
BICS by this algorithm is relatively fast, <the elimirnation
of the supersets may reguire consideralble amount of computér
time. Fussell, Henery and HMarshall ({5€) used this algorithm -
in their fault +tree analysis frograrm, 40CUS. The sanme
algoritha was independently conceived by Diven, Griffing,
Thorpe‘and van Slyke {(118) and was used in their progran
ALICUTS. ALLCUTS produces not only the ginimal cut scts, but
also the prokbabilities of occurrence of each, which can Lte
used to gauge their relative importarce. The top event

prcbability, however, must still be ccmputed separately.

The determination of the BICS may bte 1illustratcd Ly
analyzing the sample fault tree of Figure 4.1. The solutioa
is started Ly forming a matrix with the top event at the

first lccaticn :

NC HE = number of events in
the cut sets
+ NC = number of cut sets

Next the top event is replaced by the gates ané events helow
it {here, 61 and G2). Since it is an A¥D gate, it wonld
increase the nuusmber of events in the cut sets. So G1 ané G2

are enter=3 in the first rowv of the matrix.

139

NE —P

Gl| G2

v

Then the gate G1 is replaced by the events belew it, namcly

E1 and E2. Since G1 is an OPF gate, it would increase the
rurekber of cut sets. 50 E1 and E2 are entered in two
different rows. The gate G2 which accompanied G1 1ir the
matrix above, should accompany botk E1 and E2 in the new
matrix.
NE P
e1| G2
Nc | 2] G2

Fext the gate G2Z 1s replaced by the gates arnd events helow

1k

B|R|R|E|B|R
RIC|B|IR|B|R

Since therc are no mecre gates, but orly basic events in the
matrix, the procedure 1is corplete. The firal matrix

indicates that there are six BICS, namely :

Cs1 : E1, EI

cs2 : 1, E3

140

cs3 : E1, E&
cs4 : E2, E1
cs5 : E2, E3
cs¢ : E2, EN

The supersets may now be eliminated by comparing the cut

sets with each other.

§.2.2.3 MICSUP

MICSUP (93), however, 1is a program that works from the
bottom up. The algorithm starts with lowest level gates,
those with only components as inputs. The cut set for a low
level AND gate is the set of all inputs. For a low level OR
gate, each input component become a separate cut set. The
process continues for higher level gates, 1i.e., those with
only gates or gates and components as inputs. The cut sets
for a higher 1level AND gate are formed by taking the union
of all combinations between the input sets. The cut sets for
OR gates are all the set inputed. Taking again as an example

the tree in Figure 4.1., the process is as follow :

step 1 G1 (E1) (E2)

[T}

G2 (E1) (E3) (EH)

step 2 : Top Event (E1, E1)
(E1, E3)
(E1, EBb)
(E2, E1)

14

(E2, E3)

(E2, EU4)

The final step in the process is reduction. This step may be
performed after each gate, or, to obtain the BICS, only
after the top gate. The sets from the previous example are

BICS. Through reduction, we obtain the minimal cut sets.

E1

L]

Step 3 : Top Event MCS1
MCS2 : E2, E3

MCS3

E2, E&

The important merit of the upward algorithm over its
predecessor, MNOCUS, a downward method, is the ability to
give the minimal cut sets of any intermediate gate without
further processing. This allows the user to break up large
trees into smaller, more manageable segments. Another merit
is the efficiency of MICSUP over MNOCUS in both time and
space requirement. Having the cut sets at each gate, allows
reduction which eventually reduces processing +time by
removing extraneous sets. Also knowing from TREEL, a
preprocessing progranm, the number of times a gate is
replicated, allows reductiomn in storage space by removing
all gates below the current processing level which do not
appear again. A mathematical derivation and proof of MICSUP

can be found in Chatterjee's paper (32).

142

4.2.2.4 ELRAFT

Semsnderes (110) introduced the concept of prime number
representation of basic events for reduction of fault trees.
This concept is useful in storing the cut sets and
eliminating the supersets. The idea is to assign a unique
prime number starting from 2 for each basic event. The cut
sets are represented by the product of the prime naumers of
the basic events in the set. Each cut set is therefore
stored as a unique number. Since this product <can be
factorized uniquely to the component prime numbers, the
components of the cut sets are readily obtained. The prime
number representation also makes the reduction of the cut
sets to minimal cut sets easy. The reduction procedure
consists of two steps. First, the cut set numbers (product
of the basic event prime numbers) are reduced to the product
of distinct prime numbers only, thus eliminating any
duplicate events in the cut sets. Second, if a cut set
nunber is divisable by ancther cut set number, the latter is
eliminated as a superset of the former. Semanderes used this
Prime number manipulation technique in his ELRAFT progranm.
This technigue also forms the basis for Wong's FAUTRAR

program (131).

The storing of cut sets and the elimination of
supersets by prime number representation may be illustrated

via the example fault tree of Figure 4.1. First the four

143

basic events are represented by the first four prime number

starting from 2, i.e.,

E1
E2
E3

E4

G1 and G2

G1

G2

H

"

~ U W N

are OR gates and, therefore,

2y 3

2, 5, 7

The combination of these events through +the ARD gate G1,

gives the following results :

Ccs1
Cs2
Cs3
Csg
Cs5

CS6

E1,
E1,
E1,
E2,
E2,

E2,

Elimination of

numbers as the

Cs1

C52

Cs3

Ccsy

L Y]

E1
E1,
E1,

E2,

E1-—- 232 =14
E3 —-—2x5=10
E4h —— 2 x 7 = 14
E1t-—- 3 x 2 =¢
E3 —-3x 5= 15
E4b ——- 3 x 7 = 21

the duplicate events by reducing the cut set

product of distinct prime numbers yields,

-2
E3 — 10
E4 —— 14
E1 — 6

144

Cs5 B2, E3 -- 15

Cse€ E2, E4 — 21

The supersets are eliminated by discarding those cut sets

that are divisable by others. For example :

cs2/cs1 = 102 = 5 (integer)

Hence CS2 is a superset of CS1, and so discarded. Similarly
CS3 and CS4 may also be eliminated. So the minimal cut sets

are 3

MCS1 : CS1 —= 2 =E1
MCS2 : CS5§ — 15=3x 5 = E2, E3
MCS3 3 CS6 — 21 = 3 x 7 = E2, E4

The advantages of the prime number representation are :

1 the cut sets may be stored as a single number,
instead of a number of basic events.

2) the superset eliminations are accomplished by simple
mathematical operationms.

Again, this algorithm begins at the bottom of the tree,
working upwards, forming intersections and unions of events,

as appropriate for the gate types encountered.

4.2.2.5 SETS

In a coherent fault tree, the 1logic gates are
restricted to AND and OR gates and the minimal cut sets can

be obtained easily by the usual fault tree methodologies

145

described above. The trees of complex systems, however,
often include gates other than simple AND and OR, e,g., EOR
and NOT. Cut sets do not apply since the trees no longer
have monotone properties, i.e., they become non-coherent. As
stated in a stateof-the-art discussion on fault trees (58),
the minimal cut set concepts, under this situation, should
be replaced by a set of literals in a prime implicant in
Boolean algebra. The set can be called a prime implicant

set.

The SETS computer code (133) developed by Worrell, is
designed to find the prime implicants to a fault tree. The
prime implicants are like minimal cut sets except that they
may contain complemented basic events. The Set Equation
Transformation System (SETS) (132) allows the generatiom of
set equations directly, or by 1logical combination of other
set equations through a process of substitution. The
execution of the program is carried out in three major
steps. First, it will be necessary to read an input
representation of a fault tree, establish an equation for
each intermediate event as a function of its input events,
and then make these equations available for further
processing. Next, we shall want to change the form of an
equation using a substitution process that allows us +to
control the literals that will occur in the equation. In
particular, we must be able to replace any literal in the

right part of an equation with the right part of the

146

equation for that literal, if it exists. Finally, it must
be possible through the application of identities to reduce
any equation +that has been generated, and ultimately to

determine the set of all prime implicants for it.

Take the sample fault tree in Figure 4.1 for example.
We first obtain the set equations for all intermediate

events.

G1 = E1 V E2
G2 = E1 V E3 VE&4

Top Event = G1 A G2

Now, we start the substitutionm process. As the right part of
the equation is prccessed from 1left to right, each literal
is replaced by the right part from its equation, if one
exists., Thus, we create the following Boolean expression for

the top event.
Top Event = (E1 V E2) A (Et1 V E3 V E4)

Then, the right part of the equation for the top event is
expanded by the distribution law into a disjunctive normal
form, while at the same time applying the identities X A X =
Xand X VXA Y=X. This will result the sum of the prime

implicants that we seek :

Top Event =(E1AE1)V (ETAE3)V(EIAE4)V(E2AE1)V
(E2A E3)V (E2AEA)

147

=E1IV(ETAE3)V(EIAE4)V (E2AEN)YV
(E2AE3)V (E2AES)

=E1V (E2AE3)V (E2AE4)

And the minimal cut sets are obtained from +the final

expression of the top event shown above.
4.2.2.€¢ Other Algorithms and Computer Codes

New algorithms and computer codes for finding minimal
cht sets/path sets of fault trees are continuously being
developed by many industrial users and academic and research
institutions. A ccmputer program FAILTREE (85) developed by
the Foster Wheeler Development Corporation uses the concept
of binary bit manipulation to generate the minimal cut sets.
Since digital computers are very efficient in binary
operatioans, the representation of events in binary bit
strings and their reduction by the use of binary 1logic
operation inherent in the computer give a substantial

reduction of computer time.

Rasmuson and Marshall (98) also developed the code
FATRAM for determining the minimal cut sets. The method,
which was developed +to make more efficient use of computer
memory, is a top-down algorithm similar to MOCUS. ‘The gates

are resolved in a deterministic manner according to the

148

following rules : 1) AND gates and OR gates with gate inputs
are resolved first, and 2) OR gates with only basic event
inputs are resolved last. When comparing its computer memory
requirements and the execution time with MOCUS, +the FATRAN
algorithm does show the adventage on saving computer core

Wemory.

The DICOMICS code, developed by Garribba et al, (€2) is
based on segmenting the original tree into a fully
equivalent forest of subtrees and on constructing, rather
then searching, minimal cut sets for the tree starting from
minimal cut sets of subtrees. The major advantage of the
method is the direct determination of minimal cut sets up to
any order requird. There are no size or complexity
limitations and processing time is almost independent of
size of the tree, number of minimal cut sets, and maximum

order of minimal cut sets.

There are numerous algorithms for obtaining prine
implicant sets of a Boolean function. These algorithms can
ke applied to non-coherent fault trees. The drawbacks of the
algorithms are that they assume initially a sum of product
or a product of sum expression of the top event in terms of
the primary events. These expressions involve a large number
of terms, and their reduction generally requires a large
number of operations or large computer memories. Kumanoto

and Henley (74) presented a top-down algorithm for obtaining

149

prime implicant sets of non-coherent fault trees and avoided
sum of product expressions of top event. Some discussions

and controversy regarding the algorithm are found in (84).

Finally, Nakashima and Hattori (90) proposed an
efficient bottom-up algorithm for enumerating minimal cut
sets of fault trees. This method aims to improve the
conventional bottom-up algorithm so as to obtain all minimal
cut sets more quickly. The improvement is to reduce the
number of checks of redundant terms for the logical product
of two reduced sum-of-oriduct forms. A computer program

BUP-CUTS is produced.

150

4.3 Common-Cause Failure Amnalysis

Common cause failure analysis, also called common mode
failure analysis, is an integral part of a complete systenm
safety and reliability analysis. A common cause failure is
any occurrence or condition that results in mnultiple
conponent failures. Epler {4Y4) reported that 'the comaon
mode failure may be dominant by as much as a factor of 10'.
Taylor (113) reported on the frequency of common cause
failures in the U.S. power reactor industry. "of 379
component failures or groups of <failures arising from
independent causes, 78 involved common mode failure of two
or more components.' The reported dominance and fregquency of
common cause failure events illustrates the need for an

effective approach to common cause failure analysis.

In the context of fault tree analysis, CORMON cause
failure analysis deals with identifying the mechanisms that
are external to the systen elements and can cause
simultaneous failure of a number of elements or paths. In
the context of a command fault, we are concermed with system
interface conditions that result in an unrecognized
dependence on a control element. This means identification
of human as well as hardvare functional interdependencies.
In the context of secondary failure, we are concerned with
unforeseen environmental or operational stresses that can

simultaneously fail two or more system elements.

151

A current approach to computer aided common cause
failure analysis consists of five basic steps {12¢) :

1) Determine the list of hardware minimal cut sets for
the system being analyzed.

2) Obtain the qualitative failure characteristics for
each basic event in the minimal cut sets.

3) Search the complete list of hardware minimal cut
sets for common cause condidates using a computer.

4) Include the probabilistic effects of the common
cause condidates in the quantitative system analysis.

5) Form conclusions and recommendations based on the

results of the qualitative and quantitative analysis.

Two programs have been developed for common cause
failure analysis wusing minimal cut sets as input; COMCAN
(21) , developed at INEL, and BACFIRE (30), developed at the
Univrsity of Tennessee. A new procedure for automated common
cause failure analysis of complex system is also proposed by
Wagner et al. (126) . The approach locates common cause
failures without examining all the minimal cut sets which
are usually enormous and often an impossible task for a

large fault tree.

4.3.71 COMCAR

Strictly, common cause failure is any occurrence or

condition that results in multiple component failures. For

152

fault tree analysis the term secondary failure will be used
to identify the categories of component malfunction
pertinent to common cause failure analysis. A significant
common cause event is a cause of secondary failure that is
common to all basic events in one or more hardware minimal
cut sets. If a minimal cut set has a significart common
cause event and, if all the components represented by the
bsic events in that minimal cut set share a 'common physical
location.' that minimal cut set is called a common cause

candidate.

A large number of secondary failure causes can be found
that would cause component failures. Therefore the analyst
is directed toward the generic cause of component failure
rather than the specific event that results in the component
failure. For example, the events ‘'water hammer' and 'pipe
whip' can be represented by the cause 'impact'. These causes
are termed generic causes. To further aid the analyst, three
broad categories of generic causes have been suggested (21):
mechanical-thermal, electrical-radiation, and chemical-
miscellaneous. Table 4.3 shows potential failure causes of a

mechanical-thermal mnature.

A common cause analysis (COMCAR) program was written to
implement the methodology. The program requires as input
whatever minimal cut sets have been selected from the fault

tree and the generic cause susceptibility for each basic

153

Table 4.3 Generic Causes._lechanical/Thermal (134)

Generic Cause Generic Cause

Specific Secondary Causes

Symbol
I ‘impact
v Vibration
P Pressure
G Grit
S Stress
T Temperature

Plpe whlip,water hammer,missiles
earthquake, structural failure
Machinery in motion,earthquake
Explosion,out-of_telerance syst
changes(pump overspeed,flow
blockage)

Airborn dust,metal fragments
generated by moving parts with
inadequate tolerances

Thermal stress at welds of dis-
similar Metals |
Fire,lightning,welding equip-
ment,coolant system faults,

electrical short circuits

154

event in each category. If the location option is used, the
domain of each generic cause must also be supplied as input.
In essence, the algorithm then searches for +those minimal
cut sets that are comprised of basic events that are all
suspectible to the same generic cause, and this research is
repeated for each category. Suppose, for example, that four
min cut sets have been selected (BE1,BE3.BE4), (BE1,BE2),
(BE3 ,BE6) and (BE2,BE4,BES,BE6), where BEi, 1<i<6, represent
kasic events. Now assume that the location option is not
being used and that the Mechanical/Thermal Generic cause
susceptibility for the basic events is as indicated in Table

4.4. The COMCAN program would find that :

(BE1,BE3,BE4) is susceptible to P (pressure),
(BE1,BE2) is susceptible to I (impact) and G {grit)
(BE 3,BE€) has no Mechanical/Thermal susceptibility, and

(BE2, BE4,BES5,BE6) is susceptible to G (grit).

Provided in COMCAR is a cause ranking scheme whereby
the analyst can assign a numerical ranking (0 to 9) for
event susceptibilities. The higher the number, the greater
is the susceptibility. An option is provided for primtout of
prime common—cause candidates containing events all ranked
greater tham or equal to N for some integer N, 0<N<9,
selected by the analyst. This option allows the analyst to
limit the size of +the output to those prime common-cause

candidates most susceptible to the generic causes.

155

Table 4.4 Example Nechanical/Thermal Susceptibility (134)

Basic Generic Cause Generic Cause Susceptibility
Event Symbols

BE1 1,P,G,T Impact,Pressure,Grit, Temperature
BE2 I,G Impact,Grit

BE3 P Pressure

EEL P, G Pressure,Grit

BES G Grit

BE6 G,T Grit,Temperature

156

The format used for COMCAN is compatible with the input
format used with computer programs for gualitative and
guantitative reliability and safety analysis such as PREP,

KITT, and MOCUS.

A summary of COMCAN options is provided in Table 4.5.

4.3.2 New Approach for Automated Common-Cause RAnalysis

A problem in computer aided common cause failure
analysis of complex system, both CONCANE and BACFIRE codes,
is that all minimal cut sets mnust be determined for the top
event. The difficulty is, when large trees are involved, the
number of minimal cut sets 1is usually enormous. Computer
codes for obtaining minimal cut sets are usually limited to
locating those of small order because of the 1long running
time required to obtain all the minimal cut sets. Thus a
common cause failure analysis requiring minimal cut sets as
input is usually incomplete since minimal cut sets of higher
order have been discarded. This problem is overcome by a new
approack suggested by Wagner et al (12§}, wvhich does not
require all such minimal cut sets be determined although the

results are the same as if these cut sets wvere determined.

The basic idea of the new approach is to dissect the
fault tree and determine minimal cut sets for individual
branches and +then synthesize common cause failure analysis

results for the +top event. The minimal cut sets found for

157
Table 4.5 COMCAN Inputs and Outputs (20)

Standard Input

Outputs
Primary Event Descriptions Generic >I;ist of all Cut Sets

Cause Subsceptibilities and cut sets Sharing a Common Cause

Optional Inputs

Manufacturer of Each Component ’List of all Cut Sets
Sharing a Common Cause
or Common Manufacturer

Location of Each Component and ’List of all Cut Sets

Barner Map Delineating Common Sharing a Common Cause

Locations and Common ILocation

Susceptibility Index Representing >I.is'b of all Cut Sets

the Relative Failure Probability
due to the Effect of the Generic
Cause on the Component in the
Appropriate Failure Mode ~

Sharing a Common Cause
Ranked According to the
Impact of the Common |
Cause on the Cut Set

Similar Flag Turmed on ’I.ist of all Cut Sets
Sharing a Common Cause
or Containing Similar
Type Components

Type Flag Turned on ":Liﬁt of all Cut - Sets
Sharing a Common Cause
and containing Similar
Type Components (accord-
ing to some analysis the:
basic requirements must
exist for any dependent

failure analysis)

Table 4.5 Cont'd

Various Printer Options

Keyword

Area

Causes

Generic

Card Images

Events

Singles
Storage
Rank N

158

Controls Printout of
Input locations (barrie:
map)

Prime Common Cause Cand.
dates Recordered by Cau
and ILocation

Generic Cause and Commo:
Link Tables

Basic Event Description
Information in Card
Image Form

Basic Event Deacfiption
Information Formatted £
Ease of Reading

Single Event Cut Sets
Size of Intermal Arrays
Prime Common Cause Cand:
dates with Basic Events

Ranked Greater than or

" Equal to the Interger N.

|

159

the individual branches of the fault tree are termed
intermediate minimal cut sets. Common cause failure analysis
of the intermediate minimal cut sets yields intermediate
common cause candidates. A dummy event must then be defined
to describe all the intermediate common cause candidates for
a particular branch of the fault tree. The dummy event
copntains all the information necessary for analysis of the
next level of the fault tree. At the <completion of the
analysis, the dupmy events are expanded and common cause
candidates for the top event are constructed. The new
procedure is a step by-step analysis, advancing from the
bottom to the top of the fault tree through its individual
branches. This procedure is equivalent to an analysis using

all the minimal cut sets for the top event.

There are two gquidelines in deciding the point of
dissection in the fault tree :

1 The number of Boolean Indicated Cut Sets (BICS) of
the dissected Ekranch must be small enough to allow
determination of the intermediate minimal cut sets.

2) The intermediate minimal cut sets preferably should

contain two or more basic events.

By keeping the number of BICS 1low, only minimum
computer requirements are necessary. By obtaining two event
or larger intermediate cut sets and analyzing them for

common cause failure, all intermediate minimal cut sets

160

which are not candidates for common cause failure may be
eliminated. This further reduces the amount of information

which must be carried to the next step of the analysis.

Once the fault tree has been properly dissected, the
intermediate minimal cut sets may be found Ly conventional
Beans. Treating the dummy events as ordinary basic events,
standard computer programs will correctly determine the
intermediate minimal cut sets for all segments of the
dissected fault tree. Whenever the +top segment of the
dissected fault tree has been analyzed for intermediate
common cause candidates, the dummy events in the results
must b be expanded to obtain the common cause candidates for
the top event. Expansion of the dummy events produces common
cause candidates for the top event in terms of the minimal

cut sets for the original fault tree.

Constructing common cause candidates for the top event
consists of three steps :

1) Expanding the dummy event to the intermediate common
cause candidates which it represents.

2) Determining potential common cause candidates for

the top event.

3) Obtaining the common cause candidates for top event.

A flow chart for the above described is shown in Figure 4.6.

161

Fault Tree Dissection

il

Determine Intermediate
Minimal Cut Sets For

Lowest Segment Of
Fault Tree

Determine Intermediate
Common Cause Candidates
For Lowest Segment Of
Fault Tree

! -
Define Dummy Event And
Add To Next Level Of
Fault Tree

—

Determine Intermediate
Minimal Cut Sets For
Next Level Of Fault Tree

1

Determine Intermediate
Common Cause Candidates
For Next Level Of
Fault Tree

|

Construct Common Cause
Candfdates By Resolving
The Dussy Events

Fig 4,4 Flow Chart for Synthesi

3 Procedure for Common Cause
Failure Analysis (126

162

4.3.3 Quantitative Considerations for Common Cause Failure

Analysis

Most generic causes of secondary failure can be
assigned a time dependent occurrence rate in each domain.
Often these cccurrence rates are identical to hardware
failures (usually hardware external to the system being
analyzed) that result in the generic failure cause. The
occurrence rate for the generic cause temperature could
correspond to the rate of ccoling system failure. UOnlike
component reliability characteristic, the common cause
candidates' reliability characteristics are not completely
described by the time- dependent occurrence rate of the
failure cause. Each ocurrence of a cause of secondary
failure will not cause system failure. Common cause
candicates are ranked by their sensitivity to each cause of
secondary failure. The sensitivity ranking is used to
determine the fraction of thé occurrences of a cause of
secondary failure that actually cause system failure. The
failure rate of the common cause candidate is the occurrence
rate of the cause of secondary failure weighted by the
fraction of system failures which result from the cause of
secondary failure. The common cause candidate sensitivity
rank is determined by the sénsitivity rank of the 1least
sensitive component since all components in a minimal cut

sets must fail for system failure.

A time dependent repair rate can also be determined for

163

the new cut set that results from the common cause event.
The repair of the secondary failure must be considered in
addition to the repair of +the components implied by the

common cause candidate.

Some special conditions cannot be represented by an
occurrence rate. Special conditiomns such as manufacturer
and similar parts are examples. These links among all the
events in a hardvare minimal cut set increase +the failure
probability of that minimal cut set. They are usually
treated as having a constant probability of contributing to
system failure. The reputation of the manufacturer or the
similar part in common influences the probabilistic effects

of the common cause candidate on the system reliability

characteristics.
Vesely (12%) developed statistical estimation
techniques for common cause failure analysis. The

multivariate exponential Marshall-Olkin model (87) is
specialized to produce an efficient estimaticn technigue for
dealing with the sparse data usually available for
guantitative common cause failure analysis. Implicit in the
use of the Marshall-0Olkin model are +the assumptions that
each failure cause has an exponential distribution for its
first time of occurrence and all possible failure causes are
assumed to be competing; i.e., the observed component

failures are determined by the failure cause which first

164

occurs. The Marshall-0lkin model is specialized by assuning
that the component population is homogeneous in the sense
that it consists of components which are subject to similar
failure causes. Two cases have been considered within the
homogeneous model : failure rates for common causes which

are |) constant, and 2) binomial.

165

CHAPTER FIVE

QUANTITATIVE EVALUATIONS OF FAULT TREES

5.1 Introduction

A major goal of fault tree analysis is to calculate the
probability of occurrence of the top event. However, it may
also be useful to calculate the importance of minimal cut
sets to the top event or the importance of specified basic
events to the top event. In this chapter, we first review
the most commonly used methods for calculating the
probability of occurrence of the top event. Probabilistic
evaluation of fault trees in the context of coherent
structure theory will be described. Monte Carlo and
analytical methods for obtaining probability characteristics
of top event will also be discussed. We then present a
survey of the available methods that quantitatively rank
basic events amnd cut sets according to their importance.
Such a ranking permits identification of events and cut sets
that significantly contribute to the occurrence of +the top

event.

166

5.2 Probabilistic Evaluations of Fault Trees

Fault tree construction provides a systematic procedure
to identify and record the various combinations of component
fault states and other events that can result in an
undesired state of a systen. The resultant 1logic diagranm
shows the various component failure events as +they combine
through a set of Boolean gate operators leading to the top
tree event. It is a well known fact that such logic diagrams
may be mathematically represented in terms of coherent
structures. The system unavailability can then be calculated
either exactly, by using the minimal cut sets to write the
structure function of the tree as a sum of products' of
primary dinputs, or approximately by using the standard

methods of probability bounds (10).

Other than the probabilistic evaluations of fault trees
in the context of coherent structure theory, the evaluation
of the occurrence probability of the top event of a fault
tree can also be carried out by means of Monte Carlo
simulation methods or by means of analytical methods. HNonte
Carlo simulation allows reliability information to be
obtained for systems of almost any degree of complexity.
Howe ver, this method ©provides only estimates and no
parametric relation can be obtained. Analytical methods give
more insight and understanding because explicit

relationships are obtainable. Results are also more precise

167

because these methods usually give the exact solution of the

problenm.
5.2.1 Coherent Structure Theory for Fault Tree Evaluation

It has been observed by reliability theorists that many
of the gquantities computed by fault tree analysis can also
be computed using the concepts and techniques of reliability
theory. Coherent structure theory (10) has been used for a
long time in the reliability context. It has contributed
heavily towards the development of the mathematical aspects
of fault tree analysis. Barlow and Chatterjee (€) developed
a mathematical theory of fault tree analysis using many of

the concepts of coberent structure theory.

Consider a fault tree with mn basic events, the ith

event having a binary indicator variable Yi, such that

o

The top event is associated with a bimary indicator

1 if basic event i occurs

0 otherwise

variable (Y), such that
1 if the top event occurs
g =
0 othervise
where ¥ = (Y1,Y2,...-...70) is the vector of basic
event ontcomes. ¥e are assuming that the state of the system

(AY) , can be expressed completely in terms of the indicator

168

variables. gb(g) is knovn as the structure function for the

top event.

We now 1limit ourselves to Boolean structures, ¥(Y),
that are monotonic or coherent. 1 coherent structure, @(I).,
by definition, is nondecreasing in each argument ¥i, 1i.e.,
that the occurrence of basic event cannot cause a system
transition from a failed state, (¥} =1, to a unfailed
state, @wEy = 0. This 4implies that we do not allow
complemented events. A coherent structure contains, by
definition, all relevant basic events, i.e., the occurrence
of each basic event must contribute in some way to the
occurrence of the top event. Given the complete set of
minimal cut sets Kj (i=1,2,«-..k) and minimal path sets Pj
(j=14242 ece=.p) for a fault £ree, which can be obtained by
the computer code’descrihed in 4.1, its coherent structure
may be expressed in terms of minimal cut sets or minimal

path sets.

Minimal Cut Representation

let K1,K2,.....Kk be the minimal cut sets of basic

events for a specified fault tree. Then

Y |
v=11TT (5. 1)
$=1 i"k;

is the so-called minimal cut representation for ¢.

169

Minimal Path Representation

let P1,P2,v....Pp be the nminimal path sets of basic

events for a specified fault tree. Then

P
¢(!J=—|r:|__!_;l_*i (5. 2)

is the so-called minimal path representation for ¢.

It is obvious from either the minimal cut or the
minimal path representation that is coordinatewise

nondecreasing.

Now, let us examine the system at one point ir time. We
assume that the state of the ith basic event is described by
a random variable, Yi. Yi is a Bernoulli random variable,
its probability of occurrence, Fi, is given by the
mathematical expectation of Yi, denoted as E(Yi), where by
definition

P(Yi=1) = E(Yi) = Fi

Likewise, yﬂg) is a Bernoulli random variable, the

probability of the top event, P(Top Event) being given by

P(Top Event) = E{ ¢(I)) = P(¥(Y) = 1)
The probabilistic evaluations of top event can then be
obtained by following cases with respect to the structural

characteristics of basic events of the fault tree.

1) Exact Solution : If basic events are not replicated

in minimal cut sets and all basic events are statistically

170

~~“independent, then

k
p [Top Event | = | ' ’ ‘ F; (5. 3)
s=1 icksg

If there are no event replications among minimal path sets

and basic events are statistically independent. We also

write
P
P [Top Event] = l l l | F; (5. &)
rs i€Pr

2) HMin Cut and Mipn Path Bounds :In general, basic
events are replicated and expressions (5.3) and (5.4)are not
valid. Esary and Proschan (47) proved, however, that the

following bounds always hold -

P | k
' | F; < l'[Top Event]'< l I | ‘ F; (5. 5)
r=1 ieP, $=1 jek

when the basic events are statistically independent. The
upper bound is known as the min cut apper bound and, in
general, it is quite close to the exact value when Fi's are

small, which is the usual situatiom.

3) The Inclusion—Exclusion Method : This method

provides successive upper and lower bounds on top event
probabhility which converge to the exact probability for
fault trees. Let Es be the event that all basic events in
min cut set Ks occur. We also assume all basic events are

statistically inderendent. Then

171

e

pled= | |

icks
k
The top event corresponds to the event UEs if the fault
$=1

tree has K min cut sets. Hence

k
P[TOP Evenﬂ =P [£_J Es]

Let Sr= 2 p [Eiln g0 ----NE,

1<, i, < ---si £k
By the inclusion-exclusion principles (49)

k
P [Top Event | = Z (‘”r-lsr (5. 6)
r=1

k
and P [Top Event] < s =z I | Fi
$=1 jecks

P [Top Event] 2
P [Top Event] < S;- 5.+ S

and so on. Although it is not true in general that the upper
and lower bounds will converge in a monotone fashion, in
practice it may be necessary to calculate only a few Sr's to

obtain a close approximation.

4) Min-M B ds : If ocurrence of basic events are
not statistically independent, then the previous methods,

based on assumed independence of basic events, are no longer

172

valid. In a great many reliability situations, the random
variables of interest are not independent, but rather are
Yassociated'. For instance, the analyst may know that
certain components in his system are subjected to a common
environment or share a common load, so that a failure of a
component results in increased load on the remaining
components. In some cases, it may be difficult or tedious to
show this dependency explicitly in terms of a secondary
failure development in the fault tree. However, it is
possible to incorporate statistical dependency in a
gquantitative evaluation by assuming that basic events are
poéitively_depenﬂent. Barlow and Proschan (10) show that if
indicator random variables are associated, then the

following bounds always hold :

MAX F; < P[Top Event] MIN Fi (5. 7)
1<s<k | . 1<r<p —;

ickg i€Pr

The above expression tells us that the path set with the
lowest <failure probability is an upper bound for the
prokability of the top event, when basic events are

associated.

5) Improved Bounds by Modular Decomposition : Defined

in terms of the reliability network diagram, a module is a
group of components which behaves as a 'super component'. In
the context of fault trees, ‘an intermediate gate event is a

module to the top event if the basic events contained in the

173

domain of this gate event do not appear elsewhere in the
fault tree, i.e., the gate event is a disjoint subtree.
Decomposing a tree into modules is useful in reducing the
computation required for probabilistic evaluation of fault

trees.

2 formal definition of a module (10) in terms of
coherent structure theory is given as follows :

let ¢/ be the indicator variable for the top event
depending on a set of basic events N. Let M be a subset of ¥

with complement M, X be a coherent structure on M, themn if

%(!)4‘(%(!"),1”:) (5. 8)

where !" means that the arguments are restricted to M, the

set M with structure function x is a module of .

Barlow and Proschan (10) prove under the assumption of
statistical independent that the minimal cut upper bound in
expression (5.5) is a better bound when fault trees (or

network diagrams) are decomposed into modules.

Chatter jee (34) proposes algorithms to find what he
calls the finest modular decomposition of a fault tree. He
uses game theory results by Shapley and Billera (15) to
develop his algorithm. The connection with game theory is
interesting. Basic events in a fault tree are analogous to

the players in n-rperson game theory. Minimal cuts (paths)

174

correspond to losing (winning) coalitions of players. A
modular set or independent branch of a fault tree is
analogous to a committee of players in the game theory
context. However, this decomposition method requires all the
minimal cut sets to be found as input, which is usually not
feasible for a large fault tree. In contrast with this,
Olmos and Wolf (92) devise an algorithm which derives the
modular composition of a fault +tree directly from its
diagram description. A computer program, P1-MOD (92),
written in PL-1, is prepared to perform the modularizationm
algorithm. This program is capable of modularizing fault
trees containing replicated comporents and replicated

modular gates, ard finds the probabilities of modules and

top event as well.

€) Noncoherent Structure Case : Normally, fault trees
have been used to analyze physical systems where improved
performance of individual components does not degrade the
performance of a system as a whole. Such systems are called
coherent structures. Recently, howvever, there has been a
demand to analyze noncoherent systems. HNoncoherence occurs
whenever NOT gates are introduced into a fault Free
structure. This is most prevalent whenever human decisions
play a role in instrument functioning or, more generally,
whenever subsystems are forced into conflict with one

another.

175

It has been proved (35) that all the methods applicable
to coherent fault trees, except the minimal cut (path) set
bounds, can be extended to noncoherent fault trees. When the
fault tree is modularized, applying the min-max bounds or
the inclusion-exclusion upper bound to both the modules and
the organizing function yields the same bound that is
obtained without modular decomposition. However, if the
organizing function or the modules are simple enough, exact
calculations can be performed at either 1level to give an
improved bound. Alesso and Benson(3) present concepts that
will allow the decomposition of noncoherent systems into
coherent subsystems, they also provide a bounding condition
for noncoherent systems that will not decompose in a

desjoint manner.

5.2.2 Monte Carlo Simulation for Fault Tree Evaluation

The Monte Carlo method is generally accepted as a very
powerful tool for calculation of reliabilty or systems, due
to its versatility and, in particular for large complicated
systeans, relatively short computation time if used in
connection with a technique for reduction of the variance of

the result, like importance sampling (88).

Basically, the ¥onte Carlo approach 1is a procedure in
which trials of the fault tree are simulated. In each trial,
primary failures are made to occur and are repaired

according to their failure and repair probabilities. The top

176

failure 1is checked at various time points to determine
whether it has occurred. For every top failure occurrence, a
*success' is tallied in the appropriate tally counter. The
average of the successes over many trials yields an estimate
of the probability of the top failure occurring. A typical

Monte carlo simulation program involves the following steps:

1) Assign failure rate data to input fault events
within the tree, descriptive mission data, and if desired,
repair rate data.

2) ERepresent the fault tree on a computer to provide
guantitative results for the overall system performance,
subsysten performance, and the basic input event
performance. These results can include the specified final
event probability of failure and success, total failure
information, availability, and downtime results.

3) List the failures which lead to the undesired event
and identify critical path contributing event results.

4) Compute and rank basic input failure and

availability performance results.

The Monte Carlo simulation is applicable to systems of
any complexity and can theoretically handle any prescribed
failure and repair distributiomns. However, the Monte Carlo
simulation requires a fairly large amount of computer time,
and to obtain results in reasonable time, the failure and

repair distributions assigned to the primary failures must

177

be 1limited to simple forms. Further, +the Monte Carlo
simulation yields statistical estimates for results, and
there is always a disturbing possibility that estimates may
be in considerable error, which is not shown by the

accompanying error estimates.

There are several computer programs available to obtain
probabilistic information about the top event from
probabilistic information about the primary events by using

the Monte Carlo method :

1) RELY 4 : The computer program RELY 4 (72) calculates
both reliability and availability for any system including
systems with standby units and, in addition, the standard
deviations omn both results. The method is based on the
assumption that the condition of failure for the system to
be analyzed can be expressed by a Boolean exrression in
terms of failures of a number of units which fail
independently with known failure rates. The basic principle
or operation is quite simple :

The times to failure and to repair for each component
are simulated and it is analyzed whether +the system has
failed at any time during or at the end of the period
considered. This process is then repeated a certain number
of times (F) depending upon the required accuracy of the
results. Then it 1is counted how many times the system has

failed 1) at least once during the period comsidered (FP),

178

2) at the end of the period (FE). From these figures
(multiplied by weighting factors for importance sampling),
the availability of the system at the end of the period
considered and the reliability are found as FE/F and FP/F

respectively.

There are four different versions of the prograsm.
Versions 1 and 3 use importance sampling and versioms 2 and
4 use direct simunlation. While direct simulation is a
simulation method by which all failure rates, repair rates
and failure probabilities have the original values, the
importance sampling is to concentrate the distribution of
simulated system failure probability to the area of nmost

importance-near the correct value.

The accuracy of the direct simulation method increases
with the number of trials, but the method has the
disadvantage that the required computation time for a given
accuracy of the results increases tremendously when the
failure rates decrease or +the number of units increases.
Monte Carlo simulation with importance sampling (88),
therefore, is made on the basis of increased failure rates
with a subsequent correction of the failure probability of
the system multiplication with a weighting factor. This way
a given number of Monte Carlo trials will cause a relatively
high number of concentrated weighted estimates of the

probability of system failure. Thus the reliability

179

estipmates will relatively soon achieve a small statistical

variation.

In version 1, the times to repair for each unit canm be
distributed according +to either a gamma or exponential
distribution function. In versions 2 and 3 both the times to
failure and the times to repair are exponentially
distributed, wvhile in version 4 they are distributed

according to a Weibull distribution function.

From experience, version 3 has proved to be the most
generally applicable version and it gives the highest

accuracy for a given computer time.

2) SAFTE (SAFTE-1,2,3) : These programs are
identified as the SAFTE series (€8) (System Analysis by
Fault Tree Evaluation). The SAFTE-1 program performs a Monte
Carlo fault tree simulation for systems of redundant,
repairable components with time dependent probabilities of
failure. The principle results obtained are the probability
density function, the cumulative distribution of system
first failures, the mean time to system failure, and the
mean time to system repair. The estimated probable error in

these results is obtained.

The SAFTE-2 program has been written to consider the
more simple case of no repair. It, like SAFTE-1, is a Monte

Carlo fault tree simulation of systems with and without

180

redundant components. The principle outputs of the program
are probability density function and cumulative distribution
of the system TTF's(time to failure) plus representative
values, as well as mean and variance of system TTF's. The

number of times each component fails is computed.

The SAFTE-3 program has been written to compute the
probability of system failure at any time t based on steady
state repair (fixed, rather +thanm random). SAFTE-3 is
capable of handling systems with or without redundancy and
utilizes either direct or importance sampling techniques. In
addition to probability of system failure at any time t, the
program provides as output the fraction of time each

component is in the failed state.

3) SAMPLE : The SAMPLE code (99), developed in
RASH-1400, is a Monte Carlo program which evaluates the
complete Booleam algebraic expression for the fault tree. It
uses distributions instead of point probabilities for the
copponent failure probabilities, and produces a distribution
and confidence bocunds on the top event. That is, because of
the uncertainties in much component data, a highly
simplified mathematical model was determined based on
exponential failure distributions for the system components.
The parameter of each failure distributiom amd the mean of
each repair distribution were not assumed known with

certainty. 2 lognormal distribution that represented the

181

uncertainty in each parametere was determined. The SAMPLE
program then allows inputs in the form of a median value and
error limits on the failure pdrobability for each component.
Therefore, by ramndomly choosing failure probability for each
component, determined by the corresponding distribution, a
roint probability for the top event occurrence is computed,
along with a set of confidence 1limits on the numbers.
Typically, 90% limits are used, which means that, due to
errors and uncertainties in data, there is 10% probability
that the true value for the top event lies outside the

limits predicted by the code.

B) REDIS : REDIS (73) is a Monte Carlo type code by
direct simulation. The program combines some of the
features of the SAMPLE code with those of several other
approaches. Although it deals with a cut set approach, the
code, as SAMPLE allows for uncertainties in data, and
produces a top failure probability with a standard
derivation, rather +than confidence limits. Furthermore,
various types of interdependencies bletween components are
allowed, such as the failure of one component increasing

the stress, and thus the failure probability, of others.

5) Crosetti's Code : This is one of the early Monte
Carlo codes for fault tree analysis (38). This program,
written in FOQRTRAN V, assumes an exponential failure

distributior for basic events and a choice of either

182

normally (Gaussian) distributed or constant repair time. The
program views the system represented by the fault tree as a
statistical assembly of independent basic input events, each
characterized by an exponential failure distribution amnd, if

used, a constant or normal repair distribution.

The program computes a randomly determined time-to-
failure (TTF) for each basic input event, based on the
assigned mean-time-to-failure (MTTF) values. The system is
then tested, as each basic input event fails, to determine
if a failure occurs at the system level during the specified
mission period. A time—-to-repair (TTR) is generéted {(for
variable repair) based on the mean-time-to-repair (MTTR)
values and detection times, and a new TTF value is assigned
to each failed basic input event +to permit failure after

repair as shown below.

length of mission period or
e time to system failure >
TTF TTR TTF TTR TTF
0 Time ——>

Basic Input Event Failure and Repair Cycle Example

This process continues until either system failure occurs,
or the end of the final mission period is reached. Then a

new set of randomly determined values are assigned to each

183

component for the next +trial. By testing a sufficiently
large population of systems trials in this manner, systen
probability of failure, probability of success, and more
significant subsystem and component contributions to system

failure are identified.

The program is also capable of simultaneously analyzing
two different system mission periods where both mission
periods start at the same point in time for each trial. This
capability permits comparing system performance for two

mission periods during each computer run.
5.2.3 Analytical Method for Fault Tree Evaluation

In 1970, Vesely made a most important advance in
quantitative analysis of fault trees by developing an
analytical methodology for fault trees containing repairable
components. The particular analytical technique called
'Rinetic Tree Theory (119)' with the associated computer
program {125) , is used to obtain quantitative probabilistic
characteristics regarding the safety and reliability of
these systems. Once the fault tree is drawn, the kinetic
tree theory technique automatically vyvields detailed time-
dependent information for every component, for every minimal

cut sets and for the system itself (top event).

Caldarola and Wickenhauser (2§) also developed a very

fast analytical computer program for fault tree evaluation

184

at the German nuclear research center of Karlsruhe. The
Karlsruhe computer prograr for +the evaluation of the
availability and reliability of complex repairable coherent
systems is essentially based on Vesely's theory with some
additional important and fundamental improvements.
Particular features of +this computer program are 1)
capability to identifiy the whole set of minimal cut sets
and to list them in order of importance, and 2) capability
to analyze systems characterized by two phases one following

the other in time (two time axis).
1) Vesely's Kinetic Tree Theory

There are two assumptions for Kinetic Tree Theory. The
first assumption is that +the primary failures, or basic
events, of the fault +tree are independent; one primary
failure many occur at any number of places in the fault
tree, but those primary failures which are unique are
assumed independent. The second assumption is that <the
minimal cut sets of the fault tree are known. Given above
assumptions and the failure (hazard) probabilities and
repair probabilities of primary failures of the fault tree,
this method allows the complete probabilistic information to
be obtained for each primary failure of the fault tree
first, then for each minimal cut set, and finally for the

top failure itself.

2) Pri Fail -_ t) Inf 5 X

185

Consider a single primary failure of the fault tree.

let

z P (t) dt = the probability of the failure occurring in
time t to t+dt given the failure is not existing at time t
(hazard probability)

uP () dt = the probability of the failure being

repaired in time t to t+dt given the failure is existing at

time t (repair probability)

The quantities Zp(t) and uP (t) are basic déta in terms of
fault tree evaluation or reliability theory and are termed
the hazard rate and repair rate for the primary failure
respectively. It will be assumed that ZP(t) and wP(t), or
their equivalents, are known for every primary failure of

the fault tree.

From zP(t) and uP(t), other probabilistic quantities
may be obtained which quantify, or characterize, the
particular primary failure. The probability of the primary
filure first occurring in time t to t+dt givem it does not

exist at time t!' is
P P
a(t’,t) dt = exp(-St B(t'1)at'') 2(t)dt; t'< ¢ (5.9)
t'

with regard +to repair, the probability that the primary

failure is repaired at time t to t+dt, given it exists at

186

time ' is

b(t*,t)dt = exp(—St u’(t")dt")u’(t)dt; t'< t (5.10)
£
The quantities a(t',t) and b(t',%t) are termed the first
occurrence distribution (or first failure distribution) and
the repair distribution respectively, Besides the above,
there are two other primary failure characteristics which
are essential for any reliability study or fault +tree
evaluation. The first characteristic is the primary failure
intensity (failure density function) f’[t), which is defined

such that

£ Pgt) = the expected number of times the primary

failure occurs at time t per unit time

An eguation for £P {t) in terms of the data for primary
failure can then be obtained £from balance considerations of

failure and repair :

£ () = a(0,t) + |

p t
ot (t")dtﬂjt_ (£,) a(t',t) dt' (5.11)

The first term on the right hand side of egquation (5.11) is
the contribution to fp(t) from the first occurrence of the
primnary failure. The second factor 1is the contributiom to

fp(t) from the failure occurring at time t'', being repaired

187

at t', and then reoccurring at time t. PFor the case of the
failure being non-repairable, for example b(t',t)=0 and

equation {(5.11) beccmes
fp(t)=a(0,t): nonrepairable primary failure (5.12)

In general, equation (5.11) can be solved using lLaplace
transformation techniques, or simple numerical integration

tchniques can be used.

The second primary failure characteristic of interest

is the primary failure existence probability FP(t);

*P ()= the probability that the primary failure exists

at time t

The non-existence probability, or the probability of the
primary not existing at time t is merely 1-?’(t). From the

definition of zP(t) anda £P(t), it is apparent that

2Pty = £P(v) /(1-FP()) (5.13)

or

rP(r) = 1- £Pt) /zP(y) (5.14)

For a specific failure intensity f£fP (t) and hazard rate zP

t) . FP(t) is simply obtainable from equation (5.14).

The guantities £fP (t) and PP(t) along with the basic

data zP(t), uP(t), a(t',t) and b(t',t), are definitive

188

 functions which characterize the probabilistic behavior of
the primary failure for all time. The characteristics fP(t)
and Pprt), obtained for every primary failure are important
in themselves since they show the effects oof repair,
maintenance, and changes in environment and show these
effects as functions of time. Moreover, with f£P(t) ana FP(y)
determined for all the primary failures of the fault tree,
the probabilistic characteristics for the minimal cut sets

and for the top event can be obtained.

B) Minimal Cut Set Failure Information

By definition, a minimal cut set is a smallest set
of primary failures such that if ?11 these primary failures
exist at time t the minimal cut failure (and toﬁ failure)
exists at time t. Consider a particular minimal cut set.
Let it comnsist cf =1 primary failures and 1let these
constituent primary failures be designated with indices from
1 through n. The first characteristic obtained for thke

minimal cnt set will be the minimal cut failure existence

probabiiity F™(t) defined as ;

FM@) = +the probability that the minimal cut set

failure exists at time t

Since the ainimal cut set failure exists at time t if and

only if all its primary failures exist at time t,

FO (t) = ;IEI_F Pty (5.15)
T il i)

189

o il SRR L

where g;(t) is the existence probability for the jth primary
failure of the minimal cut set (equation (5.14)). The
minimal cut set failure nonexistence probability is then
just 1-F™(t) and is the probability of the minimal cut set

not existing at time t.

The existence probability F™(t) is significant to the
top failure to which the particular wminimal cut set
contributes. If the minimal cut set failure exists at time t

then the top failure exists at time t.

The second gquantity of interest characterizing the
minimal cut set is termed the minimal cut set failure

intensity £fM(t);

f"&t! = the expected number of times the minimal cut

set occurs at time t per unit time

For the minimal cut set failure to occur, one or more of the
primary failures must not exist at time t and these primary
failures not existing must all simultaneously occur between
time t to t+dt. Validly neglecting orders of dt greater than

or equal to two, £M™(t) is thus

2 (t) = 2 f I.’(t) 'i“l‘ F P(t) (5.16)
j=1 J i:% 1
*J

And, again, by defintion ;

190

Z2M(t) dt = the probability of the minimal cut set

failure occurring in time t to t+dt given the minimal cut

set does not exist at time t

Therefore, the minimal cut set hazard rate becomes:

L 2 () o pP(y)
j=1 9 1=1,1¢j 1

" (t) = (5.17)

1~ FR(t)

The quantities FP™t),f™t), and z2™M{t), which characterize
the minimal Eut set failure are thus all simpply determinable
from the characteristics fp(t) and Fp(t) of the primary
failures which comprise the minimal cut set. The
probabilistic characteristics for the minimal cut set are
important in themselves since.they guantify each minimal cut
set as function of time and lead to the determination of the

characteristics of the top failure of the fault tree.

C) Top Failure Information
Assume the minimal cut sets of the fault tree are
known, and let there be N such minimal cut sets. Assume also
the initial condition that at t=0 all the primary failures
of the fault +tree are non-existent. The +top <failure
characteristic most simply obtained is the top failure

existence probabhility ?T{t):

191
FT(t) = the probability that the top failure exists at
tinme t

Since the top failure exist if and only if one or more of

the minimal cut sets failure exist

N
FI(t) = P (t) (5.18)
i=1
By expansion,
N i-1 +i,]
Tee) = P (t)— > FP (t)
Fo(t) % i 3 o1 ﬂl

' #1000l P .
b oeeeit (<)L —’——r—l FP(t) (5.19)

where the product symbol is defined such that
?1.""; N

i

where the primary failure occurs in at least one of the

"

the product of unique primary failure gquantities

minimal cut sets 1,....%.

The exact value for FT (t) can be determined
straight forwardly by using equation (5.19). However, when
the fault tree becomes complicated and hence the minimal cut
sets increase, the above calculation could te tediouns. 1
breaking procedure is suggested and is a particularly
efficient method of obtaining successively tighter envelopes
for FTV t)., for primary failure existence probabilities

Fﬁt), much less than 1, which is generally the case.

192

i) = F (¢) (5.20)
=1 i

{ i-1 +i,j
FT(t)?.% F?(t)—% ;,é T[]'Fp(t) (5.21)

etc.
FPor those situations in which a simple but accurate
approximation is desired for FT (t), the probability bounds
developed-by Esary and Proschan (#7) for coherent structures

can be applied here and result in the following equation;

N
PP e 1 TT (-5 (5.22)

i=1
Equation (5.22) gives an upper bound and hence a safe and

conservative estimate for FT(t).

Baving obtained FT t), the characteristic next

determined is the top failure intensity, £ (v ;

£fT(t) = +the expected number of times the top failure

occurs at time t per unit time

For the top event failure to occur in t to t+dt, all the
minimal cut set must not exist at time t and then one or
more of the minimal cut set must occur in t to t+dt. Hence,

we can define the following equation ;

193

T (¢) at = 270 (¢) at- TR (4) at (5.23)

The first contribution to £T(t)dt is the contribution from
one or more of the minimal cut sets occurring. Whenever a
minimal cut set occurs, the top failure occurs. HovWever, the
second ternm fm?t)dt must be substracted from fﬂ?t)dt which
accounts for those cases in which one or more min cut set
failures occur while other minimal cut sets are already
existing. By applying probabilistic expansion theory for

above two terms, we get

N N i-1 - +1,]
g7 (¢) = > £ ()= Z Z_ £(tsi,]) | | FP(t) +
I=1 i=2 j=1 . ‘
1~ j-1 +il.lk
i 2 T{%_I £(t51,§,k)] Ll“ FP (t)
1= J= = *
Feoss s (5'21;’)

where f(t;1,cccc...m) is the failure intensity for a failure
mode which has as its primary failures which are common
members to all the minimal cut sets 1,ccc.c.. -, (this can be

ohta%ned in the similar way as equation 5.16)
+q,--eem

and = the product of unigue primary failure quantities
L

where the primary failure occurs in at least one of the

minimal cut set 1,«¢ve..,0, but is not common member in all

194

of thenm
meanvhile
£7(2) (4) - £5 (t:1)
1l=
N i1l ’ :
- > > f (t:i,j)"‘.lll 2)
=5 5T B (5.25
where
' i'
£p(ts il""'in):i £(bady snwm iy A7) [T =
T : .
i'=1 1geeedy
N i-1 i,
-> b £(t3iy00aiz i) | [FP(t)
i"=2 j'=1 iinnln
and £ (t;1,...m=1,...D0) = +the failure intensity for a

failure mode which has as its primary failures the primary
failure common to all m minimal cut sets 1,...,m deleted
from which are those primary failure also in any of the

minimal cut sets 1,..-,0.
1 n

while | ’ = the prduct of unique primary

4, e ,m
failure quantities, where the primary failure is a member of

any of the minimal cut sets 1,...,n or is a member of the
minimal cut set 1,...,m, but is not a common member of these

R minimal cut sets.

195

For fault trees with a 1large number of minimal cut
sets, the backeting procedure again is an extremely
efficient method of obtaining an tight as enveloping as
desired for fT(t). For scoping calculations, and in fact for
many calculations, the following upper bound is of

sufficient accuracy for a determination of fT(t);

£ () < 2&_1 £2(%) (5.26)
1=

This approximation gives a conservative estimate of £7
{t) ,and can be simply computed from the mnminimal cut set
intensities f?‘(t), and is usually within three significant

figures of the true value of fT(t).

With the failure intensity fT(t) and the existence
probability PV (t) determined, +the remaining top failure
characteristic, the top failure tkazard rate, Al {t), is
simply obtainable. The top failure hazard rate z¥ (1) is
defined in a completely anmalogous manner to the primary and

minimal cut set hazard rate;

Z'gt!dt = the probability that the +top failure occurs

in time t to t+dt given it is not existing at time t.
thus, again by definition, vwe get,

2T (v) = £T(v)/ (1-FT (1)) (5.27)

196

or

N
zT(¢) <Z £7(t) (1- P?(t)} (5.28)
i=1 1=1
The top failure hazard rate is +thus determined, whether

exactly or by enveloping

The top failure characteristics ?T(t), fT(t), and zT(t)

are consequently all determined.

The codes PREP and KITT to execute above probabilistic
theory are written in FORTRAN IV for the IBM 3€0/75 computer
and can handle fault trees consisting of up to 2000 gates
and up to 2000 components (primary failures) and inhibit
conditions. PREP and KITT can handle any assortment of
repairable and nonrepairable components on the fault tree.
The codes can +treat 'single phase' probleams, where the
component <£failure rates and repair tiies remain constant
with time, or can treat ‘'multi-phase' problems where the
conponent failure rates and repair times are comnstant within
a time phase, but may vary from phase to phase. Tor these
multiphase problems, each component may have its own unigue
phases (up to 50) and may be repairable in some phases and
non-repairable in others. The codes can handle constant
repair times, exponential repair distributiomns, or the
multiphase combinations of these two types of repair.
Inhibit conditions with either constant probailities or

time-dependent probabilities can be included with the

197

component.
2) Caldarola and Wickenhauser's Analytical Method

Caldarola and Wickenhauser (26) also developed an
analytical computer program for fault tree evaluation at the
German nuclear research center of Karlsruhe. This progranm
can solve coherent systems in binary logic. Four different
classes of components can be handled by the program :

1) Unrepairable components

2) Repairable components with failures which are
immediately detected (revealed faults)

3) Repairable components with failures which are
detected upon demand (faults remain unrevealed unrtil next
demand occurs)

4) Repairable components with <failures which are
detected upon inspection (faults remain unrevealed until

next inspection is carried out)

The progran can perforn also time dependent
calculations. In particular the program can analyzZe systems
characterized by two phases one following the order im time
(twvo time axis). The calculation takes place imn two steps.
The first step is to identify the minimal cut sets. The
algorithm to identify the minimal cut sets is the so called
‘downward algorithm' already described in MOCUS (56) by
Fussell. The second step for the evaluation of the

availability and reliability of complex repairable coherent

198

systems is based on Vesely's theory with some additional

important and fundamental improvements.

The calculation of the system unavailability and
unreliability is described as follows :

First the unavailability and the failure intensity of
each component Ki as a function of time are calculated for
both initial conditions: component intact (Vu) and component
failed (vd) at the initial time. The equations of Vu and vd
for each class of components are given in Table 5.1. FWith
reference to Table 5.1 the development of the equations is
described in the article (22) by caldarola. The
unavailability vV of a component is given by +the following

equation :
V= (1-P) Vu + P Vd (5.29)

where P is the probability that the component is unavailable
at the initial time. The failure intensity h of a component

is given by the following equation

h = (1-v) (5.30)

where)_is the component failure (hazard) rate (assumed to
be constant). The unavailability U0jk and the failure
intensity Hik of a general cut set Ccijk are given

respectively by the following equations

199

[PAIMU U = U C(urisuod) Aouanbayy punuiap adesaan = 4 "(1uTisucd) ajes sedar Wwavodwod = A *(JuTIsU0d) Ml aanpey wauodinod = ¥ ‘awn = 7'M [THIUL AY) 1e papie)
Jurnq wouodwod s Anpqepeacun Jusuoduwoa = Py awy gy a2y e yaeiu duyaq wa

PSS il e B S

uoduiod qum Anpqepeacun jusuodwod = M4 -pasn sjoquids ay) Jo amnpuawoN

R e e e e P e o i S UG

TS

u u N
~ 4 | e
17 e-u)g-u |
(0 <) o lbibia-1lg = .
___._25:?:&2:1.,..; Lt Ingppuy-2 - __tuﬁTuL s o Wy
d e e s ety & p—- _ _ b
[oru=m=""ypoy -~ o< wtuwas | : i | (oS - DI =b |
Y | e R e i S i 5 i _!.|34 (uonaadsul uodn “
-l _ _ ' padRNap syney) |
_ 120 [onuu—s)-2=noy -2~ U | tuwer | ageaedoy |
PIAT aart o\ PN
(A yqus — + A)yurs (v - — +
]
aymy N i n._ + u:_ | 0<?
ua.a.+.2+=< arl gy 4 riy avtgayyny
(RANO]) (agriny)— P . _ WIADWOIN 1)) (aertay) -] i |
e e e e — = TEEE !
X - gl b 1] x
ﬂa + z !
Fd (i arl g ay 4 iy ar 4 ay 4 0y arl 4 ay 4 iy
Jr——m——g 0 + I | 0=2 £
| Lrdak JEHSESAT el T G e (aare) (a4 0V (A 4
2IAL asr \ N 4
(121 1)uis + (BAnus [y - ———) =— & =
'I\/ L R ¢ 1.\/w ua...ﬂn | na+1+<
(.\.,v arl 4 ay 4 iy a..+..2+—2 arl 4 ay 4 1y 0>2 (purwap uodn
121/M1)s02 Hay)—2 + (121 1)s00 Hay)=2 - 1] — Pa1DMap s1|nTy))
1, T/ (as1ay) an (1 + MY .ll\/ T (asriey) (2 & MY aqeneday
od Wk I ik () .
1(h+ - + — Ja)=?-1 SIINE] PIRIADI
" * “ Y ajqereday z
. I =21 ajqenedaiup) {
b e o - S S R HATES
(P.4) poney _ (1) 1981y
_. . I jusuodwod
ALVIS TVILINI JoadAy sseD

ANN V Anpgeprarun juaundwin)
L*G m® L

200

i &ivjk T =
Uge = 1T (V3) (5.31)
and
n n OL -
Hyk = > oy g X (1-Vy) | | () 4+d (5.32)
i=1 q=1,q¢i

wvhere n=total number of components belonging to the fault
tree, ijk=1 if Ki cjk, and i,jk=0 if Ki Cijk. As we can
see, equations (5.31) and (5.32) are derived as the sanme
fashion as those suggested by Vesely in his Kinetic Tree

Theory (119

The unavailability U and <failure intensity H of the
system (top failure) are given respectively by the tvwo

following equations :

L
k-1
U = : %;;3 177 Usy (5.33)

and

L
H = >L ;L R e Hix (5.34)

The computer program then considers the cut sets of order

1,'2, and 3 only.

201

(o]
nt

3
; % -1t oy (5.35)

jk=1

-
]

3 L
% % 10571 (5.36)

The system unreliability Q is approximated by the integral

of the system failure intensity.

t
a(t)= j H{t")at® (5.37)

o

The Karlsruhe program thus can perform a limited (two-phase)
phase mission analysis. System unavailability is calculated
for the first time period (phase) and system unreliability
is calculated for the second phase. Such computations have
application to safety systems which first must be available
at the onset of their mission and then, given that they are
available, must perform reliably through an additional

period of time.

A new computer program is also being developed at
Karlsruhe. This computer program will be able +to analyse

non-coherent systems with multistate components. (23-24).
5.2.4 Dther Computer Codes for Fault Tree Evaluation

There are several other computer codes not belonging
to the above categories (Monte Carlo or analytical method)

are also applicable for formal fault tree evaluation. Some

202

relate to the evaluation of block diagrams, while others

feature different approaches on the evaluation technique.

1) ARMM

ARHNM (89) is a general purpose computer program for
deriving and solving a mathematical model of the reliability
of complex systems. It is based on a sequential application
of the conditional probability theorem to the probability of
system failure. The program selects those combinations of
component failures which cause a system failure, and derives
and solves the reliability mathematical model for computing
failure probabilities. The output includes 1) the
probability of successful system operation; 2) the
probability of each failure combination; 3) the probability
of functiomn failure, its percentage of system failure, and
the rank of each function of the system; 4) each component's
contribution to the probability of system failure, i.e., its
percentage of the total probability and rank among the
componets; and 5) the component combinations which are the
major contributors +to system unreliability. Other wuseful
aspects of the program are a built-in capability to handle
dependent components and mutually exclusive failure modes,
and the use of input data requirements which are simplified

for engineers not familiar with programming methods.

2) GO and NOTED

203

Both GO (€5) and NOTED (130} differ from the block
diagram (like ARHNN) and fault tree analysis codes in that
the system analyzed includes not only logic gates, but also
switches, delay, etc. Por instance, a signal (or event
probability) is allowed to pass through a switch only if
that switch is closed. Thus the probability of an output
from the switch is the product of the probability of an
input signal and the probability that the switch is closed.
A delay is simply a 'block' which retards the passage of a
signal through it. If a signal arrives at time t+T, where T

is the delay time.

Both codes begin with a system chart or diagram
consisting of a logic interconnection of switches, delays
and gates of special type handle internally by the programs;
they result in the outpnt of probabilities of events
specific endpoints. Both are similiar in that they
numerically evaluate the system in one step as the signals
are traced from begimnning to end. This means that change in
component probabilities requires a complete rerun, even
though the system remains unchanged. However, the GO

includes the optiomn of doing several job runs at one time.

Both approaches also rely upon the investigator to
initially decompose a complex system of comporents into a
few basic switch types which can be handled by the program.

(This is analagous to constructing the tree for fault tree

204

codes.) Whereas the GO code divides the +time scale into
several discrete points and defines switch in terms of fix
probabilities of failure, NOTED defines switch types in
terms of continuous functions, including exponential,
lognormal, normal, Weibull and forms including repair times.
Thus the output of GO consists of probabilities of discrete
output events, while HNOTED produces a graph of the
cuprulative probability as a function of +time, at any of
several points in the systemn. Aside from its discrete
nature, the GO code also differs in that its output can be
in the form of a Jjoint distribution, for example, the
distribution of times to arrival of signals at different
endpoints in the system. (For instance, an example of the GO
code produces the joint density function for time to arrival

at two points in a system.)

The similarities in both these approaches, then,
include a forward marching algorithm through systems of
signals and switches, although the one code deals with fixed
probabilities and the other with distributions. However,
with both codes one must be careful in preparing the system
chart to be analyzed. Since often complex components must be
manually decomposed into the simpler switch types handled
internally. Thus, it may be required to decomposed a complex
unit into several independent switches and gates in order to
model the various interdependent mechanisms and interactions

within it.

205

3) BAM

BAM (45) code is a new approach to fault tree analysis.
It uses some of the methodology of GO. The idea has been to
describe the fault tree in terms of truth tables rather than
by directly manipulating AND and OR gates. The advantages of
this procedure have allowed a code which not only can handle
NOT gate logic, but also deperndent events. Furthermore, the
storage requirements have been minimized, as in GO, by
computing event probabilities at intermediate points and
then deleting unnecessary terms. Thus the BAM code in one
step, provides the top event probability without ever
requiring minimal cut set information. However, by directly
evaluating the fault tree, BA® produces a point probability

rather than a time history of the systen.
4) PARTEC and SALP

The computer program PATREC (18) relies on the
Tecognition of subtree patterns vwhose probability
combination laws have been previously stored in the library
of the computer code. The subtree is then replaced by a
super-component with an associated occurrence probability
equal to that of the recognized subtree. By repeating this
process the whole +tree is eventually transformed into a
single super-component whose occurrence probability

corresponds to that of +the top tree event. By using the

206

programming language PL-1 for its list processing
capabilities, the PATREC code can take into account several
present day problems multi-dependencies +treatment,
uncertainties in the reliability data parameters, influence

of common mode failures, etc..

The SALP (5) <code is also based on direct manipulation
of graphs by listprocessing technigues. The SALP series can
handle the routine analysis of AND/OR fault trees and AND-

OR-NHOT trees as well.

207

5.3 Measures of Importance of Events and Cut Sets in Fault

Trees

A system is an orderly arrangement of components that
performs some task or function. It is clear by the
arrangement of these components that some are more critical
with respect to the functioning of the system than others.
While the probabilistic evaluation of the top event of a
fault tree gives the quantitative information for the system
failure been mostly concerned, the probabilistic measures of
importance of events and cut sets are equally needed for
system analysis. Measuring +the relative importance of
components may

1) Identify components that merit additional research
and development, +thereby improving the overall reliability
at minimal cost or effort.

2) Suggest the most efficient way to diagnose systen
failure by generating a repair checklist for an operator to

follow.

A survey of the available probabilistic methods that
quantitatively rank basic events and cut sets according to
their importance will be presented in the following section.
Each probabilistic method that computes importance can be
expressed in terms of a 'g!'! function that computes the
probability of the top event in terms of the basic event

probabilities. It is assumed that all basic events are

208

statistically independent.

S5.3.1 Probabilistic Expressions that Measure Importance (of

componen ts)

We first introduce three measures of importance
computed in terms of g(F(t)), a function that measures the
age of the system at t and describes system behavior at one
point in +time. Then, we introduce tvo other measures of
importance that describe system in terms of sequences of
component failures that cause the system to fail 4in time.
These measures are functions of the past behavior of the

system while the first three are not.

1) Birnbaum's Measure of Importance

In 199, Birnbaum (1€) introduced the concept of
importance of a coherent system. He defined the reliability
importance of a compontnt i as the rate at which system
reliability improves as the reliability of component i
improves. For the evaluation of a fault tree where the top

event is system failure and the basic events are component

failures, Birnbaum's definition of component importance
becomes

a9(F(t)) de

aF(ny - 9015, E(*))-9(05, E(t))= A g, (%) (5.38)

Stated in other terms, Ag, (t) is the probability that
i

209

the system is in a state at time t in which the functioning
of component i is critical : the system functions when i
functions, then system fails when i fails. The failure of i

is critical at time t whenm (1i,Y(%))= (0i,Y(t))=1.

Birnbaum's definition of importance is also known by
two other names, 1) marginal importamnce, and 2) the partial

derivative.

2) Criticality Importance

Birnbaum's Qefinition of importance is a conditional
probability in the sense that the state of the ith component
is fixed. The probability that the system is in a state at
time t in which component i is critical and that component

i has failed by time t is

{gni.r(tn-g(Oi.F(tl)} Fi(t) (5.39)

If we make this conditional to system failure by time t,

then the above expression becomes

o 1 B(8)-900 FO)} Fy(8) der g

g(F(t)) = 1, (%) (5.40)

The above expression is defined as the criticality

importance of component i. V¥Note that Ici'1 (t) is a furnction

210

of Fi(t) while gi(t) is not.

3) Yesely-Fussell Definition of Importanmce

It is possible that a failure of a component can
contribute +to system failure without being critical.
Component i contributes to system failure if a cut set
containing i has failed. Let the probability that componeant
i contributes to system failure be denoted as g (F(t)). The
probability that component i contributes to system failure,

given that the system has failed by time t, is given by

@: (F(t))des
L = =1 Ty (5.41)
9(F(t)) i
This concept of importance was introduced by Vesely and
Fussell (53). Chatterjee call 1'F (t) the diagnostic

i
importance of i.

4) Barlow-Proschan Measure of Importance

Barlow and Proschan (9) examined components as they
failed sequentially in time. They assume that if two or more
components have a vanishingly small probability of occurring
at the same instant, then one component must have caused the
system to fail. The probability that event i cause the
system to fail during a differential time interval of t°',

where t'<t, is

211

[gﬂi,r(t'n-g(o&..ﬂt'))} aFi(tr) (5.42)
integrating between 0 and t
t
J {gO1L,P (£1))=g(0i,F ("))} aPi(e") (5.43)
(-]

We get the probability that component 1 cause the system to

fail in (0,t).

It can be shown (9) that

t
Zn S (9C 1, F(t)- 80 05, F(:*))] aFi(t") = 8(F(£)) (5.44)
1= 0

i.e., (5.34) is the probability that the system fails
before t, where n is the number of components comprising the

systen.

The conditional probability that a component i causes
the system to fail by the time t is then the Barlow-Proschan

measure of importance

t

50 {’(11: E(t'))- a(Oi, g(tl))} dFi(t') ‘EFIBP
I§ =i (t) (5.45)
‘%gg So fs(lisg(t')—-g(oi, E(t'))dei(t') i (%)

5) Sequential Contributory Importance

It might be interesting +to assess the role of the

212

failure of a component i when another component, say I,
causes the system to fail. The failure of i is a factor in
this case only if i and j are contained in at least one
minimal cut set. The probtability that component i is

contributing to system failure when j causes the system to

fail is

t
g(F(t)) |

and, in general, the probability that component i is
contributing to system failure when another component

causes the system to fail is

) |
> fo(13 150 F(61))- 9 13,0, F* D] 7y (64)ar(t0)
id; °

g(F(t))

def sc

= 'Ij. (t)

(5.47)

Where the sum over 3j is to include only those components

that appear in at least one minimal cut set with component

3

b Expression (5.47), I?: (t) . shall be called the

sequential contributory importance of component i.

213

5.3.2 Cut Set Importance

Definitions of cut set importance are described by

analogy to methods that determine component ilportance.'

In the Vesely-Fussell definition, the importance of a
cut set Kj is the probability that cut set Kj contributes

to system failure. It is given by

iek] (5.48)

The Barlow-Proschan definition of the importance of a
cut set Kj is the probability that a cut set Kj causes the
system to fail. For a cut set Kj to have caused the systenm
to .fail, a basic event contained in the cut set must have
caused the system to fail and all other events in the cut
set must have failed prior to +the event that caused the
system to fail. Barlow-Proschan's measure of importance of a

cut set Kj is

t k. k:-}1i
> % a1 men- s o, e T 2 wrar, ()
iekj ~0 - - = - 1zk; 1

g(F(t))

(5.49)

214

vhere 1Ki means that Yi is equal to 1 for each basic event
K-
i contained in cut set Kj. Since g(1’ ,F(t))=1, the above

expression becomes

Z_S (1—9(0-.1J F(t))—’_-l— F,(t) dF,(t)

1ék

a(F(t))

(5.50)

Vesely-Fussell's definition of cut set importance
always assigns more importance to a cut set of a lower order
than a cut set of a higher order when basic event
probabilities are equal. This is not always true, however,
with Bar low-Proschan's measure of importance (7¢). A summary
of importance measures for events and cut sets is listed in

Table 5. 2.
5.3.3 Importance of components when Repair is Permitted

Each of the methods previously described can also
assess the importance of components when repair is
permitted. In every importance expression except Barlow and
Proschan's, the 1limiting unavailability, Ii, can be
substituted for PFi(t) without any change in probabilistic

meaning (7€) .
5.3.4 Computer Codes for Measures of Importance

A computer code called IMPORTANCE (76) was developed by

215

"eAnjje) waysAs o3 soyad buja
=4n330 § JudAa dyseq y3m | Juana
J1seq ujejuod jeyj sizas Ino ulw
Aq pesnes [3¢0] up saunqyey
wa3lsAs jo Jaqunu psjsadxs ayy

“[470] V11 jusaa d1spq
Aq pesnod saun|pj jo Jeaquinu paoedxy

«"84n|ID} wajsds oy
Bunquiuon s) 1 Juess oy A4y 1qoqoly

\ *A||puoyyapsy
padnpal sy (4)° ¢ ueaym juaas doy oy jo
x._:n_on_o._m 9y} Ul uolINPaI |DUOIYIDIY

» '@IN|10) Wwayshs o) oYy) puo
Paiinado soy | Jusas joyy A311190q01d ay)

*P2 14140
$1 | JUBA® JO BOUALINDIO By} YIIYM Uy
2Jpjs b uj 51 waysds ayy 1oy} Ay1)1q0q01y4

ONINVIW

PeiInd20 SOy in|Iny wayss Joyy uaaln),

I swos 1oy y5 1)

| 141

__-m ! n s_ . T ._ . > m.m

(1) “me('b {((b 0 18- (B "1 e} [7
)

" _ _ [o]
(1) Im (B 0)8 - (1B)8} \
]

((4)b)B

((4)b)'6

@'ve (b

((1)b)Be .
((4)b)B

(' [((1) '0) - (1B LB

()b 018 - (1B '1)B

NOISSI¥IXI D11S118va OYd

(9L) saunseay aouejuoduy jo Auewwns 2°G 37avL

NVHISOidd-MOTIV

acupjiodu]

juaA] oisog
IVIININDAS
AJOLNGNINOD

asuppoduy
JusA] 21spg

@oupbpodw)
JuaA] oi1spg
T13SSN4-AT3S3A
aoubpiodw| juanj

21sog NOILONNA
ONIavyDdn

@oupylodw) juaag
21508 ALITVOILIND

@suppodw)| Eo.>m
21s0g WNvaNyIg

NNSVYIW
FDNVLIOIWI

216

._v_ 195 Jn2 uiw Aq pesnpd

sain|1oj waysds jo 1aqunu paydadxy

» '@10| 104 wayshs o} Buynqgy
~uoa sy Ty jas 40> ujw 4oy 4411904014

| Poyiew punoq Jaddn
a4ojs-Appays xn_ peiowixoiddo ain|jioy wey
-sAs ys11j sesnpd | Juane Joyy A4yjIqoqoly

['Poyiew | Aq pesowyxosddo san|ipy wajsAs
18114 55D | Juaae Joyy Aiij1goqoly

|"®4ois Arpeys ay4 uj ean)ioy
woysAs s9snpd | Juaas Joyy Aijiqoqoly

ONINYIW

waysds PaujojuloW,

pe1In220 soy ainjiny wajshs joyy uaAlD,

P E]! |
, A A EL
@ e b T b T o8- 11 f
{1} -y 3
((+)b)B
(e AR

1=
A_i_&__ma-: .:N
C

@ouoyiodw) jog 4nD

@aunpodw) jog nD)
713SSNA-AT3S3A

@oup{oduw)| Jusa]
o)spg ‘punog Jaddn) S5
‘NMOGNVI¥E 40

ﬁ_i_&__md- L) ut

|
8
W) 6

R _ L=t
Cet'd)/ (VY *o)8 - (v ._:m_ X
u

)/ 1@ o8 - (v el

NOISSIYd X3 DI1S1TevaOud

p,3uo) Z°:G 378Vl

A1vY WNTIvd 1Syl

goubnpiodw)

juaAg o1sng

»L 'NMOAX V38 40
J1vY [NTIVY 1SHld

@ouppodw) JugAj
21s0g Jo ainspeyy
NVHOSO¥d-MOTIvVE
31vI1S-AQvils

RNSYIW
FONVLIOIWI

217

Lambert to rank basic events and cut sets according to
various importance measures described above. The IMPORTANCE
computer code is capable of handling time-dependent fault
trees under the assumption that each basic component be
statistically independent and that its failure and repair
distribution be exponential in time. It requires as input
the minimal cut sets; the failure rates and fault duration
times of all basic events. The code computes as output the
following measures of bsic event importance, 1) Birnbaum 2)
Criticality, 3) upgrading Punction (proposed by Lambert), 4)
Vesely-Fussell, 5) Barlow-Proschan, 6) Sequential
Contributory and two measures of cut set importance, 1)

Barlow Proschan and 2) Vesely-Fussell.

The PL-MOD code (92) developed by Clmos and Wolf, also
provides an option to command the calculation of modular and
component Vesely-Fussell importances following the
structural analysis and probabilistic evaluation of the

fault tree.

218

CEAPTER SIX

CORCLUSIONS AND RECOMMENDATICNS FOR FUTURE WORK

6.1 Conclusions

Fault tree analysis has proved to be a useful
analytical tool for the reliability and safety analysis of
complex systems. Inductive analysis like preliminary hazards
analysis (PHA) or failures modes and effects analysis (FMEA)
can become extremely inefficient when analyzing complex
system due to the large number of comporent states that must
be considered. Fault tree analysis can efficiently direct
the effects of an analyst in considering only those basic
events that can contribute to system failure, i.e., to the
occurrence of the top event. The information contained in
the evaluation of +the fault tree can further assist an
analyst in simulating system failure, identifying subsysten
functional faults, and upgrading system designs to improve

their safety or reliability.

Fault tree models do have disadvantages. Probably the
most outstanding one is the cost of developmert in first-
time application to a system (50). However, as in the
development of engineering drawings, the cost is somewhat
offset by future application of the models in accident
prevention, maintenance scheduling, and systen

modifications.

219

Another disadvantage to fault tree analysis is the
possibility of oversight and omission (43). Automated fault
tree construction can eliminate the possibility of omitting
the routine failure modes. The automated approach can
standardize fault tree analysis and eliminate the confusion
associated with the seemingly different ways analysts can

manually construct fault trees.

A major pitfall with quantitative fault tree evaluation
is applying poor or imapplicable failure data, or poor
assumptions to highly complex systems (66). In standard
reliability analysis, point values (i.e.,'best estimates!?)
are generally used for both data and results in guantifying
the system model. Nevertheless, the 1lack of pertinent
failure rate data can be overcome by making use of
statistical theorem in data specialization. Furthermore,
guantitative fault tree evaluations are particularly vluable
for comparing systems designs that have similar components.
The results are not as sensitive to the failure rate data as
in an absolute determination of the system failure

probability.

The main points to consider in applying fault trees to
any situation are:

1) The fault tree analysis process is iterative so it
should begin by trying to provide a basic understanding

which can be expanded and embellished upon as the process

220

continues;

2) The fault tree analysis investigation should have
the latitude to answer gquestions about failure importance;
and

3) The fault tree analysis technigue is of engineering
value only wheﬁ used to increase system understanding as

well as producing the fault tree diagram.
€.2 Possible Future Work

2 problem in fault +tree modeling is that it is
difficult to apply Boolean 1logic to describe failures of
system components that can be partially successful in
operation and thereby have effects on the performance of the
system. Leakage through a valve is a good example. Research
efforts should be directed toward construction of Boolean

failure models for chemical and physical processes.

Since the published methodologies for fault tree
analysis are numerous and not vyvet of sufficiently high
quality for general use. It would be useful be establish

some criteria so that methods can be evaluated.

It would also be useful to develop certain statistical
technigues for deriving failure rate data te be used as
input of Dbasic events for fault tree evaluations.
Quantitative +techniques of common cause failure analysis

should also be developed for general use.

c2l

Finally, fault tree analysis is in many cases costly
and time consuming; comnsequently, is difficult to apply in
real world situation. An interesting research problem would
be to establish the feasibility and usefulness of an
adequate fault tree model for system safety and reliability

analysis in real world systeas.

222

REFERENCES
K. K. Aggarwal, "Comment on an efficient simple algorithm for
fault tree automatic synthesis from the reliability graph",
IEEE Trans on Reliability Vol. R.28, No. 4, Oct. 1979.
R. N. Allan, I. L. Ronsiris, and D. M. Fryer, "An efficient
computational technique for evaluating the cut/tie sets and
common.cause failures of complex_Systems. "IEEE Trans on
Reliability, Vel. R-30, No. 2, June 1§81,pp. 101_.109.
H. P. Alesso and H. J. Benson, "Fault tree and reliability
relationships for analyzing noncoherent two.state system",
Nuclear Engineering and Design, Vol. 56,1980, pp. 309.320.
P. K. Andow, "Difficulties in fault_.ftree synthesis for
process plant", IEEE Trans on Reliability Vol. R_-29, No. 1,
April, 1980, pp. 2-9. ‘
M. Astolfi, S. Contini, C. L. Van der Muyzenberg, and G.
Volta, "Fault tree analysis by list-processing techniques"”,
in Synthesis and Analysis Methods for Safety and Reliability
Studies, edited by G. Apostolakis, 1978, pp. 5-32.
R. E. Barlow and P. Chatterjee, "Introduction fo fault tree
analysis”, Cperations Research Center, U. C. Berkeley, CORC
73.30, Dec. 1973.
R. E. Barlow and H. E. Lambert, "Introdugtion to fault tree
analysis". Reliability and Fault Tree Analysis, R. E. Barlow
and J. B. Fussell, editors, SIAM, 1975, pp. 7-35.

R. E. Barlow,.and F. Proschan, "Availability theory for multi
component systems", Multivariate Analysis TII, P. R. Kriahe
naiah, editor, Academic Press N.Y.,1971.

9.

10.

11.

12.

13.

14,

15.

16.

223

R. E. Barlow and F. Proschan, "Importance of system compon-
-ents and fault tree analysis", Operation Research Center,

Univ. of Calif., Berkeley, Rept. ORC 74.3, 1974,

R. E. Barlow and F. Proschan, "Statistical theory of relia.

'_bility and life tssting", Holt, Rinehart, and Winston, New

York,1975.

L.Bass et al, “Fault tree graphics", in Reliability and Faulf
Tree Analysis, edited by R. E. Barlow and J. B. Fussell, SIAD
1975, pp. 913-927.

Bell-Telephone Laboratories, "Launch control safety study",
Section VII, Vol. 1, Bell Telephone Labs., Inc., Murray

Hill, N. J. 1961,
N. N. Bengiamin, B. A. Bowman, and K. F. Schenk, "An efficier

algorithm for reducing the complexity of computation in fault
tree analysis", IEEE Trans on Nuclear Science, Vol. NS_23,
Oct. 1976, pp. 1442_1446%

R. G. Bennetts, "Ogithe analysis of“fault trees®, IEEE Trans
on Reliability, Vol. R-24, No. 3. Aug., 1973, pp. 175-185.

L. J. Billera, "On the composition ind decomposition of
clutters”, Jourmal of Combinatorial Theory, Vol. 11, pp.234.
245, 1971,

Z. W. Birnbaum, "On the importance .f different components
in a multicomponent system", Multivariate Analysis II, P. R.

Krishnaiah, editor, Academic Press, .lew York, 1969.

17-

18.

19.

20.

21.

22.

23,

24,

25.

224

Z. W. Birnbaum, J. D. Esary and S. C. Saunders, "Multi.
component systems and structures and their reliability",
Technimetrics, Vol. 3, No. 1, Feb, 1961.

‘A. Blin, A. Carline, et al., "PATREC, a computer code for
fault tree calculations", in Synthesis and Analysis Method
for Safety and Reliability Studies, edited by G. Apostola_
kis, pp. 33-43, 1978. |
D. B. Brown, "Fault tree analysis", Systems Analysis and
Design for Safety, Prentice.Hall, Inc., Englewood Cliffs,
N.J., PP, 152.193, 1976.

G. R. Burdick, "COMCAN. a computer code for common.cause
analysis", IEEE Trans on Reliability, Vol. R-26, No. 2,
June, 1977.

G. R. Burdick, N. H. llarshall, and J. R. @Wilson, "COMCAN.-
a computer code for common-cause analysis", ANCR-1314, May, .
1976.

L. Caldarola, "Unavailability and failure intensity of com.
ponents”, Nuclear Engineering and Design 44, pp. 147-162,
1977.

L. Caldarola, "Fault tree analysis with multistate compone.
nts", in Synthesis and Analysis Methods for Safety and Rel.
iability Studies, NATO, pp. 199.248, 1978.

L. Caldarola, "Coherent systems with multistate components",
Nuc. Eng. and Des. Vol. 58, pp. 127-139, 1980.

L.Calderola and A. Wickenhauser, "Recent advancements in

fault tree methodology at Karlsruhe" in Nuclear Systems

26.

27.

28.

29.

30.

31.

32.

33.

225

Reliability Engineering and Risk Assessment, J. B. Fussell

and G. R. Burdick, editors, SIAM 1977.

L. Caldarola and A. Wickenhauser, "The Karlsruhe computer

" program for the evaluation of the availability and retia.

. bility of complex repairable systems", Fuclear Engineering

and Design I'"jl 463_4-?0, 197?'

P. Camarda, F. Corsi, and A. Trentadue, "An efficient simple
algorithm for fault tree automatic synthesis from the rel.
iability graph", IEEE Trans on Reliability Vol. R_27, No. 3,
PR. 215.221, Aug. 1978.

J. M. Cargal, "An alternative fault_tree algebra", IEEE
Trans on Reliability, Vol. R-29, No. 3, pp. 269.272, Aug.
1980.

A. Carnino, "Safety analysis using fault trees", NATO Advan.
ced Study Inst. on Generic Techniques of System Reliability
Assessment, 1973.

C. L. Cate and J. B. Fussell, “"BACFIRE. a computer program
for common cause failure analysis", The University of
Tennessee, NERS_77.02,1977.

M. F. Chomow, "Directed graph techniques for the analysis of
fault trees”, IEEE Trans on Reliability, Vol. R_27, No. 1,
PP. 7-15, April 1978,

P. Chatterjee, "Fault tree analysis : min cut set algorithms
ORC 74_2, Operations Research Center, University of Califor-
nia, Berkeley, California, Jan. 1974.

P. Chatterjee, "Fault tree analysis : reliability theory

and systems safety analysis", Operations Research Center, U.

C. Berkeley, ORC 74.34, Nov. 1974,

3""-

35.

36.

37.

38.

39.

40,

41,

L2,

43,

226

P, Chatterjee, "Modularization of fault trees : a2 method to
reduce the cost of analysis", in Reliability and Fault Tree
Analysis, SIAM, pp. 101_.126, 1975.

T. L. Chu, G. Apostolakis, "Methods for probabilistic ana.

lysis of noncoherent fault trees", IEEE Trans on Relia.

bility, Vol. R-29, No. 5, Dec. 1980.

C. E. Clark, "Importance sampling in Monte Carlo analysis",
Operation Research, Sept/Oct., pp. 603.620, 1961,

A. G. Colombo, "Uncertainty propagation in fault tree ana.
lysis", in Failure Prevention and Reliability presented

at the Design Engg. Technical Cong., Chicago, I1l, Sep.
26-28, pp. 95-103, 1977.

P. Crosetti, "Computer program for fault tree analysis",
Douglas United Nuclear, Inc., Richard, Wash., DUN.5508,

Apr. 1969.
P. A. Crosetti, "Fault tree analysis with probability eval-

uation”, IEEE Nuclear Power Systems Symposium, Nov. 1970.

P. A. Crosetti, "Fault tree analysis for systemé reliabil_
ity", Instrumentation Technelogy, pp. 52-56, August 1971.
P, A. Crosetti and R. A. Bruce, "Commercial application of
fault tree analysis", Proc. Reliability and Maiitainability
Symposium, Vol. 9, pp. 230.244, 1970,

G. E. Cummings, "Application of the fault tree fechnique to
a nuclear reactor containment system®, in Reliability and
Fault Tree Analysis, edited R. E. Barlow et al., S3IAM,
Philadelphié, pp. 805.825, 1975,

R. L. Eisner, "Fault tree analysis to anticipate potential

Ly,

45,

46,

LI'?.

48.

49:

50

227

failure", presented at the Design Eng. Conf. Amer. Soc.
Mechanical Eng., May 8.11, 1972,

E. P. Epler, "Common mode failure considerations in the

design of systems for protection and control®™, Nuclear °

Safety, Vol. 10, No. 1, pp. 38-45,1969.

R. C. Erdmann, J. E. Kelly, H. R. Kirch, F. L. Leverenz,
and E. T. Rumble, "A method for quantifying logic models
for safety analysis ", in Nuclear Systems Reliability
Engineering and Risk Assessment, edited by J. B. Fussell
et al., SIAM PP. ?32‘75uf 1977,

B. A.Wﬁ;i;;o;. "System safety analytical technology- pre-
liminary hazards analysis", the Boeing Co., Seattle, Rept.
D2.113072.1, 1969.

J. D. Esary and F. Proschan, "Uoherent structures of non.
identical components", Technometrics, Vol., 5, No. 2, May
1963. 7

J. D. Esary and H. Ziehms, "Reliability analysis of phased
missions". in Reliability and Fault Tree Analysis, SIAM,
pPp. 213-236, 1975.

W. Feller, "An introduction to probability theory and its
applications", Vol. I, 3rd Ed. New York, John Wiley and
Sons, 1968,

J. B. Fussell, "Fault tree analysis. concepts and tech.
niques"”, NATO Advanced Study Inst. on Generic Techniques of
system Reliability Assessment, 1973.

51.
52.

53.

54,

1

57.

58.

228

J. B, Fussell, "Tynthetic tree model - a formal methodolog:
for fault tree construction", ANCR_1098, llarch, 1973.

J. B. Fussell, "A formal methodology for fault tree cons.
truction”, Nuclear Eng. and Design, 52, pp. 337.360,1973.
J. B. Fussell, "How to hand_calculate system reliability
and safety characteristics", IESEE Trans on Reliability, Vol
F.24, Mo. 3, pp. 169-174, Aug. 1975.

J. B. Fussell, "Computer aided fault tree construction for
electrical systems", in Reliability and Fault Tree Analysis
R. E. Barlow and J. B. Fussell, editors, pp. 37-56, SIAL,
1975.

J. B. Fussell, G. R. Burdick, D. M. Rasmuson, J. R. Wilson
end J.'C. Zipperer, "A collection of methods for reliabi.
lity and safety engzineering", ANCR_1273, 1976.

J. D. Fussell, Z. B. Henry and . H. iarshall, ".CCUS.

a computer program to obtain minimal sets from fault trees"
AICR_1156, Aefojet I'uclear Company, Idaho Falls, Idaho,
harch, 1974.

J. B. Fussell and H. E. Lambert, "Quantitative evaluation
of nuclear system reliability and safety characteristics",
IZEE Trans on Reliability Vol. R_25, No. 3, pp 178.183,
Aug. 1976.

J. B. Fussell, G. J. Powers and R. G. Bennetts, "Fault trees
- a2 state of the art discussion", 1EEE Trans on Leliahility

R-23g N0, 1| Pp- 51—551 April 19?"‘1".

60'

61.

62,

63.

64,

65.

66.

229

J. B. Fussell and W. E. Vesely, "Elements of fault tree

construction- a new approach", Trans Amer. Nuc. 30c. pp.

794, 1972.

J. B. Fussell and W. E. Vesely, "A new methodology for
obtaining cut sets for fault trees", Trans ANS, Vol. 15,

P- 262 ' 19?2'

A. C. Gangadharan, M. 5. M. Rao and C. Sundarajan, "Com.
puter methods for qualitative fault tree analysis", in
Failure Prevention and Reliability, edited by S. E. Bennett
et al.. P« 251262, 1977.

S. Garribba et al., "DICOMICS, an algorithm for direct co-
mputation of minimal cut sets of fault trees", EUR_5481e,
1975.

3. Garribba et al., "Efficient construction of. minimal cut
sets from fault trees"?, IEEE Trans on Reliability , Vol.
R-26, No. 2, Jun. 1977.

B. J. Garrick, "Principles of unified system safety analy.
sis", Nuclear Engineering and Design 13, pp. 245.321, 1970.
W. Y. Gately, D. W. Stoddard and R. L. Williams, "GO, a
computer program for the reliability analysis of comples
systems"”, Daman Science Corporation, Colorado Springs, Col.
lorado, KN_67_704(R), April, 1968.

C. W. Griffin, "The fault tree as a safety optimization
design tool", presented at the Topical Meeting on Water.
Reactor Safety, Mar. 1973.

6?-

68.

69.

?o.

71.

72.

73

74,

230

D. F. Haasl, "Advanced concepts on fault tree analysis”,
System Safety Symposium, The Boeing Company, Seattle,
Washington, June 8.9, 1965.

W. Hammer, "Fault tree analysis", Handbook of System and

Product Safety, Prentice-Hall, Inc. Englewood Cliffs, N.J.
pp. 238-246, 1972.

W. Hammer, "Fault tree analysis"; Product Safety Management
and Engineering, Prentice.Hall, Inc.,Englewood Cliffs, N.J.
pp. 204.228, 1975.

E. J. Henley and H. Kumamoto, "Comment on : computer._aided
synthesis of fault trees", IEEE Trans on Reliability, Vol.
R-26, pp. 316.317, Dec. 1977.

B. L. Hulme and R. B. Worrell, " A prime implicant algori.
thm with factoring"”, IEEE Trans on computers, Vol. C_-24, pp
1129-1131, Nov. 1975.

H. E. Kongsoe, "RELY 4 : a Monte Carlo computer program for
systems relirbility analysis", Danish Atomic Energy Commis:
sion, RISE-M-1500, June 1972,

H. E. Kongsoe, "REDIS, a computer program for system relia.
bility analysis by direct simulation", International Sympo._
sium on Relizbility of Nuclear Power Plants, Insbruck, Aus.
trin, April :4.18, 1975.

H. Kumanoto and E. J. Henley, *"Top-down algorithm for obt_..
aining prime implicant sets of noncoherent fault trees”,

IEEE Trans on Reliability, Vol. R.27, pp. 242_.249, Oct.
1978.

7 5.

76.

77

78,

79

80I

81.

82.

83,

231
H. E. Lambert, "System safety analysis and fault tree anal.
ysis", UCID-16238, Lawrence Livermore Lab. , Livermore,

California, May, 1973.

H. E. lambert, "Fault trees for decision making in system

analysis®, Lawrence Livermore Laboratory, University of
California, Livermore, UCRL-51829, Qct. 1975.

H. E. Lambert, "Measures of importance of events and cut
sets in fault trees”",in Reliability and Fault Tree Analysis
edited by R. E. Barlow et al., SIAM , pp. 77-100, 1975.

H. E. Lambert, "Comment on the Lapp.Powers computer.aided
synthesis of fault trees", IEEE Trans on Reliability, Vol.
R.28, No. 1, pp. 6.9, April 1979.

E. E. Lewis, "Fault trees", Nuclear Power Reactor Safety,
John.Wiley and Sons, N.Y., pp. 87-91, 1977.

S. A, Lapp and G. J. Powers, "Computer-aided synthesis of
fault trees", IEEE Trans on Reliability, pp. 2-13, April
1977,

S. A. Lapp and G. J. Powers, "The synthesis of fault trees"
in Nuclear Systems Reliability Engineering and Risk Assess.
ment, edited by J. B. Fussell and G. R. Burdick, SIAM, pp.
778-.799, 1977. |

S. A. Lapp and G. J. Powers, "Update of Lapp-Powers fault
tree synthesis algorithm". IEEE Trans on Reliability, Vol.
R-28, No. 1, pp. 12.14, April 1979.

M. 0. Locks, "Synthesis 6f fault trees:an example of nonco.

herence", IEEE Trans Reliability , Vol. R-28, pp. 2.5, Apr.
1979.

84!

85.

8é.

87.

88.

89.

g0.

91.

232

M. 0. Locks, "Fault trees, prime implicants and noncoherence
", E. I. Ogunbiyi, "Author reply #1", H. Kumamoto and E. J.
Heneley"Atuthor reply #2", M. O. Locks, "Rebuttal®”, IEEE

Trans on Reliability, Vol. R-29, pp. 130-135, June 1980,

M. S. Madhava Rao, "FALTREE. a computer program for fault
tree analysis", Engineering Science and Technology Dept.
Letter Report, EST.77-1, Foster Wheeler Development Cor._
poration, Livingston, N. J. 1977.

S. W. Malasky, "Fault tree analysis". System Safety, Hayden
Book Co. Inc., Rochelle Park, N. J. pp. 142_194, 1974,

A. W. Marshall and I. Olkin, :A multivariate exponential
distribution”, JASA, 62, pp. 30_44, 1967.

M. Mazumdar, "Importance sampling in reliability estimatipn
", Reliability and Fault Tree Analysis {(editors : R. E.
Barlow et al.,) SIAM 1975.

C. W. Mcknight, et al., "Automatic reliability mathematical
model”, North American Aviation, Inc., Downey, California,
NA 66.838, 1966.

K. Nakashima and Y. Hattori, "An efficient bottom_up algo-
rithm for enumerating minimal cut sets of fault trees”,
IEEE Trans on Reliability, Vol. R_28, Dec. 1979.

D. Nielsen, "Use of cause.consequence charts in practical
system analysis”, in Reliability and Fault Tree Analysis,
edited by R. E. Barlow and J. B. Fussell, SIAM, pp. 849._
880, 1975.

92.

93.

94.

95.

96.

9?.

98.

233

J. Olmos and L. Wolf, "A moduler representation and analysi:
of fault trees", Nuclear Engineering and Design, Vol. 48,
Aug 1978.

P. K. Pande, M. E. Spector and P. Chatterjee, "Computeri.

zed fault tree analysis " TREEL and MICSUP", ORC 75.3, Ope-
ration Research Center, University of California, Berkeley,
April 1975.

S. L. Pollack, "Decision tables : theory and practice",

Wiley-Interscience, N. Y. 1971,

G. M. Powers and F. C. Tompkins, "Computer_aided synthsis
of fault trees for complex processing systems", NATO Adva-
nced Study Inst. on Generic Techniques of System Reliabilitj

Assessment, pp. 307-314, 1973.

G. J. Powers and F.-C. Tompkins, "Fault tree synthesis for
chemical process", AICHE Journal, Vol. 20, No. 2, pp. 376
387, March 1974,

G. J. Powers, F. C. Tompkins aad S. A Lapp, "A safety
simulation language for chemical processes : a procedure
for fault tree synthesis”, in Reliability and fault tree
analysis, R. E. Barlow and J. 3. Fussell, editors, pp. 57-
75, SIAM 1975.

D.). Rasmuson and N. H. Marsrall, "FATRAM_ a core efficien-
cut.set algorithm ", IEEE Tran. on Reliability, Vol. R-27,
No. 4, pp. 250.253, Oct. 1978,

99.

100.

101.

102.

234

Reactor Safety Study.-. An Assessment of Accident Risk in
U. S. Commercial Nuclear Power Plants}WASH-lhOO (NUREG.

75/014), U. S. Nuclear Regulatory Commission, Washington,

D.C., 1975, October.

J. L. Recht, "System safety analysis : the fault tree”,

National Safety News, April 1966.

A. Rosenthal, "Decomposition Methods for Fault Tree Analysis
IEEE Trans on Reliability, Vol. R.29, No. 3, June 1980.

E. T. Rumble, F. L. Leverenz and R. C. Erdmann, "Generalized

fault tree analysis for reactor safety", Electric Power

- Research Inst., Palo Alto, California, EPRI_217.2_2, June

1975.
N. H. Roberts, "Mathematical models in reliability engineer.

ing", NeGraw.Hill, N.Y.,p243, 1964,

S. L. 3alem and G. Apostolakis, "The CAT methodology for
fault tree construction", in Synthesis and Analysis Method
for Safety and Reliability Studies, edited by G. Apostolakis
et al,, NATO, pp. 109.-128, 1978.

3. L. Salem, G. E. Apostolakis aﬁd 5:46£fent.“A computer.
oriented approach to fault tree construction", EPRI NP.288,
Electric Power Reaearch Institute, Nov. 1976.

S. L. Salem, G. E. Apostolakis and D. Okrent, "A new metho.
dology for the computer.aided construction of fault tree"”,

Annals of Nuclear Energy, Vol. 4, pp. 417.433, 1977.

1074

108.

109.

110,

111.

1i2.

113,

114,

115,

235
S. L. Salem, J. S. Wu and G. E. Apostolakis, "Decision tabl:
development and application to the construction of fault

trees", Nuclear Technology, Vol. 42, pp. 51.64, Jan. 1979.

.G. H. Sandler, "System reliability engineering", McGraw.

Hill, N.Y., p. 243, 1964,

R. J. Schroder, "Fault tree for reliability analysis", Proc
1970 Annual Symposium on Reliability, Feb. 3.5, Los Angeles
pp. 198.205, 1970. '

S. N. Semanderes, "ELRAFT, a computer program for the effi.
cient logic reduction analysis of fault trees", IEEE Trans
on Nuclear Science, Vol. NS_18, No. 1, pp. 481_487, Feb.
1971.

M. L. Shooman, "Probabilistic reliability : an engineering
approach”, lMcGraw_Hill Book Company, 1968.

C. 0. 3mith, "Introduction to reliability in design", N.Y.
McGraw-Hill, 1976.

J. R. Taylor, "A formalisation of failure mode analysis of
control systems", Danish Atomic Energy Commission, RISE.
M_1654, Sept. 1973.

J. R. Taylor, "A study of failur. causes based on U. S.
power reactor abnormal occurrence reports”, Reliability

of Hiuclear Power Plants, IAEA.SM.195/16, 1975.

J. R. Taylor, "Sequential effect: in failure mode analysis"
in Reliability and Fault Tree An=lysis, pp. 881_894, SIAM

1975.

116.

117.

118,

119.

[y
(A8]
[
.

123.

236

J. R. Taylor and E. Hollo, "Algorithm and programs for con.
sequence diagram and fault tree construction", Rept. No.
RISP.M.1907, Danish Atomic Energy Commission, Roskilde,
Denmark, 1977.

J. R. Taylor and E. Hollo, "Experience with algorithms for.
automatic failure analysis", in Nuclear Systems Reliability
Engineering and Risk Assessment, edited by J. B. Fussell and
G. R. Burdick, pp. 759-777, SIAM 1977.

W. J. Van Slyke and D. E. Griffing, "ALLCUTS, a fast compre-
hensive fault tree analysis code", Atlantic Richfield
Hanford Company, Ricland, Washington, ARH_ST_112, July 1975.
W. E. Vesely, "Analysis of flault trees by kinetic tree
theory", IN.1330, Idaho Nuclear Corp., Idaho Falls, Oct.,

1969.
W. E. Vesely, "A time.dependent methodology for fault tree

analysis", Nucl, Engr. and Design, Vol. 13, No. 2, pp. 337-
360, August 1970.

W. E. Vesely, "Reliability and fault tree'applications at
NRTS", Proc. 1970 Reliability and Maintanability Symposium
Vol. 9, pp. 472-480, 1970.

W. E. Vesely, "Reliability quantification techniques used
in the Rasmussen study", in Reliability and Fault Tree
Analysis, SIAM, pp. 775-803, 1975.

W. E. Vesely, "Time dependent unavailability analysis of
nuclear safety system®, IEEE Trans on Beliability, Vol. R.
26, No. 4, pp. 257-260, Oct. 1977.

124,

125.

126,

127.

128.

129,

130.

. 237
W. E. Vesely, "Estimating common cause failure probabilities
in reliability and risk analysis : Marshall_Olkin specia.
lization", in Nuclear Systems Reliability Engineering and

Risk Assessment, pp. 314_341, SIAM 1977.

'W. E, Vesely and R.E. Narum, "PREP and KITT computer code

for the automatic evaluation of a fault tree"”, Idaho Nuc-

lear Corporation, Idaho Falls, Kdaho, IN_1349, 1970,

D. P. Wagner, C. L. Cate and J. B. Fussell, "Common cause

failure analysis methodology for complex systems%,in

Nuclear Systems Reliability Engineering and Risk Assessment

edited by J. B. Fussell and G. R. Burdick, pp. 289-313,

SIAM 1977.

D. B. Wheeler et al., "Fault tree analysis using bit mani.

pulation”, IEEE Trans on Reliability, Vol. R-26, No. 2, pp.

95-99, June 1977.

R. L. William and 4. Y. Gateley, "Use of the GO methodology

to directly generate minimal cut sets", in Nuclear Systems

Reliability Engineering and Risk Assessment, edited by J.

B. Fussell and G. R. Burdick, pp. 825_.849, 3IAN 1977.

R. R, Willie, “Comﬁa%er_aided f;alt tree analysis : FTAP",

Operations Research Center, U. C. Berkeley, ORC 78_14,

Aug. 1978.

E. R. #Woodcock, "The calculation of reliability of systems
the program NOTED", UKAZA Authority Health and Safety

Branch, Risley, Warrington, Lancashire, England, AHSB(S)

R. 153, 1971.

131.

158

133

134.

135.

136,

137.

138.

238

P, Y. déng, "FAUTRAN. a fault tree analyzer", AECL_5182,
Atomic Zrnergy of Canada Limited, Chalk River Nuclear Lab.

Chalk River, Ontario, Canada, 1975.

R. B. Worrell, "Set equation transformation system {SETS)"
SLA.73.0028A Sandia Laboratories, Albuquerque, New Mexico,
May 1974.

R. B. Worrell, "Using the set equation transformation
system in fault tree analysis", in Reliability and Fault
tree analysis, SIAM Conference Volume PP, 165.185, 1975.
R. B. Worrell, "Qualitative analysis in reliability and
safety studies", IEEE Trans on Reliability, Vol. R_.25, No.

3, August 1976.
R. B. Worrell, D. W. Stack and B.L. Hulme, "Prime implicants

of noncoherent faiut trees”,IEEE Trans on Reliability, Vol.
R-30, No. 2, pp. 98-.100, June 1981.

J. 3. Wu, S. L. Salem and G.E. Apostolakis, "The use of
decision tables in the systematic construction of fault
trees", in MNuclear Systems Reliability Engineering and
Risk Assessment, edited by J. B. Fussell and G. R. Burdick,
pp. 800.82L, SIAN 1977.

T, W. Yellman, "Comment on computer.aided synthesis of fault
trees", IEEE Trans on Reliability, Vol. R-28, No. 1, pp.
10.11, April 1979.

J. Young,"Using the fault tree analysis technique", Rel.
iability and Fault Tree Analysis, R. E. Barlow and J. B.
Fussell, editors, pp. 827-848, SIAM 1975.

A STUDY OF FAULT TREE ANALYSIS FOR
SYSTEM SAFETY AND RELIABILITY

by

WEN.SHING LEE

B.S. (Industrial management). National Cheng.Kung Un1versxty.
Tainan, Taiwan, 1973

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirement for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1982

ABSTRACT

This study presents a review and classification of
fault tree apnalysis methodologies developed 1in the past tvwo

decades for the interests of system safety and reliability.

A state-of-the-art review of the literature related to
fault tree analysis is presented in chapter 2. Chapter 3
describes in detail the current wuse fault tree construction
methodologies in the U.S. and elsewhere. Chapter 4 discusses
the methodologies of qualitative fault tree evaluation of
both finding minimal cut (path) sets and common cause
failure analysis. Chapter 5 illustrates the major
guantitative fault tree analysis techniques for
probabilistic evaluation of fault trees and measures of
importance of events and cut sets. A Dbrief summary and

possible future study is given in chapter €.

Pault tree analysis has proved to be a useful
analytical tool for +the reliability and safety analysis of
complex systems. The literature on fault tree analysis is,
for the most part, scattered through conference proceedings
and company reports. Therefore, vwe feel that a readable,

logical introduction to this subject is very much needed.

