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Abstract

To prevent large networks from potential security threats, network administrators need

to know in advance what components of their networks are under high security risk. One

way to obtain this knowledge is via attack graphs. Various types of attack graphs based on

miscellaneous techniques has been proposed [1–5]. However, attack graphs can only make

assertion about different paths that an attacker can take to compromise the network. This

information is just half the solution in securing a particular network. Network administrators

need to analyze an attack graph to be able to identify the associated risk. Provided that

attack graphs can get very large in size, it would be very difficult for them to perform the

task. In this thesis, I provide a security risk prioritization algorithm to rank logical attack

graphs produced by MulVAL (A vulnerability analysis system) [6]. My proposed method

(called StepRank) is based on a previously published algorithm called AssetRank [7] that

generalizes over Google’s PageRank [8] algorithm. StepRank considers a forward attack

graph that is a reversed version of the original MulVAL attack graph used by AssetRank.

The result of the ranking algorithm is a rank value for each node that is relative to every

other rank value and shows how difficult it is for an attacker to satisfy a node.
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Chapter 1

Introduction

1.1 Background

Maintaining a secure and reliable network is a critical task for network owners and operators.

It is often the case that confidential or sensitive data is often stored within the boundaries

of a particular enterprise network. Moreover, any interruption of work flow in an enterprise

network may lead to costly losses. In order to keep the information and network activity

safe, system administrators need to secure their networks. One important step towards

securing a large network is to prevent the harm from identifiable threats. Significant effort

is expended in many enterprises to identify vulnerabilities and the range of their security

risk in order to have safer systems. The result of this effort can be used to find and thereby

prevent possible ways of compromising a particular network. Among the tools that can help

in preventing future security threats is attack graph. In addition, vulnerability databases [9]

and the information they provide regarding individual vulnerabilities are quite beneficial.

In this Chapter we briefly describe attack graphs and MulVAL, a vulnerability analysis

system that we used to produce attack graphs. Later we formally state the problem and

discuss previous work on security risk measurement.
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1:execCode(webServer,apache):0

2:RULE 3 (remote exploit):0

3:netAccess(webServer,tcp,80):0 7:networkServiceInfo(webServer,...,apache):1 8:vulExists(webServer,...):1

4:RULE 7 (direct net access):0

5:hacl(internet,webServer,tcp,80):1 6:attackerLocated(internet):1

Figure 1.1: A small MulVAL attack graph.

1.1.1 Attack Graphs

An attack graph is a formalism that uses network configuration and vulnerability data to

analyze a particular network of computers against possible security threats. There have

been various proposals for producing attack graphs based on a number of techniques. For

example, there are attack graph generation methods based on model checking [3]. Another

type of attack graph generation is based on first-order logic [2]. Attack graphs can also be

modeled to show states of system execution showing the necessary requirements of a state

[4].

In this work, we use the logical attack graphs that are produced by MulVAL [6]. Figures

1.1 and 1.2 show examples of MulVAL and forward attack graphs which is obtained from

revesing all the edges in MulVAL’s attack graphs. It has been shown that the size of a logical

attack for a network with n machines is bounded by O(n2) [2]. That means the number of

nodes can be very large which makes the manual analysis of such graphs a very hard task.
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1:execCode(webServer,apache):0

2:RULE 3 (remote exploit):0

3:netAccess(webServer,tcp,80):0

4:RULE 7 (direct net access):0

5:hacl(internet,webServer,tcp,80):1 6:attackerLocated(internet):1

7:networkServiceInfo(webServer,...,apache):1 8:vulExists(webServer,...):1

Figure 1.2: A small forward attack graph.

1.1.2 MulVAL

MulVAL (Multi-host, multi-stage Vulnerability Analysis) uses Datalog [10] (a subset of

Prolog) to produce logical attack graphs. MulVAL’s framework is shown in Figure 1.3

[6]. It takes as input a set of first-order logical configuration predicates and produces an

attack graph based on that. These configuration predicates include network specific security

policies, binding information and vulnerability data gathered from vulnerability databases.

MulVAL identifies possible policy violations through logical inference. From a practical

point of view, knowing the possibility of potential attacks on a network is just half the

solution. The other important half is to help system administrators decide how to prevent

such a threat.

1.2 Problem Statement

MulVAL’s output provides a useful attack graph that can tell if the overall network admits

possible threats. It can also show various ways in which the network can be attacked to

gain certain privileges. After letting MulVAL analyze the network and produce an attack

3



Host 1

Network 

Configuration

Principal and 

Data Binding Security policy

…

…

Interaction 

Rules

violation & 

attack trace

Prolog Environment

OVAL 

definition

ICAT 

database

OVAL 

Scanner

Host 1

OVAL 

Scanner

Figure 1.3: MulVAL’s Framework.

graph, a network administrator needs to diagnose the problems that enable the attacks to

happen. Unfortunately, MulVAL’s graphs can be very large given relatively small networks.

This makes it more difficult to interpret the graph and identify nodes through which more

attack paths pass. These nodes are more important to system administrators. To illustrate

the issue consider the network configuration in Figure 1.4. In this configuration, an attacker

Experiment 1 
  Consider the following network. 

  We expect equal values for exploit nodes of  B, C and D.  

  We expect lower value for E. 

  F’s exploit node expected to have least value. 

26 

A B C D E F firewall 

Figure 1.4: An example of a network configuration with 6 hosts and 2 subnets.

whose goal is to gain access on machine F is able to start an attack path using hosts A

and B. All the hosts have the potential of being compromised. However, E can only be

accessed from C and D. The MulVAL attack graph corresponding to this configuration is

shown in figure A.2. This graph has 50 nodes with a lot of dependency relations directed

by the graph edges. For such a small configuration, it is hard to manually analyze the

corresponding attack graph and find out which nodes are the most risky ones. Comparing

graph of figure A.2 to the graph of figure A.1 with only 17 nodes we observe a huge increase

4



in the number of nodes by adding only 3 more hosts.

In practice, networks may have absolutely larger configurations with more complex poli-

cies and rules. It can be imagined from the example graphs how big the attack graph would

be for a network of 100 or more hosts with complicated configurations. Further, it would be

nearly impossible for a team of system administrators to efficiently and effectively analyze

the graph of a very large enterprise with thousands of nodes. Thus, it is very convenient to

have a mechanism to rank the nodes on an attack graph. By analyzing the ranks one can

have a clearer idea of what parts of the configuration are putting the most amount of risk

on the whole network. For instance, by sorting the ranks and considering first 10% most

risky nodes, system administrators can find solutions that aim to reduce the associated risk.

In this work, we present a method to rank an attack graph produced by MulVAL. Our

approach is based on a previously published algorithm called AssetRank [7], which is in turn

a generalization over Google’s PageRank algorithm [8]. Moreover, we base our ranking on a

forward attack graph in which the parent-child relation is reversed compared to the original

MulVAL attack graphs. The motivation for using a forward attack graph is to formalize

a realistic scenario in which attackers do not have an overall picture of the attack graph.

That is, an attacker can see one step ahead at any given time in a forward attack graph

and at each step decides on the next stage in his attack path. Another important reason

to use a forward attack graph is that we would like to compare risks whereas AssetRank’s

strategy is to capture “enabling capabilities”. The computation is carried out using two

algorithms. One computes weights for the edges of the attack graph and the other computes

the overall ranks. In Chapter 2 we describe the theoretical foundation of our model along

with an interpretation of the rank values. In Chapter 3 we discuss how one can obtain the

parameters to our ranking equation. Finally in Chapter 4 we provide the results of some

experiments and discuss how to validate the results.

5



1.3 Related Work

1.3.1 PageRank

In order to rank webpages over the web, Page and Sergey introduced PageRank algorithm.

The idea of PageRank is to treat the links between webpages as a dependency graph [11].

In such a model, each page is regarded as edges in a graph vertex. If there is a link from

a page p1 to a page p2, then it is represented by an edge (p1, p2) between the two vertices.

The ranking process proceeds from p1 to p2 and computes the ranks of child nodes from

those of their parents. The overall computation is viewed as a random walk in which the

surfer randomly chooses among the available outgoing edges to go to the next page. The

surfer will also have the option to stop and jump to a new page when surfing the pages.

1.3.2 AssetRank

The idea of PageRank was later applied to security risk measurement [7]. The analogy

between webpages and MulVAL’s attack graph was that in both the relations could be

viewed as a dependency graph. In an attack graph, the relation (u, v) means node u depends

on v. An example in MulVAL language could be that execCode(Host,Permission)could

be satisfied with hasAccount(Principal,Host,Permission).The main difference between

PageRank and AssetRank is how they handle the AND nodes. PageRank could only consider

OR nodes. This is because a random surfer can just choose between any of the links on the

page to surf more pages. Thus, there need not be any AND relation between the links of a

page. However, in an attack graph, one node may need to be satisfied by all of its children

to be enabled, thus forming an AND relation between the outgoing edges.

AssetRank computes the ranks by means of attacking agents. These agents start at the

root of the graph and have complete information about the whole graph. They follow the

attack paths based on a probability distribution until they reach the leaves of the graph.

As the agents move, the ranks flow from parent nodes to the children. When propagating

the rank values from an OR node, the value will be split between its children (similar to

6



PageRank). By contrast, for an AND node, the value of the parent will be replicated to all

of its children. Ou and Sawilla use this method of handling OR and AND nodes to capture

the corresponding relationships and the possible attack patterns that they represent.

1.3.3 Other Works

Sheyner et al. provide an attack graph based on model checking. They formalize the

intrusion attack in a finite state model. Although they do not provide a complete ranking

strategy, they provide a method to compute minimal critical attack sets based on user-

defined measures [3]. Another work in security risk analysis [12] performed direct analysis

on network configuration and it did not use attack graphs. The threat measure consists

of two parts: the threat likelihood and possibility of attack propagation throughout the

network.

Mehta et al. provide a ranking method using state enumeration attack graphs [13].

Similar to AssetRank, they have applied the idea of PageRank but on a different type of

attack graphs (compared to the dependency attack graphs used in AssetRank). Because of

the difference in the type of attack graph they use, the interpretation of the ranking (which

is affected by the semantics of the attack graph) also differs significantly.

In [14] a software system that analyzes the network through Topological Vulnerability

Analysis is discussed. This visualization tool is an integrated component of the CAULDRON

attack graph tool that was developed at George Mason University. CAULDRON maintains

a database of attacker exploits and uses network configuration as input together with exploit

data to produce a graph of all possible ways to compromise the network. A powerful utility

of CAULDRON is the ability to perform what-if analysis in which one can specify the start

point and goals of the attacker.

Previous work on probabilistic based security metric has also been proposed [15]. This

approach also uses a forward attack graph with two types of scores for each type of node.

7



Both condition 1 and exploit 2 nodes have intrinsic and cumulative scores. All computed

scores and those scores provided as parameters, represent probabilities. The authors also

discuss three types of cycles that can appear in their attack graph. They provide solutions

to each type of cycles.

1Condition node represents system state
2Exploit node represents transition between system states

8



Chapter 2

StepRank

In this chapter, we discuss the theoretical details of our proposed algorithm which we call

StepRank. The name was chosen to reflect the fact that in our model, we assume that the

attacker can only see one step ahead when trying to follow an attack path towards hi goal.

In Section 2.1 we give a formal definition of logical attack graphs and in 2.2 we discuss its

difference with what we call a forward attack graph. In sections 2.3 through 2.7 we describe

the details of our ranking formula and finally in 2.8 the procedure to compute StepRank

is presented.

2.1 MulVAL Logical Attack Graph

A logical attack graph can formally be defined as G = (V,E,w, p, t) where V is the set of

vertices in and E is the set of edges of the form (u, v) meaning u depends on v. An example

is shown in Figure 2.1. The definition describes three types of mapping: w maps an edge to

its weight; p maps a vertex to its personalization (intrinsic) value; t maps a vertex to its type

(AND, OR, SINK). Every attack graph has a root which represents the ultimate goal to be

achieved by possibly different attack paths. We further define the in-degree and out-degree

of any vertex v in G as N+(v) = {w ∈ V : (v, w) ∈ E} and N−(v) = {w ∈ V : (w, v) ∈ E}

respectively. A SINK vertex is a vertex v with N+(v) = 0.

MulVAL produces attack graphs based on network configuration that is converted into

9



p5

e1 e2

p1 p2 p3 p4

Figure 2.1: A dependency graph.

Datalog predicates. It also has a set of system specific rules that are of the form

R(x1, .., xn)← Pr

where Pr is a set of conjuncted first order predicates. Note that Datalog cannot contain

functions as parameters to a predicate.

AssetRank computes the ranks of attack vertices from a combination of two pieces of infor-

mation. One is the flow of rank from parents to children which is carried out based on the

type of the children. The other is the intrinsic value of a vertex which represents a vertex’s

weight by its own.

2.2 Forward Attack Graph

Let (u, v) ∈ E be an edge in a MulVAL attack graph G. Then (v, u) ∈ Ef is an edge in the

corresponding forward attack graph Gf = (Vf , Ef ). Thus, an edge (u, v) in Gf means that

v leads to u. The mapping t now maps a vertex to either of AND,OR or SOURCE where a

vertex v with type SOUCRE has N+(v) = 0.

Our ranking approach is based on the idea of a forward dependency attack graph. Compared

with MulVAL attack graphs, all the vertex edges are reverted and as a result all the attack

paths lead from some starting points to an ultimate goal (Gf ’s sink node). The rationale

behind using such a graph instead of the original graph is to mimic realistic attack scenarios.

10



In reality, attackers will have initial information about where an attack may start and what

his final goal is. However, the attacker will not necessarily know about all intermediate

predicates (denoted by nodes) that he has to satisfy in order to reach his goal. Therefore,

in a forward attack graph there will be some nodes which we call gate nodes that represent

the points where an attacker can start an attack scenario. Knowing how to satisfy gate

nodes, the attacker can start his attack and can only see one step ahead. This single step

is obtained from the outgoing edges of the current node. This process is repeated until the

attacker reaches graph’s sink where he will stop.

The described realistic attack scenario is easy to formalize with a forward attack graph but

not with the original one. This is because, in an original attack graph the attacker should

have complete information about the attack graphs and different paths that may be used to

achieve a goal. This follows from the semantic of the edges in an attack graph, which entail

dependency of the current node over the children.

2.3 Methodology

StepRank is designed to provide a relative rank value for every vertex of a forward logical

attack graph. We have developed a relative ranking rather than quantitative ad hoc ranking,

to achieve sound design principle and semantics without overspecifying the ranking measure.

Using the forward attack graph, a rank value rv for a vertex v ∈ V depends on the ranks

of its parents. The ranks are injected by those nodes that represent the starting points

for an attacker. Once the ranking process is started, the produced ranks will flow level-by-

level until it reaches the root of the attack graph. Therefore, the rank values are relative

to the particular attack graph that they were produced from. The rank values are always

normalized so that we have 0 < rv < 1 for all v and
∑
rv = 1. In computing ranks,

we always assume the most severe attacks that can happen. As the number of attackers

reaching a particular vertex increases, the security situation gets worst and more severe.

Based on this assumption, the final computed value of rv for any vertex v represents the

11



most risky situation that can happen with the vertex.

2.4 Weights of Edges

When an attacker satisfies a certain vertex vi ∈ V , if vi is not the goal vertex he can still

continue his attack until reaching the goal. Some vertices can have N+(v) > 1 which means

there are alternative paths that could be pursued by the attacker. For such a situation,

we need to have a representation that can model the fact that an attacker will prefer an

easier step to a harder one. This selection can be done by having a probability distribution

over the outgoing edges that can determine the likelihood that an attacker will use any

given edge. We provide weights for every edge in the graph to represent the values of the

probability distribution. Thus, if we have two outgoing edges, one with a weight of 15% and

the other with a weight of 35%, then the latter edge carries higher rank value to the next

step.

The probability distribution should reflect the likelihood of using an edge based on the

knowledge of system administrators and security experts. This knowledge could concern

the nature of the vertices that are connected to these edges. For example, if we know that

a vertex is much more difficult to satisfy than some other vertex, then the edge leading to

that vertex should reflect a lower probability to show the likelihood that an attacker will go

that way. This is intuitive, because real attackers often go through easier paths to increase

their probability of success.

In our current implementation, we obtain weights of edges based on MulVAL rule metric

and CVSS scores [16]. The CVSS scores are available for some well-known vulnerabilities.

We can use these scores (if available) for nodes of a MulVAL attack graph that are associated

with vulnerabilities. On the other hand, MulVAL provides conditional probability estimates

for attack completion given that the precondition of a rule is satisfied. These estimates are

based upon security expert input. These two values combined together provide the basis

of assigning weights to the edges of forward attack graphs. In Section 3.1, we describe an

12



1:execCode(workStation,root):0

2:RULE 5 (Trojan horse installation):0.5

3:accessFile(workStation,write,’/usr/local/share’):0

4:RULE 17 (NFS semantics):1

Figure 2.2: A partial attack graph.

algorithm that propagates the probabilities throughout the attack graph.

2.5 Personalization Values

In section 2.1 we defined a function p(v) that maps a vertex to its personalization value.

We use this function to formalize the idea of gate nodes in our computation. A gate node in

Gr will have 0 < p(v) ≤ 1, and any other nodes will have p(v) = 0. Gate nodes are starting

point for the attackers. Intuitively, an attacker has limited choices in terms of where he can

start his attack relative to an attack graph. For example, in Figure 2.2, node 1 can never

be a starting point for the attacker, because it is his ultimate goal. An attack path within

the graph may start from these gate nodes (and no rank has yet been propagated to them).

Therefore we need to specify an intrinsic value that helps to establish their risk.

2.6 Damping factor

Based on our attack scenario, an attacker may decide for some reason to stop the attack at

any time. This may be due to reaching a level of difficulty that makes an attacker give up

and stop expanding the graph further. We formalize this idea into a probability α that an

attacker will not give up and will continue his attack. The value of α can affect the value

of the rank that is computed for v. For example, if α is very low when multiplied with v’s

13



rank, then it relatively lowers the rank. A low α means that it is likely that an attacker will

give up at this point. Therefore we will have more difficult and thus less risky node.

2.7 Ranking Equation

Let rv be the rank of a vertex v ∈ V given a forward graph Gr. Then, the rank of v is

computed as follows:

rv = α
∑

u∈N−(v)

(w(u, v)rumu) + (1− α)pv (2.1)

where we have for v:

m(u, v) =


1 t(v)=OR; u ∈ N−(v)

0 t(v)=AND; u ∈ N−(v)\um

1 t(v)=AND; for um

(2.2)

where um is the node with with minimum w(u, v)ru among all incoming values 1. Equation

2.1 can capture the formalizations described in previous sections. Note that there is a

distinction between AND and OR nodes in the way they handle the incoming values from

their children. This distinction is due to our interpretation of the ranks. As explained

in section 2.2, we imagine attackers who are trying to satisfy vertices over certain paths

in Gr to achieve its root. Thus, when we compute the attackers who could reach an OR

node, we sum the ranking measure of the incoming attackers. The rationale behind this is

that an OR node can be satisfied by any of its children. Thus, if we know that there are

multiple attackers who could satisfy children of an OR vertex v, all of them can satisfy v

independently. As a result the number of attackers who can achieve v will be the sum of

the number of attackers who can achieve any of its children.

In case we are computing the rank for an AND vertex u, we know that to satisfy u, all

the children of it must be satisfied. For example suppose u had two children v1 and v2 and

three attackers could reach v1 but only 2 attackers could reach v2. Since both v1 and v2 are

required for u to be achieved, we can at most (in the worst case) have 2 attackers satisfy u.

1In computing this minimum we do not consider any u such that t(u) = LEAF except if we only have
leaf nodes.
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1:execCode(workStation,root):0

2:RULE 5 (Trojan horse installation):0

3:accessFile(workStation,write,’/usr/local/share’):0

4:RULE 17 (NFS semantics):0

5:accessFile(fileServer,write,’/export’):0

6:RULE 18 (NFS shell):0

7:hacl(webServer,fileServer,nfsProtocol,nfsPort):1 8:nfsExportInfo(fileServer,’/export’,write,webServer):1 9:execCode(webServer,apache):0

10:RULE 3 (remote exploit of a server program):0

11:netAccess(webServer,tcp,80):0

12:RULE 7 (direct network access):0

13:hacl(internet,webServer,tcp,80):1 14:attackerLocated(internet):1

15:networkServiceInfo(webServer,httpd,tcp,80,apache):1 16:vulExists(webServer,’CAN-2002-0392’,httpd,remoteExploit,privEscalation):1

17:nfsMounted(workStation,’/usr/local/share’,fileServer,’/export’,read):1

Figure 2.3: Part of the attack graph with three hosts.

This is because the third attacker in v1 didn’t prove that it could achieve v2. Therefore, the

attackers on v1 will need to work together with those of v2 in order to move further towards

u. When computing this behavior, we simply consider the minimum value (computed by

equation 2.2) over the incoming ranks of the children of u.

There is one exception when computing the rank for an AND node. In taking the minimum,

we simply ignore the SOURCE nodes. To explain the rationale behind this, let us consider

the example of Figure 2.3. When computing the rank for node 10, if the value of w(u, v)ru of

nodes 15 or 16 is less than that of node 11, that means we will ignore some of the attackers

that could satisfy node 11 by taking the minimum rank only which is not correct in practice.

Since node 11 enables the network access and thus the attack to node 10, computation of

r10 should be affected by all the value of r11. Generally, since these source nodes represent

configuration information, they are necessarily true and thus can be ignored in the rank

calculation. We have implemented this exception in StepRank to have more meaningful

results.

2.8 Computing StepRank

For the purpose of computing the ranks, we define a vector ~r of size n = |V | to store the

ranks of all v ∈ V . We also collect all the weights of the edges into a matrix D where we

have Dvu = w(u, v). If there is no edge from u to v, Dvu = 0. The personalization values

will form the vector ~p. The damping factor α will simply be multiplied with the matrix D

according to our ranking equation. The scaling value for ~p is given by β.
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In order to handle the situation with AND nodes, we form another matrix S with the same

size of D. Svu = 1 for any OR node u such that Dvu > 0. Svu = 0 for all values of a

row corresponding to an AND node u except for the column that has the minimum value

of w(u, v)ru which will have Svu = 1. We multiply corresponding elements of S with D to

reflect the idea of the distinction between AND and OR nodes. We denote this multiplication

by Mult(S,D).

At each iteration t, we compute the minimum for AND nodes as:

ut
m = min{w(u, v)~ru} For all u ∈ N−(v) (2.3)

The system of equations is given by:

~rt = α×Mult(S,D) ~rt−1 + (1− α)~p (2.4)

We iterate over this equation until it converges using StepRank.

Algorithm 1 StepRank(D,α, S, ~p, ~r):

1: diff ← +∞
2: while diff > ε do
3: ~ri ← ((α ∗Mult(S,D)) ∗ ~r) + ((1− α) ∗ ~p)
4: diff ← ComputeDiff(~ri, ~r)
5: ~r ← ~ri−1

6: S ← RefineS(S,~r,D)
7: end while
8: return r

In this procedure, for every iteration we refine the matrix S to reflect the minimums for the

AND nodes based on the new values of ~r. Although we have not yet proved the conver-

gence of StepRank, we have observed its convergence for several attack graphs (refer to

Chapter 4).

2.9 Interpretation of StepRank

In our model of ranking, we assume there are a number of actual attackers who wish to

compromise a network from whose configuration a forward attack graph Gr is created.
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Attackers follow the edges (based on their probability) until they reach the root node in Gr.

Attackers could stop crawling the graph at any node. Finally, those nodes that were very

difficult to satisfy will receive lower values since a few attackers could achieve them. This

way, the rank value of a node represents the relative difficulty to achieve that node and thus

how risky it is.

Based on our interpretation, there are general properties that hold for any attack graph

and there are some properties that are specific to a particular instance. The following are

some general properties of the attack graph which explain our interpretation:

Property 1. For any rule node vi on a given path towards the root of a forward attack

graph, we have rvi
≤ rvi−1

.

The intuition behind this property is that achieving a rule node means achieving its prereq-

uisites. Thus, reaching a rule node by a group of attackers should be as hard as reaching its

prerequisites. If one prerequisite is the hardest to achieve, its rank will somehow dominate

others’ ranks. This is because of the nature of a rule node that needs all of its predecessors

to be satisfied before itself.

Property 2. For any OR node vi on a given path towards the root of a forward attack

graph, it must be as hard as all of the incoming nodes.

For an OR node, the situation is different. For an OR node v only satisfying one node

u ∈ N−(v) is sufficient to satisfy v. The problem is when there are more than one such

nodes, which one should reflect the difficulty of the OR node. In our interpretation, we

assume arbitrary group of attackers that may work for achieving the goal. Therefore, it is

intuitive that the OR node should reflect the difficulty of all the incoming nodes. Thus, it

should be as hard as all of them as if it was only one node.

For example, let Er be the set of privilege nodes that exist on the easiest path to a privilege

node er. Then, er compared to any ei ∈ Er is the hardest to achieve and thus should receive

the lowest rank from StepRank.

Since in our model, we think in terms of groups of attackers that randomly attack the sys-
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tem, we always regard every path to er as one single path which is distributed in a number

of partial paths (OR node). Therefore, rer ≤ rei
for all ei ∈ V .

Consequently the root node receives the least rank among all other privilege nodes in an

attack graph. Because every privilege node must occur before the root node in a forward

attack graph.

We can conclude from the properties that the value of StepRank is monotonically decreas-

ing on any given path towards the goal node of a forward attack graph.

18



Chapter 3

Parameter Assignment

In this chapter we shall investigate information sources that are used to assign various

parameters of StepRank.

3.1 Weights of the Edges

In a forward attack graph, we may have a situation in which there are multiple outgoing

edges from a given node. This situation can only occur for OR nodes which can have choices

for the next attack step. In this case, an attacker will have to choose between the available

options and intuitively select a path based on the easiness of the immediately next step.

It is essential to formalize this fact in the ranking process to affect the flow of the ranks.

Edge weights reflect the likelihood of success in the consequent steps, if a particular edge

was chosen by the attacker. The weight for an edge is defined as follows.

Let P (u|v) be the likelihood of success of an attacker at u given that v is satisfied. We know

that for an OR node, the next step must be one or more AND nodes. Therefore, we can

simply pick P (u|v) as the weights of the edge coming to u from an OR node. This choice

will directly imply the likelihood of success if the edge to u was chosen.

The value of P (u|v) depends on the graph structure, nature of u and (if available) previous

subjective assessments, comprising background knowledge and experience of past successful

attacks from security experts. However, while ranking the nodes, we need to consider real

attack scenarios. As described earlier, we assume that an attacker can only see one “attack”
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step ahead and has no immediate knowledge about future steps in the graph. However,

several attack graph nodes may belong to a single attack step in a real scenario. Therefore,

we define a real attack step as follows:

Let us be an OR node and uk be a final node so that us be a predecessor of uk. Then,

any path consisting of some of the successors of us until uk is considered a real attack step.

The final node represents the last node in the successors of us in a real attack step. In our

implementation we assume that uk is determined and provided by MulVAL. The propagation

of probability in the sequence of nodes in a real attack step is defined as follows:

For any intermediate nodes s < i < k:

P ′(ui) = Combine(P ′(uj)), t(ui) = OR, ∀j ∈ N+(ui) (3.1)

P ′(ui) = P ′(ui+1), t(ui) = AND (3.2)

Where Combine is a function that based on some criteria, combines the probability along

different paths of an OR node which is on a real attack path to be computed. We actually

pursue the chain of nodes in T until we have collected all of the attack graph nodes belonging

to a real attack step. MulVAL specifies the likelihood for the nodes that do not form a real

attack path as 1. That is because they are natural consequences of their predecessors

and thus can be satisfied with no doubt. This suggests that we can retrieve the success

likelihood from the next node. Therefore, it is convenient to propagate back the success

likelihood associated with uk until we reach the edge that needs this value. Given we have n

nodes in the attack graph, the algorithm ComputeProb(M ,P ) computes the probability

values based on the above formulation. The parameters M and P refer to the matrix D in

Equation 2.4 and the likelihood metrics provided by MulVAL.
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Algorithm 2 ComputeProb(M ,P )

1: for i← 0 to n do
2: if Type(i)=AND then
3: P [i]←Propagate(i,M ,P )
4: else if Type(i)=OR then
5: Propagate(i,M ,P )
6: end if
7: end for
8: return M

Algorithm 3 Propagate(i,M ,P )

1: if Type(i)=AND then
2: if IsFinal(i) then
3: return P [i]
4: else
5: return Propagate(Child(i),M)
6: end if
7: else if Type(i)=OR then
8: for j ← 0 to n do
9: if M [i, j] > 0 then

10: M [i, j]← Propagate(j,M ,P )
11: P [i]← Combine(P[i], M [i, j]))
12: end if
13: end for
14: return P [i]
15: end if
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The proposed algorithm can handle multiply-connected graphical models in which dif-

ferent paths going out from one OR node reach the same final point. Recall that we can

only have OR nodes with more than one option. This means the different paths describe

independent attack scenarios that may happen in reality. The independence in this case

means that fulfilling the requirements of any node within any of the available path choices

does not require presence of any other nodes from other choices. Formally, we can have the

following lemmas:

Lemma 1 let T1 and T2 represent two different sequences of nodes for two different paths

choices out of an OR node us assuming an end node uk common to both paths. Then if

T is chosen by an attacker as the next stage for in his attacker path, for all ui1 ∈ T1 may

be achieved (based on their difficulty attributes) without achieving any ui2 ∈ T2. Further,

participation of the start node of this stage us and the end node uk in any of the two paths

is equal to the other.

Lemma 2 For any AND node v in a forward attack graph, N+(v) = 1. We know from

Lemma 1 that different paths from an OR node are independent. We can also conclude

that different attack paths in an instance of attack graph are independent. Therefore, an

occurrence of v on a path is independent of its occurrence on any other path and it enables

exactly one OR node; hence N+(v) = 1.

Although we have not formally proved the correctness of the proposed algorithms, these two

lemmas are useful to show the general intuition behind them.

It also turns out that, this computation is not affected by the cycles. That is because, we

have already included a damping factor that represents the likelihood that an attacker will

not stop his attack. Therefore, if a cycle in an attack path towards the goal exists, we assume

that with 1−α probability the attacker can indeed give up and move to another path. Thus,

a cycle in an attack path should not disturb the results of ComputeProb(M,P).
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3.2 Damping Factor

In our current implementation of StepRank, we adapt uniform values for the vertex specific

damping factors. As described earlier, a damping factor should reflect the likelihood that an

attacker will continue his attack. This value can be left as a default value or can be supplied

in the system and overridden by the user, because several issues can affect it. First, previous

data about successful and unsuccessful attacks can give good impression about the damping

value. Despite the strategy in AssetRank, we would not use a vertex specific damping factor

in StepRank because separating the damping value for every vertex is not expected to have

great effect on the final rank value. There exist some nodes in a MulVAL attack graph that

are natural consequences of other nodes. That is, as a result of satisfying u, v is considered

naturally accomplished without any effort required from the attacker. For example consider

the graph of Figure A.1. When an attacker has achieved node 12, having node 11 is just

trivial and requires no action from attacker’s side. Therefore, if a vertex specific α is used,

node 11 should receive α11 = 1 since the attacker is not expected to stop at this node at all.

Thus it is expected that few nodes will have an intrinsic likelihood of attack propagation

that requires a node-specific damping factor. Thus, using a single global damping factor

does not significantly diminish the overall quality of the results. For this reason, in our

experiments we have considered a uniform value of αv = 0.8 for all v ∈ V .

3.3 Personalization Vector

In section 2.5 the personalization vector was introduced to capture the idea of gate nodes.

Currently, StepRank identifies all the SOURCE nodes as gate nodes. That is because

in order to start by any MulVAL rule in the graph, all the leaves of that node should be

assumed satisfied otherwise we cannot start anywhere in the graph. To illustrate this issue

consider again the graph of figure A.1. It is possible for an attacker to start by a direct

network access (node 12). However, this requires that an attacker exists (node 14) which is

the case and the web server (node 13) is running. We have to assume that the web-server
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is running to make the attack possible. Thus, we give a personalization value more than 0

to both of the SOURCE nodes. In fact, the real gate nodes would be some rule nodes (e.g.

node 12) which will be available to the attacker if its SOURCE nodes are available.

It is possible that some gate nodes have higher potential of being used by actual attackers.

One way of capturing this fact is to modify the personalization value and assign a value

that actually reflects the likelihood of the gate node being used by attackers. An alternative

solution (solution that we have adopted) is to introduce a dummy source node d. This

special source node will be added to the graph and recognized as a gate node. For any rule

node v node that has all its parents as leaves (which are also gate nodes) we define the edge

(d, v). The reason we use only the rule nodes that have leaf parents is that they represent

the actual gate nodes of the graph. That is, because they do not require any other attack

step, they rather need their parents to be satisfied. By connecting the dummy node this

way within the graph, we can represent the likelihood of taking either of rule nodes as a

start node by the weight of (d, v).

Finally, to determine the overall effect of personalization values on the ranks, we scale P

with 1− α.
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Chapter 4

Experiments

4.1 Validation Approach

Our approach in validation is to verify the results of StepRank based on properties of

specific scenarios. When given a network configuration we first specify the intuitive expec-

tations of our ranking algorithm. Then we run StepRank on the attack graph and verify

if indeed it can rank the nodes based on what we have specified as intuitively correct.

4.2 Experiment 1

We run StepRank on the scenario of Figure 1.4. In this scenario, we assume that the

attacker is located at host A. The access to machine E is allowed only through machines C

and D. In addition, the machine F can be accessed through host E. The ultimate goal is

to gain root privileges on host F. All the machines contain a common vulnerability, and we

have set the CVSS score for the vulnerability to be of medium risk. In terms of individual

risk associated with each machine, the machines B, C, and D are in the same security risk

level. This is because, they all have the same vulnerability, and based on the configuration,

they have equal chance of being compromised. However, gaining privileges on E is more

difficult because of the need for more attack steps for an attacker to achieve it. The same

conclusion is applied to F with the difference that F is even more difficult to be compromised

because it is hidden behind E. By looking at the results of table 4.1, we can observe the
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same expectations by the provided ranks. We can see that the privilege vertex for B, C,

and D all received the same rank. It also shows that the privilege vertex of E has a lower

rank (and hence lower risk) followed by that of F.

Vertex StepRank
RULE 7 (direct network access) 0.007979971
RULE 7 (direct network access) 0.007979971
RULE 7 (direct network access) 0.007979971
netAccess(c,tcp,80) 0.007016203
netAccess(b,tcp,80) 0.007016203
netAccess(d,tcp,80) 0.007016203
RULE 3 (remote exploit of a server program) 0.003131014
RULE 3 (remote exploit of a server program) 0.003131014
RULE 3 (remote exploit of a server program) 0.003131014
execCode(c,serviceaccount) 0.002360001
execCode(b,serviceaccount) 0.002360001
execCode(d,serviceaccount) 0.002360001
netAccess(e,tcp,80) 0.000718861
RULE 6 (multi-hop access) 0.000577303
RULE 6 (multi-hop access) 0.000577303
RULE 6 (multi-hop access) 0.000577303
RULE 6 (multi-hop access) 0.000432978
RULE 6 (multi-hop access) 0.000432978
RULE 6 (multi-hop access) 0.000432978
RULE 6 (multi-hop access) 0.000432978
RULE 6 (multi-hop access) 0.000432978
RULE 6 (multi-hop access) 0.000432978
RULE 6 (multi-hop access) 0.000432978
RULE 6 (multi-hop access) 0.000432978
execCode(e,serviceaccount) 0.000335305
RULE 3 (remote exploit of a server program) 0.000317116
execCode(f,serviceaccount) 0.000106868

Table 4.1: Partial results from Experiment 1 for the scenario of figure 1.4.

4.3 Experiment 2

Consider the example network shown in Figure 4.1 [7]. The database server is isolated on a

subnet and only the web server has access to it. Both the web server and the database server

host vulnerable software and the web server is accessible via the internet. The user desktop

hosts a vulnerability that can be immediately compromised because it is also connected to

the internet. We expect that the web server be quite risky because it is directly connected

to the internet. We also expect that the database server be ranked lower than the web
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server because the attacker needs to gain enough privileges on the web server first to be able

to access the database server. The user desktop should have a high risk level and assigned

a high risk value because it hosts a vulnerability that can be exploited through the web

browser.

Partial results from StepRank are given in Table 4.2. It clearly indicates our expecta-

tions about the ranks. We can observe that obtaining privileges on web server has received

higher rank and thus has higher risk. Then user desktop has received a rank lower than the

web server and so the database server has received lowest rank on its privilege node.

Subnet: Internal1

Subnet: Internal2

Subnet: DMZ

Database Server
(Attacker Goal)

Web Server

Attacker (Internet)

User Desktop

Router
Internet Web Server

Web Server Database Server
User Desktop Web Server

User Desktop Internet

Figure 4.1: An example network configuration with three subnets

An important issue that we observed was when we ranked the same graph with using

uniform weight for all edges in the graph. This can be done if ComputeProb is not exe-

cuted prior to executing StepRank. The results of this observation is shown in Table 4.3.

The main difference is that in this case user desktop has received higher rank than of web

server’s rank. Notice that user desktop (as it can appear from the attack graph) can be

exploited in a single attack step whereas that is not the case for the web server. Therefore,

if the two attack paths for the web server and the user desktop have equal chance of being

used by the attacker, obviously user desktop should be more risky than the web server.
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Vertex StepRank
RULE 7 (direct network access) 0.01505546
RULE 13 (incompetent user) 0.01254621
netAccess(webServer,httpProtocol,httpPort) 0.01204677
principalCompromised(joe) 0.00929108
RULE 3 (remote exploit of a server program) 0.00535169
RULE 22 (Browsing a malicious website) 0.00501849
canAccessMaliciousInput(userDesktop) 0.00446433
execCode(webServer,system) 0.00396831
RULE 6 (multi-hop access) 0.00103574
RULE 6 (multi-hop access) 0.00103574
netAccess(databaseServer,tcp,1521) 0.00089747
RULE 23 (Browsing a compromised website) 0.00086312
RULE 4 (remote exploit for a client program) 0.00066093
execCode(userDesktop,joeAccount) 0.00055332
RULE 3 (remote exploit of a server program) 0.00039777
execCode(databaseServer,oracle_user) 0.00029982

Table 4.2: Partial results from Experiment 2.

That is because exploiting the user desktop needs less work for the attacker to be done.

4.4 Conclusion

Based upon the interpretation and consequent properties presented in Section 2.9 , and

the results obtained from our experiments, we would expect that our algorithm is capable

to adequately handle bigger network configuration scenarios. We tried to understand real

attack scenarios and the way an attacker plans his attack on the network. By combining

different scaling parameters, techniques for personalizing or calibrating their values, and the

rank propagation algorithm, we can formalize the incorporation of facts from the real world.

It is possible to even add more formalization and parameters to our ranking equation as it

can handle more information. We can indeed include additional parameters regarding what

can further affect the riskiness of a certain node of an attack graph. We can also incorporate

previous data about successful attacks in a local environment or a similar network. This

sort of data can be injected into a learning engine to produce rules that might contribute

to making the ranks more accurate.
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Vertex StepRank
RULE 0 (Insider threat) 0.02310025
RULE 13 (incompetent user) 0.02310025
RULE 23 (Browsing a malicious website) 0.02310025
RULE 7 (direct network access) 0.02310025
execCode(userDesktop,joeAccount) 0.02203929
canAccessMaliciousInput(userDesktop) 0.0175706
netAccess(webServer,httpProtocol,httpPort) 0.0175706
principalCompromised(joe) 0.01439062
RULE 4 (remote exploit for a client program) 0.01094604
RULE 3 (remote exploit of a server program) 0.01094604
execCode(webServer,system) 0.00681885
RULE 6 (multi-hop access) 0.00343241
RULE 9 (...) 0.00343241
RULE 24 (Browsing a compromised website) 0.00343241
RULE 6 (multi-hop access) 0.00343241
netAccess(databaseServer,tcp,1521) 0.00317998
canAccessHost(userDesktop) 0.00213826
RULE 3 (remote exploit of a server program) 0.00198119
RULE 24 (Browsing a compromised website) 0.00141596
RULE 6 (multi-hop access) 0.00141596
RULE 6 (multi-hop access) 0.00141596
RULE 1 (...) 0.00133212
execCode(databaseServer,oracle_user) 0.00123408

Table 4.3: Partial results from Experiment 2 without probability propagation.

The specification of damping factor discussed in 3.2 can become dynamic. In our current

view, this value is fixed and pre-defined before the computation of ranks begins. This means

that we have estimated the likelihood that, based on available data, an attacker will not

stop his attack. It can be seen that this expectation may become more “accurate” if it was

involved with the actual rank that we are computing. The ranking is supposed to provide a

measurement about how risky a node is. This ranking is partially dependent on the value of

the damping factor. Thus, if we have computed the rank for some of the nodes on an attack

graph, we can enrich our knowledge about the difficulty of various attack paths on this

graph by considering the ranks currently computed. This consideration is, of course based

on a set of ranks whose computation is completed. Therefore, it is convenient to somehow

map the knowledge gained from current computation to a modification in the value of the

damping factor. Thus, we can refine the value of α as we propagate the rank.
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Appendix A

Attack Graphs

1:execCode(workStation,root):0

2:RULE 5 (Trojan horse installation):0

3:accessFile(workStation,write,’/usr/local/share’):0

4:RULE 17 (NFS semantics):0

5:accessFile(fileServer,write,’/export’):0

6:RULE 18 (NFS shell):0

7:hacl(webServer,fileServer,nfsProtocol,nfsPort):1 8:nfsExportInfo(fileServer,’/export’,write,webServer):1 9:execCode(webServer,apache):0

10:RULE 3 (remote exploit of a server program):0

11:netAccess(webServer,tcp,80):0

12:RULE 7 (direct network access):0

13:hacl(internet,webServer,tcp,80):1 14:attackerLocated(internet):1

15:networkServiceInfo(webServer,httpd,tcp,80,apache):1 16:vulExists(webServer,’CAN-2002-0392’,httpd,remoteExploit,privEscalation):1

17:nfsMounted(workStation,’/usr/local/share’,fileServer,’/export’,read):1

Figure A.1: An attack graph with 3 hosts
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Figure A.2: An attack graph with 6 hosts
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