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INTRODUCTION

¥at foundations under certain structures, such as siloes,
water-storage tanks, coal-storage towers, etc,, and footings
foundations supporting a group of columns, are frequently
-designed and constructed in the form of beams resting on soil.
This analysis requires some'assﬁmptions on properties and
behavior of the soll-foundation system. The thecry of the
berding of beams on an elastic foundation, develoned by E.
Wirkler in 1867, is based on the assumption that the intensi-
ty of the continuously distribﬁted reaction of the foundation
at every point is proporticnal to the defleétion at that
point{1l)« Ifs application to the design of foundations has
received considerable attention. Since then, some refinements
and various assumptions have been made by others, notably
Hetenyi; Biot, Vesié, Levinton, lalter, and Bowles (2). One
common feature of these works is that the foundation can take
tensile stress. Recently, Nien-chien Tsal and Russell A.
Westmann have indicated an.approach based on tensionless
foundation assumption to éccount for the effects of beam up-
1ift (3). No doubt, it satisfies the actuval conditions of
real soil under elastic theorye. A study of the beam-foundation
problem, following tﬁis latter approach will be presented and
developed by a matrix formulation for the numerical evalua-
tion of the problem. CGConsequently, this process can be

applied to the design of foundations.



PURPOSE OF THE STUDY

In this report, an analysis is made of the resnonse of
a loaded beam resting on a Winkler tvpe foundation wherein
the Toundation properties of tension and conpression at the
interface wilil be relaxed by assuming the subgrade can tszke
compression only. A review of Winkler's assumption modified.
by Tsai (3) (i.e., the tensionless foundation) is examined in
terms of a matrix formulation. An iterative solution of a
typical beam resting on a micaceous silt subgrade is pres-
ented. The subgrade is represented by equally spaced springs
with a stifiness per unit length the same as the actual sub=-
grade. The cases of finite and infinite beams under the
action of concentrated center loads are examined. The results
are compared with test results obtained by Vesic(1), Bowles'
classical solution(2), and by Tesai and Westmann(3) to verify
the effects of the assumption that the foundation interface
can support compression only and toinvestigate the equally

spaced spring analogy.



REVIEW OF LITERATURE

The analysis of beams on elastic foundation has been 2
classical problem in engineering mechanics. A theory of
bending of beams on an elastic foundation =-- = to have
been developed first by Winkler who usea an elas. i sclution
of the problem by assuming that the continuous reaction of
the foundation is proportional to the deflection. Following
this simple assumpfion,'Timoshenko successively established
a general solution to the differential equation which expressed
the beam deflection in terms of foundation reaction (4). In
1946, Hetenyl made a comprehensive study of beam-foundation
problems following the theory of elasticity and the basic
- mathematical relationship between the subgrade reaction and
settlement (5). He summarized the analysis of the response
of beam;foundation systems acted upon by different load condi-
tions. Some notable mathematic technigques in solving the
rroblem (such as redundant reaction method, and finite differ-
ence method) have been developed by Levinton and Malters in
1947 énd 1960, respectively (6, 7). Both approaches, initi-
ally assumed the type of pressure distribution under the
foundation (for instance, parabolic,-stepped, or linear etc.)
and then computed the equivalent reactions. About 1959,
Leoﬁards and Harr simplified the problem formulation and solu-

tion by assuming that the foundation could take tension(8).



A Turther refinement was made by Kerr in 1964, assuming thzi
the subgrade properties are identical in tension and compre-—
ssion (9). The common feature to all of these works is the
azsuned mode of stress transfer across the beam-foundation
interface. Usually the resulting analysis based on this
classical solution is not accepiable, particularly in dealing
with the infinite beam, because of beam uplift. Recently,
Tsai and Russell indicated an approach which considered both
the Winkler assumption and the uplift effects of the beam and
simplified the problem formulaticn and solution by assuming
that the foundation can take compression only. Apparently,
this tensionlesé foundation solution is more compatible wizth

the condition of real soil.
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STATEMENT OF THE PROBLE

In the classical solution for beams on foundations, it
is usual to assume fhat foundation proverties are identical
in tension and compression. Often the resulting analysis
then indicates an alternating reaction thus implying the
foundation can support a tensile stress., Usually this is nof
an accentable result fqr real soil. Therefore, the Winkler
model should be modified to take into account the effect of
beam uplift. This will then lead to a non-linear solution(3).
As the beam 1s supported along its entire length by 2 contin-
uous elastic medium, the problem formﬁlation and solution
can be made by assuming that the beam rests on "one-way",
'_equally spaced, elastic springs. The more springs chosen
along tﬁe length of the beamy; the closer the analogy is to
the continuous medium. The subgrade tensile stress in the
uplift portion of beam can be relaxed simply by setting the
| spring constants of those portions equal to zero. In short,
two basic assumptions are made: (1) the subgrade can take
compression only; and, (2) the compressive stress in the

foundation is proportional to the deflection.
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QUTLINE OF THE STUDY

1. Present the matrix formulation of beams on elastic

spring supporits which are regarded as analogous to beams

on elastic Toundations(10).

2. Choose a typical beam on a micaceous silt subgrade as an
illustration of the application of matrix formulation and
numerical evaluvation.

3. Perform the iteration process using a computer nrogran
written in Fortran IV to obtain the deflections of long and
‘short beams under the action of concentrated center loads.
Hence, visuvalize the behavior of the beams resting upon

elastic foundations based on the modified Winkler assumptlon-
iees, the tensionless foundation proposed by Tsai and Westi-
mann{3).

L, Compare results obtained with Vesic's results(1).

5. {Compare résults obtained with Bowles' elastic solutions(2).
6. Compare results obtained with classical solutions and

non-linear solutions of Tsai and Westmann(3).
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PROBLEM FORIMULATION

Zlastic solutions of beam~foundation problems are based
on the assumption that soll behaves as an elastic, homogensous,

infinite, and isortropic solid, defined by a modulus of dafor-

tg

mation,;Es,and a Poisson's ratio,v, and obeying Hdoke's law,
It is further assumed that there are no shearing stresses a2t
the contact between beam.and soils In addition, possible
influencés of soll overburden on pressure distribution are
negleéted. If the problem is so posed, Winkler's model can

‘be replaced by a continuous beam resting on a set of springs

with stiffness constant K. (2) Its value is defined by
K=XKs" x a

where

Ks' = Ks x B = modulus of subgrade rezctlon x width of
b o
eam.

a = cell length of beam (distance between springs
equally spaced).

Once the problem is set up, it can be visualized as a
-continuous beam of a finite number of spans supnorted by a
row of springs. The solution of this problem then can be
expressed by a matrix formulation as follows. Let us consi-
‘der a beam supported by five equally spaced springs, shown

ig, 1, where a = cell length of beam, y = uniform dead

)

in

load, and @ = concentrated center load.
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Fig. 1 - The Given Bean

1. Load Matrix [P] and Displacement Matrix [X]

The load matrix [P] is defined as a column vector whose
elements are the externally applied lcads. Each load Pj,
accordingly, is a component of tﬁe load matrix [P]. The
displacement matrix [ X] consists of the displacements at the
DPoints of application of the load vector components measured
in the same directions as the loads. Referring to Fig. 2,

the load matrix [P] is expressed by

i h

P
(5] = | P2 (1)




and the displacement matrix [X] is expressed by

[x] = | x5 | | (2)

Consider the beam shown in Fig. 1. The load matrix [ PJ
can be obtained easily by solving the joint eguilibrium

equation.

Refer to Fig. 3.

2
ra
Py =
E 12
P B Bl ra? ras 0
2 = = = - =
3 12 12
- ra2
57 12
Pé:ra
2
P? = ra
Pg =ra + Q
P9 = ra
5 _ ra
10 = >

Substituting into Egq. 1,
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'P....J

ra + @
ra
ra

2. Deformation Matrix [e] and Force Matrix [ FJ

A deformation matrix [e] consisting of member deformations
ei at any Jjoint can be defined for any structure. There will
be a subset for each member. All relative movements of the
end joints of the member are included in the subset of the de-
formation matrix for the member, Referring to Fig. 4 and Fig.

5, matrix [e] can be expressed by

€1
ez
o
en
a es |
[el = eg C (3)
ey

€9

€10
€11
€12
e13

>
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A force matrix [Fﬁ corresponding to the deformztion
nmatrix [ e] is defined to consist of components that are the
end forces of the members of a structure. (springs are also

considered as members, taking axial force on the end.)

Therefore, it can be expressed by

’_Fl 7

[F] = F§ ' (L)

\ /
3. The Force-Load.MatrixA[A]

The transformation matrix necessary to transform member
forces to loads can be found by observing Jjoint equilibrium.
Refer to Fig. 6.

Then

PB = FL], + Fs
P"-i' = F6 e F?
Ps = Fg
M + F
Pg = —Fa + 71 _ 2



Py = ~Fyg - — ; Fz . I3 ;’ =

Pg = ~Fyq - 2t 4 5

Py = ~F12 - Fg Z Fg.  Fr ; Fg
B =+ Fg

Pio = -F13 - —

In matrix notation, [P] = [AJ[F]

!
h%

(5)

in which
D1ty 2| 3 Wy 51 61 7 81 91 10p 11} 12} 13
! :
2 11 1
[A] = 3 1) 1
H 1] 1
5 1
6114 14 -1
7 |-LAl-1/al 14| 1 /8] -1
8 -1/al-1 /21 1/2 1/4 -1
J ~1/al-1/a 1/4 1A 1
10 -1/8-1/2 -1
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4, Stiffness Matrix [S]
A stiffness matrix is a transformation matrix [$] whicnh

transforms deformation into forces according to.Eq. 6.
[F] = [s] [e] (6)

Where the matrix [S] for a single member can be established

ags follows

Fi = (*1/a) es + (PF1/n) e

E
F3 (PEI/0) e + (MBL/0) es
in which EI = flexural figidity of beam

a = cell length of beam (distance between springs
equally spaced)
These are basically just the slope-deflection egquations for
the beam segment. For the given beam, the stiffness matrixES]

is expressed by



= b2 |3 | &5 67 | 8 |21011]12 13
1 | LEL| 281
a a
o | 2BL| LbEI
a a
s 1=
T LET | 28T
3 a @
L 221 | 48T
a =3
3 LET | 28T
a. a
& 28I | LET
a a
L4ET | 2B1
7 a. a
28T | LET
8 a 2
9 K
10 K
11 K
12 K
13 K

in which K is a spring constant related to the axial force
and deformationofa spring by K = F/e

Let NP be the degrees of freedom in rotation and translation
of the elastic supports, NF be the number of internal end

forces, and NLC be the number of loading conditions (10).



Then
LPIxp x vic= [Alne x wr [Flyr x wic (5)
[Flne x noo= [Slve x nr Lelwr x wic (6)
and  [elyp x nne= [Blwr x e [Xne x nie . (7)

where [B] is a transformation matrix which transforms joint
displacements [X] to member deformation [e]. A éroof that
[B] is always the transpose of the force-load matrix [a]
follows: A structure in equilibrium undergoes an arbitrary
virtual displacement 6X. compatible with the boundary condi-
tions. The corresponding virtual deformations of the ends of
the members are 6be. |

By the principle of virtual work:

[T)pxl= [F"]{ee]
From Eqe. 5, [P] = [A]*[F] Then

[FT]e[se]
= [FT][](ex]

CFT][AT]-Eéxl

|

Therefore, [B] = [AT]

[eInF x nic = [ATIne x NP [XINP x NLG

Substituting (7) to (6)

[Flyr x nvzc = [5A%Iwe x nel¥Ine x nrc - (8)



}- nad
(W38

Substituting (8) to (5)

[PInp x vzc = [ASAInp x np [XInP x NLC (9)
from which
-1
ol m
[XIyp x npe = [ASA*]np x wp [PlNp x n1o (10)

As an illustration of the matrix solution to the present
vroblem, numerical  examples were analyzed with the IBM 360-50
digital cbmputer using a program written in Fortran IV. The
iteration for the tensionless foundation solution is accom-
plished by setting the spring constants in the stiffness
matrix ES] equal to zero for those points wherein the deflec-

tions are upward and then recalculating the deflections.



NUMERICAL EXAMPLES

Four numerical ekamples are presented. The computer
program, as shown in Appendix C is useé to obtain the dis-
placement matrix [X].

Exémple 1. = A short beam which has unit weight included in
the analysis (Fig. 7), for the vurpose of a comparison with
results (1) shown in Fig. 1l. Beam length L = 72 in., center
load Q = 8250#%, unit weight v = 31 #/ft. spring constant

K = 0.00215 (K/ft.).* Cross section properties of the beanm
and subgrade are shown in Table 1 and Table II.

Example 2. =

Case A - A short beam with unit weight not included in
the analysis (Fig. 8)« The results are compared with Bowles
finite and infinite beam solutions t2) and plotted in Fig. 12,
L = 2.4 ft., Q = 32,688 kips, K = 43.584 K/ft. Cross section
properties of beam and subgrade are shown in Table I and
Table II.

Case B - A long beam with the unit weight not included
in the analysis (Fig. 9). The results are compared with
Bowles' infinite solution (2) and plotted in Fig. 13.

L =84 ft., Q = 32,688 kips, a = 3 ft., K = 196 K/ft. Cross
section properties of beam and subgrade are shown in Table I

and Table II.

* i' K . 215
"~ 30.5 x 10° 1hl
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Example 3. - A long beam with unit weilght included in the
aﬂalysis (Fige. 10)s. As the problem of the tensionless
foundation is of prime interest, attention has been concen-
trated on the solutions for the 8WF31l steel beam resting on
a micaceous silt subgrade and loads of 8.6 kips, 12.9 kips,
17.2 kips, 34.4 kips. This corresponds to the cases of
n=1,0, 1.5, 2.0, 4,0, a = 1, discussed by Nien-chien Tsai
(3}, and the results are compared to those tensionless
foundation solutions and shown on Fig. 14 to Fig. 21.

L =84 ft., a =3 ft., v = 31 lbs/ft. K = 196 kips/ft.
Cross section properties of beam and subgrade are shown in

Table I and Table II.

Table I - Data on Beam Section

Beam Width B Depth Area Moment Modulus of
inch inch inch® | Inertia Elasticity
1; inch“ E; psi

Wide=~ é
Flange 8.0 8.0 9,12 109,7 30 x 10
BWF31




Table II - Properties of Micaceous Silt Subgrade

0

Modulus of Poisson's Modulus of Length
Elasticity Ratio Subzrade Character-
of Spil T Reaction is%ie

Es, psi Ks, psi XL

1192 0.25 L5k 0.98




SUNKARY OF NUMERICAL RESULTS AND COMPARISON WITH REFZREN

Table Ex. 1 = Output of computer for Example 1, with compari-

son to (1)s L = 72 in.

Input W lbsi Q lbs{ CL ft; XK K/fti NC
Data 31 8250 0.75 0.,00215 8
Distance ‘
from 0 9 18 27 36
Center, in.

< 3

‘37 | Computer | 0.251 | 0.255{ 0.259| 0.262 0,264
o 8

g

px Soil Test§ 0.253 | 0.253} 0.253 | 0.253 0.253
[} :

Numerical results and comparison are plotted in Fig. 11,

Table Ex. 2a = Output of computer for Example 24, with

comparison to (2). L = 24 ft.
Input W kinslQ kips| CL £+]| XK K/ft]|EIL K~-Tt®| NC
Data 0 32.688 ] 2.4 [L3.58L | 22895 10
Distance
from 0 2.4 4.8 P, 2 9.6 12
Cenbe;, Tt,
s Computer | 1.40 1.30 | 1,08 | 0,79 0.476 0.158
B~ |Bowles 1.41 | 1.32 | 2,10 | 0.83 | 0.52 0.206
o ¢ |(Finite
Infinite

Numerical results

and comparison are plotted in Fig. 12.
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Table ExXe. « = Innut data of comnuter nrosram, correzpondlins
ey ) - o ’

to Nien-chien Tsai's tensionless Ffoundation wodel (3).

Case A - n 10 0= 0
W= 3.1 x 10—2 kips 2 = B8.6kips CL = 3.07t
XK = 196K/ft EIL = 22896k - £12 §C = 28

Case 3 - n=1,5, a =0, a =1

2

W = 3.1 x 10™%kips Q = 12,9kips CL = 37t

XK = 196k/st EIL = 22896k - £t2 NC = 28

I

Case C = n=2.0, a =0, ¢« =1
W o= 3.1 x 107%kivs Q = 17.2kips OL = 3ft
X = 196k/ft EIL = 22896k - £t NC = 28
Case D -n=4,0, a =0, a =1

2

W= 3.1 x 10" kips Q = 3L.4kips CL = 3Tt

XK = 196k/ft EIL = 22898k -ft NC = 28

*Note

Case 3a., resglts are shown in Fig, 14, and Fig. 18. Data is
collected in the following tables.

Case 3b. results are shown in Fig. 15, Fig. 18, and Fig. 19.
Data is collected in the following tables.

Case 3e¢. reocults are shown in ie. 16, IMie. 18, and g, 20,
Data is collected in the following tables.

Case 3d. results are shown in rig. 17, Fig. 18, and Fig. 21,

Data is collected in the following tables.



Table Ex.

Ti
ROW
RO
RO
RO
ROW
RCW
RO
ROW
RCw
RCw
RC

RCw
ROW
RO
ROw
ROW
ROW
RCW
ROW

ROy

Taons Wy

alE
M

G
N W
RCw

Cw
RCW
RCwW
RCW
R 7w
RCW

3a.
MATRIX X
1 2eB83G608B4F=-00
Z 2eli22689FE=L5
3 Be8527822F=06
4 -55819955F=(C6
5 =2 e4CB&453FE=05
6 —4L412569864E-C5
7 =5.0146948E-(CH
8 -3.3583972E-05
9 3.6211146E-C5
1¢ 1492729B4E-04
11 LeDTTHTELIE-04
12 8+0432533E=-04
13 10965588E~073
14 1«014717GF=3C2
18 leb6126791E~-CR
16 -1e0146936F=-C3
17 -1.C965550F=-(13
18 -8 04341 4CE-C4
19 —4 4577664 TE-C4
20 -1.9273958E-04
21 -3e6215250E=05
22 3.3582881E-05
23 5«C14755GE~CS
24 44125858CF-55
25 2e4CBH243E=C5R
26 6«5835429F =06
27 —8485173L9FE=06
28 -72e1422456E-05

ROwW
ROW
RoW
ROW
ROW
ROW
ROW
RO
ROwW
RCwW
ROW
inf‘f:
BOW
ROW
RCwW

Cw
RCW
RCW
ROW
RCW
ROW
RCwW
Row
ROW
ROW
RCW
RCW
RCi

Cw

RCW

29

30
31
32
33
34
35
36
37
38
39
40
&1
42
43
44
45
46
L7
48
49
50
5]
52
53
5¢4
55
56
57
58

- Output data for Case 3a. n =1, o =0,

=2+83F760405=-C5

2.3917G30F=304
Lel587185E-04
46212C17E-C4
4e6612389E-04
L+2CS56013E~-C4
342194681 E=04
1.813C179E=04
4465181372=0%
3e3027T54F-C5
35051 000F-04
12979165F-L13
2.1785737F-(03
6.0695112E-03
9.3838386E-C3
le1224965E=02
9438393925=-C3
6e0696565E~-03
3.1786885E-03
142979733E-03
3.5C53003F-04
32303432805
4e6512432F~05
1e81294895=04
2.21943315-04
Le205626GE-04
Le6613CHLE=-TE
Le6213064E-04
4e158841GE-C4
3.3919327E-C4



Table Ex. 3b. = Output data for Case 3b. n = 1.5, a =1

THE

et
W

ROw
ROwW
RCW
RO
ROW
ROW
R oW

i ™
v VY

ROW
RCwW
RCW

alty
(o 1

RCw
RCW
pf’?l_."f
ROW
ROW
ROW
ROW
ROW
RCw
PO
RZW
RCw
ROW
ROW
RCW

MATRIX X
1 2.7415095FE=-C5
2 169424173E-C5
3 2:9366347E-C6
4 ~—2.062491CE-CGS
5 -5.0242699F-(5
6 =72989B571F=-C5
7 -9.1858718E~-C5
8 -545543453E-05
9 6+59G5479F=-05
19 3.0894484FE-04
11 Te0392410E~-04
12 1421805246E-02
13 1.651115CE-G3
14 1e5246486E-03
15 -842972242F-CC
16 =15246458F=03
17 -1.65107894F~C3
18 -1.2180C18E-03
19 —T.0392177E-04
20 -3.08895323E-C4
21 -645916160F=G5
22 5+5532868F-05
23 9.19508L2E-05
24 7eG8G4L5845E-05
25 560242059E-(5
25 2.0625361E-05
27 ~2.93657T4F=-06
28 =1.9424668E-C5

ROW
Bow
RoW
ROW
R Clu‘-,'

=291

TRTW

RCOW
RCW

RO

0
o b

ROW
RO
ROW
ool
ROV
ROW
P MW
RO
RCW
RTW
ROW
oW
Rou
RowW
R
Pow
RO
RCW
RCW

2G
3an
a1
32
23
3L
5
36
37
38
39
4l
42
43
A
45
46
47
48
49
50
51
52
52
54
55
56
57
58

=2474157215=05
3,65804405=CL
44%RBA25RTE-04
LeT26431GF=04
LoltRET187E=04
344328351 7F=04
1e4737912E=04
~1.1795576F-C4
-2,.558970G1E-04
~3.66181375-04
1e6112671E=04
163542445053
445C3TGLHENF-02
BePEABRDPIF=(7
1 «3RELGBAF-C?
1e661A2]EBF-02
1« 3RENOQUPE-02
HeBE60970F=03
L,502RTGTF=073
16355762E-03
166125472E=04
~3.6606614E=NG
-2 ,5683BRCE-0%
-1.17924895-04
1 47204 BF =04
244384 825F =04
Lo LBRRDOEE D4
4eT3AERRPCF~-04
44283351 2E=-C4
3.6560278E=-04



Tavle EXe 3c. - Outnut data for Case 3ce n = 2,0, a= 1

THE MATRIX X '
W ROW 36  =T741134302E-C4

ROW 1
ROwW 2 B 36899 T5E-06 ROW 27 -1.0645604E=-C3
S § | i EOIEE RO% 38  -1.0328614E-C3
RO¥W &  =5.5498705E-C5 ROW 39 =242273931E-C
a0y 5 -1.04469297TE-C4 ROW &40 1.868367GE-C3
ROW 6  =144588716C-C4 Rle wl 547630624E-C3
ROW 8  —7.2401177E-C5 REH 42 L+ 8355892 5-02
S ROW 10 £.5263651E-C4 REK 4= Leddosunfed
ROW 11 9.7587542E-C4 e il la1659425E-C2
RGH 12 loéqu?lsE_GB RC".&' “IT 50783}.183E-C3
ROW 13 2.215B062E-C3 ROE 98 I-86300315-C3
ROW 14 2.0388991E-C3 ROW 49 —2,2269343E-04
RCW 15 1.,0039344E-08 ROW 50 -1,0325088E-C53
ROW 16  -2+0388907E-C3 Atln 3L =l.80851516=03
R0 18 —1.6496836E-03 ROW 53  -2.57G1616E-C4
ROW 19  -9.7587379E-04 bl am - Iudeslabes-Tk
ROW 20  —4¢5263069E-C4 ROW 5 346312873E-C4
ROW 21  -1.1539506E-04 RAW a5 4e6698260E-C4
ROV 23 1.4730377E-C4 ROH 3B 2 TORRESE-R%
ROW 24 1.4588219E-C4 |
ROW 25 1.0469009E-04
ROW 26 5¢5497236E-C5
ROW 27 1.6084494E-C5
ROV 28 -B.9692330E-C6
ROW 29 -1.9357554E-05
ROW 30 4.2783539E-C4
RO% 21 447399499E-C4
ROW 32 4.669816TE-C4
_ROM 23 3.6312477E-C4
ROW 34 142420962E~C4

ROW 35 -2+5703688E-04



Table Zx. 3d. - Output data for Case 3d. n = 4.0, a =

THE MATRIX X

ROW
ROW
ROV
ROV
RO
ROW
ROW
ROW

_ ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROV
ROW
ROW
ROW
ROW
RO
ROW
ROV
ROY
ROW
ROW
ROW
ROW

-3.518182BE-C4
-3, 7999591E-C4
-444315725E-C4
-4,9573951E-04
-5,1018083E-C4
—4,4692634E-C4
~2:86940275E-C4
58948412E-C5
5.7467935E-C4
1.3143700E-C3
2 3145939E-C3

345439029E-C3
425660585E-C3
491336827E-03
21412234E-08
—4,1336529E-(C3
—4oH660213E-03
-3.54387323E~-C3
—2¢314545QE-C3
~1le 31431 T3E-03
-5 T463930E~C4
-5.8924532E-C5
2:5941649E-C4
4o 4592284E-C4
561015639E-C#4
4e256887T6E-C4
4o4008326E-C4
37991884E-C4
3.5173749E-C4
B88965031E-C4
-1.9552752E~-C4
-1.4223435E-C3
=248318989E~C3
-443556318E-03
-5.8L32787E-C3

RO
ROW
ROW
ROW
Ri3%
RO
RO
ROW
ROW
ROW
ROW
RO
ROW
ROW
ROW
ROW
ROW
RO
RO
ROW
ROW
RO
ROW

26
47
38
a9
40
41
42
43
44
45
46
47
48
49

=4

-

51

52
53

-

54
55
56
57
58

—6.G223355E-C3
-T7e2208638E-C3
-6e3818507E-C3
-3.608B4475=C3
1. 7649357E-C3
1.08C7792E=-C2
20282124CE-C2
3.64498315=C2
4e3022286E-C2
36 6449946E=C2
2.2821475E=-C2

laC5081245=-C2 -

1la76532427E-C3
=3.6082603E-C3
-643811317€E-C3
-7.23G0B90E-C3
=-609220848E-C3
=5.8144145E-C3
-4.3548048E2-C3
=-2+:8311659E-G3
—1.4217789E-C3
=1e9519652E-C4

B8,8971830E-C4

4



Table 3ee

THZ HATRIX X (n
0.16500E - 01
0.,170995% - 02
oL

03

0.30505E -

THE
- mdad

FATRIX X (n
0.21978E - 01
0.,21218E - 02
~0,12028E ~03

0.L4792LE ~ 03

THE MATRIX X (n
0.43477E - 01
0.3769LE = 02
~0,723L44E-03

0.51345E - 03

Dimensionless D

In order t

less foundation solutions, the above table deflections (ft)

should be modified %o become dimensionless coordinates by

= 1.5)

0.13839E
0.38835E
0.2L002E
0.42796E

= 2,0)

0,18294E
0,22616E
0,15810E
0. 44004E

= L]’aO)
0.36113E

- ~0.22579E

-0.16959E
0.48836E

eflection

o compare

- 01

- ol

-~ 03

- Output data for Ex. 3 of a =

0.,88675E
~0,18873E

0.38851E
0.35LL49E

0.11665E

~0.41048E

0.35645E
0.36379E

0.22857E
-0.12975E
0,2282L4E
0.41298E

Calculation:

the computer results with tension-

the following equations (3).

X =x/1

0, n = lls, 2303

i
‘g

0.45%310E - 02

~-0.,16988%

0.46235E

0.58834E
~0.38628E
0.L5857%

0.11293E
-0.12519E
0. LU3L6E

-

03
03

03
03

01

02

03
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(B.u]

6 = w/nex (yﬂ%e”/uEI) (12)

where X and & are dimensionless distance and deflection,
respectively.

W = deflection(ft)

1l

I = characteristic length(ft)

y = unit weight of beam

EI = flexural rigidity of beam
and 1% = LEI/Ks® (13)
where Ks' = modulus of subgrade x width of beam (Ks x B)

Substituting EI = 22896K-ft, Ks'

Lshnsi (Table II) into
JiXe 13.

Then

_ b/ AT Iy x 22896 o~ £/=
L="/%s+ j/ré Lehaith - 0(ft)

b _
v*eT/uEr = Q- O3L§22§§g.1a & 1 x 18 2(ft)

These results are graphically presentéd in Fig. 14 to Fig. 21.



CONCLUSIONS

i« The study described herein shows that the matrix solution
for beams on elastic foundations gives good agreement with
the classical liﬁear and non-linear (tensionlesé foundation)
solutins, for the number of springs chosen,

2. The matrix solution of the problem shows its simplicity
not 6nly in matrix formulation but also in the numerical
evaluation by computer.

3. The beam and subgrade properties were chosen arbitrarily.
The method of investigation is completely general.

4, Due to the nonlinearity of the problem, the principle

of superposition is not valid. Instead the problem arising
with each different loading must be considered separately.
This is clearly illustrated in Fig. 19, Fig. 20, and Fig. 21.
S. Physical properties of real soils are more complicated
than that represented by Winkler's assumptions.

6., The degree of continuity in subgrade cén be assuned, in

a given case,only by physical testing of real soil.



Lo
O

ACKNOWLEDGHENTS

The author wishes to express his sincere apopreciation
and gratitude to Dr. Jack B. Blackbufn for his advice and
sugrestions during the preparation of this report.

He ‘would also like to thank his major adviscr Professor
Wayne W, Williams and Dr. Stuart E. Swartz for their encour-

agement and suggestions,



REFERENCES

1. A. B. Vesié, "Model Studies of Beam Resting on a Sil+t
Subgrade, " Journal of the Soll piechanics and Foundations
Division, American Society of Civil Engineering, Fet., 1953,
Fart Is |

2. Joseph E. Bowles, Foundation Anzlysis and Desion,

liacGraw-Hi11 Co., New York, 1968.

i Nien-chién Tsali and Russell A, Wesitmann, "“3Beam on
Elastic Foundation," Journal of Engineering liechanics Divi-
sion, American Society of Civil Engineers, Oct., 1967,

4, S. Timoshenko, Strength of Materials, Part II,

D. Van Nostran Co., Princeton, N.J., 1965.

5« . Hetenyi, Beams on Elastic Foundz2tion, The Univ. of

Michizan Press, Ann Arbor, 1946.

6. Z. Levintoh, "Elastic Foundations Analyzed by the Kethod
of Redundant Reactions," Trans. American Society of Civil
Engineers, 1949,

7« H. Malter, "Numerical Solutions for Beams on Elasticr
Foundations," Trans. American Sociefy of Civil Engineers,
1960,

8. G. A, Leonards and M. E. Harr, "Analysis oI Concrete
Slabs on Ground," Journal of the Soill Mechanics and Founda-

tion Division, American Society of Civil Engineers, June, 1959.



o)
A

Q. A, D. Kerr, "Elastic and Viscoelastic Foundation Iodeliz,"
Journnl of Applied Mechanics, American Society of kiechanieczl
En~incers, Sept., 1964,

10. C. K. Wang, Matrix Methods of Structural Annlyoi~

International Textbook Co., 1966, Chapter 4 and Chanter 10.



33

APPENDIX A - NOTATION

The following symbols are used in this report:
EI = flexural figidity of beam
Ks = subgrade modulus
3 = width of beam

Ks' = Ks x B = subgrade modulus include the effect of
beam width )

£ = characteristic length of beam-foundation
n = loading parameter

Q@ = magnitude of concentrated center load

W = dimensionless deflection

w = transverse deflection

X = dimensionless length coordinate

X = length coordinate

y = unit weight of beam

K = spring constant

a = cell length of beam-foundation

Es = modulus of élasticity'of soil

<
i}

Poisson's ratio

b
It

- total length of beam
& = dimensionless deflection = w/(yl“e“/@EI)

AL = length characteristic
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APPENDIX B - FIGURES

Force-Deflection Diagram
Load Diagram for the Given Beam
Internal Moments & Rotations
Spring Force & Deflections
Joint Equilibrium Diagram
Example 1 Beam Tested by Vesié(l)
Example ZA short Beam to Compare with Bowles Finite
and Infinite Beam Analysis(2)
Example 2B Long Beam to Compare with.Bowles Infinite
Beam Analysis(2)
Example 3 Long Beam to Compare with Infinite Bean
Analysis of Tsai & Russell(3) for Q@ = 8.6k, 12.9%,
17.2K, 34,4F
Comparison of Deflection with Soil Test Results

for Example 1

= Comparison of Deflection with Bowles Finite and

Infinite Beam Solution for Example 2A

- Compariscon of Deflection with Bowles Infinite Beam

Solution for Example 2B

-~ Dimensionless Deflection for Example 3 with Uniform

Dead Load v = 31 lbs/}t & Q = 8.6¥
Dimensionless Deflection for Example 3 with Uniform

Dead Load y = 31 1b8/p4 & Q = 12.9K



Fig.

16

17

19

20

21
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Dimensionless Deflection for Examnle 3 with Uniform
Dead Load y = 31 1PS/.. & o = 17,2F

Dimensionless Deflection for Example 3 with Uniform
Dead Load v = 31 lbs/ft & Q = 34.4k

Dimensionless Deflection Summary of Load Cases for
Example 3

Comparison of Non-Linear Solution with Classical
Solution for Example 3, Q = 12.9k

Compaiison of Non-Linear Solution with Classical
Solution for Example 3, Q = 17.2k

Comparion of Non-~Linear Solution with Classical

Solution for Example 3, Q ='34.&k
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« 8. = Example 2A Short Beam tc Compare with

Bowles Finite and Infinite Beam Anzalysis.(2)
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APPENDIX C - COLPUTZR PROGRAK AND ITS FLOW CHART

Displacement method of beams on “"one-way" elastic foundation
analysis
(I} Program Exnlanation

This program is written to solve the matrix eguaticns of
beams on elastic foundation by the displacement method znd is
a modification of one given by Wang(l0), wherein the soring
constant K, arising from upward deflections, is set eguzl o
zero in the stiffness matrix[S], after the first iteration. The
deflections are then recalculated, If the region of upward de-
flections expands, iteration is continued until 211 upward de-
flections are tested and their spring constants K are set eqgual
to zero in [S] matrix. Then the iteration goes on to its last
cycle and the final deflections are written out the tensionless
Tfoundation solutions. This is the essence of the program that
Tollows.,

(II) Fortran Name - The following symbols are used in this

Program.
Fortran Name : Quantity

[a] Force - Load transformation matrix

[s] Member stiffness matrix

[sar] Member stiffness matrix related to axial forces
[ASAT] Transpose of [A] matrix

[P] Load matrix

[x] Displacement matrix

[F] Force matrix

-
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NP

CL
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49
Deformation matri::

H

Index of do loop taking on values from 1 to
Index of do loop taking on values from 1 1o NAF
Degrees of freedon

Total number of internal forces

Mumber of internal end moments

Number of internal axial forces

Load condition

Number of cell length

Index of tension or tensionless allowed for the
foundation, taking values 1 or 0, respectively
Unit weight of beam (=v)

Concentrated center lecad

Cell length of beam

Spring'consfant

Flexural rigidity of ﬁeam

Test of upward deflection



(III)
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Flow Chart of Beams on One-Way Elastic Foundation

Program

Start

4

Read Properties
of Beam, Spring
Constant &
Loading

Compute & Store

[asaT]—[a]ls](aT]

Invert 2 Store

[ASAT] «—[asaT]”

i3

Compute [X]
[x] — [asa™17[

PJ

Set Spring Constants=0
Recalculate [X] by
Iteration

s

4

Compgte & Store
[Fl~—[s1{aTix]
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ABSTRACT

The analysis of beams on one-~way elastic foundations is
based on Winkler®s assumption that the continuous reaction of
the foundation at every point is proportional to the deflec-
tion at that point. However, the tension property which is
ordinarily assumed for a foundétion is relaxed by assuming
the foundation can take compression only. Under such condi-
tions the foundation can be visualized as a set of closely
spaced "one-way" springs. A matrix formulation is used to
express the beam member deformations and forces in terms of
spring joint displabements. Once the rédundant displacements
are known the elastic solution of this beam-foundation system
can be obtained. A model of a typical steel beam (8WF31l) on
a micaceous silt subgrade was chosen to illustrate the numeri-
cal evaluation of thé‘tensionless foundation solution. The
numericai process was performed using a computer program
written in Fortran IV. The beam-subgrade stiffness matrix
was modified to take into account beam uplift by setting
appropriate spring constants equal to zero in every cycle of
iteration. The final joint displacements (deflections) were
calculated following the last iteration. The results are in

a good agreement with previous tensionless foundation solutions.



