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1. INTRODUCTION

The interest in combinatorial problems, invelving the arrangement
of a finite number of objects in sets or patterns, satisfying given
~conditions, can be traced back at least as far as Euler [9] in 1782,
who was interested in the construction of Latin and Graeco-Latin squares.
However, it was not until the late 1920's and early 1930's that the
importance of combinatorial problems, for the proper design of biological
experiments, began to be understood, mainly through the work of Professor
R. A. Fisher and his associates (Fisher [11]; Eden and Fisher [10]; Fisher
and Wishart [12]; Wishart [24]; Yates [25,26]). In the late 1930's,

C. R. Bose [2] made a systematic study of block designs and used Galois
Fields [1] on the problem of constructing Hyper-Graeco-Latin squares.

In this report, a foundation for studying and investigating block
designs is developed. The focus of concern will be with the construction
and existence of mutually orthogonal Latin squares. The mathematics neces-
sary for the construction of these designs involves Galois Field theory and
finite geometries, which also comprise the groundwork for other types of
block designs. One reason for starting with mutually orthogonal Latin
squares (MOLS) is that they can be modified to form other types of block
designs as shown by Raghavarao [22].

A Latin square of order s is defined to be an arrangement of s symbols
in 52 cells arranged in s rows and s columns, such that every symbol occurs

once in each row and once in each column. This type of design is used in
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experiments to remove the heterogeneity of experimental material in
two directions and requires that the number of replications equal

the number of treatments or varieties. For example, the Latin square
of order 6 whose cells are occupied by the symbols A, B, C, D, E, F,

can be represented:

B D A E C F
D A C B F E
E F D A B C
A c E F D B
c B F D E A
F E B c A D

If the symbols in the first row and first column of a Latin
square are in alphabetic order or numeric order, it is said to be in
"standard form", and if only the symbols of the first row are in this
type of order it is said to be in "semistandard form". It is impor-
tant to distinguish between these twoc concepts, since the standard
form is useful in the randomization of Latin squares and the semistan-
dard form is needed to study the properties of orthogonal Latin squares.

Two Latin squares are said to be orthogonal if when one is super-
imposed on the other, every ordered pair of symbols occurs exactly once.
When two orthogonal Latin squares are superimposed, it is customary to
use Latin letters for cne square and Greek letters for the other square.
The result 1s the well-known Graeco-Latin square. For convenience, sets
of mutually orthogonal Latin squares of order s are referred to as MOLS

of order s. A set of s-1 mutually orthogonal Latin squares of order s



forms a complete set of mutually orthogonal Latin squares.

Some

authors restrict the term Hyper-Graeco-Latin square to talking about

superimposition of sets of MOLS which are complete sets.

When s is a prime number or the power of a prime number, a com-

plete set of MOLS of order s can be constructed, and a method for do-

ing this is presented in Chapter 2.

According to Vajda [27] it is not

known whether a complete set of MOLS exist when s is not a prime power.

However, the existence of such a set has not been disproved except for

special values of s.

The argument presented by Liu [15] can be used to demonstrate that

there are at most s-1 Latin squares in a set of MOLS of order s.
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Notice that

the orthogonality condition is not violated when the entries in the

squares are renamed by permuting the symbols 0, 1, 2,...., s-1.

Let

us rename the entries in such a way that the first row of each of the

squares reads 0, 1, 2,

123 _ (2} _ -
Loo” = 1gg = vee =

(1y _ 462y _ -
gy =1p] = -ver =

(1) _ @ _
o1 = Logg ® o

«+s+y 8-1; that is,

{r} _
g0

(r) _
Loy =1

|
(o]

- 1(0) .

Os—1 s-1.

Now let us examine the entries in the second row and the first

column



(1) (2) (r)
100 1077 o Lo

be 0. Otherwise, the condition that every square is a Latin square is

of the Latin squares 1 . None of these entries can
violated. Also, no two of these entries can be the same. Otherwise,
the condition that the set of Latin squares is an orthogonal set is vi-
olated. It follows then that there are at most s-1 Latin squares in
the set Ll’ LZ’ FaLE g Lr'

It should be pointed out that there are no orthogonal Latin squares
of orders 1 and 2. Trivially, there is only one Latin square of order 1.

There are two Latin squares of order 2 as shown below, but they are not

orthogonal.

Therefore, when we talk about MOLS of order s, s is understood to be
greater than or equal to 3. Graeco-Latin squares exist for all orders
except 6.

One purpose of this paper is to investigate the existence and con-
struction of MOLS of order s where s < 100. Methods of construction where
s is a prime or power of a prime will be discussed in Chapter 2 and Chap-
ter 3. Chapter 3 will demonstrate the construction of equivalent Latin
sqﬁares through the use of projective geometries and affine (or Euclidean)
geometries., In addition, Chapter 3 will discuss the existence of complete
sets of MOLS. Finally, Chapter 4 handles the case of MOLS of order s
when s is not a prime or prime power.

A fairly complete and understandable presentation of Galois Fields,
as given in Chapter 2, is a prime concern of this report. A full-length
treatment of Galois Fields as it relates to the design of experiments is

not available in book form because of the lack of texthbooks dealing with



combinatorial aspects of experimental designs. Courses and research
in the combinatorial theory of the design of experiments are on the
increase, and the literature is available mainly in scattered papers

in journals. This report will serve as an introduction to that area.



2. GALOIS FIELD THEORY AND MOLS

Basic to the construction of almost any type of experimental design
is the concept of Galois Fields. A thorough knowledge of Galois Fields
.1s necessary in order to study MOLS. In this chapter we start out in
Sectioﬁ 2.1 with a brief study of groups, rings, and fields giving the
axioms which define these concepts. In Section 2.2 the concept of a
ring of polynomials is iIntroduced. Then imn 2.3 a thorough study of
Galois Fields is presented giving particular emphasis to finding the
multiplication and addition tables associated with a particula; Galois
Field. These tables are absolutely essential to the construction of
complete sets of MOLS of order s, where s 1s a prime or a prime power,

as is discussed in.Section 2.4

2.1 Axioms for Groups, Rings, and Fields

A group consists of a set of elements a, b, c¢,... which have a
single-valued binary operation, say addition denoted by +, such that

the following four axioms are satisfied.

I. (Closure property)
For any two elements a and b of the group, there exists

a unique element s belonging to the group defined by



II. (Associativity property)
a+(b+ec)=(a+b)+ec

for all a, b, ¢ in the group.

I1I. (Identity property)
There exists a unique element O belonging toc the group

with the property that
c+0=c

for any element ¢ of the group.

IV. (Inverse property)
For any element a of the group, there exists a unique

element a* such that
a+a*=0.
This element a* will be denoted by -a. By b - a we

shall mean b + a* or b + (-a).

If in addition to these axioms, the following axiom also holds true,

then the group is called a commutative group or an Abelian group.

V. (Commutative property)
a+b=>b+a
for all a and b in the group.
A nonempty set of elements with two single-valued binary operations,
say addition - denoted by + and multipl}cation - denoted by * or juxta-

position of elements, constitutes a ring if addition forms an Abelian

group and multiplication satisfies the following axioms:



VI. (Closure property)
For any two elements a and b of the ring, there exists

a unique element r belonging to the ring defined by

VII. (Associativity property)
a*{(b+-¢c)y=(_(a->b) - c

for all a, b, ¢ in the ring.

VIII. (Distributive property)

For any elements a, b, ¢ in the ring

]

a -« (b+ c) a«b+3a.c

b-a+e¢ - a.

(b+c¢c) - a

A ring satisfying the following axiom is called a commutative
ring.
IX. (Commutative property)
ab = ba
for all a and b in the ring.

A commutative ring that satisfies axioms X. and XI. is said to be

a field.



X. (Identity property)

There exists a unique element 1 # 0 belonging to the field

with the property that

for any element a of the field.

XI. (Inverse property)
For any element a # 0 of the field, there exists a unique
-1
element a such that

aa-l = .

The systems of all rational numbers, all real numbers, and all com-
plex numbers provide examples of fields.

Next we look at the concept of a ring of polynomials. Polynomials
are used to represent the elements of a Galois Field, and an understanding

of addition and multiplication is necessary in building a Galois Field.

2.2 The Ring of Polynomials F[x].

Let F be a field. Then according to Maxfield [18] expressions 1like

n-1 > i
X + sev0s F ax +a, = z a.x

n
(2.2.1) ax +a . 1 0

where ai € F fori=0,1, 2, ...., nand n > 0 is an integer, forms a

ring F[x] under the operations of + and - defined by

n i n i n .
(2.2.2) J ax + ] bx = ] (a

L bi)xi
=0 1=0 1=0
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m
(2.2.3) and J a,xi ) b.xj = 3 ckxk,
i=g * j=0 =0
where ¢, = Z a,b..
e
i+j=k

The degree of a particular polynomial is the maximum i for which
a, # 0.
1

Polynomials over a field do not form a field since nonzero poly-
nomials of positive degree do not have multiplicative inverses, that
is, they fail to satisfy axiom XI. This results from the fact that
any two nonzero polynomials when multiplied together, result in a
product having degree greater than or equal to one, but the multi-

plicative identity polynomial is 1 and has degree 0.

2.3 The Galois Field GF(p").

The mathematical systems of interest to a statistician designing
experiments are fields containing only a finite number of elements.
Such systems are called Galois Fields. First we will talk about mo-
dular arithmetic, the simplest example of a Galois Field. Then the
general case of a Galois Field will be presented and a procedure for
constructing addition and multiplication tables in this Field is given.

2.3.1 The Galois Field GF(p)

The element a is said to be congruent to b modulus p if a - b is
divisible by p. This is notated by a = b(mod p); p is the modulus of
congruence and b is called the residue. For a given positive integer
p, a4 modular arithmetic is obtained by using only the integers 0, 1,

2, «..., p-1 and defining addition and multiplication by letting the
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sum a + b and the product ab be the remainder after division by p.

For example, if p = & then the addition and multiplication

tables are:

+ |10 1 2 34 5 o1 2 3 4 5
ofo 1 2 3 4 5 oo o o o 0 O
111 2 3 4 5 O 1 {0 1 2 3 4 5
2|12 3 4 5 0 1 210 2 4 0 2 4
313 4 5 0 1 2 30 3 0 3 0 3
414 5 0 1 2 3 410 4 2 0 4 2
515 0 1 2 3 4 510 5 4 3 2 1

Notice from the multiplication table that there does not exist
an element which when multiplied by 3 gives 1; that is, 3 has no
multiplicative inverse. Modular arithmetic mod p is a commutative
ring with mulitplicative identity element; if p is a prime then arith-
metic mod p forms a field.

The field of classes of residues mod p, where p is any positive
prime integer gives the simplest example of a Galois Field. Consider
all integers congruent to one another mod p belonging to the same class,
and let the class to which the integer a belongs be dencted by (a).

Then (a) = (b) if and only if a = b(mod p). So there exists only p dif-
ferent classes (0), (1), (2), ...., (p-1). These are the residue classes

(mod p) with addition and multiplication of these classes defined by

(2.3.1.1) (a) + (b) (a +b)

(2.3.1.2) (a) - (b) (ab).
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This type of Galols Field is denoted GF(p).
For instance, if p = 5 the five different classes are (0), (1), (2),

(3), (4). Examples of addition and multiplication of these classes are

(6) = (1)
(12) = (2).

(1) + (2) = (3) (2) + (4)

(1) - (2) = (2) (3) - (4)

" For residue classes, the integer a is a representative of the class (a).

The standard representative of the class (a) is the only non-negative

integer less than p which is a representative of (a). The elements of
GF(5) are (0), (1), (2), (3), and (4), but these classes will be de-
noted by their standard representatives 0, 1, 2, 3, and 4.

The addition table and multiplication table of GF(p) are used in
working with the coefficients of the polynomials that are elements of the
general type cf Galois Field. These tables are also used to construct
complete sets of MOLS of order s when s is a prime.

The concept of modular arithmetic or GF(p) where elements of the
field are sets of non-negative integers can be extended to the general
case where the elements of the field are polynomials, and this is our

next topic.

2.3.2 The Galois Field GF(p")

A polynomial f(x) of positive degree is irreducible in F[x] if it

has no factorization

(2.3.2.1) f(x) = g(x)h(x)

with g(x) and h(x) in F[x] of positive degrees. If f(x) = g(x)h(x) e F[x],
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then f{x) is reducible over F[x].
The irreducibility of a polynomial depends on the field it is de-
fined over. For example, the polynomial x2 + 1 is irreducible over the

real numbers, but is reducible over GF(5) as
2 2
(x+2)(x+3)=x"+5x+6=x +1

since 5 = O(mod 5) and 6 = 1l(mod 5).
Let f(x) be an irreducible polynomial of F[x], then two polynomials

p(x) and q(x) are congruent module f(x) if p(x) - q(x) is divisible by

f(x) and this is written

(2.3.2.2) p(x) = q(x)(mod f(x)).

For example, if F is GF(7) and

p(x) = 3x2 + 6x + 4 q(x) = x2 + 4x + 4,
then P(x) = q(x)(med (x + 1)),
since p(x) - q(x) = 2x2 + 2x 1is divisible by x + 1.

For a given f(x), the class of all polynomials congruent to p(x)
mod f(x) may be denoted by [p{x)]. Additicn and multiplication of these

classes may be defined as

(2.3.2.3) (p(x)] + [q(x)] = [p(x) + q(x)]

(2.3.2.4) [pGA] - [a()] = [p(x)a(x)].

When f(x) is an irreducible polynomial, then the residue classes
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(mod f(x)) form a field. The polynomial p(x) is a representative of

the class [p{(x)]. The standard representative of [p(x)] is the only

polynomial which is representative of p(x) and has degree smaller than
the degree of f(x).

The most general Galois Field, denoted by GF(pn) contains pn ele-
ments, where p is a positive prime number and n any positive integer.

The prime is called the characteristic of the field. In order to con-

struct the elements of this field, let £(x) be an irreducible polynomial
over GF(p) In x of degree n with coefficients belonging to GF(p) and let
P(x) be any polynomial in x with integral coefficients. Then P(x) can

be written as

{2:3.2.5) P(x) = p(x) + prr(x) + f(x)-s(x),

n-1 n-2 2
n—lx + an_zx + cewa a2x + alx + a0 and the

coefficients a; (i=0,1, ...., n=1) belong to GF(p). Raghavarac [22]

where p(x) = a

states that this relationship may be written as
(2.3.2.6) P(x) = p(x) mod{p,F(x)}.

Exactly what equation 2.3.2.5 means and how it is used will become more
clear when construction of the multiplication table for GF(pn) is discussed.
The functions P(x) that satisfy this relation when p(x), p, an& f(x)
are kept fixed form a residue class. If p and f(x) are kept constant, but
p{x) is varied, then pn residue classes may be formed since each coeffi-
cient in p(x) may take on the p values of GF(p). The residue classes de-
fined by p(x) form the Galois Field. The function f(x) is called the mi-

nimum function for generating the elements of GF(pn). The candidates for

an 1rreducible polynomial f(x) for GF(pn) are all polynomials of the form
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(2.3.2.7) f(x) = anxn + a _1X + .. tax+a

where a; = 0o, 1, 2, ...., p-1 i=0,1, 2, ...., n except that a_ # 0.

For an example of such a field consider p = 3 and n = 2 so that we

have GF(32). All possible elements for this field are p(x) = alx + ao

where a; =0,1, 2 (1 =0, 1). Hence p(x) can be

Ox +0=20
Ox+1=1
Ox + 2 =2
Ix + 0 = x

Ix+1=x+1

1x + 2 = x + 2

2x + 0 = 2x

2x + 1 =2x+1

2x + 2 =2x+ 2,

The candidates for an irreducible polynomial f(x) for GF(BZ) are

all polynomials of the form

_ 2
f(x) = azx + alx + a0

where a, = 1 or 2 but a, # 0 and a, = 0, 1, 2 i

alternatives for f(x) are:

0, 1. The possible
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lx2 +0x+ 0= x2 =x - X

1x2 + 0x + 1= x2 + 1 irreducible

1x% + 0x + 2 = x> + 2 = (x4 2 )(x+ 1)
1x2 +1x+0 = x2 + x = (x+ U)x

2+ lx+l=x2+x+1 = (x+2)(x+ 2)
lx2 + 1x + 2 = xz + x+ 2 irreducible

lx2 + 2x+ 0 = x2 + 2x = (x + 2)x

1x2 + 2x+ 1= x2 +2x+1 = (x+ 1)(x+ 1)
lx2 + 2x + 2 = x2 + 2x + 2 irreducible

2x2 +0x + 0= 2x2 =2x + X

2x2 +0x+1= 2x2 +1 = (2x + 1)(x + 1)
2x2 + 0x + 2= 2x2 + 2 irreducible
2% + 1x + 0 = 22> + x = (2% + 1)x

2x2 +1lx + 1= 2x2 +x+1 irreducible

2x2 4+ 1x + 2 = sz +x+2 =(2x+ D{x+ 1)
2x2 + 2x + 0 = 2x2 + 2x = (2x + 2)x

2x2 + 2x+ 1= 2x2 + 2x + 1 irreducible

2x2 4+ 2%+ 2 = 2x2 + 2x + 2

It

(2x + 1) (x + 2)

The polynomial is irreducible if it can not be factored into ele-
ments of the Galois Field. Inspection of some polynomials reveals that
they can be factored by 2 or x. The remaining reducible polynomials can
be factored by considering a systematic examination of products of pairs
of the remaining field elements x + 1, x + 2, 2x + 1, and 2x + 2. 2x need

not be considered since 2x = x 2.
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Notice that one of x, x + 1, x + 2 1s a factor fpr each polynomial
that is reducible. If-a polynomial is reducible then there exists an
integer d which is a member of GF(p) such that x + d is a factor of this
polynomial, otherwise the polynomial is irreducible.

In order to construct the addition table for GF(32), one must per-
form normal algebraic operations on the field elements and use modular
arithmetic to reduce coefficients cutside the field back into the field.

This leads to the following addition table

X 0 1 2 X x+1 x+2 2x 2%+l 2x+2
0 0 1 2 X xtl xt2 2x 2x+l  2x+2
1 1 2 0 x+1 x+2 X 2x+1 2x+2 2x
2 2 0 1 x+2 X x+1 2x+2 2x 2x+]1
X X x+l x+2 2x- 2x+1 2x+2 0 1 2
x+1 x+1 x+2 x 2x+l  2x+2 2x 1 2 0
x+2 x+2 X x+l  2x+2 2x 2x+l 2 0 1
2x 2x 2x+1  2xH+2 0 1 2 X xt+l x+2
2xtl | 2x+l  2x+2 2x 1 2 0 x+1 x+2 X
2x+2 | 2x+2 2x 2x+1 2 0 1 xt2 X xt+l

It is possible for all the entries in this table or any addition or
multiplication table for GF(pn) to be represented by some set of nonnega-
tive integers. How this is accomplished will become clear later when the
concepts additive form and multiplicative form are defined.

In order to define multiplication in GF(pn) so that this operation
satisfies the properties of a field, every non-zero element a of GF(pn)

must satisfy the equation
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(2.3.2.8) y =1

n 5
which assures that all of the p =1 non-zero elements are covered in

the multiplication cycle.

We shall define o to be a primitive mark of GF(pn) if a is root

n
of yp L 1 = 0 such that pn - 1 is the smallest positive integer for

which apn_l = 1, For simplicity's sake, it is customary to choose the
primitive mark a = Xx.

Reduction of polynomials not in GF(pn) with powers larger than
n - 1 can be accomplished by selecting one of the irreducible polyno-
mials and setting it equal to zero and then solving for x" in order to
establish multiplicative relationships. To solve for xn, add a polyno-
mial to both sides of the equation which, when using modular arithmetic
on the coefficients, allows the left hand side of the equation to re-
duce to x .

For example in GF(32), the possible multiplicative relationships are:

L4l =0 Xt x+2=0 x4 2x+2=0
+2=2 +2x+1=2x+1 + x+1l=x+1
x2 =2 xz =2x+1 x2 =x+1

2 + 2 =0 2 +x+1=0 2x" + 2x+1 =0

s xz = x2 % x2 = xz + x2 = x2
2 = x2 x+ 1= x2 2x + 1 = x2

Choosing the irreducible polynomial f(x) = x2 + x +2 = 0 so that

2 b=
x = 2x + 1 and choosing the primitive mark equal to x provides the fol-

lowing relations;
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0
8 2
1 =y =x(x+1) =x"+x=(2x+1) +x=1
2 = y4 = x(2x + 2) = 2x2 +2x=2(2x+ 1) + 2x
=4x+ 2 +2x=6x+2=2
1
X =y
7 2
xtl =y =x({x+2) =x" +2x = (2x + 1) + 2x
4x + 1l =x+1
xt2 = y6 =x - 2x = 2x2 =22x+ 1) =4x + 2 =x + 2
Ix = y5 =x *« 2 =2x
PHEL = g = = P L
2x+2=Y3=Y'Y2=x(2x+l)=2x2+x=

2(2x + 1) + x

Il
I

by + 2 + x=5x + 2 2x + 2

Choosing the irreducible polynomial f({x) x2 + 2x + 2 = 0 so that

x2 = x + 1 and selecting the primitive mérk equal to x yields the fellowing

relations
0

1 = y8

2 = y4

X = yl

x+1l = y2

xt2 = y7

2x = y5

2x+1 = y3

2xt2 = y6

Another possibility is the choice of irreducible polynomial f{x) = xz + 1
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so that x2 = 2. Choice of the primitive mark being x causes the multi-
plicative cycle to close before all non-zero elements are covered in
the field. The following computations show that the field elements
x+1, x+ 2, 2x + 1, and 2x + 2 are not represented by this multipli-

cative relationship when x is the primitive mark.

1 =y = x - 22n=2x2=2¢2) = 4 = 1(mod 3)

x = yl = y5 =1 » x = x(primitive mark)
x+1
x+2
2x =y =x+ 2 = 2x
2x+1

2x+2

However, choosing the primitive mark to be x + 1 allows all non-
zero elements to be covered when using the multiplicative relationship

X = 2. This is demonstrated by the following results.

0
1 = y8
2 = y4
x = y6
xtl = y (primitive mark)
x+2 = y7
2x = y2
2x+l = y3
2%42 = y5
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Only irreducible polynomials that are factors of the cyclotomic
polynomial (to be defined below) will always assure that all non-zero
elements in the field are covered by the multiplicative cycle when x
is the primitive mark. Consider the equation xt - 1=0. A root of
this equation is of order r if r is the smallest positive integer for

< r ; " :
which a” - 1 = 0. We say that @ is a primitive root of the equation

xt -1=01if is of order t. The cvclotomic polynomial of order t

is the polynomial c(x) such that c(x) = 0 is the equation which has
for its roots, all primitive roots of xt - 1 =0. Hence the factors
of c¢(x) that are irreducible polynomials, have as their roots all ele-
ments ai of the field over which the polynomials are defined. These
a; = % satisfy the definition of a primitive mark if we are Qorking in

n

GF(p™) and t = p™ - 1.

In order to cobtain the cyclotomic polynomial, we must remove from
t . D .
x = 1 all factors corresponding to non-primitive roots, If t is a

prime number, then the cyclotomic polynomial of order t is given by
(2.3.2.9) x T +x C+X T+ ...+x+1.
For example, if t = 7, the cyclotomic polynomial of order 7 is
x6 + x5 + x4 + x3 + x2 + x + 1.
When t is not a prime number, then the decomposition of t is
c

c c
t = pll p22 b pkk

and the cyclotomic polynomial as given by Bose[3] is
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5 - DR PiP - DGR RPL -

nxPi - 1ynextPiPiPr - 1)

(2.3.2.10) cix) =

The degree of the cyclotomic polynomial of order t is

1 1 1
{2, 8.0 .01 f(t)y =@ -)A-=) ... 1 -
Py Py Py

where ¢ is the Euler function giving the number of positive integers less

than t and relatively prime to it.

For example, if t = 60 = 22 -3+ 5, then
. (80 _ 1y, 50/2°3 _ 1y 60/2:5 _ | 60/3:5 _
77 _ 1y 873 1y (875 _ 1y (807235 _
e e o e - et -
3? - 1 —nEt? - 1ed ~ 1)

When t = pn = 1 and the cyclotomic polynomial is of order pn -1
and belongs to the ring GF(p)[x] and f(x) is an irreducible factor of
the cyclotomic polynomial over GF(p), then f(x) is often called a mi-

nimun function for the field GF(pn). There are %’¢ (Pn - 1) distinct

minimum functions any one of which may be chosen for f£(x). The advan-
tage of choosing f{(x) to be a minimum polynomial, rather than one of
the other irreducible polynomials, is that the class [x] is a primitive
mark of GF{pn). This also assures us that the multiplicative cycle will
cover all non-zero field elements exactly once before repeating.

For the case pn = 52, the ordinary cyclotomic polynomial of order
24 is

24

(x
(x12

DGR -1 8 4,
s - 1 :
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hence the corresponding cyclotomic polynomial of GF(5)[x] is
x8 + 4x4 + 1
where the integers are now standard representatives of classes of re-
sidues moduluo 5. This can be factored as
2 2 2 2

(x" +2x + 3)(x" + x+ 2)(x +4x+ 2)(x" + 3x + 3).

The cyclotomic polynomial of order 8, used to find minimum func-
tions for GF(32) is

8
e(x) = x4 -1 x4 +1-= (x2 + x + 2)(x2 + 2x + 2)

x -1

Let fl(x) = x2 + x + 2 be a minimum function and fz(x) = xz + 2x + 2 be
another possible choice. Taking classes modulo fl(x) and modulo fz(x),

we have

mod fl(x) mod fz(x)

[0] = [o] [0] = [0]

(1] = [1] (1] = [1]

[x] = [x] (x] = [x]
[x%] = [2x + 1] (x°] = [x + 1]
[x3] = [2x + 2] [x3] = [2x + 1]
("] = [2] [x*1 = (2]

[x°] = [2x] [x’] = [2x]
P =[x+ 2] °] = [2x + 2]
'] = [x % 1] tx'] = [x + 2]
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Two Galois Fields with the same number of elements are isomorphic,
i.e. structurally identical. This means it is possible to make a one-
to-one correspondence between their elements in such a way that the sum
of two elements, corresponds to the sum of the corresponding elements,
and the same holds for the product of two elements. Hence, irregafdless
of choice of minimum function, the resulting fields will be isomorphic.

To illustrate this, let the above residue classes with respect to
fl(x) be denoted by [alx + ao] and the residue classes with respect to

fz(x) be denoted by {alx + ao} where a5, a; = 0, 1, 2. Then the field

1

of residue classes [alx + aO] is isomorphic to the field of residue

classes {alx + ao}. This is shown by the correspondence

0] - {o}
1] - {1}
[x] - {(x}

[2x+1] —=>{x+1}
[2x+2] —>{2x+1}
(2] —= {2}
[2x] —={2x}
[x+2]) —>{2x+2}

[2x+1] —»>{=xt+2}

Consider the elements [2x + 2] and [x + 1] of the first field. Their
sum is [0] and their product is [2x + 1]. The elements corresponding to
[2x + 2] and [x + 1] are {2x + 1} and {x + 2}. Their sum is {0} and their
product is {x 4+ 1}. Notice that the sum [0] corresponds to the sum {0}

and the product [2x + 1] corresponds to the product {x + 1}. Similar



results hold when using other pairs of elements.

9
The addition table previously constructed for GF(3") remains

unchanged regardless of the choice of minimum function.

If

9 9
fl(x) = x" + x + 2 is the minimum function for GF(3"), then the mul-

tiplication table is:

0 1 2 X x+1 x+2 2x 2%+l 2x+2
0 0 0 o 0 0 0 0 0 0
1 0 1 2 x x+l x+2 2x 2x+l  2x42
2 0 2 1 2x 2x+2 2xt+l X xt+2 x+1
X 0 X 2x 2x+1 1 xt+l x+2 2x+2 2
x+1 0 x+1  2xt2 1 x+2 2x 2 X 2x+1
x+2 0 x+2  2xtl xt1 2x 2 2x+2 1 x
2x 0 2x X x+2 2 2x+2 2x+l il L
2x+1 0 2x+1 xt2  2x+2 X 1 x+1 2 2x
2x+2 0 2x+2 xtl 2 2x+1 X 1 2x x+2
If fz(x) = x2 + 2x + 2 is the minimum function for GF(32), t Lti-
plication table is:
0 1 2 X x+1 x+2 2x Xt1 2x+2
0 o 0 0 0 0 0 0 - 0 0
1 0 1 2 X x+1 x+2 2x% 2x+1l  2xt2
2 0 2 1 2x 2x+2 2x+1 X x+2 x+1
x 0 X 2x x+l 2x+1 1 2x+2 2 x+2
x+1 0 x+1 2x+2 2x+1 2 X x+2 2x 1
x+2 0 x+2 2x+1 1 2x+2 2 x+1 2x
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. 0 1 2 X %1 x+2 T 2kl 2x42

2x 0 2x x®  2xE2 x+2 2 x+1 1 2xtl
2x+1 0 2xtl  x+2 2 2x pesi 1 25x+2 x
2342 0 2xb2  xtl b2 1 2x 2%+l x 2

Because of the isomorphism between any two sets of field elements
due to different minimum functions, only one multiplication table is needed
since no new information is contained in other tables. The isomorphism
property also allows one to choose any minimum function for multiplica-
tion table construction.

In the general case when f(x) is a minimum function, Bose [3] states
that each non-zero element of the Galois Field GF(pn) can be expressed
in three different ways, first as a power of the primitive element [x],

i.e., as
], ol e 2y sewem B~

which is called the multiplicative form; and second, as the class

X + a__X + aoe + a;Xx + ao],

where a a SIS § an are all elements of GF{(p) (not all zero) which is

l’
called the additive form. The third form is the alpha form where

-1

a. =0 and ai = xl_l fori=1, 2, ...., pn - 1.

When f(x) and p are given, it is often convenient to drop the bracket

= o
xn + a xn 2 * uwe FE;K a3 .

§ i
and write the elements as x or a
n-2 1 0

n-1



Continuing the example of GF(32) when £(x) = x2 + x + 2, the

nine elements may be written as:

Alpha Form Multiplicative Form Additive Form
e, 0 0
a; 1 1
a, p 4 "X
c:3 x2 2x+1
a, x3 - 2x+2
ag xl' 2
a x5 2x
o, x6 x+2
a x7 xtl
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When adding or subtracting use the additive form, remember that the

coefficients add (mod 3). To multiply or divide, use the multipli-

cative form remembering that x8 1. Thus

o, +oag = (2x + 1) + (X + 1) =2 = ®53
U-G=X5'x7=12=8-x4=4=a-
6 8 X x x 5;
[ T R N S

a 3 & X %

7 X X

There are two ways of determining the additive form that corre-
sponds to a given multiplicative form. The easier method is to set
the minimum function equal to zero and solve for x". For example,

x2 + x+ 2 = (0 implies x2 = 2x + 1. Then use the recursive relation-

ship xs =X - xs_l where s takes on the values of n + 1 to pn = l.in
order to build up the correspondences. We always start with ao =0
then use a, = xi i=0,1, 2, «e.., n = 1 to cover the firstn &i's-
Another approach for determining xS where n + 1 <s < pn -1

is to first divide x° by the minimum function f(x) which provides some
remainder, say h(x). If h(x) is one of the additive forms then we are
finished, but if h(x) is not an additive form, then use mod p arithme-
tic to reduce h(x) to one of the additive forms. Essentially we are

making use of the earlier stated relationship P(x) = p(x) mod{p,f(x)}

which means
P(x) = p(x) +p - r({x) + £(x) - s(x),

wher P(x) = xs, f(x) = £(x), and h(x) = p(x) + p » r{x). The division
of P(x) by f(x) reduces a polynomial of degree larger than n - 1 back

down to a polynomial of degree n - 1 or smaller and division by p or



29

modular arithmetic finishes the reduction so that the final element
is a member of GF(pn). It is this type of relationship that assures
the closure properties of the field.

In order to construct the multiplication table, all possible pairs
of additive forms can be multiplied and then reduced either by setting
the minimum function equal to zero and using the resulting relationship
with recursive calculations or by dividing the product by the minimum
function and using modular arithmetic on the remainder. If correspon-
dence has already been established between multiplicative forms and
additive forms, then multiplication can be accomplished by using adding
exponents mod p.

The entries in the addition table and multiplication table may be

the additive forms, the multiplicative forms, the o, notation or the

i

subscripts only from the a, that is i =0, 1, 2, ...., pn - 1.

GF(2) GF(3)
+ 0 1 . 0 1 + 10 1 2 . 0 1 2
0 0 1 0 0 0 0 0 1 2 0 0 0] 0
1 1 0 1 0 1 1 1 2 0 1 0 1 2
2 2 Q 1 2 0 2. 1
6F(2%)
2
a. =0 a. =1 a, =% a.=x =x+1
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+ ao al 02 a3 GO al a2 u3
O'.O (!0 C!.l 0’.2 0‘.3 (IO C!O CI.O 0-0 (10
1% % g % Bl % % Fy By
(12 02 0'.3 CLO G.l 0.2 0'.0 a.2 GB ‘:!I'.l
Gy 1 @3 & & G 3 1 8 @3 @ G

In GF(23) using the minimum function x3 + x2 + 1 which implies

x3 = x2 + 1, then
- - = = 2 = 3:
uo =0 al 1 u2 X 03 X a4 X x +1
a, = x4 = x2 +x+1 a, = x5 =x+1 a, = x6 = x2 + x
5 6 7
+ ey ul o, a3 o, og a6 a7
a, aq @y o, u3 u4 us a u7
ay a; oy ae a, a3 a7 a, ag
a, @, a ag @y us a4 ay a,
a3 o, e, a7 ay @y ¢e as a,
@, @, @y ag ay e, a, o, a6
ag ag a7 @, ae e, a, B, ey
ac ¢ a, ay oy a, ey e, a4
a, a. 05 03 a, a oy @, @,
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% %1 %2 %3 % % % %
T e T T L I
L T T s T T PO
@, | a5 G, 0y @, Gg 0. O, Oy |
N L TR A PO PO S Notice pattern in mul-
a, | a9 @, G5 @ @y 0y a, Qg tiplication table -
o a, o ag @, ay a, a3 a, this makes for easy
S L P T A O T constructien,
a, | 8y @, @ @y Gy @, ag O

Since factorization of a cyclotomic polynomial is not always easy,
the following table provides help by listing possible minimum functions

necessary for constructing Galois Fields up to GF(33).

GF Minimum Function

22 xz +x+1

23 x3 + x2 +1 or x3 +x+1

32 x2 +x+ 2 or x2 + 2x + 2

24 x4 + x3 + 1 or x4 +x +1

52 x2 + 2x + 3 or x2 +x + 2 or x2 + 4x + 2 or x2 + 3x + 3

33 x3 +2x+ 1 or x3 + 2x2 + 1 or x3 + x2 + 2x + 1 or x3 + 2x2 +x+1

4 y v <
In GF(2 ') using the minimum funection x4 + x + 1 so that x4 = x + 1, then

a =0 a, =1 a6, = X a, = x 0, = X a. = x =x+1
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_ .8 _ 2 _ .9 3 - J0 2
“9 =x =x +1 Gg =X =X + x a1 X =x +x+1
11 3 -2 12
= = =x " =x +x +x+
alz X ¥ +x + x a13 X X X X 1
_ .13 3 2 - L4 _ 3
u14 = X =x +x +1 alS X x +1

There are a few useful references on Galeis Fields. Volume 12

of the Bulletin of the American Mathematical Society for 1905 gives,

on pages 22 to 38, listings of correspondences between multiplica-
tive forms and additive forms for Galois Fields where pn < 169. Vo-
lume 16 of the same journal gives listings on pages 188 to 206 for
P < 1000.

A method of constructing irreducible polynomials by automatic

computation is discussed in volume 14 of Mathematics of Computation

for 1960 on pages 99 to 103.

2.4 Construction of Complete Sets of MOLS

A Galois Field of order s = pn where p is a positive prime integer
and n is a positive integer will be used to construct a complet set of
g - 1 MOLS of order s. For this we need the addition and multiplication
tables for GF(pn),

Let x be a primitive root of GF(s) and let the elements be chosen

as ao = 0, o =1, az = Ky eaes as—l = xs_z. If in the (i,j)the cell

of the t-th s x s square we put the number u determined by

(2.4.1) @ = aa + aj £ = Ly 2y & ey 6913

L0 =l T %y wames 8 -1,

then we get a Latin square Lt' The s = 1 squares L L siwny L

1* 727 5-1
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form a complete set of mutually orthogonal Latin squares.

Raghavarao [22] uses the following argument to verify that Lt
is a Latin square, and Latin squares Lt and Lw (t # w) are orthogonal.
In Lt in the j-th column (j =0, 1, ...., s = 1) each of the s distinct
elements of GF(s) occurs exactly once. In fact, when i véries from
0,1, ...., s -1, aiat will take each value of GF(s), and so aiat + uj
will take each value of GF(s). In the same manner it can be seen that
each element of GF(s) will occur exactly once in the i-th row (i = 0, 1,
sesey 5 = 1). HNow consider two Latin squares Lt and Lw as well as their
(i,j)th cells. Suppose the element in Lt is @ o + aj = R and in Lw

it isa,a +a, =a . Given a , @ , o, and ¢ and the fact that these
iw y X y t w

elements belong to a field then we can solve these equations for a; and

a.
J
o - o a0 —-o.0
=Y X = Xw __ty,
Gl T a -a %5 7 a - a
W J w t

and the solution is unique. Since these are unique, the ordered pair
(ax, ay) will occur on the superimposition of Lt on Lw in the (i,j)th
cell as determined by these solutions. Thus every ordered pair occurs
exactly once.

The special case of mn = 1 so that s = p is a prime number allows us
to identify a, with the residue class (i), mod p. Then the number u to

be put in the cell (i,j) of Lt is given by

- u = it + j,
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where i, t, j, u are standard representatives of residue classes mod p.
The addition and mpltiplication tables of GF(p) are very helpful in de-
termining u.

For example, if s = 5, then the four mutually orthogonal Latin

squares of order 5 obtained by this method are:

1 2
u=1i+3j u=21+j
0 1 2 3 4 0 1 2 3 4
1 2 3 4 0 2 3 4 0 1
2 3 4 0 1 4 0 1 2 3
3 4 0 1 2 1 2 3 4 0
4 0 1 2 3 3 4 0 1 2
L3 L4
u =31+ ] u=4i+ j
0 1 2 3 4 o 1 2 3 4
3 4 0 1 2 4 0 1 2 3
1 2 3 4 0 3 4 0 1 2
4 0 1 2 3 2 3 4 0 1
2 3 4 0 1 1 2 3 4 0

Notice that square L, is the addition table for GF(5); it can

1

be seen by examining the formula au = aga + aj that square Ll resul-
ting from any GF(pn) will always be the addition table since a = a, + «,
; u i
for all i and j values. In order to construct the squares L2, eres L 1
g-

1
when s = p, it is only necessary to use the u = it + j relationship
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for finding the values of the first column in each square. If the first
entry in each row is known, the remaining entries in that row can be
filled in by counting in modular arithmetic mod p.

Using this last method of construction, the two MOLS of order 3 are:

Ll LZ
0 1 2 0O 1 2
1 2 0 2 0 1
2 0 1 1 2 0

The six MOLS of order 7 are:

Ll L2
0 1 2 3 4 5 6 0o 1 2 3 4 5 6
1 2 3 4 5 6 0 2 3 4 5 6 0 1
2 3 4 5 6 0 1 4.5 6 0 1 2 3
3 4 5 6.0 1 2 6 0 1 2 3 4 5
4 5 6 0 1 2 3 1 2 3 4 5 6 0
s 6 0 1 2 3 4 3 4 5 6 0 1 2
6 0 1 2 3 4 5 5 6 0 1 2 3 4

L3 L4
0 1 2 3 4 5 6 0 1 2 3 4 5 6
3 4 5 6 0 1 2 4 S 6 0 1 2 3
6 0 1 2 3 4 5 1 2 3 4 5 6 0
2 3 4 5 6 0 1 5 6 0 1 2 3 4
5 6 0 1 2 3 4 2 3 4 5 6 0 1
1 2 3 4 5 6 0 6 0 1 2 3 4 5
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L5 L6
o 1 2 3 & 5 6 60 1 2 3 4 5 6
5 6 0 1 2 3 4 6 0 1 2 3 4 5
3 4 5 6 0 1 2 5 6 0 1 2 3 4
1 2 3 4 5 6 0 4 5 6 0 1 2 3
6 0 1 2 3 4 5 3 4 5 6 0 1 2
4 5 6 0 1 2 3 2 3 4 5 6 0 1
2 3 4 5 6 0 1 1 2 3 4 5 6 0

Making use of the equation uu = aiat + aj, the three MOLS of order

4 are given below with the equation of each square given at the top

1 2 3
au = aial + aj au = a,az + a, au = a,a3 + aj
0 1 3 0 1 2 3 0o 1 3
1 0 2 3 2 3 0 1 3 2 1 0
2 3 0 1 3 2 1 O 1 0 3 2
3 2 1 0O i 0 3 2 2 3 0 1

In this example, notice that Ll is the addition table for GF(ZZ) if

by 1, o, by 2, and a., by 3. Notice also that if

we replace Cy by 0, @, 9 3
we fix the first row in each Latin square, the second square can be formed
from the first Latin square by putting the second row of the first square
as the last row of the second square and moving all but the first row, up

one row. If we use this same type of cyclic permutation on the second

row, i.e. fix the first row of the second square, drop the second row to



37

the last row and move all other rows up one row, then the third Latin
square is formed.
This cyclic permutation is true in general for MOLS obtained by

au = uiat + aj if s = pn where n < 1 and ao =0, ul =1, uz SR P

ai = xi_l, .- as—l = xs—2. To prove this, let the element in the

cell (i,j) of Lt be the number u given by

(2.4.2) a =a,a +a,, 0 <u<s-1; 1<¢t=<s=2, 2=<1ic<s-l1.
u it i = ==

The element in the cell (i-1,j) of Lt+l is the number u' given by

@ = oy g0 g o 0<u' <s-1; 1 <t <s-2, 2<ic<s-1,

Then

i-1 t-1 . i-1
b4 X + a since ai = X

; i-1
since a, = x

or u =u'. So the cell (i-1,j) of Lt+1 contains the same number as the

cell (i,j) of Lt' Again, the element in the cell (1,j) of Lt is the num-

ber v given by
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1l <t < s-2, is the num-

and the number in the cell (s-1,j) of Lt+l'

ber v' given by

s+t-2
= + = +
qv, as~lat+l aj X aj
= xt_lxs-l + o,
J
= xt-l + uj since xsr = 1.

Hence the cell (s-1,j) of Lt+l contains the same number as the cell

(1,j) of Lt' Qur conclusion is that for 1 < t < s-2, the rows 1, 2,

.» 5=1 of Lt are identical with the rows s-1, 1, ...., 8-2 of Lt+l’

the first or so-called zero-th row being fixed in both squares. Also

notice that square L, is always the addition table for GF(pn).

1

For construction of the 7 MOLS of order 8 it is sufficient to dis-

play Ll or the addition table for GF(23). The rows of L2 can be ob-

tained by keeping the row 0 unchanged and applying a cyclic permutation
to the rows 1, 2, ...., 7 of the previocus square Ll' In the same fashion,

the successive squares L3, L&’ ey L? can be determined. The first

Latin square L. is given below

1



The first Latin square L, of the 8 MOLS of order 9 is

1

The other squares can be obtained from L

1

as described before.

39
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3. PROJECTIVE GEOMETRY, AFFINE GEOMETRY, AND THE

EXISTENCE OF COMPLETE SETS OF MOLS

In the previous chapter construction of complete sets of MOLS
of order s where s is a prime or a prime power was accomplihsed by
using Galois Fields. These same designs can also be constructed by
using projective geometries or affine geometries. Partially for the
sake of completeness in the study of construction techniques, we will
study these additional methods of arriving at the designs previously
covered. By doing so, we will gain an important corollary about the
existence or nonexistence of complete sets of MOLS of order s where

s is a prime or a prime power.

3.1 Projective Geometry

Bruck and Ryser [6] state that a projective plane geometry II is a
mathematical system composed of undefined elements called points and un-
defined sets of point called lines, subject to the following three postu-
lates:

(1) Two distinct points are contained in a unique line.
{2) Two distinct lines contain a unique common point.
{(3) Each line contains at least three points.
* The projective plane NI if finite if it consists of a finite number
of points, If II i; finite, then there exists a positive integer s > 2

such that each line of Il contains exactly s+l distinct points, and each

point is contained in exactly s+l distinet lines. Moreover, the finite
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projective plane 1s said to be of order s and has exactly 52 +s+1
distinct points and s2 + s + 1 distinct lines. Some authors say that
a line is incident with two points and one point is incident with each
of two lines, rather than saying that a line contains two points and
each of two lines intersect at one point. It will sometimes be con-
venient to use the term incident or incidence relation and the reader
may substitute the words contains or intersects whichever is appropriate.
The simplest finite plane is that with s = 2. 1In this system there
are 3 lines through each point, 3 points on each line, 7 points, and 7

lines in the plane. It is illustrated below
C

The points are A, B, C, D, E, F, and G and the lines are ADC, AGE, AFB,
CGF, CEB, DGB, and DEF. The last three points are not connected by a
straight line, but straightness is not a meaningful concept in a finite
plane; a line is only defined as a subset of points.

The finite projective geometry PG(m,pn) consists of the points

X srees X are elements of GF(pn) and

(xo, xl, e v g xm) wherw xo, 1’

are not all simultaneously zero. It is understood that the point (yo,

yl,..., ym) is5 the same as (xo, X R xm) if and only if there exists

1
a nonzero element & of GF(pn) such that yi = Bxi for i=0,1, -¢.., m.
Of dinterest to us is the special case where m = 2 which is a finite pro-

jective plane PG(Z,pn). The figure displayed above is an illustration of

PG(2,2).
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In PG(Z,pn) an ordered triplet (x,y,z) where x, v, 2 € GF(pn) and
not all x, y, z being zero defines a point. To avoid using more than
one name for a giveﬁ point since any scalar multiple of a point 1s just
another name, a standard form should be adopted. The coordinates of a
point can be taken in a standard form by adopting the convention that the
last non-zero coordinate is unity. There are 52 + s + 1 distinct points
in PG(Z,pn) where s = pn is the number of elements in GF(pn). The 52 num—
ber of points are of the form (x,y,1) where x and y are any of the s field
elements of GF(pn). All points of the form (x,1,0) where x is any field
element comprise the next s points. Finally, the point (1,0,0) belongs
to every PG(2,pn) since any point (x,0,0) where x is a non-zero field ele-
ment is another labeling for (1,0,0).

A linear homogenecus equation ax + by + cz = 0, where a, b, c (not all

zero) belong to the field, defines a line. The equations a,x + bly + c.z=0

1 1

and a.x + bzy + ¢,z = 0 define the same line if and only if there exists a

2

non-zero element § of the field such that

2

(3.1.1) a, = Bal, b2 = Bbl, and ¢, = ecl.

The point (xO,yO,zo) is said to be incident with the line ax + by + cz = 0

if and only if the relation

(3.1.2) ax, + byO + ez, = 0

holds.
As an example, let us look at PG(2,22). This finite projective plane
2 2

has s = 27, 8© + s + 1 = 21 points and 21 lines, each line being Incident

with s + 1 = 5 points and each point being incident with 5 lines. The ele-
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ments of GF(ZZ) have been taken as linear polynomials in t (rather than
in x) but otherwise follow the same rules of composition as before. The

four elements are

Another useful relation is t3 =1.

The following table gives the equations of the 21 lines and the co-
ordinates incident with them. A possible convention for the standard form
of a line is requiring that the first non-zero coefficient is one. The be~
nefit of such a convention is an aid in a systematic and exhaustive search

for all possible distinct lines.
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Table 3.1
" Points and Lines of PG(2,22)

Equation of Line Coordinates of Incident Points

x =0 0,0,1)  (0,1,1)  (0,t,1)  (0,¢2,1)  (0,1,0)
A (1,0,1)  (1,1,1)  (L,t,1)  (1,£%,1)  (0,1,0)
x + tz =0 (£,0,1)  (t,1,1)  (t,t,1)  (t,t2,1)  (0,1,0)
x+ tlz = 0 (20,0 (5,1, e LA 0,1,0)
y=0 (0,0,1)  (1,0,1)  (t,0,1)  (t2,0,1) (1,0,0)
y+z=0 ©,1,1) (Q,1,1)  (t,1,1)  (£2,1,1) (1,0,0)
y+ tz =0 (0,t,1) (L,t,1)  (t,£,1)  (t2,e,1)  (1,0,0)
y+tz=0 0,21 @,y .t i (1,0,0)
%4 g =0 0,0,1)  (1,1,1)  (t,t,1)  (t2,e2,1) (1,1,0)
x+y+z= 0,1,1)  (1,0,1)  (t,t2,1)  (e2,£,1)  (1,1,0)
5k g e - 0,6,1)  (1,t%,1)  (£,0,1)  (£3,1,1) (1,1,0)
x+y+ tiz ©,e2,1)  (L,t,1)  (t,1,1)  (£2,0,1)  (1,1,0)
+ty=0 0,0,1)  (1,t5,1)  (t,1,1)  (£3,6,1)  (t,1,0)
+ty+z-= (0,1:2,1) (1,0,1) (t,t,1) (tz,l,l) (t,1,0)
X+ ty + tz (0,1,1) (1,t,1) (£,0,1) (tz,tz,l) (c,1,0)
x + ty + t2z (0,t,1) (1,1,1) (t,tz,l) (t2,0,1) (t£,1,0)
x + tiy = 0 0,0,1)  (1,t,1)  (t,t2,1) (t2,1,1) (£2,1,0)
%+ tly + 2 0,£,1)  (1,0,1)  (t,1,1)  (£2,¢2,1) (£%,1,0)
x + t2y + tz (O,tz,l) (1,1,1) (t,0,1) (tz,t,l) (t2,1,0)
o By g 0,1,1)  (L,e5,1)  (e.6,1)  (£5,0,1)  (t2,1,0)
2 =0 (0,1.0)  (1,0,0)  (1,1,0)  (t,1,0)  (t2,1,0)
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The 16 of the 21 points in PG(2,22), using standard form are

(0,0,1) 0,1,1) (0,t,1) 0,t%,1)
(1,0,1) (1,1,1) (1,t,1) 1,t2,1)
(t,0,1) (t,1,1) (t.t,1) (t.t%,1)
20,1y %Ly el (55

for all points of the form (x,y,l1) where x and y ¢ GF(22). The next 4
points are (0,1,0), (1,1,0), (t,1,0), and (t2,1,0) where all points are
of the form (x,1,0), x € GF(22). The last point is (1,0,0). Those points
incident with line y = 0 can easily be found by inspection - just choose
all those points out of the 21 standard points which have 0 for the second
coordinate. There are (0,0,1), (1,0,1), (t,0,1), (t2,0,1), and (1,0,0).
For a more difficult line examine x + tzy + tz = 0. Since all solu-
tion points can be of standard form, then it must be that the second co-
ordinate is 1 and the last coordinate is 0, or the last coordinate is 1 and
the first coordinate can be 0, 1, t, or tz. In the first case put y = 1
and z = 0 in the equation x + t2y + tz = 0 and it changes toc x + t2 = 0.
Checking the addition table given below it is evident that x = t2. Thus
the point (t2,1,0) is incident with this line. 1In the second case z =1
and suppose we let x = 0, then x + t2y + tz = 0 becomes tzy + t = 0 which
is tzy = t if we add to to both sides of the equation (see addition table)
and examining the multiplication table it can be seen the y = t2 in order
for tzy = t. Hence the point (O,tz,l) is incident with the line
x + tzy + tz = 0. ?he remaining points for this line can be found by con-
tinuing in a similar manner by changing x from 0 to 1, t, and t2 and finding
y. This type of systematic sedrch can be used to determine all points in-

clident to a given line.
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Addition and Multiplication Tables for GF(22)

(Primitive mark t is such that t2 =t + 1)

+ 0 1 t  t+l . 0 1 e 2
0 0 1 t t+1 0 0 0 0 0
1 |1 0 e+l ¢t 1 o 1 ¢ 2
t t t+1 0 1 t 0 t t:2 1
t+1 |t+l t 1 0 t?' 0 t2 1 t

The spaces, or geometries, so far considered have been called projec-
tive because of their analogy to continuous projective geometry. An ana-
logue of a continuous Euclidean plane can be constructed by omitting, from
a finite projective plane, one line and all the peints on it. There will
then be 32 points and 52 + s points left, with a line through any pair of
points, and s points on every line. The Euclidean plane derived from
PG(2,s) in this way is denoted EG(2,s) and is called a finite affine plane

or Euclidean geometry. Geometries of this type are cur next topic.

3.2 Finite Affine Planes

Next let us consider a class of objects called points, a class of ob-
jects called lines, and a relation incidence such that a point and a line
may or may not be incident. Two lines will be defined to be parallel if
there is no point with which both are incident. This set of points and

lines is then said to form a finite affine plane if the following axiocms

are satisfied:
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(1) There is exactly one line which is inecident with each
of two distinct points.

{(2) Given a point P not incident with the line m there is
just one line incident with P and parallel to m.

(3) There exists at least three points not incident with
the same line.

(4) There is at least one line, and the number of points
incident with this line is finite.

Affine planes are called Euclidean planes by some authors.
The property of parallelism mentioned above is transitive. That is,

if 11, 1 1, are distinct lines such that 1, and 1, are parallel and 1

2 73 1 2 2

and 1, are parallel then 1. and 13 are parallel. To prove this, suppose

3
that lines ll and 1

1

3 are not parallel and so are incident with at least

one point P. Since 1l and l2 are parallel, P is not incident with 12.

Axiom (2) is contradicted since there are two distinct lines incident
with P and parallel to 12.
This transitivity property allows the set of lines to be divided into

subsets called parallel pencils, such that any two distinct lines belonging

to the same parallel pencil are parallel, whereas any two lines belonging
to different parallel pencils are non-parallel and have a point of intersec-
tion. There is exactly one line in any given parallel pencil which is in-
cident with a given point P.

The affine plane based on the Galois Field GF(pn) is denoted by EG(Z,pn)
and consists of the points (x,y) where x and y are elements of GF(pn). If
s = pn > 2 then the number of points (x,y) is 52 since each of x and y can
take s values indepently; the number s is defined to be the order of the

plane. It can be shown that each line is incident with exactly s points
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and each peint is incident with exactly s + 1 lines. The total number
of lines is 32 + s which can be dilvided into s + 1 parallel pencils,
each consisting of s mutually parallel lines.

Any equation ax + by + ¢ = 0 where a, b, ¢ belong to the field

GF(pn) and (a,b) # (0,0) defines a line. The equations

(3.2.1) a x + bly + €, = 0 and ax + b2y + c, = 0

define the same line if and only if there exists a non-zero element 0 of

the field GF(p") such that
(3.2.2) a, = fa

The point (xo,yo) is defined to be incident with the line ax + by + ¢ = 0

if and only if

il + = (.
(3.2.3) ax, byo +c¢c=0
The lines
. + + =0, + + ¢, =
{(3.2.4) a x bly ¢y 0 a,x bzy <, 0

are defined to be parallel if there exists a non-zero element 6 of the field

such that

(3.2.5) a, = ba c, # 0c

1
To divide the lines into parallel pencils and in order to systemati-
cally enumerate all lines, it is convenient to express the equation of each

line in a standard form. The standard form is obtained by considering equa-

tions of the form
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y+8=20

which constitutes one pencil where § takes on the s different values in

GF(pn) and equations of the form
x+fy+vy=20

In this last equation for each fixed B, a parellel pencil of s lines is
constructed as y takes on the s different values belonging to the field.
For the different values of B, we get s parallel pencils and hence al-
together s + 1 parellel pencils, each containing s lines.

For a concrete example we look at EG(Z,ZZ). This finite affine
plane has s = 22, 52 = 16 points, 52 + s = 20 lines, each line being
incident with s = 4 points, and each point being incident with s + 1 = 5
lines. The following table gives the equations of the 20 lines and the
coordinates of the points incident with them. Lines belonging to the
same parallel pencil appear in the same group. The elements of GF(22)

have been taken as linear polynomials in t (rather than in x) as in

Table 3.1
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Table 3.2

" Points and Lines of EG(2,22)

Pencil Equation of Line Coordinates of Incident Points
(x =0 line 0 (0,0)  (0,1)  (0,t)  (0,t%)
w  xt1=0 line 1 (1,00 (1,1)  (l,£)  (1,t%)
x+t=0 line 2 (t,0)  (t,1)  (t,t)  (c,t2)
x+t? =0 e 3 (2,0 %y ho @
(v =0 line 0 (0,00  (1,0) (6,00  (£2,0)
@  [yri=o line 1 ¢0,1)  (1,1)  (t,1) (tz,l)
y+t=20 line 2 (0,t) (1,t) (t,t) (t7,t)
y+tf =0 line 3 (0,t2) (L2  (t.e2)  (£5,¢h)
%5 = D line 0 (0,0)  (1,1)  (t,6) (2,9
wy Ixtyri=o line 1 (0,1) (1,00  (t,t2) (¢, 0)
1 x+Y+t=20 line 2 (0,t) (l,tz) (t,0) (tz,l)
x+y+tl=0 line 3 (0,£%) (1,8)  (t,1)  (t2,0)
£+ €5 0 line 0 (0,0)  (L,t2) (1) (£3,0)
- % & Ao B Lo B line 1 (0,t3) (1,00  (t,8)  (t3,1)
4 x+ty+t=0 line 2 (0,1)  (L,£)  (£,00  (£2,¢%)
20 & by e S o 1 line 3 (0,t) (1,1}  (£,t2) (2,0
x+t2y =0 line 0 (0,0)  (L,8)  (t,t2) (2,1)
V) x + t2y +1=0 line 1 (0,t) (1,0) (t,1) (tz,tz)
3 x+tiy+t=0  line 2  (0,t5) (L,1)  (£,00  (tZ,0)
x + t2y + t2 =0 line 3 (0,1) (l,tz) (t,t) (t2,0)
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The 16 peints in EG(2,22) are

(0,0) (0,1) 0,t) 0,t%)
(1,0) (1,1) (1,t) ,t%)
(t,0) (t,1) (t,¢) (t,t%)
(t2,0) 2,1 2,0 %, %

Those points incident with y + t2 = 0 can be found by adding t2 to both
sides of the equation and noticing that the resulting equation y = t2
implies that we take all points with second coordinate being t2. These

points are (O,tz), (l,tz), (t,tz), and (tz,tz).

To find those points incident with line x + tzy +t =0, let

n

‘x=0,1, t, t2 and solve to find y. For example, if x = t, then

x + tzy + t = 0 becomes t + tzy +t = t2y = 0 since t + t = 0. Examina-
tion of the multiplication table for GF(22) shows that tzy =0 if y = 0.
Hence the point (t,0) is incident with the line x + t2y + t = 0. The pro-
cedure of letting x be all the elements of GF(22) and solving the parti-

cular linear equation to find corresponding y values can be used to locate

all peints incident with a given line.

3.3 The Correspondence Between PG(Z,pn) and EG(2,pn)

The finite affine plane can be extended to a finite projective plane
in the following manner. To each pencil of parallel lines, assign a new
point incident with each line of the pencil and call it the vertex of the

pencil. These new points are called peints at inifinity and the line which

is incident with all the points at infinity and with no others is called

the line at infinity. The original points and lines of the affine plane

are often called finite points and finite lines to distinguish them from the

points at Infinity and the line at infinity. It can be shown that the
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extended plane so obtained satisfies the axioms of a finite projective
plane.

Conversely, it can be proved that if we start from a finite projec-
tive plane, we can obtain from it a finite affine plane by deleting one
line and all the points on it.

The correspondence between points and lines of EG(?,pn) and PG(Z,pn)

can be carried out analytically and is shown in the following table from

Bose[3].
Table 3.3
EG(2,p") PG(2,p")
1. Point (x,v) Point (x,vy,1) = (6x,8v,8), 6 # 0
Point (x,y,0) = (8x,9y,0), © # O
2. Line ax +by+c =20 ~ Line ax + by + cz = 0

(a,b) # (0,0)

Line z = 0

Thus the point (x,y) of EG(Z,pn) can be identified with the point
(x,¥,1) or (6x,8y,8) of PG(2,p"), 6 # 0. Conversely, if (xl,yl,zl) is
any point of PG(2,pn) such that zy # 0, then set xl'= fx, yl = By, z, = 8
so that it corresponds to the point (;i;;i) of EG(Z,pn). Thus there.is
a one-to-one correspondence between points of EG(E,pn) and those of
PG(Z,pn) for which the last coordinate is different from zero.
Likewise the line ax + by + ¢ = 0 of EG(Z,pn) can be made to corres-
pond to the line ax + by + cz = 0 of PG(2,pn), (a,b) # (0,0). There is only one

line in PG(Z,pn), namely z = 0, for which the coefficients of x and y simul-

taneously vanish. Thus there is a one-to-one correspondence between line of
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EG(Z,pn) and lines of PG(Z,pn) other than z = 0. If (xo,yo) is incident
with ax + by + ¢ in EG(ﬁ,pn), then the corresponding point (xo,yo,l) is
incident with the corresponding line ax + by + cz = 0 in PG(Z,pn). Thus
the relation of incidence is invariant with respect to the correspondence
considered.

If we now identify the corresponding points and lines of EG(Z,pn)
and PG(Z,pn), then EG(2,pn) may be considered as embedded in PG(Z,pn).
The additional points of PG(2,pn) are the_pn + 1 points incident with
z = 0 which may be considered as the line at infinity. If the lines
= 0 of EG(2,p") are parallel, then

a,x + bly +c, =0 and a_x + b2y + c

1 2 2
n
there is no point of EG(2,p ) with which they are both incident so that

1

a, = fga,, b, = €b 8 # 0. However, the lines a_ x + bly + c.z = 0 and

2 17 72 1’ 1 1

a,x + b2y + ¢,z = 0 of the extended plane are incident with the common

point (-b ,0) = (—bz,az,O) which lies on the line at infinity z = 0.

1°%1 ,
Comparing Table 3.1 giving the points and lines of PG(2,22) with the
Table 3.2 giving the points and lines of EG(2,22), the first twenty lines
of PG(2,22) correspond to the lines of EG(2,22). Thus, for example the
line x + ty + z = 0 of PG(2,22) corresponds to the line x+ ty + 1 =20
of EG(2,22). The first four points on any of these lines correspond to the
four points of the corresponding line. Thus the first four points of
x+ ty+ 2z =0 are (O,tz,l), (1,0,1), (t,t,1), (tz,l,l). They correspond
to the points (O,tz), (1,0), (t,t), and (t2,1) of the line x + ty + 1 = 0.
The twenty first line z = 0 of PG(2,22) which does not correspond to any
line of EG(2,22) is the line at infinity. The fifth point on each of the

first twenty lines of PG(2,22) has a zero z-coordinate and is a point at

infinity which does not correspond to any point of EG(2,22). Notice that
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the lines in PG(2,22) which correspond to the lines of the same parallel
pencil in EG(2,22) haverthe same point at infinity. For example, the lines
x+ty=0,x+ty+1=0, x+ty+¢t =0, and x + ty + t2 = 0 of EG(2,22)
constitute a parallel pencil. The corresponding lines x + ty = 0,

2

x+tyt+z=0,x+ty+tz=20, and x + ty + t°z = 0 of PG(2,22) have the

common point at infinity (t,1,0).

3.4 Equivalence of EG(Z,pn) and Complete Sets of MOLS

Given EG(Z,pn) we can construct the pn - 1 MOLS of order pn. For
example, consider EG(2,22) and let the 5 parallel pencils be denoted
{(X), (Y), (Vl), (VZ)’ (V3). For each pencil, assign the numbers 0, 1, 2,
3 to the 4 lines. Any point of EG(2.22) is uniquely determined as the
intersection of a line of the pencil (X), say the i~-th line, and a line
of the pencil (¥), say the j-th line. It is possible to establish a one-
to-one correspondence between any point P belonging to EG(2,22) and the
cells of a 4x 4 square, the point of intersection of the i-th 1iné of (X)
and the j-th line of (Y) corresponding to the cell (i,j) where i,j = 0, 1,
2, 3. Through the point P, there passes a unique line of the pencil (Vt).
Put the number of this line in the cell (i,j) of a 4 x 4 square; when this
is done for each éell, the result is a Latin square Lt' This is seen to be
so since the cells of the row i correspond to points on the i-th line of
pencil (X). If two cells (i,jl), (i,jz); jl# j2 contain the same number u,
this would mean that the u-th line of the pencil (Vt) intersects the i-th
line at the pencil (X) in two points which is a contradiction since two

distinct nonparallel lines are incident with just one point. Thus the cells
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of the i-th row contain all the numbers 0, 1, 2, 3 exactly once. In
the same way, we can show the corresponding property for the columns.
From the pencils (Vl), (Vz), and (V3) the 3 Latin squares Ll’ LZ’ and

L, can be obtained.

3

To show that any two of these squares are orthogonal, we must show
that when the square Lt is superimposed on the square Lw’ there is a
unique cell which will contain the number u of Lt and the number u' of Lw'
This is in fact the cell which corresponds to the point of intersection
of the u-th line of (Vt) and the u'-th line of (Vw). In the above con-
struction and argument, if 3, 4, and 5 are replaced by s - 1, s = pn, and
s + 1 respectively, then we have demonstrated that starting from a finite
affine plane of order s, we can construct a complete set of MOLS of order
s. The MOLS of order 4 obtained by using this method on the pencil; and
lines of Table 3.2 are the transpositions of the MOLS obtained by using
Galois Fields in sectiom 2.4.

Conversely, given a set of s - 1 mutually orthogonal Latin squares

of order s, we can construct EG(2,s). Suppose the Latin squares are super-
imposed on one another and the symbols occupying the cells are taken to be
0, 1, 2, ...., s = 1. Then each cell contains exactly one symbol from each
of the s - 1 Latin squares. The 52 cells (i,j) where i,j =0, 1, 2, ....,
s — 1 may be made to correspond to 52 points. A set of s cells, the members
of which lie in the same row, same column, or are occupied by the same sym-
bol of one of the Latin squares Lt’ is made to correspond with a line. The
s lines corresponding to the rows form then pencil (X); the s lines corres-

ponding to the columns form the pencil (Y); and the s lines, one correspon-
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ding to each of the different symbols of Lt will be taken to form the
pencil (Vt); t=1, 2, +c.., 8 = 1. Thus we have 32 + s lines divided
into s + 1 pencils;

To see where a certain line comes from for EG(2,22), we examine Ll

and choose those cells which are all occupied by 1.

!

0 1 t t

1 (@l 2 3 o

ro
w
o
-]
)

The coordinates for these cells using elements from GF(22) are (0,1),
(1,0}, (t,tz), and (tz,t). Looking at Table 3.2, it can be seen that in
pencil (Vl) these are the points incident to line 1.

With the type of correspondence described above, it is possible to
show that the axioms for the finite affine plane are satisfied. Since
EG(2,n) can be extended to PG(2,n) by adding points at infinity and the
line at infinity, it is also possible to to use PG(2,n) to derive MOLS

by using the EG(2,n) embedded in it.

3.5 Existence and Nonexistence of Complete Sets of MOLS

Since EG(2,s) is embedded in PG(2,s) and EG(2,s) 1is equivalent to
a complete set of MOLS, then the existence of a complete set of MOLS of
order s is equivalent to the existence of PG(2,s).

Due to the resulrs of Bruck and Ryser [6] and Raghavarao [22], the

condition for the nonexistence of PG(2,s) 1is specified in the following
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corollary:

Corollary 3.5.1 if s = 1(mod 4) or s = 2(mod 4) and the square
free part of s contains a prime congruent to 3(mod 4), then

there does not exist PG(2,s).

If the number s can be factored as 32b where b cannot be factored
as the square of any integer larger than one, then b is the square free
part of s.
From the corollary we can see that PG(2,s) does not exist for s = 6,
14, 21, 22, 33, 38, 42, 46, 54, 57, 66, 69, 70, 74, 77, 78, 86, 93, 94, etc.
The following two theorems given by Raghavarao [22] indicate conditions
when it is possible to build up a complete set of MOLS when only part of the

set has been formed.

Theorem 3.5.1 Any set of s ~ 2 MOLS of order s can be extended to a

complete set of s - 1 MOLS.

Theorem 3.5.2 If s # 4, any set of s — 3 MOLS of order s can be uni-

quely extended to a complete set of s - 1 MOLS.

One method of finding the remaining Latin squares needed to comprise
a complete set is to use the corresponding EG(Z,pn) or PG(Z,pn) and locate
a parallel pencil which does not have a corresponding Latin square, and
then construct that square.

Raghavarao [22] using finite geometries as a means of building ortho-
gonal arrays, balanced incomplete block designs, and in dealing with con-

founding problems in factorial experiments.
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The important thing we gain from finite geometries is the knowledge

of conditions determining when a complete set of MOLS does not exist.
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4. CONSTRUCTION OF MOLS OF ORDER S WHEN S IS NOT A

PRIME OR A PRIME POWER

In Chapter 1 we showed that the maximum number of MOLS of order s
is ¢ = 1. For s a prime or a prime power, this maximum number can be
achieved using the construction techniques of Chapter 2 and Chapter 3.
MOLS can be constructed when s is not a prime or a prime power. In this
chapter, we shall look at the problem of constructing MOLS when s can be

written as a product of prime powers, i.e.
_ e e e
s = pll p22 S pmm.

Since any value of s can be written in this manner, we are in effect study-

ing the situation where s is not a prime or a prime power.

4.1 The Lower Bound for the Number of MOLS and the MacNeish-Mann Theorem

Let the prime decomposition of a composite number s be pil pzz e pzm

and define
. e e e
(4.1.1) n(s) = min (pll, p22,....,pmm) -1

MacNeish [16] and Mann [17] showed that a set of n(s) MOLS of order s can
always be constructed. If N(s) denotes the maximum possible number cof !MOLS

of order s, then the MacNeish-Mann theorem states that

(4.1.2) N(s) > n(s) .

By means of the method of construction described below, it is possible to
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always construct n{s) MOLS of order s, If 21 is the minimum of the prime
powers of decomposition of s, then n(s) = 1 and this method provides no
orthogonal mates to the original Latin square. MacNeish conjectured that
the upper bound of the N(s) is n(s} so that N(s) = n(s). This same con-
jecture was made by Euler [9] in 1782, and became known as Euler's con-
jecture. However, Parker [20] used a balanced incomplete block design
~ to show that it was possible to have N(s) > n(s). From results of Bruck

{7), an upper bound of N(s) is given by

(4.1.3) N(s) < (s - 1) - (25)}/%

whenever N(s} < s = 1, i.e. when s is not a prime or a prime power.
Actual construction by the MacNeish-Mann theorem of n({s) HOLS of
e e e .
orders, where s = pll, p22, R pmm requires us to form the system

of s elements

oot (3 (i)
(4.1.4) Yj [gl ) 82 y maEEg B ]
e,
where 0, gil) =1, giz),...., g].(_pi1 -1 are the elements of GF(pii) for

every i = 1,...., m. Define addition and multiplication in the usual com-

ponent-wise nature as

2
(4.1.5) 'Yl + YZ = (g](_]'), g‘gl),----: 8;1)) + (g](_Z)) 352),----1 glfl ))
(4.1.6) = (gil) + g§2), ggl) * géz), 813(11) * 8512))
(4.1.7) and Y Y, = (gfl)giz), gél)ggz),----. gél)géz))
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where the operations in each component arc defined as in corresponding
Galois Fields. This system does not form a field since (0,1,....,1) does
not have a multiplicative inverse, however, all points that have no zero
among their coordinates possess inverses.

If Yj is defined as in (4.1.4) and 0 < j < n(s), then Yj's possess
inverses, as does Yj - Yi if 1 # j. The next step is to number the points
¥ in such a way that Yo = (0,0,....,0) and the next n(s) elements are given
by (4.1.4) where 0 < j < n(s). If in each cell (i,j) of an s x s square,
where (i,j) is the intersection of row i + 1 and column j + 1 (since rows

and columns are numbered from 0 to s - 1), we put the number u determined by
(4.1.8) vy =~y v, + v, t= 1,200 050(8) 1,1 = 0,15%s5:358 = 1 5
u t'1 i

we get a Latin square Lt' The n(s) Latin squares form a set of meFually
orthoganal Latin squares. The pattern of choosing Yl,...., Yn(s) as speci-
fied earlier is that this allows Y, to take on all possible values in the
system for some fixed t and i with j =0, 1,...., 8 = 1 or for some fixed

t and j with i = 0, 1,...., s — 1. This property of all elements appearing
only once in a given row or ceolumn is necessary for the construction of

the Latin square design and might not be possible if ¥ were allowed to have
no mnultiplicative inverse. The choice of which elements correspond to
Yn(s)+l""" Yool is left to the person constructing the design. While
different individuals will make different choices for labeling this last
set of elements, this will not alter the orthogonality of the resulting
Latin squares and all results will be equivalent up to an isomorphism.

Illustration of this method will now be given in the case where s = 15.

Thus n{l5) = 2 and vy, = (0,0),"7l = (1,1), and v, = (2,2). The values for

0 2

the first coordinate come from GF(3) and the values for the second coordi-



nate come from GF(5). Let the remaining elements be given by vy, = (0,1),

3
v, = (0.2), vg = (0,3), v = (0,4)s v, = (L,0), vg = (1,2), vg = (1,3),

YlO = (1,4), Tll = [G2,0) , le = (211): 3 = (2,3), and Y14 = (2,4). The

(A

addition and multiplication tables for this system are given in Table 4.1.
To find the entry that belongs in cell (2,11) of the addition table we

add v (2,2) + (2,0) = (1,2) = v The entry that belongs to cell

2 ¥ YT
(5,2) of the multiplication table is ¥

8"

* Yz = (0:3) * (2:2) = (0,1) = Y,

3 3

The resulting Latin squares are found in Table 4.1.2.
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Table 4.1.1 Addition and Multiplication Tables for (x,y)
Where x € GF(3) and y & GF(5)

ol Yo Y1 Yo Y3 Y4 Y5 Yg Y Yg Yo Yig Y11 Y12 Y13 Y14
Yo | Yo Y1 Y2 Y3 Y4 Y5 Yg Y7 Yg Yo Y30 Vi1 Y12 Y13 Y14
Yi | Y2 Y2 Ys Yg Y9 Yio Yz Y12 Y13 V14 Y11 Y3 Y4 Ve Yo
Yo [ Y2 Ys Yio Y13 Y14 Y11 Y12 Y4 Y6 Yo Y3 Y8 Y9 Y7 M1
Y3 | Y3 Yg Y13Y Ys Y6 Yo Y1 Y9 Yig Y7 Y1z Y2 Y14 Y11
Yy | Y4 Y9 Y14 Y5 Vg Yo Y3 Yg Yio Y7 Y1 Y2 Y13 Y11 Y12
Ys | Ys Yo Y11 Ys Yo Y3 Y4 Y9 Yy Yy Yg Y13 Y14 V32 V2
Yo | Y6 Y7 Y1270 Y3 Y4 Ys Mio Y1 Vg Y9 Y14 Y11 Y2 i3
Y7 | Y7 Y2 Y4 Y1 Yg Y9 Yio Y11 Y2 Yi3 Y14 Yo Y3 Y5 Yg
Y8 | Ys Y13 Ye Y9 Yio Yz Y1 Y2 Y14 Y11 Y12 Y4 Y5 Yo Y3
Yo 1 Y9 Y14 Yo Y0 Y7 Y1 Vg Yiz i1 Y12 Y2 Y5 Y Y3 V4
Y10 | Y0 Y11 Y3 Y7 Y1 Yg Y9 Yig Y12 Y2 Mi3Ye Yo Y4 s
Yi1 | Y11 Y3 Y8 Yiz Y2 Y13 Y14 Yo Y4 Ys Yg Y7 M1 Yo Vig
Yi2 | Y12 Y4 Y9 Yz Yi3 Y14 Y11 Y3 Y5 Yg Y5 Y1 Yg Y10 V7
Y13 | Y13 Ys Y7 Yia Y11 Y12 Y2 Y5 Yo Y3 Y4 Y9 Yo V1 Vg
Y14 | Y14 Yo Y1 i1 Y12 Y2 Y3 Ye Y3 Y4 Y5 Y10 Y7 Yg Y9
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Yo lvy vy vy vy s g Yo vg Yg Y0 Y1y Y12 Y13 Yy
Yo | Yo IYo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo
Yi (Yo lvy vplvy vy s vg Y7 vg Yo YigYyy Yip Y3 Yy
Yy | o I¥y viglvy Yo Y3 Y5 Yi1YiaYip Y137 Yg Y1 Yo
vy | Yo Iy v, lv3 ¥4 Y5 Y5 Yo Y4 Ys Yg Vg Y3 Y5 Yg
Yo [ Yo lvg e lvy vg Y3 Y5 Yo Yg Y3 Y5 Yo Y4 Y3 Y5
Ys [ Yo lvs v3lvs v3 vg v, Yo Y3 Ye Y4 Yo Y5 Vg V4
Yo | Yolvg Y5 lvg Y5 v, v3 g Y5 Y, Y5 Yg Yg Y, Ys
Y7 | Yo lvg yulvg Yo Yo Yo Y7 Y7 Y7 Y7 Yy Y Y Yn
Yg | Yo Ivg viulve Yo Y3 Y5 Y7 Yio ¥y Yo Y11 Y, Ypp Vi3
Yo | Yo lvg Yiplvs Y5 g v4 Yg i oYig g Y11 i3 Y4 Yo
Yio | Yo i vaslve Ys Y4 Y3 ¥y v Yg Yy YipYia Yo Ypp
Y1 | Yo Ivir vz o Yo Yo Yo YiiYmiYiiYmiYs Y7 Y7 Yy
Yi2 | Yo Im2vg bys Y4 Y5 Yo Y11 Yy Yi3Tia Y7 Y1 Yg Tig
Yi3 | Yo vyz vy lvs vy Yo Y4 Yo Yia Yia Yo Y7 Yo Yip Vs
Yig | Yo Iva Yo Ive Ys Y4 Y3 YipYi3 Yy Yoy Yiovg Mg
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1l

12

13

14

Table 4.1,2. The 2 MOLS of Order 15 as Obtained
by MacNeish-Mann Procedure
Ll

1 2 3 4 5 6 7 8 9 10 11 12
2 5 8 9 10 7 12 13 14 11 3 4
5 10 13 14 11 122 4 6 O 3 8 ¢
B 13 4 5 6 0 1 9 10 7 12 2
9 14 5 6 0 3 8 10 7 1 2 13
10 11 6 0 3 4 9 7 1 8 13 14
7 12 0 3 4 5 10 1 8 9 14 11
12 4 1 8 9 10 11 2 13 14 0 13
136 9 10 7 1 2 14 11 12 4 5
14 0 ¢ 7 1 8 13 11 12 2 5 6
11 3 7 1 8 9 14 12 2 13 6 O
3 8 12 2 13 14 0 4 5 6 7 1
4 9 2 13 14 11 3 5 6 0 1 8
6 7 14 11 12 2 5 0 3 4 9 10
0 1 11 12 2 13 6 3 4 5 10 7

13

14

11

12

14

11

12

13
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14

12

13

12

13

14

10

13

14

12

13

11

13

12

11

14

10

14

12

13

11

10

11

13

14

12

10

12

14

13

11

10

14

10

11

12

13

12

10

14

13

11

13

11

14

12

10

13

14

12

11

11

14

12

13

10

12

13

11

14

13

11

14

12

10

11

14

12

13

11

10

66
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Notice that square L1 is the addition table for our system of ordered
pairs. It can be seen by examining the formula Yu = Yth + vy, that Ll will

J

always be the addition table because Yu = YiTt + Yj = Yi + Yj for all i and

j values since e = (1,1,....,1). 1In order to construct the Latin squares

L it is only necessary to use the u = it + j relationship fer

g7 L“(s)
finding the values of the first column in each square. If the first entry
. in each row is known, the remaining entries in that row are the same as in
the row from Ll with that first entry. In other words to construct the
Latin square Lt’ 2 <t <n(s), find the row or column in the multiplication
table corresponding to Tt and use the subscripts of these elements to esta-
blish the ordering of the sywmbols 0, 1, ...., s = 1 in the first column of

your square. Now permute the rows of square L. so that their leading entry

1
corresponds with the ordering of your column and you have formed the Latin
square Lt'

Looking back at the addition and multiplication tables of the previous
example and then at the Latin squares, one can see the relationship des-
cribed above.

For another example, take the case where s = 20 and hence n(s) = 3.
The first component of the order pair comes from GF(22) and is either 0, 1,

x, or x + 1. Elements of GF(5) comprise the values of the second component.

Let the Yj be given as

(1,1) v

Yo T (0,0) Y, 2 = (x,2) Y5 {x+1,3) Y, (0,1)

]
]

= (0,2) (0:3) Y

-~
wn
|

Y6 (0,4) YS = {150} Tg = (1,2)
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]
]
n

Y10 (1,3) Y11 (1,4) Y = (x,0) Yi3 = (x,1) Y14 (x,3)

]
]
]
1]
]

(x,4) Y16 (x+1,0) vy; = (L, 1) Yig C(xt1,2) Y19 (xt+1,4).

Y15

The addition table and necessary portion of the multiplication table are
given in Table 4.1.3. Resulting mutually orthogonal Latin Squares are given

in table 4.1.4.



Table 4.1.3 Addition Table and Multiplication

Relationship for (x,y) Where x ¢ GF(22) and y € GF(5)

Y1 Y2

Y3

Ty

Ts

Yg

Y7 Yg

Yo Yjg

69

Y11 Y12 Y13 Y14 Y15 Y16

T3

Y4

Y11 Y12 Y13



Yy Y3
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Yg Yo Y0 Y11 Y12 Y13 Y14 Yis Y16 Y17 Y18 Y19

Yy Y3
Y19 Y1

Y1 Y15

Yg Yo Y10 Y11 Y12 Y13 Y14 Y15 Yie Y17 Y18 Y19
Y12 Y15 Y13 Y14 Y16 Y18 Y17 Y3 Yg Yo Y11 Y19

Y16 Y17 Y19 Y18 Y8 Y10 Y11 Yo Y12 Y14 Y13 Y2
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11

12

13

14

15

16

17

18

19

15

10

11

17
18
19
15

13

14

12

14

12

13

18

19

16

17

10

11

Table 4.1.4.

15

19

16

17

18

14

12

13

10

11

14

19

10

11

13

15

12

17

18

16

10

15

16

14

12

13

18

19

17

The 3 MOLS of Order 20 as Obtained

By MacNeish-Mann Procedure

12

17

14

15

13

19

16

18

4.3

18

10

15

12

14

19

16

17

13

14

10

11

16

17

19

12

13

15

19

12

10

11

18

16

17

14

15

13

10

16

13

11

19

17

18

14

15

12

19

16

138

15

12

13

14

12

17

10

13

14

15

16

18

19

13

18

11

14

15

12

17

19

16

14

19

15
12

13

16
17

18

10

11

15

16

12

13

14

19

17

18

16

13

17

18

19

12

14

15

10

11
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17

10

18

19

16

13

14

12

18

14

19

16

17

15

12

13

10

19

12

16

17

18

15

15

14

11



12
15
13
14
16
18

17

11

10

12

10

11

17

16

18

19

13

14

15

13

14

12

11

10

18

19

17

16

15

16

18

19

17

10

11

14

12

13

14

16

13

12

15

17

18

19

190

11

15

17

10

13

14

12

18

19

16

11

12

18

11

14

15

13

16

19

17

10

13

15

14

12

19

17

16

18

11

10

18

15

11

10

16

19

17

12

13

14

19

13

11

10

138

17

16

15

14

12

10

16

18
19
17
14
12
15

13

11

14

19

16

18

15

13

12

12

11

17

13

14

10

16

18

19

13

18

14

12

15

10

11

17

16

19

14

19

12

15

13

10

11

16

18

17

15

10

16

13

14

12

19

17

18

16

13

18

19

17

11

10

12

15

14

72

17

‘10

16

18

19

13

14

12

15

138

11

14

19

17

16

19

12

17

16

18

11

10

15
13

14



16

17

19

18

10

11

12

14

13

15

16

11

12

14

17

19

18

12
14
13

15

10

18
16
17

19

15

17

19

18

16

13

12

10

11

19

12

17

18

16

10

13

15

14

16

10

13

18

17

19

11

12

14

15

17

11

19

18

16

10

14

13

15

12

18

14

19

16

17

11

10

15

12

13

14

19

10

11

12

13

15

16

17

18

12

17

10

11

14

13

15

18

16

19

10

13

18

11

14

15

12

17

19

16

10

15

12

14

13

19

18

16

17

12

10

17

14

13

15

11

16

19

18

13

11

18

12

14

10

17

19

16

14

13

15

12

10

11

1.7

18

16

15

16

12

14

13

11

10

19

18

17

16

13

11

17

19

18

12

14

15

73

17

19
18

16

13

15

12

14

11

10

18

17

19

12

13

15

11

19

12

10

18

16

17

15

14

13

11
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4.2 Other Methods for Constructing MOLS of Non-Prime Power Orders

When 5 is not a prime power, a set of n(s) MOLS of order s can always
be constructed using the method described in Section 4.1. In many cases,
however, there exist special procedures which can be used to increase the
number of MOLS from n(s) to some number N(s) > n(s). It is not known in
general what the maximum value of N(s) can be when s is not a prime power.
However, in several cases N(s) is much greater than n(s)}.

In this section we will study briefly several procedures of construc-
tion which allow us to achieve an N(s) > n(s). These procedures include
construction of MOLS from block designs and group divisible designs; the
method of differences; and finally special methods such as computer search
procedures. Each of these procedures will be surveyed to give the reader a
chance to see how N(s) > n(s) can be achieved. For a more detailed study of
any one of the methods, the reader is referred to the references contained

in each section.

4.2.1 Construction of MOLS from Block Designs

Pairwise balanced designs, balanced incomplete block designs, and group
divisible designs can be used to construct some sets of MOLS and to esta-
blish values for N(s). An arrangement of v objects (called treatments) in

b blocks is a pairwise balanced design of index X and type (v; k.,k

1 2""’km)

if each block contains kl, kz,..., or km treatments which are all dis-
tinct (ki_i v, ki # kj) and every pailr of distinct treatments occurs in ex-

actly X blocks of the design. 1t can be shown that for a pairwise balanced

design of sets of size ki(i =1, 2, ...., m), then
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1biki(ki - 1}.

nr~-18

m
(4.2.1) b= Jb (v - 1) =

To illustrate this definition, suppose we have four treatments 1,

B to form a pairwise balanced

Bz’ A § |

2, 3, and 4 in eleven blocks Bl’

design of index 4 and type (4; 2,3,4):

B,: 1,2 B.: 1,3 B.: 1,4 B : 2,3 B : 2,4 B6: 3,4
B,: 1,2,3 B_: 1,2,4 B_: 1,3,4 B, : 2,3,4 B.,: 1,2,3,4.
In this case v = 4, b =11, b

and A = 4.

When A = 1 we have a pairwise balanced design of index unity. Consider

a pairwise balanced design D of index unity and type (v; kl’ k2, s km).

The subdesign Diformed by the blocks of size ki is called the i-th equiblock
component of D, i =1, 2, ...., m. A subset of vlocks belonging to any
equi~-block component Di is of type I if every treatment occurs in the subset

exactly ki times. Also a subset of blocks belonging to D, is of type II if

i
every treatment occurs in the subset exactly once. For example, a pairwise

balanced design of index unity (i.e., A =1) and v=5, b = 6, bl = 4, kl =

b2 = 2, and k2 = 3 is

B.: 1,4

B.s 155
First equiblock 4
B.,: 3,4

b

B_: 1,2,3
Second. equibleock
1 2,4,5
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Treatment 2 does not occur in equiblock 1 so it cannot be of type I or
type II. In the second equiblock all treatments do not occur exactly

k2 = 3 times and hence is not of type I; also, since all treatments do

not occur exactly once, it is not of type II.

A component Di is saild to be separable if the blocks can be divided
into subsets of type I or type II (both types may occur at the same time)
. and design D is defined to be separable if each equiblock component is
separable. In the following pairwise design where A = 1, b = 3, b = 4.

b, =3, k. =1, b = 3, the first equiblock is of type I and

1 1 2

type II and so is separable.

=1, and k2

Blz 1 Bz: 2 BB: 3 Ba: 1,2,3

D

z
Equiblocks D iy DZ(Z<m) are said to be clear if the 2 bi
i=1

2’
1? D2, T D2 are disjoint. For example, the first

two equiblocks in the next pairwise balanced design where X = 1, v = 6,

l!

blocks comprising D

b = 15, b1 = 2, kl =1, b2 =12, k2 = 2, b3 =1, k3 = 3 are clear.
Bl: 1:255 BA: 1,3 B7: Z53 Blo: 3,4 313: 4,5
Bz: 3 BS: 1,4 38: 2,4 Bll: 3,5 B14: 4,6
BB: 6 36= 1,6 89: 2,6 Blz: 3,6 Bls: 5,6

A balanced incomplete block (BIB) design with parameters v, b, r, k,

A is an arrangement of v treatments into b blocks such that (1) each block
contains k < v different treatments, (2) each treatment occurs in r diff--
rent blocks, and (3) each pair of treatments occurs together in exactly A

blocks. For a BIB design with these parameters, the equations
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(4.2.2) AMv = 1) = r(k - 1) and bk = vr, b >v

are necessary but not sufficient for the existence of a BIB design. Spe-
cifically, v=>b =22, r =k =17, A = 2 satisfy these equations, but there
is no design with these parameters. If v = b, then k = r and in su;h a case
the BIB design is said to be symmetric. The following is a BIB with
v=b=7, k=r=3, A = 1. It is also of type I as every treatment occurs

exactly k = 3 times.

Byt 1,2,5 B,: 2,4,7 Bt 5,6,7
Byt 3,4,5 Bo: 1,4,6
Byt 1,3,7 B.: 2,3,6

Since v = b and k = r, this is a symmetrical BIB.

A BIB design is resolvable if the sets of the blocks can be divided
into sets, such that the blocks of a giveh set contain each treatment ex-
éctly once. When A = 1 the BIB design is a pairwise balanced design of
index unity and type (v;k). Such a design is denoted by BIB(v;k). The
following BIB design where v=9, b =12, r = 4, k= 3, and A = 1 is re-

solvable since the blocks in each set contain each treatment exactly once.

Jsl: 1,2,3
Set 1 B.: 4,6,8
1 5,7,9

B,: 1,4,5

Set 2 <B_: 2,6,9

3,7,8



rB7: 1,6,7
Set 3 -BS: 2,5,8
LBQ: 3,4,9
(B¢ 11859
Set 4 -Bll: 2,4,7
LBlz: 3,5,6
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Bose, Shrikhande, and Parker [4] established the following main

theorem relating MOLS and a pairwise balanced design of index unity.

Theorem 4.2.1 Let D be a pairwise balanced design (v;

kl’kZ""’km)

of index unity in which the equiblock components D_, D — DZ

1) 2"

(Z<m) are a clear set. Let there be q - 1 MOLS of order ki

and let

(4.2.3)

q = min(ql + 1, q2 i o EP— 9 + 1, Qyyq 207"

. qm)

Then there exist at least q - 2 MOLS of order v.

Several corollaries which follow from this theorem allow a lower

bound to be found for N(s).

are.:

Corollary 4.2.1 The existence of

N(v - 3) min[N(k), N(k-1),

| v

Corollary 4.2.2 The existence of

N{v + ;{)

|v

min[N(k), N{k+l),

These corollaries given by Raghavarao [22]

a BIB(vi;k) implies that

1+ N(k=-2)] - 1.

a resolvable BIB(v;k) implies that

1+ N(x)] -1 if 1 < x < r-2.
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Corollary 4.2.3 The existence of a resolvable BIB(v;k) implies that

N(v+r-1) > min[1l + N(k), N(k+l), 1 + N(r-1)] - 1.

Corollary 4.2,4 If s and s + 1 are both primes, then

m

N(s + 1) > s - 2.

Corollary 4.2.5 If x < 10

N(73

x} > 5.

Corollary 4.2.6 If x <10

N(81

x) > 5.

Corollary 4.2.7 The existence of a BIB(v;k) with sets of type I
implies that

N(v+r) > min[N(k+1), 1 + N(r)] - 1.

Actually corellary 4.2.5 and corollary 4.2.6 are special cases of more

general corollaries that Bose [3] develops from the following theorem

Theorem 4.2.2 1If there exists a BIB(v;k), for which we can find
a set of x treatments, no three of which occur in the same

block, then
N(v-x) > min[N(k), N(k-1), N(k-2)] - 1.
One corollary resulting from this states that if s = pn is a prime
power,
N(sz+s+l) > min[N(s+l), s-1, N(s-1)] - 1
where x < s + 1 when p is odd, and x < s + 2 when p = 2. Setting s = 8

produces corollary 4.2.5. Bose also derives another corollary from the

theorem which says that 1f s = pn is a prime power,
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N(sz—x) > min[s - 1, N(s-1), N(s-2)], x < s + 1.

When s = 9 we obtain corollary 4.2.6.

A result from Raghavarao [22] which provides useful corollaries in

obtaining a value for N{s) is the next theorem.

Theorem 4.2.3 Let there exist a separable pairwise balanced de-

sign (v;kl, kz,...., km) of index unity and suppose that there

exist q; - 1 MOLS of order ki. If

q= min(ql, qz,...., qm)

then there are at least g - 1 MOLS of order v.

Some of the corollaries that follow from this theorem will now be stated.

Corollary 4.2.8 The existence of a symmetrical BIB(v;k) implies that

N(v) > N(k).

Corollary 4.2.9 1f s is a prime or a prime power, then

N(52+5+1) > N(s+1).

Corollary 4.2.10 If s is a prime or a prime power, then

N(s>-1) > N(s-1).

By working with the main theorem of Bose, Shrikhande, and Parker men-
tioned earlier, Murthy [19] obtained two new series of pairwise balanced
designs of index unity and showed that N(90) > 4 and N(94) > 5 and imp:rc-ed

the lower bound of N(sg) for other s > 100. Construction of the N(s) MOLS
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from these corollaries and methods involves construction of the corre-
sponding pairwise balanced design or BIB and then modifying it in some
particular fashion.

Group divisible designs constitute another method for constructing
MOLS and stating lower bounds for N(s). An arrangement of v treatments
in b blocks each containing k distinct treatments is said to be a group
- divisible design (GD) if the treatments can be divided into I groups of
m treatments each, so that any two treatments belonging to the same group

occur together in A, blocks, and any two treatments from different groups

1

occur together in A_ blocks. Such a design is denoted by GD(v;k,m;Allz)

2

and it can be shown that
v =1Im, bk = vr, ll(m—l) + Az m(l-1) = r(k-1),

where r is the number of replications, that is, the number of times each
treatment occurs in the design.

In the following example we have a GD{(14;4,2;0,1). There are 14 treat-
ments in 7 blocks each containing 4 distinct treatments. Furthermore there
are 7 groups of 2 treatments each such that any two treatments belonging to
the same group occur together in 0 blocks, and any two treatments from dif-
ferent groups occur in 1 bleck.

The groups are:

Gl: 1,2 G3: 5,6 GS: 9,10 G7: 13,14
GZ: 3,4 G4: 7,8 G6: 11,12

The blocks are:



a2

Bl: 2,3,5,9 B8: 1,4,6,10

82: 4,5,?,11 Bg: 3,6,8,12

B3: 6,7,9,13 BIO: 5,8,10,14
B&: 1,8,9,11 Bllz 2,7,10,12
BS: 3,10,11,13 Bl2: 4,9,12,14
B 1,5,12,13 B3 2,6,11,14
BT: 1,3,7,14 Bla: 2,4,8,13

Two more corollaries resulting from the main theorem of Bose,

Shrikhande, and Parker which provide lower bounds for N(s) are:

Corollary 4.2.11 The existence of a GD(v;k,n;0,1) implies that

N(v-1) > min[N(k), N(k-1), 1 + N(n), 1 + N(o-1)] - 1.
Corollary 4.2.12 The existence of a resolvable GD(v;k,n;0,1)
with r replications imples that
N(v+x) > min[N(k), N(k+l), 1 + N(n), 1 + N(x)] - 1 if 1 < x < r.
Using group divisible designs, Bose, Shrikhande, and Parker [4] es-
tablish the following theorem, which with proper selection of parameters
allows one to deduce that N(82) > 4, N(85) > 6, and N(60) > 3.
Theorem 4.2.4 If k < N(m) + 1, then
N(kortx) > min[N(k), N(k+l), 1 + N(m), 1 + N(x)] - 1 if 1 < x < m.
Construction of the number of MOLS asserted by thes corollaries or

theorem is accomplished by means of using the group divisible design cor-

responding to the theorem or corollaries.
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One problem of using block designs or group divisible designs to
determine N(s) is that this presupposes a knowledge of the existence of
a particular block design for certain values of the parameters. This,
however, is not usually a problem since existence of block designs is
tabled for many cases in Cochran and Cox [8], Hall [13], and Raghavarao
[22] and many other sources. Most of the time a suitable block design
- can be found to handle the problem. But for those times when such a
block design does not exist or is not known to exist, one alternative
which can be used in certain cases for finding N(s) and constructing the

MOLS is the method of differences. This is our next topic.

4.2,2 Method of Difference

Some sets of MOLS can be constructed by a technique called the
method of differences. This technique presupposes an understanding of
orthogonal arrays, which is a generalization of orthogonal Latin squares.
Since orthogonal arrays are beyond the scope of this paper, the interested
reader is referred to Raghavarao [22], Bose [3], or Hall [13] for their
development and use in the method of differences.

However, an understanding of the method of differences is not neces-
sary in order to be able to apply the theorems resulting from this method
which state lower bounds for N(s) in certain cases. Some of these

theorems follow.
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Theorem 4.2.5 If m is odd, there exist at least two MOLS of
order 3m + 1. In particular, if m = 4t + 3, then

N(12t + 10) > 2.

Theorem 4.2.6 N(14) > 2.
Theorem 4.2.7 N(18) > 2.
Theorem 4.2.8 N(26) > 2.

4.2.3 Other Methods of Construction of MOLS

Computer search procedures comprise another method of constructing
MOLS. Johnson, Dulmage, and Mendelsohn [14] introduced the notion of an
orthomorphism. This is a transformation which when applied to the addi-
tion table of an abelian group yields a square which is orthogonal to the
original square. The theory of orthomorphisms leads to an algorithm for the
computation of orthogonal Latin squares, which can be programmed on a di-
gital computer. Using this method 5 MOLS of order 12 were constructed.

It is indicated that for large s, this method is not practical.

Other computer investigations of orthogonal Latin squares include the
work of Bose, Chakravarti, and Knuth [5] and Parker [21].

It is not known in general what the maximum value of N(s) can be when
s is not a prime power. The problem of finding a complete set of MOLS for
s not a prime power is still open.

The methods discussed in this last section will undoubtedly be used to
extend the existing lower bounds of N(s) for certain values of s. Perhaps

a new method of constructing MOLS will be discovered which will allow a
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unified theory of obtaining the true upper bound of N(s) for all s.
Or if this is not possible, then a demonstration or proof of why it is

not possible.
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5. SUMMARY

In this report we have developed Galois Field theory and looked at
its relationship to projective geometries and affine geometries by means
of investigating construction of MOLS of order s when s is a prime power.
Construction by Galois Fields was generalized one step further to the
method of construction associated with the MacNeish-Mann theorem in order
to handle cases when s is not a prime power.

This material on Galois Fields and MOLS provides a good background
for working with experimental designs and lays a foundation for construc-
ting balanced incomplete block designs and partially balanced incomplete
block designs. With these techniques it is even easier for the statis-
tician to create or derive his cwn experimental design or alter it to fit
the problem at hand.

Besides the aesthetic appeal of certain combinatorial problems re-
lated to MOLS, scheduling problems subject to time and space constraints
can be solved by using an ordering from an appropriate set of MOLS.

The section surveying miscellaneous methods for constructing MOLS
presents terminology of the other main types of block designs.

We are now in the position of having covered all the construction
techniques needed to reach the maximum number of MOLS of order s when
s < 100. These construction techniques also produce the optimal number of

MOLS of order s for most cases when s > 100. In way of summary, let us
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look at construction of MOLS when s < 100. For s a prime or a prime power,
complete sets of s - 1 MOLS can be constructed using Galois Fields, finite
projective planes, or finite Euclidean planes. When s is not a prime or a
prime power, the MacNeish-Mann theorem allows construction of n(s) MOLS of
order s. Using special techniques, we can sometimes find N(s) > n(s) MOLS
of order s. Table 5.1 summarizes the cases where s is not a prime or a
prime power, giving n(s) and the greatest lower bound of N(s) known so

far, along with the construction technique needed to achieve this N(s)
value. Thus the reader should now have a thorough knowledge of construc-

tion techniques of MOLS of order s, where s < 100.
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Table 5.1

Method of Construction
Eulerian number

Theorem 4.2.5 (m=3)

Johnson, Dumlage, and Mencelsohn [14]
Theorem 4.2.6

MacNeish-Mann theorem

Theorem 4.2.7

MacNeish-Mann theorem
Corollary 4.2.9 (s=4)

Theorem 4.2.5 (m=7)

Corollary 4.2.10 (s=5)

Theorem 4.2.8

MacNeish-Mann theorem
Corollary 4.2.3 (v=21,k=3,r=10)
Corollary 4.2.7 (v=25,r=8,k=4)
Theorem 4.2.5 (m=11)
MacNeish-Mann theorem
MacNeish-Mann theorem
Corollary 4.2.1 (v=41,k=5)
Corollary 4.2.11 on GD(40;5,8;0,1)
MacNeish~-Mann theorem
Corollary 4.2.1 (v=45,k=5)
MacNeish-Mann theorem
M%cNeish—Mann theorem

Shih [23]

MacNelsh-Mann theorem



50

51

52

54

55

56

57

58

60

62

63

65

66

68

69

70

72

74

75

76

77

78

80

82

84

85

n(s)

N(s)>

89

Method of Construction

Corollary 4.2.
MacNeish-Mann
MacNeish-Mann
Corollary 4.2.
MacNeish-Mann
MacNeish-Mann
Corollary 4.2.
Theorem 4.2.5
Theorem 4.2.4
Corollary 4.2.
MacNeish-Mann
Corollary 4.2.
Corollary 4.2.
Corollary 4.2.
Corollary 4.2.
Corollary 4.2.
MacNeish-Mann
Corollary 4.2.
Corollary 4.2.
Corollary 4.2.
MacNeish-Mann
Corollary 4.2.
Corollary 4.2.
Theorem 4.2.4
Corollary 4.2.

Corollary 4.2,

4 (s=7,m=2)
theorem

theorem

2 (v=49,k=7,x=5)
theorem

theorem

8 (v=57,k=8)
(m=19)
(k=7,m=8,x=4)

1 (v=65,k=5)
theorem

7 (v=57,r=8,k=8)
5 (x=7)

5 (x=5)

5 (x=4)

1 (v=73,k=9)
theorem

6 (x=7)

6 (x=6)

6 (x=5)

theorem

1 (v=81,k=9)

10 (s=8)
(k=7,m=11,x=5)
12 on GD(77;7,11;0,1) (x=7)

12 on GD(77;7,11;0,1) (x=8)
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87
88
90
91
92
93
94

95
96
98
99

100

n(s)

N(s)>

5

2

90

Method of Construction

Corollary 4.2.12 on GD(77;7,11;0,1)(x=9)
MacNeish-Mann thecrem

MacNeish-Mann theorem

Murthy [19]

MacNeish-Mann theorem

Corollary 4.2.12 on GD(91;7,13;0,1)(x=1)
Shih [23]

Murthy [19]

Theorem 4.2.4 (k=8,m=11,x=7)

Corollary 4.2.12 on GD(88:8,11;0,1)(x=8)
Corollary 4.2.12 on GD(91;7,13;0,1)(x=7)
MacNeish-Mann theorem

Corollary 4.2.12 on GD(91;7,13;0,1) (x=9)
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ABSTRACT

In this report, a foundation for studying and investigating block
designs is developed. The focus of concern is the construction and ex-
istence of mutually orthogonal Latin squares. The matﬁematics neces-
sary for the construction of these designs involves Galois Fields and
finite geometries, which also comprise the groundwork for other types
of block designs. One reason for starting with mutually orthogonal
Latin squares (MOLS) is that they can be modified from other types of
block designs.

These same designs are also constructed by using projective geo-
metries. Partially for the sake of completeness in the study of con-
struction techniques, these additional methods are covered. By doing
so, we gain an important corollary about the existence or nonexistence
of complete sets of MOLS of order s where s is a prime or a prime power.

Construction of MOLS of order s when s is not a prime is demon-
strated by the technique associated with the MacNeish-Mann theorem.

This technique is actually a generalization of the procedure using Galois
Fields. Other methods of construction which, in special cases, allow

an increase in the number of MOLS obtained by the MacNeish-Mann procedure
are surveyed.

This material on Galois Fields and MOLS provides a good background

for working with experimental designs and lays a foundation for construc-—



ting balanced incomplete block designs and partially balanced incom-
plete block designs. With these techniques it is even easier for the
statistician to create or derive his own experimental design or alter

it to fit the problem at hand.



