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CHAPTER |

INTRODUCTION

Since cutting technolegy is such an essential part of the materials
processing needed for the industrialized society of today, there has
been a substantial amount of regearch work done on the subject, By
.far the greatest amount of work has been done in the areas of metal
cutting and metal grinding. The majority of research in metal cutting
has been done for the case of orthogonal cutting, which is analyzed
as a two-dimensicnal problem,

The work that has been done on metal cutting shows that it is
extremely complex. One of the many difficulties that arise when trying
to analyze the problem is that the geometric configdration of the bound-
aries is not known a priori, as pointed out by Rawaligan and Hazra [1].
And, since the problem involves the elastic-plastic behavior of the
workpiece material, the geometry of the boundary is crucial to the
solution. In the work done previously it appears that the interaction
of the plastic and elastic regions has not been incorporated into the
analysis satisfactorily.. Furthermore, most work to date has hbeen done
considering perfectly sharp, positive rake tools. But in reality the
tools cannot be berfect?y sharp, and do contain a rounded portion at
the tip. This rounded portion also does some of the cutting and to
properly understand the process of metal cutting must be included in

the analysis. The tool tip is also of extreme importance in relation



to tool wear, since to understand the wear that occurs on the flank
part of the tool it is necessary to understand the stress distribution
and the nature of sliding contact present at the area where the wear
occurs.

At present there is increasing interest in cutting with small
depths of cut. Many manufactures are interested in using smaller
depths while taking wider cuts. This is seen in the new applications
of broad nose machining. Also the people involved in grinding research
are interested in small depfhs of cut since this is typical of the
cutting action of individual grains during grinding.

In considering cutting problems associated with the rounded tip
of the tool, it is believed that it is of major importance at this time
to study depths of cut smaller than the nose radius. At these small
depths of cut, the tool can be considered as having a large negative

rake angle, for which case little research has been done.



CHAPTER 11

DESCRIPTION OF THE PROBLEM

Orthogonal cutting with a blunt tool at small depths of cut, is
represented schematically in Figs. | and 2 by an infinitely long right
circular cylinder which has a flat wear spot. The radius is, a, and
the angle of the flat spot is, 6, measured from the vertical axis. The
depth of cut is h, It is desired to approximate the cutting force
components as functions of the tool geometry and the properties of the
workpiece material. It is assumed that the cutting velocity is small
and temperature effects on workpiece material properties will be neg-
lected, It is further assumed that the workpiece material remains
linearly elastic up to the condition of yielding as prescribed by the
von Mises criterion. Thus some portions of the workpiece will be in
an elastic state and some will be in a plastic state. Interrupted
chip formation photographs suggest that the elastic-plastic boundary
can be approximated as shown in Fig. 1. Most of the material between
the elastic-plastic boundary and the cutting surface of the tool is
in the plastic state.

The finite element analysis, which has been applied to an
indentation problem by G. Dumes and D. N. Baronet [6], could be used
for this problem, but since the cutting problem is unsymmetrical, this
would prove to be quite difficult, and require a very large computer.
It is therefore desirable to consider simpler approximations to the

problem.
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To determine the cutting forces a method of analysis is needed
to properly account for the elastic behavior of the workpiece material
outside the elastic-plastic boundary as well as the elastic-plastic
behavior of the material within the boundary., This means that the
material is at a condition of yield along the boundary and at most
points between the boundary and the tool. It is therefore assumed
that the material is at a condition of yield along the tool surface
from point B to point C, and that it is in an elastic state from point
€ to point D. It is probable that there will be a chip flow ''stagnation
point' between point B and point C, such as point E. Above this point
it is assumed that the chip is sliding upwards relative to the tool
and that it is sliding downwards relative to the tool below point E.
The direction of the shear stress due to friction oﬁ the tool face
will change accordingly.

If the chip were cut away along the line from point A to point
B there would be some residual sfress distribution., It is believed,
however, that the norma! and shear stresses along this line are small
and can reasonably be neglected. It is, therefore, considered that
the surface A-B is equivalent to a traction free surface. It also
seems reasonable to assume that slip-lines from the surface of the
tool move toward, and eventually intersect, the line A-B,

Since the material is at yield conditions throughout most of the
chip forming region between the elastic-plastic boundary and the tool

surface, it seems reasonable to assume that the slip-lines will be



closely approximated Sy the usual slip-line theory for ideally p?astic.
materials in which it is assumed that, elastic strains are negligible
in comparison to plastic strains. With these assumptions, together
with theorems relating to slip-lines published by W. C. Schneider and
J. B. Cheatham, Jr. [7], it becomes possible to determine expressions
for the normal and shear stress distributions along the tool cutting
surface from point B to point C. These results are found in terms of
the unknown locations of points A and B. The location of point C is
also, as yet, unknown, The vertical and horizontal components of force
on the cutting tool due to the surface from B to C can then be found

by integrating the stress distributions. These force components are

in terms of the locations of points A, B and C,

Although the location of the elastICfplastic boundary is not known,
it appears that a cylindrical surface through points A and D which has
a tangent at point A, that is 45° or more from line A-B, will lie in
the elastic region. The stresses along this surface and throughout
the elastic region will be governed by the theory of elasticity. For
steady state cutting conditions the horizontal and vertical components
of force on this surface will be equal to the corresponding components
on the surface of the cutting tool. It seems that a reasonable approx-
imation of the stress distribution along the cylindrical surface is
the Hertzian theory for contact of cylindrical surfaces. This theory
has been extended to include tangential stress that is proportional to

the normal stress. This probably does not represent the actual stress



situation, but hopefully by adjusting the shear stress to normal stress
ratio, an approximation in the mean can be achieved. Since the normal
stress Histribution is most important this should be a satisfactory
approximation,

In essense these assumptions amount to assuming that an equivalent
cylindrical indenter is indenting the elastic material. It is assumed
that if the tool were removed the workpiece material along the cylin-
drical surface would elastically recover to a cylindrical surface of
different radius. With these assumptions, the stress distribution
on the equivalent indenter can be determinea in terms of the location
of points A and D, the angle A, and the undeformed radius of the work-
piece., These can be integrated to find the vertical and horizontal
components of force.

To complete the stress distribution on the tool surface it is
assumed that the workpiece is in the elastic state from point C to D
and slides on the tool with an assumed coefficient of friction, Moo
Since this surface is very close to the equivalent indenter in this
region, and equivalent normal stress is determined using the stress
distribution on the equivalent indenter surface,

Now by adjusting the locations of points A, B and D the vertical
and horizontal components of force on the tool and on the equivalent
indenter can be made equal. The location of point C is not known but
has been assumed to be at the point where the undeformed radius of the
workpiece crosses the flat spot surface of the tool. This has been
assumed to be just behind the leading edge of the flat spot. This is

a rather arbitrary assumption and further consideration of this is



needed. At any rate a workable theory of cutting has been established
and reasonable results have been obtained for a range of cutting
conditions. |t appears that more work is needed on the location

of points C and D to improve and extend the theory to a wider range

of cutting conditions.
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CHAPTER 111

ELASTIC THEORY FOR THE STRESSES ON THE INDENTER

As previously discussed it was assumed'that the tool could be
approximated by an equivalent indenter below the elastic-plastic
boundary acting in the elastic range. For steady state cutting condi-
tions the horizontal and vertical components of force on this surface
will be equal to the corresponding components on the surface of the
tool. |t seems that a reasonable approximation of the stress distribu-
tion along a cylindrical surface is the Hertzian theory for contact
of cylindrical surfaces [2]. The original Hertz theory considers only
normal contact stresses for this problem and it is desired to include
shear stresses as well., This was later done independently by H. Poritsky
[3] and by J. 0. Smith and Chang Keng Lin [4].

The equivalent indenter is described by the radius Re’ and must
pass thru points A and D as shown in Fig. 4. The radius of the workpiece
is Ro’ and is assumed to be the radius the material would elastically
rebound to if the load of the equivalent indenter was removed.

From the Hertz theory

b = 2 (2)
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Where P' is the load per unit length in the normal direction, b is the
width of contact, P0 is the maximum normal stress, v is Poisson's ratio,
E is Young's modulus of elasticity, and R is the radius of curvature.
The subscripts 1 and 2 refer to the tool and material respectfully.

Now o? interest is the initial point of yielding. Work done by
G. M. Hamilton and C. E. Goodman [5], who used the work of Poritsky
[3], shows that the first yielding occurs when the maximum normal stress

becomes

S
o= (—L—) n(p) (3)
V3

where n(u) is a function of the coefficient of frict}on, v. From their
data the relationship for n(y) was plotted and is shown in Fig. 3.

in applying the work of Hertz, Poritsky, and Goodman it is first
assumed that the tool is rigid, making EI = w, The radius of the
equivalent indenter is Re and the undeformed radius of the workpiece
is Ro’ which, according to the Hertz theory, is negative since it is
a cylindrical seat. The length of contact of the equivalent indenter
is be and the angle of inclination of the indenter is y, as seen in

Fig. 4.

By making these assumptions equation (1) becomes

P t=db P (4)
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where P}' is the normal unit load on the indenter. From equation (2)

we now get

R = + R (5)

Po is still defined by its relationship with the function, n{u), by

P = (LX) n(u) (6)

The force on the tool in the tangential direction, P can be described

I
2 ¥
by

Ps' % 5 By (7)

since the shear stress is proportional to the normal stress.,
From the geometry of the equivalent indenter in Fig. &, ee, which
is the central angle of the segment of the equivalent indenter is found

to be

o, = 2 sin ' ( =), (8)
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Also, from this geometry, the depth of cut, h, is

h=b, sin(y) | (9)

and the contact length, be’ is

b =2R sin (—=) (10)

Another equation to define the angle of indenter inclination, ¥y,
is found from the geometry in Fig. 4 and equations (11) and (12) can

be written by summing vertical and horizontal distances

2 cos(z) + a sin(x) + a sin(e) = be cos (v) an

2 sin(z) + a cos(A) + h = a cos(a) (12)
By combining equations (11) and (12) we get

a cos{6) - a cos(n) - H (13)

b, cos(y) = asin(A) - a sin(8)

tan(z) =

From equation (9) the expression for be is
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h
be = TRt L
by the substitution of equation (14) into equation {13) we get

_ (h/a) tan(z)
tan(y) = cos(6) - cos(A) - (h/a) + ?an(c) [sin(x) + sin(6)] T8

Since these equations must be satisfied simultaneously it was necessary
to have more constraints to define the solution, To do this it was
decided to put some restrictions on the radius of curvature, RO and
Re' We chose to limit the intersection of Re and a horizontal line
drawn from the flat spot to be to the left of point F, shown in Fig. 4.
From a practical standpoint this ﬁeans that the equivalent indenter
cannot intersect the cutting toel surface., This was done by using the

ratio, x, defined by

2Re sin(ee/Z )

X = 2 asin (8) (16)

or

Re sin(ee/Z - T
X = a sin (0) (17)
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To satisfy the requirement specified above, the ratio, x, must be

greater than or equal to 1.0,

x 2 1.0 (18)

Similarly, a ratio, 2, was defined by

ZRO sin{n - v)

2 2 asin(6) (19)
or

R sin(n - v)
A= sin(9) : (209
By setting
Qs 1.0 (21)

the intersection of RO and the flat spot is forced to be to the right
of point F, which is the point C, shown in Fig. 4.

By using a computer and an iteration technique, the previous
equations can be solved simultaneously to obtain the normal load, P]',

and tangental load, P2', that are present on the equivalent indenter.
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These components of force were then used to determine the equivalent

vertical and horizontal components of force, P] and PZ'

-
1

P]' cos(y) - Pz' sin(y) (22)

-
I

2 P]' sin(y) + PZ' cos (y) (23)

Thus we can find the vertical and horizontal loads that would
be necessary for an equivalent indenter of radius, Re’ to cause the
prescribed deformation in a material having the radius RO. These should

be equal to the corresponding loads acting on the surface of the tool.
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CHAPTER 1V

WORK BY SCHNEIDER AND CHEATHAM

W. C. Schneider and J. B. Cheatham, Jr. did some work on indentation
analysis for general shapes of surface boundaries and punch profiles
[7]. They present an analysis that frees the designer from the need
to assume a slip-line field when calculating the pressure beneath a
punch. Theorem |, of their presentation, reveals that the pressure
is independent of the slip-line shape and depends only on its terminal
points., They also point out that for many practical problems, informa-
tion about the terminal points is known, even though the slip-line shape
is unknown.

So, according to this theorem, the indentation pressﬁre at any
point on the punch depends only on the angle between the tangent to
the punch surface and the boundary at the two ends of a slip-line
through the point in question. The general problem is shown in Fig.

5.
They applied Theorem | to this general problem, and arrived at

equation (24) for the normal pressure present at point G on the punch,

P.=a

5 + K sin(sz) + K sin(ZqIG) + 2K(11)H ~ G Yo - aG) (24)

H

The corresponding shear stress is found to be
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1o = K cos (2y.). o (25)
It is also noted that for a perfectly lubricated punch T T 0.

Schneider and Cheatham applied this theoryrto the case of a
frictionless punch with zero shear and normal stress on the remaining
boundary. Making these assumptions and applying the Tresca or von
Mises yield condition they found Vg = Uy = n/4 radians or 45°,

For a stress~free boundary, o = 0, and hence the pressure at

point G can be written as

Desk T~ By =~ & (26)

But even this case is not easily solved since for irreqular boundaries
the angle eH is not known without knowing the shape of the slip-line.
So, to be easier and more practical, the problem of a smooth punch
and straight, stress-free boundaries was studied. For this case they
assumed a horizontal stress-free boundary which gave them Oy = 0 as
well as 8, = 0 and Dy = w/h. Ve is also equal to m/l% since the punch

is assumed smooth and frictionless. From these assumptions the normal

pressure at G becomes

il

Pe = K sin(2 =) + K sin(2 —=) + 2Klg— - 0 + —— - 6,) (27)
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or

P o= 2K(1 + - - o). (28)

This now becomes a very easy and useful solution since most punch
problems have straight stress-free boundaries and this analysis is

easy to apply without prior knowledge of the slip-line field,
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CHAPTER V¥

PLASTIC THEORY FOR THE STRESSES ON THE TOOL

To analyze the stresses on the tool face it can be seen that
most of the material in ffont of the leading edge is undergoing plastic
deformation. Therefore it is assumed that slip-line field theory is
applicable in this region. Since the slip-line field is not known
and cannot easily be found, it is necessary to make some assumptions.,
It is believed that normal and shear stresses are small along line
A~-B in Fig. 1 and can be neglected, so the surface containing line
A-B is assumed to be stress free. This surface is defined by the angle
£ in Fig. 4. The region undergoing plastic deformation was assumed
“to be from point B to the intersection of the tool flat wear spot
and the undeformed radius of the workpiece material below the eguivalent
indenter, point C in Fig. 4. It is believed that along the leading
edge of the tool the workpiece material is undergoing plastic deformation
from point B to point C as seen in Fig. 1. In the region behind point
C it is considered that sliding elastic conditions prevail,

To analyre the stresses present on the leading edge of the tool
governed by plastic conditions, the work done by W. C. Schneider and
J. B. Cheatham, Jr. [7], on the indentation of plastic material with
general punch profiles was used. As they showed the normal stress

present at point G, on the tool is
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Py = oy + K Sin(?dJG) + K sin(ZwH) + 2K(¢H - T+ P - A) (29)

and the shear stress at point G is

1. = K cos 2¢G (30)

G

where wH is the slip-line angle at point H on the chip free surface
and wG is the slip=line angle at point G on the tool as shown in Fig.
6. oy is the normal stress at point H, £ is the angle from the hor-
izontal of the tangent to the surface at point H, and A is the angle
from the horizontal of the tangent to the surface at point G. The
constant K is defined as the yield point in shear. ~Since it has been

assumed that the surface A-B is stress free this means that o, = 0,

H
and by assuming that the Tresca or von Mises yield condition applies
by = n/4 radians or 45 degrees [7]. Using these assumptions the

stresses canh now be written as

Pe = K sin(2g;) + K sin(Gl) + 2Kl - ¢ + yg - 4) (31)
and
T = K cos(2¢G). (32)
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These equations apply from the point of intersection of the chip free
surface and the tool, point B, down the leading edge of the tool to
the point of intersection of the undeformed radius, RO, and the flat
spot, point C.

To determine the angle, Ve s of the slip-line at point G an
approximate relation between shear stress and normal stress was

used

r = k(1 - e H2(o/K) (33)

along with equation (32) for each point in the plastic range. The
relationship presented in equation (33) was assumed because the rela-
tionship between shear stress and normal stress with low normal

pressures at a sliding interface is

T = W0 (34)

by the definition of K. Having these conditions an exponential curve
was used to approximate the transitional relationship. The general

equation for an exponential curve with an upper limit of K is
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r o (1 = o ey (36)
and the slope at o = 0 is found to be

dr

T = a (37)

which for this problem is equal to the coefficient of friction, oo

From this, the expression for the shearing stress is

= K(I - e"“z(U/K)) (38)

as shown in Fig. 7.
knowing the normal stresses and the shear stresses at every point
on the nose of the tool it is possible to integrate these stresses to
obtain the resultant forces in the horizontal and vertical directions,
In the case of small flat spots there can be a point where the
material can't be pushed ahead by the tool, so it slips under the tool
surface; this creates a stagnation point, This is caused by the
increasingly large negative rake that is found further down the tool
edge, A similar critical rake angle was discussed in the work of
C. Rubenstein, F. K. Groszmen, and F. Koenigsberger [8], who cut lead
with large negative rake tools. Their work showed the critical rake

angle to be in the range of (65 to 75° negative rake). These values
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do not apply directly to a tool with rounded nose since they used tools
with straight rake faces,

To decide where this stagnation point occurred for a tool with
rounded nose an element with a normal stress, P, and a shearing stress,
T, acting on it, as shown in Fig. 8, was studied, The horizontal
component of force on the element, dﬁ, was considered. If df is
positive there is positive work being done by the tool, but if dff
is negative then that increment of the tool is performing negative
work, Since the jdea of doing negative work doesn't seem reasonable,
1t was assumed that the point on the tool when dfi = 0 is the point
where the direction of the material sliding reverses its direction,
and hence the direction of the shear stress, 1, changes its direction
to oppose the reversed motion of the material as seen in Fig., 9.

Using this guideline will keep df positive and insure that all increments
of the tool nose do positive work., |t should be noted, that although

the workpiece material at the tool interface may be moving downward
relative to the tool, it is still moving upward relative to the work-
piece, thus the slip-lines can still move to the chip free surface.

It was previously assumed that all points between points C and D,
in Fig., 4, were to be considered in an elastic state. Since this surface
is very close to the equivalent indenter in this region, an equivalent
normal stress is determined using the stress distribution on the
equivalent indenter surface. To perform this transformation it was

necessary to adjust the stresses for the angle of indenter inclination,
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Y. An element inclined by the angle y, with a normal stress, S], and

a shear stress, T is shown in Fig. 10, From this element a partial

element is drawn, as shown in Fig. 11. Applying statics to the partial

element in Fig. 11, gives an expression for o as

2 2
( (

=5, cos

] v) -1, cos(y) sin(y) + S, sin

¥) ~uy S; sinly) cos(y) (_39)

Since the angle, v, is small the term SIHZ(Y) can be neglected;

making the expression for o equal to
o= Sl cosz(Y) - S cos(y) sin(y} - S, sin(y) cos(y) (40)

The expression for the shearing stress, T, on this surface is assumed

to be

’ (1)

since it was assumed that the material in this area is in the elastic
range and the shear stress is then proportional to the normal stress.

Now by integrating the vertical and horizontal components of the
stresses over the tool surface the vertical and horizontal components

of cutting force are obtained.
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CHAPTER VI

PROCEDURE TO OBTAIN THE COMBINED ELASTIC-PLASTIC SOLUTION

The two previously described parts of the solution both contain
variables which are to be determined by matching the elastic and plastic
solutions. The major variable that is unknown is the angle of the chip
free surface, z. By changing ¢ it was possible to match the vertical
components of force. The horizontal components of force were then
matched by changing the coefficient of friction acting on the equivalent
indentor, u. By adjusting p in this manner it is hoped that the shear

stress distribution on the equivalent indenter is approximated in the

mean.

This procedure was programmed for the computer and proved to be

workable for part of the range of the cutting variables.
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CHAPTER VI

RESULTS

To determine if the theory represents a satisfactory approximation
to the cutting problem it is necessary to compare it with experimental
results, A literature search revealed that there has been little
research done for small depths of cut with negative rake tools. The
best experimental results were obtained by M. Es. Abdelmonein and R.

F. Scrutton [9].

In comparing theoretical and experimental results, it is necessary
to duplicate the problem as much as possible. Abdelmonein and Scrutton
did tests using brass, aluminum, and zinc, as the cutting material.

The results obtained with free cutting brass were used for comparison
due to the ease in which the material properties could be found.
Material properties for aluminum and zinc vary considerably and hence,
it is difficult to establish the values which correspond to their tests.
The free cutting brass plates used by Abdelmonein and Scrutton were

62 percent Cu, 35 percent Zn, and 3.25 percenf Pd, and were stress
relieved at 475° F for one hour prior to cutting. The tensile yield
strength, Sy, is found to be 58,000 psi for a brass plate of that
composition and stress relieved under those conditions. The radius

of the tool, a, is 0.003 inches to match the tool radius used by

Abdelmonein and Scrutton.
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The value of the coefficient of friction on the surface of the
cutting tool, Bys Was taken to be 0.7. The coefficient of friction
can vary over a considerable range and depends largely on the surface
conditions. Since the surface is clean due to the fact that it is
a freshly cut surface the coefficient of friction is probably higher
than might be expected. Further study of friction in the cutting region
is needed to more accurately establish oo

The computer program, shown in Appendix |, contains a number of
iteration loops to match the previously explained equations simulta-
neously. Due to the nature of the prcblem and the assumptions made
the computer program is not capable of obtaining a solution for every
problem, but can only find the solutions to problems in certain ranges.
With further refinement it should be possible to expand this analysis
to a larger range of cutting conditions.

Numerical results obtained using the present analysis are plotted
in Figs. 12 and 13. By the nature of the program it was not possible
to find a solution with the flat wear spot angle, €, equal to 0. For
this case it was necessary to plot the cutting forces versus the flat
spot wear angle and extrapolate to a zero flat spot. This was done to
aid in the comparison with the experimental data, since the cutting
tool used by Abdelmonein and Scrutton did not have a flat spot. Since
the values corresponding to 6 = 0 are found by the extrapolation of the
curves the corresponding points in Figs. 14 and 15 are approximations

based on the intersection of the curves and the vertical axis, 0 = 0,

In Figs, 12 and 13.
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Figs. 14 and 15 show the horizontal and vertical cutting forces
as a function of the cutting depth, h. A contrast can be seen in
that the curves for the vertical forces are much steeper than the
curves for the horizontal)forces. This means that as larger depths
of cut are taken a rapidly increasing force is reguired to keep the
tool at that depth, whereas, there is little increase in the force
that does the actual cutting work. The curves in Figs. 14 and 15
also show that there is a '"threshold! cutting force which must be

reached before any cutting takes place. It is believed by some that

i1

the cutting force becomes zero at zero depth of cut and that an increase

in force will result in a small depth of cut being taken., As we have
shown this is not true, a certain amount of cutting force must exist
hefore any cutting can take place,

The geometry of the cutting action changes with different depths
of cut and different flat wear spot angles. This is seen in Figs. 16
and 17 showing the changes caused by the different flat wear spot
angles of 8 = 20° and 8 = 5°, The stresses on the tool surface also
change with different tool geometry as shown in Tables | and ll. The
normal stress distribution on the tool surface, from Tables | and I1,

°

is shown in Fig. 18 and 19 for the case of 6 = 20 and 6 = 5%, at

a depth of cut equal to 0.0005 in.
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o = 20° h = 0.0005"

A o T
(deg.) (x10h lbs./in.z) (xqu lbs./in.z)
-16.29 3. 484 2.439
-12.47 4.775 3.343
- 8.55 5.657 3.960
- 4,54 6.302 4,412
- 0.48 6.780 4,746

3.58 7.124 4,987
7.61 7.353 5.147
11.56 7.477 5.234
15,40 7.501 5.251
19. 10 7.427 5.199
19.95 9.316 2,871
20.0 7.635 2,670
25.1 7.219 2,608
29.9 6.827 2,545
35.0 6.420 2,474
39.9 6.037 2,401
Ly, 3 5.696 2.331

Stress Distribution on Tool Surface Corresponding to Fig. 18

TABLE |



f = 5° h = 0.0005"

A o T
(deg.) (xloh Ibs./in.z) (><1leI lbs./in.z)
= 50 0.0 0.0
- 3.71 3.654 2,558
= 1.59 5.038 3:.527

0.53 6.007 4,205
2.65 6.742 4,720
L, 76 7.314 5.120
4,93 10,245 2,955
5.0 9.807 2.918
10.1 9.367 2,876
14.9 8.955 2,834
20,0 8.524 2,785
25.1 8.097 2.732
9.9 7.700 2.679
35. 7.282 2,618

Stress Distribution on Tool Surface Corresponding to Fig. 19

TABLE [



CHAPTER VI 11

DISCUSSION AND CONCLUSION

The results presented in this thesis show that the horizontal
cutting force is about 46 pounds per inch of workpiece width at a
cutting depth of 0.0005 in. The experimental work of Abdelmonein
and Scrutton showed that the horizontal cutting force for a depth
of 0.0005 in. was approximately 50 pounds per 0.25 in. of workpiece
width or approximately 200 pounds per inch of width. Although there
has been little research done in the area of small depths of cut
with negative rake tools, it must be assumed at this time, that these
experimental results are represenative of the correct cutting forces.

Since the analysis does not agree with the expérimenta] data
it must be assumed that the analysis needs further refinement. One
particular region which needs further consideration is that of the
location of point D. The assumed location of point D maybe reasonable
when considering large flat spots, since any additional area of sliding
(which has not been accounted for) is probably small in comparison
to the sliding contact on the flat wear spot. But as the angle 8,
is reduced, the location of point D becomes more critical since the
area of sliding contact on the flat spot is reduced and the area
unaccounted for is probably much larger. This means that the location
of point D should be further up the trailing edge of the tool. The
theory would then include a larger region of the tool contact and a

larger cutting force would result,
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There is also some doubt about the value of the yield stress in
shear which should be used in the analysis. [t was assumed that the
shear yield stress, K, was constant throughout the material. It was
further assumed that the value of K should correspond to the stress
relieved state of the material. Butthe yield stress in the neigh-
borhood of the tool is probably higher due to the strain hardening
that takes place in front of the tool. By increasing the value of K,
the cutting force required to remove the metal should also increase,

The assumed value of the coefficient of friction acting on the
tool, By = 0.7, might also be too low. Experimental results have
shown that the coefficient of friction can vary over a large range
and depends largely on the stress levels and the contact surfaces.
Due to the fact that the material is highly stressed and the fact
that the material sliding surface is a freshly cut clean surface the
value of y may really be much larger than 0.7.

The relocation of point D would lead to substantial changes in
the analytical procedure, so this change was not made at this time.
But the values of the shear yield stress, K, and the coefficient of
friction, ey Were easily adjusted to see if better agreement with
the experimental results was obtained. HNumerical results were obtained
for the cases, 9 = 20°, h = 0.0005 in., and h = 0.0006 in. The value
of the tensile yield stress, Sy' was changed to 70,800 psi from the
previous 58,000 psi. The value of M, was also increased to 1,0 from

the previous value of 0.7. The analysis for h = 0,0005 in. showed



an increase of approximately 40 percent to a horizontal cutting force
of 142 pounds per inch.. Similarly the horizontal cutting force at

a depth of h = 0,0006 in. showed én increase of about 44 percent to

a level of 153 pounds per inch,

These horizontal forces are still not quite as large as those
found by Abdelmonein and Scrutton but the agreement is much better
and it appears that good agreement can be achieved by minor changes
of some of the basic assumptions used in the theory.

It is encouraging that the present theoretical results compare
as well as they do with experimental values in view of the complex

nature of the cutting problem.

50
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CHAPTER IX

RECOMMENDAT | ONS

To enhance the value of this work, additional work is needed in
finding the previously defined point D. The assumption used in this
thesis may be reasonable when considering large flat wear spots, but
as the wear spot decreases the correct location of this point becomes
more critical.

Also deserving further consideration is the location of point C,
The previously assumed conditions for finding point C, may not'be
satisfactory and a better method of finding point C and the radius
Ro should inprove the problem analysis.

Further consideration of experimental data is needed to be sure
that the right values of material tensile yield stress, Sy’ and coeffi-
cient of friction, H, are used,

More experimental cutting data is needed to compare with the
theoretical results as well as to verify the experimental data of
Abdelmoneim and Scrutton.- The additional data is needed to add con-
fidence to either the data of Abdelmoneim and Scrutton or the theoretical

results.
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APPENDIX A

COMPUTER PROGRAM

23



H
P1P
P2P
BE

PO

EW
GAMD
MU

MU2
ETAD
SY

RE

RO
THETED
LAMD
ZETAD
CHI
OMEGA
PSI

TAU

COMPUTER PROGRAM NOMENCLATURE
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Pl

P2

NUW

X1
THETAD
FYY
FXX
TS
TTAUAF
FYF
FXF

X0

TFY

TFX

n{u)

§]

Vertical Force on Tool Nose

Horizontal Force on Tool Nose

Vertical Force on Elastic Part of Flat Spot

Horizontal Force on Elastic Part of Flat Spot

" Vertical Force on Plastic Part of Flat Spot

Horizontal Force on Plastic Part of Flat Spot
Length of Flat Wear Spot
Total Vertical Component of Cutting Force

Total Horizontal Component of Cutting Force

55



56

BRIEF DESCRIPTION OF PROGRAM

It is not possible to solve the problem for all cutting conditions
usingrthe computer program. Because of this and the non-linear nature
of some of the functions, the computer program could not be made fully
autamatic in finding solutions. Therefore, the computer program was
written to match the vertical components of force acting on the equiv-
alent indenter and the vertical component of force acting on the tool
by the adjustment of the chip angle, . This was still somewhat of
a problem since when € and h were changed the range of possible values
of ¢ also changed. This was continually adjusted by limiting the
parameters Z1 and ZETAD, to the lower and upper limits of this range.
Once the vertical components of force were matched, it was necessary
to adjust the coefficient of friction acting on the equivalent indenter,
MU, and to make the corréSponding change in the parameter X1, which
is the function n(u). This step involved the use of trial-and error,
since the function n{y) is non-linear. For these reasons the program
could be made automatic only by using a numerous amount of checks
and subsequent changes in parameters. The trial and error method
was therefore used because of the ease of operation. It also enabled
us to see what was happening in the program and what must be changed

as different problems were tried.
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TQ print the stresses acting on the tool surface and to find the
stagnation point it was most expedient to first run the program as

many times as necessary to find C-. Then using this value and activating
the desired print statements in the program, the stresses could be

printed out,



PROGRAM LISTING
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ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE



$J08 MLGy TIME=10,29)

C YL (4 BRASS
C FLASTIC aNALYSIS
1 PEAL Ky MUy Lty A0, 402 413
2 AEAL MUy YL, LA LAMOL LAMIR , LAM
3 L FOUANTLIVLY 38X 000y B8V 1Y 4 XytSY )
4 22 FDTANEL ey VU Ry P XYY
5 23 EOVANT LS 95 gt AV TR VHE A TTHET AD YY)
6 2h FDRAATI,y 3h, L 13X, 7020 JLlx y P ESRE 10X, PP1PY 11X, PP )
7 23 FORAAT L/ ANy "LAY O g DL e Y TADY L2 P ZETADT 0K, VASLPODY 434,V THETEDY)
a 26 FIRMAT I/ 48440700 pLLK, SOV, 12X, vatTGa0)
9 27 FORMAT U/ g 5K PFEN G L2Y TR 0 12X, VA2 12Xy P23 1 LX ' GAMDT )
10 100 SIRAATL/ 5514 .6)
C MUs) RI=3,12,MU=,05 X0=3,1,"M=.1 X[=3.96 402,15 XT1=3.01
C MiJze2 XT=2.94,M0)=,25 XI=?,80, 02,3 Xl=2,523,%)%,35 ¥ [=2,49
C M=% XT=2.29,MU=,.49 XI[=2,02y"0=,% XI=1.78,4U=,5% Xl=1,55,
C M=, 86 XI=1le4)
11 A=0.22
12 X1=2,92
13 ZETAN=17,)
14 I1=12.0
15 ASL1=45,.1
15 THETAD=10.2)
17 SY=5K300.0
18 4=J.2035
19 A 2=0.7
20 22=11
21 TATIO=). 1
22 EW=14490923349
2'} A=iJu‘J‘)3
2% OI=3,14%415727
25 PIC=PI/130.0
26 ERPAS 20,300 001
27 NiJW=D,.3
28 THETASTHETAOUXDIC
29 PLINT 21
30 DRINT 50, I MUY, S
31 5) FUORAAT (/421001 F6.2,53.D)
3z GRINT 22
33 PRINT L0, M, X1
34 £ FORMATU/ Y8+ 4F3.4)
35 DRINT 23
36 JOENT T3, 4, , THETAD
37 T FAIMATLA,F3.5,F3.5,F6.2)
38 ERESSED S ANSENE G PRD |
39 SINTHE=STIN(TI 5T A)
47 COSTile=r OGS ( THETA)
41 HOA=H/ A
402 il=3.0
43 5O CONTINUE
44 [ T:S5T=1
45 I[=) ;
46 72 CONTIMNUE
47 I=1+2
48 ITE{L.GT.92) 50 70 131
49 50 TD 132
50 131 FOaMAT(/,3IX,yt ] GT. 92'1
51 181 PRINT 131
5¢ S3THD 19

93 182 LAMD=(I-1)
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5%
56
51
58
59
60
&1
62
63
64
65
b6
&7
69
&9
74Q
7l

T2
12
T4
75
Th
17
73
]
80
81
8z
83
34
g5
86
17
88
33
99
9l
92

63
S4
G5
QWb
qT
98
93
139
191
102
103
104
199
106
107
1.1
109
110
i1

15

s
w
(SRR V]

13%

152
151

153
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LAM=LAM
IFLC151

nERIC

LA 5T (1.0-"1040) 6T T 12

conrrtiue

ITING=0
LETA=7¢€
TANZILT=

TAd"pPIC
TANCZETA)

TANGAY=CNST RS =COS (LA =HOARTANZET f STHNTHIHS THILAM )

TANGAV=
G-’\""—';\TA
GAVI=Z0UA
[T140 =1
[FQ1T 14
50 1001
FOudaaT (
FRIMT 1
S0 1T 1
3F=/51
21p=),2
FiIuns R
RI1=2.0
102=2.0
A0=2,05
Y=0.0

CONTINY
FN=NY+T
TR {N.G
50 T 1
PRINT 5
CHNTENY
[F{NYNG
33 T 1
ETAT
I).'J_IMT [
GO T2 1

RAT=%e 200 La D-MNUW MW AUBFE A +1.0/%2

RE=].0/
ARG=2,0
IF(ar 5,
GO T3 1

FA2MAT

BRINT 1
PRAIMT R
RERESR SIS
ARG=1.9
ANG=ATA
THETAE=
Ab=240%
THETL id=
AR=1.19/
ETA=ATA
ETA2=CT
LHl=2k

AHTEA= P SIMETA-GAMY /LA <STNTHE)

AAd=lan
AAAZ =AY
AAA3=Q,
FFLAALL
1F{AAA)
RJ1=K0

HAACTANLE T/ TARGA
HETANGAY)

'.{[!Jic

TI47 ¢+

FeuT o30) GC T 183
B4

Fy P ITIME GT. 300}
32

89

NAGAM)

5« PRI C» PO

]

E

.0

T.72) GG TC 145
6h

DaMM PP AALTTIME, 1M, 11
~

r.39) 6% 70 13%

24

Fe3X, NN GT. 1220}

33

a9

RE

“RE/BE

LT.1) 53 772 151
53

Ao TXp PRE VL LEX P35, 16X, 'R, 15Xy TR0 1
ISER CAPAREDLE

&
PR

EyBEL2D3P0 234, ARG, ZETAD

[

SO TIAAGSARG~1.0)
SUAREG)

P ANG

FOSE

TH=TAL /DI
SVAT(AR=AL ~1a D)

N{AFE)

ASPILC

ST ANG=0AMI/{A=STNTHE }

SCHAT A L 0= EGAY/RATID
Staarl
0d)az ;
LT LAIAL) GO T 6%
55 B AT/

5

Xyl

A
PLEEY

60

"\’ ,14:(1'1-\?6. ¥



1 4%
145
1 44
147
14~
149
150
151
152
153
154
155
156
157
153
159
160
161
1£2
163
164
145
166
1L67
168
169
172

83

g4

290

iz
201
Juz
811
303

3)

Ga 11 51

Ri32=n0

GU T 51
BRI+ RQ2) /2.0
G011 52

 CONTINGS

ASLP=ANG+LAMETETA
ALSLPR=ASLP /P

Tk r={ASLDO-ASLLY 7ASL]
ERR=FKR®ERR

[FIER LT P UMY G T 90
IFCITEST.EN VLA GASLED GTLASLLY GO TD 39
IF{ITESTLENL2) GO T 82 :
fres7=2

ASLAOR=ASLPD

LAADR=LAMD

G 1Y 82

ASLRDL=ASLPD

LAMDL=LAMD

577 19 12

[FEASLPDLLTLASLY) GO T2 94
ASLPDL=ASLPD

LAMOL=LAND

G TO 36

ASILPDE=ASLPD

LAY =L a4

LA M= (ASLL=A50 P OL ) (LAYDR - LAMDU Y/ LASLPDIZ-ASLPT LY+ LAMDL
LAM=p AMD=2]IC

GO T2 75

‘J_.‘j {J:-:‘.HJ.’:D]_,’)

Pl P CRS(GAMY =020 S IMITAM)
PR=pPLpeSTHIGAMY+02e0C15{GAM)
PLASTIC AMALYSIS

EORMAT (/7 DXy PEYY 12Ky T XX}
FaeMaT (/28146400

FOAMATIZ XT3l LD P TTAUARY)
EUAINMOTIZ 46Xy P2, L1y "4 0)
FuRdaT I g6 X " TEY 12X 78X"])
H-=1,0

LAvsl AMOD-21IC

THETa=THETAGPIC

K=3Y/ST4T{2.0)

R=A

LETA=ZETAD=PIC

ZETAR=7ETA

PSIR=PI /4.0
DLAYM={LAa4-TErTAY /130, 0
LAaMssTHET A

FX=J).0

“Y=3,0

FYY¥=0,0

FXX=).2

THETAS=Q,.0

DHIS=U.D

DS TA:=P1/4,0

M3,

TE MU ST 2 P T AR PT#2 0O/ 5, )= ETAR-LAYLPSTAL)
AA=1,.0-COS(2.07PSTAI=CA2ER)
N=Nt1,.0

TN eTa82) GO T 187
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L7 GO T 1A8

172 134 FOAMATE/,3%,"N 6T, Ku*)

1713 187 22 [NT13A

174 : G{i TN 189

174 1823 2=2135(AA)

176 G=0.002201

177 [F(3.LTLW ) 50 7O 99

173 TE(AAY 19,99,12

179 1) THETAS=PSIA

18 6N T 29

131 12 PHAlS=PSIA

182 G TN 29

183 2) PSIA={THETASHPH]S) /2.0

1 8% GO T 39

185 99 LONTINUE

184 PA=LHSTIMI 2, 07PSTAY £ 2.0 {(PI+2.0) /4. 3~25TAR-LANAFPSTA)
187 TAUA=K- COS(2.0-PSTA)

188 AREA=LLAM NN

1384 SY=DARARIASCOSILANAI T VUASAREASSINI LAMRA])
1943 FRRAA2E VST LAMR) =TAIA<AREA=COS (LANSY)
161 LAMBI=LAM3/PIC

192 FRIFXL.LTLD) GO TO 1395

Ls3 GO T 154

194 155 EY=PARAPLSACCHS{LANA) ~TAJARARF A= SINILAMY)
195 FX=PATAREA-STHILAY 34T AN ARE A CISTLaid3)
194 156 CHOPNTINIEG

137 DSTAD=FESIA/RTC

198 FYY=FYY+FY

199 =D & SRt S EReN]

200 LAMB=LAMAFNLAM .

201 IFELAMBRLLTLLAM) GO T0 42

232 LAYMB=0,0

203 4% THZTAS=0.0

2% PHIS=0,0

20% PSTA=PI/ 4.0

206 Mz

207 6 FP==dU2s(STHI2, 30PSIA) 22, 0 ({PT#2 ) /4 0=25TAR-LAMREPSTIA))
239 AA=1L.0~-C05{2.0%PSIA)=-EXPIFE)

209 WH=drl. 0

210 TFINLGTL 301 GD TG 143

211 GO T 149

212 147 FORMATI/ 33" Ne GT. A"

213 Tad PRINT 147

214 Gua T 189

215 143 0=ARSLAL)

214 0Q=0,030001

217 [TF(QeL T2 5B TO 44

218 LFLAA) 37444, 43

219 37 THLTAS=PSIA

229 GO T 49

221 A3 PHIS=PSIA

222 GG TO 49

223 49 DSTA={THETAS+PHIS)I/ 2.

224 61 T 46

225 4% CONUTINYE

226 PAFSKSSIN(2,0PSTA Y+ 2, < {P 1+ 2.0) 24, 0-2T TAR=LAMDPSTA)
a2r TANF=R=COS (2.0 PETA)

223 ASFAF = 14 1=0YFRAY:? L 7 STNETHETAY

229 FYFaPAF AR DA

230 FXF=TAUF tARVAFR



231
232
233
234
235
2356
2317
233
239
240

241
242
243
240
245
246
24T
248
249
250
251
252
253
254
255
256
257
258
259
26Q
24l
262
263
26%
265
266
26T
2068
269
270
271
272
273
214
215
274
277
278
2179
280
281
282
283
284
28%
2 A6
237
288

17

159

11a
502

503

X0=2, 0 R=GINITHFTAI={{ 1 J=-0MI A ) E 20 0#RA5TMNITHITA) )

£=0.0

X=%+),70J0)5

XP=X/CriS{f;A04)

SEP=02,0 PO/ A (SORTI3Z RFLA D ~{ AP/ 2 Q) (XP=13/2.01})
S1=310 (CI5(6AM)CNSIAAM) =)0 I5(5AM) «ST i (GAM) )
TAUAF=Y2 5]

TF{X. LT, %)) G2 T 17

XA2=xX/CII5{GA)

TSL={CI8(5aM) MG (SAN =) =00S (S A4) STN( G} )= 2.0 pO/uEs
IO =200 " X P+ A0 -4,2)) {SNRT{=-XaPsXgP+d X IP) )= Db - BE/8ad)

PsOARS D ({2 0K /) YR s ZeP [ /16.0)

TTAUAR =27 TSL
TFY=FYYEYF+TSI
Tl=R1-T#Y
TFA=F XAre XF+TTAUAF
TTI=4H5(TL)

CE=0.9

FORAATL/ g Yy T g LXK P IIY 2 1OX,VZETADY)
PRINT 154
PRINT yTL 1 1,257A0
TRFITTILLT.ER)Y GO TN 53
IF{TL) 57:53,54

I1=2ETAD

50 T 55

22=7CTAD

GO 7O 55
IETAN={Z14Z22)/2.0
1I=17141.9

IFCITGT.4D) GO TC 165
G TN %So

FORMAT(/,3X"11 GT. 407)
22 INMT 135

GO TO 189

CMNTINUE
FOUATL/ 35Xy VWIRKPTIECE=RTASSY)
DRINT L 1s

FORALTI(/ 33Xy *FORIES ARE IN LPRS. 2ER IN, IF WORKPIZCE WIOTH')

PRINT LTY

PRINT 2%

PRINT 1004P1,0P2,002,012,P2P

QRENT 25

PRINT 100, LAMDyETAD o ZFTADJASLPU, THFETED
PRINT 24

PRINT 100,R3,CHT, CMEGA
BRINT 27

PAINT [.).;,,r:_t_:_,r.gg,m:,m)' JAMD
COEMATI/Z )54 g VPLY J 12Xt 220 J1OX YUY G TX ' 2ATIO 4%, YASL 1Y)
PRINT 02

RAINT S50%

FORMAT(/ 12X, "PLASTIC AMALYSISY)

PEINT 622,01, P2,y 0ATE0,AS5L1

FORMAT (/37 14,6400 4 .83 F 300 4F10.%9F10.%)

PRINT 22

PrINT 201y FYYFXX

PEINT 202

PEINT 201,751, TTAUAF

FTOARMAT(/Z DX 3" FYFY y 12Xy YXFY )

PEINT 501

PRANT DUl FYF,FXF
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2490
2al
252

293
2 0%
295

189

$EMNTRY

PRINT 891

PATHT 201,4MU2,X0

pRAINT 303

AT 201,

KI=LENGTH
CLMTINUE
STIP

END

TFY,.TFX
SFOFLAT 5e0T7
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ABSTRACT

Since cutting technology is such an essential part of the materials
processing needed for the industrialized society of today, there is a
substantial need for research on this subject.

The purpose of this work, was to analyze the cutting process of
large negative rake tools at small depths of cut. To do this the
approach of an equivalent indenter was used along with plastic slip-
line theory. The use of these two approaches aids in the description
of the cutting process of large negative rake tools.

The numerical results differ somewhat from the experimental data,
but the solution should become better as more refinements are made,

It is encouraging that the present theoretical results compare as well
as they do with experimental values in view of the complex nature of

the cutting problem.





