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Abstract 

Wheat accounts for 20% of daily caloric intake of the world population and has one of 

the widest cultivation distributions of any crop. With increasing demand for both quantity and 

quality, wheat yields must increase while also maintaining acceptable end-use quality. However, 

measuring end-use quality is complex, requires large volumes grain and significant effort. The 

overarching goal of this dissertation research was to develop genetic and genomic tools to 

facilitate breeding for end-use quality in wheat.  

Building on initial work with genomic prediction of wheat quality, we continued 

application of genomic prediction models to the International Maize and Wheat Improvement 

Center (CIMMYT) wheat breeding program. For practical application in the breeding program to 

advance selection, we focused on forward prediction in each cycle of the bread wheat program. 

Models were built on 12 years of past data including over 18,000 entries with quality data. 

Predictions for 10,000 yield trial lines were generated each year for selection, with forward 

prediction accuracies of 0.40 to 0.73, and approached heritability. This is one of the largest scale 

applications of genomic selection.  

We also studied the interaction of climate change and the important quality genes, high-

molecular weight glutenins (HMW-GS) and low-molecular weight glutenins (HMW-GS). A 

diverse panel of 54 CIMMYT wheat varieties were grown in 2 levels of drought stress, heat 

stress and optimal growth conditions. Quality traits, HMW-GS and LMW-GS alleles were 

measured. We fit a mixed linear model for each quality trait with HMW-GS, LMW-GS, 

environment, and the interactions of those as predictors. Overall, the superior glutenin alleles 

either maintained or increased quality in stressful environments. This work confirmed that 

superior alleles should always be selected for, regardless of target environment.  



  

To increase the genetic diversity for wheat quality, we analyzed Glu-D1 gene diversity on 

the wheat D genome donor, Aegilops tauschii. We constructed Glu-D1 molecular haplotypes 

from sequence data of 234 Ae. tauschii accessions and found 15 subclades and over 45 

haplotypes, representing immense gene diversity. We found evidence that the 5+10 allele 

originated from a newly described Lineage 3 of Ae. tauschii, further supporting that this unique 

lineage contributed to modern bread wheat. We also observed rare recombinant haplotypes 

between the x and y subunits of any HMW-GS locus. This work will facilitate incorporation of 

Ae. tauschii Glu-D1 alleles into modern wheat.  

Given that certain HMW-GS alleles are highly desirable, we set out to develop a high-

throughput, high resolution genotyping method for HMW-GS alleles that would fit within 

genotyping already done for genomic prediction models. This ‘sequence based genotyping’ 

approach uses diagnostic k-mers developed to predict alleles in skim-sequenced breeding 

material. Prediction accuracies for Glu-D1 and Glu-A1 were very good, but lower for the Glu-B1 

alleles where many alleles are highly related. Overall, SBG offers a high throughput method to 

call alleles from existing data.  

These genetic and genomic tools developed and implemented for end-use quality 

selection in wheat offer promising resources for continued improvement of both yield and 

quality in wheat breeding.    
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Abstract 

Wheat accounts for 20% of daily caloric intake of the world population and has one of 

the widest cultivation distributions of any crop. With increasing demand for both quantity and 

quality, wheat yields must increase while also maintaining acceptable end-use quality. However, 

measuring end-use quality is complex, requires large volumes grain and significant effort. The 

overarching goal of this dissertation research was to develop genetic and genomic tools to 

facilitate breeding for end-use quality in wheat.  

Building on initial work with genomic prediction of wheat quality, we continued 

application of genomic prediction models to the International Maize and Wheat Improvement 

Center (CIMMYT) wheat breeding program. For practical application in the breeding program to 

advance selection, we focused on forward prediction in each cycle of the bread wheat program. 

Models were built on 12 years of past data including over 18,000 entries with quality data. 

Predictions for 10,000 yield trial lines were generated each year for selection, with forward 

prediction accuracies of 0.40 to 0.73, and approached heritability. This is one of the largest scale 

applications of genomic selection.  

We also studied the interaction of climate change and the important quality genes, high-

molecular weight glutenins (HMW-GS) and low-molecular weight glutenins (HMW-GS). A 

diverse panel of 54 CIMMYT wheat varieties were grown in 2 levels of drought stress, heat 

stress and optimal growth conditions. Quality traits, HMW-GS and LMW-GS alleles were 

measured. We fit a mixed linear model for each quality trait with HMW-GS, LMW-GS, 

environment, and the interactions of those as predictors. Overall, the superior glutenin alleles 

either maintained or increased quality in stressful environments. This work confirmed that 

superior alleles should always be selected for, regardless of target environment.  



  

To increase the genetic diversity for wheat quality, we analyzed Glu-D1 gene diversity on 

the wheat D genome donor, Aegilops tauschii. We constructed Glu-D1 molecular haplotypes 

from sequence data of 234 Ae. tauschii accessions and found 15 subclades and over 45 

haplotypes, representing immense gene diversity. We found evidence that the 5+10 allele 

originated from a newly described Lineage 3 of Ae. tauschii, further supporting that this unique 

lineage contributed to modern bread wheat. We also observed rare recombinant haplotypes 

between the x and y subunits of any HMW-GS locus. This work will facilitate incorporation of 

Ae. tauschii Glu-D1 alleles into modern wheat.  

Given that certain HMW-GS alleles are highly desirable, we set out to develop a high-

throughput, high resolution genotyping method for HMW-GS alleles that would fit within 

genotyping already done for genomic prediction models. This ‘sequence based genotyping’ 

approach uses diagnostic k-mers developed to predict alleles in skim-sequenced breeding 

material. Prediction accuracies for Glu-D1 and Glu-A1 were very good, but lower for the Glu-B1 

alleles where many alleles are highly related. Overall, SBG offers a high throughput method to 

call alleles from existing data.  

These genetic and genomic tools developed and implemented for end-use quality 

selection in wheat offer promising resources for continued improvement of both yield and 

quality in wheat breeding.  
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Chapter 1 - Introduction to the Genetics of Wheat Quality  

Wheat accounts for 20% of daily caloric intake of the world population and has one of 

the widest cultivation distributions of any crop (P. R. Shewry, Halford, & Lafiandra, 2003). 

Unlike other major cereals, wheat is almost exclusively processed into baked goods before 

consumption. Wheat production and nutrition must increase to meet projected demands of the 

growing human population. Yet, yields are constrained by abiotic and biotic stresses, and further 

threatened by a changing climate (Reynolds, 2010). Furthermore, wheat could be more nutritious 

and more efficient with resources in order to better meet the needs of global food security. Both 

advancements in wheat management techniques and improvement of wheat through new 

varieties are required to make wheat more resilient to stressors and sustainable to produce.  

One might argue that the unique properties of wheat flour that allow it to be baked into 

goods such as bread are in fact the driving force for the widespread cultivation and consumption 

of wheat. Which in turn, would mean that the gluten, which is major underlying factor of wheat 

end-use quality, is the reason wheat is so popular. Gluten is a large heterogenous protein matrix 

found in Triticeae tribe. The proteins of gluten are divided into three classes, the high molecular 

weight glutenin grain storage proteins (HMW-GS), the low molecular weight glutenin grain 

storage proteins (LMW-GS) and the mostly monomeric gliadins. The HMW-GS proteins form 

the backbone of the matrix through disulphide bonds between themselves. LMW-GS proteins act 

as chain branchers and terminators within the matrix, also through disulphide bonds. Gliadins 

primarily interact through hydrostatic forces with the matrix.  

 HMW glutenins are the most widely studied of the gluten proteins and allelic differences 

have historically have been shown to have the largest impact on quality. Each genome in wheat 

contains one HMW glutenin locus on the long arm of the group 1 chromosomes at which two 
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genes are located, an x subunit and a y subunit. The SDS-PAGE mobility of these subunits 

together gives rise the HMW glutenin allele names, e.g. Glu-D1 5x+10y. In domesticated wheat, 

the Glu-1 Ay subunit is always silent due to a transposon insertion, except in rare instances where 

an active y subunit has likely entered the gene pool from a wheat wild relative (Margiotta et al., 

1996). HMW-GS genes consist of highly conserved N and C terminal regions, and a highly 

variable central repetitive domain. The central repetitive domain of the x subunits is comprised 

of pentapeptide and nonapeptide repeats whereas the y subunit also contains a hexapeptide motif. 

Size differences between allelic proteins are most likely due to losses or gains of repeat units due 

to unequal crossing over.  

      LMW glutenins are the next most widely studied of the gluten proteins. These genes are 

located on the short arms on the group 1 chromosomes and share the locus with gliadin genes. 

There are typically about 4 LMW genes in each locus. Due to the increased complexity, these 

proteins are named by the fingerprint of their SDS-PAGE bands, e.g. Glu-A3 a. 

      Gliadins are the most complex and least studied of the gluten proteins. The exact number of 

gliadin genes, not alleles, in wheat has not been elucidated, but estimates come to between 60 

and 200. The genes for the omega, gamma and delta gliadins share the ~ 13 mega-base LMW 

locus on the short arms of the group 1 chromosomes, but when speaking about the gliadins, the 

locus is called Gli-1. The alpha/beta gliadins are located on the short arms of the group 6 

chromosomes, at the Gli-2 locus. Gliadin alleles are also named for their electrophoretic 

fingerprints.  

     Gliadins are regarded as monomeric proteins and glutenins as polymeric. Gliadins are 

monomeric because their cysteine residues, except for omega gliadins which lack cysteines 

altogether, form intramolecular (within molecule) disulphide bonds to stabilize the protein 
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structure. Glutenins also contain intramolecular disulphide bonds between cysteines, but also 

some free cysteines that form intermolecular (with other molecules) bonds. LMW glutenins are 

more similar to gliadins in amino acid sequence than to HMW glutenins. The key difference 

being that LMW glutenins have cysteine residues that interact with HMW glutenins.  

     HMW glutenins are thought to form the backbone of the gluten protein network to which 

LMW glutenins act as chain terminators. The number of free cysteines in HMW glutenins is 

correlated with quality, e.g. 1Dx5 that has an extra free cysteine compared to 1Dx2 and 1Bx20 is 

missing two conserved cysteines. The density of disulphide bonds and non-covalent interactions 

contribute to dough elasticity. Increasing the number of intermolecular bonds, through genetic 

factors or protein concentration, increases elasticity. Gliadins interact with the protein matrix 

through non-covalent bonds to contribute to dough viscosity. Together, the balance of gluten 

protein to other dough constituents and the balance of monomeric/polymeric gluten influence 

dough viscoelastic properties.  

Both dough strength and elasticity are determined by the structure of the gluten matrix. 

The backbone of the gluten matrix is formed by the covalent disulphide bonds between cysteine 

residues in HMW glutenin proteins. HMW glutenins typically possess between 4 and 6 cysteine 

residues, with the number and positions likely being determinant for the ability of that protein to 

covalently bond with another and thus to continue chains within in the matrix. LMW glutenins 

are structurally very similar to third class of gluten proteins, the gliadins, but were originally 

classified as glutenins because they covalently participated in the gluten matrix. Although some 

gliadins possess cysteine residues, most form intrachain disulphide bonds and therefore are not 

covalently bound in the gluten matrix. LMW glutenins typically possess an odd number of 

cysteine residues which allow them participate covalently in the gluten matrix (P. R. Shewry et 
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al., 2003). Both LMW glutenins and especially gliadins increase the extensibility of dough 

interrupting the HMW glutenin backbone and providing an avenue for molecular rearrangement 

of the gluten matrix during applied mechanical stress. 

HMW glutenins are encoded by a relatively simple locus on the long arm of the group 

one chromosomes in wheat. Hexaploid wheat, comprised of the A, B and D genomes, contains 

three HMW glutenin loci, Glu-A1, Glu-B1 and Glu-D1. Each locus harbors two HMW glutenin 

genes known as the x and y subunit, that are separated by 57 kilobases pairs (kb) in Glu-D1 to a 

couple hundred kilobase pairs as seen in Glu-B1 and Glu-A1 (Walkowiak et al., 2020). The x and 

y subunit genes arose from a duplication event that occurred approximately 7.2-10 million years 

ago, before the origin of the ancestral wheat genomes (ABD) at approximately 5.0 – 6.9 MYA 

(Allaby, Banerjee, & Brown, 1999). Although each locus contains two genes for a cumulative 

total of 6 in common wheat and 4 in durum wheat, some genes are inactive, either through a 

transposon insertion (as is the case with all Glu-A1y genes in common and durum wheat) or an 

early stop codon (Glu-A1x in the null allele or Glu-B1y in the 7x allele). There also a notable 

instance of a complete duplication Glu-B1x gene that occurs in the Glu-B1 7OE+8 allele.  

Allelic differences in all three gluten proteins contribute to the conformation of the gluten 

matrix. The position and number of cysteine residues being an obvious and exciting example. 

But multiple studies have also shown that differences in promoter elements between alleles lead 

to earlier and greater accumulation of protein in the grain (for example Glu-D1 5+10 as opposed 

to 2+12). Additionally, the duplicated x subunit in the Glu-B1 7OE+8 is associated with higher 

accumulation of the 7x protein and therefore is associated with better end use quality.  

Of the HMW glutenin alleles, the greatest impact on end-use quality is commonly 

attributed to the 5+10 allele at the Glu-D1 locus. Given the highly sought after quality 
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characteristics imparted by 5+10, numerous studies have set out to understand what 

characteristics of this allele are responsible for such superior quality characteristics. The 5x 

protein has a unique cysteine residue just within the central repeat domain. The accumulation 

timing and amount for this allele is greater than that of the other Glu-D1 alleles, in particular 

2+12. The central repeat domains appear to not possess any strange or unique characteristics 

compared to HMW glutenin alleles.  

Which HMW glutenin locus has the greatest effect on quality has been a point of interest 

for numerous studies (Lawrence, MacRitchie, & Wrigley, 1988). One study in particular showed 

rather elegantly the importance of each locus through EMS knockouts of Glu-A1, Glu-B1 and 

Glu-D1 in the Chinese wheat cultivar Xiaoyan 81 (Wang et al., 2017). The researchers measured 

the effect of the loss of an individual locus through not only gluten strength parameters, but also 

through sodium dodecyl sulfate (SDS) unextractable polymeric protein and insoluble glutenin. 

The latter two are measurements of the glutenin macropolymer, which consists of HMW and 

LMW glutenins. Knock out of Glu-D1 resulted in the greatest negative effect on the GMP size. It 

was interesting that Glu-D1 knockout still had the greatest effect on the GMP because Xiaoyan 

81 carries is the inferior the 2+12 allele associated with inferior quality. One would have 

expected such results with 5+10, but seeing a similar trend for even the inferior 2+12 indicates 

that Glu-D1 overall does indeed have a greater effect on quality than the other loci and that the 

effects attributed to Glu-D1 are not solely due to any individual allele.   

Given that Glu-D1 has two genes, the x and y subunit, the same researchers then 

wondered which of the two has the greater effect on the glutenin macropolymer. With EMS 

knockout mutants of Xiaoyan 54, a parent of Xiaoyan 81 with the same HMW glutenin alleles, 

they found that the loss of 2x of Glu-D1 decreased the relative amount of the insoluble glutenin 
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to a greater extent than the loss of 12y. Maybe the most exciting result was that the other HMW 

glutenin proteins (1Ax1, 1Bx14, 1By15) and the LMW-GS in the IG fraction were also reduced 

when 1Dx2 or 1Dy12 were knocked out. This indicates that the Glu-D1 proteins promote 

incorporation of other glutenin proteins into the glutenin macropolymer. This was further 

supported by comparing the same effect for Glu-A1 and Glu-B1 knockouts, where they found 

that the effect was much less pronounced. The glutenin proteins missing in the insoluble fraction 

were found in the soluble fraction (indicating that they were not covalently bound in the glutenin 

macropolymer).  

The conclusion that the 2x protein has a greater impact on the continuity of the GMP is 

supported by other studies that have found x subunit proteins form dimers with other x subunits 

and with y subunits, but y-y dimers have not been detected (Lindsay & Skerritt, 1998). Although 

Werner et al. (1992) were only able to identify homodimers of x-type HMW-GS. Additionally, 

the studies concluded that the Glu-D1 subunits were more important to the glutenin backbone 

than Glu-B1 and Glu-A1 because the Glu-D1 subunits were almost always present in the most 

difficult to reduce protein fractions.  

Some of the earliest work indicating that certain HMW glutenin proteins form oligomers 

bound so strongly to each other that they are resistant to reducing agents was by (Lawrence & 

Payne, 1983). They showed that the usually ignored bands at the top of an SDS-PAGE gel are 

actually oligomers, perhaps dimers, of HMW glutenin subunits that survived reduction with 

SDS. By applying a stronger reducing agent and separating those bands on a 2D SDS-PAGE gel 

they were able to deduce the identities of some of the HMW glutenin proteins that participated in 

these oligomers. Interestingly, they found that some bands consisted of x-x oligomers while 

others were x-y, but they never observed a y-y combination. They found that the oligomer bands 
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were consistent across varieties and were HMW glutenin allele specific. Their findings showed 

that particular HMW glutenin alleles combine with each other in predictable ways and we can 

deduce that these affinities underlie the gluten strength attributed to specific alleles.  

The molecular mechanisms imparting the extensibility and elasticity of gluten matrix 

have also been something of curiosity.  After learning from scanning electron microscopy of 

Glu-B1 20x+20y (durum wheat) that the HMW glutenins have a rod like appearance and 

deducing from analysis of the central repeat domain that the repeats appear have a beta turn 

structure, it was thought that the HMW glutenins might act like springs. Deforming under 

pressure and then retaking the spring shape under relaxation. However, further analysis of the 

disulphide linkages showed that the structure of glutenins is more of globular nature, especially 

in the C and N terminal regions where intermolecular bonds take place.  

Although gluten genes and proteins have been widely studied and are considered the 

major determinants of quality, other factors also a play a role. Quality traits are influenced by 

both genetics and environment, as we will explore in Chapter 2 of this dissertation. Higher 

protein concentration results typically in greater gluten strength. Though there exist some genetic 

control of protein concentration, such as the GPC genes, this trait is primarily controlled by 

environment. Drought conditions typically result in high grain protein, but this is because starch 

accumulation has been limited and therefore yield decreased. Grain protein is also impacted by 

nitrogen and sulfur availability. If these nutrients are restricted, then both protein and yield are 

limited. However, increasing these nutrients above a threshold will not increase protein 

concentration as yield (starch) is also increased.  

End-use quality research and breeding are important in achieving global food security.  

Not only do we need to develop higher yielding crops, more resilient and sustainable crops, but 
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those crops must also be nutritious with end-use quality sufficient to make the products they are 

intended for. The issue that wheat breeders face is that screening for end-use quality is labor 

intensive, expensive and requires a large amount of grain. Therefore, measuring end-use quality 

only occurs very late in the variety development and on relatively few candidates. The real world 

impact of this is that the newest, best and highest yielding varieties often make poor bread. 

Genetic studies have shown that end-use quality in wheat depends largely on which gluten 

proteins a variety possesses, among other smaller effect genes. Profiling gluten genes is currently 

done with a protein gel. While faster than quality testing, these gels are still too slow and too low 

resolution to broadly screen breeding candidates. With this information, my research goals were 

to develop molecular biology and bioinformatic tools that allow breeders to select for improved 

end-use quality earlier in the program (and therefore on far more candidates) and to tailor their 

varieties for the target growers based on the gluten genes.   

My specific questions were (1) are gluten genes resilient to increasing heat and drought in 

the changing climate, (2) can we reliably predict the quality of candidate lines from their 

genetics, (3) can we determine the gluten genes of a variety from only its DNA sequences, (4) do 

wheat wild ancestors possess a greater diversity of gluten genes?  
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Chapter 2 - Glutenin Gene by Environment Interaction for Quality 

in Bread Wheat 

 

 Introduction 

Wheat is major staple crop on which people rely for 20% of their carbohydrates and 20% 

of the protein. Wheat is unique among food crops because it is not consumed in its raw or whole 

cooked form, but is first milled into flour then the flour is used to make a diversity of foods.  

This ability is primarily attributed to a gluten storage protein family found only in the Triticeae 

tribe which interact to form a matrix when hydrated and mixed during dough development.  The 

matrix is strong, extensible and elastic, allowing the baker to form the dough or batter.  Once 

baked, and water removed, the gluten matrix holds its form as bread, cake, crackers or noodles.   

Gluten is made up of two classes of proteins, called glutenins and gliadins.  The 

viscoelastic properties of dough are primarily determined by the ratio of glutenin to gliadin 

(Sissons, Ames, Hare, & Clarke, 2005; Southan & MacRitchie, 1999), available cysteine 

residues for intramolecular disulphide bonds, primary structure of individual proteins (S. Li et 

al., 2020), and overall protein proportion in grain.  Gliadins confer mainly extensibility and 

flowability whereas glutenins confer strength and elasticity  Shifting of the glutenin/gliadin ratio 

and the overall amount of protein changes the extensibility and strength which determines end-

use profile.  This ratio is controlled by relative gene expression which is inversely related (De 

Santis et al., 2017) and influenced by environmental conditions (Altenbach, Tanaka, & 

Seabourn, 2014; De Santis et al., 2017; Giuliani et al., 2015; Hurkman, Tanaka, Vensel, 

Thilmony, & Altenbach, 2013; Yongfang Wan, Gritsch, Hawkesford, & Shewry, 2014). 
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Glutenins are divided into two subclasses, high molecular weight glutenins and low 

molecular weight glutenins.  HMW glutenins are present on the long arms of 1A, 1B and 1D.  At 

each locus are two HMW glutenin genes, an x subunit and a y subunit.  LMW glutenins are more 

diverse and the loci composition more complicated.  Between 1 and 4 functional LMW glutenin 

genes are present at each of the loci on the short arms of 1A, 1B, and 1D.  These loci are shared 

with the γ-gliadins, δ-gliadins, and ω-gliadins.  LMW glutenin gene sequences and protein 

structures more closely resemble γ-gliadins, but possess cysteine residues available for 

disulphide bonding and therefore are polymeric proteins.   

The gluten matrix is formed through intermolecular disulphide bonds primarily between 

HMW glutenins and LMW glutenins.  HMW glutenins have between 5 and 7 cysteine residues 

available to form disulphide bonds with neighboring HMW and LMW glutenins to form the 

polymeric gluten matrix.  Monomeric gliadins contain an even number of cysteine residues that 

form only intramolecular bonds, however, some gliadin proteins have an uneven number of 

cysteines and therefore act as chain terminators.   

Gliadins are equally important determinants of wheat quality and also under well-defined 

genetic control forming primarily monomeric proteins without available cysteine residues.  There 

have been 5 families of gliadins described which include the γ-, δ-,  ω-, α-, and β- gliadins.  

While the α /β gliadins are on the group 6 homologous chromosomes, γ-, δ-,  ω-gliadins share 

loci with the LMW glutenins.  The interaction of these proteins forms the large heterogenous 

protein matrix called gluten.   

Beyond genetic factors on the amount and type of glutenin, quality is highly influenced 

by environmental growing conditions with stress conditions both increasing and decreasing 

quality.  Drought and heat stress generally decrease yield by limiting starch accumulation in the 
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grain which results in a higher protein concentration and therefore higher processing and end-use 

quality.  This is because protein accumulates in the wheat kernel within 15 - 20 days post 

anthesis, but there after increases in grain size are primarily due to starch accumulation.  Beyond 

protein concentration in the grain, the quality and structure of starch and protein are highly 

impacted by environment.  In particular, heat stress decreases milling quality by causing 

shriveling and increased hardness in the grain which results in higher damaged starch during 

milling.   

A strong genotype by environment interaction for quality traits is well documented in 

literature, however little work has explored the impact of the gene gluten x environment 

interaction on quality.  In order to assemble the best possible varieties for the target 

environments, the genes underlying the genotypes must be elucidated.  We set out to (i) 

determine if gene x environment exists for stress environments, (ii) if all three HMW glutenin 

and all three LMW glutenin (and also gliadin) loci show gene x environment interaction, and (iii) 

estimate which alleles at these loci are favorable and most stable across environments or best 

suited for specific environments.   

 

 Methods 

 Plant Material 

54 spring bread wheat varieties representing the past 50 years of wheat breeding program 

at CIMMYT were grown in Obregon, Mexico during cropping seasons 2012-2013 and 2013-

2014.  To test environmental effects on quality parameters, the lines were grown in 6 

environments, representing two types of stress: heat and drought.  The environments were 

selected to simulate the mega-environments (ME) targeted by the CIMMYT wheat breeding 
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program (Hernandez 2017) including ME1, ME2, ME4, and ME5.  The types of stress 

environments are summarized in Table 1, which included optimal irrigated conditions (ME1), 

basin irrigation (ME2), mild heat stress (ME5), severe heat stress (ME5), mild drought stress 

(ME4), severe drought stress (ME4).  Each variety was grown in three replicates in a randomized 

complete block design.  Weather data from the experimental station recorded a negligible 

amount of precipitation during the growing period.   

Heat and drought stress environments were compared to the control environments for 

optimal yield.  The control environments were both flood irrigated with more than 500 mm water 

applied over the growing season.  These two environments differed in planting bed design, with 

optimal irrigation being planted in raised beds and basin irrigation being flat planted.  Optimal 

irrigation experiment also received more nitrogen than all other experimental environments.  

Plants were sown in November for control and drought stress environments to achieve maximum 

temperatures of 31-32 ºC during grain filling in March and April.  The heat stress environments 

were sown later in January for mild heat stress and in February for severe heat stress, to achieve 

higher maximum temperatures during grain filling in May of 35-39 C.  Reduced irrigation was 

applied to drought stress environmental fields, with mild drought stress receiving 300 mm and 

severe drought receiving 180 mm over the growing season.  Details of field experiment can be 

found in (Guzmán et al., 2016; Hernández-Espinosa et al., 2018). 

 

 Gluten Allele Determination 

Genotyping for the glutenin alleles was conducted using sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) as described by  (Pena, Amaya, Rajaram, & 

Mujeeb-Kazi, 1990).  The glutenin and gliadin protein fractions were separated as described by 
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(N. K. Singh, Shepherd, & Cornish, 1991) with a modification.  The concentration of the 

separation gel was 12.5% with a 0.97% cross linker and the gel was run with a current of 12.5 

mA.  Alleles were identified using the nomenclatures proposed by (Payne & Lawrence, 1983) for 

high molecular weight glutenins and by (Branlard, Dardevet, Amiour, & Igrejas, 2003) for low 

molecular glutenins.  

 

 High Molecular Weight Glutenin Molecular Markers 

Genotyping-by-sequencing was coincidentally conducted on a portion of the 54 wheat 

lines in this study during the course of genotyping for the Chapter 3 study of genomic selection 

models. See the materials and methods section of Chapter 3 for details of how variants were 

called. Briefly, genotyping by sequencing reads were aligned to the Chinese Spring reference 

genome (RefSeq v1.0) and single nucleotide polymorphisms were called with TASSEL v5. 

Variants within the Glu-A1, Glu-B1 or Glu-D1 locus were examined to determine if molecular 

haplotypes could be elucidated. The locus regions were defined as the x and y subunit genes, the 

space between the subunits and 2 kb flanking up or down stream. The regions were chr1D: 

412158785-412221631 for Glu-D1, chr1B:555763126-555937716 for Glu-B1, and  for Glu-A1.  

 

 Statistical Analysis 

Statistical analysis was performed in R version 3.5.2.  Correlation between quality traits 

were found with the cor (R Core Team, 2018) package and plotted with the corrplot package 

(Wei and Simko, 2017).  Collinearities between glutenin loci, that is how often certain alleles 

cooccurred in wheat varieties, were determined using chi square tests with xtabs (R Core Team, 

2018).  Nearly all glutenin loci exhibited pairwise collinearity, indicating that glutenin alleles at 
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different loci were not random within varieties and allelic effect could be confounded.  Fitting a 

model with all loci at once resulted in an overfit model and inflated effect estimates.  Therefore, 

all loci were fit separately.  Each quality trait was fit as separate response variable in the 

following model using lme4 package (Bates, Mächler, Bolker, & Walker, 2015).   

 

𝑦𝑖𝑗𝑘 =  𝜇 + 𝑒𝑖 + 𝑔𝑗 +  𝛾𝑘 +  𝑒𝛾𝑖𝑘 +  𝜀𝑖𝑗𝑘 

 

Where 𝑦𝑖𝑗𝑘 is the adjusted value of a given quality trait, 𝜇 is the overall mean, 𝑒𝑖 is the fixed 

effect of the ith environment, 𝑔𝑗 is the fixed effect of the jth allele for the given glutenin gene, 

𝛾𝑘 is the fixed effect of the kth year, 𝑒𝛾𝑖𝑘  is the fixed effect of the interaction between the ith 

environment and and kth year, and 𝜀𝑖𝑗𝑘𝑙 is the residual variance, where 𝜀𝑖𝑗𝑘𝑙~~ 𝑁(0, 𝜎𝑒
2).   

The marginal means and contrasts were calculated using emmeans (Russel Length, 2018).  

Differences in quality traits between alleles within an environment were considered significant at 

α < 0.05.  Variance attributable to each glutenin locus was found by fitting the above model as a 

random effect only model and all glutenin loci simultaneously.   

𝑦𝑖𝑗𝑘 =  𝜇 + 𝑒𝑖 + 𝑔𝑗 + 𝛾𝑘 +  (𝑒𝑔𝛾)𝑖𝑗𝑘 + 𝑣𝑙 + (𝑣𝑒𝛾)𝑙(𝑖(𝑘)) +  𝜀𝑖𝑗𝑘𝑙 

Graphical displays were created in R with ggplot2 (Wickham, 2016) and viridis (Garnier, 2018). 

   

 Results 

 High Molecular Weight Glutenin Markers 

Given the results found in Chapter 5 of this dissertation that multiple Glu-B1 haplotypes 

exist within several SDS-PAGE alleles, we attempted to resolve haplotypes of the HMW 

glutenin loci. We found that a portion of these wheat accessions were genotyped in the course of 
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genotyping-by-sequencing of the CIMMYT wheat breeding program for making genomic 

predictions. However, few to no variants were found within the HMW glutenin loci.  No SNPs 

were found in the Glu-A1 locus.  

Within the 63 kb Glu-D1 locus region (chr1D: 412158785-412221631, which is 2 kb 

flanking the Glu-D1 locus) , 2 SNPs were detected (at 412169433 and 412169869, only 436 bp 

between the two). At both sites, the homozygous reference alleles were perfectly correlated with 

5+10 and the homozygous alternative alleles were perfectly correlated with 2+12. This was 

unexpected given that the reference genome used for alignments is Chinese Spring, which has 

2+12.  

We found only 1 SNP within the 175kb Glu-B1 locus (chr1B:555763126-555937716) 

and it was not reliably predictive of any allele. The SNP (at 555765141) occurred in a 

homozygous state in GID5794687 (13+16) and heterozygous in GID13396 (13+16). These two 

accessions were the only two with the 13+16 SDS-PAGE allele, indicating that the variant site 

could be predictive for the allele, but not in this dataset.  

 

 Environmental Effect 

Environment had a substantial effect on yield and quality parameters.  Grain protein, 

flour protein and grain yield were highly correlated with each other (Figure 2.1), and were 

particularly affected by environment (Figure 2.2), with environmental variance accounting for up 

to 75% of the total variance (Table 2.2).  The greatest negative effect on grain yield was severe 

heat stress (Figure 2.3). Wheat variety typically explained between 15 – 30% of phenotypic 

variance and the variety by environment interaction explained another 15-30%.  The main effects 

of gluten alleles explained upwards of 25% of variation for quality traits (Tables 2.3-2.5).  While 
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the Glu-A1 and Glu-D1 allele by environment interaction explained a small, but measurable 

amount of variation for some quality traits, between 0.5 – 3.5%.  Other gluten genes appeared to 

have a negligible interaction with environment, such as Glu-B1 which explained no variation for 

most traits.   

 

Glu-D1 By Environmental Interaction 

The swelling index of gluten was significantly different between the alleles in severe 

drought stress and the difference in SDS sedimentation was nearly significant (p-value = 0.058) 

in severe heat (Figure 2.4). GMP, UPP %, SIG, SDS sedimentation all attempt to measure the 

amount of polymeric protein in flour. Polymeric protein, the protein aggregates of HMW and 

LMW glutenins joined by disulphide bonds, are the intermediate building blocks of the gluten 

network that will be formed in the dough. Studies have shown that the amount of polymeric 

protein in flour is correlated with gluten strength in dough.  The primary difference between the 

swelling index of gluten and the SDS sedimentation test is that the SDS soluble (i.e. gluten 

monomers) are removed in SIG before measuring gluten polymer swelling.  

The impact of environment x Glu-D1 on gluten strength measurements (Mixograph mix 

time and torque at peak, alveograph W and P/L, swelling index of gluten and loaf volume) was 

seen in the magnitude of the difference between alleles.  Glu-D1 5+10 always conferred stronger 

gluten than 2+12, but the effect was most pronounced in severe drought stress for all gluten 

strength measurements.  Severe heat stress also increased the effect size between alleles, but to a 

lesser degree and less consistently.  Therefore, although we saw increased grain and flour protein 

associated with 5+10 under severe heat and drought, a clear impact on gluten strength wasn’t 

found.  We hypothesized this may be due to controlling for flour protein content when modelling 
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gluten strength parameters, but the same trends were found when dropping flour protein content 

from the linear model.   

The environment x Glu-D1 interaction accounted for the greatest variation in gluten 

strength measurements among all the environment x glutenin interactions.  However, the 

attributable variance was still small, between 1.8 and 5.4% of the total variation.  The main effect 

of Glu-D1 often dwarfed the environment x Glu-D1 variance, reaching upwards of 26% of the 

total variation.  The variety x environment variance was also always lower than the Glu-D1 

variance of gluten strength traits, except for alveograph P/L.  These results indicate that the 

genotype x environment variance of the quality parameters is partially, but not wholly 

attributable to the Glu-D1 x environment interaction.  From the results, we can clearly conclude 

that Glu-D1 5+10 conferred superior gluten strength than 2+12 in all environments with some 

GxE interaction observed for Glu-D1 alleles.  The beneficial effects of 5+10 were increased 

under stress environments, especially severe drought, but mitigated in the most favorable, high 

yielding environments.   

 

Glu-A1 By Environmental Interaction 

Flour protein concentration exhibited environment x Glu-A1 interaction, with Ax1 having 

a higher concentration than Ax2* in severe heat and drought stress.  The same trend was not seen 

in grain protein concentration.  This may be due to differences in flour yield.  The environment x 

Glu-A1 interaction was significant for severe heat and severe drought, with allele Ax2* having a 

higher flour yield.   

Overall, gluten strength measurements were not significantly different between alleles in 

any environments for Glu-A1.  The only exception was for alveograph W, where allele Ax1 was 



18 

higher in basin irrigation, severe heat and severe drought (Figure 2.5).  As seen in Glu-D1, the 

measurement of glutenin polymer size (swelling index of gluten) was significantly different 

between alleles in severe drought and nearly significant in severe heat, with allele Ax1 being 

higher than Ax2*.  Although some gene x environment interactions were seen for protein 

concentration and gluten strength, no difference between alleles was detected for loaf volume.  

These results indicate that although the Glu-A1 x environment interaction impacts glutenin 

polymer and flour protein, but does have a measurable impact on final bread making quality.  

 

 Discussion 

Many of the differences in allele effects under heat stress are likely due to the shortened 

grain filling period.  Previous studies have shown that glutenins begin accumulation in the grain 

earlier than gliadins resulting in a higher glutenin/gliadin ratio (Koga et al., 2016).  Given that 

glutenins confer greater gluten strength, it is possible that shortening the grain filling period 

would lead to greater mixograph parameters and loaf volume.  However, reports conflict as to 

the effect of heat stress on quality traits.  (Irmak, Naeem, Lookhart, & MacRitchie, 2008; Naeem 

& MacRitchie, 2005) found that heat stress decreased end-use quality, while (Blumenthal et al., 

1991; Y. Li, Wu, Hernandez-Espinosa, & Peña, 2013; Maphosa, Langridge, Taylor, Emebiri, & 

Mather, 2015) found increased quality under heat stress.  These differences could be due to the 

stage when the heat stress was applied, but also due to the glutenin allele composition of the 

varieties.   

In a study of NILs for 5 Glu-B1 alleles (6+8, 7+8, 7+9, 15+15, 17+18) in a Chinese 

cultivar found that 6+8 had the significantly slowest rate of accumulation that ultimately led to a 

lower unextractable polymeric protein (UPP) content (T. Liu et al., 2016).  Additionally, other 
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studies with NILs showed similar results for Glu-D1 2+12 vs 5+10, Glu-B1 20+20 vs 7+9 and 

Glu-B1 7+8 vs 7OE+8 (Naeem & MacRitchie, 2005) (S. Li et al., 2020).  All four alleles with 

delayed UPP in grain filling are associated with poor quality characteristics.  It therefore could 

be hypothesized that these alleles interact more negatively with heat stress than their 

counterparts.   

Previous studies with near isogenic lines differing between 5+10 and 2+12 have shown 

that 5+10 has an earlier and more rapid unextractable polymeric protein accumulation (Irmak et 

al., 2008).  It was hypothesized that because of this, 5+10 lines would have better quality 

characteristics under environmental stresses that shorten grain filling duration, such as severe 

heat and drought.  To test whether the earlier and more rapid accumulation of Glu-D1 glutenins 

provided better quality characteristics, we predicted that the superior gluten strength effects of 

5+10 would be greater under severe heat and drought stress.  This was consistent with the 

previous physiology model as we observed that Glu-D1 5+10 was associated with significantly 

higher grain and flour protein content than Glu-D1 2+12 under severe heat stress and severe 

drought stress.   

To evaluate confounding quality factors, the two Glu-D1 alleles did not differ in test 

weight, thousand kernel weight or grain yield.  NIL studies of Glu-D1 alleles have shown that 

5+10 is associated with both a greater gluten macropolymer and a greater flour protein 

concentration (Don, Lookhart, Naeem, MacRitchie, & Hamer, 2005).   

The swelling index of gluten was significantly different between the alleles in severe 

drought stress and the difference in SDS sedimentation was nearly significant (p-value = 0.058) 

in severe heat (Figure 2.4). GMP, UPP %, SIG, SDS sedimentation all attempt to measure the 

amount of polymeric protein in flour. Polymeric protein, the protein aggregates of HMW and 
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LMW glutenins joined by disulphide bonds, are the intermediate building blocks of the gluten 

network that will be formed in the dough. Studies have shown that the amount of polymeric 

protein in flour is correlated with gluten strength in dough.  The primary difference between the 

swelling index of gluten and the SDS sedimentation test is that the SDS soluble (i.e. gluten 

monomers) are removed in SIG before measuring gluten polymer swelling.  

 

 Conclusion 

In this study we observed the large and consistent main effect of Glu-D1 on the quality 

parameters for bread wheat. We also observed that the 5+10 allele at Glu-D1 was superior in all 

environments. Most importantly, we found that a detectable gene x environment interaction 

exists for Glu-D1 exists. The gene x environment interaction was due to an increased positive 

effect of the 5+10 allele under environmental stress. We also observed an environmental 

interaction between Glu-A1 alleles, with Ax1 being superior to Ax2* for gluten strength. These 

results support the approach for breeders uniformly selecting 5+10 allele regardless of the target 

environment and suggest that Ax1 may be desirable over Ax2*.  
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Table 2.1 - Environmental treatment summary. 

Heat and drought stress environments were compared to the control environments for optimal 

yield.  The two control environments were referred to as ‘optimal’, which was fully irrigated 

with a drip system, and as ‘basin irrigation’, which was flood irrigated.  The heat stress 

environments, ‘mild heat stress’ and ‘severe heat stress’ were subjected to maximum daily 

temperatures between 35 – 39 °C during grain filling.  The drought stress environments, ‘mild 

heat stress’ and ‘severe heat stress’, were planted in November to avoid heat stress, and received 

reduced irrigation levels of 300 mm for mild drought and 180 mm for severe drought.  Details of 

field experiment can be found in Hernández-Espinosa et al. (2017) and Guzman et al. (2016).   

 

Environment 

Planting 

date Irrigation (mm) 

Nitrogen 

(kg/ha) 

Max temp 

during grain 

filling (°C) 

Optimal irrigation November 
> 500 (raised bed - 

flood) 
300 31-32 

Basin irrigation November > 500 (flat - flood) 200 31-32 

Mild heat stress January    500 (drip) 200 35-39 

Severe heat stress February    500 (drip) 200 35-39 

Mild drought 

stress 
November    300 (drip) 200 31-32 

Severe drought 

stress 
November    180 (drip) 200 31-32 
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Figure 2.1 - Correlation among grain traits.  

Phenotypic correlations over all 6 environments and both years showed that in general the 

quality traits were positively correlated with each other and either not correlated or slightly 

inversely correlated with yield traits. The exception being that grain and flour protein content 

were strongly negatively correlated with grain yield. Grain yield had a strong negative 

correlation with flour protein, but very little to no correlation with gluten strength indicating that 

high yield does not necessarily equal poor quality. 
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Figure 2.2 - Trait distributions and correlations dissected by environment.  

Diagonal elements show the trait distributions dissected by the 6 environments. Optimal in teal, 

basin irrigation in salmon, mild drought in yellow, mild heat in green, severe drought in blue, 

severe heat in violet. The lower off diagonal elements show scatter plots between the trait listed 

on the x axis and the trait on the y axis, also dissected by environment. The upper off diagonal 

elements show the corresponding Pearson’s correlation coefficients. 
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Figure 2.3 - Grain yield distributions over environments. Grain yield (tons/ha) for all 54 

CIMMYT varieties over 2 years.  
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Figure 2.4 – Environment interaction of Glu-D1 alleles.  

Estimated values for alleles 5+10 (green squares) and 2+12 (purple circles) and standard error 

bars are shown for each trait. GRNPRO: grain protein content (% at 12.5% moisture); 

GRAIN.YIELD: grain yield (tons/ha) SDS: flour sodium dodecyl sulfate sedimentation volume 

(mL); SIG: swelling index of gluten; MIXTIM: optimal mixing time from Mixograph (min). 
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Figure 2.5 - Environmental interaction of Glu-A1 alleles.  

Estimated values for alleles 2* (green squares) and 1 (purple circles) and standard error bars are 

shown for each trait. GRNPRO: grain protein content (% at 12.5% moisture); FLRYLD: flour 

yield from milling (% recovered); GPI: gluten protein index; SIG: swelling index of gluten; 

ALVW: Alveograph W (work value from alveograph curve); LOFVOL, pup loaf volume (cm2). 
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Table 2.2 - Variance explained by model components in yield traits. 

Percent of total variance (% var) shows the attributable variance to each effect divided by the 

total variance. TESTWT: test weight (kg/hL); TKW: thousand kernel weight (grams); 

GRNHRD: Grain hardness (PSI, %); GRNYLD: grain yield (tons/ha); FLRYLD: flour yield 

from milling (% recovered). 

  TESTWT TKW  GRNHRD GRNYLD  FLRYLD 

  vcov % var vcov % var vcov % var vcov 

% 

var vcov % var 

ENVIRONMENT 1.6 36.8 18.0 35.5 2.3 15.2 2.7 75.8 3.1 24.4 

YEAR 0.0 0.0 0.0 0.0 1.6 10.5 0.0 1.4 1.3 10.6 

ENVIRONMENT:YEAR 0.6 14.5 9.2 18.1 0.7 4.9 0.1 2.8 1.1 8.6 

FLRPRO 0.0 0.0 0.0 0.0 0.0 0.1 0.2 6.6 0.0 0.0 

RELEASE.YEAR 0.0 0.0 0.0 0.0 0.9 6.0 0.0 0.9 0.0 0.0 

GID 0.6 13.8 8.5 16.7 2.3 15.6 0.0 0.8 1.7 13.6 

GID:ENVIRONMENT:YEAR 0.6 12.5 2.5 4.9 1.6 10.3 0.1 2.4 1.5 12.4 

GluA1 0.0 0.0 0.0 0.0 0.3 2.3 0.0 0.1 0.4 3.1 

GluA1:ENVIRONMENT:YEAR 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 

GluA3 0.0 0.0 6.5 12.8 0.0 0.0 0.0 0.0 0.0 0.0 

GluA3:ENVIRONMENT:YEAR 0.0 0.2 0.2 0.4 0.0 0.2 0.0 0.0 0.0 0.0 

GluB1 0.1 2.2 0.0 0.0 0.5 3.5 0.0 0.0 0.6 4.8 

GluB1:ENVIRONMENT:YEAR 0.0 0.9 0.7 1.4 0.0 0.1 0.0 0.1 0.0 0.0 

GluB3 0.0 0.0 1.6 3.2 2.6 17.2 0.0 0.0 0.0 0.0 

GluB3:ENVIRONMENT:YEAR 0.1 1.4 0.1 0.2 0.2 1.6 0.0 0.6 0.0 0.0 

GluD1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

GluD1:ENVIRONMENT:YEAR 0.2 4.0 1.3 2.6 0.2 1.3 0.0 0.5 0.4 2.8 

GluD3 0.0 0.0 0.1 0.2 0.0 0.3 0.1 2.8 0.0 0.0 

GluD3:ENVIRONMENT:YEAR 0.0 0.3 0.5 0.9 0.3 1.7 0.0 0.0 0.0 0.0 

X1B.1R 0.4 8.1 0.0 0.1 0.0 0.0 0.0 0.0 1.9 14.8 

            

Phenotypic variance 4.5  47.7  12.8  4.2  10.1  

Model total variance 4.4  50.8  15.1  3.5  12.5  

Residual 0.2 5.1 1.6 3.2 1.4 9.0 0.2 5.0 0.6 4.9 
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Table 2.3 - Variance explained by model components in dough mixing traits. 

Percent of total variance (% var) shows the attributable variance to each effect divided by the 

total variance. MIXTIM: optimal mixing time from Mixograph (min); PEAK: Mixograph mixing 

midline peak (torque); ALVW: Alveograph W (work value from alveograph curve); ALVPL: 

Alveograph P (tenacity) divided by L (extensibility) (mm/mm). 

  MIXTIM  PEAK   ALVW   ALVPL  

  vcov % var   vcov 

% 

var   vcov % var vcov 

% 

var 

ENVIRONMENT 0.0 3.7  201.3 8.6  6626.9 22.8  0.0 3.9 

YEAR 0.0 0.0  0.0 0.0  0.0 0.0  0.0 6.0 

ENVIRONMENT:YEAR 0.1 3.8  48.9 2.1  531.7 1.8  0.0 4.2 

FLRPRO 0.0 0.1  0.2 0.0  0.0 0.0  0.0 0.0 

RELEASE.YEAR 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 

GID 0.2 14.6  303.3 12.9  2767.8 9.5  0.1 22.1 

GID:ENVIRONMENT:YEAR 0.1 8.2  143.5 6.1  1636.7 5.6  0.1 23.7 

GluA1 0.0 0.0  0.0 0.0  345.9 1.2  0.0 0.0 

GluA1:ENVIRONMENT:YEAR 0.0 0.1  5.3 0.2  127.4 0.4  0.0 0.0 

GluA3 0.1 6.6  165.0 7.0  2489.4 8.6  0.0 1.0 

GluA3:ENVIRONMENT:YEAR 0.0 0.2  3.1 0.1  85.7 0.3  0.0 0.0 

GluB1 0.0 1.5  67.2 2.9  781.9 2.7  0.0 4.4 

GluB1:ENVIRONMENT:YEAR 0.0 0.5  9.1 0.4  16.0 0.1  0.0 0.8 

GluB3 0.0 0.0  0.0 0.0  0.0 0.0  0.1 17.0 

GluB3:ENVIRONMENT:YEAR 0.0 0.8  26.6 1.1  202.4 0.7  0.0 7.7 

GluD1 0.3 25.7  518.6 22.1  3430.8 11.8  0.0 0.0 

GluD1:ENVIRONMENT:YEAR 0.0 2.0  31.0 1.3  406.7 1.4  0.0 5.0 

GluD3 0.1 7.6  156.3 6.7  1924.0 6.6  0.0 0.0 

GluD3:ENVIRONMENT:YEAR 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.8 

X1B.1R 0.3 22.3  632.9 26.9  7292.4 25.1  0.0 0.0 

             

Phenotypic variance 0.9   1425.2   18715.8   0.3  

Model total variance 1.3   2349.6   29091.6   0.3  

Residual 0.0 2.1  37.4 1.6  425.7 1.5  0.0 3.5 
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Table 2.4- Variance explained by model components in gluten strength traits. 

Percent of total variance (% var) shows the attributable variance to each effect divided by the 

total variance. SDS: flour sodium dodecyl sulfate sedimentation volume (mL); SIG: swelling 

index of gluten; GPI: gluten protein index, LOFVOL, pup loaf volume (cm2). 

  SDS   SIG   GPI   LOFVOL 

  vcov 

% 

var  vcov 

% 

var  vcov % var vcov 

% 

var 

ENVIRONMENT 2.7 18.2  0.1 28.5  22.8 20.1  1110.5 20.6 

YEAR 0.0 0.0  0.0 7.3  0.0 0.0  19.5 0.4 

ENVIRONMENT:YEAR 0.5 3.2  0.0 3.4  4.6 4.0  23.7 0.4 

FLRPRO 0.0 0.1  0.0 0.0  0.0 0.0  0.0 0.0 

RELEASE.YEAR 0.1 0.8  0.0 1.7  8.1 7.1  125.4 2.3 

GID 1.9 13.1  0.0 7.6  4.3 3.8  1357.5 25.1 

GID:ENVIRONMENT:YEAR 1.1 7.4  0.0 7.5  5.6 4.9  819.2 15.2 

GluA1 0.1 0.5  0.0 2.3  5.2 4.6  0.1 0.0 

GluA1:ENVIRONMENT:YEAR 0.0 0.0  0.0 0.0  0.2 0.2  0.0 0.0 

GluA3 2.1 14.5  0.0 6.6  7.0 6.2  44.5 0.8 

GluA3:ENVIRONMENT:YEAR 0.1 0.5  0.0 0.5  0.5 0.5  6.1 0.1 

GluB1 0.4 2.7  0.0 0.7  0.0 0.0  0.0 0.0 

GluB1:ENVIRONMENT:YEAR 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 

GluB3 1.2 8.0  0.0 0.0  0.0 0.0  976.1 18.1 

GluB3:ENVIRONMENT:YEAR 0.2 1.2  0.0 0.9  0.9 0.8  101.3 1.9 

GluD1 0.0 0.0  0.0 1.7  0.0 0.0  367.6 6.8 

GluD1:ENVIRONMENT:YEAR 0.2 1.6  0.0 1.6  1.0 0.8  112.5 2.1 

GluD3 0.0 0.0  0.0 0.0  0.0 0.0  80.4 1.5 

GluD3:ENVIRONMENT:YEAR 0.0 0.0  0.0 0.0  0.0 0.0  0.0 0.0 

X1B.1R 3.8 26.3  0.1 24.9  50.3 44.3  15.3 0.3 

             

Phenotypic variance 11.2   0.3   64.2   5279.9  

Model total variance 14.6   0.5   113.4   5403.6  

Residual 0.3 2.0  0.0 4.8  2.9 2.5  244.0 4.5 
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Table 2.5 - Variance explained by model components in solvent retention capacity traits. 

Percent of total variance (% var) shows the attributable variance to each effect divided by the 

total variance. SRC LA: solvent retention capacity of lactic acid solution; SRC H2O: solvent 

retention capacity of distilled water; SRC SOD: solvent retention capacity of sodium carbonate 

solution; SRC SUC: solvent retention capacity of sucrose solution.   

  SRC LA SRC H2O SRC SOD SRC SUC   

  vcov % var vcov % var vcov % var vcov 

% 

var 

ENVIRONMENT 127.8 38.3 1.7 12.1 2.5 11.1 8.8 26.6 

YEAR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

ENVIRONMENT:YEAR 5.4 1.6 1.7 12.4 1.9 8.7 1.4 4.2 

FLRPRO 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.1 

RELEASE.YEAR 7.5 2.2 0.0 0.0 0.0 0.0 0.0 0.0 

GID 37.9 11.4 5.3 37.5 8.4 37.7 8.0 24.2 

GID:ENVIRONMENT:YEAR 15.5 4.6 1.8 13.1 2.4 10.6 3.2 9.8 

GluA1 16.2 4.8 0.0 0.0 0.0 0.0 0.0 0.0 

GluA1:ENVIRONMENT:YEAR 0.4 0.1 0.0 0.0 0.2 0.8 0.1 0.3 

GluA3 22.5 6.7 0.2 1.2 0.0 0.0 0.4 1.3 

GluA3:ENVIRONMENT:YEAR 1.2 0.4 0.1 0.9 0.0 0.0 0.8 2.4 

GluB1 1.5 0.5 0.0 0.0 0.0 0.0 0.5 1.5 

GluB1:ENVIRONMENT:YEAR 0.0 0.0 0.1 0.7 0.1 0.3 0.0 0.0 

GluB3 0.0 0.0 0.3 2.5 1.1 4.7 0.0 0.0 

GluB3:ENVIRONMENT:YEAR 3.1 0.9 0.1 0.9 0.7 3.0 0.4 1.3 

GluD1 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

GluD1:ENVIRONMENT:YEAR 2.3 0.7 0.1 0.9 0.3 1.3 0.4 1.1 

GluD3 0.0 0.0 0.4 2.9 0.0 0.1 0.6 1.7 

GluD3:ENVIRONMENT:YEAR 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 

X1B.1R 85.7 25.7 0.7 5.1 2.9 13.1 5.9 17.8 

          

Phenotypic variance 242.9  13.7  20.1  28.5  

Model total variance 333.7  14.1  22.2  33.0  

Residual 6.7 2.0 1.4 9.8 1.7 7.8 2.6 7.8 
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Chapter 3 - Genomic Selection Models for End Use Quality Traits 

 

 Introduction 

The top priority of the CIMMYT wheat breeding program is to release stably higher 

yielding varieties for the many mega-environments. The yield increases should be as stable as 

possible across the environments and conditions that the variety may encounter. 

Yield is limited by abiotic and biotic stress; therefore, environment relevant tolerance and 

resistance are also targeted. Heat and drought stress are major yield limiting stresses that are 

projected to become larger issues with climate change. The CIMMYT wheat breeding program 

tests lines under these stresses in Obregon and sites in around the world. Disease resistance, 

especially to leaf and stem rust, are a top priority and lines are screened throughout inbreeding 

generations. The Global Wheat Program also conducts pre-breeding specifically for these traits 

by crossing with wild relatives to increase genetic diversity under the SeeD program and by 

making strategic crosses under the Trigo and IWYP projects.  

Quality and nutrition are secondary, but important, priorities in the CIMMYT wheat 

breeding program. The variety should have acceptable quality characteristics for the products in 

the target region. The demand for higher quality, higher protein wheat is increasing in places 

where mechanized production of bread products is becoming common. The nutritional quality of 

the grain is also under selection in the Harvest Plus program with the aim of releasing varieties 

with high zinc and/or high iron content. Although yield is the number one priority of the 

breeding program, releasing high end-use and nutritional quality varieties is important for 

consumer health and acceptance.  
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Although end-use quality is largely determined by high molecular weight glutenin alleles 

and these can be selected for through SDS-PAGE and molecular marker analysis, other traits 

also play a role and only selecting for superior HMW-GS alleles does not paint a complete 

picture of the end-use quality characteristics of a breeding line. Grain hardness, overall protein 

content, starch quality and lipid quality all also play a role. Each of these are also under some 

degree of genetic control. Therefore, implementing genomic selection, which takes into account 

genetic markers across the genome and estimates the quality value of a given breeding line, is 

most informative for end-use quality selections. 

In 2011, PhD student Sarah McNeil (previously Sarah Battenfield) and Dr. Jesse Poland 

of Kansas State University collaborated with Dr. Carlos Guzman of the International Center for 

Maize and Wheat Improvement (CIMMYT) to implement genomic prediction models for end-

use quality traits on the CIMMYT spring wheat breeding program. Starting with 1,245 entries 

with both genetic markers and end-use quality data in 2012 they were able to make genomic 

predictions with reasonable forward prediction accuracies (Battenfield et al., 2016). Adding 

approximately 900 entries every year to the training set showed promising gains in forward 

prediction accuracy which were approaching the heritability of each end-use quality trait. The 

culmination of this work was published in 2016 (Battenfield et al., 2016) and will be referenced 

often in this chapter.  

In 2018, the focus of this work shifted from showing proof of concept to making routine 

end-use quality predictions for the approximately 10,000 yield trial entries in the CIMMYT 

wheat breeding program. This chapter will summarize the results of this shift.  
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 Materials and Methods 

Germplasm and Genotyping 

Germplasm used as the training set were from the elite yield trails, international bread 

wheat spring nurseries and crossing blocks of the CIMMYT hard spring wheat breeding program 

between years 2010 and 2019. All of these populations have both genotyping and phenotyping 

information. The germplasm population for which genomic predictions were made was from the 

yield trial population for the given year. This population has only genotyping information at the 

time of genomic predictions, but a subset of the population is advanced and therefore phenotyped 

for end-use quality in late summer to early fall.  

DNA was collected from a single seeding per yield trial entry in early March of each 

year. DNA was extracted at the CIMMYT Genotyping lab and sent to Kansas State University to 

prepare genotyping-by-sequencing (GBS) libraries according to the protocol described in 

(Poland, Brown, Sorrells, & Jannink, 2012),  but with the modifications of 100 ng of DNA and 

10 ul of restriction digest mix instead of 200 ng and 20 ul, respectively. GBS libraries were 

sequenced on the Illumina HiSeqX10 platform. Raw sequencing data was processed into single 

nucleotide polymorphisms with Tassel 5 GBS v2 (Bradbury et al., 2007) with Chinese Spring 

(IWGSC RefSeq v1.0) as the reference genome. The resulting vcf files of the given year were 

merged with vcf files from previous years and filtered for missing calls < 30%. The filtered file 

was then imputed using Beagle 4.1 (Browning & Browning, 2016). DNA was collected from a 

single seeding per yield trial entry in early March of each year. DNA was extracted at the 

CIMMYT Genotyping lab and sent to Kansas State University to prepare genotyping-by-

sequencing (GBS) libraries according to the protocol described in (XX). GBS libraries were 

sequenced on the Illumina HiSeqX10 platform. Raw sequencing data was processed into single 
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nucleotide polymorphisms with Tassel 5 GBS v2 with Chinese Spring (IWGSC RefSeq v1.0) as 

the reference genome. The resulting vcf files of the given year were merged with vcf files from 

previous years and filtered for missing calls < 30%. The filtered file was then imputed using 

Beagle 4.1.  

 

Phenotyping 

End-use quality phenotypes were collected at the CIMMYT wheat quality lab and are 

described in (Battenfield et al., 2016). The method for measuring grain hardness changed in 2015 

from particle size index estimated with near infrared spectroscopy (AACC Method 39-70.02) to 

force required to crush kernels measured by the Single Kernel Classification System (AACC 

Method 55-31.01).  Grain hardness measurements prior to the change are excluded from the 

training set. Polyphenol oxidase (PPO) activity assay was also added in 2017 (AACC Method 

22-85.01). PPO influences discoloration of grain and products over time. The best linear 

unbiased estimates (BLUEs) for quality traits were found with lm1 package of R with only the 

breeding line as a fixed effect.  

 

 Genomic Selection Models 

Genomic predictions were conducted in R (R Core Team, 2017) with the rrBLUP 

package v. 4 (Endelman, 2011). rrBLUP v4 requires the vector of training set phenotypes, the 

vector of prediction set breeding line identification numbers and the matrix of genotypes that 

contains both training set and prediction set breeding lines. From the matrices of genotypes, the 

kinship matrix was calculated using the gaussian kernel, which estimates Euclidean distances 

between genotypes. Gaussian kernel was chosen because Battenfield (2016) and Endelmen 
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(2011) both found that it outperformed A matrix in cross validation and performed equally well 

in forward prediction. Genomic estimated breeding values for each quality trait were predicted 

separately for simplicity and speed.  

Only forward prediction accuracies were measured to gauge the performance of the 

models and cross validations were not considered. Forward prediction accuracy was calculated 

as the Pearson’s correlation coefficient between predicted value and unadjusted observed value. 

It was calculated with default settings in the cor() function of base R.   

To estimate heritability, we fit a random effects model using all observed phenotypic data 

from 2010 to 2019. Each trait was the response variable and the random effects predictor was 

breeding line. The mixed linear model was fit using the using lmer() and variance components 

estimated with VarCorr(), both of the lme4 v1.1-26 package of R-4.0.4 (Bates et al., 2015). 

Heritability was calculated as the breeding line variance divided by phenotypic variance 

(breeding line variance plus error variance).  

 

 Results and Discussion 

Each year, approximately 400 elite yield trial, 1200 international bread wheat spring 

nursery, and 200 crossing block entries were genotyped using GBS, phenotyped for end use 

quality traits at the Wheat Chemistry and Quality Laboratory at the International Maize and 

Wheat Improvement Center (CIMMYT) in Texcoco, Mexico and then added to the training set 

for the GS models (Table 3.1). The size of the training set grew from 5,520 entries in 2015 to 

over 19,000 in 2020.  By 2020, just over 4,300 of the lines were phenotyped in more than 1 year, 

allowing us to make across year heritability estimates for traits. Across year heritability ranged 

between 0.49 and 0.84 (Table 3.2) and were higher than those reported by Battenfield in 2016.  
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Distributions of the end-use quality phenotypes varied over the years (Figure 3.1). 

Overall, most traits had an approximately normal distribution. Those traits that had both 

approximately normal distributions and which vary the least year to year tended to have the 

highest prediction accuracies, i.e., Mixograph Mixing Peak (MP) which is measure of gluten 

strength. Other traits which varied more over the years i.e., loaf volume (LOFVOL) or had 

distributions with long tails i.e., Alveograph P/L (ALVPL) had the lowest prediction accuracies 

(Figure 3.2). Trait distributions from the last ten years showed that overall, quality trait values 

maintained similar values. This reflects that selection at CIMMYT is to maintain the already 

acceptable quality values and discard candidate wheat lines with unacceptably poor quality. 

Interestingly, grain protein content did appear to increase over time. 

For each year between 2018 and 2020, the forward predictions were made on 

approximately 10,000 first year yield trails.  The genomic prediction models ran on the high 

performance computing cluster with 90 Gb of memory and two tasks per node. Each year there 

were approximately 90,000 SNPs passing filtering criteria. Predictions completed in 7-10 days 

and were output as a comma separated file of two columns, breeding line identification number 

and the corresponding GEBV. The GEBV were combined into one excel file before sending the 

CIMMYT teams. Predictions were provided before breeders made selections in all years between 

2018 and 2020.  

From 2018 to 2020, the forward prediction accuracies were close to the theoretical 

threshold of the heritability estimates of each trait. On the whole, the forward prediction 

accuracies hovered just at or below the heritability (Figure 3.1). Year to year environmental 

variation influenced the predictability. Some years were better for predictability yield related 
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traits such as thousand kernel weight (TKW) and correspondingly worse for the predictability of 

gluten strength traits such as mixing time (MIXTIM).  

 

 Conclusion 

In this work we showed that genomic prediction models for end-use quality in the large 

CIMMYT spring bread wheat breeding program has become routine. For most traits, the forward 

prediction accuracies were near the theoretical maximum of the heritability for that trait. For 

traits were improvements in forward prediction accuracy could be made, covariates such as grain 

protein content and weather data could be added to the genomic prediction models. Pressingly, a 

concise estimate of overall end-use quality class as described by Guzman et al. (2016) could also 

facilitate interpretation of the 13 quality traits during selection. With this work, we showed that 

genomic predictions provide reliable end-use quality information to breeders before selections 

are made on otherwise unobserved material.  
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Table 3.1 - Summary of training set entries by year.  

Training set entries are from the crossing block, elite yield trial and international bread wheat 

spring nursery populations at CIMMYT. Each entry has quality phenotypic data and genotyping 

by sequencing markers.  

 

Year Number of training 

set entries 

2010 1258 

2011 1000 

2012 1580 

2013 1844 

2014 2010 

2015 2118 

2016 2118 

2017 2096 

2018 2136 

2019 2006 

2020 1500 

TOTAL 19,666 
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Table 3.2 - Heritability of quality traits.  

A subset of approximately 4,000 training set entries were phenotyped in more than one year. 

Each trait heritability was was calculated as the genetic variance over phenotypic variance 

(genetic variance and residual variance).   

 

Trait Heritability (h2) 

Thousand Kernel Weight (TKW) 0.76 

Test weight (TESTWT) 0.65 

Polyphenol Oxidase activity (PPO) 0.77 

Grain hardness (GRNHRD) 0.75 

Grain protein (GRNPRO) 0.69 

Flour protein (FLRPRO) 0.76 

Flour SDS sedimentation (FLRSDS) 0.71 

Flour yield (FLRYLD) 0.49 

Mixograph mix peak (MP) 0.84 

Alveograph P/L (ALVPL) 0.61 

Alveograph W (ALVW) 0.80 

Loaf volume (LOFVOL) 0.70 
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Figure 3.1 - Distribution of end-use quality phenotypes.  

Years 2010-2019 were the observed phenotypic values for the training set entries. Whereas Year 

2020 showed the distribution of the 2020 genomic predictions for the first year yield trial entries. 

GRNHRD_SKCS: Grain hardness (single kernel characterization system hardness index); 

TESTWT: test weight (kg/hL); TKW: thousand kernel weight (grams); GRNPRO: grain protein 

content (% at 12.5% moisture); FLRPRO: flour protein content (% at 14% moisture); FLRYLD: 

flour yield from milling (% recovered); FLRSDS: flour sodium dodecyl sulfate sedimentation 
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volume (mL); MIXTIM: optimal mixing time from Mixograph (min); MP: Mixograph mixing 

midline peak (torque); ALVW: Alveograph W (work value from alveograph curve); ALVPL: 

Alveograph P (tenacity) divided by L (extensibility) (mm/mm); LOFVOL, pup loaf volume 

(cm2).  
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Figure 3.2 - Forward prediction accuracies of genomic selection models.   

Prediction accuracies shown over time as colored dots. Although all 10,000 yield trial lines were 

predicted, only a subset of about 2,000 were advanced in the breeding cycle and then 

phenotyped. The prediction accuracies were therefore for the subset of those breeder selected 

lines. Black horizontal lines denote the heritability that was calculated with 2010-2019 data. 

Forward prediction accuracies were calculated as the Pearson’s correlation coefficient between 

predicted values and observed values. GRNHRD_SKCS: Grain hardness (single kernel 

characterization system hardness index); TESTWT: test weight (kg/hL); TKW: thousand kernel 

weight (grams); GRNPRO: grain protein content (% at 12.5% moisture); FLRPRO: flour protein 

content (% at 14% moisture); FLRYLD: flour yield from milling (% recovered); FLRSDS: flour 

sodium dodecyl sulfate sedimentation volume (mL); MIXTIM: optimal mixing time from 

Mixograph (min); MP: Mixograph mixing midline peak (torque); ALVW: Alveograph W (work 

value from alveograph curve); ALVPL: Alveograph P (tenacity) divided by L (extensibility) 

(mm/mm); LOFVOL, pup loaf volume (cm2). 
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Chapter 4 - High Molecular Weight Glutenin Gene Diversity in 

Aegilops tauschii demonstrates Unique Origin of Superior Wheat 

Quality  

 

 Abstract 

Central to the diversity of wheat products was the origin of hexaploid bread wheat, which 

added the D-genome of Aegilops tauschii to tetraploid wheat giving rise to superior dough 

properties in leavened breads.  The polyploidization, however, imposed a genetic bottleneck, 

with only limited diversity introduced in the wheat D-subgenome.  To understand genetic 

variants for quality, we sequenced 273 accessions spanning the known diversity of Ae. tauschii.  

We discovered 45 haplotypes in Glu-D1, a major determinant of quality, relative to the two 

predominant haplotypes in wheat.  The wheat allele 2+12 was found in Ae. tauschii Lineage 2, 

the donor of the wheat D-subgenome.  Conversely, the superior quality wheat allele 5+10 allele 

originated in Lineage 3, a recently characterized lineage of Ae. tauschii, showing a unique origin 

of this important allele.  These two wheat alleles were also quite similar relative to the total 

observed molecular diversity in Ae. tauschii at Glu-D1.  Ae. tauschii is thus a reservoir for 

unique Glu-D1 alleles and provides the genomic resource to begin utilizing new alleles for end-

use quality improvement in wheat breeding programs.   

 

 Introduction  

Originating in the Fertile Crescent some 10,000 years ago, hexaploid wheat (Triticum 

aestivum) is now grown and consumed around the world (Salamini, Özkan, Brandolini, Schäfer-
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Pregl, & Martin, 2002).  The global consumption of wheat as a staple crop is owed principally to 

the unique viscoelastic properties of wheat dough that lend it the capacity to make diverse baked 

products such as leavened bread, tortillas, chapati, pastries, and noodles.  The uniqueness of 

wheat dough can also be described as the strength to resist deformation and elasticity to recover 

the original shape as well as the viscosity to permanently deform under persistent stress.  

Elasticity is important for the product to hold shape, while viscosity allows the dough to be 

worked and formed.  The balance of the competing properties determines what baked goods a 

dough is suitable for, such as a dough with greater strength for leavened pan bread compared to 

the more extensible dough that is desired for a chapati or tortilla.  

Bread wheat is an allohexaploid with the A-, B- and D-subgenomes contributed by 

different, but related, species.  The closest relative to the wheat A-subgenome is diploid Triticum 

urartu, with other diploid A-genome species including the wild and domesticated Einkorn wheat 

(Triticum monococcum).  While the exact ancestor of the B-genome is unknown and presumed 

extinct, it is believed that Ae. speltoides (S-genome) is the closest living relative.  These two 

species were brought together to form a tetraploid wheat species with AABB genome 

composition, which is known as durum or pasta wheat (Triticum durum).  The D genome from 

Aegilops tauschii was the most recent addition forming the hexaploid genome.  This addition of 

the D-subgenome, to form hexaploid wheat, led to a much broader adaptation and superior bread 

making quality compared to the tetraploid and diploid ancestors (Dubcovsky & Dvorak, 2007).  

However, the original hexaploid species originated from very few Ae. tauschii accessions and 

limited subsequent cross-hybridization likely caused by ploidy barriers with the diploid Ae. 

tauschii (J. Wang et al., 2013).  This genetic bottleneck resulted in limited genetic diversity in 

the wheat D-subgenome (Zhou et al., 2020). 
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The utility of wheat and the variation of wheat products and consumption is driven by the 

strength and elasticity of the dough which is determined by the structure of the gluten matrix.  

This matrix is formed from a combination of high-molecular weight (HMW) and low-molecular 

weight (LMW) glutenin proteins and gliadins (P. Shewry, 2019).  The backbone of the gluten 

matrix is developed under mixing by the covalent disulphide bonds between cysteine residues in 

HMW glutenins (Lutz, Wieser, & Koehler, 2012).  These glutenins, therefore, are some of the 

most important genes giving wheat its unique dough properties.  They are encoded by a 

relatively simple locus on the long arm of the group one chromosomes of the Triticeae.  

Hexaploid wheat, comprised of the A-, B- and D-genomes, thus contains three HMW glutenin 

loci; Glu-A1, Glu-B1 and Glu-D1.  Each locus harbors two HMW glutenin genes known as the x 

and y subunit, that are tightly linked but separated by tens to hundreds of kilobase pairs (kb) 

(Anderson, Rausch, Moullet, & Lagudah, 2003; Gu et al., 2006; Kong, Gu, You, Dubcovsky, & 

Anderson, 2004).  Each subunit consists of short, unique N and C terminal domains which flank 

a central highly repetitive region that accounts for 74-84% of the total protein length (P. R. 

Shewry, Halford, Belton, & Tatham, 2002).  

Allelic differences in all three gluten proteins contribute to the conformation of the gluten 

matrix and variable end-use quality.  The D-subgenome locus, however, is the major driver of 

bread quality and absence of the D-genome leads to substantially different dough qualities found 

in tetraploid pasta wheats (Wang et al., 2017).  The two common alleles at Glu-D1 found in 

bread wheat are Glu-D1a (SDS-PAGE allele designation 2+12) and Glu-D1d (5+10), with the 

latter associated with superior breadmaking quality .  Following the domestication and breeding 

of wheat, there is limited variation at the Glu-D1 locus in the D-genome with only these two 

alleles found in the vast majority of bread wheat throughout the world (Payne, Holt, & Law, 



46 

1981; Payne & Lawrence, 1983).  Of the HMW glutenin alleles on the three sub-genomes, the 

greatest impact on end-use quality is imparted by the Glu-D1 locus.  Thus, the addition of the 

wheat D-subgenome and specifically variation at Glu-D1 has substantial impact on wheat quality 

globally.  This is arguably the single greatest defining feature of bread wheat.  

Reflecting the importance of Glu-D1 in determining the end-use quality of wheat, focus 

has been given to understanding the variation present in Ae. tauschii for this locus.  Much of the 

work has utilized sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

protein analysis of Ae. tauschii collections (Gianibelli, Gupta, Lafiandra, Margiotta, & 

MacRitchie, 2001; Mackie, Lagudah, Sharp, & Lafiandra, 1996; William, Peña, & Mujeeb-Kazi, 

1993; Xu, Khan, Klindworth, & Nygard, 2010).  From this work, over 37 SDS-PAGE Glu-D1 

alleles have been named in Ae. tauschii.  However, due to the limited resolution of SDS-PAGE, 

many of the alleles have indistinguishable SDS-PAGE mobilities from the common Glu-D1 

hexaploid alleles, 2+12 and 5+10, or are difficult to reliably distinguish.  By changing the 

polyacrylamide percentage or acidity in the SDS-PAGE, it was shown that the Ae. tauschii 2+12 

and 5+10 alleles were slightly different than the common wheat alleles (Lagudah & Halloran, 

1988).  These Ae. tauschii alleles are therefore given the designations 2t+12t and 5t+10t.  In 

addition to the 2t+12t and 5t+10t alleles, a large number of SDS-PAGE alleles have been 

described, supporting the hypothesis that Ae. tauschii could be a vast resource for untapped 

diversity at Glu-D1 and that this diversity could be utilized for wheat quality improvement.   

Here we characterized the Glu-D1 allelic diversity in a panel of 273 sequenced Ae. 

tauschii accessions.  The panel spans the known genetic diversity of Ae. tauschii and is a 

powerful resource for association mapping and gene identification (Gaurav et al., 2021). From 

the sequenced Ae. tauschii panel, we discovered hundreds of genetic variants which defined 
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dozens of unique haplotypes.  This gives the needed molecular information to track these alleles 

in breeding germplasm, which will in turn enable targeted assessment of the novel Ae. tauschii 

HMW glutenin alleles in hexaploid backgrounds leading to utilization of favorable alleles for 

wheat quality improvement.  

 

 Materials and Methods 

 Plant Material 

This study included 273 Aegilops tauschii accessions, of which 241 were from the Wheat 

Genetics Resource Center (WGRC) collection at Kansas State University in Manhattan, KS, 

USA. Another 28 were from the National Institute for Agricultural Botany (NIAB) in 

Cambridge, United Kingdom. An additional 2 were from the Commonwealth Scientific and 

Industrial Research Organisation (CSIRO) in Canberra, Australia. The final accession, AL8/78, 

was obtained from the John Innes Center (JIC) in Norwich, Norfolk, England.  Data regarding 

original collection sites for the WGRC accessions is detailed in Supplementary Data 1(N. Singh 

et al., 2019).  Aegilops tauschii is divided into two subspecies, spp. tauschii (Lineage 1) and the 

wheat D-genome donor spp. strangulata (Lineage 2).  In this data set, 117 accessions were 

Lineage 1 and 143 Lineage 2.  An additional eight accessions (five non-redundant) belonged to 

the newly described Lineage 3(Gaurav et al., 2021). 

 

 SDS-PAGE Analysis 

The sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis 

of 72 of the Ae. tauschii accessions, was conducted at the Wheat Chemistry and Quality 

Laboratory at the International Maize and Wheat Improvement Center (CIMMYT) in Texcoco, 
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Mexico according to Singh et al. (1991)(N. K. Singh et al., 1991) with the following 

modifications.  Specifically, 20 mg of whole meal flour were mixed at 1,400 rpm with 0.75 ml of 

50% propanol (v/v) for 30 min at 65oC in a Thermomixer Comfort (Eppendorf).  The tubes were 

then centrifuged for 2 min at 10,000 rpm, and the supernatant containing the gliadins was 

discarded.  The pellet was then mixed with 0.1 ml of a 1.5% (w/v) DTT solution in a 

Thermomixer for 30 min at 65oC, 1,400 rpm, and centrifuged for 2 min at 10,000 rpm.  A 0.1 ml 

volume of a 1.4% (v/v) vinylpyridine solution was then added to the tube which was 

subsequently placed again in a Thermomixer for 15 min at 65oC, 1,400 rpm, and centrifuged for 

5 min at 13,000 rpm.  The supernatant was mixed with the same volume of sample buffer (2% 

SDS (w/v), 40% glycerol (w/v), and 0.02% (w/v) bromophenol blue, pH 6.8) and incubated in 

the Thermomixer for 5 min at 90oC and 1,400 rpm.  Tubes were centrifuged for 5 min at 10,000 

rpm, and 8 ml of the supernatant were used for the glutenin gel.  Glutenins were separated in 

polyacrylamide gels (15% or 13% T) prepared using 1 M Tris buffer, pH of 8.5. Gels were run at 

12.5 mA for ~19 h.  Alleles were identified using the nomenclatures proposed by Payne and 

Lawrence (1983)(Payne & Lawrence, 1983) for bread wheat high molecular weight glutenins 

and Lagudah and Halloran (1988)(Lagudah & Halloran, 1988) for previously described Ae. 

tauschii high molecular weight glutenins.  

 

DNA Sequencing  

Whole genome Illumina paired-end sequencing to 10x coverage for most accessions, and 

30x coverage for select accessions, was obtained from TruSeq PCR-free libraries with 350 bp 

insert with Illumina paired end sequencing of 150 bp according to manufacturer 

recommendations.  Sequence datasets are detailed in Gaurav et al. (2021).  
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 Variant Calling and Duplicated Accession Analysis 

Paired-end reads of the Ae. tauschii samples were aligned to the Ae. tauschii AL8/78 

genome assembly (Aet v4.0; NCBI BioProject PRJNA341983, accession AL8/78) and hexaploid 

wheat samples aligned to an in silico reference assembly including the hexaploid wheat A and B 

genomes from ‘Jagger’ (Walkowiak et al., 2020) (Aet v4.0; NCBI BioProject PRJNA341983, 

accession AL8/78) combined with the Aetv4.0 D genome using HISAT2 version 2.1.0 with 

default parameters (Kim, Paggi, Park, Bennett, & Salzberg, 2019). Alignments were sorted and 

indexed using samtools v1.9 (H. Li et al., 2009).  Variants for coding regions of the x and y 

subunits of Glu-D1 were called using bcftools version 1.9 (Heng Li, 2011)  ‘mpileup’ and ‘call’ 

commands with a minimum alignment quality of 20 (--q 20) (L. Gao, 2020).  Duplicated 

accessions were identified as sharing greater than 99.8% variant calls.  

 

 Molecular Haplotype Analysis 

Ae. tauschii and hexaploid wheat variant call format (vcf) files were merged in R and 

variant calls were recoded to reference (-1) and alternate (1) alleles in R and heterozygous calls 

were set to missing. Variants were filtered on the following criteria: a variant must be present in 

either hexaploid wheat or Ae. tauschii, must have a quality score greater than 30 and be present 

in greater than 50% of samples. Given that we expected novel alleles present in single 

accessions, no minimum minor allele frequency was set. Samples sharing the same variants were 

considered to share the same molecular haplotype.  

Genetic distances were calculated as the Euclidean distance on the A matrix of the 

variants in R. The A matrix was calculated with ‘A.mat()’ from the rrBLUP package (Endelman, 

2011) and Euclidean distances with ‘dist()’.  Hierarchical clustering of the genetic distances were 
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found using hclust() and converted to a dendrogram object before plotting with the dendextend 

package (Galili, 2015).  

Molecular haplotypes were designated by the subclade number of the x and y subunits 

together and then by the letter corresponding to the individual gene level haplotype within. For 

example, molecular haplotype x1a + y1b represents the ath x haplotype and bth y haplotype 

within the subclade 1. It should be noted that letter designations across subclades have no 

correspondence. The ath x haplotype of subclade 1 is different than that of subclade 2.  

 

 Results and Discussion 

 Molecular Diversity of Glu-D1 in Ae. tauschii 

Through the Open Wild Wheat Consortium, we obtained Illumina 150 bp paired-end 

short reads from 234 unique Ae. tauschii accessions each sequenced to greater than 7-fold 

coverage(Gaurav et al., 2021). These were aligned to the Ae. tauschii AL8/78 reference genome 

and sequence variants at the annotated Glu-D1 locus were extracted.  We also included three 

wheat cultivars in this analysis to compare Ae. tauschii variants to the common 5+10 (variety 

‘CDC Stanley’) and 2+12 (varieties ‘Chinese Spring’ and ‘LongReach Lancer’) alleles.  From 

this panel, we identified a total of 310 variants at Glu-D1, which were used to generate 

haplotypes and evaluate molecular diversity at this locus. 

From the Ae. tauschii germplasm collection we identified 32 and 33 haplotypes within 

the coding sequence for the x and y subunits of the Glu-D1 locus, respectively (Figure 4.1).  

When considering the complete Glu-D1 locus with combination of the x and y subunit, a total of 

45 haplotypes were identified (Tables 4.2 and 4.3).  The various x and y subunit haplotypes were 

almost exclusively associated with each other, demonstrating the close physical association and 
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limited recombination between the two genes.  We included the 2500 bp up- and downstream 

sequences in our analysis to see if this resulted in further differentiation of alleles as short-read 

sequences often do not align uniquely to the central, highly repetitive region of the HMW 

glutenin genes.  Including the flanking regions did not result in additional haplotypes.  Thus, it 

appears that the identified variants are sufficient for faithfully differentiating alleles at Glu-D1.  

We then calculated genetic distances and determined a gene-level phylogeny at Glu-D1 

for all of the Ae. tauschii accessions (Figure 4.1).  Haplotypes clustered into three major clades, 

two of which were associated predominantly with Lineage 2 and one with Lineage 1.  A unique 

group of Glu-D1 alleles from the newly characterized Lineage 3 accessions were found within a 

narrow clade with Lineage 2.  Among the three major clades, we designated 16 subclades that 

were clearly distinguished by variants and coincided with a Euclidean distance of 4.  Of the 16 

subclades, eight were associated exclusively with Lineage 2, five with Lineage 1, and one with 

Lineage 3.  The Lineage 3 accessions all fell within the Lineage 2 major clades, but occupied a 

unique subclade therein.  Thus, the gene-level phylogeny at this locus agrees very closely with 

the overall previously described population structure of the Ae. tauschii lineages(Gaurav et al., 

2021; N. Singh et al., 2019).  We also observed one clade (9) that had representative accessions 

from both Lineage 1 and 2.  This could represent an ancestral haplotype found in both lineages 

which underwent incomplete lineage sorting, or a case of recent interlineage haplotype exchange.  

Cases of haplotypes shared across Lineages 1 and 2 were also observed for pest (Cmc4) and 

disease resistance (Sr46) genes (Gaurav et al., 2021).  

Lineage 2, the recognized ancestral diploid donor of the D-subgenome of hexaploid 

wheat (J. Wang et al., 2013), had greater Glu-D1 molecular haplotype diversity than Lineage 1.  

Not only were there more subclades associated with Lineage 2, there were also more haplotypes 
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(Figure 4.1).  As expected, the haplotypes of wheat clustered within Lineage 2 subclades (Figure 

4.1).  Within Lineage 2, we observed Ae. tauschii accessions with a matching sequence 

haplotype to the wheat 2+12 allele consistent with the D-subgenome origin from Lineage 2.  

Interestingly, the wheat 5+10 allele clustered within the unique Lineage 3 sub-clade.  Supporting 

the inheritance of the 5+10 allele from Lineage 3, (Gaurav et al., 2021) observed genome-wide 

contribution of Lineage 3 to wheat ancestry.  These findings reveal that the Lineage 3 

contribution to the wheat D-subgenome included the very valuable Glu-D1 5+10 allele, arguably 

one of the most important genes defining the quality of bread wheat.   

Given the large difference in quality between wheat cultivars carrying 2+12 and 5+10 

alleles, we hypothesized that these two haplotypes would not be similar at a molecular level.  

However, we found that 2+12 and 5+10 clustered relatively closely within major-clade III, with 

much greater overall diversity detected across Ae. tauschii particularly when including the 

Lineage 1 accessions which had very different haplotypes.  When comparing the 2+12 and 5+10 

haplotypes to those found in Lineage 1, it becomes apparent that Ae. tauschii carries alleles that 

are very unlike anything seen in bread wheat and may offer unique functional characteristics 

when introgressed into hexaploid backgrounds.   

 

 Geographic Diversity 

Given the known geographic structure and distribution of Ae. tauschii which is associated 

with various levels of population structure (N. Singh et al., 2019), we evaluated the Glu-D1 

diversity relative to the geographic origin of the Ae. tauschii accessions.  Molecular haplotypes 

were strongly associated with geographic origin, consistent with the overall genome-wide picture 

(N. Singh et al., 2019), and genetic distances between alleles increased with the geographic 
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distance between collection sites of the Ae. tauschii accessions (Figure 4.2).  The greatest 

concentration of haplotype diversity was located along the shores of the Caspian Sea in Iran 

(Figure 3.2).  Consistent with a hypothesis of admixture between Lineage 1 and Lineage 2 

leading to shared gene-level haplotypes across the lineages, the accessions from Lineage 1 and 2 

with the same Glu-D1 haplotype (within subclade 9) were collected very near one another.  

 

 Molecular Haplotypes Identify Novel Glu-D1 Alleles 

We employed SDS-PAGE analysis, the traditional standard for differentiating HMW 

glutenin loci, to determine if the haplotype molecular sequence diversity would also reflect 

differences in protein mobility.  We evaluated at total of 72 unique accessions with SDS-PAGE 

and differentiated 9 alleles for the x subunit and 8 alleles at the y subunit from this protein 

mobility assay.  Analysis of the Lineage 1 and Lineage 2 variants revealed that molecular 

haplotypes were consistent with the proteins differentiated by SDS-PAGE (Tables 4.1 and 4.2).  

For the majority of the alleles that were differentiated by SDS-PAGE, we were able to 

unambiguously correlate the observed SDS-PAGE alleles with the molecular variants.  Although 

specific molecular haplotypes were associated with specific SDS-PAGE mobilities, there was 

little concordance between gene level variation and SDS-PAGE mobility as similar alleles at the 

molecular level were observed with very different SDS-PAGE mobilities.  Alternatively, very 

different molecular haplotypes were observed with the same SDS-PAGE.  This supports our 

hypothesis that the observed sequence variants are effectively in complete linkage disequilibrium 

and tagging the size variants from the central repeat region.  Similarly, the SDS-PAGE diversity 

was lower having less differentiating power than the molecular haplotypes.  As noted, the same 

SDS-PAGE mobilities were observed in both Lineage 1 and Lineage 2 haplotypes, but the 
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molecular haplotypes were clearly differentiated (Figure 4.1).  The protein mobility differences 

are considered to be primarily due to variation in the central repetitive region and therefore are 

not directly detectable with short-read sequencing, though the variable central repeats are 

completely phased with diagnostic haplotype variants within the terminal coding regions.  Thus, 

we conclude that a sequence-based resource such as this Ae. tauschii panel provides a superior 

tool for identification and tracking of unique Glu-D1 alleles in molecular breeding.   

We also examined the connection between the glutenin protein mobility in Ae. tauschii 

compared to hexaploid wheat.  Ae. tauschii haplotype Dx1a+Dy1a matched with the wheat 2+12 

haplotype and exhibited the same SDS-PAGE mobility.  Although we found an Ae. tauschii 

haplotype identical to the wheat 2+12 allele haplotype, the exact wheat 5+10 haplotype was not 

detected in this panel, although a very closely related Lineage 3 haplotype was found.  

Additionally, no 5+10 SDS-PAGE mobilities were observed.  This was a surprising observation 

given that previous studies reported Ae. tauschii alleles with a 5+10 SDS-PAGE mobility 

(William et al., 1993). However, Williams et al. (1993)(William et al., 1993) did not reveal the 

identities of the Ae. tauschii accessions with 5+10 SDS-PAGE mobility. Interestingly, the 

haplotype Dx7a+Dy7a in the newly characterized Lineage 3(Gaurav et al., 2021) was most 

similar to 5+10 on the molecular level, however it carried eight variant differences.  This current 

panel, however, only has five unique accessions representing Lineage 3.  It is possible therefore 

that exploration of additional Lineage 3 accessions would reveal a haplotype exactly matching 

the wheat 5+10 with the same mobility.   
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 Cryptic Haplotypes 

One of the most valuable findings of this study was the high prevalence of cryptic 

molecular haplotypes hidden within SDS-PAGE mobilities.  Within every SDS-PAGE mobility 

pattern there were multiple molecular haplotypes, often from very different subclades and 

occasionally from entirely different clades (Figure 4.1).  The cryptic SDS-PAGE haplotypes, 

accordingly, were geographically disperse (Figure 4.3).  For example, within SDS-PAGE 2+12 

were four haplotypes; one which was the same as wheat 2+12 (Dx1a + Dy1a), another which 

was within the same subclade (Dx1c+Dy1d), and two from entirely different major-clades 

(Dx9a+Dy9b and Dx13b+Dy13a).  Also, within subclade 9 were the SDS-PAGE mobilities 

Dx2+Dy10 and Dx2+Dy11, and within subclade 13 were the SDS-PAGE mobilities 1t+12, 

2.1*+12.1*, and 4+10 further supporting that these haplotypes are not all similar to the wheat 

2+12 haplotype at the molecular level.  However, the proteins still migrate similarly on an SDS-

PAGE.  These results suggest that SDS-PAGE alone is insufficient when characterizing HMW 

glutenin diversity in wild relatives and will not be a suitable tool for tracking novel alleles in the 

hexaploid wheat germplasm.  

While most molecular haplotypes delineated along the three Ae. tauschii lineages (Figure 

1), a notable exception was within the predominantly Lineage 1 major-clade, subclade 9, where 

the same three haplotypes (Dx9a+Dy9a, Dx9a+Dy9b, and Dx9a+Dy9c) were observed in both 

Lineage 1 and Lineage 2 accessions.  Interestingly, while there were three haplotypes at the y 

subunit, there was only a single x haplotype associated with all three of these.  The x subunit 

mobility was the same for all three haplotypes, indicating that the x allele is in fact the same.  

However, the y subunit was differentiated with the mobility Dy9b was faster than that of Dy9a 

and Dy10c.   
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 Recombinant Haplotypes Identified 

The close proximity of the glutenin genes results in such tight linkage that recombination 

is extremely rare.  To date, a recombination between the x and y subunit of any HMW-GS locus 

has yet to be verified.  Among the 242 Ae. tauschii accessions studied here, we found a clear 

example of a historical recombination at Glu-D1 in the accession TA1668 (Lineage 2).  SDS-

PAGE mobility of TA1668 matches that of TA10081 (Dx2+Dy10.2), and though the y haplotype 

of TA1688 is the same as the y haplotype of TA10081, the x subunit is very different and 

matching the Lineage 1 clade (Figure 4.4).  Within this clade, the subclade 9 contains both 

Lineage 1 and Lineage 2 accessions, indicating that there was incomplete lineage sorting or 

admixture between the two lineages that lead to the introgression of a lineage Glu-D1 haplotype 

into the Lineage 2 population.  In the presence of both haplotypes, it appears there was a rare 

recombination between the Lineage 1 and Lineage 2 Glu-D1 haplotypes, leading to the 

recombinant haplotype Dx9a+Dy5a found in TA1688.  

The Lineage 3 accession TA2576 also appears to carry a recombinant haplotype (Dx7b + 

Dy15b) (Figure 4.4).  However, our dataset did not contain the exact haplotypes involved in the 

recombination that led to Dx7b + Dy15b. The closest x subunit haplotype is Dx7a, the only other 

Lineage 3 haplotype, from major-clade III and the closest y subunit is the Lineage 2 haplotype 

Dy15a from major-clade II (Lineage 2). We therefore designated the x and y subunit haplotypes 

of TA2576 haplotypes within subclades 7 and 15.  Geographical analysis reveals that TA2576 

was collected from a region shared with other Lineage 3 accessions.  However, the accessions 

containing Dy15a haplotype were not collected from a shared region with the L3 accessions.  

Although not conclusive, the most parsimonious explanation is therefore that Dx7b + Dy15b 

represents a recombinant haplotype between the x and y subunits from two different alleles.  
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Within our current panel, however, we are unable to differentiate exactly which original 

haplotypes gave rise to this recombinant haplotype.  

 

 Conclusion 

 Importance of Glu-D1 Diversity  

The Glu-D1 locus of wheat provides the greatest contribution to gluten strength, 

regardless of the allele present (Wang et al., 2017).  The allelic diversity of Glu-D1 in wheat is 

limited to two predominant alleles 2+12 and 5+10, and a few rare alleles (3+12, 4+10) which 

are associated with similar end-use quality as 2+12 (Dong et al., 2013; Y. Wan et al., 2005) .  

The unique 2.2+12 SDS-PAGE allele, which is found at high frequency in Japanese wheat, was 

shown to be identical to the 2+12 haplotype with the exception of additional repeats in the 

internal repeat domain of the x subunit(Payne, Holt, & Lawrence, 1983; Shimizu et al., 2020; Y. 

Wan et al., 2005).  The x subunit protein from 5+10 has a unique cysteine residue just within the 

central repeat domain which is suspected to increase disulfide bonds in the forming dough.  The 

early expression and greater transcription of this allele is also greater than that of the other Glu-

D1 alleles, in particular 2+12(Don et al., 2005).  It is unclear which of these characteristics, or 

the combination of the two, lend 5+10 the superior quality characteristics.  The unique origin of 

5+10 from Lineage 3, however, further supports the important contributions of this lineage to the 

wheat D genome consistent with the findings by Gaurav et al. (2021). 

 

Unique and Valuable Sources Of Diversity  

Our haplotype analysis revealed that the x and y subunits are strongly associated even in 

diverse germplasm and that the Glu-D1 haplotypes were clustered to specific geographic origins.  
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Consistent with the findings of Gaurav et al. (2021), we found evidence of two lineages (Lineage 

2 and Lineage 3) contributing to the D genome of wheat with the superior 5+10 allele found 

associated with Lineage 3 accessions.  Given the excellent end-use quality imparted by 5+10, 

understanding this unique origin of the wheat allele support the further exploration and 

evaluation of novel Glu-D1 alleles to further improve wheat quality.  This also greatly supports 

the potential of novel alleles and unique haplotypes from the breadth of Ae. tauschii diversity.   

Wheat grain quality remains one of the most important targets for breeders to develop 

superior wheat cultivars.  Wild wheat relatives have been shown as a valuable resource for 

accessing novel genetic diversity to improve a range of wheat breeding targets including yield 

and disease resistance.  For quality evaluation, however, the large quantity of grain needed for 

milling and baking and the confounding morphological characteristic needed for quality 

evaluation, such as suitable seed size for milling, make direct evaluation of various end-use 

quality traits intractable to phenotype directly these wild relatives, including Ae. tauschii.  In this 

work, we therefore took the first step in a reverse genetics approach in Ae. tauschii by identifying 

and characterizing variants at the important Glu-D1 locus.  This demonstrated the unique origin 

of the Glu-D1 allele in wheat as well as uncovering novel allele variants and haplotypes that can 

now be targeted for breeding.  We also established the relation of wheat alleles to those of Ae. 

tauschii and have shown that Ae. tauschii contains a trove of unique Glu-D1 alleles very unlike 

the alleles in current wheat germplasm.  With accessible germplasm resources such as synthetic 

hexaploids (Gaurav et al., 2021), the diagnostic variants will enable marked-assisted selection of 

novel Ae. tauschii introgressions into wheat, characterization of their end-use quality, and 

utilization in wheat improvement.  
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Figure 4.1 - Molecular haplotypes of Glu-D1 Ae. tauschii. 

Variant positions within the x and y subunit coding sequences and their 2.5 kb flanking 

sequences are marked with purple bars on schematic of the genes.  The molecular haplotypes 

with position as column and accession as row are shown to the right of the dendrogram, 

reference allele is in gray and alternate allele is in purple.  Dendrogram of combined x and y 

subunit haplotypes is shown to the left.  The corresponding lineage of each accession is colored 

in gray (Lineage 1), aqua (Lineage 2) and lime green (Lineage 3) and burgundy (hexaploid 

wheat).  Haplotypes with major clades and subclades are designated by numbers.  The wheat 

alleles Glu-D1 alleles 2+12 (varieties Chinese Spring and Long Reach Lancer) and 5+10 

(variety CDC Stanley) are shown in purple and recombinant haplotypes are shown in grey with 

asterisk. Major clades are designated with numerical values 1, 2 and 3.  Subclades are designated 

with numerical values 1-15 in the colored rectangles between the dendrogram and molecular 

haplotypes.  
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Figure 4.2 - Geographic distribution of Glu-D1 haplotypes in Ae. tauschii. 

Molecular haplotypes for Glu-D1 shown at the collection site for the given Ae. tauschii 

accession. (a) Distribution of accessions according to Glu-D1 major clades with Clade I in blue, 

Clade II in red and Clade III in orange.  (b) Distribution of accessions according to Glu-D1 

haplotype subclades.  Haplotypes are shown on a scale from purple to yellow according to 

dendrogram order (Figure 4.1).  Lineages are shown as circles for Lineage 1, triangles for 

Lineage 2 and squares for Lineage 3. 
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Figure 4.3 - Cryptic haplotypes within SDS-PAGE alleles Ae. tauschii.   

A map of the region around the Caspian Sea where the Aegilops tauschii accessions were 

collected. Each point represents the collection site of a single accession. Points are colored by the 

high molecular weight glutenin haplotype subclade. Subclade numbers correspond to 

hierarchical clustering order by Euclidean distances based on genetic variants, therefore, 

subclade 15 (yellow) would be most distantly related to subclade 1 (purple).  Ae. tauschii 

lineages are designated with the shape of the points, square (Lineage 1), circle (Lineage 2), 

triangle (Lineage 3) and wheat (unfilled square).  
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Figure 4.4 - Glu-D1 x and y subunit recombinants in Ae. tauschii.  

Molecular haplotype representation of recombinant Glu-D1 haplotypes for accessions (a) 

TA1668 (Lineage 2) and (b) TA2576 (Lineage 3).  Vertical purple bars represent the alternate 

allele variants as called against the AL8 7/8 genome assembly.  SDS-PAGE allele for the given 

haplotypes are show to right of each gene model.  Haplotype Dx9a is present in both Lineage 1 

and Lineage 2 accessions. The closest potential x and y subunit haplotypes involved in the 

recombinant haplotype xR2+yR2a of TA2576 are x7a (Lineage 3) and y15a (Lineage 2). SDS-

PAGE protein mobilities for x7a + y7a and xR2+yR2a were not analyzed. Geographical 

distribution of recombinant Glu-D1 haplotypes for (c) TA1668 (Lineage 2) and (d) TA2576 

(Lineage 3).  Collection site of recombinant accessions is marked in lime green, whereas 

turquoise and orange designate the collection sites of accessions carrying x subunit and y subunit 

haplotypes, respectively.  Accessions with unrelated haplotypes are in light gray.  Lineages are 

shown in squares (Lineage 1), circles (Lineage 2) or triangles (Lineage 3). 
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Table 4.1 - Glu-D1 gene positions in Ae. tauschii reference genome assembly (Aet v4).  

 

 Chr Start position End position Length 

Glu-D1x 1D 419306988 419309556 2568 bp 

Glu-D1y 1D 419364015 419365995 1980 bp 
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Table 4.2 - Glu-D1x molecular haplotypes in Ae. tauschii. 

The combination of x and y coding sequence haplotypes resulted in a cumulative total of forty-

five haplotypes detected among 242 Ae. tauschii accessions and 33 unique x subunit haplotypes. 

Haplotypes are listed by major clade, followed by alphanumerical haplotype for the x subunit 

within the clade. The number of accessions possessing each haplotype is indicated along with the 

associated SDS-PAGE mobilities. 
 

Major Clade Lineages Number of 

accessions 

Haplotype SDS-PAGE 

III L2 21 x1a 2x 

III L2 2 x1b 2.1x 

III L2 8 x1c 2x, 1.5x 

III L2 1 x2a 2.1x 

III L2 14 x3a null, 2x, 2.1x 

III L2 2 x3b 
 

III L2 11 x4a 2.1x 

III L2 1 x4b 1.5x 

III L2 3 x5a 4x 

III L2 1 x5b 2x 

III L2 19 x6a 4x 

III L2 8 x6b 4x 

III L2 2 x6c 4x 

III L3 7 x7a 
 

I L1 9 x8a 2x 

I L1 6 x8b 2x 

I L1 7 x8c 2x 

I L1 1 x8d 
 

I L1 2 x8e 2x 

I L1, L2 36 x9a 2x 

I L1 1 x10a 
 

I L1 1 x10b 
 

I L1 39 x10c 3x 

I L1 5 x11a 2x, 3x 

I L1 20 x12a 3x 

I L1 3 x13a 1tx 

I L1 2 x13b 2x, 4x 

I L1 4 x13c 2.1*x 

II L2 29 x14a 1.5x, 2x 

II L2 3 x14b 2x, 3x 

II L2 1 x14c 
 

II L2 3 x15a 2.1x 

II L3 1 x16a 
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Table 4.3 - Glu-D1y molecular haplotypes in Ae. tauschii.  

The combination of x and y coding sequence haplotypes resulted in a cumulative total of forty-

five haplotypes detected among 242 Ae. tauschii accessions and 32 unique y subunit haplotypes. 

Haplotypes are designated as subclade number, followed by alphabetical haplotype for the y 

subunit within the subclade. The number of accessions possessing each haplotype is given in ‘n 

accession’ column followed by the associated SDS-PAGE mobilities. 

 

Major 

Clade 

Lineages Number of 

accessions 

Haplotype SDS-PAGE 

III L2 16 y1a 12y 

III L2 1 y1b 
 

III L2 3 y1c 
 

III L2 1 y1e 
 

III L2 10 y1d 12y, 12.1*y 

III L2 1 y2a 12y 

III L2 14 y3a 10.1y, 10.2y 

III L2 2 y3b 
 

III L2 4 y4? 10y 

III L2 4 y4a 10.1y 

III L2 3 y4b 10y 

III L2 1 y4c 10.1y 

III L2 4 y5a 10.2y 

III L2 21 y6a 10.2y, 12y, 12.1*y 

III L2 8 y6b 10y 

III L3 7 y7a 
 

I L1 25 y8a 10y, 10.3y 

I L1 13 y9a 10y 

I L1, L2 14 y9b 11y, 12y 

I L1, L2 9 y9c 10y 

I L1 41 y10a 10y, 10.1y 

I L1 3 y11a 10y 

I L1 1 y11b 10y 

I L1 1 y11c 10.1y 

I L1 19 y12a 10.1y 

I L1 1 y12b 
 

I L1 5 y13a 12y, 10y 

I L1 4 y13b 12.1*y 

II L2 30 y14a 12.2y, 12y 

II L2 3 y14b 12.2y 

II L2 3 y15a 12.3y 

II L3 1 y16a 
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Chapter 5 - Haplotype analysis enables sequence-based-genotyping 

of high molecular weight glutenin alleles in wheat 

 

 Abstract 

The quality of products produced from wheat flour depends largely on gluten forming 

proteins. These proteins are comprised of the high-molecular weight (HMW) glutenins, the low 

molecular weight (LMW) glutenins, and the gliadins.  HMW and LMW glutenin proteins form 

inter- and intra-molecular bonds to create a large matrix that gives the viscoelastic properties 

which defines wheat dough.  Depending on the glutenin alleles constituting the gluten matrix, the 

rheological properties of the wheat dough change, influencing the end-use application of the 

flour.  Given that HMW glutenins are major determinants of the end-use quality, they are an 

important target of selection in wheat breeding programs.  However, for molecular breeding of 

HWM glutenins, genotyping is often based on protein gels or PCR markers, both of which have 

limitations in low-throughput or limited differentiation of alleles.  To understand the molecular 

structure of HWM loci and address these breeding challenges, we used the de novo assemblies of 

11 wheat genomes to identify extensive sequence and structural variation across the HWM loci 

which were diagnostic for known SDS-PAGE alleles.  Diagnostic 50-mers were developed from 

whole genome sequencing of 96 CIMMYT hard spring wheat founder varieties and 41 western 

plains hard winter wheat varieties and then leveraged in a genotyping pipeline that utilizes high-

throughput skim-sequencing of breeding lines.  We obtained 89% and 98% cross validation 

prediction accuracy for genotyping Glu-A1 and Glu-D1 respectively. This approach has the 

potential to offer a low-cost, high-throughput and diagnostic alternative to gel methods for gluten 

genotyping in breeding programs.  
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 Introduction 

End-use quality in wheat is due to the viscoelastic properties of the dough, which is 

conferred by the strong and elastic gluten protein network.  The gluten network traps gas 

particles enabling the rising of bread and gives the porous texture of wheat baked goods.  Gluten 

is a heterogeneous network of proteins comprised of the high molecular weight (HMW) 

glutenins, the low molecular weight (LMW) glutenins and the gliadins.  HMW glutenins form 

the protein backbone of the gluten network through intramolecular disulphide bonds between 

cysteine residues.  It is these disulphide bonds which provide strength and cohesivity of the 

gluten network.  The number and position of cysteine residues available for intramolecular 

bonding that result in a strong or weak network.  Typically, more cysteine residues result in a 

stronger dough, but position of the residues within the protein is also an important factor 

(Buonocore, Caporale, & Lafiandra, 1996; X. Gao, Zhang, Newberry, Chalmers, & Mather, 

2012).  The number and position of cysteine residues determines if glutenin will extend or end a 

chain in the gluten network.  Provided that HMW glutenin alleles differ in the number and 

position of cysteine residues, and therefore also in the gluten strength in the dough, breeders can 

select for superior end-use quality by targeting specific alleles.  

The unique viscoelastic properties of wheat are attributed primarily to the formation of 

the gluten network during dough development (P. R. Shewry & Halford, 2002).  Of the gluten 

proteins, high molecular weight (HMW) glutenins are particularly important for dough strength 

and have the largest overall effect on end-use quality (Payne, Corfield, Holt, & Blackman, 1981).  

HMW glutenins are located on the long arms of the group 1 chromosomes with two paralogous 

genes at each locus, resulting in six HMW glutenin genes in each hexaploid genome.  The 

paralogous genes are designated as x and y subunits which are separated by 50 to 200kb. Given 
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the vast importance of these genes, we leveraged the wheat pan-genome assemblies which 

enabled characterization of these complex loci in detail. 

Norin 61 carries the Glu-D1f allele that produces the 2.2 + 12 subunits of the high-

molecular-weight (HMW) glutenin, first described by Payne et al. (1983) in Japanese hexaploid 

wheat varieties.  HMW glutenin proteins are integral to end-use quality characteristics through 

the formation of the gluten matrix.  The Glu-D1 locus contains two genes, each encodes for an x 

and y subunits, that together constitute the HMW glutenin types (i.e. 2.2x + 12y or 2x + 12y). 

The 2.2 + 12 allele is also referred to as the f allele, and 2 + 12 as the a allele (Payne and 

Lawrence 1983).  The very low electrophoretic mobility of the 2.2x protein on sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) suggested that the protein was much 

larger in size than any other hexaploid HMW glutenin subunits known at the time. It was then 

hypothesized that 2.2x arose from an unequal crossing over in the central repeat domain of 2x 

that increased the size of the gene and that this novel allele is very recent, within the modern 

breeding history.  This is supported by failure to identify 2.2+12 in surveys of Glu-D1 SDS-

PAGE mobilities in Ae. tauschii (Lagudah and Halloran 1988, William et al. 1993, Mackie et al. 

1996), the D genome donor to hexaploid wheat, and that 2.2+12 is present primarily only in 

Japanese germplasm (Nakamura et al. 1999, Yanaka et al. 2016) indicated that 2.2x arose from 

recent mutation within hexaploid wheat.  Further evidence for this hypothesis was provided by 

the full gene CDSs comparing 2.2x to 2x that showed 2.2x has a perfect 396 nucleotide 

duplication in the central repeat region (Wan et al. 2005).  

Current genotyping methods for glutenins can differentiate a large number of alleles but 

are relatively low-throughput or contrastingly, high-throughput but restricted on the number of 

alleles that can be differentiated.  The available genotyping methods include sodium dodecyl 
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sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) or PCR based methods such as KASP 

markers.  SDS-PAGE for typing glutenin alleles is a methodology first described by (Moonen, 

Scheepstra, & Graveland, 1982) and modified by Singh et al. (N. K. Singh et al., 1991).  It 

involves isolating the gluten network from ground kernels, treating the network with sodium 

dodecyl sulfate (SDS) to break the disulphide bonds and then separating the proteins on a 

polyacrylamide gel (PAGE).  SDS-PAGE provides information about all three HMW-glutenin 

loci and the three LMW glutenin loci simultaneously, making it the gold standard for glutenin 

genotyping.  However, it often cannot separate alleles with similar mobilities and can be difficult 

for many labs to perform and analyze.  Additionally, the throughput is too low to for large-scale 

screening in a breeding program and typically only possible for genotyping advanced breeding 

lines and breeding program parents.   

Recognizing the limitations of SDS-PAGE for genotyping, significant effort has been 

made to develop high-throughput PCR and KASP markers for HMW-glutenin alleles in the 

search for a more rapid throughput and sensitive system than SDS-PAGE.  Some of these efforts 

have been successful with development of PCR marker assays for Ax2* at Glu-A1, Dx2, Dx5, 

Dy10, Dy12 at Glu-D1 (S. Liu, Chao, & Anderson, 2008). While others have developed KASP 

markers from publicly published HMW-GS sequences (Ravel et al., 2020). However, the results 

are often limited to differentiating only a few alleles and ambiguous, and therefore these have not 

been widely adopted yet.  Due to these various constraints, genetic profiling for glutenins is often 

limited to charactering breeding program parents rather than screening large, early-generation 

populations.   

Here we sought to first understand the haplotype variation in the wheat HWM glutenin 

loci leveraging newly assembled wheat genomes for important varieties representing global 
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diversity.  We observe large structural variation across the known alleles and identified 

diagnostic polymorphisms between HMW glutenin alleles which correspond to the known alleles 

differentiated by SDS-PAGE. We also developed a methodology using sequence-based 

genotyping (SBG) that uses diagnostic k-mers to genotype HMW glutenin alleles from very low 

coverage skim-sequencing data.  SBG is as accurate as SDS-PAGE while also being high-

throughput and scalable to whole breeding programs and could be implemented in parallel with 

skim-sequencing for whole-genome profiling for genomic selection.  

  

Materials and Methods 

 Populations 

For this study, we utilized a set of 11 wheat varieties with completed de novo assemblies 

from the 10+ Wheat Genomes project (Walkowiak et al., 2020) to develop a set of diagnostic k-

mers for tagging known glutenin alleles (Supplemental Table 1).  We also included 93 CIMMYT 

hard spring wheat founder lines and 45 western plains hard winter wheat founder varieties.  

To validate the sequence tags we utilized a set of 93 CIMMYT wheat parental lines that 

have been developed in the CIMMYT bread wheat breeding program.  The 10+  Genomes and 

the CIMMYT parental lines were characterized for known HWM glutenin alleles with SDS-

PAGE (Supplemental Table 1).  The CIMMYT parental lines were sequenced to ~ 10-fold 

coverage with Illumina pair-end sequencing.  PCR-free genomic libraries were constructed with 

targeted 350bp inserts and sequenced with 2 x 150bp reads.  

For validation of genotyping pipeline, we utilized a large set of breeding lines in the 

CIMMYT bread wheat program that were typed with SDS-PAGE as they entered the crossing 

block.  This set consisted of 805 advanced lines (F5 or F6-dervied).  These lines were skim-
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sequenced on Illumina NovoSeq to approximately 0.05x coverage using the methods of 

Adhikari, Shrestha et al., (PENDING).  

 

SDS-PAGE Analysis 

SDS-PAGE analysis was conducted for the 10+ Genomes lines and 60 of the CIMMYT 

founder lines as described by Pena (2004) and allele nomenclature in accordance with Payne and 

Lawrence (Payne & Lawrence, 1983). SDS-PAGE alleles for the western plains hard winter 

wheat varieties were referenced from literature reports (Table 5.1).   

 

 Haplotype Analysis of 10+ Genomes High Molecular Weight Glutenin Genes 

A completely assembled reference allele for each of the HMW glutenins was created by 

manually combining the respective HMW glutenin coding sequences of Chinese Spring RefSeq 

v1.0 (Appels et al., 2018) and Chinese Spring Triticum 3.1 (A. V. Zimin et al., 2017).  The 

positions of the HMW glutenins of each assembly were identified using blastn of NCBI BLAST 

v2.6.0 (Altschul, Gish, Miller, Myers, & Lipman, 1990) with E value < 0.0005, output format 6 

and query sequences from Triticum 3.1  The incompletely assembled nature of the HMW 

glutenins made sequence retrieval difficult, therefore a custom R script was developed that 

scanned reads to identify the start and stop of each gene and is available in the Github repository 

for this study.  The script output a bed file of gene positions and the getfasta command of 

BEDtools v2.19.1 (Quinlan & Hall, 2010) was used to retrieve sequences as a fasta file.  The 

Chinese Spring sequences were aligned manually with Jalview v2 (Waterhouse, Procter, Martin, 

Clamp, & Barton, 2009) and the final reference alleles output as a fasta file.  Of particular note is 

the Glu-A1y (null) allele in Chinese Spring that is inactivated by a 10.8 kb wis-2 insertion.  This 

large insertion was removed from the reference allele for better comparison to the other alleles. 
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The HMW glutenin positions and sequences were retrieved from the other 10 genomes as 

described above, but with the addition of the Chinese Spring reference alleles to the query fasta 

file.  Alleles for each HMW glutenin gene were aligned with Clustal Omega Multiple Sequence 

Alignment tool with default parameters (Madeira et al., 2019).  Alignments were manually 

corrected with Jalview v2.  Sequence variants were identified and positions calculated from the 

start of the Chinese Spring reference allele. Sequence haplotypes were determined by exact 

sharing of variants.  

Sequence variants were confirmed by variant calling using the raw sequencing data for 

each of 11 genomes using the paired end 2x250 bp Illumina sequencing data of 470bp insert 

libraries.  Adapters and low quality bases were trimmed from raw sequencing data using the 

Bbduk tool of the Bbtools package (http://jgi.doe.gov/data-and-tools/bbtools/).  The cleaned 

forward and reverse reads were aligned together to the Chinese Spring RefSeq v1.1 genome 

assembly with HISAT2 default parameters and preventing spliced alignments with ‘--no-spliced-

alignment’ option (Kim et al., 2019) with an average depth of 10x over the HMW glutenins.  

Variants for HMW glutenins were called with bcftools v1.6 (H. Li, 2011) for each genome 

independently.  First the genotype likelihoods were found with mpileup with options -f and -R to 

generate a faidx indexed fasta file for specified HMW glutenin regions.  The file was piped into 

the call tool with options -m and -Ou for multiallelic calling and to generate an uncompressed 

vcf file.  The vcf file was filtered for genotype quality (GQ) scores greater than 20 and read 

depth greater than 1 with the filter tool. 

Nucleotide variation in the Glu-D1 locus of Norin 61 was determined by aligning 470-bp 

PE Illumina reads of all 10 + Genome varieties to the CS reference genome v1 with HISAT2 

v2.1.0 using default parameters (Kim et al., 2019) and alignment sorting and indexing done with 

http://jgi.doe.gov/data-and-tools/bbtools/
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samtools v1.6 (H. Li et al., 2009).  Variants within the Glu-D1 subunits, the 57 kb between 

subunits and 100 kb flanking were called with bcftools v1.11 ‘mpileup’ and ‘call’ with minimum 

alignment quality score of 20 and ‘–group-samples–’ option (Li 2011).  Heterozygous calls were 

set to missing and missing variants exceeding a proportion of 0.1 filtered out. Structural variation 

between the 2.2+12 locus of Norin 61 genome assembly v1.1 and 2+12 locus of CS genome 

assembly v1 was assessed with MUMmer v3.23 using default parameters (Kurtz et al., 2004). 

 

 Chinese Spring v1.0 Augmented Genome Assembly  

To recover reads unique to all of the HMW glutenin alleles while minimizing alignment 

computing requirements, we developed an augmented reference genome assembly for the 

Chinese Spring RefSeq v1.0.  For this augmented assembly the HMW glutenin loci from each of 

the 10+ Genomes assemblies (Walkowiak et al., 2020) and the Aegilops tauschii v4 assembly 

(Luo et al., 2017) were concatenated to the Chinese Spring v1.0 reference genome (Appels et al., 

2018) and referred to hereafter as CSv1_HMW-GS assembly.  This augmented assembly enabled 

alignment and extraction of unique sequence reads that were not present in the HWM Glu alleles 

of Chinese Spring.  

 

Haplotype Analysis For Expanded Founders Populations 

Molecular haplotypes of high molecular weight glutenin loci were determined using 

methodology similar to that described in Chapter 2 of this dissertation. Whole genome 

sequencing data was trimmed using FASTp and aligned to the Chinese Spring RefSeq v1.0 

assembly using HISAT2 default parameters. Alignments were filtered for mapping quality 

greater than 20 (-q 20), converted to bam format, sorted and indexed using samtools. All variants 
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from reads with mapping quality greater than 20 (-q 20) were called within the HMW-GS loci 

with bcftools. Each sample was treated as its own group with ‘–groupsamples –‘ to reduce 

heterozygous calls. Variants were filtered twice, first for read quality depths for reference or the 

alternate allele greater than or equal to 5 and for estimated variant quality greater than 100 

(FMT/DP>=5 & FMT/AD>=5 & QUAL>100) with bcftools. The variants were filtered again for 

minor allele frequency > 0.05, heterozygosity < 10%, and missing calls < 95%.  

 

Identification of Diagnostic K-mers 

To minimize impact of assembly and sequencing errors for variant calling and k-mer 

identification, we employed the raw-sequencing data from the 10+ Wheat Genome assemblies.  

The data for these genomes utilized Illumina sequenced to 30x coverage with 250 bp paired-end 

reads of 470 bp insert libraries on Illumina HiSeq2500.  Adapters and low quality bases were 

trimmed from raw sequencing data using the Bbduk tool of the Bbtools package 

(http://jgi.doe.gov/data-and-tools/bbtools/).  The cleaned forward and reverse reads were aligned 

together to the respective genome assembly with HISAT2 default parameters and preventing 

spliced alignments (Kim et al., 2019).  Alignments were sorted and indexed using samtools v1.6 

and reads aligning to the HMW glutenin loci were extracted using samtools view command (H. 

Li et al., 2009).  For each of the genomes the HMW glutenin regions were defined as the x and y 

subunit, the sequence space between and additional 2000bp proximal and terminal 

(Supplemental Table 2).  The read file was converted from a SAM to a fasta using awk.  50-mers 

were generated using kmerextract of Bbtools with minimum count of 10 to exclude those due to 

sequencing errors.  This set of k-mers was defined as the starting set for identification of 

diagnostic k-mers. 

 

http://jgi.doe.gov/data-and-tools/bbtools/
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Testing and Validation Of Genotyping Pipeline 

The validation set of approximately 800 CIMMYT crossing block lines were skim-

sequenced from ~600bp insert libraries using the modified Nextera libraries.  Adapters and low 

quality based were trimmed as before and aligned to the CSv1_HMW-GS assembly as described 

above using HISAT2.  Reads aligning to the HMW glutenin loci, including the augmented set, 

were extracted using samtools view command as described previously and K-mers were 

generated using kmerextract of BBtools with minimum count of 1.  

 

 Results and Discussion 

 Haplotype Analysis of 10+ Genomes High Molecular Weight Glutenin Genes 

The HMW glutenins possess short and highly conserved N (243 – 312 bp) and C terminal 

domains (42 bp) separated by a complex repeat domain ranging from approximately 1.4 to 2kb 

(P. R. Shewry, Halford, & Tatham, 1992).  Even with very high-quality assemblies, we found 

these complex repeat domains were not fully assembled in the genomes, though completed to a 

single scaffold and correctly ordered.  This incomplete assembly with many gaps was likely due 

to the short-read technology utilized for the 10+ Genomes assemblies as we observed the 

Chinese Spring Triticum 3.1 assemblies (Aleksey V. Zimin et al., 2017), which utilized long read 

sequencing, had complete assembly of the complex repeats.  To overcome this limitation in the 

assemblies we combined and manually curated the HMW glutenin loci for two Chinese Spring 

genome assemblies, RefSeq v1.0 (Appels et al., 2018) and Triticum 3.1 assemblies (Aleksey V. 

Zimin et al., 2017).  The resulting manually curated and sized genes were used as templates for 

the multiple sequence alignments of the other 10+ Genomes HMW glutenin alleles. 
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The different HMW glutenin alleles are classically determined by sodium dodecyl 

sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) profiling of the proteins (Payne, 

Corfield, & Blackman, 1979; Peter I. Payne et al., 1981).  To examine the molecular structure of 

the different known alleles, we compared SDS-PAGE alleles with newly characterized molecular 

variants at each HMW glutenin locus in the wheat genomes (Figure 5.1).  We found that 

molecular haplotypes directly corresponded with each of the known HWM alleles, in all but two 

cases. In the first, we were able to differentiate two different sequence haplotypes that were sized 

as the same 7+8 allele of at Glu-B1.  These ‘crypic’ haplotypes are differentiated at the 

molecular level, but not at the protein level in the SDS-PAGE.  In the second, Glu-D1 2.2+12 

could not be differentiated from 2+12.  The 2.2+12 allele was first described in Japanese 

hexaploid wheat as having a unique x subunit with lower SDS-PAGE mobility than any other x 

subunits known at that time (Payne et al., 1983).  It was previously hypothesized that unequal 

crossing over in the central repetitive domain of 2x in the 2+12 allele led to the larger 2.2x 

protein. By comparing the coding sequences of 2.2+12 and 2+12, as well as the SNPs within the 

Glu-D1 locus, we found evidence to support the hypothesis that 2.2+12 originated in hexaploid 

wheat from the 2+12 allele due to uneven crossing over resulting in an expansion of the repeat 

region.  

Within the 257-kb region around the Glu-D1 locus, we surveyed SNPs.  There exists only 

10 SNPs differentiating 2.2 + 12 from 2 + 12 of CS and other wheat varieties (Long Reach 

Lancer, ArinaLrFor, Mace, SY Mattis). The number was much less than the 72 SNPs 

differentiating the 2 + 12 sequences among the wheat varieties CS, Long Reach Lancer, 

ArinaLrFor, Mace and SY Mattis in the same region. Analysis with MUMmer showed no large-

scale structural differences between 2.2 + 12 and 2 + 12 of CS, aside from 11 gaps ranging 
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between 33 and 5,381 bp. Gaps were likely assembly artifacts, evidenced by Norin 61 reads 

aligning to the CS ‘gap’ regions. Due to the highly repetitive nature of the central repeat domain 

and the limitations of short-read sequencing, we were unable to directly detect the 396 

duplication in 2.2x relative to 2x. However, with the genome assembly of Norin 61, we support 

here that the unique 2.2 + 12 in Japanese germplasm arose from a recent mutation of 2 + 12, as 

well as identify several molecular variants that could be used as a high-throughput molecular 

marker in breeding to differentiated 2.2 + 12 from the common 2 + 12. 

Norin 61 carries the 2.2+12 allele at the Glu-D1 locus, first described by (Payne et al., 

1983) in Japanese hexaploid wheat varieties. The very low electrophoretic mobility of 2.2x on 

sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) suggested that the 

protein was much larger in size than any other hexaploid HMW glutenin subunits known at the 

time. It was hypothesized then that 2.2x arose from an unequal crossing over in the central repeat 

domain of 2x that increased the size of the gene. Failure to identify 2.2+12 in surveys of Glu-D1 

SDS-PAGE mobilities in Aegilops tauschii (Lagudah & Halloran, 1988; Mackie et al., 1996; 

William et al., 1993), the D genome donor to hexaploid wheat, and that 2.2+12 is present 

primarily only in Japanese germplasm indicated that 2.2x arose from recent mutation within 

hexaploid wheat. Further evidence for this hypothesis was provided by  the full gene coding 

sequences comparing 2.2x to 2x that showed 2.2x has a perfect 396 nucleotide duplication in the 

central repeat region (Y. Wan et al., 2005). 

Within the 257 kb region around the Glu-D1 locus, there exists only 1 single nucleotide 

polymorphism differentiating 2.2+12 from 2+12 of Chinese Spring. An additional SNP 

differentiates Norin 61 and Chinese Spring Glu-D1 locus from the 2+12 present in other wheat 

varieties (Long Reach Lancer, ArinaLrFor, Mace, SY Mattis). Analysis with MUMMER showed 
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no large scale structural differences between 2.2+12 and 2+12 of Chinse Spring. With the 

genome assembly of Norin 61 we confirm here that 2.2+12 arose from a recent mutation of 

2+12. (Payne & Lawrence, 1983) 

The overall conserved sequence haplotypes within HMW glutenin alleles of globally 

representative wheat genomes indicates that the functional alleles at the important glutenin genes 

are each of single origin and shared among global breeding programs.  The completed 

assemblies and detailed sequence characterization of the alleles also enables development of 

effective high-throughput markers for molecular breeding as well as differentiating and 

predicting alleles using high-throughput skim sequencing. 

 

Haplotype Analysis Of Founder Lines 

Over 131 wheat founder varieties in the CIMMYT and western plains, we discovered few 

variants within the coding regions of the x and y subunits.  However, when we expanded the 

haplotype space to include the region between each subunit and 2 kb flanking the edge of each 

subunit, we were able to distinguish haplotypes more reliably through 2429 variants at Glu-A1, 

523 at Glu-B1 and 550 at Glu-D1. From this haplotype analysis we were able to differentiate 

three haplotypes Glu-A1, two for Glu-D1, and ten for Glu-B1.  

We found that the SDS-PAGE alleles and molecular haplotypes perfectly corresponded 

for Glu-A1 and Glu-D1 (Figures 5.2 and 5.4), owing most likely to the fact that there were few 

alleles at these two loci which were highly differentiated.  Likewise, we were able to find 

correspondence between molecular haplotypes at SDS-PAGE alleles at Glu-B1.  Notably, 

however, we discovered cryptic molecular haplotypes within Glu-B1 SDS-PAGE alleles (Figure 

5.3).  For some Glu-B1 SDS-PAGE alleles, such as 7+8, there existed only one molecular 
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haplotype. While for others, in particular 7+9, there were three different molecular haplotypes.  

Two of these haplotypes were relatively closely related while others were very different (Figure 

5.3).  These results show that 7+9 mobility is shared among many different alleles, including 

highly divergent alleles.  

There exists confusion in the wheat breeding community surrounding the 7+8 allele.  It 

has been noted that there exists more than one 7+8 allele as indicated by slight differences of the 

7x subunit in SDS-PAGE.  The reference 7+8 allele (Glu-B1b) is found in Chinese Spring, and 

the slightly different allele was given the designation 7*+8 (Glu-B1u).  The 7+8 allele was 

thought to be very rare in North American germplasm and the commonly seen allele was in fact 

7*+8 (Wrigley et al., 2009).  In our population of western hard spring wheat and CIMMYT hard 

spring wheats, the Chinese Spring 7+8 haplotype was unique and not found in any other 

accessions.  However, there were many haplotypes associated with 7+8 SDS-PAGE mobilities.  

Although Duster was reported to possess 7*+8 (Edwards et al., 2012), the molecular haplotype 

was most closely related to 7OE+8.  KS Hatchett (KS090049K-8), a progeny of Duster, also 

shared this haplotype.  

From the CIMMYT program, breeding lines, GID7634384 and GID8059716, also 

possessed the 7OE+8 haplotype, though GID7634384 appeared to have 7+8 on SDS-PAGE.  

There are up to three Bx7OE alleles.  One confers good quality (Glu-B1al) and one confers poor 

quality (Glu-B1br). Glu-B1br is present in an Australian cultivar H45, also known as Galaxy (X. 

Gao, Appelbee, Mekuria, Chalmers, & Mather, 2012).  The poor quality of the allele is thought 

to be due to a SNP in the repetitive region which results in a cysteine residue there (X. Gao, 

Zhang, Newberry, Chalmers, & Mather, 2013).  The researchers postulated that the cysteine 

residue causes interference in gluten polymerization, however, experimental evidence of this 
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hypothesis has not yet been provided.  The conclusion from their work is that not all Bx7OE 

alleles are good for quality. Additionally, and what we are probably seeing, is that it appears 

Kanred has a related (possibly ancestral) allele to Bx7OE (Butow et al., 2004).  Kanred is present 

seven times in the pedigree of Duster, but none of the known Bx7OE carriers are.  

Another interesting, and unexpected, finding was that West Bred Cedar possesses a 

highly unusual Glu-B1 allele which is most similar to 6.1+22.1 in spelt wheat.  WB Cedar 

resulted from a cross between TAM302 and experimental germplasm with the Pioneer variety 

2180. Seeing that 2180 is in many other varieties, such as of Endurance 

(http://ofss.okstate.edu/seed/wheat03) and Gallagher (Marburger et al., 2021), we do not believe 

the allele originated from 2180. Another Pioneer variety, 2145, also appeared to possess a spelt 

type Glu-B1 allele. However, it is difficult to confirm given that the 2145 sample was 

heterogeneous and thus all of its spelt type variants were also heterozygous.  

 

Development of SBG Pipeline 

We hypothesized that the conserved and highly divergent haplotypes between alleles at 

the Glu-D1 or Glu-A1 locus could be used to predict allele identities from sequencing data. As a 

proof of concept, we first cross validated prediction ability on the whole genome sequenced 

founder lines (10+ Genomes, western hard winter founders and CIMMYT hard spring founders). 

All founder lines were aligned to the augmented Chinese Spring assembly, filtered for alignment 

quality and reads aligning to the locus of interest were converted to 50-mers (Figure 5.7).   

Twenty percent of samples within each haplotype were held out of the diagnostic k-mer 

training and these became the prediction set. Diagnostic k-mers were trained on the remaining 

80% of samples. Diagnostic k-mer training was relatively naïve. A k-mer was considered 

http://ofss.okstate.edu/seed/wheat03
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diagnostic for a haplotype as long as it was unique to only one haplotype. Predictions were on a 

per training set sample basis, that is, the predicted allele was the one that belonged to training set 

sample with the highest correlation to the prediction set sample. The SBG pipeline was repeated 

5 times with the assignment of lines to either the training or prediction set being random.  

The resulting prediction accuracies were 89% and 98% for Glu-A1 and Glu-D1 

respectively. Glu-D1 alleles 2+12 and 5+10 both had good prediction accuracies, with 2+12 

successfully predicted 93% of the time and 5+10 at 99% (Figure 5.6). In Glu-A1, the most 

common allele, 2*, was the most successfully predicted while the less common alleles were often 

incorrectly predicted as 2* (Figure 5.6). Suspecting that the sheer representational imbalance of 

alleles in Glu-A1 was responsible for the disparity, we attempted to balance the training set data 

by drawing fewer lines of the 2* haplotype. This did improve the prediction accuracy for the 

minor allele to a small degree, but at the expense of predictive ability of the major allele and 

therefore the overall predictive ability of the pipeline. We therefore concluded that additional 

data improves predictive ability and that less than 5 representative accessions of the minor allele 

restricts predictive power for that allele.  

Encouraged by the results of the founder cross validation, we tested SBG pipeline on a 

skim sequenced set of 965 CIMMYT accessions. The accessions were chosen because they 

participated in the crossing block of the hard spring wheat breeding nursery in the last 10 years. 

They therefore capture the HMW-GS diversity in the CIMMYT wheat breeding program. 

Additionally, the accessions all have SDS-PAGE mobilities determined for both HMW-GS and 

LMW-GS. Although, we did not apply SBG to LMW-GS in this study, we were aware that if 

SBG were successful for HMW-GS then the next logical step would be to expand it to predicting 

LMW-GS alleles. Most importantly, these accessions were also characterized for the entire 
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battalion of end-use quality characteristics. We expected to detect cryptic alleles, particularly in 

Glu-B1. If SBG were to successfully distinguish these alleles then the effect on end-use quality 

could be determined as well.   

One hundred of the accessions were measured in more than 1 year for both SDS-PAGE 

and end-use quality traits. This allowed us to calculate the SDS-PAGE accuracy. Discrepancies 

between SDS-PAGE alleles could be due to heterogeneity, heterozygosity, or sample errors. 

SDS-PAGE accuracy was measured as number of total number of accessions minus number of 

discrepancies at any HMW-GS locus, over total number of accessions. The measured accuracy 

was 94% and the theoretical maximum prediction accuracy of SBG on this sample set.  

The alignment and k-mer making pipeline portion of SBG was applied the same as before 

in the cross validation approach (Figure 5.6). The overall number and depth of the 50-mers were 

much less for the skim sequencing data. The approximate depth of skim sequencing on the 

crossing block set was 0.05x whereas the whole genome sequencing depth of the founder lines 

was closer to 10x. Forty one samples failed to yield enough sequencing data for any reads to 

align to any of the HMW-GS loci and were discarded.  

Diagnostic 50-mers for the crossing block samples were found by considering data from 

only the 93 CIMMYT founders and excluding any founders that appeared to have predominately 

heterozygous calls for haplotype variants. Again, highest correlation between the kmers of a 

given sample and the prediction set was used to determine allele in the sample. Given that skim 

sequencing data is too low coverage to determine the actual haplotypes, the SDS-PAGE alleles 

were used as a proxy for haplotype. This assumed that there were not additional HMW-GS 

haplotypes in the crossing block samples set that were not present in the founder training set, 

although we are fairly certain that this assumption is false given the results of our Ae. tauschii 



84 

HMW-GS diversity analysis and that the CIMMYT breeding program utilizes material with wild 

relative crosses.  

The overall prediction accuracies of SBG on skim sequencing data were 61% and 89% 

for Glu-A1 and Glu-D1, respectively (Figure 5.6). These prediction accuracies were theoretically 

constrained by the cross validation prediction accuracies. We saw in both Glu-A1 and Glu-D1 

that prediction ability was greatest for major alleles from the training set and that attempting to 

balance the training set by withholding samples of the major allele did not improve prediction 

accuracy. Notably, Glu-D1 2+12 prediction accuracy in the entire WGS cross validation was 

93%, however it felt to just 11% when the CIMMYT breeding lines were used as the training set 

and the crossing block as the prediction set. There were nearly 10 fold more CIMMYT founder 

lines with 5+10 than 2+12, and therefore also 10 fold more diagnostic kmers for 5+10 than for 

2+12. Extreme imbalances between alleles such as this in the training set should therefore be 

avoided.  

Glu-B1 predictions for SBG are not shown here because most alleles were too highly 

related and complex to be predicted with any accuracy. Further work is required to determine if 

better training of the model through training set selection, identification of diagnostic k-mers or 

other statistical relatedness measurements could improve prediction accuracies. At this time, 

SBG is not recommended for Glu-B1 allele genotyping. Instead, KASP markers for any of the 

523 variant sites identified in this work would likely provide a much more reliable genotyping 

method for Glu-B1 haplotypes.  
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 Conclusion 

In this work, we characterized the molecular haplotypes the high molecular weight 

glutenin loci of 145 bread wheat varieties. The varieties represented global breeding programs 

with wider consideration given to the western plain hard winter wheats and CIMMYT hard 

spring wheats. We used SNPs from high coverage whole genome sequencing to develop high 

resolution molecular haplotypes of each HMW-GS locus. The haplotypes revealed strongly 

conserved loci at Glu-A1 and Glu-B1. Given the results from Chapter 2 of this dissertation, we 

expected the intergenic regions between the x and y subunits of 2+12 and 5+10 alleles of Glu-

D1 to be structurally diverged due to their proposed origins in two separate lineages of Ae. 

tauschii.  

The haplotype analysis revealed that while the three Glu-A1 and two Glu-D1 common 

alleles were shared among the relevant breeding programs, that the Glu-B1 alleles were 

sometimes unique within programs. We discovered cryptic molecular haplotypes within two 

Glu-B1 SDS-PAGE alleles. One of the most interesting cases being that the Glu-B1 17+18 SDS-

PAGE allele in the CIMMYT program is an entirely different allele than the 17+18 in western 

plains breeding programs. We also found a Glu-B1 haplotype in the CIMMYT program that is 

very unlike any of the others.  

Future work is required to determine the end-use quality characteristics of the cryptic and 

novel Glu-B1 haplotypes. Given that the varieties sequenced in this study are awaiting SDS-

PAGE analysis and already have been measured for end-use quality traits, the prelimary analysis 

should be straightforward and forthcoming. With the SNPs identified in this study, KASP 

markers can be designed to tag the haplotypes for future studies on additional germplasm.  
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KASP markers are the most practical genotyping approach for Glu-B1 given the highly 

conserved sequences between alleles. However, the sequence and structural divergence between 

Glu-A1 and Glu-D1 alleles are amenable to the novel genotyping approach described in this 

chapter, sequence-based-genotyping (SBG). We showed that SBG can reliably predict Glu-A1 

and Glu-D1 haplotypes in high coverage sequencing data, and that it has acceptable prediction 

accuracy for skim sequenced samples. SBG could be improved by optimizing the training set and 

methodology for detecting diagnostic k-mers.   
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Table 5.1: Positions of HMW-GS genes in 10+ Genomes wheat assemblies. 

Each locus contains the x subunit and y subunit. Locus start is -2 kb from start position of the x 

subunit and +2 kb from the end of the y subunit. The augmented assembly, CS HMW-GS, is the 

full Chinese Spring RefSeq v1.0 assembly with the HMW-GS loci of each of the following 

assemblies added. Each locus has its own fasta header in order to behave like a chromosome 

during the sequence-based-genotyping pipeline.    
 

Genome Locus Subunit SDS-

PAGE 

Allele 

Chr Start 

position 

End 

position 

Chinese Spring Glu-A1 x null chr1A 508726319 508723998 

Chinese Spring Glu-A1 y null chr1A 508916062 508914850 

Chinese Spring Glu-A1 y null chr1A 508925603 508924816 

Chinese Spring Glu-B1 x 7+8 chr1B 555766152 555765126 

Chinese Spring Glu-B1 y 7+8 chr1B 555935716 555933488 

Chinese Spring Glu-D1 x 2+12 chr1D 412163311 412160785 

Chinese Spring Glu-D1 y 2+12 chr1D 412219631 412217775 

Arina Glu-A1 x null chr1A 515185153 515183154 

Arina Glu-A1 y null chr1A 515373772 515372680 

Arina Glu-A1 y null chr1A 515390113 515389203 

Arina Glu-B1 x 7+8 chr1B 561737430 561735889 

Arina Glu-B1 y 7+8 chr1B 561910781 561909141 

Arina Glu-D1 x 2+12 chr1D 407196086 407194829 

Arina Glu-D1 y 2+12 chr1D 407252053 407250608 

CDC Landmark Glu-A1 x 2* chr1A 507679179 507676625 

CDC Landmark Glu-A1 y 2* chr1A 507866629 507864735 

CDC Landmark Glu-B1 x 7+9 chr1B 564481946 564479636 

CDC Landmark Glu-B1 y 7+9 chr1B 564659128 564656812 

CDC Landmark Glu-D1 x 5+10 chr1D 415924677 415921653 

CDC Landmark Glu-D1 y 5+10 chr1D 415980417 415978297 

Jagger Glu-A1 x 1 chr1A 509714763 509712422 

Jagger Glu-A1 y 1 chr1A 509913341 509911544 

Jagger Glu-B1 x 17+18 chr1B 565994772 565992542 

Jagger Glu-B1 y 17+18 chr1B 566179164 566176837 

Jagger Glu-D1 x 5+10 chr1D 409324900 409322316 

Jagger Glu-D1 y 5+10 chr1D 409379863 409378215 

Julius Glu-A1 x null chr1A 504708294 504706362 

Julius Glu-A1 y null chr1A 504897408 504895526 

Julius Glu-A1 y null chr1A 504907052 504906036 

Julius Glu-B1 x 7+9 chr1B 569169531 569167842 

Julius Glu-B1 y 7+9 chr1B 569340366 569338961 

Julius Glu-D1 x 2+12 chr1D 409051667 409050013 

Julius Glu-D1 y 2+12 chr1D 409107438 409106167 

Long Reach Lancer Glu-A1 x 2* chr1A 509405648 509403898 

Long Reach Lancer Glu-A1 y 2* chr1A 509592869 509591373 

Long Reach Lancer Glu-B1 x 7+8 chr1B 556729416 556727640 

Long Reach Lancer Glu-B1 y 7+8 chr1B 556897611 556896136 

Long Reach Lancer Glu-D1 x 2+12 chr1D 408915948 408914277 

Long Reach Lancer Glu-D1 y 2+12 chr1D 408972046 408970432 
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Mace Glu-A1 x 1 chr1A 506595893 506593879 

Mace Glu-A1 y 1 chr1A 506801909 506800293 

Mace Glu-B1 x 7OE+8 chr1B 557705753 557705087 

Mace Glu-B1 x 7OE+8 chrUn 260082208 260081542 

Mace Glu-B1 x 7OE+8 chrUn 368348997 368348608 

Mace Glu-B1 y 7OE+8 chr1B 557886456 557884850 

Mace Glu-D1 x 2+12 chr1D 408824036 408822140 

Mace Glu-D1 y 2+12 chr1D 408880150 408878489 

Norin 61 Glu-A1 x 2* chr1A 508841175 508839370 

Norin 61 Glu-A1 y 2* chr1A 509027573 509025997 

Norin 61 Glu-B1 x 7+8 chr1B 558708800 558707057 

Norin 61 Glu-B1 y 7+8 chr1B 558889881 558888539 

Norin 61 Glu-D1 x 2.2+12 chr1D 410249827 410248302 

Norin 61 Glu-D1 y 2.2+12 chr1D 410305402 410304148 

Spelt Glu-A1 x 1 chr1A 512591475 512589368 

Spelt Glu-A1 y 1 chr1A 512797732 512796049 

Spelt Glu-B1 x 6.1+22.1 chr1B 552718526 552717008 

Spelt Glu-B1 y 6.1+22.1 chr1B 552882289 552880515 

Spelt Glu-D1 x 2+12 chr1D 410126384 410124867 

Spelt Glu-D1 y 2+12 chr1D 410182430 410180707 

Stanley Glu-A1 x 2* chr1A 509949749 509947467 

Stanley Glu-A1 y 2* chr1A 510137232 510135477 

Stanley Glu-B1 x 7+9 chr1B 571416847 571414586 

Stanley Glu-B1 y 7+9 chr1B 571593965 571591754 

Stanley Glu-D1 x 5+10 chr1D 411371897 411369226 

Stanley Glu-D1 y 5+10 chr1D 411426824 411424924 

SY Mattis Glu-A1 x 2* chr1A 513772223 513770326 

SY Mattis Glu-A1 y 2* chr1A 513958964 513957324 

SY Mattis Glu-B1 x 7OE+8 chr1B 556900092 556897933 

SY Mattis Glu-B1 x 7OE+8 chrUn 332545430 332544739 

SY Mattis Glu-B1 y 7OE+8 chr1B 557069193 557067525 

SY Mattis Glu-D1 x 2+12 chr1D 403928738 403927042 

SY Mattis Glu-D1 y 2+12 chr1D 403984712 403983201 
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Table 5.2 – High molecular weight glutenin SDS-PAGE alleles in hexaploid wheat 

founders. 

All of the 10+ Genomes and CIMMYT crossing block populations were typed for SDS-PAGE 

alleles. Sixty of the CIMMYT founders were typed. None of the WP founders were typed and 

reported alleles are from variety release publications. Rare alleles and heterozygous calls are not 

reported. 

 

HMW-GS LOCUS 

SDS-PAGE 

ALLELE 

10+ 

Genomes (n) 

Western plains 

hard winter 

wheat founders 

(n) 

CIMMYT 

hard spring 

wheat 

founders (n) 

CIMMYT hard 

spring wheat 

crossing block 

(n) 

Glu-A1     

0 (null) 3 0 0 14 

1 3 3 14 148 

2* 5 6 45 637 

Glu-B1     

7 0 0 2 104 

7+8 4 3 2 50 

7*+8 0 1 0 0 

7+9 3 5 33 370 

7OE+8 2 0 0 12 

17+18 1 3 20 224 

13+16 0 0 2 12 

Glu-D1     

2+12 7 2 3 45 

5+10 3 10 56 760 
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Figure 5.1 - Coding sequences haplotypes of high molecular weight glutenins in the 10+ 

Genomes wheat varieties.  

Positions of SNPs (horizontal blue lines) and InDels (downward triangles) detected in the coding 

sequences of the x and y subunits are presented for each locus. The gray arrows indicate the 

coding direction of the genes. Nucleotide positions are relative to the coding orientation of each 

subunit in the curated assembly combining Chinese Spring v1.0 and Triticum 3.1. Figure is to 

scale. 
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Figure 5.2 - Haplotypes of Glu-A1 locus in hexaploid wheat founders.  

Dendrogram of hexaploid wheat accessions is shown to the right of the molecular haplotypes. 

Each row is an accession and each column a variant site. The variant states for the of 

homozygous reference allele are shown in aqua, heterogyzgous in pink and homozygous 

alternate allele in purple. Wheat accession identifiers are shown as the leaves on the dendrogram 

and colored by the SDS-PAGE allele is known. 10+ Genomes varieties are Chinese Spring, 

ArinaLrFor, Jagger, Julius, Long Reach Lancer, CDC Landmark, AUS Mace, SY Mattis, CDC 

Stanley and Spelt. The CIMMYT varieties are prefaced with ‘GID’ and all others belong to the 

USA western plains population. 
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Figure 5.3 – Haplotypes of Glu-B1 locus in hexaploid wheat founders.  

Dendrogram of hexaploid wheat accessions is shown to the right of the molecular haplotypes. 

Each row is an accession and each column a variant site. The variant states for the of 

homozygous reference allele are shown in aqua, heterogyzgous in pink and homozygous 
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alternate allele in purple. Wheat accession identifiers are shown as the leaves on the dendrogram 

and colored by the SDS-PAGE allele is known. 10+ Genomes varieties are Chinese Spring, 

ArinaLrFor, Jagger, Julius, Long Reach Lancer, CDC Landmark, AUS Mace, SY Mattis, CDC 

Stanley and Spelt. The CIMMYT varieties are prefaced with ‘GID’ and all others belong to the 

USA western plains population.   
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Figure 5.4 - Haplotypes of Glu-D1 locus in wheat founders.  

Dendrogram of hexaploid wheat accessions is shown to the right of the molecular haplotypes. 

Each row is an accession and each column a variant site. The variant states for the of 

homozygous reference allele are shown in aqua, heterogyzgous in pink and homozygous 

alternate allele in purple. Wheat accession identifiers are shown as the leaves on the dendrogram 

and colored by the SDS-PAGE allele is known. 10+ Genomes varieties are Chinese Spring, 

ArinaLrFor, Jagger, Julius, Long Reach Lancer, CDC Landmark, AUS Mace, SY Mattis, CDC 
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Stanley and Spelt. The CIMMYT varieties are prefaced with ‘GID’ and all others belong to the 

USA western plains population.  
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Figure 5.5 - Generalized sequence-based-genotyping workflow.  

In the training segment of SBG, germplasm carrying the alleles are interested are sequenced. The 

sequences aligning to the genes of interest are extracted and broken into k-mers. K-mers are 

sorted by allele and filtered to be diagnostic for a given allele. During the prediction segment, 

skim sequencing is done on the population of interest. Diagnostic k-mers from the training set 

are detected and the allelic state of each line within the population is predicted based on which k-

mers that line carries.  
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Figure 5.6 - Confusion matrices for sequence based genotyping allele predictions on Glu-A1 

and Glu-D1.  

Confusion matrices show the prediction accuracy of the sequence-based-genotyping as 

percentage of wheat accessions correctly or incorrectly predicted. The x-axis shows the SBG 

prediction of the allele and the y-axis shows the true allele. Darker squares along the diagonal 

and white squares on the off diagnonal indicate higher prediction accuracy. Dark squares on the 

off diagonal indicate incorrect predictions. Initial testing was on done 5 fold cross validation 

within the training set for Glu-A1 (a) and Glu-D1 (c). Further testing was done on the skim 

sequenced (0.05x coverage) crossing block population for Glu-A1 (b) and Glu-D1 (d).    
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Figure 5.7 - Technical sequence-based-genotyping workflow.  
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Chapter 6 - Discussion of future work  

 

 Genomic Selection 

Quality is a critical component of wheat variety development. In many breeding 

programs, acceptable processing and end-use quality parameters have been achieved. As shown 

in the CIMMYT breeding program, that acceptable quality characteristics are wide and diverse 

depending on the target region and the wheat products made there (Guzman et al., 2016). The 

potential of wheat flour for many end-use products, such as soft and weak gluten being ideal for 

cake flour and hard grain with high gluten strength being ideal for bread flour, also means that 

acceptable quality traits are relatively easy to attain and a particular variety can be targeted for a 

particular end-use. For an excellent overview of the quality traits suited for different products, 

see Guzman et al. (2016).  

The goal of the wheat breeding program at CIMMYT is maintenance of acceptable 

quality within the higher yielding and more resilient wheat varieties. We see very clearly from 

wealth of quality data collected over past 10 years that quality traits have not moved 

substantially in any direction (Figure XX). The values of quality traits over the populations 

change year to year, but these values follow closely the yearly weather trends, especially the 

average global surface temperature. This is to be expected, given that environment is known to 

play a role in quality characteristics (XX) and we additionally showed in Chapter 2 of this work 

that some high molecular weight glutenins interact with environment to influence final quality 

traits.  

In Chapter 3 of this dissertation, we showed that genomic predictions for 13 quality traits 

have become routine for the phenotypically unobserved 10,000 first year trial wheat lines in the 
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CIMMYT wheat breeding program. While the predictions are straight forward to attain, how to 

incorporate 130,000 data points into a coherent index for selection recommendation is  

complicated. Quality is complex and cannot be distilled into a single value nor do we necessarily 

aim to drive any of the traits in one direction. In initial years of this work, we naively attempted 

to predict the quality classes as defined by Guzman et al. (2016) from the predicted alveograph 

W, alveograph P/L and grain protein values in an attempt to distill quality predictions into a 

more palatable value for the breeders. It failed spectacularly and was quickly abandoned, no 

further attempts of creating a selection criterion were made.  

What then, would be the best use of the genomic predictions? Given that only of one the 

quality classes is unacceptable, that the goal of the Wheat Chemistry and Quality Laboratory at 

the International Maize and Wheat Improvement Center (CIMMYT) is to maintain acceptable 

quality for a diverse range of products and that replicated yield trial plots are costly in labor and 

resources, then it appears that the most efficient use of genomic predictions in the first year yield 

trials would be to use them identify the poorest quality lines to not be selected.  One must be 

careful to remember though that poorest quality does not necessarily mean lowest trait values. 

Instead, a range, perhaps defined as within two standard deviations from the mean in either 

direction should be used to flag candidate lines for potential removal. A weighted flag could be 

applied when any of the more critical traits, such as grain protein, grain hardness, alveograph W, 

and alveograph P/L have strayed outside the acceptable range. These flags could help breeders 

quickly decide which of the 10,000 first year yield trial wheat lines to not select for 

advancement.  

Future work would involve developing this flagging system and testing its success. 

Success could be measured by measuring a correlation between if a line was recommended to be 
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discarded and if that line was discarded. This measure will be complicated by the fact that 

quality is not the main source for selection, but instead a plethora of other traits such as disease 

resistance for which genomic predictions are made within CIMMYT itself. Additional work 

could be done to test if including covariates such as grain protein content or weather data could 

improve prediction accuracies.  

Additionally, moderate and large effect loci such as the high molecular weight glutenin 

haplotypes, low molecular weight glutenin haplotypes and gliadin haplotypes could be included 

as covariates in the models. The eventual objective of implementing sequence based genotyping 

would provide haplotype predictions on the first year yield trials to use as both quality traits 

themselves for selection and as covariates in the genomic predictions models. An important 

consideration is that genomic prediction and SBG are very unlikely to identify rare alleles that 

contribute to unique or highly desirable quality characteristics. Therefore, those alleles are likely 

to be lost in population unless molecular markers tagging those alleles are used or SBG is 

specifically trained for the allele. Detecting the existence of these alleles, their effects and their 

markers will require continued research alongside breeding efforts.  

In conclusion, simple genomic prediction models have been shown in this work to 

provide predictions at breeding program scale. Continued research to refine the models could 

potentially improve prediction accuracy. In the near future, an index to concisely summarize the 

quality predictions would likely be very useful for breeders during selection.  

 

 High molecular weight glutenin haplotypes 

We used dense single nucleotide polymorphism (SNP) markers to determine molecular 

haplotypes of the high molecular weight glutenin loci in the 10+ Wheat Genome assemblies, 
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CIMMYT hard spring wheat founders and USA western plains hard winter wheat representative 

varieties. The Glu-A1 and Glu-D1 haplotypes corresponded to the SDS-PAGE alleles as 

expected, but several interesting observations were made regarding Glu-B1. The first was that 

most of the Glu-B1 haplotypes were much more similar to each other than was seen within the 

Glu-A1 or Glu-D1 loci, indicating that many of the modern alleles are recent mutations after the 

hybridization events that led to the hexaploid wheat genome. The second was that within SDS-

PAGE alleles were more than one cryptic haplotype, and in the case of Glu-B1 17+18 the 

haplotype present in the CIMMYT spring material is different than the one present winter wheat 

material. The final observation was that there were two very different haplotypes, one 

corresponding to a spelt Glu-B1 allele and another of yet unknown origin, perhaps another spelt 

allele, a durum allele or a recently introgressed wild allele.  

Further work is required to elucidate the significance of these findings. One potential 

project is to compare the quality effects of the newly discovered Glu-B1 molecular haplotypes. 

Past analyses have used SDS-PAGE to determine quality effects of Glu-B1 alleles, as seen for 

example in Chapter 2 of this dissertation, but we now know that multiple alleles exist within the 

SDS-PAGE profiles. Quality data has already been gathered for the CIMMYT spring material, 

but further analysis will be required to include the 10+ Genomes and USA western plains winter 

wheat varieties. Ideally, the wheat lines would be analyzed by the CIMMYT quality lab to 

ensure standard protocols across all samples.  

Another potential project would be to determine the factors underlying quality effect 

differences between the Glu-B1 alleles. There are several hypotheses for which factors lead to 

quality differences. The first is that the number and position of cysteine residues determines how 

well a protein can interact in the gluten matrix. The second relating to the length and structure of 



103 

the repetitive domain. A third is that the transcription timing and rate determines the 

accumulation of aggregated gluten proteins in the kernel. The first hypothesis could begin to be 

tested by estimating the amino acid composition of the N and C terminal regions of the Glu-B1 

haplotypes from the short read sequencing data available through this study. Substitutions 

leading to loss or gains of cysteine residues would be relatively straightforward to determine. 

However, changes in amino acid composition within the central repetitive domains of the 

glutenin genes would not be possible with the present data and long read sequencing would be 

required to transverse the region. With long read sequencing, the size and structure of the 

repetitive domain would also be determined to test hypothesis two. Testing the third hypothesis 

would require expression studies and possibly accumulation pattern analysis during grain 

development (S. Wang et al., 2013). Any of these studies combined with the wealth of quality 

phenotypic data available from Chapter 4 of this dissertation would provide a powerful dataset 

for quantifying the quality effects attributable to the different alleles and molecular 

characteristics they possess. A unique factor in using Glu-B1 alleles for this study is that the 

alleles appear to be much less diverged than those at either Glu-A1 or Glu-D1, which could allow 

a more precise determination of the individual molecular characteristics associated with the 

quality differences.  

The Ae. tauschii Glu-D1 work provided dozens of markers within the coding sequences 

or very close to the high molecular weight glutenins. These markers can be used to track 

introgression of novel Ae. tauschii Glu-D1 alleles in the wheat breeding programs. In particular, 

in Dr. Allan Fritz’s wide cross populations at Kansas State University. The markers will help to 

prioritize candidates with the novel alleles for advancement and then quality trait 

characterization. This same haplotype analysis framework can also be applied to other wheat 
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wild relatives with potential for domestic wheat improvement. For example, in the wild emmer 

(Triticum turgidum ssp. dicoccoides) by domesticated wheat populations being made by Dr. 

Mary Guttieri of the USDA in Manhattan, KS. Wild emmer crosses have the potential of 

introducing novel Glu-A1 and Glu-B1 alleles in the wheat genetic pool.  

This research provides the framework for molecular haplotype diversity analysis of 

genes. The framework can be applied to other genes for diversity analysis and also to identify 

useful variant sites for molecular marker development. The markers identified provide 

immediate support for tracking novel alleles in introgression populations. Future work will 

characterize the quality traits imparted by the novel wild wheat alleles.  

 

 Low molecular weight glutenin and gliadin haplotypes 

Although the focus of much of this dissertation was devoted to high molecular weight 

glutenins, the importance of low molecular weight glutenins and gliadins shouldn’t be 

overlooked. We chose to apply these initial studies to high molecular weight glutenins because 

the loci are relatively simple compared to the other gluten loci, the high molecular weight 

glutenins are the most widely and deeply studied at this time, and that the SDS-PAGE mobilities 

are simpler to interpret. The next phases for both the hexaploid wheat and Ae. tauschii DNA 

sequence data sets is to apply the haplotype analysis framework to the low molecular weight and 

gliadin loci. The SDS-PAGE analysis for low molecular weight glutenins is currently underway 

at the CIMMYT quality lab. The next stage is simply to call and filter variants for the low the 

molecular weight glutenin and gliadin loci, and to conduct the phylogenetic analysis for 

molecular haplotypes. Harnessing the quality data available for the CIMMYT founder lines 

combined with the molecular haplotypes for the high molecular weight glutenin, low molecular 
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weight glutenin and gliadin loci will further refine the quality effects attributable to the alleles at 

each locus and compare the effects between the loci.  

An additional study, which is currently in progress in collaboration with Dr. Brett Carver 

of Oklahoma State University, is to determine the source of superior quality traits in the OSU 

released winter wheat variety, Ruby Lee. The high molecular weight glutenin composition (2*, 

7+8 and 2+12) and pedigree would indicate that it should not have quality traits it does indeed 

possess. We are particularly interested in this variety because it may harbor unique gluten genes 

from Ae. tauschii. Ruby Lee has two unique Ae. tauschii accessions in its pedigree from the 

Kansas State University Wheat Genetic Resource Center (WGRC), TA2460 and TA2470, from 

which novel D genome alleles could have been inherited. Through the course of the high 

molecular weight glutenin haplotype analysis on hexaploid wheat and Ae. tauschii in Chapters 4 

and 5, we’ve determined that Ruby Lee does not have a unique Glu-D1 haplotype from Ae. 

tauschii. Therefore, the next leading hypothesis is that Ruby Lee has a novel Ae. tauschii allele at 

a low molecular weight glutenin or gliadin locus. A haplotype and SDS-PAGE analysis 

comparing these loci in Ruby Lee, other hexaploid wheat varieties and the tauschii accessions 

would test this hypothesis. The required whole genome sequencing data and alignments required 

are available through the Chapter 5 project of this dissertation. The samples are currently being 

analyzed together for SDS-PAGE mobilities at the CIMMYT quality lab. If this hypothesis turns 

out to also be false, then a haplotype binning analysis could be done to determine if Ruby Lee 

has any Ae. tauschii introgressions. Additionally, the in depth quality analysis of Ruby Lee and 

other wheat varieties being conducted in Dr. Brett Carver’s group could be leveraged against the 

whole genome sequencing data currently available to carry out a genome wide association study 

to identify genomic regions associated with the superior quality of Ruby Lee. If, however, we are 
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able to show that Ruby Lee possesses a novel Ae. tauschii low molecular weight glutenin or 

gliadin allele then this would become a powerful story showcasing the utilization of wild 

relatives for genetic diversity in modern wheat.  

 

 Conclusion 

In this dissertation research, we’ve shown the utility of applying genomic tools to quality 

improvement in wheat. We showed that superior high molecular weight glutenin alleles often 

confer greater effects under environmental stress. We applied genomic selection annually to the 

CIMMYT spring wheat first year yield trials. Predictions for those 10,000 otherwise unobserved 

entries were made available ahead of breeder selections. We characterized high molecular weight 

glutenin gene diversity through the wheat pan genome projects, 10+ Wheat Genomes and Open 

Wild Wheat Consortium. Hundreds of variant sites were identified for molecular marker 

development. We showed initial results of the k-mer based allele prediction methodology, 

sequence-based-genotyping. Future work will entail quality effect characterization of the cryptic 

domestic alleles and the novel wild alleles identified in Chapters 4 and 5, refinement of the 

genomic prediction and sequence-based-genotyping models, and the application of sequence-

based-genotyping to wheat breeding programs. Through this work, we’ve shown the power of 

applying genomic tools to breeding programs.  
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