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Abstract5

Because payments for environmental services (PES) often subsidize practices that of-6

fer latent private benefits, there are concerns that PES programs may provide little7

additional environmental benefits. Previous literature has framed the problem of non-8

additionality as an adverse selection problem. We develop a model where moral hazard9

can also arise because some agents delay adoption due to the incentive of potentially10

receiving a payment in the future. Moral hazard arises when agents have expectations11

of potential future subsidies, the technology naturally diffuses without a policy, and a12

subsidy is only available if the agent has not previously adopted the technology. We13

develop a conceptual model to illustrate the moral hazard incentive and conduct numer-14

ical simulations to understand the impact of policy parameters on aggregate outcomes.15

Numerical simulations illustrate that moral hazard creates a non-monotonic relation-16

ship between policy parameters—such as the subsidy and budget levels—and the net17

change in adoption induced by the program because some agents delay adoption. We18

also find that the cost-effectiveness of the policy is smaller when the policy is introduced19

during periods of rapid technology adoption.20
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1 Introduction23

Additionality is an important metric when evaluating the effectiveness of incentive programs.24

Additionality refers to the benefits induced by the policy that would not have occurred25

without the policy. In other words, additionality represents the benefits caused by the26

policy. The presence of asymmetric information between the government and participants27

and dynamic policy expectations further complicate additionality studies. Using dynamic28

simulations, we seek to understand the sometimes perverse incentives that can arise when29

programs subsidize the adoption of already diffusing technologies. While we do not attempt30

to model the optimal policy formulation, our study reveals the non-monotonic relationships31

between policy parameters and policy efficacy.32

Studying the additionality of payments for environmental service (PES) subsidies is im-33

portant for two reasons. First, PES policies are becoming a more popular means of achieving34

environmental goals (Pattanayak, Wunder, and Ferraro, 2010). Second, there are concerns35

of non-additionality in many PES policies. These policies often subsidize the adoption of36

technologies that produce private benefits for the adopter along with public environmental37

benefits. For example, payments for soil carbon sequestration have been promoted in both38

developed and developing countries (Lal, 2004), but carbon sequestration provides substan-39

tial private benefits in agriculture (Graff-Zivin and Lipper, 2008; Knowler and Bradshaw,40

2007).41

Most additionality literature has focused on adverse selection problems (Ferraro, 2008;42

Mason and Plantinga, 2013; Horowitz and Just, 2013; Claassen, Duquette, and Smith, 2018).43

Adverse selection arises from imperfect information regarding private benefits of the subsi-44

dized behavior. Without perfect knowledge of these private benefits, the government may45

subsidize individuals for practices that they would have adopted independently. Ignoring46

transaction costs of applying for a subsidy, profit maximizing farmers that would adopt a47

practice without a subsidy would surely take one if it were offered. Funds spent to needlessly48

subsidize these applicants constitute waste and the resulting benefits of this adoption are49
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said to be non-additional to the program.50

Non-additionality can also occur due to moral hazard. Moral hazard arises in subsidy51

programs when an applicant that is denied a subsidy delays adoption to maintain eligibil-52

ity to receive one in the future. Assuming forward-looking, profit maximizing agents have53

expectations of potential future subsidies, moral hazard can arise when the technology natu-54

rally diffuses without a policy and a subsidy is only available if the agent has not previously55

adopted the technology. A naturally diffusing technology implies that there are private ben-56

efits of adopting the technology that are increasing over time. Policies that do not pay for57

past practices introduce an opportunity cost of adopting the technology without receiving a58

subsidy.59

Many agri-environmental subsidy programs provide payments for practices that are well60

into their diffusion process. The Environmental Quality Incentives Program (EQIP) pro-61

vides payments for US farmers to adopt residue and tillage management—often a no-till62

practice—but adoption of no-till has been steadily increasing over time (Horowitz, Ebel, and63

Ueda, 2010). The diffusion of microirrigation systems, another practice that EQIP subsi-64

dizes, is largely driven by economic reasons such as water extraction costs and has been65

occurring naturally since the 1970s (Taylor and Zilberman, 2017). EQIP also pays farmers66

to implement nutrient management practices—which may include implementing precision67

agriculture technologies—but farmers are likely to continue adopting precision agriculture in68

the future without any incentive from the government. Between 2009 and 2013, EQIP only69

funded about 36% of the applications it received due to budgetary limitations. Furthermore,70

farmers are only eligible to receive a subsidy from these programs conditional on having not71

previously adopted the practice (Natural Resources Conservation Service, 2014).72

Our primary contribution is to provide new insights to how policy parameters affect the73

efficacy of PES policies in a dynamic model of technology diffusion that accounts for both74

adverse selection and moral hazard. We develop a dynamic simulation model using the75

technological diffusion framework of Jaffe and Stavins (1995). In these simulations, we track76
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the adoption decisions of a heterogeneous group of agents facing declining adoption costs over77

time. We compare the adoption decisions of this group of agents under a variety of policies78

with their respective free-market adoption decision. While several authors have estimated79

how policies influence technology diffusion (see Jaffe and Stavins (1995) and Milliman and80

Prince (1989)), there are no previous studies that we are aware of that analyze the effect of81

a subsidy when the program has a moral hazard incentive.82

Our numerical simulations reveal three novel results. First, moral hazard creates a non-83

monotonic relationship between additionality and the budget level. Holding the subsidy84

level fixed, policies with larger budgets can award more subsidies in a given period and85

increase additionality. However, once the budget becomes sufficiently large, the probability86

of receiving a payment increases. This increases the opportunity cost of adopting without a87

subsidy, leading more agents to delay adoption. When the applicant pool has more delayed88

adopters, the policy induces less additional adoption. Second, there is also a non-monotonic89

relationship between additionality and the subsidy level. Policies with too small of a subsidy90

may not be attractive enough for agents to deviate from their free market decisions. Holding91

the budget fixed, policies with too large of a subsidy can pay fewer applicants in a given92

period and increase the number applicants that are delaying adoption due to the potential93

of receiving a large subsidy—both of these effects decrease additionality. Third, we show94

that the period the policy becomes active within the technology diffusion process has a95

non-monotonic relationship with the cost-effectiveness of the policy. Policies starting during96

periods of rapid free-market adoption result in larger incentives to delay adoption and are97

less cost-effective (i.e., change in adoption per dollar of expenditure) than if the policy starts98

early or late in the diffusion process. Importantly, we demonstrate that all of these non-99

monotonic relationships only hold when the model incorporates the moral hazard incentive.100

Accounting for moral hazard also has important implications for econometric studies of101

additionality. Several authors have empirically estimated the additionality of PES policies102

using quasi-experimental designs (Claassen et al., 2014; Mezzatesta, Newburn, and Wood-103
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ward, 2013; Claassen, Duquette, and Smith, 2018; Woodward, Newburn, and Mezzatesta,104

2016; Chabé-Ferret and Subervie, 2013; Alix-Garcia, Shapiro, and Sims, 2012; Arriagada105

et al., 2012). Matching estimators and difference-in-differences assume agents, even those106

that were denied a subsidy due to budget limitations are a valid counterfactual when evaluat-107

ing the policy’s impact (i.e., the Stable Unit Treatment Value Assumption). However, in the108

case of diffusing technologies, control groups are comprised of agents that are delaying adop-109

tion for the potential of receiving a subsidy in the future. This results in an overestimation110

of additionality in the quasi-experimental design.111

2 Conceptual Model112

In this section, we introduce our conceptual model of a single agent deciding when to adopt113

a green technology under free-market and PES program scenarios. The conceptual model114

is useful for building intuition of delay incentives onset by moral hazard and provides an115

analytical foundation for the numerical simulations in the later sections. Our model is116

influenced by the technology diffusion literature. In particular, we use what is known as a117

threshold model, a standard among economists analyzing diffusion (Sunding and Zilberman,118

2001). For simplicity, we assume agents are expected profit maximizers and are therefore119

risk neutral.120

Some agent (i) using conventional technology in time period τ decides the optimal time121

to adopt a green technology according to a time horizon T . The agent earns πi,CNV each122

period she uses the conventional technology and πi,GRN each period she uses the green123

technology. The agent incurs a one-time installation cost of cτ when adopting in period τ .124

This installation cost is assumed to decline over time as the technology becomes cheaper and125

easier to install Bcτ
Bτ
ă 0. Declining adoption costs could represent a learning effect, actual126

decreases in the investment cost, or a combination of both. Diffusion of the technology occurs127

over time since the profit of the technology differs across agents and the cost of adoption128
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declines over time. Since per period profits do not change and the cost of adopting the129

green technology declines over time, the agent never finds it optimal to switch back to the130

conventional technology after adopting the green technology.131

Depending on the policy scenario, she may receive a one-time subsidy psq for adopting132

the technology. The ιτ term indicates whether the agent was offered a subsidy in period τ ,133

equaling one if she is awarded a payment in period τ and zero otherwise. Furthermore, she134

may have expectations of future subsidies where φτ`1 is the expected probability of being135

offered a subsidy in period τ ` 1. Formally, φτ`1 “ Eτ rιτ`1 “ 1s. If the agent is making the136

decision in period τ , she will know whether she received the subsidy or not and therefore the137

expected returns from adopting in period τ will be known. Our general framework captures138

three different scenarios: (i) the “free market” ps “ 0q (ii) when there is a subsidy policy and139

a subsidy is offered to the agent in τ (ιτ “ 1), and (iii) when there is a subsidy policy but a140

subsidy is not offered to the agent in τ (ιτ “ 0). The total return for adopting in period τ141

for the forward looking agent i is:142

(1) Π pτq “
τ´1
ÿ

t“1
βtπi,CNV `

T
ÿ

t“τ

βtπi,GRN ´ β
τcτ ` sβ

τ
pιτ q

where β ă 1 is the discount factor.143

The profits from adopting in period τ exceed the profits of adopting in some future period144

τ ` x when145

(2) Π pτq ´ Π pτ ` xq “
τ`x´1
ÿ

t“τ

βt∆i ´ β
τcτ ` β

τ`xcτ`x ` sβ
τ
pιτ ´ β

xφτ`xq ą 0 for x ě 1,

where ∆i “ πi,GRN ´ πi,CNV is the difference between the profit of the green technology and146

the conventional technology for agent i. Without loss of generality, we assume that ∆i is147

positive for all agents. Note that we seek to find some x that makes equation 2 true. That is,148
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we assume that the adoption of the technology will, at some point be profitable to the agent.149

While in reality, universal adoption of a given technology may never transpire, we seek to150

understand additionality in the added context of a diffusing technology and therefore focus151

our conceptual model across farmers on the diffusion continuum. Since, in this example,152

adoption costs monotonically decline over time and the green technology offers improved153

returns over the conventional technology, the green technology should universally diffuse154

over some time horizon. Rearranging (2) gives155

(3) ψ pτ, xq “
cτ ´ β

xcτ`x ´ s pιτ ´ β
xφτ`xq

řx´1
t“0 β

t∆i

ă 1.

The condition in equation (3) can be interpreted within the context of purchasing an an-156

nuity, an investment with periodic payments that remain constant over time. The “purchase157

price” of this annuity is the additional cost of adopting in period τ over the lower adoption158

cost in period τ ` x net of the expected benefit from a potential subsidy, and is represented159

in the numerator. The annuity’s “payment value” is ∆i, paid out over the intervening x160

periods between τ and τ ` x. When ψ is less than one it is more profitable for the agent to161

adopt in period τ relative to τ `x because the cost of the annuity is less than its discounted162

stream of payments.163

2.1 A Two Period Comparison of Adoption Decisions164

The decision to adopt in period τ can be characterized using pair-wise comparisons of the165

profit from adopting in period τ and the profit from waiting for at least another period. In166

practice, the agent will compare the profit from adoption in τ with the profit from adopting167

in the future period that offers the highest expected profit. This comparison period may or168

may not be τ ` 1.1 Since using the profits from τ ` 1 is more notationally compact, we use169

1See the supplementary appendix for details.

6



it to illustrate the adoption incentives in the conceptual model.170

Equation (4) shows the condition to adopt—rearranging equation (2)—when the agent171

compares to the profit from adoption in τ ` 1.172

(4) ∆i ą cτ ´ βcτ`1 ´ s pιτ ´ βφτ`1q

Equation (4) has three critical values. Under the first critical value, it is profitable to adopt173

in period τ when there is no subsidy program, which we call the “free market” case ps “ 0q.174

In the second critical value, it is profitable to adopt in period τ under a policy and a subsidy175

is offered in τ (when ιτ “ 1). Under the third critical value, it is profitable to adopt in period176

τ under a policy and a subsidy is not offered in τ (when ιτ “ 0).177

2.2 Graphical Illustration and Discussion178

Figure 1 illustrates the conceptual model. The two curves show how profits of the green179

and conventional technologies vary across agents, where the vertical distance between these180

curves represents ∆i. Different groups of agents are defined by the magnitude ∆i from the181

three critical values in equation (4). Note that 0 ă βφτ`1 ă 1 so the critical value for those182

that receive the subsidy (when ιτ “ 1) is always smaller than the free-market critical value183

(when s “ 0). Therefore, individuals that would adopt under free-market conditions would184

also accept a subsidy payment if it were offered.185

The first few columns in table (1) summarize the adoption decision for the different186

groups illustrated in figure 1. In the free market, groups A and B adopt in period τ and187

groups C and D wait to adopt in a later period. Agents in groups A, B, and C that receive a188

subsidy will adopt in period τ . Between groups A, B, and C, only agents in group A would189

adopt in period τ if they were denied a subsidy.190

The last columns in table (1) describe the effect of the subsidy program on each group of191
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agents. For those that receive a subsidy, adoption in groups A and B are non-additional—192

they would have adopted in period τ absent the policy. Non-additionality occurs due to193

asymmetric information, where the government cannot observe the private adoption incentive194

of the agents. The policy only generates additional benefits from applicants in group C since195

these agents would not have adopted in the absence of the policy. Among those that receive196

the subsidy, there is an increase in adoption compared to the free market as long as βφτ`1 ă 1.197

However, it is also important to recognize that these agents may have adopted in the absence198

of the policy at some period later than τ so the subsidy only provides additional periods of199

adoption. In some cases, agents may have never adopted the technology without a subsidy200

so that adoption is fully additional.201

For those that are denied a subsidy, agents in group B actually delay adoption compared202

to the free-market scenario because of the prospect of a future subsidy. Agents in this group203

that are denied a subsidy on or after their free-market adoption period cause environmental204

damages compared to the counterfactual scenario of no subsidy program. Delayed adoption205

occurs due to moral hazard, where agents have an incentive to alter their adoption decision206

in order to capture a subsidy from the program. Agents in groups A, C, and D make the207

same decisions when they are denied a subsidy as they would have made if there was no208

subsidy program.2209

We conclude this section by discussing the effects of changing the characteristics of the210

policy. First, consider the effect of changing the payment amount. Ceteris paribus, increasing211

the subsidy increases the sizes of both group B and group C. For those agents that are offered212

a subsidy, increasing the subsidy amount will increase additionality and hasten adoption (i.e.,213

the critical value decreases for equation (4) when s ą 0 and ιτ “ 1). But for those denied214

a subsidy, larger subsidies will increase delayed adoption because a larger subsidy amount215

increases the opportunity cost of adopting without one (i.e., the critical value decreases for216

equation (4) when s ą 0 and ιτ “ 0).217

2Agents in group A adopt even without a subsidy and agents in groups C and D wait to adopt just as
they did in the free market.
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One important feature of our model is that not every applicant necessarily receives a218

payment. A higher probability of receiving a subsidy slows adoption for those that are219

denied a subsidy since it increases the opportunity cost of adopting in period τ . It is useful220

to consider the case where the subsidy is offered to everyone that applies (i.e., φt “ 1 for all221

t). No one is denied the subsidy so only equation (4) where s ą 0 and ιτ “ 1 is relevant for222

adoption. In this case, the subsidy only has an impact on adoption due to the discounting223

of future subsidy amounts. When discounting is negligible (i.e., β Ñ 1), the impact of the224

subsidy on adoption disappears. Intuitively, this result occurs because the agent is choosing225

the optimal time to adopt and can receive the same payment in any period so the subsidy226

has no effect on the optimal timing. In contrast, if the subsidy is provided in every period227

that the agents use the green technology—rather than a one-time subsidy—then a subsidy228

that is awarded with 100% probability does increase adoption because adopting in an earlier229

period provides a longer stream of subsidy payments.3230

The discussion in the previous two paragraphs is useful for building intuition but fails to231

account for the effect of the budget and subsidy has on the probability of receiving a subsidy.232

For example, fixed-budget policies with larger subsidies cannot pay as many agents as those233

with smaller subsidies. Decreasing the number of agents receiving a subsidy slows adoption234

while decreasing the probability of receiving a future subsidy hastens adoption by decreasing235

the incentive to delay. Therefore, the net impact on adoption from changing a subsidy is236

ambiguous. Furthermore, the conceptual model only considers a single adoption decision. To237

consider the impact of decisions collectively, it is necessary to model the decisions of many238

profit maximizing agents, influenced by one another through the probability of receiving a239

subsidy. We do this by using discrete dynamic simulations. These simulations allow us to240

understand the impact of policy parameters on aggregate diffusion of the technology.241

3Assume that a subsidy denoted σ is provided in each period an agent uses the green technology. Under
the same assumptions of this section, the agent adopts in period τ if

∆i ą cτ ´ βcτ`1 ´ σ.

Therefore, a larger σ implies more agents adopt in period τ or before.
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3 Numerical Simulation242

We use discrete-choice-discrete-time numerical simulations to better understand the impact243

of changing policy parameters on overall diffusion of the green technology. Numerical sim-244

ulations allow us to aggregate the responses across heterogeneous agents and to model the245

interaction between different policy parameters and the probability of receiving a subsidy.246

The numerical simulation also relaxes the assumption that the relevant comparison period247

is the most imminent period, allowing it to be any future period.4248

3.1 Parameters249

Simulations for each individual closely follow equation (1) from the conceptual section.250

We consider the decisions of 1,000 profit-maximizing agents over the course of 50 periods251

pN “ 1000, T “ 50q. For all of these agents, we assume that the green technology is more252

profitable than the conventional technology but that the relative profit from switching to253

green technology per year varies over the agents p∆i ą 0 @iq. This variation is captured by254

the heterogeneity factor pθq such that ∆i “ ∆ pθiq. Without loss of generality, we assume255

B∆
Bθ
ă 0 so agents with smaller θ values are more likely to adopt earlier since they have256

a higher green technology profit premium. Over the population, the heterogeneity factor257

θ is distributed logistically. Since the logistic distribution is unimodal and costs decline258

over time, diffusion under free-market conditions follows the typical S-shaped diffusion curve259

(Sunding and Zilberman, 2001).260

We do not attempt to model a specific technology (e.g., no-till or precision agriculture)261

as it would be difficult to construct profits as a function of some heterogeneity factor or to262

know the distribution of such a factor. Though it may be possible to estimate such a factor263

by taking soil and weather variation into account, diffusion likely depends largely on other264

unobservable variables such as the farmer’s ability to learn a new technology. Instead we265

represent hypothetical profits and costs as linear functions and tailor them to ensure that,266

4See the supplementary appendix.
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absent a policy, the technology essentially diffuses completely over our 50 periods and that267

approximately 50% of adoption occurs by period 25. These functions could be represented268

as any function so long as costs monotonically decline over time and the profit premium from269

green technology declines with the heterogeneity factor. We normalize the cost of installation270

for the green technology so that it is equal to $100 in t “ 25. We define a linear function271

for costs over time where costs are declining and where the cost is $164 in t “ 1 and $34 in272

t “ 50 to ensure technology reaches near full adoption by the time horizon. Details of these273

functions can be found in the supplementary appendix.274

We consider various policies, differing by their subsidy level, budget level, and the first275

period that agents can receive a subsidy (which we call the active period). Under every276

policy, we assume that farmers are given a single period of notice before the policy becomes277

active. Because discrete-choice-discrete-time simulations are computationally intensive, we278

chose specific combinations of these policy parameters to simulate. In particular the budget279

pBq varies from $600 to $6,000 in increments of $600, subsidies psq range from $12 to $120 in280

$12 increments, and active periods vary from period 5 to period 50 in increments of 5 periods.281

Like our profit and cost terms, these parameter combinations were not chosen to represent282

a specific policy but to consider a variety of reasonable policy scenarios. For instance, the283

median subsidy ($60) would, in the median active period (25), constitute a 60% cost share,284

equal to the cost share of the EQIP program (Natural Resources Conservation Service, 2014).285

We do not attempt to parameterize our numerical model to replicate EQIP. For example,286

we assume a one-time subsidy while EQIP often provides subsidies over a 3-5 year period.287

However, the qualitative results are relevant for understanding the impacts of EQIP. The288

key feature of the EQIP subsidy is that it only provides payments for a limited time when289

the practice is first adopted rather than providing payments for every year the practice is290

implemented.291

Simulating every policy combination is computationally burdensome and would make292

summarizing results challenging. We would need to run 1,000 simulations to consider every293
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budget, subsidy, and active period combination for each expectation framework. Instead, we294

run 280 simulations, varying two of the three features of the policy while keeping the third295

policy parameter at the median value. For instance, we varied subsidies from $12 to $120296

and the active period from 5 to 50 while keeping the budget fixed at $3,000. As we will297

show in the results section, the time at which the policy becomes active is important. To298

ensure that our results are robust across start times, we also ran simulations varying both299

the subsidy level and budget when the active period is 10 in addition to the median value of300

25. The budget-subsidy combinations capture policies that are able to provide a subsidy for301

between 0.5% and 50% of the total agents in a single year and are able to provide a subsidy302

for as little as 1% to as much as 100% of the total applicants in the initial active period.303

Therefore, the parameter values we considered allow us to compare the benefits of a wide304

range of polices on two dimensional graphs.305

To understand the impact of forward looking expectations of subsidies on our results,306

we simulated the same polices but removed subsidy expectations. That is, we consider the307

same policy parameters where only a portion of applications actually receive a subsidy, but308

we assume that agents do not consider the potential of receiving a subsidy in the future309

when deciding whether or not to adopt the technology. Comparing our main results to the310

results with no expectations of future subsidies highlights the impact of moral hazard on the311

outcomes of different policies.312

3.2 Solution Algorithm313

Agents are forward-looking and maximize profits over periods 0 to T . To solve the optimal314

timing of adoption, we model the problem in terms of a longest path problem using a315

directional network graph, also called a diagraph. Figure 2 shows a 4-period version of the316

diagraph.5 Agents start at node 0 and solve for a path to node T that maximizes the sum317

of the path’s arc weights which represent periodic profits. The blue nodes indicate periods318

5The discount factors are omitted for the sake of readability.
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where the agent uses the conventional technology and the green nodes indicate periods where319

the agent uses the green technology.320

To solve the problem for each agent, we use Dijkstra’s algorithm–a shortest path algorithm–321

that is used commonly in operations research (Dijkstra, 1959). Although shortest-path al-322

gorithms are not as popular as other dynamic programming techniques such as the Bellman323

equation, they are conceptually related. Shortest-path algorithms can be viewed as efficient324

methods for solving dynamic programming problems by exhaustion and are particularly325

useful when there are a limited number of solution paths (Bellman, 1958).6 This certainly326

holds in our application because, by the assumption of constant, positive green technology327

premiums, once a producer adopts the green technology, she uses it for the remaining periods.328

A careful examination of figure 2 shows that all of the possible path combinations from329

equation (1) are embedded in the graph with a terminal time period T “ 4 with the addition330

of an expected subsidy. Starting at node 0, the agent can move along the blue dots to traverse331

the graph to node T . In this case, the agent never switches from the conventional technology332

to the green technology over the time horizon. If the agent adopts the green technology in333

period 1, she will move from node 0 to the leftmost green dot. Doing so will restrict the agent334

to using only the green technology for the remaining periods. To find the profits along this335

path, we simply sum over the arc weights, earning the agent
ř4
t“1 β

tπGRN ´ βc1 ` βφ1s in336

expected profits, paying c1 for the original adoption and receiving subsidy of φ1s. Considering337

different payment schemes is as simple as adjusting the transition arc weights. In the free-338

market case, the transition arc weights in between the green and blue nodes would simply be339

the green profit minus the cost of adopting for the respective period. In other words, we set340

the expectation coefficients equal to zero (φt “ 0 @t). To incorporate a subsidy, we simply341

adjust the expectation coefficients accordingly. Let τ be the contemporaneous period. The342

φt terms are zero for all t ă τ , φτ P t1, 0u if the individual receives or does not receive343

a subsidy respectively, and φt is between zero and one and is the estimated probability of344

6Bellman (1958) showed this using the Bellman-Ford algorithm, but the same idea applies for Dijkstra’s
algorithm.
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receiving a subsidy in period t for t ą τ .345

Dijkstra’s algorithm is appealing as it is the least time-complex algorithm to solve a346

shortest path problem in dense networks provided there are no negative arc weights and347

therefore tends to perform faster than other algorithms. We can use Dijkstra’s algorithm to348

solve for the longest path by simply redefining the arc weights to represent the same problem349

as a shortest path. We redefine the arc weights (periodic profits) by multiplying each weight350

by -1 and then adding the absolute value of the smallest (most negative) arc weight to all351

arcs (Ahuja, Magnanti, and Orlin, 1993). A simple illustration of Dijkstra’s algorithm is352

provided in the supplementary appendix.353

Initially, for all agents, we run our adjusted Dijkstra’s algorithm on their respective graphs354

with free-market conditions, where s “ 0. Any agent that adopts (chooses a transition arc)355

between the first period and the announcement period under free-market conditions would356

not be eligible for a subsidy and is taken out of the pool of agents in further simulations.357

These agents are not eligible to receive a subsidy because eligibility is conditional on having358

not previously adopted the technology.359

We continue by simulating decisions between the announcement period and the active360

period. During this intervening time, agents are exposed to expectations of future subsidies361

but the government does not yet award subsidies. In our simulations, the policy is disclosed362

one period before the active period. For this period, a single simulation is made on eligible363

agents in which agents have expected subsidy terms in every policy period but not in the364

announcement period itself. The method of calculating the probability of receiving a subsidy365

in future periods is described in the next section. Like those that adopt before the announce-366

ment period, any agent that adopts between the announcement period and the active period367

will not be eligible for payments and is removed from further simulations.368

In the final simulation, illustrated in figure 3, we model the decisions of agents after the369

policy becomes active. This simulation runs two routines for each of the remaining agents.370

The first routine examines whether or not agents would adopt in the current period if given a371
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subsidy.7 Remaining agents that would chose to adopt the technology in the current period372

with a subsidy are considered “applicants” for the period. The government provides a subsidy373

to a random sample of size
`

B
s

˘

to the applicants and these agents are removed from the374

pool of agents in further simulations. The remaining unsubsidized applicants then enter375

the second routine of the simulation. The diagraphs for these agents are adjusted with no376

subsidy in the current period while retaining subsidy expectations in future periods. Agents377

that choose to adopt without the subsidy but with the expectation of future subsidies are378

removed from the pool of eligible agents in further simulations. The simulation then steps379

forward one period and the two routines are repeated for the remaining agents that have not380

yet adopted. In the supplementary appendix, we provide a more detailed description of the381

simulation algorithm and a simple four-period illustration of the respective digraphs used382

for the simulations.383

Our diffusion framework makes several important contributions to this literature. First,384

it acknowledges the importance of temporal additionality. We emphasize that the timing385

of adoption matters when measuring the effectiveness of environmental incentives programs.386

We point out that additionality is only relevant between the time the technology is adopted387

with the payment to the period when the agent would have adopted in the absence of the PES388

policy.8 This is an important distinction for diffusing technologies since, non-additionality389

as it is generally understood occurs when a technology would have been adopted without a390

subsidy, even if at some date in the future. Under this definition, if a practice would fully391

diffuse over time, then none of the payments go toward “additional” adoption even though the392

subsidy may provide environmental benefits that would not have occurred in the free market393

by speeding up the time to adoption. Second, it acknowledges the importance of expectations394

7That is, we set the probability of receiving a subsidy to 1 in the current period and adjust the expected
probability of receiving a subsidy for all future periods (transition arcs) as described in the supplementary
appendix.

8Since our analysis considers a dynamic environment, additionality is not defined on the basis of what
agents would do if they receive a payment or not because expectations about future payments also influence
behavior. Rather, the true counterfactual in our analysis is the actions made by agents unperturbed by any
influence from a PES policy.
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in policy outcomes. Since our analysis considers a dynamic environment, additionality is not395

defined on the basis of what agents would do if they receive a payment or not because396

expectations about future payments also influence behavior. The true counterfactual in our397

study is the actions made by agents unperturbed by any influence from a PES policy.398

3.3 The Probability of Receiving a Subsidy399

Modeling the probability of receiving a subsidy over time pφq is a challenging aspect of the400

numerical simulations. We avoided this complication in the conceptual model by simply401

assuming some exogenous φ. To analyze aggregate adoption we must recognize that φ402

depends on the budget and subsidy levels and changes over time as more agents adopt the403

technology.404

We calculate the expected probability of receiving a future subsidy based on four assump-405

tions. First, the policy characteristics are all public knowledge—this includes knowledge of406

the budget and subsidy levels and, consequently, the number of subsidies that can be awarded407

in each period. Second, agents know how many agents would adopt the green technology for408

a given subsidy amount in the absence of potential future subsidies.9 Third, agents know409

how many agents have adopted the technology up to the current period. Fourth, agents410

assume that in the future, only agents that receive a subsidy adopt the green technology.411

For a simulation in period τ , we calculate the expected probability of receiving a subsidy412

in all future periods as:413

(5) φτ`z “ min
" B

s

ASτ`z ´ Aτ ´ z
B
s

, 1
*

,

9Our assumption is consistent with asymmetric information because we assume agents know how many
agents would adopt the green technology if offered a subsidy but they do not know the individual agents
that would adopt if given a subsidy. This assumption implies that agents know the distribution of the
heterogeneity factor even though they may not know the θ value for a particular agent. For example, we
assume that agents know that if a subsidy of $x is offered to adopt a practice that z% of agents would adopt.
Even if program managers had this same information, it would not violate asymmetric information because
the program managers could still not target the subsidies.
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where z is the number of periods in the future from period τ , ASτ`z is the number of agents414

that would adopt the technology if given a subsidy payment in τ`z, and Aτ is the number of415

agents that have adopted prior to period τ .10 The numerator in equation (5) represents the416

number of agents the government can subsidize in a period and the denominator represents417

the expected number of agents that would apply for a subsidy in period τ ` z. The term418

`

zB
S

˘

represents the number of agents that adopt between periods t and t` z if only agents419

that receive a subsidy adopt the technology. For simulations in each period after the policy is420

announced, we estimate a new series of expectation terms to represent updated information421

about the number of agents that have adopted the technology. The min operator restricts422

the expected probability to 100% or below.423

The calculated expectation terms do not correspond with the actual probabilities of re-424

ceiving a subsidy due to independent adoption without subsidies and adoption delay. Know-425

ing these latent outcomes would require agents to know the counterfactual decisions of the426

applicant pool which would contradict the asymmetric information assumption. While this427

difference could become large for distant periods (i.e., large z), expectations of these distant428

subsidies have a relatively smaller impact on the adoption decision due to discounting.429

An alternative method of modeling φ is through naive expectations. Naive expectations430

imply that the expected φ stays constant over time.11 Naive expectations ignore the fact431

that the number of agents willing to adopt with a subsidy changes over time and that some432

agents adopt in the future and become ineligible for the subsidy.433

Another alternative method is to assume rational expectations. Rational expectations434

assume that agents’ expected probability of receiving a subsidy corresponds with the actual435

probability. The challenge with modeling rational expectations is that realized probabili-436

ties of receiving a subsidy in the future depend on past actions of agents, which depend on437

10ASτ`z and Aτ`1 include agents that have already adopted the technology in the free market.
11We could calculate naive expectations as

φt,naive “
B
S

ASt ´At
.
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expected future probabilities. There is no closed form solution for this problem in our nu-438

merical simulations since the government randomly selects agents to subsidize. One option439

to incorporate rational expectations would be to iterate over potential values of the expecta-440

tion terms (φ) until the actual probability of receiving a subsidy in each period is sufficiently441

close to the initially assumed φ values. This approach is computationally burdensome and442

it is not clear that an optimization routine would actually converge. It is also not clear that443

rational expectations correspond with agents’ true expectations in the presence of imperfect444

information.445

4 Simulation Results446

We now present the results of the simulations. We start by illustrating how free-market447

diffusion differs from diffusion under a subsidy policy. Since the free-market case is the448

true counterfactual that underlies additionality, all of the simulations are compared to the449

free-market case. As an illustration, figure 4 shows diffusion under free-market conditions450

and under two policies. Free-market diffusion exhibits the familiar S-shaped curve. Both451

policies have the same budget and subsidy and give farmers one period of notice before they452

become active. One policy becomes active in period 25 and the other becomes active in453

period 10. The policy’s active period is quite important as it will determine the state of454

diffusion that the green technology is in before the policy becomes active. This is relevant455

since it determines the total number of agents that will be eligible to receive a subsidy when456

the policy becomes active, the number of individuals that will apply for the subsidy in a457

given period, and the speed of natural diffusion the policy is being benchmarked against.458

We need a counterfactual free-market adoption period to quantify and compare the ad-459

ditional benefits of subsidy programs that incent a diffusing technology. In the conceptual460

model, universal adoption will occur if we consider adoption over some infinite horizon since461

the delta term is above 0 for every agent and cost declines monotonically. In the numerical462
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simulations we randomly sample farmers from a logistic distribution and have a fixed horizon463

of 50 periods. It is therefore possible to have a horizon that is too short for the technology to464

reach full adoption in the free market. This was the case in these simulations as shown by a465

small but abrupt uptick in adoption in period 50 shown in figure 4. In our models, over 98%466

of the sample adopts before period 50 in the free-market. To estimate the additional benefits467

of the technology we call agents that did not adopt by the end of the time horizon “period468

50 adopters.” While this results in a slight underestimation of the additional benefits to a469

policy, the number of non-adopters is relatively small and we used the same counterfactual470

adoption periods to compare policies. This therefore had a negligible effect on the results.12
471

Both policies create temporary adoption delay in the announcement period. Beginning472

the policy in period 10 results in faster adoption compared to the free market in every473

subsequent period. The policy that begins in period 25 has a smaller impact on adoption.474

Next, we examine how different policy parameters affect the outcomes and summarize our475

key results in result statements.476

4.1 Main Results477

Result 1. Increasing the budget with a given subsidy has a non-monotonic effect on both478

additional periods and periods of delay caused by the policy.479

Figure 5 shows the policy outcomes when we vary the budget over different subsidy levels.480

Panels A and B of figure 5 show the number of additional periods of green technology use481

and the periods of delay (represented as a negative number) generated by the policies. All482

policies are initially active in period 25. Panel C shows the net change in the periods of483

green technology use which is simply the sum of panels A and B. Panel D divides the net484

change in periods of use from panel C by the total expenditures of the program to give a485

benefit-cost ratio.486

12We obtained similar outcomes in simulations with more flexible quadratic specifications of the cost trend
and relative profits in which 99.8% of the sample adopted before period 50 in the free market.
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Figure 5B illustrates the non-monotonic relationship between the budget and delayed487

adoption. By holding the subsidy level fixed, policies with larger budgets can award more488

subsidies in a given period. As demonstrated in the conceptual model, policies that give489

agents a higher probability of receiving a subsidy drive up the opportunity cost of adopting490

when denied a subsidy. Therefore, increasing the budget can lead to increased delay. Because491

the opportunity cost is a product of this probability and the subsidy, increasing the budget492

generally produces a sharper increase in delay when the subsidy is larger. However, as the493

budget continues to increase, delayed adoption begins to decrease since fewer applicants will494

be denied in the first place.495

Figure 5A illustrates the non-monotonic relationship between the budget and additional496

adoption. When there is little delayed adoption, additionality increases as the budget in-497

creases because more first-time applicants are able to receive a subsidy and adopt earlier498

than they would have in the free market. As delay increases, more of the applicant pool499

is made up of non-additional applicants and the probability that an applicant capable of500

producing additional benefits will receive a subsidy goes down. Increasing the budget past a501

certain point allows the policy to more effectively subsidize delaying adopters earlier. This502

mitigates longer-run problems with delay and more effectively targets additional applicants.503

These policies subsequently generate more additional periods of green technology use. The504

impact of delayers in the applicant pool is also evident by noting that there are more addi-505

tional periods under policies with small subsidies and small budgets.506

Delay incentives can be especially pervasive under policies with high budgets and high507

subsidies. In extreme cases, this delay can produce a net reduction in green technology use508

relative to the free-market case (figure 5C). While high-budget, moderate-subsidy policies509

produce more net periods of green technology use, they are more expensive and do not510

produce as many periods of green technology use per dollar spent (figure 5D).511

Result 2. Increasing the subsidy while holding the budget constant produces a non-monotonic512

effect on additional periods and periods of delay.513

20



Figure 6 shows the impact of changing the subsidy while holding the budget fixed. In-514

creasing the subsidy has two main effects. First, it decreases the probability that a given515

applicant will receive a subsidy. This is done directly by reducing the number of subsidies516

that can be given out and indirectly by incentivizing more agents to apply. Second, increas-517

ing the subsidy raises the opportunity cost of adopting independently when denied a subsidy518

payment. The first effect decreases the incentive to delay and the second effect increases the519

incentive to delay.520

Figure 6B shows that under smaller subsidies the second effect dominates until subsidies521

reach a certain size and then the first effect dominates under larger subsidies. This creates522

a non-monotonic relationship between delay and the size of the subsidy payment. Figure523

6A shows that there is also a non-monotonic relationship with additionality. Increasing524

the subsidy level when it is initially small leads to an increase in additional periods. This525

shows that the policy needs to meet some threshold of attractiveness before it incents agents526

to change their behavior. Increasing the subsidy from moderate to higher levels, however,527

significantly reduces the number of subsidies that can be given out and increases the number528

of delayers in the pool of applicants, negatively affecting additionality.529

Programs with the smallest subsidies have the largest change in adoption per dollar spent530

(figure 6D), but do not give the largest net change in adoption (figure 6C). If the goal is to531

obtain the highest benefit-cost ratio, then it is optimal to choose very small subsidies since532

the subsidies that are awarded go towards additional adoption (figure 6D). However, if the533

goal is to achieve the largest net increase in periods of technology use for a given budget,534

then there is often some intermediate subsidy level that is optimal (figure 6C).535

Result 3. The periods of delay and cost-effectiveness of a policy are non-monotonically536

related to its active period within the diffusion process.537

We now compare how policy outcomes change with the active period over different subsidy538

levels when we fix the budget at $3,000. Figure 7B illustrates the non-monotonic relationship539

between the active period (i.e., the year the policy begins) and the periods of delay. Delay540
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is largest if the policy begins in periods with rapid free-market adoption. The S-shape of541

the diffusion process implies that the rate of change in adoption will reach its maximum542

at the inflection point. We estimate the inflection point of free market diffusion to be543

between periods 25 and 26 using the bisection extremum distance estimator (Christopoulos,544

2012). Introducing the policy when adoption is occurring at the fastest rate means that545

a smaller proportion of applicants receives the subsidy and there is a stronger incentive to546

delay adoption to receive a subsidy in a future period. Beginning policies earlier in the547

diffusion process incentivizes adoption earlier in the diffusion process which is more likely to548

be additional. Better targeting payments to additional adopters also produces less delay.549

Figure 7B shows that policies with smaller subsidies tend to cause the greatest delay when550

they start in the 25th period, but policies with larger subsidies tend to have the greatest551

delay when they become active around period 30. With smaller subsidies, the government552

can subsidize more applicants and there are fewer total applicants willing to counterfactually553

adopt earlier with smaller subsidies. This increases the probability of receiving a subsidy554

and therefore increases the opportunity cost of adopting independently. When the subsidy555

is large, more agents apply for subsidies and fewer applicants receive a payment. This drives556

down the probability of receiving a subsidy in the next period leading many of those that557

are denied a subsidy to adopt independently. In this case, starting the policy just after the558

inflection point will give the largest delay since many of the individuals that adopted in the559

earlier periods will not be eligible for subsidies.560

Figure 7A shows that additionality is largest when policies begin earlier in the diffusion561

process. This occurs for two reasons. First, a policy that begins earlier affects adoption562

decisions over more periods. Second, policies with an earlier active period are better targeted563

because few individuals would adopt in the early periods of the program in the free market564

and the applicant pool has less delayed adopters (figure 7B). Unsurprisingly, policies that565

began earlier in the diffusion process resulted in faster overall diffusion of the technology.566

Program expenditures are also larger when policies begin early because the budget is spent567
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over more periods.568

Figure 7D illustrates that there is a non-monotonic relationship between the active period569

and the net change in adoption per dollar spent on the policy (i.e., cost-effectiveness). Policies570

are less cost-effective if they begin when adoption is occurring rapidly in the free market571

because the policy causes more delayed adoption. Starting the policy early in the diffusion572

process results in better targeting of the payments and generates more additional periods573

per dollar of program expenditure.574

Result 3 is informative for program managers even though they can never know with575

certainty the future adoption curve of a technology. Program managers have an idea of which576

technologies are likely to diffuse over time (e.g., no-till or variable rate fertilizer application)577

versus those where there is little private incentive for farmers to adopt (e.g., buffer strips).578

Program managers also have a general idea—either from survey data or anecdotal evidence—579

of how many farmers have already adopted the technology and the rate of recent adoption.580

Because the timing of the policy is important, we include figures A16 and A17 in the581

supplementary appendix which show the results of varying the budget and subsidy when the582

policy begins in period 10 instead of period 25. The general relationship of the parameters583

with the amount of delay are similar to those in figures 5 and 6. The level of delay however584

is much smaller when the policy begins earlier in the diffusion process. This again highlights585

the importance of the initial active period.586

4.2 Comparing Results with No Moral Hazard587

This paper provides a major contribution by incorporating moral hazard into simulations588

involving technology diffusion. To demonstrate the importance of moral hazard we remove589

delay incentives and compare the results. We accomplish this by removing the expectations590

of future subsidies (setting φt “ 0 @ t ‰ τ).13 This removes delay incentives when applicants591

are denied a subsidy since, in equation (4), the free market case (s “ 0) is equivalent to592

13Again we assume τ is the contemporary period and so we allow for the fact that φτ “ 1 if the agent is
awarded a subsidy.
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removing expectations without subsidy awards (φ “ 0 and ι “ 0). Because agents do not593

expect future subsidies, they will not delay their adoption when they are denied one. Setting594

the expectation coefficients to zero effectively makes the model a series of single-period595

decisions. This is similar to the adverse selection studies currently in the literature where596

each decision is distinguished only by the cost change.597

The panels in figure 8 are analogous to panels A and D of figures 5, 6, and 7 with the only598

difference that we remove forward looking expectations of receiving a subsidy. We do not599

show a plot of delayed periods because delay does not occur when moral hazard incentives are600

absent. Panel A in the top row of figure 8 shows that additionality increases monotonically as601

the budget increases when ignoring moral hazard. The cost-effectiveness is also relatively flat602

for different budgets (figure 8B). Panel C shows that smaller subsidies tend to provide greater603

additionality over a variety of budgets. Both of these results contrast with the non-monotonic604

relationship when accounting for moral hazard (figures 5 and 6). Panel F does not show the605

same decrease in cost-effectiveness when starting the policy near the period of most rapid606

technology adoption because it ignores the sharp increase in delayed adoption when starting607

at this time (figure 7B). Importantly, ignoring moral hazard incentives leads to oversimplified608

prescriptions for policy improvement by ignoring the non-monotonic relationships between609

policy parameters and outcomes.610

5 Conclusion611

Our paper develops a model that incorporates moral hazard in PES programs with a lim-612

ited budget—some agents that are denied a subsidy may delay adoption to receive one in613

the future. Ironically, the stipulation that agents must not have previously adopted the614

technology—in order to increase additionality—is the source of the moral hazard incentive.615

We also emphasize that payments only provide additional benefits to the extent that tech-616

nology adoption occurs prior to the period when the agent would have adopted absent the617
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policy. In one sense, it seems cost-effective to provide incentives for agents to adopt practices618

that produce large private benefits but still generate public benefits. However, the adoption619

of technologies with large private benefits is likely increasing over time and PES programs620

can result in little additional environmental benefits, and even delayed adoption in some621

cases.622

Our conceptual and numerical model formulations are motivated by EQIP, but the argu-623

ments also apply generally to the Conservation Stewardship Program (CSP) which provides624

payments to farmers who currently use a set of conservation practices and agree to adopt625

more practices during the contract period.14 Over half of conservation expenditures in the626

2014 Farm Bill are for EQIP and CSP (Economic Research Service, 2016)—a substantial627

shift away from land retirement through the Conservation Reserve Program (CRP) and to-628

wards working lands programs. Yet there have been significant concerns raised about the629

level of additionality provided by these programs (Lichtenberg, 2014). Our analysis informs630

researchers and government agencies about how to assess the benefits from these programs,631

which Natural Resources Conservation Service (NRCS) recognizes is a significant challenge.15
632

Even though we emphasize the case of a conventional and green technology where the633

green technology is diffusing over time, the same principles apply to the case of two land634

uses where the environmentally-friendly land use is increasing over time. For example, the635

moral hazard that we describe could apply to CRP. Crop prices decreased substantially in636

2016, creating an incentive for farmers to transition some land out of crop production, but637

14CSP explicitly provides payments for practices already adopted, but also requires that farmers adopt
an additional set of practices in order to receive payments. Obviously, the payments for practices already
adopted are non-additional. Our paper also highlights that the new practices adopted in the contract period
are only additional from the time adopted to the time when they would have been adopted in the future
without the payment. In other words, the common assumption that the payment provides benefits over the
entire life of the adopted practice overstates the additional benefits.

15The Regulatory Impact Analysis for EQIP states (Natural Resources Conservation Service, 2014, p. 6),
“Most of this rule’s impacts consist of transfer payments from the Federal Government to producers. While
those transfers create incentives that very likely cause changes in the way society uses its resources, we lack
data with which to quantify the resulting social costs or benefits. Given the existing limitation and lack of
data, NRCS will investigate ways to quantify the incremental benefits obtained from this program... NRCS
seeks public comment on how the agency should estimate the public value of conservation resulting from
assistance provided through EQIP.”
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only 22% of acres that applied for a CRP contract were accepted in the 2016 sign-up (Farm638

Service Agency, 2016). Farmers that want to transition land out of crop production due639

to private incentives may actually delay exiting crop production for potential future CRP640

payments.641

Our arguments also apply to PES programs in developing countries to the extent that642

adoption of the environmentally-friendly practice is increasing over time through private643

incentives and the payments are distributed to a proportion of willing agents. For example,644

these programs may provide payments to farmers for adopting no-till, for which adoption645

is increasing over time. These programs only provide additional benefits during the periods646

prior to when adoption would have occurred without a payment. However, if the price of647

services are determined competitively and all agents receive a payment that are willing to648

accept the price for providing the service, then delayed adoption due to moral hazard is not649

a concern.16
650

The numerical simulations illustrate the complex impacts of policy parameters have on651

the overall change in adoption and benefit-cost ratio of the program. The way that policies652

are designed can help improve additional periods of green technology use that they generate.653

Raising the periodic budget produced a non-monotonic effect on the net change in technology654

use. For a given subsidy, increasing the budget too much creates strong incentives to delay655

and actually reduces the net change in technology use. We also find a non-monotonic rela-656

tionship between net change in technology use and the subsidy level. Generally intermediate657

subsidy levels induced the greatest net change in technology use. Policies beginning earlier658

in the diffusion process had higher total expenditures but were better at targeting agents659

that would have adopted earlier in the free market and are therefore more cost-effective than660

policies that start during periods of rapid technology diffusion. We also compare our results661

to a simulation that ignores forward looking expectations to demonstrate the contribution of662

16However, expectations of the implementation of the program could create moral hazard where agents
strategically adjust their baseline in order to receive payments as described in previous literature (Wunder,
Engel, and Pagiola, 2008; Pattanayak, Wunder, and Ferraro, 2010; Claassen et al., 2014; Ribaudo and Savage,
2014).
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incorporating moral hazard into additionality studies. An important area for future research663

is to use a principle-agent framework to analyze the optimal PES policy with technology664

diffusion.665

Our results have important implications for empirical impact evaluations of PES pro-666

grams. Matching estimators (e.g. Claassen et al., 2014; Mezzatesta, Newburn, and Wood-667

ward, 2013) and difference-in-differences (e.g., Chabé-Ferret and Subervie, 2013) assume that668

the adoption (or change in adoption) of agents that do not receive a payment are a valid669

counterfactual for those that do receive a payment. If agents did not receive a payment due670

to a budget limitation, then our results illustrate how expectations of future payments im-671

pact behavior and may delay adoption relative to the true counterfactual scenario of no PES672

program. Therefore quasi-experimental methods like matching and difference-in-differences673

will tend to overestimate additionality. These estimators will also tend to overstate the674

amount of additionality because they only consider adoption at a single point in time and675

do not account for the fact that some practices may have been adopted at some point in the676

future even without a payment.677
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Chabé-Ferret, S., and J. Subervie. 2013. “How Much Green for the Buck? Estimating Ad-688

ditional and Windfall Effects of French Agro-Environmental Schemes by DID-Matching.”689

Journal of Environmental Economics and Management 65(1):12–27.690

Christopoulos, D.T. 2012. “Developing Methods for Identifying the Inflection Point of a691

Convex/Concave Curve.” arXiv preprint arXiv:1206.5478 , pp. .692

Claassen, R., E.N. Duquette, and D.J. Smith. 2018. “Additionality in US Agricultural Con-693

servation Programs.” Land Economics 94:19–35.694

Claassen, R., J.K. Horowitz, E. Duquette, and K. Ueda. 2014. “Additionality in U.S. Agri-695

cultural Conservation and Regulation Offset Programs.” Economic Research Report, July,696

pp. 1–69.697

Dijkstra, E.W. 1959. “A Note on Two Problems in Connexion with Graphs.” Numerische698

Mathematik 1:269–271.699

28



Economic Research Service. 2016. “Agricultural Act of 2014: High-700

lights and Implications.” Available at http://www.ers.usda.gov/701

agricultural-act-of-2014-highlights-and-implications.aspx. Accessed Septem-702

ber 30, 2016.703

Farm Service Agency. 2016. “49th CRP Signup Results.” Conservation Re-704

serve Program Statistics, Available at: https://www.fsa.usda.gov/705

programs-and-services/conservation-programs/reports-and-statistics/706

conservation-reserve-program-statistics/index. Accessed September 29, 2016.707

Ferraro, P.J. 2008. “Asymmetric Information and Contract Design for Payments for Envi-708

ronmental Services.” Ecological Economics 65:810–821.709

Graff-Zivin, J., and J. Lipper. 2008. “Poverty, Risk, and the Supply of Soil Carbon Seques-710

tration.” Environment and Development Economics 13:353–373.711

Horowitz, J., R. Ebel, and K. Ueda. 2010. “‘No-Till’ Farming Is a Growing Practice.” Eco-712

nomic Information Bulletin No. 70, Economic Research Service, USDA.713

Horowitz, J.K., and R.E. Just. 2013. “Economics of Additionality for Environmental Services714

from Agriculture.” Journal of Environmental Economics and Management 66(1):105–122.715

Jaffe, A.B., and R.N. Stavins. 1995. “Dynamic Incentives of Environmental Regulations:716

The Effects of Alternative Policy Instruments on Technology Diffusion.” Journal of Envi-717

ronmental Economics and Management 29(3):S43–S63.718

Knowler, D., and B. Bradshaw. 2007. “Farmers’ Adoption of Conservation Agriculture: A719

Review and Synthesis of Recent Research.” Food Policy 32:25–48.720

Kurkalova, L., C. Kling, and J. Zhao. 2006. “Green Subsidies in Agriculture: Estimating721

the Adoption Costs of Conservation Tillage from Observed Behavior.” Canadian Journal722

of Agricultural Economics/Revue Canadienne D’Agroeconomie 54:247–267.723

29

http://www.ers.usda.gov/agricultural-act-of-2014-highlights-and-implications.aspx
http://www.ers.usda.gov/agricultural-act-of-2014-highlights-and-implications.aspx
http://www.ers.usda.gov/agricultural-act-of-2014-highlights-and-implications.aspx
https://www.fsa.usda.gov/programs-and-services/conservation-programs/reports-and-statistics/conservation-reserve-program-statistics/index
https://www.fsa.usda.gov/programs-and-services/conservation-programs/reports-and-statistics/conservation-reserve-program-statistics/index
https://www.fsa.usda.gov/programs-and-services/conservation-programs/reports-and-statistics/conservation-reserve-program-statistics/index
https://www.fsa.usda.gov/programs-and-services/conservation-programs/reports-and-statistics/conservation-reserve-program-statistics/index
https://www.fsa.usda.gov/programs-and-services/conservation-programs/reports-and-statistics/conservation-reserve-program-statistics/index


Lal, R. 2004. “Soil Carbon Sequestration Impacts on Global Climate Change and Food724

Security.” Science 304:1623–1627.725

Lichtenberg, E. 2014. “Conservation, The Farm Bill, and US Agri-Environmental Policy.”726

Choices 29.727

Lubowski, R.N., A.J. Plantinga, and R.N. Stavins. 2008. “What Drives Land-Use Change728

in the United States? A National Analysis of Landowner Decisions.” Land Economics729

84:529–550.730

Mason, C.F., and A.J. Plantinga. 2013. “The Additionality Problem with Offsets: Optimal731

Contracts for Carbon Sequestration in Forests.” Journal of Environmental Economics and732

Management 66(1):1–14.733

Mezzatesta, M., D.a. Newburn, and R.T. Woodward. 2013. “Additionality and the Adoption734

of Farm Conservation Practices.” Land Economics 89:722–742.735

Milliman, S.R., and R. Prince. 1989. “Firm Incentives to Promote Technological Change736

in Pollution Control.” Journal of Environmental Economics and Management 17(3):247 –737

265.738

Natural Resources Conservation Service. 2014. “Regulatory Impact Analysis739

(RIA) for the Environmental Quality Incentives Program (EQIP).” Available740

at: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/741

farmbill/?cid=stelprdb1242633.742

Pattanayak, S.K., S. Wunder, and P.J. Ferraro. 2010. “Show Me the Money: Do Payments743

Supply Environmental Services in Developing Countries?” Review of Environmental Eco-744

nomics and Policy, pp. req006.745

Ribaudo, M., and J. Savage. 2014. “Controlling Non-Additional Credits from Nutrient Man-746

30

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/farmbill/?cid=stelprdb1242633
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/farmbill/?cid=stelprdb1242633
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/farmbill/?cid=stelprdb1242633


agement in Water Quality Trading Programs through Eligibility Baseline Stringency.”747

Ecological Economics 105:233–239.748

Sunding, D., and D. Zilberman. 2001. “The Agricultural Innovation Process: Research and749

Technology Adoption in a Changing Agricultural Sector.” Handbook of Agricultural Eco-750

nomics 1:207–261.751

Taylor, R., and D. Zilberman. 2017. “Diffusion of Drip Irrigation: The Case of California.”752

Applied Economic Perspectives and Policy 39:16–40.753

Woodward, R.T., D.A. Newburn, and M. Mezzatesta. 2016. “Additionality and Reverse754

Crowding Out for Pollution Offsets in Water Quality Trading.” Ecological Economics755

128:224–231.756

Wu, J., R.M. Adams, C.L. Kling, and K. Tanaka. 2004. “From Microlevel Decisions to Land-757

scape Changes: An Assessment of Agricultural Conservation Policies.” American Journal758

of Agricultural Economics 86:26–41.759

Wunder, S., S. Engel, and S. Pagiola. 2008. “Taking Stock: A Comparative Analysis of760

Payments for Environmental Services Programs in Developed and Developing Countries.”761

Ecological Economics 65:834–852.762

31



Tables763

Table 1: Summary of the Effects of Subsidy Program on Adoption of Different
Groups of Agents

Adoption Decision in τ Effect of Program
Group Free Market Receive Subsidy Denied Subsidy Receive Subsidy Denied Subsidy
A Adopt Adopt Adopt Non-additional No effect
B Adopt Adopt Wait Non-additional Delay
C Wait Adopt Wait Additional No effect
D Wait Wait Wait No effect No effect
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Figures764

𝜋𝐺𝑅𝑁

𝜋𝐶𝑁𝑉
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Figure 1: Illustration of Different Groups of Agents by the Impact of a Subsidy
on the Adoption Decision in Period τ
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Figure 5: Policy Outcomes Varying the Budget by Subsidy Levels

Note: Panel A shows the total additional periods of the policy. This is the sum total of periods of technology use that would
not have occurred without the policy over the population of agents. Panel B shows the total periods of delay. This is the total
number of periods lost due to delay from the policy over the population of agents and is expressed as a negative value. Panel
C adds the values from panel A and panel B together to obtain the net change in periods of technological use from the policy.
Panel D takes the values from panel C and divides them by the total policy cost to get the change in periods of green
technology use per dollar spent. The initial active period is 25 and the budget is $3,000 unless otherwise stated.
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Figure 6: Policy Outcomes Varying the Subsidy by Budget Levels

Note: Panel A shows the total additional periods of the policy. This is the sum total of periods of technology use that would
not have occurred without the policy over the population of agents. Panel B shows the total periods of delay. This is the total
number of periods lost due to delay from the policy over the population of agents and is expressed as a negative value. Panel
C adds the values from panel A and panel B together to obtain the net change in periods of technological use from the policy.
Panel D takes the values from panel C and divides them by the total policy cost to get the change in periods of green
technology use per dollar spent. The initial active period is 25 and the budget is $3,000 unless otherwise stated.
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Figure 7: Policy Outcomes Varying the Active Period by Subsidy Levels

Note: Panel A shows the total additional periods of the policy. This is the sum total of periods of technology use that would
not have occurred without the policy over the population of agents. Panel B shows the total periods of delay. This is the total
number of periods lost due to delay from the policy over the population of agents and is expressed as a negative value. Panel
C adds the values from panel A and panel B together to obtain the net change in periods of technological use from the policy.
Panel D takes the values from panel C and divides them by the total policy cost to get the change in periods of green
technology use per dollar spent. The initial active period is 25 and the budget is $3,000 unless otherwise stated.
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Figure 8: Assuming No Forward Expectations – Policy Outcomes Varying the
Subsidy, Budget, and Active Period

Note: Panels A, C, and E show the total additional periods of the policy. This is the sum total of periods of technology use
that would not have occurred without the policy over the population of agents. Panels B, D, and F show the net periods of
green technology use divided by the total policy cost to get the change in periods of green technology use per dollar spent. The
initial active period is 25 and the budget is $3,000 unless otherwise stated. In every simulation with no expectations of future
subsidies there were zero periods of delay.
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Supplementary Appendix765

A1 Conceptual Model Assumptions766

Properly characterizing the adoption decision requires analyzing equation (3) for all x which767

complicates the conceptual analysis. Here we examine the conditions where it is sufficient to768

compare profits between period τ and τ ` 1 to characterize the adoption decision. Here the769

agent considers adopting in period τ relative to τ ` x. Note that the condition in equation770

(3) is most binding for larger values of ψ. When ψ decreases with x, agents will use more771

imminent periods to inform their adoption decision. Therefore, agents use the earliest future772

period when773

(A6) Bψ
Bx
“ ´

1
řx´1
t“0 β

t∆i

„

B rβx pcτ`x ´ sφτ`xqs

Bx
` βx∆iψ



ă 0

The sign of the condition in equation (A6) is determined by the sign of the term in brack-774

ets. The first term in brackets is negative when subsidies are equal to zero and ambiguous775

under positive subsidies. The second term is always positive. To understand the ambiguity776

of the sign, it is useful to think about the adoption decisions as purchasing annuities. The777

first term can be thought of as the change in the “purchase price” of the annuity. Since costs778

decline over time, agents consider paying a higher price for the annuity when they compare779

adoption in τ to a more distant period. In this framework, the future subsidy term acts780

as an additional cost of adopting in a given period. Generally the probability of receiving781

a subsidy increases over time
´

Bφτ`x

Bx
ą 0

¯

. However, as a result of discounting, waiting an782

additional period will also reduce the benefits of potential future subsidies as well as the cost783

of adoption. This makes the sign of the first term ambiguous with positive subsidies. Longer784
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lasting annuities generate more income through more annuity payments. This effectively785

dilutes the purchase price over more periods as represented in the second term. To see that786

the second term represents a dilution effect, we rewrite it as787

(A7) βx∆iψ “
cτ ´ β

xcτ`x ´ s pιτ ´ β
xφτ`xq

řx
t“1 β

´t
.

When the dilution effect on the “purchase price” outweighs the increase in the purchase788

price, Bψ
Bx
ă 0, agents look to more imminent periods when making their adoption decision.789

Based upon the first term in brackets in equation (A6), agents look to more imminent790

periods when costs are declining sufficiently slowly. In other words, as long as the cost791

of adoption is declining sufficiently slowly, the adoption decision depends on a comparison792

between profit from adopting in the current period and the profit from adopting in the next793

period. Alternatively, rapid increases in expected subsidies over time produce a similar effect.794

A2 Simulation Details795

Here we discuss how a full simulation operates as a series of five steps. These steps are: (1)796

Initialization and Parameterization, (2) Free Market Simulation, (3) Expectation Generation,797

(4) Disclosure Period Simulation, and (5) Policy Period Simulation.798

Step #1: Initialization and Parameterization799

We define the environment of the simulation in the first step. This includes the:800

• Time horizon (how many periods in the simulation): (50 periods)801

• Number of agents being simulated (1,000)802

• The discount rate (14.5%)803
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• Production profit heterogeneity term pθq for every agent and their distribution (Logistic(µ “804

0,β “6))805

• Adoption costs as a function of time: c ptq “ c0 ´ δct806

• Policy Parameters: (budget, subsidy, starting period, and disclosure periods)807

• Policy timing: (the initial active period of the policy and the number of disclosure808

periods)809

It is necessary to define these features for any simulation. We arrived on parameter810

values that provide a good demonstration of the conceptual problems in subsidy programs.811

Our time horizon (50 periods) and number of agents we considered (1,000) were chosen to812

be large enough to represent a typical diffusion curve while being small enough to ensure813

tractability in the simulation process. Specifically, 1,000 randomly simulated agents produces814

a smooth diffusion curve over the time frame with adoption occurring in nearly every time815

period under policy and no-policy scenarios. The time horizon of 50 periods was selected as816

a compromise between realism (i.e. representing a diffusion process that can potentially take817

decades) and the computational complexity of adding more iterations to the simulation.818

A primary aim of this study is to analyze the additional benefits of subsidy policies with819

differing payment values, budgets, and initial active periods in the diffusion process. This is820

only possible when the additionality of a policy is measurable. Applicants that would not821

have adopted the green technology without the inducement of a subsidy would not have a822

counterfactual adoption period. This would make it impossible to quantify the additional823

periods of adoption caused by a policy. Producer heterogeneity, the profit functions, the824

discount factor, and the adoption costs were selected to produce a smooth diffusion curve in825

which nearly all producers had adopted the technology by the end of the time horizon (by826

period 50).827

The periodic profit functions need to be constructed so that the green technology prof-828

its are higher than the conventional profits and that the difference between these profits829
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monotonically increases or decreases with the heterogeneity term. This will ensure that830

reductions in adoption costs never disincent adoption. The only requirement of the cost831

trend is that the one-time adoption cost declines monotonically over time. In both cases we832

represent these functions as linear for the sake of parsimony, although we find that quadratic833

functional forms provide similar results. The logistic distribution was a similarly convenient834

functional form for the distribution of producer heterogeneity due to its analytical ease of835

use, its bell-shape, and its unimodality.836

We now describe in more detail the parameterization of the heterogeneity distribution,837

the cost trend ct, and profit functions πCNV pθq and πGRN pθq. We draw 1,000 random values838

of θ from a Logistic p0, 6q to represent agent heterogeneity. The 1,000 values of θ we drew839

ranged from -43 to 55. Figure A1 shows the sample density of the heterogeneity factor.840

Because this density is unimodal, declining costs will create an S-shaped diffusion curve.841

By adjusting the slope and intercept of the cost trend, we can reach approximate cost842

values that will bring free-market diffusion from approximately 0% in the early periods,843

approximately 50% at around period 25, and approximately 100% diffusion at period 50. In844

these simulations we set c1 “ 164, c25 “ 100 and c50 “ 34 generating a cost trend with the845

following form:846

(A8) ct “ 166.327´ 2.653t

The profit functions πCNV and πGRN are plotted in figure A3. In order to quantify the847

additionality of policies, we assume the technology reaches nearly full adoption by the end848

of the time horizon, so we require that πGRN pθq ´ πCNV pθq ą 0 for every θ in our sample.849

We also assume this profit difference declines over θ. We choose to model both πCNV pθq850

and πGRN pθq as linear functions for the sake of parsimony. We also calibrated the slope851

and intercept parameters of each respective profit function to ensure that adoption starts852
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from near zero in the initial period, reaches 50% by period 25 and 100% by period 50. We853

calibrated the functions by establishing a given function of πCNV and then selecting πGRN854

based upon the distribution of θ and the cost trend. We used the results from our conceptual855

model to make our calibrations. While these calibrations generate a diffusion curve that is856

close to our specifications, there were 19 out of the 1,000 agents that did not adopt by period857

49 in the free-market simulation. For these agents, we considered period 50 to be their free858

market adoption period in order to quantify the additionality of the policies. We set our859

functions for πGRN pθq so that:860

(A9) ∆ pθminq «
c1 ´ β

50c50
ř50
t“1 β

t

(A10) ∆
`

θ̄
˘

«
c25 ´ β

25c50
ř25
t“1 β

t

(A11) ∆ pθmaxq « c49 ´ βc50.

Our final profit functions illustrated in figure A3 are:861

(A12) πConv pθq “ 71.000` 0.505θ

(A13) πGrn pθq “ 85.934` 0.275θ
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Figure A1: Heterogeneity Factor Density
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Step #2: Free-Market Simulation862

To define additionality, we need to know what agents would do if the policy were not in place.863

In this next step, we simulate the adoption decisions of agents without the policy to obtain864

their free market adoption periods. Here agents do not receive or expect to receive subsidies865

for adopting the green technology. To accomplish this from a computational standpoint, we866

set the subsidy level to zero. The relevant variable we use to compute the additional benefits867

of policies is the number of free-market green technology use periods for each of the 1,000868

agents. We use these values as a reference to determine if the policy sped up or slowed down869
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the adoption of technology for each of the agents.870

The outcomes from the free-market simulation also help identify agents that would have871

adopted before a policy was disclosed. Since only agents that had not previously adopted872

the technology are eligible to receive a subsidy, any agent that adopted before the policy’s873

disclosure period was removed from further simulations. For example, if a policy were874

disclosed in period 24 and became active in period 25, agents adopting in periods 1, 2,875

3, . . . 23 would not have been influenced by the policy and would be ineligible for subsidies876

and would therefore not enter the subsequent policy simulations.877

Throughout the discussion here we use a simplified diagraph to illustrate how the simula-878

tion was carried out at each step. In these graphs, the subsidy policy is disclosed in period 2879

and begins in period 3. Figure A4 shows the four-period version of the free-market diagraph880

simulation. Notice that none of the arc weights contain a subsidy or policy expectation term.881

Figure A4 shows the decision of an agent adopting before the policy’s active and disclosure882

period. An agent with this adoption path would have adopted before she even knew about883

the subsidy and is therefore not considered in the subsequent steps of the simulation.884
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Figure A4: Free Market Adoption Path
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Step #3: Expectation Generation885

Expectations are an important driver of behavior in these simulations. To construct agent886

expectations, we assume that agents know the distribution of profits among agents, the cost887

trends, and the payment level for the policy. With this, they have all the required information888

to determine the highest number of agents that would accept a subsidy of a given size if it889

were offered in a given period. In other words, they have an idea of how popular a subsidy890

of a given size will be in each period but, like the government, do not know which farmers891

are adopting or have adopted in the past.892

Subsidy expectations are based off of the highest number of potential applicants in each893

period. A series of simulations were run to estimate the highest number of applicants for a894

given subsidy in each policy period. In each simulation, agents are offered a subsidy with895

certainty in a given policy period. In these simulations, agents do not have expectations896

of receiving a subsidy in any other period other than the offer period. The lack of subsidy897

expectations in any other period means that there are no opportunity costs for accepting898

the offered subsidy other than the relative profits from adopting independently in the other899

periods. That is, only the farmer heterogeneity and the a priori known subsidy amount900

determines the adoption paths in these simulations. This is important since, in diffusion901

simulations, the policy issues payments at random to applicants. Depending on the policy902

and randomized payment outcomes, the applicant pool can be diverse with respect to the903

heterogeneity factor. The maximum number of potential applicants for each policy period904

therefore provides a measure of potential applicant competition with a given subsidy value905

and can be utilized iteratively to provide subsidy expectations when simulating adoption906

across policy periods.907

To compute a policy’s largest applicant pool in each period, simulations needed to be908

run for every agent across all policy periods. For example, if the policy begins in period909

10, we carry out a series of 41 simulations. In the first of these simulations, every agent is910

offered a subsidy in period 10 with 100% probability and agents do not expect any subsidies911
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in the other periods (past or future). Any agent adopting in period 10 under this simulation912

would be a possible applicant in period 10. The next simulation is identical to the period913

10 simulation but the subsidy payment is now offered in period 11. In this simulation the914

number of period 11 adopters will represent the potential applicants in period 11. These915

simulations repeat across all policy periods (periods 10 to 50) to produce expectations for916

the maximum number of applicants in each policy period.917

Figures A5 and A6 illustrate these simulations across two policy periods (periods 3 and918

4) and show the adoption path for potential adopters in period 3 and 4 respectively. Notice919

that period 3 applicants are identified by providing a single subsidy in period 3 and that920

there are no other subsidy terms along the remaining arcs. Likewise the graph in figure921

A6 provides a subsidy to all agents in period 4 and does not contain a subsidy term across922

any other arc. Within these simulations agents that choose to adopt before or after the923

subsidized period would not be considered a potential applicant for that year’s subsidy. By924

applying simulations across all of the agents in the study, the highest number of potential925

applicants for each period can be estimated.926
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Using the highest number of potential applicants in each policy period, agents will de-927

termine the probability of receiving a subsidy in a given year. To generate the expected928

probability of receiving a subsidy in every subsequent year, the agent divides the number929

of agents that could be subsidized by the maximum number of potential applicants in the930

given period. To estimate the probability of being subsidized in iterative periods, they as-931

sume that those that applied for the subsidy and did not receive one would carry over to the932

next period and the process would continue. These expectations are represented analytically933

in equation A14, shown as equation 5 in the main text. Here ASτ`z is the maximum number934

of applicants in a given policy period τ ` z. The budget level is denoted with B, Aτ is the935

number of agents that have actually adopted by period τ , and s is the subsidy level. This936

expectation term assumes that, across each time period, the subsidy provides the maximum937

number of payments
`

B
s

˘

in each period. When adoption has reached the point where the938

maximum number of eligible applicants is less than the total subsidies that can be awarded939
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in a given period, applicants can expect to receive a subsidy with certainty.940

(A14) φτ`z “ min
" B

s

ASτ`z ´ Aτ ´ z
B
s

, 1
*

Step #4: Disclosure Period Simulation941

We incorporate pre-policy response by including a single “disclosure” period in the simula-942

tions. In this period, agents have been informed about the policy but the policy has not943

started issuing payments. Agents are informed about the policy’s start date in the next944

period, the size of the subsidy, the size of the budget, and are aware of the number of agents945

that are eligible to receive a payment. During the disclosure period simulations agents are946

exposed to expected subsidies in the policy periods. In this way, agents that would have947

adopted in the disclosure period in the free-market scenario may instead delay their adop-948

tion to capture the potential future subsidy payments. Those that, even with the inducement949

of expected future subsidies, would adopt in the disclosure period are considered adopters950

and, just as agents that adopted before the policy was disclosed, are removed from further951

simulations.952

To illustrate the steps of the disclosure period simulations, we show the simple four-period953

adoption scenarios which simulates a policy that is disclosed in period 2 and begins in period954

3—in this scenario the two policy periods are 3 and 4. Figures A7 and A8 show two potential955

adoption curves when simulating in the disclosure period. Notice that the arc weights in956

these graphs are adjusted, adding expected subsidy terms to the post-policy transition arcs.957

Here the φ terms in the policy period transition arcs are assumed to be less than or equal to958

one. This means that these agents do not necessarily know with certainty whether they will959

receive a subsidy in a future period. Figure A7 shows the adoption path for an agent that960

adopts in the disclosure period even with the prospect of receiving future subsidies. Figure961

A8 shows the adoption path for an agent that defers adoption of the technology to the first962
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of the policy periods. Notice that, unlike figure A4, applicants are aware of the incoming963

policy in period 3. The adoption path in deferred adoption is colored red to signify the964

potential for delayed adoption. If, after looking at the agent’s free-market adoption curve,965

we find that the agent would have adopted in period 2 absent the policy, we can say that966

the policy delayed adoption for this agent.967
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Figure A7: Adoption Path for Adopter in the Disclosure Period (Period 2)
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Figure A8: Deferred Adoption Path for the Disclosure Period (Period 2)

Step #5: Policy Period Simulation968

After simulating free-market adoption, adoption in the disclosure period, and computing969

applicant expectations, we now simulate adoption in the policy periods. Simulating over the970

remaining policy periods can be broken down into four steps.971

Substep #1: Update expectations of individuals according to equation 5 in the972

text.973

Substep #2: Simulate realized applications and subsidized adoption.974

After simulating free-market adoption, adoption in the disclosure period, and computing975

applicant expectations, we now simulate adoption in the policy periods. To determine the976

number of actual applicants in a given year, each producer not yet marked as “adopted” is977

awarded a subsidy with 100% probability and they continue expect potential future subsidies978

according to the previous step. Any agent that would adopt the technology if given a subsidy979

is considered an “applicant.” All others are considered non-applicants and are carried over980
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as potential adopters in the next period. Then a random sample of size Budget
Subsidy is drawn from981

the set of applicants. Those that are selected are labeled as “adopted with subsidy” in that982

period and removed from further simulations. The adoption path of an applicant in period983

3 is shown in figure A9.984
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Figure A9: Adoption Path of a Period 3 Applicant

Substep #3: Simulate Adoption After Subsidy Denial985

We then simulate the decisions of agents that would have adopted with a subsidy but did not986

receive one. Agents that are denied a subsidy may expect to receive one in a later period.987

We simulate the adoption profits where agents do not receive a subsidy in the given policy988

year but have expectations of receiving subsidies in future periods. Any agent that adopts989

in the given period without receiving a subsidy are marked as “adopted without subsidy”990

and removed from further simulations. Those that would not adopt are considered “non-991

adopters” and reconsidered in further simulations. Figures A10 and A11 show the adoption992

path for agents that are denied subsidies in period 3. Notice that the transition arc weight993

in period 3 now does not contain a subsidy term but the period 4 transition arc weight still994
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contains an expected subsidy term. We therefore color the adoption arcs black to signify a995

lack of response from the denial and red to designate a potential delay response from the996

denial. Figure A10 shows an adoption path for an agent that chooses to adopt the green997

technology independently after being denied a subsidy in period 3. Figure A11 shows the998

adoption path for an agent that defers adoption after being denied a subsidy in period 3.999
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Figure A10: Independent Adoption After Subsidy Denial in Period 3
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Figure A11: Deferred Adoption After Subsidy Denial in Period 3

Substep #4: Repeat Substeps 1-3 for each policy period until the terminal period1000

is reached or every agent has adopted the technology.1001

A3 A Simple Demonstration of Dijkstra’s Algorithm1002

Dijkstra’s algorithm is used extensively throughout operations research. It is traditionally1003

used to solve the shortest path problem where the goal of the problem is to find the shortest1004

path from an initial node to a destination node. Dijkstra’s algorithm is useful for its efficiency1005

in solving shortest path problems but cannot be used on graphs that have negative arc1006

weights. In this section, we present a simple five-period example of Dijkstra’s algorithm1007

from start to finish to demonstrate how the algorithm works and how graphs were adjusted1008

to utilize the algorithm.1009

To start, consider a simple five-period version of the problem with arc weights in figure1010

A12. The structure of the diagraph is similar to the earlier illustrations with the blue nodes1011

representing conventional technological use and green nodes representing green technology1012

use. Demonstrating the algorithm by hand requires keeping track of the distance that each1013
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node is away from the initial node. For this reason, the nodes on the example graph are1014

labeled using capital letters. The purpose of this example is to illustrate how the algorithm1015

works. For this reason, we use whole number arc weights and only include five periods for1016

simplicity. Without loss of generality, the values of these arc weights are relative to a single1017

period of the conventional technology returns.1018
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Figure A12: Five Period Graph Example

The objective here is to find the most profitable adoption path among all of the agent’s1019

potential paths. In the context of the graph, this means solving for the longest path from1020

nodes A to T. Because Dijkstra’s algorithm is used to solve the shortest path problem and1021

cannot facilitate negative weights, adjustments to the arc weights need to be performed to1022

orient the problem into a shortest path problem and eliminate the negative arc weights. To1023

do this, we first multiply all of the arc weights by negative one, shown in figure A13. This1024

reverses the relative positions of each arc, turning the longest path problem into a shortest1025

path problem.1026
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Figure A13: Five Period Graph With Neg. Arc Weights

To remove the negative arc weights and preserve the relative positions of the arc weights,1027

we add the absolute value of the most negative number plus one. Here the most negative1028

arc weight is -2. We therefore add |´2| ` 1 “ 3 to every arc, shown in figure A14. This is1029

the graph that we actually use to carry out Dijkstra’s algorithm. Dijkstra’s algorithm solves1030

the shortest path problem by moving out from the initial node (in this case node “A”) along1031

the path that is shortest path from “A” at every step in the algorithm.1032
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Figure A14: Five Period Graph After Shortest-Path Adjustment

The steps of the algorithm are illustrated in table A1. In the initialization step, a set of1033

terminal nodes are established. The initial node “A” is the starting place which has a distance1034

from itself of zero. At the initialization step (here step 0 in table A1), all other nodes are1035

considered infinitely far from node “A”. Any node that is not adjacent to previously-visited1036

nodes remain infinitely far from “A” until the algorithm updates them. At each step, the1037

algorithm updates the distance from each node adjacent to the previously visited nodes.1038

For instance, in step 1, we find that both “B” and “C” are adjacent to node A and have1039

a distance of less than infinity from “A”. At each step the smallest value has a star over it1040

indicating where the next node the algorithm should proceed from and shortest distance to1041

“A”. Once the node has been “starred” we can establish that the corresponding value equals1042

the closest distance from that node to “A”. The reason for this is there are no negative arc1043

weights, meaning that reaching the node via another route would be as long or longer than1044

the starred value.1045

After initialization, we consider all other nodes that are adjacent to “A” and note “B”1046

is 3 units away and “C” is 7 units away from “A”. Since “B” is the closest node to “A”1047

A21



with a distance of 3, the algorithm then proceeds from “B”. The algorithm now considers1048

nodes adjacent to “B” and finds that “D” is the next closest node to “A.” Notice that nodes1049

“D” and “E” are now adjacent to “B” and are found to be reachable from “A” at a length1050

less than infinity. The path lengths are then updated to reflect the current shorter paths.1051

Although node “E” can be reached by “B”, we proceed from “D” since it is the closest node1052

to “A” that is yet unconsidered. In step 3, we can now reach “F” and “G” but at this step1053

“C” has the shortest path from “A” and therefore we proceed from “C” in the next step.1054

At step 4, we discover that “E” can be reached at a lower distance by traveling from “C”1055

rather than “B”. Its distance is therefore updated from 9 to 8. Since the path ending in “E”1056

has the shortest path from “A” we proceed from “E” in the next step. At step 5, while “G”1057

can be reached from “E” at a distance of 9, it is no better than a previous path from “D”1058

and is therefore not updated. There is a distance tie at step 5. We therefore proceed from1059

the node arbitrarily in the alphabetical order from “F”. In step 6 “G” remains the closest1060

previously unconsidered node and we proceed from “G” in the step 7. In step 7 we again1061

discover that a node (in this case “I”) is closer to “A” when proceeding from the shortest1062

path to “G” its distance is therefore updated from 11 to 10. In the final step of the algorithm,1063

we proceed from node “I” since it is the closest unconsidered node to “A”. At this step we1064

can reach the goal node “T” from a distance of 11. This is closer to “A” from any other1065

node we previously proceeded from and this terminates the algorithm. This is indicated by1066

the double star. Notice that we did not need to consider the paths from “H” because, as1067

the algorithm demonstrates, “H” is farther away than the terminal node. Since the graph is1068

free from negative weights, we can conclude that traveling to “H” will do no better than our1069

current shortest and skip “H” as a result. We can also conclude that a shortest path from1070

“A” to “T” has a length of 11 and follows: “A” Ñ “B” Ñ “D” Ñ “G” Ñ “I” Ñ “T”.1071
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Terminal Node
Step # Min Dist Node: A B C D E F G H I T

0 A 0‹A 8A 8A 8A 8A 8A 8A 8A 8A 8A

1 A Ó 3‹A 7A 8A 8A 8A 8A 8A 8A 8A

2 B Ó Ó 7A 6‹B 9B 8A 8A 8A 8A 8A

3 D Ó Ó 7‹A Ó 9B 9D 9D 8A 8A 8A

4 C Ó Ó Ó Ó 8‹C 9D 9D 8A 8A 8A

5 E Ó Ó Ó Ó Ó 9‹D 9D 8A 8A 8A

6 F Ó Ó Ó Ó Ó Ó 9‹D 12F 11F 8A

7 G Ó Ó Ó Ó Ó Ó Ó 12F 10‹G 8A

8 I Ó Ó Ó Ó Ó Ó Ó 12F Ó 11‹‹I

Table A1: Dijkstra’s Algorithm Iterations

We now relate this solution back to the original profit-maximization problem in figure1072

A12, we find that it is optimal to adopt the technology in period 3 which yields a profit1073

of 0+0+0+2+2=4. Note, adopting in period 1 also yields a profit of 4 which demonstrates1074

that solutions to discrete-time-discrete choice problems can not, in general be characterized1075

by a solution rule between two consecutive periods. As a note, this problem is quite simple1076

since only whole numbers were used in the arc weights. Ties were not a serious issue in the1077

policy simulations in this paper since the solution space was larger (with 50 periods relative1078

to 5 periods) and arc weights were not restricted to whole numbers. Figure A15 shows the1079

solution to the problem on the original diagraph.1080
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Figure A15: Dijkstra’s Algorithm Solution

A4 Plots with Active Period 101081
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Figure A16: Policy Outcomes Varying the Budget by Subsidy Levels (Active
Period 10)

Note: Panel A shows the total additional periods of the policy. This is the sum total of periods of technology use that would
not have occurred without the policy over the population of agents. Panel B shows the total periods of delay. This is the total
number of periods lost due to delay from the policy over the population of agents and is expressed as a negative value. Panel
C adds the values from panel A and panel B together to obtain the net change in periods of technological use from the policy.
Panel D takes the values from panel C and divides them by the total policy cost to get the change in periods of green
technology use per dollar spent. The initial active period is 25 and the budget is $3,000 unless otherwise stated.
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Figure A17: Policy Outcomes Varying the Subsidy by Budget Levels (Active
Period 10)

Note: Panel A shows the total additional periods of the policy. This is the sum total of periods of technology use that would
not have occurred without the policy over the population of agents. Panel B shows the total periods of delay. This is the total
number of periods lost due to delay from the policy over the population of agents and is expressed as a negative value. Panel
C adds the values from panel A and panel B together to obtain the net change in periods of technological use from the policy.
Panel D takes the values from panel C and divides them by the total policy cost to get the change in periods of green
technology use per dollar spent. The initial active period is 25 and the budget is $3,000 unless otherwise stated.
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