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1. INTRODUCTION

The urban transportation planners and the highway designers

have developed two important tools to evaluate various transpor-

tation improvement alternatives. They are (1) traffic assign-

ment and (2) economic analysis of the transportation system.

Traffic assignment is the process of allocating personal

or vehicular trips in an existing or proposed system of travel

facilities [19], and economic analysis deals with the minimi-

zation of the sum of travel time cost, operating cost and the

investment cost of the transportation system. Both of these

processes are invaluable from a transportation planning view-

point, in that they allow proposed facilities to be tested for

traffic carrying ability before thev are built.

Since 1950, many methods for traffic assignment have been

developed and refined until all methods mav be classified under

three groups-judgement, two path analysis and network analysis

[19].

In the judgement method, senior members of the highway de-

partment proportion the traffic between old and new facilities

on the basis of their own evaluations.

The two nath analysis considers assignment to one freeway

route and one arterial route on a proportional basis, and di-

version curves are formulated from empirical studies. A diver-

sion curve shows the percentage of traffic split between a free-

wav path and an arterial street path based on such parameters as

time ratio, distance ratio, or a combination of the two.



Early traffic assignment usage was concerned with the above

mentioned techniques, but because of the obvious limitations of

these techniques a "network" approach has been adopted by most

agencies responsible for transportation studies. The iietwork

analysis considers the traffic assignment within the whole trans-

portation system.

Campbell [2] presented a procedure to assign traffic to

expressways in 1956. In 1957, Moore [12] and Dantzig [6], de-

veloped algorithms for selecting the shortest route through a

network. Other techniques have also been developed since 1957.

These techniques are linear programming [4], Shimbel's algorithm

[16], and the Road Research Laboratory algorithm [22], Moo re's

algorithm is a widely adopted method used with most computer

traffic assignment programs.

Today, most traffic assignment methods are primarily of the

"all or nothing" type, that is, the traffic between two zones is

assigned to a single route regardless of the traffic volume on

that route. The route selected is the minimum time path between

the zones. The "all or nothing" assignment technique is not

realistic in that it does not allow for increased travel time as

link traffic volumes approach or exceed link capacities.

It can be concluded that all the above techniques use a

cons tan t travel time -volume relationship. The constant travel

time-volume relationship poorly approximates the functional re-

lationship between the link travel time and link traffic volume.

Therefore, a non-linear travel time-volume relationship has been



introduced which satisfies three conditions. First, there exists

a proper travel time under free flow or near zero traffic volume

conditions. Second, at low volumes travel times must increase

slightly with increased traffic volume. Third, as link capacity

is reached, travel time must increase rapidly to reflect the con-

gestion conditions. A travel time-volume relationship which

satisfies these three conditions represents the. 'real world'

situation

.

In order to take into consideration a non-linear travel •

time-volume relationship new methods are needed. Attempts to

provide such a realistic relationship have resulted in some re-

vised computational procedures such as those developed during

the course of the Chicago Area Transportation Study [3]. Wallace

[19] has used a systems approach in order to solve traffic assign-

ment problems. Dynamic programming wherein non-linear time

functions are employed has been successfully used by Tillman,

Pai, Funk and Snell [18]. A continuous research has been carried

on by Snell, Funk and their associates on the traffic assignment

and economic analysis of transportation systems by using a

discrete version of the maximum principle at Kansas State Univer-

sity. Yang and Snell [23)] have used the maximum principle [7,14],

to solve the traffic assignment problems. They have considered a

constant travel tine-volume relationship. Snell, Funk and Black-

burn [8], have again employed the discrete maximum principle to

assign the traffic optimally in any transportation system by

taking into account a non-linear travel time-volume relat ionshi o

.



Numerous methods for economic analysis of any urban trans-

portation system have been devised in the past few decades. Four

principle methods are: (1) the annual cost method, (2) the pre-

sent worth method, (3) the benefit-cost ratio method, and (4) the

rate of return method [1,10,13,15], No natter which method was

used, the analyses made in the past have restricted themselves to

comparing alternatives for a single link or a single route of a

transportation network. The overall system effect of improvements

was completely ignored.

Realizing this deficiency, some recent studies have compared

alternatives through complete network analysis. In the Chicago

Area Transportation study [22], five alternative freeway systems

were developed. In 1958, Garrison and Marble [9] presented a

linear programming formulation for the economic analysis of the

transportation network. Wallace [19] has employed a systems

approach to solve cost minimization problems. V!ang, Funk, and

Snell [20,21] have used the discrete maximum principle to solve

the cost minimization problems. They have considered three dif-

ferent cases of the investment cost.

This report attempts a systematic, elementary and exhaustive

presentation of the use of the discrete maximum principle to

solve traffic assignment and cost minimization problems in

transportation systems. In section 2 the optimal traffic assign-

ment pattern is obtained, considering the constant travel

time-volume relationship based on the study made bv Yang and

Snell [23,24], In section 3 the behavior of the non-linear



travel time-volume relationship is thoroughly explained in a very

simplified form. Also, the development of the mathematical model

which represents the 'real world' situation is discussed in de-

tail, and an optimal traffic assignment pattern, using the non-

linear travel time-volume relationship which is hased on the

paper of Funk, Snell and Blackburn [8] is presented. A single

copy (multi origin single destination) street network is con-

sidered. Section 4 considers a multicopy traffic flow network

with a non-linear travel time-volume relationshin [171. Two

different formulations are studied. In the first formulation

turn penalties are considered and in the second formulation turn

penalties are assumed to be zero. A comparison is made of the

numerical results o f the two formulations. In section 5, which

is based on Wang, Snell, and Funk [20,21], the economic analysis

of the transportation network is studied. Two cases of invest-

ment cost have been investigated in detail. The development of

the non-linear travel time model, which expresses the travel

time as' a function of the investment cost and of traffic volume,

is described comprehensively.



2. TRAFFIC ASSIGNMENT USING CONSTANT TRAVEL TIME FUNCTION

Traffic assignment is the process of allocating a given set

of trip interchanges to a specific transportation system. The

problem involving a rectangular system with linear time functions

will be considered first. In this case of linear time function

the link travel times remain constant as link volumes increase,

in other words the link travel tine is independent of the corre-

sponding link volume. In Fig. 1, the link travel times are

plotted as a function of link volumes. This can mathematically

be explained as follows :

let

t « time required by one vehicle to travel a unit dis-

tance along a link (unit travel time) in hours per

mile per vehicle,

k = free flow travel-time, which is constant, in hours

per mile per vehicle,

then for a linear time function

t = k.

This is the simplest functional relationship that is available to

approximate the true travel time curve. This constant travel time

function does not provide for greatly increased travel time as

traffic volume increases, even though traffic volume may approach

link capacity, which is maximum number of vehicles a link can

accomodate in unit time. A non-linear travel time-volume rela-

tion is discussed in Sec. 3 of this report.
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FORMULATION OF THE PROBLEM

Suppose that there is a network of traffic-flow as shown in

Fig. 2. A network is a combination of all links and nodes. Node

is a point where segments of the street network connect and link

is a connection between two nodes, representing a segrrent of the.

street network.

To simplify the problem of notations a rectangular network

is shown, however, the network need not be rectangular in order

to solve it by the discrete version of the maximum principle.

Let

V
n,m = the total number of vehicles entering the network

just before node (n,m),

gn,m
= f ract ion f the vehicles entering node (n,m) an the

horizontal link which leaves on the horizontal link,

6
n,m _ f ract ion f t he vehicles entering tide (n,m) on the

vertical link which leaves on the vertical link,

x?'
m » the horizontal flow (or the trip volumes assigned to

the horizontal link) from node (n,m),

x«
>m

= the vertical flow (or the trip volume assigned to the

vertical link) from node (n,m),

n> m „ t he t otal cumulative travel time up to node (n,n+l)

on the horizontal link (or the cumulative travel time

on horizontal links from node (n,l) including the

horizontal link immediately beyond node (n,m)),
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x,' the total cumulative travel time up to node (n-M,m)

on the vertical links (or the cumulative travel time

on vertical links from node (l,m) including the verti-

cal link immediately beyond node (n,m)),

n = 1, 2, . . . , N, m - 1, 2, ..,, M,

The problem is to determine a sequence of 0- ' and 0«* in

order to minimize the total cumulative travel time, which is the

time required for all the vehicles in the network of (NxM) nodes,

starting from different origins, to reach the destinations.

N „, M

l *3 + I «
n=l m=l

K,m
4

Assume that (1) the link travel time does not vary with link

volume, and that (2) v"'™ can be split up so that V
n ' m /2 enters

the vertical link and V ' /2 enters the horizontal link, respec-

tively, just ahead of the node as shown in Fig. 3. The second

assumption allows the calculation of number of turns made at a

node, thus allowing inclusion of turn delay penalties in the

system.

Considering each node, as a stage the performance equations

for a typical interior node (n,m) in a network are as follows:

n ,m
K
l

t ,,R .It!

9
i

(x
i

+ —r>

+ (i
,n , m. - n-1

,

5

2
)(x

2

,n,m
. V"'". n,0 .
+ —J"), K

X
- = 0, (1)
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.n.n . ,, _ n>">wvn '
m- 1 + 5L_)

(1 - B
x

'

) (x
x

,,n , n

T

.1" * '" A
,

„n,m. n-l.m V , 0."> _
+ e„ (x, + —t >> x o "'

'2 VA
2

x, n , m
n,m n,m-l .

„n,m/-. tfOf" n _ e
n '

raWxn_1 ,ra
+ ? - )

n,m-l . -n.Of.n.m, n,m-l v *

, , n n , m. ,

+ (1 - 6 '
) (x

,n ,m
n-1,™ +

V_4_)]

(2)

+ K?-»<1 - 8 "'")(x»-
1,a

+ —2
-^ A ' °' (3)

and

n,m =
„n-l,» + K

". m
x

1 ,,
n

>
m

n,m + K
n,m

(J _ B
n,m

)(x
B,«-l +

V—-)

K
n,m

((1 _ „»,.,.,.
1 ™" >

a.n. / n ,m-l , v \
x
l

+ ~
2

'

+ e''-(x
2

n-l,m ,
V"'
-2-))

1 vn >
m

,ra
0, (4)

n - 1, 2, . m = 1, 2,

where K j = 1,2, represent the travel time coefficients for

j

the horizontal and vertical links, immediately beyond node (n,m),

respectively, and k£«™ and K^'
1" represent the left-turn and right-

turn penalties respectively at node (n ,m)

.
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The Hamiltonian function and Llie adjoint variables can be

written as

H
n ,m _ r n f m n ,mV n , ra n

,

1=1

..n ,m

2
1 l-

8
l

(X
1 . —J' + (1 - e

2
)(x

2

n ,m^ ,_n-l ,m , V ,!

. n,m /-,. n,uiw n,ia-l V »
.

fi

n,m, n-l,m V ,
-i

+ z ' ((1 - 8 ' ) (x
1

+ j—J + e
2

(,x
2

+ 2 '•'

n,m , n,m-l n ,m / n ,m , n ,m-l
,

V
.,

+ (i - ^'"X^- 1 -" + S-j-))

+ K^ m
(l - B^^XxJ-

1 '" + ^0) + *l'
m C^" 1 '"

„n ,in , , T
n , m

r-i-,, ,n,m., n,n-l V . n,m, n-l,m V .
-\

((l - e.' )(x
1

' + —g—; + e
2

(x
2

+
2 jj

,".'

+ K^ raa - o^'xx;-"- 1
+ -

v-
2
-)} (5)

n,m-l 3H
!
1

3>:
n ,m-l

^.ir
|-j*

-
+ z

2
'"(l 9^

m
)

+ z"'
m
K?

,m
e?

,m
+ ^' m

[K"'
M
(i - e"'

m
) + K"-

m
(i -

J 1 1 t\ I 1 K

(6)
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, - ..n , n
n - 1 , m _ 3H

Sx
n - 1 , m

= z ' (1 - D, ) + z ' e
2 3 1 2

+ K^'
m
(i - e^'

n
)l + z^ m

K^'
m

e^'
m

(7)

3x
n ,m-l 3

(8)

n-l,n> _ 3H n,m

3x
n-1 ,m

(9)

The objective function to be minimized is as follows

s = £ e,x + I c 4*4
=

I
X
3

+ i *
N ,m

3"3 ' ' "4'"4 ' "3 L
1

"4
n=l m=l n=l m=l

(10)

Therefore

,

e
x

- 0,

c
3

- 1, c
4 " 1 '

(10a)

(10b)

and

n,M
'1

N , m
!
2

n.M
*3

cj = 0, n-1, 2
, . . , N,

in - 1

,

2 . . , M ,

n-1, 2, . . . , N,

(Ha)

(lib)

(lie)
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,•" . e . - 1, m- 1, 2, .... M. (I")
4 4

From equations (8), (9), (lie) and (lid) we have

n,m = n,m = x „ = 1 2, ...,N; m = 1, 2, ...,M. (12)
3 4

It is worth noting that the Hamiltonian function is linear

„n ,m

in the decision variables, therefore, the optimal decisions, 6
j

,

j = 1, 2, which are- determined to minimize h"'™ arre either the

upper bound (6
n ' n = 1.0) or the lower bound (e"'

m
= 0.) of the

-
'

J

decision variables.

COMPUTATIONAL PROCEDURE

There are several computational procedures which can be used

to solve this type of problem. One of them is as follows:

Step 1. Assume 8's for all nodes; 8^'
m and 6^° at any node

should either be zero or one.

Step 2. Start at node (1,1) and work forward through the net-

work, calculate all the values of x"

'

m from equations

(1) through (4).

Step 3. Start from the destination node and work backward to

calculate the values of the adjoint variables, :',

±
,

i » 1, 2, at each node, from equations (6), (7), (11),

and (12).

Step 4. Minimize the Hamiltonian function at each stage, in turn,

thus determining the desired value of the decision varia-

bles at each node

.
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Step 5. Return to step 2 and repeat the process until two suc-

cessive sets of decision-variable are identical.

NUMERICAL EXAMPLE

The technique is illustrated in the following simple numeri-

cal, example. A 2x3 traffic-flow network is shown in Fig. 4. The

link travel time coefficients are as shown. The direction of flow

in each link is preassip.ned . For convenience, assume K^' - 3

and K
n,r" - 1, for n = 1, 2; m « 1, 2, 3. Assume V ' = 5,

R

y
1.2 „ 5> v

2.3 . _ 10> and all other v"'
1" - 0. The problem is to

find the minimum oath from the origins (1,1) and (1,2) to the

destination (2,3).

Step 1. 6's are assumed as follows:

ej'
1 = i, e*'

1 - o, e}'
2

- i, 8
1
,'

2
- o.

The values cf 6's which are determined from the configuration

,J>

3 = 0, 0^ 3
= 1, e

2
-
1

= 1, e
2

'
1

- 0,

.'• 2 -l, e
2

>
2 =o.

Step 2. Calculating forward starting from node (1,1) for x's by

applying equations (1) through (4), we obtain

cj'
1 - 5, 4' 1 = 0, X*'

1
= 132.5, xj'

1
= 0,
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\<l,0 K
,

1

'
, = 25

5
\(l,2) K*"30 (1,3)

K^»30

Fig. 4. Network for numerical problem
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1,2

1,3
0,

1,2 1> 2
= 440. x}'

2
-X-'- = 0, Xj' = 440, x

4

<l'
3

= 10, x^>
3

- 440,
1.3 310,

2,1 <?' X -0. .^-O, 2.1
= 0,

2,2
,

,
2 '

2
. 0, x

2
,'

2
- 0,

'1 - 2

The total tine for the. assumption is

3

S - I *V* * I *4
n«l m=l

2,m
= 750.

,
2 ' 2

Step 3. From equations (11a) and (lib) we have

1.3 2.3 . .2,1 .
.2,2 _ ,2,3

-i -«I"-o. 2 " '2 "
Z 2 "

°"

By applying the recurrence equations, given by equations

(6), (7), (11) and (12) for adjoint variables, we now uorl

backward starting from node (2,3).

2,2 - 0,
2,1 = 0.

1,3
0,

1,2
- 23,

.J'

1 - 33, 4'
2

- 31,
.J'-

1
- 61.

Step 4. Because of the boundary conditions the decision variables

at nodes (1,3), (2,1), and (2,2) are fixed. Hence, we

need to minimize the Hamiltor.ian functions at nodes (1,2)
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and (1,1) to minimize the total travel time.

There are four possible combinations of choosing

6
1 '

2
and 0*' 2

at node (1,2). The corresponding Hamil-

tonian can be obtained as follows:

1 2 1 ,2 „
(1) The combination of 8 ' = 1, and 6

2
= 0, gives

1,2 - 10,
I. 2 = 0,

1,2
4 40,

1,2
= 0,

and

1 2
H * = 750.

,
1

'
2

„
,1,2

(2) The combination of e
;

' =0, and e
2

' =1 give

1,2
0,

1 2

<2 - 10, j*' 2
= 132.5, l}'

2 = 507.5,
4

and

H
1 ' 2 570.

12 12
(3) The combination of 6j' = 1, and 6

2
' - 1 gives

1,2 = 7.5 .

1,2 = 2.5
,

I. 2 >,;<; .-
1

'
2 - 1?S

l * =365, x

,

» 1 i S

,

and

1 2
H ' = 780.

12 12
(4) The combination of 6,' = 0, and 6

2
' = gives

I. 2
= 2.5,

1,2
<2

1 2
7.5, x^ = 215, <}'

2
= 382.5,

4

and

1 7
H ' = 94 7.5.

1,2
The minimum of the Harailtonlan is H ' = 750, and the

decisions are 6*' 2 = 1 and '

2
- 0. These values are
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used for the next iteration, and we obtain

1,1 = 61
,

1,1
33,

1,1
1,

1,1

Similarly for node (1,1), we obtain

'a"
(1) For 6*' 1 = 1, and O^'

1
= 0, we obtain

and

1,1

,1.1

1 ,1
<2 0,

1,1 = 13 2.5,
1,1 = 0,

(2) For 8
1,1 = 1, and 8, = 1, we obtain

1,1
2.5,

1,1 , c 1,1 62.5, x

and

H
1

'
1

- 34 7.5.

(3) For G?"'
1

= C), and 0*' 1
- 1, we obtain

1,1
50,

1,1 = 0, <
1,1

=-• 5<2
1 ,1

x
3

o,
1,1 102.5,

and

,1-1 264.5.

,1-1 1,1
(4) For 6*' = C, and

2
' = 0, we have

1.1 > ;X. = 2.5,
1.1 = 2.5,

1,1 = 70,

and

H
1 ' 1

= 357.5.

1,1 52.5,

The minimum of the Hamiltonian is H ' = 264.5 with the

decisions of 8 ' = 0, and
2

' = 1.
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According to the procedure illustrated above, the results of

the second iteration are a: follows:

Step 1. Assume

.1.2 - r,,1.1 = 0, .*.*.!. .}.».!,

3

n,n,,
s fixed by the boundary conditions are

.2.1

^ 3
. o, e^-i,

2 2

i, e
2,1

= o, 6j_

2 ,2
o,

Step 2.

1,2
"1

x
l

2,1

2 2

*1

0,

l- 1 = 0, xj'
1

- 102.5,

1.2
0, x

1,2 1,2
157.5, x ' = 0,

'2

2,1
<2

2 ,2

,, x*'
3

= 157.5, x£'
J

= 155,

= 0, x
2 ' 1 = 165, x?'

1
= 102.5,

= 0, x
2,2

- 265
;

2,2
0,

and

S = | x"
3

- 3
+ I

x
2/' - 680.

n=l m=l

Step 3.

2,2 2 ,1 20,
1,3
2

1,2
'-2 31,

1,1 = 61,

1,2
!

1
23, z

1,1 . 33.



22

Step 4.

At node (1,2):

V .1.2
For 8f" » 1, and 6' = 0, we obtain

= 5,
1,2

X
l

and

1 2
H > • 312.5

.1.2

1,2
o,

1,2 157.5,

For 6

1,2
C

l

1 2
0, and 6 ' = 1, we have

1,2
,

o.
1,2 = 5,

1,2
<3 0,

1.2 252.5,

and

1,2
i: •> 367.5.

12 12
For 6 ' =1, and 0,' = 1 , we have

1,2
= 2.5, C

2
2.5,

1 ,2
- 75,

1,2 - 125,

and

1 2
= 335

1,2

II

For 0,

1,2

= 0, and ,L 2

2.5,
1,2
<2 2.5,

= , we have

1 ,2 = 82.5,
1,2 = 127.5,

and

1 2
H ' = 345.

The minimum of the Hamiltonian gives the optimal decision of

12 128*' - 1 and Sj' - 0.
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At node (1,1):

For 6,' 0, and 8

1,1 - 0.
1,1

(
2

2

= 5,

1 , we have

1.1
<4 102.5,

and

H
1

'
1

» 267.5

,1 ,1
For 6 1, and 6

1,1

1,1
» 5.

1,1
0,

, we have

Xj'
1

= 132.5,
1,1 n

and

1,1
H

For

437.5.

1 ,1 .1,1
1, and ej'* = 1. we have

1,1 , t
S ' " 2.5,

1,1 _, e
<j 2,5.

1,1
<3 62.5,

1,1
<4 50,

and

I
1 . 1 . 347.5.

For 0*' 1 - 0, and
2

' = 0, we have

::
1,1
1

2.5,
1,1

*2 2.5, e
l,l
3

70,
1,1 52.5,

and

1,1
H 357.5.

The minimum of the Hamiltonian is H

,1,1

1,1 267.5 with the

optimal decision of 0, , and B j
' - 1 •



2.',

Thus, we find that when the iterative process is repeated, the

last two consecutive sets of decision variables are identical and

gives

S = 680.

11 12
Therefore, it is determined that for V ' » 5, V ' =5,

and V
2

' 3 = -10, the least-time path for V
1

' 1 is (1,1) - (2,1) •»

(2,2) + (2,3); and the least-time path for V
1 '

2
is (1,2) ->• (1,3) h

(2,3).

The number of iterations may increase with increasing di-

mension of the network. Figure 5 shows the number of iterations

versus the total travel time for the numerical problem solved

above.

CONCLUSION

For linear travel times the maximum principle method is

identical with Moore's "Algorithm A.". Therefore, it may be

concluded that the method provides an additional variational

proof of Moore's algorithm.

Interested readers are referred to references [23] and [24]

for more complex numerical examples than the one presented here.
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3. TRAFFIC ASSIGNMENT USING NONLINEAR TRAVEL TIME FUNCTION

The constant travel time function to approximate the func-

tional relationship of the travel time-volume in Sec. 2 is a poor

approximation. The travel time-volume relationship is introduced

and a nonlinear travel time function which makes it possible to

simulate congestion on urban streets in a more realistic manner

is presented. This nonlinear travel time function is applied to

a single copy (single destination) urban network and the optimal

traffic assignment pattern is obtained.

TRAVEL TIME-VOLUME RELATIONSHIPS

Numerous studies [11,19] have shown that a predictable re-

lationship exists between speed and volume on urban streets and

freeways. Figure 1 shows the typical relationship between the

link traffic volume and link operation speed. Since the travel

time is the reciprocal of speed, the curve shown in Fig. 1 can

be converted to a travel time-volume curve as shown in Fig. 2.

It can be explained from Figs. 1 and 2 that, when there, are no

vehicles on the street, the speed of any vehicle traveling on the

street will be maximum, or It will require minimum travel time.

This is shown by Point A in Fig. 1, and Point A' in Fig. 2. As

the number of vehicles per hour increases on the link, obviously

the speed of a vehicle on the link, will decrease. This decrease

of. the' speed of vehicles, is linear as far as three fourths of

the link capacity on a freeway is reached. The curve in Fig. 1

is almost linear u; to Point B, the corresponding point in Fig.
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2 of the travel-time volume is B'. Beyond this volume additional

vehicles cause an increasinp.lv raoid reduction in the average

sneed of vehicles on the freeway. Point B in Fig. 1 indicates the

link capacity. If the volume at any time exceeds this limit,

there will he congestion. At the link capacity, the flow on the

link becomes very unstable and a slight incident can cause a re-

duction in average speed. This can be indicated by dotted line

on both the curves. Beyond capacity the travel time increases

considerably .

To describe adequately the relationship between the link

travel time and the link volume, there are three conditions to

be satisfied. First, there exists a proper travel time under

free flow or near zero traffic volume conditions. Second, at

low volumes travel times must increase slightly with increased

traffic volume. Third, as link capacity is reached, travel time

must increase rapidly to reflect the congestion condition.

A constant travel time function

t = k

which is used in Sect. 2 is the simplest functional relationship

to approximate the travel time curve shown in Fig. 2. It is

apparent from Fig. 2 that a constant travel time function is a

noor approximation of the true travel time-volume relationship.

The constant travel time function can meet only the first con-

dition, that is, it can provide only for free flow travel times

at near zero link traffic volumes. The constant function does

not provide for greatly increased travel times as traffic volume

increases even though traffic vclu.-e may approach link capacity.
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The typical travel time-volume relationship over the range

represented by the points A'B'C on the curve can be approxi-

mated by the following non-linear functional relationship be-

tween the link travel tine and the link volume [1]

t = k
Q

+ kjV + k. (v/C)
r (2)

where

t = link travel time in hours per vehicle,

k » constant representing travel time at free flow con-

ditions ,

k, , k, = empirically derived constants,

v = link volume in vehicles per hour,

C = link capacity in vehicles per hour,

r = empirically derived exponent.

This equation, equation (2), contains three terms which

are required to approximate the important characteristics of

the typical time-volume curve in Fig. 2. The first term repre-

sents the travel time at free flow or near-zero volume condi-

tions. The second term serves to increase travel times as link

volume increases. The increase in travel time due to a unit

increase in volume depends on the magnitude of the constant k^

Thus, the first two terms of equation (2) represent the linear

portion of the time-volume curves between the points A' and B'

as shown in Fig. 2.

The third tern, k
2
(v/C)

r
, represents the effect of conges-

tion on the travel time for the facility under consideration.
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The magnitude of this effect will depend on the value of the

exponent r and the constant k
2

and if the link volume remains

small compared to the capacity of the link this term should

contribute little to the link travel tine t. As the link volume

nears capacity (v>C) the travel time becomes so great that in

effect the link has been closed to additional traffic.

In Fig. 2 the dashed segment of the curve A'B'C' repre-

sents conditions of congestion and thus represents an undesirable

operating region. In using equation (2) the operation of the

system beyond the point B' is difficult because the third term

acts as a constraint which prevents the system from operating

in the B' and C region. Operation is, however, possible in

this range but as the expense of greatly increased travel time.

STATEMENT OF THE PROBLEM

An example of traffic assignment problem which is the mini-

mization of total accumulative travel time for an urban street

and freeway network is studied. The example network is shown in

Fig. 3 together with the trip origin and destination. The net-

work is composed of two classes of streets, arterial streets

and collector streets. Each class of street is characterized by

a travel time function which is as follows:

n.m _ n,m n ,m n,m
+ k

n m (V^l,* (3a)
a aO al a2

c
n

>
ra

n ,m

c cO cl c2 rn,m
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Fig. 3. SIMPLE 4x4 NETWORK
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where

t link travel time or. arterial streets,
a

t » link travel time on collector streets,
c

FORMULATION OF THE PROBLF.M

In general, for a typical interior node of a rectangular

network, as shown in Fig. 4, the performance equations are as

f ol lows

:

s
n,m . e

n,m
(x
«,m-l + x^

1 '
m + v

n ' m
),

n,0
"l

(A)

= (1
^
)(x

n.m-l
+ x

n-l,m +
^.m. ,m

C
2

0, (5)

n,m n,m-l ,
„n,m, n,m n.m-1

x
n_1 ' n v

n,n
) ,x ' = X ' + T

3
IB <

K
i

'
x
2 '

n,0
0, (6)

n ,m
K
4

n-l,m Tn,m. n,m n,»-l
x
n_1

'
m

v
n ' n

),

x°'
m

= 0, (7)
4

n = 1, 2 N; m = 1, 2, 3, M,

where

n ,m
K

1

a state variable representing the number of vehicles

on link j immediately beyond node (n ,m) . j = 1 , 2 ,
in

which .1
= 1 denotes the horizontal link and j 2 de-

notes the vertical link,
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x,' - a stat.e variable representing the accumulated

travel time on horizontal links from node (n,l)

including the horizontal link immediately beyond

node (n ,m)

,

x/'
m

a state variable representing the accumulated

travel time on vertical links from node (l,m) in-

cluding the vertical link immediately beyond node

(n ,m) ,

T ' = the relationship between total vehicle hours on the

horizontal link (j»3) or on the vertical link (j=4)

immediately beyond node (n,m) and the number of

vehicles on that link,

v '
m

» the number of vehicles entering or leaving the net-

work at node (n,m),

6
n

' m = the decision variable that represents the fraction

of the vehicles which enter the node and leave on

the horizontal link, at the node (n,ra).

The objective function to be minimized, which is the total

cumulative travel time of all trips in the system, is given by

rn,M
1
rN,m , a i

I
x
3 + I V •

<8)

n=l m=l

In this formulation of the problem, the travel time-volume re-

lationship of equation (2) with r « 10 is used, therefore, T '

and T, are given by



n,m ,n,m n,m n,m , n m (!i_} ]
n,

T
3

_
l 10 11 1 I 2 n,m 1

31.

(9)

C
l

n ,m

n.i" _ , k
n . m + k

n
' ra

x
n

'
m

+ k"'
m {— } ] x"'

1" (10)
I
k
20 21 2 22

c
n.m

where C
n ' m and c"*

m
are the link capacities of horizontal link

1 2

and vertical link, respectively, immediately beyond node (n,m).

The Hamiltonian function and the adjoint variables can be

written as

i-1

z
n,m

6
n,m

(x
«.«-l + x

«"l >m + v
n •»)

Z^-
m

(1 - ."••ilx^" 1
+ *Y

UW
* v

n '
W

)

n,m
f
n,m-l ,

„n,m . n,m .n.m-l x
»-l. m

v
n '

m
)}+ z

3
' (x

3
' + T

3
te ' 1 '2 '

J

n,m r n-l,m .
_n,m . n ,a n,m~l

x
»-l.»

v
n,m

)l
+ z

4
' I.X4 + T

A
(6

•
x
l '

X
2 '

yJ
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r,m, n-l,m ,
.n,m,. ,n,n. / nn,m-l + x

n " 1 ' m * "n ' r
"l

U , III *

+ v )

+ *•• [(i->
a '")(x"'-1

+ *;-1,M + »"*">] s

+ k
n 'nC

n « m [(l-8
n ' m)(x"'

m" 1
+ x"-

1>m
+ v

n ' m)/C^ m
]

J1
} (11)

'22 2

n,m-l 3H

-1 3x
n , m-1

.;••»+ 8
»'m (l-e

n -m
) + z"

3

' m
{ k

r- m
e
n

'
m

+ 2k
n
li

m
<e

n » m
)
2 (x^m

- 1
«r

1,M + vn ' ra)

+ iik^j- (.-^"[c.;--
1 4" 1,ra + v

n ' m)/c^
m

]

10
}

+ .;.-{k; i-(i-e
B '-) + z^-a-e-'Vc*---1

«r
lf " + vn,m)

+ ii^(i-9 n
-
m

)

11 [(x^ m - 1
+ x5-

1 '
,B
+v

n
-")/c5'

m
]

10
} , d2)



n-l.m- 3H
Z
2

3x
n - 1 , ei

From equations (14), (15), (18) and (19), we obtain

38

n ,m-l (13)

, -,„n ,in
n,m-l _3JL_ n >

m
5
3 ~ , n,m-l '3

3x,

(14)

. „ ,.n ,m
n-l,m _ 3H _ „n,m

3x
n-1 ,m 4

(15)

n, M
0, n = 1, 2, (16)

N ,m „
z
2

=0, - 1, 2, . . . , M, (17)

n,M
z
3

= 1. n = 1 , 2 , .... N

,

(18)

N,m m = 1, 2, (19)

n , m _ n , tn

n - 1, 2, ..., N,

m - 1 , 2 , . . . , M

.

(20)

The optimal sequence o£ the decision variable, 8 to mini-

nize the total cumulative travel time is obtained from
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8H"

3>
(21a)

(21b)

Equation (21a) gives

SH -

=
(«J'

n - r
n
2

'
m

+ k
n

' ra
- k

n ' m )(x^ m " 1
+ x^"

1 '" + v
n>m

)

+ [2k»>
m
e
n 'n - 2k^ m

(i-e
n

'
,,,

)](x^>
m - 1

+ x^ 1 ' 1
" + v

n ' ra

)

2

+ llk^ ^

"c5;•
,"(0 n • m

)

1O !(x^ m- 1
+x^ 1

•
m
4-v

n
•

!")/C^
,,,

]

11

- llk^mC^ n,
(l-e

n
' m

)

10 [(x^ m- 1+x^ 1 '
m
+v

n > m)/C^ m
]

11
. (22)

The second partial derivative of the Hamiltonian with respect to

the decision variable, 9 *
, which is used at the computational

procedure, is

3
2
H"'

m

3(0
n ' m

)
2

„,,n,n . , n.ffiv / n,m-l . n-l,m , n,ris2
= 2 (k * + k

2 ^
)(x

1
* + x

2
+ v )

, ,

,

n . n , m„n , m , „n ,m. 9 , , n,n-l, n-l.m, n,mw n,m,ll
+ llOk.j C * (0 » ) [(x

1
* +x

2
+v )/C

1
'

]
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110 k^
mC^ m

(l-9">"')
9 [(x^ m - 1

+x- 1,,Vvn,n,)/C 2' rai11
'

(23)

This formulation of the problem assumes essentially that all

flows along the links, in the network under consideration are in

the direction of the increasing super script. This implies that

the network destination node is the point (M,M); i.e., the node

farthest to the right and down. If this is not the case, the

network has to he renumbered in such a fashion that it fits the

above assumption. For instance, in a network such as that shown

in Fig. 5, the network needs to be subdivided into four quadrants

(networks) as shown in Fig. 6. Now, each quadrant would be

treated as an independent problem except for the boundary per-

turbations caused by flows entering from adjacent quadrants.

In a case such as shown in Figs. 5 and 6, we have following

equations

:

M
I

+ «" . M
1" + M

IV
- K+l - 9,

N
I

+ N
IV = N" + N

1" -1+1-8.

where

M
1

M
11

M
IIT

„IV

= number of columns on quadrant I,

= number of columns on quadrant II,

= number of columns on quadrant III,

= number of columns on quadrant IV,

- number of rows on quadrant I,
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N
11 = number of rows on quadrant II,

N
111 = number of rows on quadrant III,

N
1 = number of rows on quadrant IV.

The links along the interior boundaries of the various quadrants

are common to each of the two adjacent networks and must reflect

the flows from each quadrant. -For example, the links along the

interior boundary A
1

B
x

of quadrant I is common to the links of

boundary A.,B
2

of the adjacent quadrant II, and C^ of quadrant

I is common to A^B^ of quadrant IV.

COMPUTATIONAL PROCEDURE

By using equations (4) through (22) the optimal sequence of

decision variables, 6
n '

m
, can be found. The particular algorithm

used to accomplish this is as follows:

Step 1. Assign the proper values to the system parameters. These

parrmeters include the empirically found constants, k^'j and

the exponent 'r' for the travel time equations and the input

or output (v
n ' m

) for each node (n,m).

Step 2. Assume a set of decision variables, e
n '

m
, at each node

n ,m

in the network. It is worth mentioning again that < e

< 1.

Step 3. Use equations (4) through (7) to obtain the state

variables, x^>
m

, x^ m
, x^ m

, and x^' " at each node of the

network. Start at n = m = 1 and proceed to n = N
,

m = M.

n ,m ,

Step 4. Calculate the values of the adjoint variables z^ and

z
n ' m

. Work backward, starting at n = N, m = M and proceeding

t o n m - 1

.
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3H
n , m

3
2
H
n,m

Step 5. Calculate — and -

—

7; by equations (22) and (23),
)!"'" 3(0

n ' m
)

2

using the values of x, and z. obtained above,
i 1

Step 6. Compute a new sequence of decision variables

the following equation.

from

3

n,m
) .. + AS

n ' m
old

(24)

where 49 ' is given by

A 8

3 e

3
2
H
n ' m

3(e
n - m

)

2
(24a)

Step 7. Return to step 3 and repeat the procedure until the new

set of decision variables is sufficiently close to the pre-

vious set to indicate adequate convergence.

It is worth noting that when the optimal point is not reached,

a revised set of decision variables given by equation (24) are

assumed and the computations are repeated. For tninimizat ion of

the Hamiltonian, H '
, the second derivative of the Hamiltonian

with respect to the decision variable,

3
2
H
n,m

3(e
n ' ,n

)

2

is positive. When the first derivative of the Hamiltonian with

respect to the decision variable,

_3H"

3
n ,m
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is negative, then the increment of the decision variable, A6 '

,

should be positive, and if

3H
n,m

96

is positive, A9 ' m should be negative in order that the decision

variable approaches to the optimal point. The magnitude and the

sign of the increment A8 ' is given by equation (24a).

In the case of a multi-quadrant problem such as that shown

in Fig/ 5 and 6 the above procedure is carried through on cycle

for the I
s quadrant (I) as if it were a total problem. Then

one cycle is carried out for the 2nd quadrant (II), using the

volume, previously obtained on the horizontal links of quadrant

one (I) adjacent to the common boundary of quadrants one and two

as inputs to the second quadrant at the common boundary nodes.

For this cycle it is assumed that quadrant three does not exist

at all. One cycle is carried out on quadrant three, using the

volumes on vertical links adjacent to the common boundary between

quadrants two and three as inputs at the boundary nodes common

to quadrants two and three and ignoring quadrant four. Quadrant

four is also handled in a similar fashion. On the second and

subsequent cycles the boundary inputs are taken to be the values

obtained on the previous cycles for the adjacent quadrants. In

this way an assignment can be made for an arbitrarily located

destination node.
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NUMERICAL EXAMPLES

The technique described above is illustrated in the following

two simple numerical examples.

Example 1

Figure 7 shows a 4 x 4 traffic flow network. The link travel

time coefficients are given by the following equations:

t 10 + .06v + 10(v/180) (arterial streets and frontage
a

road)

t = 5 + .02v + 10(v/360)
10

(freeway)

where

k"'
m

= 10, j » 1, 2 for arterial streets,

k"A
m

" 5, j
--- 1, 2 for freewavs,

k"'
m

= .06, j 1, 2 for arterial streets,

k"'
m

= .02, j = 1, 2 for freeways,

k"'
m

« 10, J 1, 2 both for arterial street and freeways,

c"
,m

- 180, j = 1, 2 for arterial streets,

c"'
m

= 360, j 1, 2 for freeways.

The central business district which is the destination, is

assumed to be at node (4,4). The direction of flow in each link

is preassigned. Tne input volumes are also shown in Fig. 7. The

problem is to find an optimal traffic assignment along the links

for minimum path from origins to the destination.
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The optimal sequence of the decision variables was obtained

by an IBM 360/50 computer and the final traffic assignment is pre-

sented in Fig. 8. The total accumulated travel time is 14,076

time units. It has taken 32 iterations.

Since the destination node is at the last node (4,4) itself

the problem is a single quadrant problem.

Example 2

A 5x5 traffic flow network is shown in Fig. 9. The link

travel time coefficients are given by the following equations:

t 12 + .08v + 10(v/150) (collector streets)
c

t = 10 + .06v + 10(v/180) (arterial streets and frontage

road)

.10
t
f

5 + .02v + 10(v/360) (freeway)

where

k.I " 12, j = 1, 2 for collector streets,
j0 J

JO
10, j = 1, 2 for arterial streets,

. n,m
j0

5, j 1, 2 for freeways,

k ' =.08, j = 1, 2 for collector streets,

Jl
,06, j = 1, 2 for arterial streets,

k . .! = .02, j = 1, 2 for freeways,
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k
n,m m 1Q , . lj 2 for all three types,

c
n,m B 150 j _

j ^
9 f or collector streets,

i

C
n ' m = 180, j - 1, 2 for arterial streets,
J

c
n >

m m 360, j = 1, 2 for freeways,
'j

The destination is assumed to he at node (5,3). The di-

rection of flow in each link is preassigned. The input volumes

are also shown in Fig. 9. The problem is to find an optimal

traffic assignment along the links so that all the vehicles reach

the destination node (5,3) in minimum time.

As the destination node is not the last node (5,5), the

problem becomes a two-quadrants problem.

The results were obtained by an IBM 360/50 computer and

they are presented in Fig. 10. The total travel time is 27,777

time units. It takes 85 iterations.

COMPUTATIONAL CHARACTERISTICS

Assignment by the maximum principle is achieved through a

series of iterations until desired convergence has occurred.

Each iteration is a feasible solution to the problem although

not necessarily the optimal one. To begin this iteration pro-

cess in this study, it is first assumed that the vehicles entering

a node would be divided equally between the horizontal and the

vertical links when thev leave the node, i.e.,
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= .5,

D - 1, 2, .. . , N,

o = 1, 2, .... M.

This provides the first feasible solution fron whieh subsequent

iterations are made. The numerical results for both problems

will now be discussed in detail.

Example 1: Using an IBM 360/50 computer the optimal total sys-

tem travel time obtained is 14,076 time units and the convergence

is obtained after 32 iterations. The computer took approximately

155 seconds to execute this program. Compilation time is approxi-

mately 129.6 seconds thus leaving 25.4 seconds for 32 iterations,

or approximately .793 second per iteration.

It can be seen from Fig. 11 and Table 1 that the total sys-

tem travel time calculated for each of the first few iterations

is considerably greater than the final total travel time. Table

1 shows the total travel time at each iteration. We can see from

Table 1 that the total travel time for first iteration is con-

siderably high, namely 782.542.0S0 time units, and at the end of

iteration 2 it is 1,215.121 time units. But it drops down to

17,894 time units at the end of 3rd iteration. From iteration 4

to iteration 19, the total travel time fluctuates, then from

iteration 20 onwards it fluctuates very slowly until it converges

to 14,076 time units in 32nd iteration.

The iteration process is stopped when

new old
< .0000]



i700
i

1600
Ul

s

i
a.

H
a
LI

E
3 1500

::

o
o
<

o

1400

130

54

4010 20 30

NUMBER OF ITERATIONS

Figure II. total accumulated travel, time vs.

NUMBER OF ITERATIONS.



55

Table 1. Total travel time at each iteration.

Iteration
No.

1

2

3

4

5

7

8

11

16

20

30

31

32

Total Travel Time

782,542,080

1,215,121

17,894

67,980

14,449

14,764

14,176

14,253

14,090

14,082

14,077

14,076

14,076
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where S is total travel time in the present iteration, and
new

S total travel tine in the previous iteration. At this point
old

the volumes on all the links of the network do not change appre-

ciably in subsequent iterations.

Example 2: Using an IBM 360/50 computer the optimal total system

travel time is 27,777 time units and the convergence occurred

after 85 iterations. The computer took approximately 208.8

seconds to execute the program. The compilation time is approxi-

mately 129.6 seconds thus leaving 79.2 seconds for 85 iterations,

or approximately .932 seconds per iteration.

As shown in Fig. 12 and Table 2 the total system travel

time calculated for each of the first few iterations is again

considerably greater than the final total travel time. Table 2

shows the total travel time at each iteration. Referring to

Table 2 we note that the total travel time for first iteration

is considerably high, namely 1,814,837,800 time units, and it

drops to 904,504 time units for 2
nd iteration. It again drops

to 37,143 time units in the 3
rd iteration. The quick convergence

at these iterations can he attributed to the computational pro-

cedures employed here based on the maximum principle algorithm.

It fluctuated from iteration 4 to iteration 18, and then started

converging slowly to 27,777 time unit in 85 iterations.

In this problem also the iteration process is stopped when

S " 8 . ,

new old .00001
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Table 2. Total Travel Time at each Iteration.
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Iteration
No.

1

2

3

*

5

8

10

IX

1?

15

2

40

7

B4

85

Total Travel Time

1,814,837,800

904,504

37,143

32,378

31,775

35,831

35,069

28,728

30,389

28,086

27,820

27,800

27,781

2 7,777

27,777
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At this point the volumes on all the links of the network do not

change appreciably in subsequent iterations.

As we have noted, the computational time per iteration in-

creased as the number of nodes increased. It can be said that

the computational time per Iteration increases approximately

linearly with increase in the number of nodes (or in other words

the size of the network).

Figures 13, 14 and 15 illustrate the traffic assignment at

the end of 5th, 32nd and 70th iteration respectively for numeri-

cal example 2. Comparison of these assignments with the optimal

traffic assignment as shown in Figure 10 can be made. We note

first that as the number of iterations increase the total travel

time decreases as it should be. The total travel time at the

end of 5th iterations is 31,774 time units. At the end of 32nd

and 60th iteration the values are 27,806 and 27,781 time-units

respectively and finally it converges to 27,777 at 85th iterations

We also note that traffic assignment at different nodes does not

remain the same as the number of iterations increases, but it

gradually tends towards the optimal. For example consider node

(1,1). The input volume is 10 vehicles. In the 5th iteration

all the 10 vehicles are assigned to the horizontal link while no

vehicle is on the vertical link. At the end of 32nd iteration 9

vehicles are assigned to horizontal link while one vehicle is

assigned to the vertical link; and at the end of 70th iteration

4 vehicles have been assigned to the horizontal link and 6

vehicles to the vertical link and finally 3 vehicles are assigned
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on the horizontal link while 7 vehicle., on the vertical link,

which is the optical traffic assignment. In similar fashion

we can explain the gradual change in the traffic assignment at

different nodes. At node (1,3) the assignment on vertical link

increases from 40 to 58 and to 62 as iterations increase from

5th to 32nd and to 70th. At the same time the assignment on the

horizontal link is zero at the end of 5th iteration but it in-

creased to 23 at the end of 32nd iteration and then to 24 at

the end of 70th and 85th iterations.
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4. TRAFFIC ASSIGNMENT USING NONLINEAR TIME FUNCTION- WITH
MULTI-COPY NETWORK

Single copy (multi-origin single destination) assignments,

based on constant and nonlinear travel time-volume relationships,

have been studied in sections 2 and 3. In this section the

traffic assignment for a multi-copy network is considered. In a

multi-copy network we have a multi-origin and multi-destination

network. This represents an actual situation, since we usually

do not have a single destination in actual practice. At the com-

putational procedure to obtain an optimal solution, the multi-

copy problem is reduced to a series of constrained single copy

problems. Two numerical examples, one considering the turn

penalty and the other without penalty, are presented.

4-1. Multi-Copy Network With Turn Penalty

STATEMENT OF THE PROBLEM

The problem is to obtain an optimum traffic assignment to a

network which minimizes the total accumulative travel time. The

prototype urban network shown in Fig. 1 is composed of three

classes of streets; freeways, arterial streets and collector

streets. The trip distribution pattern is also given and is com-

posed of three copies; that is three zones of destination and

numerous zones of origin. In the problem shown in Fig. 1 all

trips are destined to zone A (copy 1) , zone B (copy 2) , and zone

C (copv 3). It is assumed that each trip will be made by a

separate vehicle.
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Each class of street is characterized by a travel time

function as follows:

66

-5 ,v y/tylO
1 + 9 * 10" 3

(-*0 + 2*<l8fe)
(1)

-5,v, „ .v/IU10
t - 2 + 10 x 10

D
(-
t

) + 2x(-
g

---) (2)

t - 2.5 + 10 * 10" 5

(f)
+ 2x(f^)

10 (3)

where

t = link travel time in minutes on freeways

t = link travel time in minutes on arterial streets
a

t " link travel time in minutes on collector streets
c

In general, the following nonlinear functional relationship

represents the link travel time and the link volume.

t = k„ + k, (
:') + k, (~r)

r

1 H' 2 'CI'
(4)

where

t = link travel time for vehicle,

k
Q

= constant representing time at free flow conditions,

k lt k 2
empirically derived constants,

v = link volume in vehicles per hour,

C - lane capacitv in vehicles per lane per hour,

I = nurabcr of lanes making up the link in one direction,

r « omoirically derived exponent.
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Equation (4) is similar to equation (2) of section 3. Since k^,

k, , v and 1 are given constants for each link, equation (4) can

be written as

t - k
Q

+ k^v + k'
2
(v)

r (5)

where

k
x

= k
x
/l

<
k„ r

Also included in this problem is a penalty accessed to any

vehicle which makes a right or left hand turn. The turn penal-

tics are volume independent and in this case are assumed as

f ollows :

k - 0.3 minutes (left turn penalty),

k D
» 0.1 minutes (right turn penalty).

. R

FORMULATION OF THE PROBLEM KITH TURN PENALTY

To facilitate the formulation of the problem consider a

typical interior network node, at (n,m) as shown in Fig. 4 of

section 3. The performance equations associated with that node

are as follows

:

x
n,m _ e

n,m
(

„«.«-l + v».°/ 2 ) + (1 - »•*) U*"
1 '" + v

n,n
/2), (6)
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n,0
0, (6a)

x. » (1
n,m. . n,m-l , n.m.,.,. .

ft
n,m, n-l,m . n , m , „ . , ..

.

1 ^ x
l

+ v l 2
^

+ 9
2 ^

x
2

V
'

"'

,m
(7a)

n.m n,m-l
,
_n.m. „n,m „n ,m n,m-l n-l,m n.m . . ,„.

x
3

' x,' + T ' (e '
, e

2
'

, x '
, x

2
, vv , k

L
), (8)

n ,

, (8a)

n.m n—1 ,m
,

^n.ni, n.m n.m n,m-l n-l,n n.m ,n,m , .

x^' = x^ + T 4 (
i

• 2 ' x
l

, x
2

' , v '
,
vh

,
k
R

)

(9)

, (9a)
,m

n = 1 , 2 , . . . , K
; 1, 2, .... M.

where

n , m
a state variable representing the number of vehicles

on link j immedia tely beyond node (n,m), j " 1, 2,

in which j - 1 denotes the horizontal link and j - 2

denotes the vertical link,

a state variable representing the accumulated travel

time on horizontal links from node (n,l) including

the horizontal link immediately beyond node (n,m)

,
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x
n

'
m = a state variable representing the accumulated travel

time on vertical links from node (1 ,«) including the

vertical link immediately beyond node (n,n),

T
n,m = the relationship between total vehicle minutes on the

horizontal link immediately beyond node (n,m) and the

number of vehicles on that link,

T
n ' m - the relationship between total vehicle minutes on the

vertical link immediately beyond node (n ,m) and the

number of vehicles on that link,

v
n,m = the number of vehicles entering or leaving the net-

work at node (n,m). It is assumed that v
n ' m can be

split so that v
n>m

/2 enters the vertical link, and

the horizontal link, respectively, just ahead of node

(n ,m) ,

Vh
n>m = the number of vehicles on the same links in the same

direction as x"'
m

, obtained from previous copies,

Vv
n,m = the number of vehicles on the same links in the same

direction as X*'™, obtained from previous copies,

e
n ' m = the decision variable that represents the fraction of

the vehicles which enter the node on a horizontal link

and leave on the horizontal link, at node (n,m),

6
n

'
m = the decision variable that represents the fraction of

the vehicles which enter the node on a vertical link

and leave on the vertical link, at the node (n,m).

The object function to be minimized is given by
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N,mV (10)

Cl =0, c
2

= 0, c
4

X (10a)

The Hamiltonian and the adjoint variables can be written as

r n -m n ,t

i = l

n.n/.n.ni/ n.m-1, n.m,-.
,

,, _fi,m«« n-l,m n,™.-*'
s ' (6^ (x^ + v /?.) + (l-0

2
'

) (x
2

+ v /2)j

B»n/-, „n,mw n.m-1, n,m,«.
,

„n,m. n-l,m n,m. ,,..•*

+ z ' ((1-9 ' )(x' + v /2) +
2

' (x
2

+ v /2)J

n.m , n,m-l, , ,n,m, n.m-1, n,n.*»
+ z

3
' {x

3
' +k

{
(x

l
+ v ' /2)

/n .n,nw n-l,m, n,tn. , . ,n,nn
+ (1-9 ' )(x, + v /2) + vh

J

,
. 'n.m/.n.m. n,m-l n,m._.
11 ' 1

(x
i

+ v ' /2)

*, /, ,, n , nu , n-1 ,m. n.m,,.. , n ,+ (1-8,' ) (x
2

+ v /2) + vh

12 I 1 1
v
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J

a .m\ 11
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N,m
1, m = 1 , 2 , . . . , M

.

(1»)

where

k' '
m

= the parameters in the travel time-volume relationship

in which j » 1, 2 denotes horizontal and vertical links

respectively and a = 0, 1, 2 denotes coefficient num-

bers.

From equations (14), (15), (18), and (19), we obtain

n - 1, 2

n ,m
., N,

1 , 2 , .... M

.

(20)

The optimal sequence of the decision variables, 8.. ' and 8_'

which minimize the total cumulative travel time are obtained from

., „n ,m

•v
(21a)

and

8H
B 'n

(21b)

(22)

Equations (21a) and (21b) give
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The second partial derivatives of the Hamiltonian with re-

spect to the decision variables, o"
,m and e^'™, which are used

at the computational procedure are
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COMPUTATIONAL PROCEDURE FOR MULTI-COP? NETWORK

Through the use of equations (6) through (23) the optimum

_n ,m Q n , m _i 9 N*
sequence of decision variables, Bj ,

B
2

,
n - J.

,
t-

,
,

- 1, 2, .... M can be found. The computational procedure used

for each copy is essentially identical to that presented in

section 3 for single copy problem except that we have two de-

cision variables B^ m
and 6^'

m
at each node (n,m) instead of

just one. decision e
n ' m as in section 3.

To solve a multi-copy problem, the following procedure is

employed.

Step 1. Choose a single copy at random.

Step 2. Obtain the optimal traffic assignment for this single

copy network using the computational procedure presented

in section 3.

Step 3. Choose another single copy left at random.

Step 4. Consider the volumes obtained from previous assignments

(or previous copy or copies) as fixed, which are given

as vv
n,m and vh"'", obtain the optimal traffic assign-

ment for the single copy from the copy selected in step

3.

Step 5. Return to step 3 and continue until all copies have been

assigned

.

NUMERICAL RESULTS

The total accumulated travel time for copy 1 is 33,027

minutes and the convergence is obtained in 58 iterations. Fig.
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2 shows the input volumes v"'
m

an J the optimal traffic assign-

pent

.

For copv 2, according to the procedure explained in step 4,

the link volumes v»"'* and vh* »" are obtained fro, the optimal

traffic assignment of copv 1, which have the same directions of

traffic flow as for copy 2. These volumes vv and vh at

each link and the input volumes, v
n ' m for copy 2 are shown in

Fig. 3.

The total travel time for copy 2 is 51,206 minutes, which

includes the total time obtained on copy 1. The converge oc-

curred after 57 iterations. Fig. 4 shows the input volumes and

the optimal traffic assignment for copy 2.

For copy 3 again, according to the procedure presented in

step 4, the link volumes, vv"''" and vh"'" are obtained fro- the

optimal traffic assignments of cony 1 and copy 2, which have

the same traffic flow directions as for copv 3. These traffic

flow volumes, VV» >» and vh*'" at each link and the input volumes

v
n ' m for copy 3 are presented in Fig. 5. The total travel time

for copy 3 is 74,752 minutes, which includes the total times

obtained on copv 1 and copy 2. The convergence occured in 53

iterations. Fig. 6 shows the input volumes and the optimal

traffic assignment on copy 3.

Fig. 7 shows the final traffic assignment for all the thre<

copies .

Now the multi-copy problem without turn penalty will be

considered

.
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4-2. Multicopy Network Without Turn Penalty

STATEMENT OK THE PROBLEM

The statement of the problem is essentially the same as for

the problem with turn penalty, with the only difference that

there is no penalty accessed to any vehicle which makes a right

or left turn

.

FORMULATION OF THE PROBLEM WITHOUT TURN PENALTY

Considering each node as a stage, the performance equations

for a typical interior node (n,m) of a rectangular network can

be written as follows:

n,m „n,m. n,m-l, n-l,m, n,m. n,0
'1

= e ' (x
n,m-l ,

n-1 ,m n,m. n,0 n ,. .

,' + x
2

+ v ) , x
1

' = 0, (1)

n ,m /n _n,mw n,m-l . n-l,m ,
n.nu 0,m _ ,„*

K, = (1-6 * )(x ' + x 2 + v ' ), x
2

= 0, (2)

x
n,m

. x
n,m-l

+ T
n .o^n .^n ,m-l

_ K
a-1.«

§ v
«.*

t
^..^

x^'° = 0, (3)

n.ni n-l,m , _n,in / „n,m n,m-l n-l,m n,m n,m.
<
4

= x^ + T
4

» (6 , X
x

*
, x

2
, v , vv )

K^ = 0, (4)

n=l,2,...,N m=l,2,...,M.
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The objective function , which is the total accumulated

travel time of all the trips in the system of the network, to

be minimized can be given by the following equation;

S =

N M „
(5)

11-1 m-1

The Hamilton!.™ function and the r.djoint variables can be

written as follows:

n,m n ,mr n , m n
1/i X

i
1-1

- ^"'^"'"(x"''"-
1

+ x"-
1>n

' + v
n ' m

)

,;."(i - s^mx"'"-1
+ 4'M + «"'")

n,m. n,m-l . Tn,m. n,ra n. 1"- 1
+ z

3
' [x

3
+ T

3
(8 , X

x

n-l,m n,m ,, 1
"> m ii +x

2
, v , vh ) )

+

n.m. n-l,m ,
„n,m, n,m n ,m-l

-U
l "4

2
n,m

6
n,r,

(

n,m-l +
n-l,m

+
^.Bj



n > m U - e
n ' aHx?"

m' 1
+ *Y 1,m

+ v
n,m

)

2 1 '

n,m, n,m-l n ,m . n ,m , n ,m-l
+ z

3

* {x
3

> + a
10

[0 (x
x

.,. x
«-l.« + v

n -
ra

) + vh
n,m

] + k«£m

D
n >m(;;n,n,-1 + x

n-l,n, + y
n , B) + y ,

n ,m -, 2

+ k^n
c°'

,B
t{e

n 'm (x»'
n- 1

+ 4
n-l,« + y

n,m
)

vh"^)/c^in i + ^•n cr 1 '" + k
2o

ra

n ,n-l ,
_n-l ,m + v

n > m
)k;£-[(i-e"«") («;•-* + -2

+ vv
n - m

]

2 + k^mC^ m [{(l-8
n ' n

)

(x
n,»-l + ^- 1 -™ + V

n
'
m

) + VV"'")/^"
1

]

11
): (S)

n,m-l 3H
z = —
1 3x

n ,m

n ,m-l

z
n,m

9
n,m

+
n,m

(1 . B
n, m)

+ z
r>,m

{k
n,m

fl

n, m
+ 2k^

m
6
n ''"

[
8° '

™



89

, , . n ,m , _n ,m. 11 . , n ,m-l , n-l,m n,m,
,

111^2 (0 ) 1 (x
1

+ x
2

+ v ' ) +

vh /C
3

] } + z
/(

' {k
2(^

(l - o
n ' m

) + 2k^ m
(l - e

n ' m
)

[ (.1 - ' ) (x
1

+ x
2

+ v * +

/ » ] + 1 1 k
2 ^ (1 -• Q ) [ { (x-

n-l,m n.ra. , n,m,,„n,m.lO
+ x

2
+ v ' ) + vv ;/C

2
] (9)

n-l,ra 3H
°
2 '-

7x"
n-1 ,m

n ,m-l
z
i

(10)

n,ra-l 311

3x
n ,m-l

n-l,m 3H
4

3x
n-1 , m

(id

n , m (12)
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n,M
1, 2> (13)

!

2
= 1, 2, (14)

n,H
»3 - 1, n - 1, 2, , N, (15)

N,m
1, m = 1, 2 , , M. (16)

where

j,q
• the parameters in travel time - volume relationship

in which j =1, 2 denotes horizontal and vertical links

respectively and q = 0, 1, 2 denotes coefficient num-

bers .

From equations (11), (12), (15) and (16), we obtain

n ,m
Z
3

= 1 ,

1, 2,

1, 2.

(17)

In order to determine an optimal, sequence of decision varia-

the following conditions;

3H' (18a)

,,n , m , .

II minimum, (18b)



Equation (8) gives

311

38
'

. n ,

m

n,m t^i™ u n > m \= (z
x

- z
2

+ K
10

- K
2Q ;
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(x^'*-
1

+ K*
-1 '" .+ v

n
'
m

) + 2k^m
[e

n
'
n
<x£

n.ir.n.m, n , m - 1 n - 1 , m n,tp
+ X, + V )

+ vh ] (x + x- + v ) + llk
12 1 '

n ,m, , n ,m,10. n,m-l ,
n-l,n n.tiu

,
n,m w n,m,

(sc ' + x
2

+ v ) + vh >/C
1

J

(x^" 1
+ X

*-1,m
+ v

n ' m
) - 2^™ 1(1 - 8

n
'
m

)

x
n >m -l

+ x
n-l, m

+ v
n, m> +

^n ,
«,

, (jj
n ,m-l + E

«-l,«
+
^Bj

uk»|"c; ,,, [{(i
.11,m., n,m-l n-l,m n,m.
6 '

) (x + x, + v )

n.m, ,„n,m,10 , n,m-l n - 1 , m n,m.
+ vv ' }/C

2
'

) (x.^ + x 2 + v ' ) . (19)

The second partial derivative of the Hamiltonian with re-

spect to the decision variahle, P ' which is used at the com-

putational procedure, is
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3(6
n > m

)

2 "

+ vh»'
m }/C->

m
]

9 (^'
ra- 1 -x»- 1 '

,,1 + v
n ' m

)

2

(20)

This formulation of the problem also assumes essentially that

all flows along the links, in the network under consideration are

in the direction of increasing superscript. This implies that

the network destination node is the point (I.M); i.e., the node

farthest to the right and down. The sane multiquadrant proce-

dure is employed, as used in section 3 for single copy.

COMPUTATIONAL PROCEDURE

The compomputational procedure used for each copy is essentially

resented in section 3 for single copy problem. Also
the same as p

the procedure to solve a multicopy problem, is the same as de-

scribed before in this section for the problem with turn penalty
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NUMERICAL RESULTS

The total accumulated travel time for copy 1 is 31,710

minutes and convergence took place in 33 iterations. Fig. 8

shows the input volumes v ' at different nodes and the optimal

traffic assignment.

« . ... -. n.m , , n , m , ^ , .

For copv 2, the link volumes vv and vh are obtained

from the optimal traffic assignment of copy 1 which have the

same traffic flow directions as for copy 2. These traffic flow

volumes, vv ' and vh * at each link and the input volumes v '

for copy 2 are shown in Fig. 9. The total travel time for copy

2 is 49,346 minutes, which includes the total time of copy 1,

and the convergence occurred after 39 iterations. Fig. 10 shows

the input volumes and optimal traffic assignment on copy 2.

— -. . ,-..1 i n.m j,n,tn ,

For copy 3 again, the link volumes vv and vh are ob-

tained from the optimal traffic assignment of copy 1 and copy 2,

which have the same flow directions as for cony 3. These traffic

flow volumes, vv '
m

and vh ' at each link and the input volumes

v
n

'
m

for cony 3 are shown in Fig. 11. The total travel time for

copy 3 is 72,243 minutes and this includes the total time obtained

on copies 1 and 2. The convergence occurred after 34 iterations.

Fig. 12 shows the input volumes and the optimal traffic assign-

ment on copy 3.

Fig. 13 shows the final traffic assignment for all the three

copies

.
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COMPARISON BETWEEN THE RESULTS HTTP PENALTY AND WITHOUT PENALTY

The total travel tine for the traffic flow network as shown

by Fig. 1 is 74,752 minutes when the left turn and right turn

penalties are taken into account, and the total travel tine for

the same traffic flow network is 72,175 minutes when the turn

penalties are assumed to be zero. This is quite obvious, because

if we assume turn penalties to exist there is certain amount of

time lost at every intersection (node) when a vehicle takes a

right hand or left hand turn, but there is no loss of time at any

node when the turn penalties are neglected. In fact it is this

extra time at each node which causes an overall increase in the

final travel time.

Fig. 7 shows the optimal traffic assignment when turn penalties

are considered and Fig. 13 represents the optimal traffic assign-

ment when turn penalties are not considered. Studying carefully

the traffic assignment pattern at each node we find that there

is a change in assignment characteristic, but this change is not

appreciable. For example, consider node (3,3) of Figs. 7 and 13.

In Fig. 7, 600 and 700 vehicles enter the node vertically, from

above and below respectively. The corresponding numbers of

vehicles in Fig. 13 are 603 and 720. Also no vehicles leave the

node vertically above or below in both figures. 2400 and 50

vehicles enter the node horizontally, from left and right re-

spectively, in Fit-. 7, whereas corresponding numbers in Fig. 13

are 2373 and 30. Finallv, in Fig. 7 the numbar of vehicles

which leave the node horizontally to the left and right are 250



101

and 3500 respectively. The corresponding number of vehicles in

Fig. 13 are 250 and 3500. Thus we find that there is no appre-

ciable change in the trend of the traffic assignment.

The increase in total travel time is 3% when turn penalties

are taken Into account.

DISCUSSION

The multi-copy solution obtained through the computational

procedure already described in this section is not an absolute

or global optimum solution, but it is a suboptlmum solution.

In order to obtain an absolute optimum solution the com-

putational procedure has to be modified to one which is similar

to solving a single copy multiquadran t problem. The proposed

procedure may be as follows:

Suppose there is a 3-copy traffic flow network. The pro-

cedure described in section 3 for a single copy network is

carried through one cycle for copy 1. Then one cycle is carried

. i n , m , ,n , m ..
out for copy 2, using the volumes vv and vh , previously

obtained on copy 1 as fixed inputs to same links of copy 2.

Finally, one cycle Is again carried out on copy 3, using the

volumes vv ' and vh '
, obtained previously on copy 2 as fixed

inputs to same links of copy 3. This makes one iteration for

the network. Subsequent iterations are obtained and the iterative

nrocess is stopped when the new set of decision variables is

sufficiently close to the previous set of all copies to indicate

adequate convergence.
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The present suboptimal solution is very close or may be the

absolute optimum solution because of following reasons:

(i) The formulation of the problem restricts the operation

not in a congested situation.

(ii) The calculation of the sum of the total travel time

for copies 1 and 2 by the present method uses the link travel

time-volune relationship in the lower portion of line A'B' of

Fig. 2 in section 3, but in reality it should have used this

relationship somewhere in the upper portion of A'B', because

in the computation of travel time for copy 1 the volumes of

copy 2 and copy 3 which are in the same direction and on the same

links as for copy 1 arc not considered, or in other words volumes

vv
n,m

and vh"'
m

are assumed to be zero for copy 1. Even in this

situation it never goes beyond point B' which is the point the

links volume reaches its capacity. This is because of the re-

striction the operation in the portion A'B'. This implies that

the sum of the total travel time for each copy may be propor-

tional to the actual travel time.
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5. MIMIMIZATION OV THE SUM OF TRAVEL TIME COST AND INVESTMENT
COST ON A TRANSPORTATION SYSTEM.

The basic objective of a transportation study as concluded

by Zettel and Carll [25], is the economic analysis of such a

transportation network which provides valuable guidance in de-

veloping a comnrehens i ve long range transportation plan.

In this study a mathematical model has been developed for

the economic evaluation of a transportation system. Like many

other studies, a single objective, to minimize the transportation

cost, is developed. The transportation cost of any transportation

system consists of three basic costs. They are (1) travel time

cost, (2) operating cost and (3) investment cost. It has been

found through numerous surveys that travel time is dominant as a

factor in selecting a particular route and operating cost does

not contribute much in selecting a route. Therefore operating

cost can be combined with the travel time cost. The value of

the travel time cost, c , is assumed to be constant, namely $1.55

per hour per vehicle, and the total travel time cost is obtained

by multiplying the total travel time by this constant.

Studies have also shown that the travel time cost and the

operating cost on a transportation system could be reduced if a

proper amount of investment is made on the system. This means

that there is also investment cost incurred on the transportation

system. Hence the objective function is reduced to minimize

the sum of the travel time cost and the investment cost.
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THE TRAVEL TIME EQUATION

As discussed In sections 2 and 3 the unit travel time is in

general dependent on traffic volume and roadway conditions. The

objective of this study as explained before, is the minimization

of the sum of the investment cost and the travel time cost of a

given transportation system. The investment is an independent

variable and it is assumed that it could be expressed in terms of

dollars per mile. Since the roadway conditions depends entirely

upon the investment made on the roadways, the unit travel time

can be expressed as a function of both traffic volume and in-

vestment. The relationship among them is complex. In developing

a mathematical model, Kang, Snell and Funk [20,21] made some assump-

tions to simplify the relationship in order to expres'the re-

lationship by a relatively simple equation which is manageable

and yet not too far from reality.

In order to express unit travel time as a function of traffic

volume and investment, some basic characteristics were observed

[20 ,21 ] . They were

:

(1) Unit travel time was increased as the traffic volume

increased

.

(2) Unit travel time was decreased as the investment in-

creased .

(3) Unit travel time had a lower limit (free flow travel

time)

.

(A) If the travel time was held constant, the service volume

increased as the investment increased.
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Referring back to Fig. 2 of section 3 the dotted part of

the curve shows the relationship under congested conditions.

Therefore under normal operating conditions, it is logical to

assume that uni t travel time (in hours per vehicle per mile)

is linearly related to traffic volume. This can be represented

by following equation:

k + k ' v
(1)

where

t = unit travel time (hr/mi/veh)

k = free flow travel time (hr/mi/veh)

k' = slope of the curve in Fig. 2 of section 3 (hr /mi/v

v = traffic volume per unit time (veh/hr)

Keeping basic characteristics in mind and further assuming

that the free flow travel time is constant for each link and

traffic volume served is proportional to investment for a con-

stant travel time, an equation of the following form may be

hypothesized [20,21]

!h)

t = k
x

+ (2)

•jhere

t = unit travel time (hr/mi/veh)

k = free flow travel time (hr/mi/veh). The magnitude de-

pends on the maximum speed obtainable or regulated.

2 2

k = coefficient of improvement (dollar-hr/mi /veh ). Its

magnitude depends on link location and reflects the

difficulty of improvement.
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8 equivalent hourly Investment per unit length (dollar/

mi/hr)

.

v = traffic volume per unit time (veh/hr).

In the case where old facilities exist, the investment should

be expressed as:

9 = k
3

+ (3)

where i
k.,, in dollars per mile per hour, represents the existing

investment and 9', in dollars per mile per hour, is the additional

inves tmc-.nt

.

Tile general form of the unit travel time equation then be-

1 = k
i

+
k. + e'

(4)

The characteristics of this equation are demonstrated in Figs.

1 , 2 and 3

.

Let L be the length of the link and c the cost of time.

The objective function then becomes

S = 6 ' L+(V +
k7+T'-

v?) L c
t

(5)

In this section two cases will be studied in detail,
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FIGURE I. TRAVEL TIME -INVESTMENT CURVE
WITH FIXED VOLUME.
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TRAFFIC VOLUME, V

FIGURE 2. TRAVEL TIME -VOLUME CURVE

WITH FIXED INVESTMENT.
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TRAFFIC VOLUME, V

FIGURE 3. VOLUME -INVESTMENT CURVE WITH

FIXED TRAVEL TIMS . .
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5-1. INVESTMENT KITH NO BUDGET CONSTRAINTS

STATEMENT OF THE PROBLEM

A general example of optimal Investment policy is studied.

Fig. 2 of section 2 shows a basic N x M rectangular network with

node (N,M) as the destination node, and all other nodes as

origins. The input volumes at each node can be obtained from a

traffic distribution study. In this particular case the overall

system budget is assumed to be unlimited, but it has been con-

sidered that there are upper limit and lower limit for invest-

ment on each link. The problem is to find an investment policy

under each investment condition such that the total cost is

minimum under the following assumptions.

1. No turn penalties.

2. Zone ccntroids coincide with the nodes.

3. Traffic directions are preassigned.

4. Traffic distribution is fixed.

5. Transportation network can be represented by a rectangularly

arranged combination of links.

6. Travel time is the only factor that influences the traffic

assignment

.

Unit travel time on each link can be expressed as:

n , m , n , m li n .

t.' » k ' + x.

6
1

+ ^3
(6)

wh ere
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j 1, for horizontal links,

j = 2, for vertical links.

FORMULATION OF THE PROBLEM

The performance equations for a typical interior node (n,m)

as shown in Fig. 4 of section 3 can be written as follows:

*£'" = e°'
n
<*;

,B-1 + x^"
1,m

+ v
n

- ra

) (?)

- e^ m
(A

n - rj

) , x
1

;- - ,

4' m
- (l-O^X^™- 1

+ x^ 1 '™ + v
n

'
m

) (8)

,, rt n.m. . n ,m ,m n(l-0
3

'
) A , X

2
* » ,

t
n,a . x

n,m-l
+ 9

n, ffl

L
n,is

> e
n,m

, „ . x
n,0 „ „ j (9)

n,a _ n-l, m + Q
n,m

L
n, m n,m

> Q
O.m

. „ (1Q)
4 4 11 z — *+

,n ,m n ,m

n,m n,m--l ,n,m n,m,n,ni 12 1 t , n,m.2
x ' = x,' + k ' x ' L ' c + —-—- ~-- Cx. )

5 5 11 1 1 t „n,ra ,n,m 1
9
1

+ k
13

x^'° - . (11)

Substituting the value of x ' from equation (7) into

eouation (11), we have
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. n ,ra, n , m
K
12

L
ln , in n ,m-l , . n ,m ,n , m _n ,in n ,m 12 1 t . n , m n ,

5 5 11 3 1 t n,m ,n,m J
e
l

+K
13

n,0
" . (12)

. n .ra
L
n .m

n-l.m,, n,m n.u.n.m , 22 2 t , n,m.2
<6 +k

21
X
2

L
2

C
t

+
.«,«J >iT5

(X
2

}

B
2

+k
23

, n - (13)

Substituting the value of X- ' fron equation (8) into equation

(13) , we have

. n ,m n ,m

n,« . n-l,m
+ k

n.™
A
".™

(1 _ 9
". m

) L
"' m

c
t

+ " * ' [

A

n ' m (l-6° '">} 2
,

6
2

+k
2 3

0,m
, (14)

1 , 2 ; . . . , N ;
1,2,. . .

,M

where

n ,ra
a state variable representing the number of vehicles on

link j Immediately beyond node (n,m), j « 1,2 in which

j = 1 denotes the horizontal link and j « 2 denotes the

vertical link,

horizontal link from node (n,l) including the hori-'or.tal

link immediately beyond node (n,m), dollars /hour

,
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n ,-m
x
4

V

n ,m

Si

'J2

n ,m
k
j3

a state variable representing the total investment on

vertical links from node (1 ,m) including the vertical

link immediately beyond node (n,m), dollars /hour ,

a state variable representing the total travel time cost

on horizontal links from node (n,l) including, the hori-

zontal link immediately beyond node (n,m),

a state variable representing the total travel time cost

on vertical links from node (l,m) including the vertical

link immediately beyond node (n,m),

the number of vehicles entering or leaving the network

at node (n,m),

: the decision variable that renresents investments on

link j immediately beyond node (n,m), J - 1,2 in which

j . 1 denotes the horizontal link and j = 2 denotes the

vertical link, in dollars/mile/hour,

. the decision variable that represents the fraction of

vehicles which enter the node and leave on the horizon-

tal link, at node (n,m),

= free flow time constant on link j immediately beyond

node (n,m), .i
= 1,2, in which .1

= 1 denotes the hori-

zontal link and .1
= 2 denotes the vertical link,

= coefficient of investment on link j immediately beyond

node (n,m), j = l,2 , in which j-=l denotes the horizontal

link and j = 2 denotes the vertical link,

= existing investment on link j immediately bevond node

(n,ra). j = l,2, in which .1-1 denotes the horizontal link

ar.d j = 2 denotes the vertical link,
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L.'
m

= length of the. link j Immediately beyond node (n ,m) ,

j=l,2, in which j=l denotes the horizontal link and

j=2 denotes the vertical link,

c time cost, dollar/hour/veh

.

The objective function S which is to be minimized repre-

sents the total accumulated travel time cost and the total ac-

cumulated investment cost all over the transportation system.

S " I
n,M

n-1

M
V n

i

m=l

N „ M

I *
5 + L

n=l m=l

N,m
[

6
(15)

where the first two terms reoresent the accumulated travel time

cost incurred on horizontal and vertical links of the transpor-

tation system respectively, and the last two terms represent the

accumulated investment cost incurred on the horizontal and verti-

cal links respectively on the transportation system.

The Hamiltonian function and the adjoint variables at the

node (n,m) can be written as follows:

n,m n ,m n ,mr n , m n ,

1=1
1 1

(16)

Substituting equations (7) through (14) into equation (16), we

have
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H
n,m . z

n.™^.™
A
n.%

z
«."

(1_e^ m
)A

n ' n,

+z^ m (x^ m - 1
+0^

ra

i.^
m

)

+ z
n, m(xn-l,r11+e

n,m
I

n >m)
+ z

n, m[xn )
„-l

+k
n, me n )mAn, mL n >mCt

12 1 t ,„n ,m.n ,m. 2 , , n,n r
n-1 ,m . . n ,m ... n,m. n,m n,m

+ —is ± 1 ( 8 > A ' ) ] + z ' x, +k,; (1-e,' )A L, c

n,m ,n,m 3 6b 11 1 1
fl" > '4.1-
6
1

+k
13

+ .12.^1 E {(1 _o".
m

) A
n

'
m

}

2
] ,n,m n,m 3

e
2

+ic
23

(17)

3x
n ,iu-l

z, e„ + z * (i-e, ) + z c k, , e, l,
'I

u
3 '5 "11 3 1 t

n,m.n,n /n n,m.n,n
Z
6 21 ^

1 " 8
3 ^

L
2

c

, n ,m n , m
,

. n,m 12 1 t .n ,m . n ,m. 2

6
1

+k
13

. n ,m n ,ra

,
. n.m '22 2 t .n.m,, n,m.2

+ 2z, A IX — a* ;
6 _n , m . n ,m 3

6
2

+k
23

(18)

n - 1 , r.> 3H '

, n~l ,m



n,m n,rii . n,m. n,tn. n ,«i.n ,m
9
n ,m n ,m

z
l

6
3 2

(
3 5 11 3 1 t

n ,m. n ,m M n ,m. n ,m
+ z

6
' k

21
(i-e

3
)L

2
c
t
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+ 2z
n,m k

12
L
l "t,

A
"."

( e
n ' m

)
2

,n ,m. , n ,m
3
1

+k
13

n ,m n ,m

'6
n
n,m+k

n '
nl

G
2 23

(19)

i -

u

n m
n,m-l _«H

3x
n ,m-l

n ,m
= 3

(20)

n-l,m . _JLP.
n ,m

3x
n-1 ,m

n ,tt,

*4
(21)

n,m-l _ _<U1

?:,
n ,m-l

(22)



n-l,m = aH"'
1"

3x
n - 1 , m
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n ,m= z
6

(23)

l " ° n - 1,2,. ...N, (24)

N.ui
, a - 1,2 M, (25)

n,M
1 , n - 1,2, . .

.
,N, (26)

N.Bl
*4

= y a 1 , 2 , . . . , M

,

(27)

n,M
1 , n - 1,2 N, (28)

and

N,m
1 , m-l,2,...,M. (29)

From equations (20) through (23) and (26) through (29), we obtain

n,m n,m n,m n,m
*3

= z
4

= Z
5

= Z
6

n * 1,2,. . . ,N,

m - 1 , 2 , . . . , M

.

(30)

The Haulltonian function then becomes:

H
n, m m ,n,m

x
n,M

+ z
".™

x
n.™

+ x
n,m + x

n,m
+ x

n,ra
+ x

n,m
_ (31)



The necessary conditions

are :

an
n , m n , m

>

96^
ra

3H

36

3H

n ,m

n , m
2

n ,m

= >

-

3e^ ra

. „ n , m
when {.9. ,

< < 1

3
2

,

j"'"1

) is an interior point of an admissible

118

fun c tion S,

(32a)

(32b)

(32c)

admissible

control, or H
n ' m « minimum with respect to those 9

'
m which are

at a boundary point of the constraints.

Substituting equations (7) to (14) into enuation (31) and

taking derivatives with respect to the various decision varia-

bles, the following equations are obtained:

. n , m T
n ,m

123H _ . n , m

36
n,m "

1 c„ n >
m

.l.i,
n

>
m

i
2

1 t , . n ,m Q n ,m.

2

~—r~i

—

t i* "-> ' •

(e~»"+kJJT
(33)

, n ,m n ,m
*22 L

2
C
t31l"'

m
_ jti.n. _

30
n,m - '2

(Blu ra+kn, m) 2
tA
n » m (l-8^ ,ffl

)]
2 (34)

- n n , m
3 H , n , m

(z '

36
3

'

n,m..n,m
,

,,n,m,n,m n,m n,m. n,m
5 - ) A +(k,,L,

11 1
k
21

L
2

")A

n,m ,n,ro 3
3
1

+k
13
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, n ,tn
T
n ,m

k
22 2 ,n,m.

-
r- (A

n 'V(i-e?"")

2
fc

2 3

(35)

The second oartial derivative of the Hamiltonian with re-

socct to the decision variable, fl , '
, which is used at the com-

putational procedure is,

„ ,n,m n,m ,n,m n,m
a
2
H
n '"

_
2
112

L
l

C
t ^",^2 ^ .,

*22 L
2<

C
t ^",^2

3(03'
m

)

2 " e5'
n
+k£»

n
(36)

'2 +k
2 3

Setting equations (33) and (34) equal to zero and applying

the boundary conditions of the decision variables, the values of

eV'"
1

and e!l'
m

can be obtained from the following equations:

'i'

ra =y*¥% *••$•- !& when • > , (37)

n ,m whe n ^/k°
2 "t

a e
3

- k
13

(38)

n ,m _ /, n , m
2

= V 22
c
t

0' ' A« ,«(!_„».») . k
n.» „n ,m „

jhen 8,' > (39)

. /, n,ra n.ro,, „n,m. , n

,

when w k,, c
t

" (l-6j ) - t-

2
- < (40)

'1 — " 2

and (39) can be substituted into equation (35) to obtain the fol-

lowing equation
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3H

36

n ,m
- (as,n,m 1

3

n.m n.m. ,n,m , n,m n,m ,n,tn n,m. .»."n , m

21 "2 '
a C

t

+ 2 k-"c
t
L- A '22 t 2

.n.m,, n.m n,m. „n,m n,m ,n,mn,m.
= A ' ((Zj/ -z

2 >
+(k

ll
L
l

" k 21 2
)c

t

+ 2( k
12

c
t

L
1 22 t 2

; (41)

3
3

3H
n ' m

is eliminated by the substitution and the value of •
—

—

becomes independent of 0,' as shown in equation (41). This

implies that the value of H ' is linearly related to 6
3

' and

the extreme of H
n ' ra with resnect to 8,' occurs at a boundary.

e ..n . m
In this case, to obtain the minimum value of H •

,

n ,in

3
if

-„n ,m
11 >
^ «n ,m
36,'

if
311

<

= any value between and 1 if SJ&l , o

3

n,m ,n ,m
'2

equal to zero, equation (41) is no longer valid. Equation (35)

is then set equal to zero and solved for the optimal value of
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In an urban area, the available, space for road construction

is often limited. For example, a freeway with more than eight

lanes would be very difficult to build near a CBD (central busi-

ness district) area. It is, therefore, necessary to set an

upper limit on the sir.c of the links. This limit can be expressed

as a limit on the investment on each link.

Also in developing an urban transportation network, it is

sometimes required to provide a minimum level of service for the

entire area. For example, arterial streets would be distributed

uniformly throughout the whole area. This criterion can be ful-

filled by requiring a minimum amount of investment on each link.

These upper a-nd lower limits can be expressed mathematically as

follows

:

, fl

n,m
< v

n,m n,m / e
"' m

(
6
1 Jmin - ''13 °1 -U /max

n.m, ,n,m . „u,m / n,m.

(

6
2 jmin i k

23
+ 9

2 ± V 2 /»ax

(42)

(43)

where

„n >
ra

i . the upper limit on the investment on link j immediately

beyond node (n,m) j=l,2, in which j-1 denotes the hori-

zontal link and j-2 denotes the vertical link,

/ e
n '

m
l - the lower limit or. the investment on link immediately

{ i Jmin

beyond node (n,m) 1-1,2, in which j-1 denotes the hori-

zontal link and J-2 denotes the vertical link.
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COMPUTATIONAL PROCEDURE

The above formulation provides the equations (1) through

(36) to find the optimal sequence of decision variables 9 '
,

e^'
m

, and e^'
1
". The particular procedure used to accomplish

this is as follows:

.. »ti n^» mStep 1. Assume a set of decision variables, 9_

Step 2. Calculate x '
, x, and A by equations (7) and

(8), starting at r.=re=l and proceeding to n=N and ra=M.

Step 3. Calculate decision variables, 6 ' and 9.'
, by equa-

tions (37) and (39) and check the boundary conditions

for each special case.

Step 4. Calculate the values of x.' , i = 3, A, 5, 6, by equa-

tions (9) through (14) starting at n=m=l and proceeding

to "n-N and m=M.

Step 5. Calculate the adjoint vectors, z.' , i = 1, 2, with the

above x"'
1" values, by equations (18) and (19), starting

at n"N, m=M and proceeding backward to n=m=l.

3H
n,nl

3
2
H
n ' ro

Step 6. Calculate and =- by equations (35) and (36)

39^'
m

3(9^'
m

)

2

using the values of .
n >m

Step 7. Compute a new sequence of decision variables 9 ' from

the following equation.

(0 '
) . ,

= (6 '
) . , + A9- '

3 revised 3 old 3
(44)

where
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38.
(49a)

and check the boundary condition.

Step 8. Return to step 2 and repeat the procedure until the value

of the objective function, equation (9), is sufficiently

close to the previous value to indicate adequate conver-

gence .

5-2. INVESTMENT WITH FIXED SYSTEM BUDGET

Sometimes the total budget for a transportation system im-

provement is predetermined and fixed. Obviously, the total in-

vestment in this case, must be equal to the fixed system budget.

This, then becomes a fixed end point problem.

FORMULATION OF THE PROBLEM

The performance equations for a typical interior node as

shown in Fig. 4 of section 3 can be written as follows:

n ,m
3
3

(x
l

n-1 ,m , n ,m.
+ x, + v )

e
n,m

(A
n,m

) (45)

n.m ,, „n,m x , n,m-l . n-l,m . n,nu
x
2

=
( 3 *

(x
l 2 + v ' )

,, .n,n, .n,m0-e
3

'
) a = o (46)
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n.m n ,m-l
,

, n ,m T n ,m .n,m n,m 12 1 t , n,m n,m.2
x
5

' - x
5

4ku L
x

c
t
A 6

3
+— (A 83 )

e°
,ra

-f- +k"'
m

T
n ,m 1

J

1

n,0
= (47)

n,m _ n-l,m n,m n,tn ^n.m, _ n,«.
"6 X

6 21
L
2

C
t

U
3

;

*22 L
2

C

n,m

, n ,m 2 3

-
l

[A
n

'
m
(i - e"-

m
)]

2 O.m
(48)

n,m n,«-l n,m n,m
"7 X

7 1 2

n.M

n-1
(49)

where

x"'
m

= a state variable representing the total investment

on buth links from node (n, 1) including both links

Immediately beyond node (n ,m)

,

G total svstera budget.

Here, e"'
m

and fl"'
1" are total investments on the horizontal

and vertical links resnectively at node (n,m), in dollars/hr.

Since total investment is a fixed amount, the objective

function becomes:

N ». M XI
r n , H , r N , m

S =
I x ,.

' + ) (50)

n-1 m-1
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The Hamiltonian function and the adjoint variables can be

written as follows:

„n,m n.ra n.m , n,n n,i , n,ir. n,m n ,m n ,m n ,ra n ,m
H - *

1
' Xj,' + Z

2
' x

2
+ z

5
x
5

+ z
6

x
6

+ z
?

x
?

n , m „ n , m , n , m , n . n , _
fl
n,rD. ,n.int' e,' A ' + z ' (1-0 ' )A

n.ra, n,m-l . . n,m n,in
+ z

5
- [x

5
+ k

lx
L, c

t

. n , m . n , m
12 1 t .„n,m,n,ni.2.
n.ra 3

-i— +k":m
n , m 1 j

L
l

+ Z
6

[X
6

+ k
21

L
2

c
t
(1_0

3
)A

, n ,m n ,ra

+ 22 2 Cfc
{(i-e"-

m
) A

n
-
m

)

2
]

e
n,m 3

-2— + k"'
m

T n .m 23

n,m. n,m-l .n,m .n,»,
+ z

?
' [x

?
' + 8

i
+ 6

2 '
(51)

3x
n ,m-l

V 6
3

+ Z
2

(1 "°3 )

n,m,,n,ni„n,ni I n,m »

+ z
5

(k
ll

6
3

L
l

C
t'



126

+ z
6

« [k
21

(l-0
3

> )L
2

c

, n , m r, ,m

+ 2 ?
"' ra ^ 2 1

« (o"'
m

)

2
A
n

' n

5 n , m 3

1 + k
n .™

T
n ,m 13

L
l

k ' L„ c.

+ 2z
n.m 22 2

2 , , n ,m
n ,m 23

-* (i-e">VAn , Tiu 2 . n , ra
(52)

n - 1 , m _ 9H
n-1 ,m

z
i

(53)

n.m-1 311
n ,m

3-.:
n ,m-l

J
5

(54)

3x
n-1 ,m

(55)
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3x
n , m-1

S
7

(56)

n ,M
= 1

n = 1 , 2 , . . . , N
,

(57)

m - 1 , 2 , .
(58)

n,M
n - 1, 2,..., N, (59)

N,m
a = 1 , 2 , . . . , M

.

(60)

From equations (54), (55), (57) and (60), we obtain

n - 1 , 2 N
,

m - 1 , 2

,

(61)

It has already been stated that Y x ' is fixed, which is
n=l

the total system budget, so ?..' , n 1, 2,..., n, remains un-

known. However the following approach will enable us to find

n , m . , .,

z_ , at any node (n,m).

At node (N,M)

,

M M N M
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This Rives

n=l

v n

n = l

n,M-l
(62)

Substituting the values of the adjoint variables obtained

from equations (52) to (6(1) into equation (51) and then taking

the derivative of the Hamiltonian function at node (N,M-1),

N M-l
partially with respect to ' , we have

3H
N,M-1

,N",M-1

, N.M-1
k
12

C
t

.N.M-1
(A
«.H-1,J

(11 + k
K.«-l) 2

^N.M-l + k
13 '

+ E
*-"- 1

- (63)

We can write down the value of x_ ' from equation (49)

* 7 1 2
n=l

But 6 '' = 0, as no vertical link exists at node (N, M-'l) .

This gives

c -
I x^* ;

- 2 e^1
" 1

n= 1

" N,M-1 n ,M-2
(645



Substituting equation (64) into equation (63) gives

12 9

N.M-1 (aN.M-1.2
N.M-1

K
12

C
t

lA '

»
7

-
N
—

-

r n,M-2

C .N.M-1
+ k

13 '

(64)

or from equation (56)

,N,M-1 ,. N.M-1.

2

,».« «
k
12

c
t

(A J_
G- [

**'

1 .N.M-1 13 '

L
l

,n,M-2
(65)

n = l,2,...,N; m 1 , 2 , . . . , M

.

The necessarv conditions for S to be a local minimum is that:

22.

3V
-

„ _n,m „ n.m
o < e

,
' < c - x

?

' (66a)

36^'
m

0<0
2

' < G - x
?

* ,-.- (66b)

- o o < e^'
m

< l (66c)

# » n , m „ n , m „ n , nt . . .. . ..
when (8- , 0, , 6, ) is an interior point, or

(66d)
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when (e '
, 6 '

, '3

Substituting equations (45) to (49) and equation (61) into

equation (51) and taking derivatives with respect to various

decision variables, the following equations are obtained:

. n ,ra , ,n ,m n ,m. 2

»H°»
m

_
k
12 j^

fl

3
) C

t + Z
N,M-1

n ,m 13
L
l

(67)

3II_

. n ,m ,n ,m, n ,m. 2
k
22

A (1_6
3

) °t , N.M-1
. + E?

„n ,m

n ,m 23
L
2

.,<

(68)

„. ,,n , ni
3H ,11.111

30.'

n,m..n,ra , . n,m n,m ,n,m n,nu ,n,i
t
2

' )A + (k
x

' L
x

-k
2]_

L
2

)c
t
A

, n , m , . n , m . 2 n , m n , n
k ' (A ) 8, L c

+ 2 -—

, 11 , m
+ k

n,m
+ k

13

- 2

, n ,m ,,n ,m. 2 . n ,m. 11,

m

k
22

(A ) (1 " 6
3___

)L
2

C
t

B
n,m

-1- + k?i™
n ,m 2. 5

L
2

(69)

The second oartial derivative of the Harail tonian with re-

spect to the decision variable, e"
,m

, which is used at the com-

putational procedure, is
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,n,m / .n,m.2 T n > m ,n,m. A n,m.2 T n,m,2„n,ra k ' (A ) I.
' c k ' (A ) L c

U! = 2 — + 2 — S-
. (70)

n, m 2
8
n,m

6
n,m

J -i— + i-":
m -2— + k"'

m

T
n ,m 13

T
n ,m 11

L
l

L
2

Setting equations (67) and (68) equal to zero, we obtain

, n ,m

_n , m 12 t . n , m „ n , m n , m n , m n , m m \
6
1 ° -N7M~T A 6

3
L
l " k

13
L
l •

(71)

COMPUTATIONAL PROCEDURE

By using equations (45) through (72) the optimal sequence

of the decision variables '
, 9,' and tl

' can be found. The

following procedure is used to accomplish this.

- ^ ..-I /«n,m „n,m _n,m.
Step 1. Assume a set of decision variables (B-, , 8_ , 8- ).

Step 2. Calculate values of x.' , i « 1, 2, 5, 6, 7 and A '

starting at n=m=l and proceeding to n=N, m=M.

N M-l
Step 3. a.) For the first iteration, calculate z_ by

/,-.v ., , . n,m ,,n,m ,equation (64) with the above x and A values

and go to s tep 4

.

b.) For the second and the following iterations, cal-

culate z' by equation (64) with the above x '

and A
11 '™ values. This z * value is then com-

pared with the value obtained in the previous

iteration. If the two values are sufficiently

close, proceed to sten 6. If they are not suf-

ficiently close, proceed to step 4.
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Step 4. Calculate new values of 9.' and 8,' using equations

(71) and (72) and check the boundary conditions.

Step 5. Return to step 2.

Step 6. Calculate z"
,m

and z"'
m starting at n=N , m-U and

proceeding backward to n = m=l by the use of equations (52)

through (61)

.

,,.n,m 2 n,m
Step 7. Calculate — and 5- by equations (69) and (70),

S6
n,m

3(e^
m

)

2

using the values of x.' and z.' obtained above.

Step 8. Compute a new sequence of decision variables 6j' from

the following equation:

(73)
3 revised o old o

(o"'
n

)

where

3D
n ,m

A6.
3
2
K
n

'
m

3(e^'
m

)

2

(73a)

and check the boundary conditions.

Step 9. Return to step 2 and repeat the procedure until the

value of the objective function is sufficiently close

to the previous value to indicate adequate convergence.

In the case where a minimum level of service is to be pro-

vided, the minimum investment can be treated as the existing

facilities. The problem can then be solved by the general method

without changing the algorithm. In other words, when the values
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of k"'
m

are less than the minimum required investment, set them

equal to the minimum investment and deduct the difference from

the total budget.

The above formulation provides solutions to a single-

quadrant network, single-copy problem. To solve a multi-

quadrant network, multi-copy problem, the procedures developed

by Snell, et. al . [8,17] can be employed.

NUMERICAL EXAMPLES

Three numerical examples are presented in this section to

demonstrate the .use of the model. Examples 1 and 2 illustrate

the first case of this section under different investment con-

ditions and example 3 illustrates the second case.

A hypothetical network is developed as shown in Fig. 4

.

Node (4, 4) is assumed to be the centroid of the CRD. The input

volumes, v"'™, are also shown in the figure. All links have an

equal length of one mile. The area is divided into two parts by

a diagonal line which passes through nodes (1,4) and (4,1),

The lower part which is adjacent to the CBO was assumed to be

densely developed. The upper part was assumed to be less densely

developed. Assuming the maximum speed in the densely developed

area to be 60 mph and in the less densely developed area 70 mph

,

minimum travel times in these two areas become 0.0167 hour oer

mile and 0.0143 hour per mile respectively. Single line links

represent existing local streets and double line links represent

existing arterial streets.
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V
1,1=2,000 V

1,2=3.000 V
1,4=1,000

v
2,1,

= 3,000

V^-l.OOO

(1,1)

(2,1)

V3,2=1,000

(3,1)

(4,1)

(1,2)

v
2,3=i,ooo

X

(1,3)

(2,2)

V3,3"1,000

(3,2)

(2,3)

(3,3)

(4,2) (4,3)

(1,4)

(2,4)

(3,4)

,(4,4)

13,000

Fig. t>. Hypothetical Network and Input Volumes v

for Numerical Examples 1, 2 and 3.

n ,m
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Input data for the models are summarized in Table 1. Val-

ues of k . and k are also indicated in Fig. 5 and rip.. 6 re-

spectively. The time cost, c , is assumed to be $1.55 per hour

per vehicle as suggested bv AASHO [15].

Example 1

Suppose we are planning for a completely undeveloped area

where no facilities exist and there is no budget limitation on

link investment. A theoretical optimal system can then be de-

veloped to accommodate the predicted trip demand. Using the

formulation of "investment with no budget constraint" and letting

k"'
m

= 0, for all (n,m), the resulting system is shown in Fig. 7.

Notice that the system forms a shortest path tree in which only

one route is built for each origin-destination pair and all trips

are assigned to this route. This result coincides with the anal-

ysis discussed in page 120 which shows the linear characteristic

of the Droblem under no limit condition.

Example 2

The hypothetical network shown in Fig. 4 is to be improved

with the following conditions:

1. No system budget limit.

2. A minimum level of service (arterial street) is to be

provided for the entire area.

3. Roadway space obtainable is restricted.
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1

Xodes links ..n,m
1 v"j il!

v.n.m
(n.r,; jU) |

ft il |"i~' K
i3

~n,n; Ln,;;,
o • • v

r','"

1 i
j
o . on, 3 jo. 00003

|
t: . o ' 80 10

2,0001.1
|

2 JO. 0143 i
0.00004

j 3.0 80 10

1 i . Oli 3 In. 00006 ! 8.0 80 ~l()
•

1,2 2 |0.0143 j
0.00005

1
10.0 80 10

3 ,000

1,3
1 1 . 014 3 JO. 00003 1 8.0 80 15

2 JO.0143 1 0.00006 1 8.0 SO 10 1

u

1,4
1 1 0.0167 | i.ooo ! 0.00001 100 15

1,000
2 io.0167 lo. 00010 1 15.0 100 15

2,1
i 0.0143 lo. 00005 1 10.0 80 10

2 |o.0143 |o. 00005 1 8.0
1

i.oou
80 1 10

2,2
1 0.0143 10.00006 ! 10.0 80 TO

2 0.0143 0.00005 10.0 80 10

2,3
1 0.0167 1 0.00010 15.0 100 15

1,000
2 0.0167 1 0.00008 12.0 100 15

2,4
1 0.0167 | 1,000 . 00001 100 15

2 0.0167 !o. 00015 15.0 100 15

3,1
1 o.oui In. 00006 i s.o 80 1 10

0.0143 0.00006 1 0.0 80 1 10

3,2
1 0.0167 0.00008 1 12.0 100 15

1 , 000
2 0.0167 |o. 00010 |

15.0 100 15

3,3
1 0.0167 1 0.0001

5

12.0 100 15
1,000

2 0.0167 lo. 00015 1 12.0 100 15

3,4
1 0.0167 1.000 . 00001 1 100 15

9 0.01.67 1 0.00025 I 15.0 100 15

4,1
i 0.0167 | 0.00008 1 15-0 100 15

1,000
2 0.0167 ! 1.000 I

0.00001 100 15

4,2
1 b.0167 |o.OOC15 1 15.0 100 15

2 b.0167 1 1.000 0.00001 100 15

4,3
1 I0.OI67 |o.00020 1 15.0 100 15

2 I0.OI67 ll.OO 1 0.00001 100 1 15

4,4
1 10. 0X67 i 0.00001 1 0.00001 100 1 15

2 3.0167 0.00001 0.00001 100 1 15

i - 1 for
i » 2 for

horizontal links
vertical links

&
c.

$300.00
$1.55/hour

Tftole 1 Input Data of Numerical Examples 1, 2 and 3.
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0.00003 0.00006 0.00008

•

l/\ o o
o o o H
o o o O
o o o o
o o o o
d

0.00005

o
0.00006

d
0.00010

d

w\ u-\ TO i.-\

o o iH

O o o O
,o o o O
o o o o
d

0.00006
d

O.OOOOS
d

0.00015
d

o o m IT\

o H r-i cv
o c o o
o o o o
o o o o
o

O.OCOOS
1

o
0.00015

d
0.00020

d

rig. 5. k Values for Numerical Examples 1, 2 and 3.
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o
H

10

to

10

rH

15

o
H

8

r-i

12 12

rH

15

r-i

' 15

H

15

Fig. 6. k • > Values for Numerical Examples 1, 2 and 3.
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2,000

(13-63)'

3,000 „
(26.4lf

to

9,000
"(100. 10 r

Q
O •

O M
-Ih

.,000

(11.13;

1,000 12.000

(15.29) (211.20;

Total Investment = $ 7IS.63
Travel. Time Cost = $2,101.23
Total Cost = $2,319.86

2.000 : Traffic volume
( 13 . 6J)Tlnvestment

Fig. 7. Optimal Investment and Traffic Assignment
Results of Example 1
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The investment limits, (o.)min, i«l,2, and (O.)max, i-1,2,

associated with conditions 2 and 3 are listed in Table 1. The

formulation of this problem has been developed in the previous

section under the category, "investment with no budget constraint".

The results are obtained on an IBM 1620 computer and they

are presented in Fig. 8. Note that with the minimum level of

service provided for the entire area, trips are assigned rather

uniformly to take advantage of all facilities. Considering

existing facilities as part of the cost, total cost becomes

$2,875.99 (2,603.99 + 272.00). Comparing this cost vith the

total cost in examole 1 ($2,819.86), the difference is only about

two percent. This indicates that providing a minimum level of

service might be desirable in an urban area.

Examole 3

The hypothetical network as shown in Fig. 6 is to be im-

proved with a total system budget of $300 (G = 300, equivalent

peak hour budget). The resulting traffic assignment and link

investments are shown in rig. 9. Comparing the costs with those

obtained in example 2, it is evident that although investment

cost decreases more than 30 percent, total cost increases only

1 . A percent. This again points out the advantage of area-wise

transportation system development.

The number of iterations and approximate computing time

used for each examole are summarized in Table 2.



HI

i.m

to

o

(2700)

2,099—T87U2

1,410
757087

c
to

86/.,.

(2.00)

965 B

4,641
(37.&U

1 , 894 2,98/-

(5.46) (29.24)

(2.00)

1,061
(0.00)

3 , 193

(36.00)

7,205

UN
r-i

(85.00)
J

Total Investment; = 3 445.04
Travel Time Cost - 52,158.95
Total Cost - $2,603.99

1,143 : Traffic volume
72 . 00 ) • Investment

8. Optimal Investment and Traffic Assignment
Results of Example 2
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(108.90)'

Total Investment = $ 300.00
Travel Time Cost; = 32,339.33
Total

1 . 1U
Cost = $2; 639. 38 roToST

trail ic volume
investment

Fig. 9. Optimal Investment and Traffic Assignment
Results of Example 3.
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\

Table 2. Number of Iterations, Approximate Computing Time Used

and Total Costs for Numerical Examples.

Example No. Starting Number of Time Used Total Cost

Point Itarations (rain.) ($)

0^'
m

= 0.7 15 21! 2,819.86

0.7 1 S 25 2,603.99

B
n,m

15

A n ,nt cV = 5 18 120 2 ,639. 38

0.3
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DISCUSSION

Thir, section doss not consider the taxing policy by in-

cluding toll to divert the traffic.

If the travellers are told that a particular route will

take minimum amount of travel time, they will all rush to that

route and thus will cause a congestion on that route. In order

to avoid this an optimum amount of toll cr.r. be fixed on that route,

so that both the congestion situation and the free flow situation

can be avoided.
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APPENDIX I COMPUTES PROGRAM FOR
TRAFFIC ASSIGNMENT PROBLEMS

The computer flow chart which illustrates the computational

procedure is presented in Fir. 1; the FORTRAN p-rogr&m symbols,

their explanations and corresponding mathematical notations are

summarized in Table 1. The computer program for IBM 360/50

follows the symbol table.



'Kcnd N(I) ,M(t) ,v"'"(I) , Set O
n,m (I)"0.5

I»l 2,3/.

n»l 2 N,

m-1 2.....M

Fig, 1. Computer Flow Diagram
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Taljle 1. Pro-gram Symbols and Explanation

Program Mathematical
Symbols Explanation Symbols

ACAP(I) volume Capacity of link 1 C '

AHI1 first part of Hamiltonian re-
quired for numerical derivative

AHI2 second part of Hamiltonian re-
quired for numerical derivative

. n ,m
AHV vh

v ,.^. < ^. i n,m-l, n-l,m,n,m
AI(:t,J) total inflow volume at node x. + x, +v

(I, J)

AK(I) k '

3(1, J)

jl

AKK decimal fraction of the calcu-
lated change in the decision
variable

AKO(T)

AKI(I) k

ANON conversion factor for k I

ATEMPT new value of the decision
variable

AW

C0P1.COP2 the order of cony loading

JO
n ,m

j2

n ,m

DDH second derivative of Hamiltonian ,2 n,m
with respect to the decision

. ,
'

_ / „n , m,vanaole 3 19;
DELTA the maximum percentage difference

in total time between successive
iterations which will stop the
iterative process



Table 1. Program Symbols and Explanation
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DELTB

DELTAD

absolute value of percentage
change in total time between
successive iterations

3H' 3
?
n"'

ra

3(0
n,m

)

2

DH

ITER

KEY(I)

KEYSO

LIN

LMM(I)

LNN(I)

NN

TEMPT

TIM

TIME (I)

TIMM(I)

first derivative of Hamil tonian _„n,m
with respect to the decision ——

—

variable

iteration number

36

denotes that if KEY(I) = 1,

quadrant I is present and if
KEY(I) = 0, quadrant I is absent

denotes that if KEYSO = 0, print
copy volumes and if KEYSO = 1,

print total volumes

denotes that if 1 IN = 1, time
function is linear and if LIN -

0. time function is non-linear

M dimension of quadrant I M

N dimension of quadrant I N

a multiple of 10 that causes
print out of copy volumes

the total time for the nrevious
iteration used to determine
whether or not to cease the
iterative process

the total time for the quadrant
for all vehicles upto this copy
on the links in the anproDriate
dire c t ion

time on quadrant I excluding
appropriate boundary links

time on quadrant I (excluding
appropriate boundary links) from
previous copies in the same direc-
tion on the ssn: links.



Table 1. Program Symbols and Explanation (continued)

TIMP the time for the quadrant for the
vehicles from previous copies in
the same direction and on the same
links

ILH TPREVT - TTTP

TMII

TMV

TOTT total time including present ccpy

TPREVT total time for previous conies

TTT total time on the present itera-
tion

TTTP TTMM(l) + TIMM(2) + TIMM(3)
+ TIHM(4)

TTTT the total time for the previous
iteration used to decide whether
or not the total time is oscil-
lating

V(I,J)

VH ( I , J

)

VHS(I,J) vehicles horizontal at the
boundaries between quadrants

VV(I,J) *
2

VVS(I,.J) vehicles vertical at the
boundaries between quadrants

IS 2

L n u e d )

n ,m
x
3

n , m
x
4

n .m
V

n ,mV

ZH(I,J) z
:

ZV(I,J) z!}

n -in

n ,m
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TRAP ASSIGN. — l=Kll!VtK*V*v?*kHVt(l I Nim. DER1V. ''UL T I -COPY
frontage roads on iiounoary
u() ao classified, no turn pinal.ty
prugram for 360 computer

U! MENS I ON vH:-,l'i,"l,vv r.('i,'i),i;i:Y('i),.;M(i),'i,v),zv(','i, ,i),ni f), l i,'i),

1 /u;Cl( '1 ) . AK ( ' ) t AKl 1 >)) . ACAl'( 'I ) . VH( 'I. I, ) | , V7( l.'li'l I . VO/I. I). iLN.il'J) •

? L'*('i|.l.CM(M,'],<l)iL(:V( ,l.'ii'(l,A»VI<i.V> 1()iAhlW{'J.«iV)iAI('l,'),'!),

3 T I Kg (91,11 MM ( 'l ) , Al 1 1 I CO , AM I 2 ( 9)

1 FORMAT (All)
1 1 FOKHAT ( IX, 12,313.)
12 F0RMAT(5E20.H,2Ib)

<J37 ^ O.'MAT ( 1111 )

Q63 FO«MAT (2 18.6616.6)
310 FOUMAT (A'l . A4 , AA )

311 F0«MAT(30H DATE ,A4,A4,A4)
312 F QRttA T ( 16 SX , F I 2. 4. . 2E 1 2 , A , P 1 2 .2 )

313 FGKMATIMH RO. CLASS KO K Kl CAPAC I

T

1Y )

5 FORMAT (6F12.2)
1111 F0RMAT(46H V LCH LCV AMV AW )

2 FORMAT ( IX, F7.0, 215, F 12.4, 2X,F12«4,2X,2F12.4)
650 F0WMAT(94H RCIW COL VERT. VEH. HOR, VEH.

1DEC. VAX. ZV L\\ ,6X,A4,A4,A4,A4,A4,A4)

<

READ! 1 , 310)DATE1 .DATE?
30 «EAO( i . 310 ) II 1L 1 . T I TL2. T ITL3 —

READ (1.310) COP1.C0P2
READi 1.1) (KEY ( I ) . 1= 1 , 4

)

Rc»()( 1 .SJDELTA. AKK , ANON
READ< 1.11) (LNfl( I ) . 1=1 . 4)

RFA0( 1,11) (LMM1 1 ) . 1= 1 . 1 )

READI 1 . 1 )L IN

READ( 1.12) TPUEVT
l»RITE{3«937)
»RITE(3.31 t )OATEl .DATE2
HRITEO.310) C0P1.C0P2
WRITEC3, 1 I ) (KEY( I ). 1=1 ,4)

WRI TE( 3. 1 1 1 (LNN< I ) • 1=1 ,4)
WRITE (3,1 1 ) (LMM< I ). 1=1 .4)

KRITEO, 12JDELTA.AKK
. l»RITe<3, 313) — :

DO 6 1=1.5
READC 1 ..SJAKQi I ) .AK( I ) ACAP( I )

AKK I )=ANON/( ACAP( I )**10) -

6 VRITE<3.3 12JI.AKC(I),AK(I),AK1(I).ACAP(I)
V.RI TE ( 3. 937 )

ZERO CORE STORAGE
DDm=0.0
I TER=0
KEYS0=0
NN=5
TTTT=C.O

- - TEMPT =0.0
DO 67b I-i ,4
TIME* 1 1=0.0

TICM( 11-0.0
DO 675 J= 1 .6

VHS( I . J ) =6 .0
675 VVS([.J)=0.0 -

—
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777
770

30 3

304

610
61' 5

S7
SO
6 1

6 3

626
604

650
651

6 15

377

- t>9

6oa

600

603
666

150

All

AH
KI-'

DO
IF

LK
LC
WR
DO
DO
HE
D(

WR
CO
CO
• K
IT
TT
IF
KE
DO
LN
LM
IF

\»'K

DO
DO
JP
JM
IP
IM
ir
IF
IF
IF

IF
IF
AI

GC
IF

XX
GO
IF

VV
VH
AI
GO
AI
GO
AI
GO
AI
GO
XX
AI

GO
XX

50 I-

1(1) =

P. I I ) =

re i
:•.

778 K

KEVIK
LNN' I K

LMH(K
T F. ( 3 .

7 77 J

777 I

D ( 1 , t'

.I.J)
Tt (3

T INUE
TINUE
TIE ( 3

.

K = 1 TE
= 0.
ITER-
S0=2
1 4 K=
LNN(K
LMM(K
KEY(K
T£< 3.

4 1=1
'i J=l
J+ 1

J-l
I + 1

1-1
1-1)1
J-l ) 1

J-l ) 1

I-LN)
J-L M)

J-LM)
K.I.J
TC 60
I-LN)
VH( K .

TO 6

I-LN)
K.I.J
K.I.J
K.I.J
TO 4

K.I.J
TO 60
K.I.J
TO 60
K.I.J
TO 6

0.0
K.I.J
TO 60
VVIK,

1 . 1

0.0
0.

Mil)
= 1,4
) ) 19. 770 . 779

)

1 1 IK.Lii.LC
= 1 .LC
= 1 . L l<

)V(K, I J) .LCHCKi ! .J) .LCVIK.I ,J) , AMV< K , I

= . 5

2) V(K , I , J) ,LCH(K , I . J ) .LCV( K, I . J)

,

AHVCK,

. J) .A

I.J).

VVIK, I

,

A V V ( K . I

I)

.J)

93 7)

R+ 1

90 ) 304, 303. 19

I .4

>

)

> ) 1 9 . 1 4 , 6 1

6

1 ) ITEH.K
,LN
. LM

9.57.50
9. 59.63
'.', 6 I , 62 6

o02,o03. 19

604 ,o56 .19
650.615. 19
)=VH(K, I , JM)-V(K, I , J

)

600,651 , 19
I , JM)

4

VVIK, I , JM)

o9
653,377, 19

> = 0.
) = 0.
)=0.

)=-V< K.I.J)-

) = W! K, im, j)-^/i>: . i , J!

I--VVIK , IM, J)-V(K, I , J 1+VHIK , I . JM)

) = VV(K, IM.J)-V(K, 1 . JMWSt*. J)+XX

IM. . J) tVH(K, IM, J)

-
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(.Lift XX- l> -I.

06? A I I K . I . J)=VH(K. I r jM) + VHS(K. I ) l XX-V( K. i , J

)

60 TO t>0

60 V H ( K . 1 , J I =- 1) ( K , I .1 ) * A I ( K . 1 . J )

VV ( K . I . J )
-

( 1 . -U ( K , I . J ) ) < A I < K . I . J )

4 CONTINUE
i>«7 GO TO (677«678«679,680).K
677 L-'.

CO Ul 68 1

676 L = J

co to 6a

i

6 7-1 L-.?

GO TO 681
680 L= 1

GO TO 681
68 1 DO 68<J .1=1 .L«

VVSU-. J )-VV(K,LN-l , J)-V( K,LN, J

)

689 CONTINUE
CO TO (062.683. 664. 685) .K

68? L = 2

GO TO 606
683 L-\

GO TO 606
- 684 L=4

GO TO 686
685 L = 3

606 00 767 1 =1 .LN
VHSIL, I )=VH(K, I .LK-1 )-V( K. I ,LK)

787 CONTINUE
c PUNCH VOLUMES . DEC I S I ON VECTORS , TOT AL -T I ME AND ITER

T IMP=0.0
TIK=0.0

— - GO TO ( 106. 187. 180. 109) .K —
106 KI=UN-1

K2=l_K-l
GO TO 190

187 K1=LN-1
K?=LM
Gp TO 190 r

100 K1=LN
K2=LK-l
GO TO 190 •'

109 K1=LN
K2 =LM

190 DO 18? 1 = 1 . Kl

DO 1 82 J=l .K2
KH=LCH(K , I . J

)

KV=LCV(K , 1 , J

)

.

1F([ TER-1 ) 19, '19. '16

4<V T lYP=TIMPtAK<KV)<-(AVV(K. I . J ) * *? ) t AK ( KH ) * ( AHV ( K . I.J)**2)t-AK.0(KH)t

1 AHV(K, I ..J)tAKO(KV)*AVV(K, I . J ) * AK 1 ( KM ) * ( AhV ( K , I , J ) * * 1 1 ) • AK 1 ( KV ) *

2 (AVV(K. t i J}** J 1 )

^8 IFtVHtK, J.J)+AHV(K, I . J)-.00t ) 14 I . 142,142

1 4 1 1 M n = .

GO TO 1"

3

14 2 TMH-AK-. KH)*< ( VH(K I . J > + AHV(K. I . Ji ) **2)+AK0(KH) *( VH{K, I . J]< AHV

1 (K. 1 . J) H AK1 (KH)*< VHtK. I J ) < AHV ( K . I . J) 1**1 1
-
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143 II ( VV ( K, I . J ) 1 4VV< K . I . .) I" •<'" I > I 44 • I ''•>• I *-i

144 1V.V=C.

6CI TO I 'to

I'.-.. ri4V=AK (KV)*t ( VVlK. I • J)l AW ( K , I , J ) ) * *2 ) +AKOI K V ) « ( i/ V ( K .
I . ,) 1

*

I AW (K . I , J) )+AKl<KV)+C VVtK.l • Jl+AVVtK, t < J) )**ll

146 ii »=t i vi rMn+rMv -

182 CONTINUE
1 ii 1 T I MI ( K ) = T I M

(itiIt(3.l?)T (ME (K )

1 I- ( I TER-1 ) I9.47.S53
4 7 TIMMIK)=TIMP

053 GO TO (023.923*923. 181 ) -K

lti'i DO 1 BS J= I . 4

|6'j TTT-T1 T+T i M6< J )

WHITE (3. 12)TT T, AKK
IF (TTT-TT1 1 ) 37<J.<J23,380

379 TT1T=TTT
GG TO 923

380 AKK=0. /b*AKK
II- (AKK-. OS) 160 1 . 1 602. 160,?

li_>01 AKK=C.0S
GO TO 160?

160? TTTT=TTT
923 GO TO [720.720,720.999) .K

999 1F( I T6K-1 ) 19. 720,721
721 DELTfc=ABS<A6S<TTT-TEMPT>/TTT)

TEMPT=TTT
720 DO 370 1=1 .LN

DO 370 J=l . LM
N=LNt 1-

I

—— M =1_M+1-J
MH=N-1
MM=M-

1

NP=N 1 1

A: P = M 1

K- (N-LNK'5.20, 19

20 IF ( M-LM)25. 21.19
?10<K.N.M)=1.

ZH<K.N.M)=G«
- ZV(K.N,M)=0.
GO TO 370

25 IF( J-l.) 19.7Q0.709
• -709 KH=LCH(K.N. MP ) -

KV=LCV(K.N. MP)

I F< VH { K, N, MP )+AMV(K,N. MP) -.00 I ) 707, 702,702

707 TVM=0.
GO TO 70 3

702 TVH=( VH(K.N,KP)+AHV(K.N.MP> ) ** 1

- 703 IF

(

VV(K,N, MP >+AVV(K,N, MP)-. 001 ) 704 . 705.705 -,-
7 4 TVV = C. .

GO TO 70o
705 TVV=( VV( K.N, MP >+AVV(K.N.MP) )**10

706 ZM<K .N.M)=ZH<K.tf, MP > *D(K, N, MP) +ZV ( K. N . MP ) * { 1 ,-D( K . N. MP ) ) +2. *AK { HH)

1 *( <DCK,N.MP)**2>*AI(K.N,MP)+AHV(K.N.MP)*D{K.N,MP) ) +2 . *AK ( K V ) *( <<

. . _ 2 [ . -D(K,.W.MP) >**2 ) *Ai ( K..N.MP 1 + AVV : K.rtiKP) *< 1 .-D(K.N.MP) i )+AKt)(KH) +

3 D(K.N.V.P)+AKO(KV)*U .-O(K.N.MP) H

1

l.*AKl (KM)*D t K.N.MP)»TVH

4 +ll.*AKl CKV)*{ l.-D(K,N,MP) >*TVV

IFCI-D 19, 804.700 - —
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SM'I /V ( r. , N . M ) =ZH( K, N, M)
GO TO 370

700 KV=UCVC K.NP.M)
Kh-LC.H(K,Ni\r.l
I F (VH< K.NP.M)

<

AHVIK ,NP,M)-. 001)71 t ,712,712
7 I 1 TVh=0.

712 rvil-(VH(K,NP, H) tAHVIK , NP.M) > <•*
I

7 13 I F ( VV ( K . NP, M ) +AVV ( K ,NP M >- .00 1 )?I4 .7 15.715
714 TVV = 0.

GO TO 7 I

o

7 1 5 TVVx ( w ( K , NP , ,", ) + AVV ( K , NP, M ) ) * * 1

7 16 ZV(K.N.M) -2H( K.NP.M) * D ( K , \P,« ) tZV( K.NP.M) *( 1 ,-D ( K , NP , M » >+2.*AK(KH)
1 *( (0<K.NP.M)S*2)*AJ (K,NP.M)+AHVCK . NP , ,'-1 ) < D ( K . MP , M ) ) +2 . * AK ( K V > * ( ( (

2 1 .-D(K .NP.M > )**2)*AI (K,NP.M)+AVV( K.NP.M) *{ l.-D(K.NP.M) J ) + AKO(KK)*
3 DCK.NP,.". ) +AK0< KV ) *( 1 .-D<K .NP.M ) )+ 1 1 . *AK1 ( KH ) *D ( K , NP . M ) * T VH
4 i 1 1 . *AX1 (KV)i( 1 .-D( K.NP.M) ) *TVV

I H ( J — I ) 19. HO'j. 3 to

8 !> / H ( K , N , M ) = 2 V i K , N , M )

3 7 CONTINUE
[FU TER-NN* 10 ) 1001 . 1003, 19

1003 IF (K-3) 1 002, 1002. 1 00A
1001 NN=NN+1

GO TO 1002
1001 1 F (KEYSO-1 >87. 1 002. 1 002
1002 KRITE<3.658)TITLI .TITL2.TI TL3.COP1 ,C0P2

DO 393 1=1. LN

IF ( Kt'YSll- 1 ) 'i«5, 'lit,. 4A4
445 XI l=VV<K • I . J

)

X12=VH(K. I

,

J)
GO TO AA6

AAA XI i=VV(K. I.J) +AVV(K . 1 . J)

X 1 2 = V H ( K , 1 , J ) + A HV ( K , I , J )

4A6 V.RITE(3. 9 03) I , J , XI I , X12.0I K, I , J ) ,ZV( K, I , J ) ,ZH( K, 1 , J )

393 CONTINUE
B7 if < ITER-l ) 19. Id . 1 19 -• --

119 GO TO ( 18. 18. IS. 120 ) ,K
120 IF( DELTB-OELTA >90, lb, 15
90 IFIKEYSO-1 189.89. 8A ;

~
89 K£YSO= 1+KEYSO

GO TO 18
- 84 TT TP=TIMM{ I ) + T I MM ( 2 ) +T I MM t 3)+TIMM< A

)

TLH=TPREVT-TTTP
TOTT=TLM+TTT
w R I T F ( 3 . 1 2 ) T L H :

V.WITEC 3. !2 ) TOTT
GO TO 19

IS KEYSU=0 .

18 00 1 3 1=1 ,LN
DO 13 J=l ,LM

M=LM+ 1-

J

KH-LCHlK.M.U)

IF( I- 1 ) 19, 371 ,372
371 IF ( J- 1 ) 1 9, 13, 372
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t.K-L

n (D(k.n.m)-.oi 1835.4 ')<.1. m 3<>

B35 h(k , n . i" ) = . o I

co ro 'i'"'i

B3G II ( D ( K . N . M ) - . V) ) 1 o«l . '• 99 i 11 38
038 D(K.N«M)=.'19
'is)) DI=0(K.N.M)-.02+bK/100.
931 I r ( A I ( K , N i m ) - 1 . ) 932 . 932 . •) 10

»32 A I (K.N,M = 1 .

93.0 AMIl (L )=7M(K,N.M)*OI *AI ( K.N.M)+ZV( K ,N,M) <•
( 1 . - L) 1 ) *A I ( -. iM.M ) AK(KH) 1=

1 ( ( DI *A t (K, N. M ) ) **2+2. *D I *A 1 ( K ,N.M ) 4AHVI K.N.M) ) + .,K< t V) * ( ( ( 1 .-01 )

2 A I ( K, N..W) ) >< 2 + 2. «-< 1 .-DI ) * A I (K.N.M) *AVV(K .N.M) ) +AKIKKII) ' til *

3 A I ( K . N. !• >+AK.0< KV) *( 1 .-01 >*AI IKiNiH)
IF (DI *AI (K.N.M)+AHV(K,N,M)-.O01 ) 93 3 . 9 J'i . 9.1 A

933 TAHH=0.
GO TO 9."! '5

9 .3 4 TAHI!=AK 1 (KH)* (01 *AI (K ,N,M ) +AHV (K.N . M ) ) <»* 1 1

93b IF((l.-DI)*Al(K,N,MHAVV(K,N,M)-. 00! 1936,938, 938
936 TAMV=0.

CO TO 939
930 TAIIV=AK1 ( KV ) « ( ( 1 .-DI ) *AI (K.N.M) * AVV( K.N.M) ) **1 1

939 AHI2(t_ )=TAHH+TAHV
37b CONTINUE
701 DH=( (AMI 1 ( 31-AHI 1 ( 1 ) ) + < AHI2( 3)-AHI2( 1 ) ) ) / . 02

IFCHN-I 1304 . 30b, 19

3C5 IF (DH)302, 303,303
302 ATEMP'= 1.0

303 ATEMP=0 .

CO TO 20A

304 DDH=( ( AH I 1 ( 1 1-2.*AH I 1 (2) + AH I 1 (3) ) + ( AHI2( 1 ) -2 . * Ah 1 2 ( 2 ) + AH I 2 ( 3 ) ) )

1 /.0001
357 Dt'LTADs-DH/l DDH+0. 0000000001 )

334 IF( J- 1 ) 19. 020.621
S21 IF( l-l ) 19.820.S22
820 ATEMP=D( K, N.M ) +DELTAD

00 TO 309
82? Ih(AbS(Di:LTAD)-.l 1823.823.025
825 DFLTAD-(DSLTAO/AOS( DF.LTAO ) ) *. 1

823 ATeMP=0(K.N,M)+AKK*OELTAD '

30 9 1 F ( ATEMP-.999 9999) 201 ,202,202
2 1 1F(ATEKP-.OOOCC01)203, 203,20

4

202 D( K.N.F.) = .9999999
GO TO 710

203 l>( K. N.M) = .0000001
CO TO 710 ;

2 04 IFIATE.VP-.01 ) 308, 20 3, 307
307 I F( ATE.VP- .99 ) 308.202, 308
308 D(K,N,M )=ATEMP --^-

710 CO TO 13
13 CONTINUE
14 CONTINUE : : '

GO TO I
"7

19 GO TO 100
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APPENDIX II. COMPUTER PROGRAMS FOR
COST MINIMIZATION PROBLEMS

The computer flow chart which illustrates the computational

procedure to obtain optimal sequence of the decision variables

o"'
m

, d"'"
1

and e"'
m

for section 5-1, is presented in Fig. 2.

Fie;. 3 presents the computer flow chart which illustrates the

computational procedure to obtain optimal sequence of the deci-

sion variables 8?*", fl-'" and Bj*
1" for section 5-2. The FORTRAN

symbols, their explanations and corresponding mathematical nota-

tions are summarized in Table 2. The computer programs for IBM

1620 follow the symbol table.
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Fig. 2. Computer Flov Chart frr Numerical
Examples of Section 5-1.



Read N,H,v ' ,k<{ »>

k.' k.
3

,L. ,C
t

j«l,?, n=l,2,. ...,H,

,B-1,2,. . .
,M.

set »;""-i5,b;

0^=0.3
g - 1 , 2 , . . . , N ,

•1,2,... ,M.

161

lc. x^'
m ,i-l,2,S,6,7|

N „ M

calc. S -
I

x
5

' + I x
6

n=»l n=l

. n , m n , tn n , a
Punctrxr. ,^2 > 9 i

n.rii n,m n,m 1YES

,
x,' , x, ,S
uA 6

calc.B . and
2

V 'new U
7 iold < . 000J>

lie. 3H and 3 _H

36,' 8(e^V

calc . AE 3H
n, m

8
y."

3
»(e°'

B
)
2

„n ,m „n , m n ,m
calc.6' »9,' +A9

3

FIr. 3. Conouter Flo.; Chart for Nurerlc.il

Examples of Section 5-2.
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Table 2. Program Symbols and Explanation

Program
Symbols

Explanation Ma thema t lea]
Symbols

AD

AI(I, J)

Al.1

AI,?.

CHI

C1I2

CH3

COST

COSTH

COSTI

COSTP

COSTT

COSTV

CV1

CV2

CV3

Dl

D2

D3

DASM1

DASM2

DASM3

DDH

total inflow volume at node
(I, J)

objective function

sum of travel time cost

maximum value of total cost

sum of investment cost

initial value of '

initial value; i

initial value of G

n ,m
2

n ,m
3

e
n,m n,m

+
2

n ,m-l . n-1 ,m , n ,tn
k ' +x_ +v

2

n ,m
11
n ,m
12
n,m

£
13

n ,m
x
3

n ,m , n ,m
x
5

+x
6

n ,mV
. n,m
K
21

, n ,m
k
22

. n ,m
K
23
n,m

6
1

f
n ,m

,n,m

»
2
H
B »"

3(8"'S
2
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DELTB

DH

DZ
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Program Symbols and Explanation (continued)

S-S

S

8Hn ' m

, N.M-1,
(z

?
) revised

(z
N.K-1,

old

, N,M-1.
7 revised

GI

HV

IC1

ITER

KEYSO

M

N

SHI

S1I2

SV1

SV2

T

V

vv

xs

Z5P

Z!l

ZV

D .m
C
l

maximum number of
iterations

iteration number

denotes that if KEYSO = 0,
print copy volumes and if
KEYSO = 1, print total
volumes

M dimension of the network

N dimension of the network

time cost

•;
II

rain

e
i

TO

max

*2
m

min

6
2

t m
max

c
t

11 ,m

n m
7

N M- 1

7

n m
1

n m
2



16*

7

8

9

1C
11

12
ICO

:
; Y '" T 1 'i I'NVCSTWfiT n'ihCUT ylKiOf T

I VV 14,4 ) , 01 ( 4.4 ) *02 ( 4 , 4 ) ii>3 I ',,',)

) iV( '. .4 ) »/Jli(4»4) li'vl'i.'O ,AL1 ( '»,'i )

) .CiiM', .4 I iCV] (4.4 ) >CV2 (4.4 ) ,CV3I
.4)ji>Vl(*>4).SV 2(4.4)

DATA)

:ut)
WAV)

201

3:;2

20?
10?

1 J '.

1001

??2
321

11 1

rPTJl'AI 1V.-KFIC
DIJ7.K.M0M HV(4»4

1 Ann I 3 ) • A I (4 .4

2Cl
: } 14.4! »Oi2f-f4

3 »3nl 14)tI .jti (

4

i- 0\ sAT I 4 i 4 )

1

t CK.v.ATI If Iu.4 )

I FCKMaTI '3m i.'NTKR

' FCR'-'AT t2I4»7Clf.4)
i h'CRXAT(14H ERROR BUN
i FORMAT (15H END Of- PRO
FORMAT I I3.4F15.4 )

FTP vat (??2< .6)
FORMAT C 74H ROW COL HV VV H1NV

1 ZH ZV)
FORMAT 1 3X .2 1 3 » 3X .4E 1 5 .6

1

FORMAT t7£l J .41
FORMAT I6F 12. b]
fIFAD 1, N. Ki IC1
RCAD 2. DhLTA, AKK. T, AK.AFK
RFAD 2> DASM1, 0A5."2, DASM3
PUNCH 4, N.M.DELTA.AK
C0STP=9999999999.99
<FYSC*0
do io? I = l

,

n
no 102 j=i iM

READ 2> VI I, J). AL1 ( I »J) ,AL2( I .J)
PUNCH 12. V( I >J) »AL1 I I .J! iAL2( I iJ)

IFU-N) 2ol.2u2.lli2
IF(J-y) 3i-l.302.1112
D3( I iJ)=0AS«3
GC TC li.2

I53(I»J)=:).C
GC TC K"2
[>3<I»J)M.O
CONTINUE
DC 103 r = i »N
DC 103 J=1,M
RFAO 2. CH] ( t »J] .CH2I I ,J) ,CH3< I .J) >5H1 ( I . J) »SH2 (

I

RFAD 2, CVK I .JUCV2I I.J) .CV3U >J) >SV1U »J) »SV2(I
PUNCh 11. Chll i . J) >Ct-i2( I .J) ,Crl3< 1 .J) .Snl( I , J ) .Sn2
PUNCh li, CVK i ,J) .CV2 I I >J) .CV3I 1 . J) .SV1 I I , J) ,SV2
ITER=G
IF I ITER-IC1) 100) .1111.1112
IT>"R=ITER-rl
IF(1TER-IC1)321. 322. 1112
KFY5U=1
DO 2:1 I«i,N
DO 211 J=l ,
IF(I-1)1112.311.312
IF(J-l) 1U2.4U.M2

CONST!

.AL2I4
A, A)

ilf'.T

VI NV D.VAR

.J)
.

>JI
(I.J)
I I ,J)
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312
51 1

532

21 1

135

2C<

K6

107
108
.115

175

206

207
20S

a i i

;

,ji =v ( : !.;i

nV( I .JI=A ! ( I ,J>*D3( i |J]
VV < I « J ) =A I ( I , J ) « ( 1 .

-

U 3 ( I , J ) )

v5C IC 21.1

AI < I • J I =HV( ! . J-l ItVI I.J)
6C ':' '-y

IF t J-l) 1 112 » 511 ,512
.'i ( i jj)=yvi i-i >j)+vi 1 1 j)

or tc t,-j

M ( I ,J)=HV< I ,J-D+VV( 1-1 .J)+V( 1 »J)
GC TC t>VJ

CCNTINUF
DC <tG 1 = 1 , .\

DC h\j j=-i ,y,

IFIriVI i »J) ) 1112, 135,200
0) ( i »J)=';.
GC TC lib
PI ( I »J)=HV( I »J)*(CH2< I,J)<
IF(D1 ( I .J l-SHl (I.J)) 106»H
Dl< I »J)=SH1< I.J)
GC ~~ )15
IFID1 t i ,J I-SH2I I .J) ) 1 15,108 .] 08
:-) ( ; ,j]=sii2( i.j]
IFIVV U.J).) 1112.5*5.175
D2 ( I ,J)=VV( i , J)*(CV2i I >J)*T)**0
IF(D2< I ,J 1-SV1 ( I , J) ) 2 06.206.207
021 I »J)=S.V1( I .J]
GC TC 4U
IF( J2(

I

,-j)-SV2( I.J1J40.208.2CB
D2I I ,J)=SV2(

I

,J)

T )#*0.5-CH3<

I

i

6,107
J)

3-CV3( I , J)

1,H

505 02 ( I .J 1=0
40 CONTINUE

CCSTH=0.0
CCSTV=C0
CCSTT=0.
DC 221 I

DC 221 J=1,M
C0STH=CCSTK+D1 [I.J)*AL1(I.J]
CCCTV = CCSTV + L>2 ( I .J)*AL2 ( I , J

)

221 CCSTT=CCSTT+(CHK I,J)*HV( I .J1+CM2I 1,J)»
1 CK3U.J] ) )*T*AL11 1»J)+(CV1( I »J)*VV( I, J

2 (02 f I .J1+CV31 I.J) ) )*T*AL2( I.J]
CC C-T.'=CCS7K+CC C TV
CCST=CCSTI+CCSTT
PUNCH 7. ITER.T.AKK
PUNCH 8. CCST.CCSTI.CCSTT
] F15EN.se: SWITCH 2)125,243

125 TYPE 8. COST
24 2 DELTIJ=AnSr(A!iSF(CCST-CC5TP)/CCST)

IF( JELT.-J-DELTA] 3101,1101.1102
1101 IFOCEYSC-l (1103.1111.1112

nV( I ,J)

)n-CV2( I

*«2/(Dl
,J)*VV<

( i ,J)+
I , J 1**2/
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1 li

1 1'

oc re

K r Y;.c =

1 I-.

.N

612
613

611
712

!-'p)*! 1.-D31LN.MP) ) +

re 2' 1 j=i »m

I_..-V-| 1 -J
wp=LM+l
MP=L'-'+l

IF(LN-M6 -

2 1 .612.11 12

I F(LN -;•')&] 1 .613.1112
i) 3 ! L N > L ;'

)
= 1 . i.

ZH(Li\»LC ) =0.0
ZV< LN.L^i) ='.-'. i.

GC TO 2JJ

; p ;
j_i ) l ; 1 1 ,71 l ,71 ?

Z H ( L N > L v.
) = Z H ( I N »W ) * 03 ( LPi » N'H ) + Z V ( L N

1 ((nil LN . MP ) *D3 ( l. N • MP 1 +2 • *CH2 I L.N . MP ) *HV ( LN . MP ) *D3 ( L

2 ( r>l ILN.MP I+CH3ILN.MP) ) )*

3 ?.*CV2(LN.MP)*VVf LN
'. T«AL2<LN.XP)
IFU-7)111 3.811. 711

811 ZV

I

LN > LM ) = Zri< LN »LM)

711 ZV ( LN L.I ) =Zn ( NP . L> ) *03 ( NP > LM I +ZV ( NP . LM) * I l.-i)3'<NP.LM

1 1CH1 ( NP . LM ) »D3 ( NP , LM ) +2 . *Ch2 i MP , Lim ) »nV ( MP » LM ) *u3 (MP

? (Dl(NP.-tLM}+CH3(Ni».L.v,)))*T*ALX(NP.LM) + (CVUNP.LM)*(l

3 ? . *CV2 i MP »LM ) *VV ( NP . LM )*

(

1 .-03 ( MP • LM. ) ) / ( 02 I NP .LM )
+C

A T*AL2(NP»LM]
IFIJ-llllll ,815.23]
ZH(LN.LV.)=ZV(LN.LM)
CONTINUE
IF(SENSE SWITCH 3>15L2,1503

A L 1 ! LM . M P ) + ( CV 1 ( LM , MP )* ( 1 .-D

( 1.-D31LN.MP1 )/(D2(LN»y'P)+CV3<

) /

3ILN.M
LN.MP1

PI ) +

) )«

1 ) +

.LMJ/

.-D3!MPi L M ) 1

V3INP.LM) ) )*

ei r
>

23]

1 5 ?.

1502
I F ( :< MY SO- 1)1504.1502.1112
PUNCH V

u C 3^0 i = 1 .

N

DC 30C J=1.M
PUNCh 4, I ,J,nV(

1 ZH(I.J) »ZV< I.J)
CONTINUE
I F< SENSE SWITC
!?CA0 ?. AKK
or 2A 1 I = 1 .

N

re 2'-i J=i -M

if: i-m) mo, n6
IFIJ-M) i 17,1 IS

3 t I . J ) = 1 • k

GC TC 241
03 (I.J) = -' •

GC TC 241

117 i F ( A ! ( I . J ) ) 1 1 1 ? . 1 ? 1 » 1 ? 2

121 A I I I . J > = 1 ,

3 MM
1504
1 5C t

15 07

ll r<

116

118

, J ) .VVt.I »Jl

1 11501,1507

1112
1112

( I > J) )2 ( I .J) >D3( I .J)
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251

2'j7

26 3

217
2'.)

J 11]

1112

CH* (/IK

1 * A 1 ( .' •

r *f v? ! i

i (?.*CV
] F( \"?r
r*:t< i .j!

i r ( 3 ( 1

l"( 1 >JI

GO TC: 2

1F(U3(

I

D3< I>J)

Comti.vc

CCST==C
or i c l

PUKCH b

TYPc 3

PAUSE
CC TO 1

TYPE 5

ST^P
t,\D

I ,.,' I-/VI i .J) I -A M : . J) i If,,! ( i ,J)*A1 ( I i Jl+2.*fil^( I . J )*!>•»*I »J I

Jl - !• ; / ( '- 1 ( I -.1) i
<-,»<<

! ,.)| ) >*T*AU ( I .J1-ICV1 ! I ,Ji •••/.!
( I , J)+?.

.Jl* I ! .-n:>< ! .J) )»A! ( I .J)**?/C)?(l .JJ+CV3C I.J) ))«T»AL2H»J1
-n--| I »J!'<; I ( I . J) :. k ->/ (Hi

; I , J) i Ci ! 3 ( I .Jl) )*T*AL] I I . J) +

?t : iJ)»a i
('; . j; ::;.' ;v ( r.>? i i ,J)+CV3( I .J) ) l*T*AI_2< I.J)

l"!-:)-MT >' (21 7»217 »?>]
= J M I . J) -•'>!<:< «-Dri/!;.:iH

. J )- 1 . ) 2S7.262 .262
= 1 .

17

.J) 12ci.263.21 7

) =- .

2^1

1ST
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r\r>Ti!\v T'.vrnr ^y'-t-'-: piv^'-'-i.' i\f •.-
1 t 1

1
tixr:; SYt.ir/A inmr,r.T

!)I>*FNSI ON hV l')il| , VV I'ii'iIiDU'k'i! »ti2l •'< , 4 ) »D3 ('»') 1 »X5(<i»A 1
,

J

"
,\ I( 4 , : 1 i V ( •'. i 4 i

• In (4,4),/. V i 4 . '.
i > AL i ( 4 . 4 ) > AL2 (4,4 )

i ,Cn] !4.4 ) .Cii21Wi'),CH3(4.A> ,CV.1<.4»4),CV2<4>4) ,CV3(«»4!

1 i CIvSAT 14 i'i )

2 FCRXATI /HU4I
3 KCSf'«T(l5ll ENTfcN Ni-isi DATA)

4 r CR.XAT !2I4,7LU'.4 I

5 FORNWi 14m ERI<CR f<UN CUT)

6 rOKVAT(15ll END Ch PROGRAM)
7 FORMAT ( I3.4F15.4]
8 F ."!"' AT !3i~2i .6)

9 FORMAT (74H ROfc COL HV VV HlNV VINV

] ZH ZV)

11 FC!m-'.AT(7£11.4)

1O0 R: AD )» Mi '<'• iC.NCl
READ 2, JELTAi Ti &Ii AK<1 > AK2 >DOZ

R r A 2 . DAS M 1 . DA S M 2 , DA S M

3

REAO 2 Si ,SS2, 53,54
PUNCH 4, N.M.DELTA.GI ,S1 >Si>2 »S4 »DAi>Ml »L>ASM:>

C05TP=0.
KFYSO=0
CO 30 1*1 iN

DC 30 J = .l iM

READ 2. V(l'iJ)tALl(I»J)»AU2(I»J!
PUNCH 2i V( I >J> »AL1 ( I.J) >AL2 ( I »J)

D] ( : iJl'DASXl
D2 1 I »J) =DASM2

33 D3< i »J)=0ASM3
30 CONTINUE

DO 40 1=1 ,

N

DO 40 J = l
,"

READ 2 i Cnll I »J) »CH2( I .J) >CH3(i .0) »CV1.( I iJ) iCV2( I .J) »GV3< I ,J)

40 PUNCH 11 iChlt I >J! »Cri2< I , J ) »CK3 ( I i J ) » CV1 ( I , J ! ,CV2 ( I , J ) ,CV3 I I > J I

IT=R=0
MC=NC1

lOi>0 1 F( ITFK-IC141.1 111 ,1112
41 ITER*1TER+1

Z5P=o.
Ir

(

iTEU-IC)42 ,43,1112
4 3 KEYSO=]
42 DC 50 1=1.

N

DC 5U J=l >'''

IF( I~K)21» 22. 1.112

2? IF(J-X)23»24,1112
2 4 D'5

( I ,J ) = 1 .

m ! I ,j)=0.
d?; ! -j i=u.
GO TO b9

23 D3< I >J)=1

•

Q2( I tj)=0.

U.VA2
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6,0

4 7

',8

51

52

50

103

2; 2

2>. 3

2-4

20]
61

62
6=5

64
66
79

.60

'.
i i : • J ) - • •

i r ; i - 1 j 1 1 1 ? . 4 4 * 4 fi

1 1 i.i-i )'< n r.'o. 4

7

MCI «J)=V( I -J)
HV( I -.n =A I ( I ,j)sri->( i ,j)
V'V { I ? J ) =A I ( I • J ) » ( 1 . -D3 ( I »J ) )

cc rr. :

AI ( I ij! =i i V ( I ,J-] |+V( I.J)
GO TO 4 6

IFCJ-1 11112.5] «?2
A] ( i .J] =VVI i-l .Jl+VI I .J)
GO T C 4 u

A I ( ! . J

)

=mV( I . J-l 1+VV1 I-l .J |+V( I >J)

C.C TC- 4 6

A<K.2=AK2
S?»SS2
DC 6" 1 = 1 »

N

no 6" J=l »K

IF< I-N120 1 »2C.?.1212
I:'

:
( j-v-ri ) 2ul.203i2.0A

HllIiJI =GI-X5( I ,J-1 )'

GO TC 62
X&( I »J)=X5< I..J-1I
CiC TO by
IFIt-l)lll?>61»62
1 FU-1 ) 1 1 12.63 .64

Xf( I -J)=D1 ( I »J)+D?< I .J)
GO Tv 66
IFCJ-] )

1

112.65.64
X5( I«J)=X5( I-1»M)+D1 ( I .J1+D2I1-»J)
GC TC 66
X5( 1«J)=X5( I .J-ll+DK I.J)+D2(I »J)
IFCX5C 1.J1-GI )6C»6u>79
ABO] (I.J >+D2( I.J)

21 ( I >J1=D1( I.J)-(X5( 1 »J)-GI )*D1 ( I. J) /AD
02 1 1 .JI--0 2I I .J1-CX5 1 I ,J)-GI )*D2 (I .J) /AD
X5(

I

>J)=GI
CONTINUE
CCSTH=i.

.

COSTV=0.
CCSTT=0.
0C 70 1 = 1 .N
DC 7 u J = I .

;-',

<

CC5Th = C'JSTi-:+Dl ( I .J)

CCSTV=CCSTV+D2( I .J)

. CCSTT=C0STT+(Ch2d >J)*hV(I . J)**2/ ( l»1 ( I . J)/AL1 ( I . J)+CH3t I»J!
1 ALKl.J)*T+(CV2Cl >J)*VVI I .J)»'-2/( J2( I , JJ/AL2! I .J1+CV3I I . J)

) )*

) )*
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2AUn»J>*i + Ki-.](I»J)*'iV(I.J)*ALlH »J)*tVt( 1 .J)"*VV< i ,J)'-AL<r(l ,
J

> ) * T

COM i=CO.'>Th+CCPTV

cc\ 7=c:;:.' ; tt^cc.>t ;

. P!'.\Cn 7, ITFM.T.AU'l . AKK2
Pi'f'CH b, CGST»C0S1 IjCCSTT
lEiyTMSF S'sITCH 2) 67, 68

67 TYPE S, CCST
iq dpi T-A«AaSF<Ai*Sf <rCST-CCSTP) /COST )

2««CH2<N.K-l»*HV{N,M-l)**2/(<OI-X5.«h.f-2))/ALl(N.K-l)+CH3{N.K-Xn

i *«2»-r
[>Z = ASSr< (25-2SP)/Z&>
IF(i>2-DD2 )211.211»212

212 Z5P=/,5
: DC ll'2 I = liN

OH2«Z5
J" 1,

-CH2(I,J)»HV<I.J)««2*T/(DKI.J)/At.ltI.JI+CH3UtJ)l*»2
• ' DPH2=7. «CH7 ( ! • J ) *HV ( I , J)**2*T/AL1 (I ,J) / (D1U . Jl/ALK t . J» +

1

pH3=2&'""
lft

-CV2(I,J)*VV(I,J)**2*T/(D2(I,J>/AL2(I.J)*CV3tI.JJ»*»a

DIV.3=2.*CV2( I ,J)*VV( I»J)**2*T/AL2l.l , J)/ 1 02 1
I .J)/AL2< I iJ) +

1 CV3(I>JI 1**3
AO2=AKH.2*Oh2/(DDh2+0.OO0OUOv.l )

AO3=AK<2*Oh3/lDDh3+0.000OU0Cil

)

127 IF(A02-S2)131tl33»133
133 AD2=S2

GC TC 135
pi rF(A02+S2)13*.135»i35
13 t AD2=-S2
135 01 (I.J)«D1(1 iJ»-AP2

IF<01< I.J))123.123.124
12? 0] ( I »J)=0.
124 [F(AD3-S2)136.137»137
137 A03=S2

GC TO 139
136 IF (AD3+S2)13fl»l 39.139
13o AD3=—S2
139 D2(

1

>J)=02< I .J1-A03
IriU/l i > J) 1125,125.126 . y

12 5 021 I , J )=;'<•

126 IF(0: ( I »J1-S3)1*1 . 1*2.1*? „»,,,, .,

1*1 r.T l = I ( C82 ( I , J ) *T /Z5 )**« 5*HV 1 I . J 1-CH31I . J) 1 *AL1 ( I f J)

IF(DH1 ,J)-DT1 ) 143,1 42,142

14? Dl ( I l J >=0T1

142 1F1P1 ( I ,J)-S4) 147,148,148
148 Dl( i »J)=S*
147 IF(D?< 1 ,J 1-S3) 144 ,145,145

1*4 L>T2*((GV2<I,J)*T/Z5 >**C.5*VVI i , J)-CV3C 1 . J) >*A,L2U»J!

;F(;J2I I >J) -012)14 6,145, 145

146 D2( I ,J)=JT2
145 tF(02(I »J)-S* 11*9 >15u. 150

150 02 i I «J)*5*
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IF(5F\5h SWITCH 1)104.10!
l.-i Rr/,o ?• .'.<<?,.;?

]. * GC Tr 1 1.

3

21 j DC Sv. : = i»n
C c. • .' -< - 1 . M

L\=.\+i-I
Lf'^S* i-J
\P=_.\+i
,XP =l»i
lr (L.\-\i 51,82.1112

8 1 IF<LV-y.)B] .53.3 112
8 3 03 (LN»'L*!I "1.0

ZH(LN,U«) =0.
ZV(L W »LV) ='•

GC TO b„
8 1 IFt J-3 )1] 12.84.85
8 5 2n ( LN.LM) = 2H ( LN ,MP ) «D3(L

1 HV(L.N.M?)*D3(LN»i>.P] /(Dl
2 *T+ZV!LN »MP)*( 1.-03 ILN.
3 CV2(Li\»MP)*VV(LN»MP)*( 1

4 CV3lLN»MP>) >*AL2(LN»MP)
IF( 1-1 )13 12.86.34

86 ZV(LhiLK) =ZH(LN,Lf')

N , N >) + (Oil (LiN.MH 1*03 [LN.MP *2.*CM2 fLRti Tp ) *

(LN »ivP)*ALl (Li\,.-, 2 )-hci-I3(Ln,; IP) i *ALl i LN MP )

MP ) ) + !CV1( LN.MP) *( 1.-03ILM MP) 1+2.*
.-D3ILN.MP) >/(iJ2 (UN»yiP)/AL2(LN MP 1 +

P . LM ) +

(

CHI CNP.LM) *D3(NP»LJ )+2.*CH2(NP .LM)*
(NP.LM) -A LI (NP»LM )+CH3(NP, LM) ) I*AL1IN P.LK)
LM) ) + (CVl (NP.LM)* 11 .-D3INP ,LM) 1+2.*
,-D3(NP
*T

.LM ) ) / (02 (NP ,LM) /AL2 ( NP . LM )

t

84 ZV(LN.LM) = ZH<NP.LM).*D3(NF
1 HV(NP,L«)*D3(NP.LM)/ (OH
2 »T+ZV ( MP , LM )•-(!. -03 I NP
3 CV2 t.NP . LM- )*VV( NP . LM I * ( 1

.

4 CVS(MP.LM) ) )*AL2(NP,LM)<
I F( J-3 ) 1112.87.80
ZKILN.LM) =ZV(LN.LK)
CCNTINUt
iF( I Thf<-NC)69, 182,1112
IF (0ELT3-0ELTA) 183 » 183,99
:Y50=v.
r (SF.M5£ SWITCH A) 163,98
" = \'C + .\C1

PUNCH 9

DC 90 1=1,

N

DC 90 J=l ,v

PUNCH 4, I ,J,HV( i . J) i VV( I .J) .01 ( I , J) .02 I I .J ) .03 1 I .J) ,Zri( I ,J)
1 ZV(I.J)
CONTINUE
1FCKEYSS-1 ) 75, 97. 11 12
IKISENSt SWITCH 3)97,96
DC 12tJ 1=1, N

DC 120 J=1.M
120 PUNCH 11, X5U ,J) »Z5
9^> tF(OELTB-D£LTA)71»71,72

87

69
99

182
183

9 7
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71

72
98
94
95

l73»lin»lU2

l>8

.7 1

L22
L62

152

St'KSE SWITCH 1)94.95
2. A<iC] .51

lf.'l 1 = 1 tN

U.1 J=1,X
A I

(
'I , J ) ) 1 1 1 2 . 1 1 1 » 1 1 3

mi
ryp
>A0

Uli

re i

= A; i

= .
7.H(

2(1.
2(1.
1 = 2.

*CV2
=AKK
AB5r
AD1 )

TO 1

t=?l
; ; .j

)

[D3( 1

; i ,j)

TO 1

: d? ! i

: i ,j)

iTINU
iTP = C

TO i

iCH 6

E 3

SE
1

5

12
i , Ji

I , J)

J )
» «

J ) * A

*CH2
( I ,J

l*Dri

(A 01
162,
51
21

-ZV( i .J) + (CH1 ( I .J)'--AL1 ( I , J1-CV1 ( I . J)*AL2( I

I P-r>3( I , J )/ (OK I >J)/AU ( I >J)+CH3( I .J) )*AL1
I I*< 1.-03 ( I ,Ji )/(02( I ,J)/AL2( I ,J)+CV3( 1 . J)

( I , J)*M I *AU (

I

,J)/(01( I ,J)/AL1 ( I ,J)+C
I--AI I . *AL2(I »'J)/(D2< 1 »J)/AL2(] .J)+CV3< I

l/IODHl+O.OOCCuCOl )

I -S 11121. 12 1.122
162.172

.J) l«T+2.«
< I ,J)*T-2.«
l*AL2( I.J>*T
H3( I .J) )*T +

•J»)»l

=03( I .J1-AD1
.Jl-l.l 151 .152,152
= 1 .

G]

.J) ) 153.153.1C1

E

:bT
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This report attempts a systematic, elementary and exhaustive

presentation of the use of the discrete maximum principle to solve

traffic assignment and economic analysis problems of transporta-

tion systems. Traffic assignment is the process of allocating

personal or vehicular trips in an existing or proposed system

of travel facilities, and economic analysi.-, deals with the

minimization of the sum of travel time cost, operating cost and

the investment cost of the transportation system.

The optimal traffic assignment pattern is obtained in sec-

tion 2, by considering the constant travel time-volume relation-

ships. An optimal traffic assignment pattern, based on the non-

linear travel time-volume relationship, is presented and a single

copy network is considered in section 3. Section 4 considers an

optimal traffic assignment of a multicopy traffic flow network,

that is, a mult ides tination network with a nonlinear travel time-

volume relationship. In section 5, the economic analysis of the

transportation system is studied.

Based on the results obtained from sections 3 and 4 of the

report it is concluded that the maximum principle technique makes

possible the use of nonlinear travel time-volume relationships.

The technique is therefore considered to have the potential to

represent a 'real world' situation, that is, it is possible to

simulate congestions and delay resulting from increasing traffic

volumes

.

In section 5 a nonlinear travel tine equation is developed,

giving the relationships among tiavel time, traffic volume and



investment cost. Using thia equation, optimum- seeking procedures

are developed. Two investment conditions, namely investment with

no constraints on budget and investment with fixed budget on a

transportation system, are considered.


