OPTIMAL TRAFFIC ASSIGNMENTS AND ECONOMLC ANALYSES OF TRANSPORTATIO S SX゙STFMS PY THE DISCRETE MAXIMUM PRINCIPLE.
by selep

MUZAFFAR A. SHAIKH

B. S. M, E, University of Bomion, Bombay, India, 1966

A MASTER ${ }^{\prime}$ S REPOPT

submitter in partial fulfillment of the

```
requitements for the degree
```

MASTRR OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
 Manhattan, Kansas

1968

$$
\text { Approved } 3:
$$

LD
Page

1. INTRODUCTION 1
2. TRAFFIC ASSIGNMENT USING CONSTANT TRAVEL TIME FUNCTION 6
Formulation of the Problem 9
Computational Procedure. 15
Numerical Example. 16
Conclusion 24
3. TRAFFIC ASSIGNMENT USING NONLINEAR TRAVEL
TIME FUNCTION 26
Travel Time-Volume Relationships 26
Statement of the Problem 31
Formulation of the Problem 32
Computational Procedure. 43
Numerical Examples 46
Computational. Characteristics 51
4. TRAFFIC ASSIGNMENT USING NONLINEAR TIME FUNCTION WITH MULTI-COPY NETWORK. 64
4-1. Multi-Copy Network with Turn Penalty 64
Statement of the Problem 64
Formulation of the Problem with Turn Penalty 67
Computational Procedure for Multi-Copy Network 78
Numerical Results. 78
4-2. Nulti-Copy Network Without Turn Penalty 86
Statement of the Problem Without Turn Penalty 86
Formulation of the Problem Without Turn Penalty 85
Page
Computational Procedure. 92
Numerical Results. 93
Comparison Betweea the Results With Tuin Penalty and Without Turn Penalty 100
Discussion 101
5. MINIMIZATION OF THE SUM OF TRAVEL TIME COST AND INVESTMENT COST ON A TRANSPORTATION SYSTEM 103
The Travel Time Equation 104
5-1. Investment With No Budget Constraints 110
Statement of the Problem 110
Formulation of the Problem 111
Computational Procedure. 122
5-2. Investment with Fixed System Budget. 123
Formulation of the Problem 123
Computational Procedure. 131
Numerical Examples 133
Discussion 144
ACKNOWLEDGEMENTS 145
REFERENCES 1.46
APPENDIX I 148
APPENDIX II. 159

1. INTRODUCTION

The urban transportation planners and the highway designers have developed two important tools to evaluate various transportation improvement alternatives. They are (1) traffic assignment and (2) economic analysis of the transportation system. Traffic assignment is the process of allocating personal or vehicular trips in an existing or proposed system of travel facilities [19], and economic analysis deals with the minimization of the sum of travel time cost, operating cost and the Investment cost of the transportation system. loth of these processes are invaluable from a transportation planning viewpoint, in that they allow proposed facilities to be tested for traffic carrying ability before they are built.

Since 1950, many methods for traffic assignment have been developed and refined until all methods may be classified under three groups-judgement, two path analysis and network analysis [19].

In the judgement method, senior members of the highway department proportion the traffic between old and new facilities.. on the basis of their own evaluations.

The two path analysis considers assignment to one freeway route and one arterial route on a proportional basis, and diversion curves are formulated from empirical studies. A diversion curve shows the percentage of traffic split between a freeway path and an arterial street path based on such parameters as time ratio, distance ratio, or a combination of the two.

Early traffic assignment usage was coneerned with the above mentioned techniques, but because of the obvious limitations of these techniques a "network" approaeh has been adopted by most agencies responsible for transportation studies. The network analysis considcrs the traffic assignment within the whole transportation system.

Campbell [2] presented a procedure to assign traffic to expressways in 1956. In 1957, Moore [12] and Dantzig [6], developed algorithms for selecting the shortest route through a network. Other teehniques have also been developed sincc 1957. These techniques are linear programing [4], Shimbel's algoritha [16], and the Road Rcseareh Laboratory algoritho [22]. Moore's algarithm is a widcly adopted method used with most computer traffic assignment programs.

Today, most traffic assignment methods are primarily of thc "all or nothing" type, that is, the traffic between two zones is assigned to a single route regardless of the traffic volume on that route. The route selected is the minimum tine path between the zones. The "all or nothing" assignment technique is not realistic in that it does not allow for increased travel time as link traffic volumes approach or exceed link eapacities.

It can be concluded that all the above techniques use a constant travel time-volume relationship. The constant travel time-volume relationship poorly approximates the functional relationship between the link travel time and link traffic volume. Therefore, a non-linear travel time-volume relationship has been
introduced which satisfies three conditions. First, there exists a proper travel time under free flow or near zero traffic volume conditions. Second, at low volumes travel times must increase slightly with increased traffic volume. Third, as link capacity is reached, travel time must increase rapidly to reflect the congestion conditions. A travel rime-volume relationship which satisfies these three conoitions represents the 'real world' situation.

In order to take into consideration a non-linear travel. time-volume relationship new methods are needed. Attempts to provide such a realistic relationship have resulted in some revised computational procedures such as those developed during the course of the Chicago Area Transportation Study [3]. Wallace [19] has used a systems approach in order to solve traffic assignment problems. Dynamic programming wherein non-1inear time functions are employed has been successfully used by Tillman, Pai, Funk and Snell [18]. A continuous research has been carried on by Snell, Funk and their associates on the traffic assignment and economic analysis of transportation systems by using a discrete version of the maximum nrinciple at Kansas State University. Yang and Snell [23j] have used the maximum principle [7,14], to solve the traffic asslgnment problems. They have considered a constant travel time-volume relationship. Snell, Funk and Blackburn [8], have again employed the discrete maximum principle to assign the traffic optimally in any transportation system by taking into account a non-linear travel time-volume relationship.

Numerous methods for economic analysis of any urhan transportation system have been devised in the past few decades. Four principle methods are: (1) the annual cost method, (2) the prem seat worth method, (3) the benefit-cost fatio method, and (4) the rate of return method [1,10,13,15]. No matter which method was used, the analyses made in the fast have restricted themselves to comparing alternatives for a single link or a single route of a transportation network. The overall syster effect of improvements was completely ignored.

Realizing this deficiency, some recent studies have compared alternatives through complete network analysis. In the Chicago Area Transportation study [22], five alternative freeway systems were developed. In 1958, Garrison and Marble [9] presented a linear programming formulation for the economic aralysis of the transportation network. Wallace [19] has employed a systens approach to solve cost minimization problems. Wang, Funk, and Snell $[20,21]$ have used the discrete maximum principle to solve the cost minimization problems. They have considered three different cascs of the investment cost.

This report attcmpts a systematic, elementary and exhaustive presentation of the use of the discrete maximun principle to solve traffic assignment and cest minimization problems in transportation systems. In section 2 the optimal traffic assigrment pattern is obtaincd, considering the constant travel time-volume relationshin bascd on the study made by Yang and Snell [23.24]. In section 3 the behavior of the non-linear
travel time-volume relationship is thoroughly explained in a very simplified form. Also, the development of the mathematical model which represents the 'real world' situation is discussed in detail, and an optimal traffic assignment pattern, using the nonlinear travel time-volume relationship which is based on the paper of Funk, Snell and Blackburn [8] is presented. A single copy (multi origin single destination) street network is considered. Section 4 considers a multicopy traffic flow network with a non-linear travel time-volume relationship [17]. Two different formulations are studied. In the first formulation turn penalties are considered and in the second formulation turn penalties are assumed to be zero. A comparison is made of the. numerical results of the two formulations. In section 5, which is based on Wang, Snell, and Funk $[20,21]$, the economic analysis of the transportation network is studied. Two cases of investment cost have been investigated in detail. The development of tie non-linear travel time model, which expresses the travel time as a function of the investment cost and of traffic volume, is described comprehensively.
2. traffic assignment using constant travel time function

Traffic assignment is the process of allocating a given set of trip interchanges to a spccific transportation system. The problem involving a rectangular system with lincar time functions will be considercd first. In this casc of linear time function the link travel times remain constant as link volumes increase, in other words the link travel time is independent of the corresponding link volume. In Fig. 1 , the link travel times are plotted as a function of link voluncs. This can mathematically be explained as follows:
let
$t=t i m c$ required by one vchicle to travel a unit distance along a link (unit travel time) in hours per mile per vehiclc,
$k=$ free flow travel-time, which is constant, in hours per mile per vehicle,
then for a lincar time function

$$
t=k .
$$

This is the simplest functional relationship that is available to approximate the true travel time curve. This constant travel time function does not provide for greatly increased travel time as traffic volume increascs, even though traffic volume may approach link capacity, which is maximum number of vehicles a link can accomodate in unit time. A non-linear travel time-volume relation is discussed in sec. 3 of this report.

Fig. I. Constant travel time-volume curve .

FORMULATION OF THE PROBLEM

Suppose that there is a network of traffic-flow as shown in Fig. 2. A network is a combination of all links and nodes. Node is a point where segments of the street network connect and link is a connection between twe nodes, representing a segnent of the. street network.

To simplify the problem of notations a rectangular network is shown, however, the network need not be rectangular in order to solve it by the discrete version of the maximum priaciple.

Let
$v^{n, m}=$ the total number of vchicles entering the network just before node (n, m),
$\theta_{1}^{n, m}=$ fraction of the vehicles entexing node (n, m) on the horizontal link which leaves on the horizontal link,
$\theta_{2}^{n, m}=$ fraction of the vehiclcs entering nofe (n, n) on the vertical link which leaves on the vertical link,
$x_{1}^{n, m}=$ the horizontal flow (or the trip volumes assigned to the horizontal link) from nodc (n, m),
$x_{2}^{n, m}=$ the vertical flow (or the trip volume assigned to the vertical link) from node (n, m),
$x_{3}^{n, m}=$ the total cumulative travel time up to node $(n, m+1)$ on the horizontal link (or the cumulative travel tiate on horizontal links from node ($n, 1$) including the horizontal link immediately beyond node (n, m) ,

Fig. 2. nom network :
$x_{4}^{n, m}=$ the total cumulative travci time up to node ($n+1, m$) on the vertical links (or the cumulative travel time on vertical links from node ($1, m$) including the vertical link immediately beyond node (n, m)),
$\mathrm{n}=1,2, \ldots, \mathrm{~N}, \quad \mathrm{~m}=1,2, \ldots, \mathrm{M}$.
The problem is to determine a sequence of $\theta_{1}^{n, m}$ and $\theta_{2}^{n, m}$ in order to minimize the total cumulative travel time, which is the time required for all the vehicles in the nctwork of (NrM) nodes, starting from different origins, to reach the destinations.

$$
S=\sum_{n=1}^{N} x_{3}^{n, M}+\sum_{m=1}^{M} x_{4}^{N, m}
$$

Assume that (1) the link travel time does not vary with link volume, and that (2) $\mathrm{V}^{\mathrm{n}, \mathrm{m}}$ can be split up so that $\mathrm{V}^{\mathrm{n}, \mathrm{m} / 2 \text { enters }}$
 tively, just ahead of the node as shown in Fig. 3. The second assumption allows the calculation of number of turns made at a node, thus allowing inclusion of turn delay penalties in the systen.

Considering each node as a stage the performance equations for a typical interior node (n, m) in a network are as follows:

$$
\begin{align*}
x_{1}^{n, m}= & \theta_{1}^{n, m}\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right) \\
& +\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+\frac{v^{n, m}}{2}\right), x_{1}^{n, 0}=0, \tag{1}
\end{align*}
$$

Fig. 3. Typical interior node of a reciongular neiwork.

$$
\begin{align*}
& x_{2}^{n, m}=\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+\frac{v^{n, m}}{2}\right) \\
&+\theta_{2}^{n, m}\left(x_{2}^{n-1, n}+\frac{v^{n}, m}{2}\right), x_{2}^{0, m}=0, \tag{2}\\
& x_{3}^{n, m}= \\
& x_{3}^{n, m-1}+k_{1}^{n, m / 1}+k_{L}^{n, n}\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+\frac{v^{n, m}}{2}\right) \\
&= x_{3}^{n, m-1}+k_{1}^{n, m}\left(\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right)+\right. \\
&\left.+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+\frac{v^{n, m}}{2}\right)\right) \tag{3}\\
&+k_{L}^{n, m}\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right), x_{3}^{n, 0}=0,
\end{align*}
$$

and

$$
\begin{aligned}
x_{4}^{n, m}= & x_{4}^{n-1, m}+k_{2}^{n, m} x_{2}^{n, m}+k_{R}^{n, m}\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right) \\
= & x_{4}^{n-1, m}+k_{2}^{n, m}\left(\left(1-e_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right)\right. \\
& \left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right)\right) \\
& +k_{R}^{n, m}\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right), x_{4}^{0, m}=0, \\
n= & 1,2, \ldots, N, \quad m=1,2, \ldots, M,
\end{aligned}
$$

where $K_{j}^{n, m}, j=1,2$, represent the travel time coefficients for the horifental and vertical links, immediately beyond node (n, m), respectively, and $F_{L}^{n, m}$ and $K_{R}^{n, m}$ rapresent the left-turn and rightturn ponalties respectively at node (n, m).

The Hamiltonian function and the adjoint variables can be written as

$$
\begin{aligned}
H^{n, m} & =\sum_{i=1}^{4} z_{i}^{n, m} x_{i}^{n, m} \\
& =z_{1}^{n, m}\left(\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right)+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right)\right) \\
& +z_{2}^{n, m}\left(\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right)+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right)\right) \\
& +z_{3}^{n, m}\left\{x_{3}^{n, m-1}+k_{1}^{n, m}\left(\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right)\right.\right. \\
& \left.+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right)\right) \\
& \left.+K_{L}^{n, m}\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right)\right\}+z_{4}^{n, m}\left\{x_{4}^{n-1, m}\right. \\
& +K_{2}^{n, m}\left(\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right)+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right)\right) \\
& +K_{R}^{n, m}\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}-\cdots\right\},
\end{aligned}
$$

$$
z_{1}^{n, m-1}=\frac{\partial H^{n, m}}{\partial x_{1}^{n, m-1}}
$$

$$
=z_{1}^{n, m} \theta_{1}^{n, \pi}+z_{2}^{n, m}\left(1-\theta_{1}^{n, m}\right)
$$

$$
+z_{3}^{n, m} K_{1}^{n, m_{\theta}}{ }_{1}^{n, m}+z_{4}^{n, m}\left[k_{2}^{n, t i}\left(1-\theta_{1}^{n}, m\right)+K_{R}^{n, m}\left(1-\theta_{1}^{n, m}\right)\right],
$$

$$
\begin{align*}
z_{2}^{n-1, m} & =\frac{\partial H^{n, m}}{\partial x_{2}^{n-1, n}} \\
& =z_{1}^{n, m}\left(1-\theta_{2}^{n, n}\right)+z_{2}^{n, m} \theta_{2}^{n, m}+z_{3}^{n, m}\left[K_{1}^{n, m}\left(1-\theta_{2}^{n, m}\right)\right. \\
& \left.+K_{L}^{n, m}\left(1-\theta_{2}^{n, m}\right)\right]+z_{4}^{n, m} K_{2}^{n, m} \theta_{2}^{n, m}, \tag{7}\\
z_{3}^{n, m-1}= & \frac{\partial H^{n}, m}{\partial x_{3}^{n, m-1}}=z_{3}^{n, m}, \tag{8}\\
z_{4}^{n-1, m}= & \frac{\partial H^{n}, m}{\partial x_{4}^{n-1, m}}=z_{4}^{n, m} . \tag{9}
\end{align*}
$$

The objective function to be ininimized is as follows

$$
\begin{equation*}
S=\sum_{n=1}^{N} c_{3} x_{3}^{n, M}+\sum_{m=1}^{M} c_{4} x_{4}^{N}, m=\sum_{n=1}^{N} x_{3}^{n, M}+\sum_{m=1}^{M} x_{4}^{N, m} \tag{10}
\end{equation*}
$$

Therefore,

$$
\begin{array}{ll}
c_{1}=0, & c_{2}=0, \\
c_{3}=1, & c_{4}=1, \tag{10b}
\end{array}
$$

and

$$
\begin{array}{ll}
z_{1}^{n, M}=c_{1}=0, & n=1,2, \ldots, N, \\
z_{2}^{N, m}=c_{2}=0, & n=1,2, \ldots, M, \\
z_{3}^{n, M}=c_{3}=1, & n=1,2, \ldots, N, \tag{11c}
\end{array}
$$

$$
\begin{equation*}
z_{4}^{N, m}=c_{4}=1, \quad m=1,2, \ldots, M \tag{11d}
\end{equation*}
$$

From equations (8), (9), (11c) and (11d) we have

$$
\begin{equation*}
z_{3}^{n, m}=z_{4}^{n, m}=1, \quad n=1,2, \ldots, N ; \quad m=1,2, \ldots, M . \tag{12}
\end{equation*}
$$

It is worth noting that the Hamiltonian function is linear in the decision variables, therefore, the optimal decisions, $\theta_{j}^{n, m}$, $j=1,2$, which are determined to mininize $H^{n, m}$ are aither the upper bound $\left(\theta_{j}^{n, m}=1.0\right)$ or the lower bound $\left(\theta_{j}^{n, n}=0.\right)$ of the decision variables.

COMPUTATIONAL PROCEDURE

There are several computational procedures which can be used to solve this type of problem. One of then is as follows:

Step 1. Assume θ^{\prime} s for all nodes; $\theta_{1}^{n, m}$ and $\theta_{2}^{n, m}$ at any node should either be zero or one.

Step 2. Start at node (1,1) and work forward through the network, calculate all the values of $\mathrm{x}_{\mathrm{i}}^{\mathrm{n}, \mathrm{m}}$ from equations (1) through (4).

Step 3. Start from the destination node and work backward to. calculate the values of the adjoint variables, $z_{i}^{n, m}$, $\mathbf{i}=1,2$, at each node, from equations (6), (7), (11), and (12).
Step 4. Minimize the Hamiltonian function at each stage, in turn, thus deternining the desired value of the decision variabjes at each node.

Step 5. Return to step 2 and repeat the process until two surcessive sets of decision-variable are identical.

NUMERICAL EXAMPLE

The technique is illustrated in the following simple numerical example. A 2×3 traffic -flow network is shown in fig. 4. The link travel time coefficients are as shown. The direction of flow in each link is preassigned. For convenience, assume $K_{L}^{n, m}=3$ and $\mathrm{K}_{\mathrm{R}}^{\mathrm{n}, \mathrm{m}}=1$, for $\mathrm{n}=1,2 ; \mathrm{m}=1,2,3$. Assume $\mathrm{V}^{1,1}=5$, $\mathrm{v}^{1,2}=5, \mathrm{v}^{2,3}=-10$, and all other $\mathrm{V}^{\mathrm{n}, \mathrm{m}}=0$. The problem is to find the minimum path from the origins (1,1) and (1,2) to the destination $(2,3)$.
Step 1. θ^{\prime} s arc assumed as follows:

$$
0_{1}^{1,1}=1, \quad \theta_{2}^{1,1}=0, \quad e_{1}^{1,2}=1, \quad \theta_{2}^{1,2}=0
$$

The values of θ^{\prime} s which are determined from the configuration are:

$$
\begin{aligned}
& \theta_{1}^{1,3}=0, \quad \theta_{2}^{1,3}=1, \quad \theta_{1}^{2,1}=1, \quad \theta_{2}^{2,1}=0 \\
& \theta_{1}^{2,2}=1, \quad \theta_{2}^{2,2}=0 .
\end{aligned}
$$

Step 2. Calculating forward starting from node (1, 1) for x 's by applying equations (1) through (4), we obtain

$$
x_{1}^{1,1}=5, \quad x_{2}^{1,1}=0, \quad x_{3}^{1,1}=132.5, \quad x_{4}^{1,1}=0
$$

Fig. 4. Neiworis for numerical problem .
$x_{1}^{1,2}=10, \quad x_{2}^{1,2}=0, \quad x_{3}^{1,2}=440, \quad x_{4}^{1,2}=0$,
$x_{1}^{1,3}=0, \quad x_{2}^{1,3}=10, \quad x_{3}^{1,3}=440, \quad x_{4}^{1,3}=310$,
$x_{1}^{2,1}=0, \quad x_{2}^{2,1}=0, \quad x_{3}^{2,1}=0, \quad x_{4}^{2 \cdot 1}=0$,
$x_{1}^{2,2}=0, \quad x_{2}^{2,2}=0, \quad x_{3}^{2,2}=0, \quad x_{4}^{2,2}=0$.

The total time for the assumption is

$$
s=\sum_{n=1}^{2} x_{3}^{n, 3}+\sum_{m=1}^{3} x_{4}^{2, m}=750
$$

Step 3. From equations (11a) and (11b) we have

$$
z_{1}^{1,3}=z_{1}^{2,3}=0, \quad z_{2}^{2,1}=z_{2}^{2,2}=z_{2}^{2,3}=0 .
$$

By applying the recurrence equations, given by equations (6), (7), (11) and (12) for adjoint variables, we now work backward starting from node $(2,3)$.

$$
\begin{aligned}
& z_{1}^{2,2}=0, \quad z_{1}^{2,1}=0, \quad z_{2}^{1,3}=0, \quad z_{2}^{1,2}=23, \\
& z_{2}^{1,1}=33, \quad z_{1}^{1,2}=31, \quad z_{1}^{1,1}=61 .
\end{aligned}
$$

Step 4. Because of the boundary conditions the decision variables at nodes $(1,3),(2,1)$, and $(2,2)$ are fixed. Hence, we need to minimize the Hamiltonian functions at nodes (1,2)
and (1,1) to minimize the total travel time.
There are four possible combinations of choosing $\theta_{1}^{1,2}$ and $\theta_{2}^{1,2}$ at node (1,2). The corresponding tamiltonian can be obtained as follows:
(1) The combination of $\theta_{1}^{1,2}=1$, and $\theta_{2}^{1,2}=0$, gives

$$
x_{1}^{1,2}=10, \quad x_{2}^{1,2}=0, \quad x_{3}^{1,2}=440, \quad x_{4}^{1,2}=0
$$

and

$$
H^{1,2}=750 .
$$

(2) The combination of $\theta_{1}^{1,2}=0$, and $e_{2}^{1,2}=1$ gives

$$
x_{1}^{1,2}=0, \quad x_{2}^{1,2}=10, \quad x_{3}^{1,2}=132.5, \quad x_{4}^{1,2}=507.5
$$

and

$$
H^{1,2}=870 .
$$

(3) The combination of $\theta \frac{1}{1}, 2=1$, and $\theta \frac{1,2}{2}=1$ gives

$$
x_{1}^{1,2}=7.5, \quad x_{2}^{1,2}=2.5, \quad x_{3}^{1,2}=365, \quad x_{l_{4}}^{1,2}=125
$$

and

$$
\mathrm{H}^{1,2}=780
$$

(4) The combination of $\theta_{1}^{1,2}=0$, and $\theta_{2}^{1,2}=0$ gives

$$
x_{1}^{1,2}=2.5, \quad x_{2}^{1,2}=7.5, \quad x_{3}^{1,2}=215, \quad x_{4}^{1,2}=382.5
$$

and

$$
H^{1,2}=947.5 .
$$

The minimum of the Hamiltonian is $H^{1,2}=750$, and the decisions are $\theta_{1}^{1,2}=1$ and $\theta_{2}^{1,2}=0$. These values are
used for the next iteration, and we obtain

$$
z_{1}^{1,1}=61, \quad z_{2}^{1,1}=33, \quad z_{3}^{1,1}=1, \quad z_{4}^{1,1}=1
$$

Similarly for node (1,1), we obtain
(1) For $\theta_{1}^{1,1}=1$, and $0 \frac{1,1}{2}=0$, we obtain

$$
x_{1}^{1,1}=5, \quad x_{2}^{1,1}=0, \quad x_{3}^{1,1}=132.5, \quad x_{4}^{1,1}=0
$$

and

$$
H^{1,1}=437.5
$$

(2) For $\theta_{1}^{1,1}=1$, and $\theta_{2}^{1,1}=1$, we obtain

$$
x_{1}^{1,1}=2.5, \quad x_{2}^{1,1}=2.5, \quad x_{3}^{1,1}=62.5, \quad x_{4}^{1,1}=50,
$$

and

$$
H^{1,1}=347.5
$$

(3) For $0_{1}^{1,1}=0$, and $\theta_{2}^{1,1}=1$, we obtain

$$
x_{1}^{1,1}=0, \quad x_{2}^{1,1}=5, \quad x_{3}^{1,1}=0, \quad x_{4}^{1,1}=102.5
$$

and.

$$
H^{1,1}=264.5 .
$$

(4) For $\theta_{1}^{1,1}=C$, and $\theta_{2}^{1,1}=0$, we have

$$
x_{1}^{1,1}=2.5, \quad x_{2}^{1,1}=2.5, \quad x_{3}^{1,1}=70, \quad x_{4}^{1,1}=52.5
$$

and

$$
H^{1,1}=357.5 \text {. }
$$

The minimum of the Hamiltonian is $H^{1,1}=264.5$ with the decisions of $\theta_{1}^{1,1}=0$, and $\theta_{2}^{1,1}=1$.

According to the procedure illustrated above, the results of the second iteration are as follows:

Step 1. Assume

$$
\begin{aligned}
& \theta_{1}^{1,1}=0, \quad \theta_{2}^{1,1}=1, \quad \theta_{1}^{1,2}=1, \quad \theta_{2}^{1,2}=0 . \\
& \theta^{n, \pi i} \text { s fixed by the boundary conditions are: } \\
& \theta_{1}^{1,3}=0, \quad \theta_{2}^{1,3}=1, \quad \theta_{1}^{2,1}=1, \quad \theta_{2}^{2,1}=0, \quad \theta_{1}^{2,2}=0, \\
& \theta_{2}^{2,2}=0 .
\end{aligned}
$$

Step 2.

$$
\begin{array}{lll}
x_{1}^{1,1}=0, & x_{2}^{1,1}=5, & x_{3}^{1,1}=0, \\
x_{4}^{1,1}=102.5, \\
x_{1}^{1,2}=5, & x_{2}^{1,2}=0, & x_{3}^{1,2}=157.5, \quad x_{4}^{1,2}=0, \\
x_{1}^{1,3}=0, & x_{2}^{1,3}=5, & x_{3}^{1,3}=157.5, \\
x_{4}^{2,1}=5, & x_{2}^{2,1}=0, & x_{3}^{2,1}=165, \\
x_{1}^{2}=155, \\
x_{4}^{2,1}=102.5, \\
x_{1}^{2}=5, & x_{2}^{2,2}=0, & x_{3}^{2,2}=265, \quad x_{4}^{2,2}=0,
\end{array}
$$

and

$$
s=\sum_{n=1}^{2} x_{3}^{n, 3}+\sum_{m=1}^{3} x_{4}^{2, \pi}=680
$$

Step 3.

$$
\begin{aligned}
& z_{1}^{2}, 2=0, \quad z_{1}^{2,1}=20, \quad z_{2}^{1,3}=0, \quad z_{2}^{1,2}=31, \quad z_{2}^{1,1}=61, \\
& z_{1}^{1,2}=23, \quad z_{J}^{1,1}=33 .
\end{aligned}
$$

Step 4.
At node $(1,2)$:
For $\theta_{1}^{1,2}=1$, and $\theta_{2}^{1,2}=0$, we obtain
$x_{1}^{1,2}=5, \quad x_{2}^{1,2}=0, \quad x_{3}^{1,2}=157.5, \quad x_{4}^{1,2}=0$,
and
$H^{1,2}=312.5$.

For $\theta_{1}^{1,2}=0$, and $\theta_{2}^{1,2}=1$, we have
$x_{1}^{1,2}=0, \quad x_{2}^{1,2}=5, \quad x_{3}^{1,2}=0, \quad x_{4}^{1,2}=252.5$,
and
$H^{1,2}=367.5$.

For $\theta_{1}^{1,2}=1$, and $0 \frac{1}{2}, 2=1$, we have
$x_{1}^{1,2}=2.5, \quad x_{2}^{1,2}=2.5, \quad x_{3}^{1,2}=75, \quad x_{4}^{1,2}=125$,
and
$H^{1,2}=335$.
For $0,1,2=0$, and $\theta_{2}^{1,2}=0$, we have
$x_{1}^{1,2}=2.5, \quad x_{2}^{1,2}=2.5, \quad x_{3}^{\mathrm{J}, 2}=82.5, \quad x_{4}^{1,2}=127.5$,
and
$H^{1,2}=345$.
The minimum of the Hamiltonian gives the optimal decision of $0 \frac{1,2}{1}=1$ and $\theta_{2}^{1,2}=0$.

At node (1,1):
For $\theta \frac{1}{1}, 1=0$, and $\theta_{2}^{1,1}=1$, we have
$x_{1}^{1,1}=0, \quad x_{2}^{1,1}=5, \quad x_{3}^{1,1}=0, \quad x_{4}^{1,1}=102.5$,
and
$H^{1,1}=267.5$.
For $\theta_{1}^{1,1}=1$, and $\theta \frac{1,1}{2}=0$, we have
$x_{1}^{1,1}=5, \quad x_{2}^{1,1}=0, \quad x_{3}^{1,1}=132.5, \quad x_{4}^{1,1}=0$,
and
$H^{1,1}=437.5$.
For $0 \frac{1}{1}, 1=1$, and $\theta \frac{1}{2}, 1=1$, we have
$x_{1}^{1,1}=2.5, \quad x_{2}^{1,1}=2.5, \quad x_{3}^{1,1}=62.5, \quad x_{4}^{1,1}=50$,
and
$H^{1,1}=347.5$.
For $\theta \frac{1}{1}, 1=0$, and $0 \frac{1}{2}, 1=0$, we have
$x_{1}^{1,1}=2.5, \quad x_{2}^{1,1}=2.5, \quad x_{3}^{1,1}=70, \quad x_{4}^{1,1}=52.5$,
and
$H^{1,1}=357.5$.
The minimum of the Hamiltonian is $H^{1,1}=267.5$ with the optimal decision of $\theta_{1}^{1,1}=0$, and $\theta_{2}^{1,1}=1$.

Thus, we find that when the iterative process is repeated, the last two consecutive sets of decision variables are identical and gives

$$
S=680 .
$$

Therefore, it is determined that for $V^{1,1}=5, V^{1,2}=5$, and $v^{2,3}=-10$, the least-time path for $v^{1,1}$ is $(1,1) \rightarrow(2,1) \rightarrow$ $(2,2) \rightarrow(2,3)$; and the least-time path for $\mathrm{V}^{1,2}$ is $(1,2) \rightarrow(1,3) \rightarrow$ $(2,3)$.

The number of iterations may increase with increasing dimension of the network. Figure 5 shows the number of iterations versus the total travel time for the numerical problem solved above.

CONCLUSION

For linear travel times the maximum principle method is identical with Moore's "Algorithm A.". Therefore, it may be concluded that the method provides an additional variational proof of Moore's algorithta.

Interested readers are referred to references [23] and [24] for more complex numerical examples than the one presented here.

Fig. 5. Number of iterations versus fotol trovel time.
3. TRAFEIC ASSIGNMENT USING NONLINEAR TRAVEL TIME FUNCTION

The constant travel time function to approximate the functional relationship of the travel time-volume in sec. 2 is a poor approximation. The travel time-volume relationship is introduced and a nonlinear travel time function which makcs it possible to simulate congestion on urban streets in more realistic manner is presented. This nonlinear travel time function is applied to a single copy (single destination) urban network and the optimal traffic assignment pattern j s obtained.

TRAVER TIME-VOLUME RELATIONSHIPS

Numerous studies [11,19] have shown that a predictablc relationship exists between speed and volume on urban streets and freeways. Figure 1 shows the typical telationship bctween the link traffic volume and link operation speed. Since the travel time is the reciprocal of speed, the curve shown in Fig. 1 can be converted to a travcl time-volume curve as shown in fig. 2. It can be explained from Figs. 1 and 2 that, when there are no vehicles on the street, the speed of any vehicle traveling on the street will be maximum, or it will require minimutitavel time. This is shown by Point A in $F j g$. 1, and Point A^{\prime} in Fig. 2. As the number of vehicles per hour increases on the link, obviously the specd of a vehicle on the link, will decrease. This decrease of the speed of vehicles, is linear as far as three fourths of the link capacity on a freeway is reached. The curve in Fig. 1 is almost linear u, to Point B, the corresponding point in Fig.

Fig.1. Typical Speed Volume Curve.

Fig. 2. Typical Travel - Time Volume Relarionship.

2 of the travel-time volume is B^{\prime}. Beyond this volume additional vehicles cause an incrasingly rapid reduction in the average speed of vehicles on the freeway. Point B in fig. 1 indicates the link capacity. If the volume at any time excceds this limit, there will be congestion. At the link capacity, the flow on the link becomes very unstable and a slight incident can cause a reduction in average speed. This can be indicated by dotted line on both the curves. Beyond capacity the travel time increases considerably.

To describe adcquately the relationship between the link travel time and the link volume, there are three conditions to be satisfied. First, there exists a proper travel time under free flow or near zero traffic volume conditions. Second, at low volumes travel times must increase slightly with increased traffic volune. Third, as link capacity is reached, travel time must increase rapidly to reflect the congestion condition.

A constant travel time function

$$
t=k
$$

which is used in sect. 2 is the simplest functional relationship to approximate the travel time curve shown in Fig. 2. It is apparent from fig. 2 that a constant travel time function is a Door approximation of the true travel time-volume relationship. The constant travel time function can meet only the first condition, that is, it can provide only for free flow travel times at near zero link traffic volumes. The constant function dnes not provife for greatly increased travel times as traffic volume increases ever though traffic volme may auproach link capacity.

The typical travel time-volume relationship over the range represented by the points $A^{\prime} B^{\prime} C^{\prime}$ on the curve can be approximatcd by the following non-linear functional relationship between the link travel time and the link volume [1]

$$
\begin{equation*}
t=k_{0}+k_{1} v+k_{2}(v / c)^{r} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
t= & \text { link travel time in hours per vehicle, } \\
\mathrm{k}_{0}= & \text { constant represcnting rravel time at free flow con- } \\
& \text { ditions, }
\end{aligned}
$$

$k_{1}, k_{2}=$ empirically derived constants,
$\mathbf{v}=$ link volume in vehicles per hour,
$C=1 i r k$ capacity in vehicles per hour,
$r=$ empirically derived exponent.
This equation, equation (2), contains three terms which are required to approximate the important characteristics of the typical time-volume curve in Fig. 2. The first term represents the travel time at free flow or near-zero volume conditions. The second term serves to increase travel times as link volume increases. The increase in travcl time duc to a unit increase in volume depends on the magnitude of the constant k_{1}. Thus, the first two terms of equation (2) represent the linear portion of the time-volume curves between the points A^{\prime} and B^{\prime} as shown in Fig. 2.

The third term, $k_{2}(v / C)^{r}$, represents the effect of congestion on the rravel time for the facility under consideration.

The magnitude of this effect will depend on the value of the exponent r and the constant k_{2} and if the link volume remains small compared to the capacity of the link this tera should contribute little to the link traval tine t. As the link volume nears capacity ($v>C$) the travel time becomes so great that in effect the link has been closed to additional traffic.

In Fig. 2 the dashed segment of the curve $A^{\prime} B^{\prime} C^{\prime}$ represents conditions of congestion and thus represcnts an undesirable operating region. In using equation (2) the operation of the system beyond the point B^{\prime} is difficult because the third term acts as a constraint which prevents the system from onerating in the S^{\prime} and C^{\prime} region. Operatiun is, however, possible in this range but as the expense of greatly increased travel tine. STATEMENT OF THE PRORLEM

An example of traffic assignment problem which is the minimization of total accumulative travel time for an urban street and freeway network is studied. The example network is shown in Fig. 3 together with the trip origin and destination. The network is composed of two classcs of streets, arterial streets and collector streets. Each class of street is characterized by a travel time function which is as follows:

$$
\begin{align*}
& t_{a}^{n, m}=k_{a 0}^{n, m}+k_{a 1}^{n, m} v^{n, m}+k_{a 2^{n}\left(m\left(\frac{v^{n}, m}{c^{n}, m}\right)^{r}\right.}^{t_{c}^{n, m}=k_{c 0}^{n, m}+k_{c 1}^{n, m} v^{n, m}+k_{c 2}^{n, m}\left(\frac{v^{n, m}}{c^{n}, m}\right)^{r}} \tag{3a}
\end{align*}
$$

Fig. 3. SIMPLE 4×4 NETWORK
where

$$
\begin{aligned}
& \mathbf{t}_{\mathrm{a}}=\text { link travel time on arterial streets, } \\
& \mathbf{t}_{c}=\text { link travel time on collector streets. }
\end{aligned}
$$

FORMULATION OF THE PROBLEM

In general, for a typical interior node of a rectangular network, as shown in Fig. 4, the performance equations are as follows:

$$
\begin{align*}
& x_{1}^{n, m}=\theta^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right), \tag{4}\\
& x_{2}^{n, m}=\left(1-\theta^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right), x_{2}^{0, m}=0, \tag{5}\\
& x_{3}^{n, m}=x_{3}^{n, m-1}+T_{3}^{n, m}\left(\theta^{n, m}, x_{1}^{n, m-1}, x_{2}^{n-1, m}, v^{n, m}\right), \\
& x_{4}^{n, m}=x_{4}^{n-1, m}+T_{4}^{n, m}\left(\theta^{n, m}, x_{1}^{n, m-1}, x_{2}^{n-1, m}, v^{n, m}\right), \tag{6}\\
& x_{3}^{n, 0}=0, \\
& n=1,2, \ldots, N ; \tag{7}
\end{align*}
$$

where
$x_{j}^{n, m}=a$ state variable representing the number of vehicles on link j immediately beyond node $(n, m), j=1,2$, in which $j=1$ denotes the horizontal link and $f=2$ denotes the vertical liak,

Fig. 4. Typical interior node showing assumed network flow directions.

$$
\begin{aligned}
& \mathrm{x}_{3}^{\mathrm{n}, \mathrm{n}}=\text { a state variable represcnting the accumulated } \\
& \text { travel time on horizontal links from node (} n, 1 \text {) } \\
& \text { including the horizontal link immediately beyond } \\
& \text { node (} n, m \text {), } \\
& x_{4}^{n}, m=a \text { state variable representing the accumulated } \\
& \text { travel time on vertical links from node (} 1, m \text {) in- } \\
& \text { cluding the vertical ink immediately beyond node } \\
& \text { (} \mathrm{n}, \mathrm{~m} \text {) , } \\
& \mathrm{T}_{\mathrm{j}}^{\mathrm{n}, \mathrm{~m}}=\text { the relationship betweer total vehicle hours on the } \\
& \text { horizontal link (} j=3 \text {) or on the vertical link (} j=4 \text {) } \\
& \text { immediately beyond node (} n, m \text {) and the number of } \\
& \text { vehicles on that link, }
\end{aligned}
$$

> work at node (n, n),
> $\theta^{n, 7 n}=$ the decision variable that represents the fraction of the vehicles which enter the nodc and leave on the horizontal link, at the node (n, m).

The objective function to be minimized, which is the total cumulative travel time of all trips in the system, is given by

$$
\begin{equation*}
S=\sum_{n=1}^{N} x_{3}^{n, M}+\sum_{m=1}^{M} x_{4}^{N, m} \tag{8}
\end{equation*}
$$

In this formulation of the problem, the travel time-volume relationship of equation (2) with $r=10$ is used, therefore, $\mathrm{T}_{3}^{\mathrm{n}, \mathrm{m}}$ and $\mathrm{T}_{4}^{\mathrm{n}, \mathrm{m}}$ are given by

$$
\begin{align*}
& T_{3}^{n, m}=\left[k_{10}^{n, m}+k_{11}^{n, m} x_{1}^{n, m}+k_{12}^{n, m}\left\{\frac{x_{1}^{n, m}}{c_{1}^{n, m}}\right\}^{10}\right] x_{1}^{n, m}, \tag{9}\\
& T_{4}^{n, m}=\left[k_{20}^{n, m}+k_{21}^{n, m} x_{2}^{n, m}+k_{22}^{n, m}\left\{\frac{x_{2}^{n, m}}{c_{2}^{n, m}}\right\}\right]_{2}^{10} x_{2}^{n, m} \tag{10}
\end{align*}
$$

where $C_{1}^{n, m}$ and $C_{2}^{n, m}$ are the link capacities of horizontal link and vertical link, respectively, immediately beyond node (n, m). The Hamiltonian function and the adjoint variables can be written as

$$
\begin{aligned}
& H^{n, m}=\sum_{i=1}^{4} z_{i}^{n, m} x_{i}^{n, m} \\
& =z_{1}^{n, m} \theta^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) \\
& +z_{2}^{n, m}\left(1-\theta^{n, m} ;\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)\right. \\
& +z_{3}^{n, m}\left(x_{3}^{n, m-1}+T_{3}^{n, m}\left(\theta^{n, m}, x_{1}^{n, m-1}, x_{2}^{n-1, m}, v^{n, m}\right)\right) \\
& +z_{4}^{n, m}\left(x_{4}^{n-1, n}+T_{4}^{n, m}\left(\theta^{n, n}, x_{1}^{n, m-1}, x_{2}^{n-1, m}, v^{n, m}\right)\right) \\
& =z_{1}^{n, m} \theta^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+z_{2}^{n, m}\left(1-\theta^{n, m}\right) \\
& \left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+z_{3}^{n, m}\left\{x_{3}^{n, m-1}+k_{10}^{n, m} \theta^{n, m}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+k_{1 i}^{n, m}\left[\theta ^ { n , m } \left(x_{1}^{n, m-1}+x_{2}^{n-1, m}\right.\right. \\
& \left.\left.\left.+v^{n, m}\right)\right]^{2}+k_{12}^{n, m} C_{1}^{n, m}\left[\theta^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) / C_{1}^{n, m}\right]^{11}\right\} \\
& +z_{4}^{n, m}\left\{x_{4}^{n-1, m}+k_{20}^{n, m}\left(1-\theta^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)\right. \\
& +k_{21}^{n, m}\left[\left(1-\theta^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, n}+v^{n, m}\right)\right]^{2} \\
& \left.+k_{22}^{n, m} c_{2}^{n, m}\left[\left(1-9^{n, m}\right)\left(x_{1}^{n, n-1}+x_{2}^{n-1, m}+v^{n, m}\right) / c_{2}^{n, m}\right]^{l l}\right\} \tag{11}\\
& z_{1}^{n, m-1}=\frac{\partial H^{n, m}}{\partial x_{1}^{n, m-1}} \\
& =z_{1}^{n, m} \theta^{n, m}+z_{2}^{n, m}\left(1-\theta^{n, m}\right)+z_{3}^{n, m}\left\{k_{10}^{n, m} \theta^{n, m}\right. \\
& +2 k_{11}^{n, m}\left(e^{n, m}\right)^{2}\left(x_{1}^{n, m-1}+x_{2}^{n_{1}-1, m}+v^{n, m}\right) \\
& \left.+11 k_{12}^{n, n}\left(\theta^{n, m}\right)^{11}\left[\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) / c_{1}^{n, m}\right]^{10}\right\} \\
& +z_{4}^{n, m}\left\{k_{20}^{n, m}\left(1-\theta^{n, m}\right)+2 k_{21}^{n, m}\left(1-\theta^{n, m}\right)^{2}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)\right. \\
& \left.+11 k_{22}^{n, m}\left(1-\theta^{n, m}\right)^{11}\left[\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) / C_{2}^{n, m}\right]^{10}\right\}, \tag{12}
\end{align*}
$$

$$
\begin{align*}
& z_{2}^{n-1, m r}=\frac{\partial H^{n, n}}{\partial x_{2}^{n-1, n}} \\
& =z_{1}^{n, m-1}, \tag{13}\\
& z_{3}^{n, m-1}=\frac{\partial \mu^{n, m}}{\partial x_{3}^{n}, m-1}=z_{3}^{n, n 2}, \tag{14}\\
& z_{4}^{n-1, m}=\frac{\partial H^{n, m}}{\partial x_{4}^{n-1, m}}=z_{4}^{n, m}, \tag{1.5}\\
& z_{1}^{n, M}=0, \quad n=1,2, \ldots, N, \tag{16}\\
& z_{2}^{N, m}=0, \quad m=1,2, \ldots, M, \tag{17}\\
& z_{3}^{n, M}=1, \quad n=1,2, \ldots, N, \tag{18}\\
& z_{4}^{N}, m=1, \tag{19}\\
& m=1,2, \ldots, M .
\end{align*}
$$

From equations (14), (15), (18) and (19), we obtain

$$
\begin{array}{ll}
z_{3}^{n, m}= & z_{4}^{n, m}=1, \tag{20}
\end{array} \quad n=1,2, \ldots, N,
$$

The optimal sequence of the decision variable, $\theta^{n, m}$ to minimize the total cumulative travel time is obtained from

$$
\begin{equation*}
\frac{\partial 4^{n, m}}{\partial e^{n, m}}=0 \tag{21a}
\end{equation*}
$$

or

$$
\begin{equation*}
H^{\mathrm{n}, \mathrm{~m}}=\text { minimum } \tag{21b}
\end{equation*}
$$

Equation (21a) gives

$$
\begin{align*}
\frac{\partial H^{n}, m}{\partial \theta^{n, m}} & =0 \\
& =\left(z_{1}^{n, m}-z_{2}^{n, m}+k_{10}^{n, m}-k_{20}^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) \\
& +\left[2 k_{11}^{n, m} \theta^{n, m}-2 k_{21}^{n, m}\left(1-\theta^{n, n}\right)\right]\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)^{2} \\
& +11 k_{12}^{n, m} C_{1}^{n, m}\left(\theta^{n, m}\right)^{10}\left[\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) / c_{1}^{n, m}\right]_{11} \\
& -11 k_{22}^{n, m} c_{2}^{n, m}\left(1-\theta^{n, m}\right)^{10}\left[\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) / c_{2}^{n, m}\right]^{11} . \tag{22}
\end{align*}
$$

The second partial derivative of the Hamiltonian with respect to the decision variable, $\theta^{\mathrm{n} . m}$, which is used at the computational procedure, is

$$
\begin{aligned}
\frac{\partial^{2} H^{n}, m}{\partial\left(\theta^{n, m}\right)^{2}} & =2\left(k_{11}^{n, n}+k_{21}^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)^{2} \\
& +110 k_{12}^{n, m} c_{1}^{n, m}\left(\theta^{n, m}\right)^{9}\left[\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) / c_{1}^{n, m}\right]^{11}
\end{aligned}
$$

$$
\begin{equation*}
+110 k_{2}^{n, m} c_{2}^{n, m}\left(1-\theta^{n, m}\right)^{9}\left[\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) / c_{2}^{n, m}\right]^{11} . \tag{23}
\end{equation*}
$$

This formulation of the problem assumes essentially that all flows along the links, in the network under consideration are in the direction of the increasing super script. This implies that the network destination node is the point (N, M) ; i.e., the node farthest to the right and down. If this is not the case, the network lias to be renumbered in such a fashion that it Eits the above assumpition. For instance, in a network such as that shown in Fig. 5, the network needs to be subdivided into four quadrants (networks) as shown in Fig. 6. Now, each quadrant would be treated as an independent problem except for the boundary perturbatiens caused by flows entering from adjaeent quadrants. In a case such as shown in Figs. 5 and 6, we have following equations:

$$
\begin{aligned}
& M^{I}+M^{I I}=M^{I I I}+M^{I V}=\operatorname{ii+1}=9, \\
& N^{I}+N^{I V}=N^{I I}+N^{I I I}=N+1=8
\end{aligned}
$$

where
$M^{I}=$ number of columns on quadrant I,
$M^{I I}=$ number of columns on quadrant $I I$,
$M^{I I I}=$ number of columns on quadrant I I,
$M^{I V}=$ number of columns on quadrant $I V$,
$N^{I}=$ number of rows on quadrant I,

Fig. 5 Typical NxM Neiwork.

Fig. 6. Subdivided network

```
N}\mp@subsup{N}{}{II}=\mathrm{ number of rows un quadrant II,
N
N
```

The links along the interior boundaries of the various quadrants are common to each of the two adjacent networks and must reflect the flows from each quadrant. For example, the links along the interior boundary $A_{1} B_{1}$ of quadrant I is common to the links of boundary $A_{2} B_{2}$ of the adjacent quadrant $I I$, and $C_{1} B_{1}$ of quadrant I is common to $A_{4} B_{4}$ of quadrant IV.

COMPUTATIONAL PROCEDURE

By using equations (4) through (22) the optimal sequence of decision variables, $\theta^{n, m}$, can be found. The particular algorithm used to accomplish this is as follows:

Step 1. Assign the proper values to the system parameters. These parcmeters include the empirically found constants, $k_{j, i}^{n, m}$ and the exponent ' r ' for the travel time equations and the input or output ($\mathrm{v}^{\mathrm{n}, \mathrm{m}}$) for each node (n, m).
Step 2. Assume a set of decision variables, $\theta^{n, m}$, at each node in the network. It is worth mentioning again that $0 \leq \theta^{n, m}$ ≤ 1.
Step 3. Use equations (4) through (7) to obtain the state variables, $x_{1}^{n, m}, x_{2}^{n, m}, x_{3}^{n, m}$, and x_{4}^{n}, m at each node of the network. Start at $n=m=1$ and procecd to $n=N, m=M$.
Step 4. Calculate the valucs of the adjoint variables $z_{1}^{n, m}$ and $z_{2}^{n, m}$. Werk bickward, starting at $n=N, m=M$ and proceeding $\mathrm{ton}=\mathrm{m}=1$.

Step 5. Calculate $\frac{\partial H^{n}, m}{\partial \theta^{n}, m}$ and $\frac{\partial^{2} H^{n}, m}{\partial\left(\theta^{n}, m\right)^{2}}$ by equations (22) and (23), using the values of $x_{i}^{n, 12}$ and $z_{i}^{n, m}$ obtained above.
Step 6. Compute a new sequence of decision variables $\theta^{n, m}$ from the following equation.

$$
\begin{equation*}
\left(\theta^{n, m}\right) \text { revised }=\left(\theta^{n, m}\right)_{\text {old }}+\Delta \theta^{n, m} \tag{24}
\end{equation*}
$$

Where $\Delta \theta^{n, m}$ is given by

$$
\begin{equation*}
\Delta \theta^{n, m}=-\frac{\partial H^{n, m}}{\partial \theta^{n, m}} / \frac{\partial^{2} H^{n}, n}{\partial\left(\theta^{n, m}\right)^{2}} \tag{24a}
\end{equation*}
$$

Step 7. Return to step 3 and repeat the procedure until the new set of decision variables is sufficiently close to the previous set to indicate adequate convergence.

It is worth noting that when the optimal point is not reached, a revised set of decision variables given by equation (24) are assumed and the computations are repeated. For minimization of the Hamiltonian, $H^{n, m}$, the second derivative of the Hamiltonian with respect to the decision variable,

$$
\frac{\partial^{2} n n, m}{\partial\left(\theta^{n, m}\right)^{2}}
$$

is positive. When the first derivative of the Hamiltonian with respect to the decision variable,

$$
\frac{\partial H^{n}, m}{\partial \theta^{n}, m}
$$

is negative, then the increment of the decision variable, $\Delta \theta^{n, m}$, should be positive, and if

$$
\frac{\partial H^{\mathrm{n}, \mathrm{~m}}}{\partial \theta^{\mathrm{n}, \mathrm{~m}}}
$$

is positive, $\Delta \theta^{n, m}$ should be negative in order that the decision variable approaches to the optimal point. The magnitude and the sign of the increment $\Delta \theta^{n, m}$ is given by equation (24a).

In the case of a multi-quadrant problem such as that shown in Figs. 5 and 6 the above procedure is carried through on cycle for the $1^{\text {st }}$ quadrant (I) as if it were a total problem. Then one cycle is carried out for the 2 nd quadrant (II), using the volume, previously obtained on the horizontal links of quadrant one (I) adjacent to the common boundary of quadrants one and two as inputs to the second quadrant at the common boundary nodes. For this cycle it is assumed that quadrant three does not exist at all. One cycle is carried out on quadrant three, using the volumes on vertical links adjacent to tiae common boundary between quadrants two and three as inputs at the boundary nodes common to quadrants two and three and ignoring quadrant four. Quadrant four is also handled in a similar fashion. On the second and subsequent cycles the boundary inputs are taken to be the values obtained on the previous cycles for the adjacent quadrants. In this way an assignment can be made for an arbitrarily located destination node.

NUMERIGAL EXAMPLES

The technique described above is illuatrated in the following two simple numerical examples.

Example I
Figure 7 shows a 4×4 traffic flow network. The link travel time coefficients are givea by the following equations:

$$
\begin{aligned}
t_{a}= & 10+.06 v+10(v / 180)^{10} \text { (arterial streets and frontage } \\
& \text { road) } \\
t_{f}= & 5+.02 v+10(v / 360)^{10} \text { (freeway) }
\end{aligned}
$$

where

$$
\begin{aligned}
& k_{j 0}^{n, m}=10, j=1,2 \text { for arterial streets, } \\
& k_{j 0}^{n, m}=5, j=1,2 \text { for freaways, } \\
& \mathrm{k}_{\mathrm{j} 1}^{\mathrm{n}, \mathrm{~m}}=.06, \mathrm{j}=1,2 \text { for arterial streets, } \\
& k_{j 1}^{n, m}=.02, j=1,2 \text { for freeways, } \\
& \mathrm{k}_{\mathrm{j}}^{\mathrm{n}} \mathrm{~m}^{\mathrm{m}}=10, \mathrm{j}=1,2 \text { both for arterial street and freeways, } \\
& C_{j}^{n, m}=180, j=1,2 \text { for arterial streets, } \\
& c_{j}^{n, m}=360, j=1,2 \text { for frecways. }
\end{aligned}
$$

The central business district which is the destination, is assumed to be at node (4, 4). The direction of flow in each link is preassifned. The input volumes are also shown in Fig. 7. The problem is to find an optimal traffic assignment along the links for minimum path from origins to the destination.

Figure 7. NETWORK FOR NUMERICAL EXAMPLE 1.

The optimal sequence of the decision variables was obtained by an IBM $360 / 50$ computer and the final traffic assignment is presented in Fig. 8. The total accumulated travel time is 14,076 time units. It has taken 32 iterarions.

Since the destination node is at the last node (4,4) itself the problem is a single quadrant problem.

Example 2
A 5×5 traffic flow network is shown in Fig. 9. The link travel time coefficients are given by the following equations:

$$
\begin{aligned}
t_{c}= & 12+.08 v+10(v / 150)^{10}(\text { collector streets) } \\
t_{a}= & 10+.06 v+10(v / 180)^{10} \text { (arterial streets and frontage } \\
& \text { road) } \\
t_{f}= & 5+.02 v+10(v / 360)^{10} \text { (freeway) }
\end{aligned}
$$

where

$$
\begin{aligned}
& k_{j 0}^{n, m}=12, j=1,2 \text { for collector streets, } \\
& k_{j 0}^{n, m}=10, j=1,2 \text { for arterial streets, } \\
& k_{j 0}^{n, m}=5, j=1,2 \text { for freeways, } \\
& k_{j 1}^{n, m}=.08, j=1,2 \text { for collector streets, } \\
& k_{j i}^{n}, m=.06, j=1,2 \text { for arterial streets, } \\
& k_{j 1}^{n}, m=.02, j=1,2 \text { for freeways, }
\end{aligned}
$$

TOTAL accuanlated travel time el6076 (Timo Unios)
Figure 8. OPTIMAL TRAFFIC ASSIGNMENT FOR. NUMERIGAL EXAMPLE 1.

$\Longrightarrow t_{4}=5+.02 v^{2}+10(\sqrt{7} / 360)^{10}$, Freeway
$\Longrightarrow \quad t_{a}=10 \% .05 \mathrm{p}+10(\mathrm{~V} / 360)^{10}$, Arierial streat
—— $i_{c}=12 \div .036+10(2 / 150)^{10}$, collecior sircer
Figure 9. NeTWORK FOR NUMERCAL EXAMPLE: 2.

```
\(k_{j 2}^{n, m}=10, j=1,2\) for all three types,
\(C_{j}^{n, m}=150, j=1,2\) for collector strcets,
\(C_{j}^{n, m}=180, j=1,2\) for arterial strcets,
\(c_{j}^{\mathrm{n}, \mathrm{m}}=360, j=1,2\) for freeways.
```

The destination is assumed to be at node (5, 3). The direction of flow in each link is preassigned. The input volumes are also shown in Fig. 9. The problcm is to find an optimal traffic assignment along the links so that all the vehicles reach the destination node $(5,3)$ in minimum time.

As the destination node is not the last node (5,5), the problcm bccomes a two-quadrants problem.

The results were obtajned by an $I B M$ and they are presented in Fig. 10. The total travel tine is 27,777 time units. It takes 85 iterations.

COMPUTATIONAL CHARACTERISTICS

Assignment by the maximum principle is achieved through a series of iterations until desired convergence has occurred. Each iteration is a fasible solution to the problem although not necessarily the optimal one. To begin this iteration process in this study, it is first assumed that the vehicles entering a node would be divided cqually betwecn the horizontal and the vertical links when they leave the node, i.e.,

TOTAL ACCUMULATED TRAVEL TIME $=27,776$ TIME UNITS
Figure 10. OPTIMAL TRAFFIC ASSIGNMENT FOR NUMERICAB EXAMPLE 2.

$$
\begin{array}{ll}
\theta_{1}^{n}, \mathrm{~m} & =.5, \\
n=1,2, \ldots, N
\end{array}
$$

This provides the first feasiblc solution from which subsequent iteratious arc made. The numerical resulis for both problems will now be discussed in detail.

Fxample 1: Using an $I B M 360 / 50$ computcr the optimal total system travel time obtained is 14,076 time units and the convergence is obtained after 32 iterations. The computer took approximately 155 secouds to executc this program. Compilation time is approximatcly 129.6 seconds thus 1 caving 25.4 seconds for 32 iterations, or approximatcly . 793 second per iteration.

It can be seen from Fig. 11 and Table 1 that the total system travel time calculated for each of the first few iterations is considerably greatcr than the final total travel time. Table 1 shows the total travel time at each iteration. We can sce from Table 1 that the total travel time for first iteration is considerably high, namely $782,542,080$ time units, and at the end of iteration 2 it is $1,215,121$ time units. But it drops abn to 17,894 time units at the end of 3 rd iteration. From iteration 4 to iteration 19 , the total travel time fluctuates, then from iteration 20 onwards it fluctuates very slowly until it converges to 14,076 time units in 32 nd itcration.

The iteration process is stopped when

$$
\left|\frac{s_{\text {ncw }}-s_{o 1 d}}{S_{\text {new }}}\right| \leq .00001
$$

Ficu:a II. total accumulated travel. tmae ves. Numgen of lTERHTIONS.

Table 1. Total travel time at each iteration.

Iteration	Total Travel Time
1	$782,542,080$
2	$1,215,121$
3	17,894
4	67,980
7	14,449
8	14,764
11	14,176
16	14,253
20	14,090
30	14,082
31	14,077
32	14,076

where $S_{n e w}$ is total travel time in the present iteration, and Sold total travel time in the previous iteration. At this point the volumes on all the links of the network do not change appreciably in subsequent itcrations.

Example 2: Using an IBM 360/50 computer the optimal total system travel time is 27,777 time units and the convergence occurred after 85 iterations. The computer took approximately 208.8 seconds to ezecute the program. The compilation time is approximately 129.6 seconds thus leaving 79.2 seconds for 85 iterations, or approximatcly. 932 seconds per iteration.

As shown in Fig. 12 and Table 2 the total system travel time calculated for each of the first few iterations is again considerably greater than the final total travel time. Table 2 shows the total travel time at each iteration. Referrins to Table 2 we note that the total travel time for first iteration is considerably high, namely $1,814,837,800$ time units, and it drops to 904,504 time units for $2^{\text {nd }}$ iteration. It again drops to 37,143 time units in the $3^{\text {rd }}$ iteration. The quick convergence at these iterations can be actributed to the computational procedures employed here based on the maximum principle algorithm. It fiuctuated from iteration 4 to iteration 18 , and then started converging slowly to 27,777 time unit in 85 iterations.

In this problem also the iteration process is stopped when

$$
\left|\frac{s_{\text {new }}-s_{\text {old }}}{s_{\text {new }}}\right| \leq .00001
$$

Figure 12. TOTAL ACCUNMMATED TRAVEL Thíe VS. NUMEER OF VIERATIONS.

Table 2. Total Travel Time at each Iteration.

Iteration No	Total Travel Time
1	$1,814,837,800$
2	904,504
4	37,143
5	32,378
8	31,775
10	35,831
11	35,069
12	28,728
15	30,389
20	28,086
40	27,820
70	27,800
85	27,781

At this point the volumes on all the links of the network do not change aporeciably in subsequant iterations.

As we have noted, the computational time pcr iteration increased as the number of nodes increased. It can be said that the computational time per iteration increases approximately linearly with increase in the number of nodes (or in other words the size of the network).

Figures 13,14 and 15 illustrate the traffic assignment at the end of 5 th, $32 n d$ and 70 th iteration respectivcly for numerical example 2. Comparison of these assignments with the optimal traffic assignment as shown in Figure 10 can be made. be note first that as the number of iterations increase the total travel time decreases as it should be. The total travel time at the end of 5 th iterations is 31,774 time units. At the end of 32 nd and 60 th iteration the values are 27,806 and 27,781 time units respectively and finally it converges to 27,777 at 85 th iterations. We also note that traffic assignment at different nodes does not remain the samc as the number of iterations increases, but it gradually tends towards the optimal. For example consider node (1, 1). The input volume is 10 vehicles. In the 5 th iteration all the 10 vehicles arc assigned to the horizontal link while no vchicle is on the vertical link. At the end of $32 n d$ iteration 9 vehicles are assigned to horizontal link while one vehicle is assigncd to the vertical link; and at the cnd of 70 th iteration 4 vehicles havc been assigned to the horizontal link and 6 vchicles to the vertical link and finally 3 vehicles are assigned

TOTAL TRAVEL TIME $=31,774$ (Time Units)
Figure 13. taaffic assionment iteration 5 FOB NUMERICAL EXAMPLE 2.

TOTAL TRAVEL TME $=27,806$ TME UNITS
Figure 19 orbaffic assignment at itemation 32 For numernal mamploe 2 ;

Total travel time $=27,781$ (time Units)
Figure 15. TRAFFiC ASSIGMnENT AT ITERATION 70 FOR NUMERICAL EXAMiPLE 2.
on the horizontal link while 7 vehicles on the vertical link, which is the optimal traffic assignment. In a similar fashion we can explain the gradual change in the traffic assignment at different nodes. At node (1,3) the assignment on vertical link increases from 40 to 58 and to 62 as iterations increase from 5 th to $32 n d$ and to 70 h. At the same time the assignment on the horizontal link is zero at the end of 5 th iteration but it increased to 23 at the end of 32 nd iteration and then to 24 at the end of 70 th and 85 th iterations.
4. TRAFFIC ASSIGNMENT USING NONLINEAR TIME FUNCTION. WITH MULTI-COPY NETWORK

Single copy (multi-ovigin single destination) assignments, based on constant and nonlinear iravel time-volume relationships, have been studied in sections 2 and 3 . In this section the traffic assignment for a multi-copy network is considered. In a multi-copy network we have a multi-origin and multi-destination network. This represents an actual situation, since we usually do not have a single destination in actual practice. At the computational procedure to obtain an optinal solution, the multicopy problem is reduced to a series of constrained single copy problens. Two numerical examples, one considering the turn penalty and the other without penalty, are presented.

4-1. Multi-Copy Network With Turn Penalty

STATEMENT OF THE PROBLEM

The problem is to obtain an optimum traffic assignment to a network which minimizes the total accumulative travel time. The prototype urban network shown in Fig. lis composed of three classes of streets; freeways, arterial streets and collector streets. The trip distribution pattern is also given and is composed of three copies; that is three zones of destination and numerous zones of origin. In the problem shown in Fig. 1 all trips are destined to zone A (copy 1), zone B (copy 2), and zone C (copy 3). It is assumed that each trip will be made by a separate vehicle.

Figure 1 . Multicopy exampia.

Each class of strect is characterized by a travel time function as follows:

$$
\begin{align*}
& \mathrm{t}_{\mathrm{f}}=1+9 \times 10^{-5}\left(\frac{\mathrm{v}}{\ell}\right)+2 \times\left(\frac{\mathrm{v} / \ell}{1800}\right)^{10} \tag{1}\\
& \mathrm{t}_{\mathrm{a}}=2+10 \times 10^{-5}\left(\frac{\mathrm{v}}{\ell}\right)+2 \times\left(\frac{\mathrm{v} / \ell}{900}\right)^{10} \tag{2}\\
& \mathrm{t}_{\mathrm{c}}=2.5+10 \times 10^{-5}\left(\frac{\mathrm{v}}{\ell}\right)+2 \times\left(\frac{\mathrm{v} / \ell}{750}\right)^{10}
\end{align*}
$$

where
$t_{f}=$ link travel time in minutes on frecways
$t_{a}=$ link travel timc in minutes on arterial strects
$t_{c}=1 i n k$ travel timc in minutcs on collector streets
In general, the following nonlinear functional relationship represents the link travel time and the link volume.

$$
\begin{equation*}
t=k_{0}+k_{1}\left(\frac{v}{\ell}\right)+k_{2}\left(\frac{v}{C \ell}\right)^{r} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
t & =\text { link travel time for vehicle, } \\
k_{0} & =\text { constant representing time at free flow conditions, } \\
k_{1}, k_{2} & =\text { empirically derived constants, } \\
v & =\text { link volume in vehicles pcr hour, } \\
c & =\text { lane capacity in vehiclcs pcr lane per hour, } \\
\ell & =n u m b c r \text { of lanes making un the link in one direction, } \\
r & =\text { cmpirically derivcd exponent. }
\end{aligned}
$$

Equation (4) is similar to equation (2) of section 3 . Since k_{1}, k_{2}, v and ℓ are given constants for each link, equation (4) can be written as

$$
\begin{equation*}
t=k_{0}+k_{1}^{\prime} v+k_{2}^{\prime}(v)^{r} \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{k}_{1}^{\prime}=\mathrm{k}_{1} / \ell \\
& \mathrm{k}_{2}^{\prime}=\left(\frac{\mathrm{k}_{2}}{\mathrm{C} \mathrm{\ell}}\right)^{\mathrm{r}} .
\end{aligned}
$$

Also included in this problem is a penalty accessed to any vehicle which makes a right or left hand turn. The turi penalties are volume independent and in this case are assumed as follows:

$$
\begin{aligned}
& k_{L}=0.3 \text { minutes (left turn penalty) }, \\
& k_{R}=0.1 \text { minutes (right turn penalty). }
\end{aligned}
$$

formulation of the problem with turn penalty

To facilitate the formulation of the problem consider a typical interior network node, at (n, m) as shown in Fig. 4 of section 3. The performance equations associated with that node are as follows:
$x_{1}^{n, m}=\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)$,

$$
\begin{align*}
& x_{1}^{n, 0}=0, \\
& x_{2}^{n, m}=\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right), \\
& x_{2}^{0, m}=0, \\
& x_{3}^{n, m}=x_{3}^{n, m-1}+T_{3}^{n, m}\left(\theta_{1}^{n, m}, \theta_{2}^{n, m}, x_{1}^{n, m-1}, x_{2}^{n-1, m}, v_{1}^{n, m}, k_{L}\right), \\
& x_{3}^{n, 0}=0, \\
& x_{4}^{n, m}=x_{4}^{n-1, m}+T_{4}^{n, m}\left(n_{1}^{n, m}, n_{2}^{n, m}, x_{1}^{n, m-1}, x_{2}^{n-1, m}, v^{n}, m, v^{n}, m, k_{R}\right) \tag{9}\\
& x_{4}^{0, m}=0, \tag{9a}
\end{align*}
$$

where

$$
x_{j}^{n, m}=a \text { state variable representing the number of vehicles }
$$ on link j immediately beyond node $(n, m), j=1,2$, in which $j=1$ denotes the horizontal link and $j=2$ denotes the vertical link, $x_{3}^{n, m}=$ a state variable representing the accumulated travel time on horizontal links from node ($n, 1$) including the horizontal link immediately beyond node (n, m),

$x_{4}^{n, m}=a$ state variable representing the accumulated travel time on vertical links from node ($1, m$) including the vertical link immediately bcyond node (n, m),
$T_{3}^{n, m}=$ the relationship between total vchicle minutes on the horizontal link immediately beyond node (n, m) and the number of vchicles on that link,
$T_{4}^{n, m}=$ the relationship between total vehicle minutes on the vertical link immediately beyond node (n, m) and the number of vehicles on that link,
$v^{n, m}=$ the number of vehicles entering or leaving the network at node (n, m). It is assumed that v^{n}, m can be split so that $v^{n}, m / 2$ enters the vertical link, and the horizontal link, respectivel.y, just ahead of node (n, m),
$v^{n, m}=$ the number of vehicles on the same links in the same direction as x_{1}^{n}, m, obtained from previous copies,
$v v^{n, m}=$ the number of vehicles on the same links in the samc direction as x_{2}^{n}, outaincd from previous copies, $\theta_{1}^{n, m}=$ the decision variable that represents the fraction of the vehicles which enter the node on a horizontal link and leave on the horizontal link, at node (n, m), $\theta_{2}^{n, m}=$ the decision variable that represents the fraction of the vehiclcs which enter the node on a vertical link and leave on the vertical link, at the node (n, m).
The object function to be minimized is given by

$$
\begin{equation*}
S=\sum_{n=1}^{N} c_{3} x_{3}^{n, M}+\sum_{m=1}^{M} c_{4} x_{4}^{N, m}=\sum_{n=1}^{N} x_{3}^{n, M}+\sum_{m=1}^{M} x_{4}^{N, m} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{1}=0, \quad c_{2}=0, \quad c_{3}=1, \quad c_{4}=1 . \tag{10a}
\end{equation*}
$$

The Hamiltonian and the adjoint variables can be written as

$$
\begin{aligned}
& H^{n, m}=\sum_{i=1}^{4} z_{i}^{n, m} x_{i}^{n, m} \\
& =z_{1}^{n, m}\left(\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)+\left(1-\theta_{2}^{n}, m\right)\left(x_{2}^{n-1}, m+v^{n, m} / 2\right)\right) \\
& +z_{2}^{n, m}\left(\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)+0_{2}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)\right) \\
& +z_{3}^{n, m}\left\{x_{3}^{n, m-1}+k_{10}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right. \\
& \left.+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, n}+v^{n, m} / 2\right)+v h^{n, m}\right) \\
& +k_{11}^{\prime n, m}\left(\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right. \\
& \left.+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v h^{n, m}\right)^{2} \\
& +k_{12}^{n, m}\left(\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right. \\
& \left.+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v h^{n, m}\right)^{11}
\end{aligned}
$$

$$
\begin{align*}
& \left.+k_{L}\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)\right\} \\
& +z_{4}^{n, m}\left\{x_{4}^{n, m-1}+k_{20}^{\prime n}, m\left(1-e_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right. \\
& \left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v v^{n, m}\right) \\
& +k_{21}^{\prime n, m}\left(\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right. \\
& \left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v v^{n, m}\right)^{2} \\
& +k_{22}^{\prime} n, m\left(\left(1-\theta_{1}^{n}, \pi\right)\left(x_{1}^{n, m-1}+v^{n}, m / 2\right)\right. \\
& \left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v v^{n, m}\right)^{11} \\
& \left.+k_{R}\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+v^{n}, m / 2\right)\right\} \tag{11}\\
& z_{1}^{n, m-1}=\frac{\partial \mu^{n, m}}{\partial x_{1}^{n, m-1}} \\
& =z_{1}^{n, m} \theta_{1}^{n, m}+z_{2}^{n, m}\left(1-\theta_{1}^{n, m}\right)+z_{3}^{n, m} k_{10}^{n, m} \theta_{1}^{n, m} \\
& +z_{4}^{n, m} k_{20}^{, n, m}\left(1-\theta_{1}^{n, m}\right)+z_{3}^{n, m} 2 k_{11}^{\prime n}, m \theta_{1}^{n, m}\left(\theta_{1}^{n, m}\right. \\
& \left.\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right)+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right)+v h^{n}, m\right)
\end{align*}
$$

$$
\begin{align*}
& +11 k_{12}^{n}{ }_{1}^{n} \theta_{1}^{n, m}\left(\theta_{1}^{n, m}\left(x_{1}^{n, r a-1}+\frac{y_{n}^{n, n n}}{2}\right)\right. \\
& \left.+\left(1-\theta_{2}^{n}, m\right)\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right)+v h^{n, m}\right)^{10} \\
& +z_{4}^{n, m} 2 k^{\prime} n_{1}^{n, m}\left(1-\theta_{1}^{n, m}\right)\left(\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+\frac{v^{n, m}}{2}\right)\right. \\
& \left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+\frac{v^{n, m}}{2}\right)+v v^{n, m}\right) \\
& +11 k^{\prime} 2_{2}^{n, m}\left(1-\theta_{1}^{n, m}\right)\left(\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+\frac{v^{n, m}}{2}\right)\right. \\
& \left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+\frac{v^{n, m}}{2}\right)+v v^{n, m}\right)^{10} \\
& +z_{4}^{n, m} k_{R}\left(1-\theta_{1}^{n}, m\right), \tag{12}\\
& z_{2}^{n-1, m}=\frac{\partial H^{n, m}}{\partial x_{2}^{n-1, m}} \\
& =z_{1}^{n, m}\left(1-\theta_{2}^{n, m}\right)+z_{2}^{n, m} \theta_{2}^{n, m}=z_{3}^{n, m} k_{10}^{n, m}\left(1-\theta_{2}^{n, m}\right) \\
& +z_{4}^{n, m} k_{20}^{, n, m} \theta_{2}^{n, m}+z_{3}^{n, m} 2 k_{11}^{, n, m}\left(1-\theta_{2}^{n, m}\right) \\
& \left(\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right)+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right)+v h^{n \cdot m}\right) \\
& +11 k_{12}^{\prime n, m}\left(1-\theta_{2}^{n, n}\right)\left(\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+\frac{v^{n}, m}{2}\right)\right. \\
& \left.+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1}, m+\frac{v^{n}, m}{2}\right)+v h^{n, m}\right)^{10}
\end{align*}
$$

$$
\begin{align*}
& +z_{4}^{n, m} 2 k_{21}^{n, m} \theta_{2}^{n, m}\left(\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+\frac{v^{n, m}}{2}\right)\right. \\
& \left.+\theta_{2}^{n} \cdot m\left(x_{2}^{n-1, m}+\frac{v^{n}, m}{2}\right)+v v^{n, m}\right) \\
& +11 k_{2}^{\prime} 2^{n, m} \theta_{2}^{n, m}\left((1 - \theta _ { 1 } ^ { n , m }) \left(x_{1}^{n, m-1}+{\frac{v^{n}, m}{2}-}_{2^{n}}\right.\right. \\
& \left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, n}+\frac{v^{n, m}}{2}\right)+v h^{n, m}\right)^{10} \\
& +z_{3}^{n, m_{k}}\left(1-\theta_{2}^{n, m}\right), \tag{13}\\
& z_{3}^{n, m-1}=\frac{\partial 1^{n, m}}{\partial x_{3}^{n, m-1}} \\
& =z_{3}^{n, m} \text {, } \tag{14}\\
& z_{1}^{r, M}=0, \tag{16}\\
& n=1,2, \ldots, N, \\
& z_{2}^{N, m}=0, \quad m=1,2, \ldots, M, \tag{17}\\
& z_{3}^{n, M}=1, \quad n=1,2, \ldots, N, \tag{18}
\end{align*}
$$

$$
\begin{equation*}
z_{4}^{N, m}=1, \quad m=1,2, \ldots, M . \tag{19}
\end{equation*}
$$

wherc

$$
\begin{aligned}
& k_{j, q}^{\prime n}, m \text { the parameters in the travel time-volume relationship } \\
& \text { in which } j=1,2 \text { denotes horizontal and vertical links } \\
& \text { respectively and } q=0,1,2 \text { denotes coefficient num- } \\
& \text { bers. } \\
& \text { Fromequations }(14),(15),(18), \text { and }(19) \text {, we obtain }
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{z}_{3}^{\mathrm{n}, \mathrm{~m}}=\mathrm{z}_{4}^{\mathrm{n}, \mathrm{~m}}=1 & \mathrm{n}=1,2, \ldots, \mathrm{~N}, \\
& \mathrm{~m}=1,2, \ldots, \mathrm{M} . \tag{20}
\end{array}
$$

The optimal scquence of the decision variables, θ_{1}^{n}, m and θ_{2}^{n}, n which minimize the total cumulative travel time are obtained from

$$
\begin{equation*}
\frac{\partial H^{n, m}}{\partial \theta_{1}^{n}, m}=0 \tag{2la}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial H^{n, m}}{\partial e_{2}^{n}, m}=0 \tag{21b}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{H}^{\mathrm{n}, \mathrm{~m}}=\text { minimum } . \tag{22}
\end{equation*}
$$

Equations (2la) and (21b) give

$$
\begin{align*}
& \frac{\partial H^{n, m}}{\partial \theta_{1}^{n, m}}=0 \\
& =z_{1}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)-z_{2}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right) \\
& +k_{10}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)+2 k_{11}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right) \\
& {\left[\theta_{1}^{n, n}\left(x_{1}^{n, m-1}+v^{n, m / 2}\right)+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)\right.} \\
& \left.+v h^{n, m}\right\}+11 k_{12}^{\prime n, m}\left(x_{1}^{n, m-1}+v^{n}, m / 2\right) \\
& {\left[\theta_{1}^{n, n}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)\right.} \\
& \left.+v h^{n, m}\right)^{10}-k_{20}^{\prime n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right) \\
& -2 k_{21} i^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right) \\
& {\left[\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right.} \\
& +0_{2}^{n, \mathrm{na}}\left(\mathrm{x}_{2}^{\mathrm{n}-1, m}+\mathrm{v}^{\mathrm{n}, \mathrm{~m} / 2)}+\mathrm{v} \mathrm{v}^{\mathrm{n}, \mathrm{~m}}\right\} \\
& -11 k_{22}^{, n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\left(\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right. \\
& \left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v v^{n, m}\right]^{10} \\
& -k_{R}\left(x_{1}^{n, m-1}+v^{n}, m / 2\right), \tag{22a}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial H^{n}, m}{\partial \theta_{2}^{n, m}}=0 \\
& =-z_{1}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+z_{2}^{n, m}\left(x_{2}^{n-1}+v^{n}, m / 2\right) \\
& -k_{10}^{, n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)-2 k_{11}^{, n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right) \\
& {\left[\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1}, m+v^{n, m} / 2\right)+v h^{n, m}\right]} \\
& -11 k_{12}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)\left[0_{1}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right. \\
& +\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+v^{n, n} / 2\right)+{v h^{n}, m}^{10} \\
& -k_{L}\left(x^{n-1, m}+v^{n, m} / 2\right)+k_{20}^{\prime n, m}\left(x_{2}^{n-1, m}+v^{m} / 2\right) \\
& +2 k_{21}^{, n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)\left[\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right. \\
& \left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v v^{n, m}\right] \\
& +11 k_{22}^{, n, m i}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)\left(\left(1-\theta{ }_{j}^{n, m}\right)\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right. \\
& \left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v v^{n, m}\right]^{10} . \tag{22b}
\end{align*}
$$

The second partial derivatives of the Hamiltonian with respect to the decision variables, $\theta_{1}^{n, m}$ and $\theta_{2}^{n, m}$, which are used at the computational procedure are

$$
\begin{align*}
\frac{\partial^{2} H^{n, m}}{\partial\left(\theta_{1}^{n, m}\right)^{2}} & =2 k_{11}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)^{2} \\
& +110 k_{12}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)^{2} \\
& {\left[\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)+\left(1-\theta_{2}^{n, n}\right)\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)\right.} \\
& +{\left.v h^{n, m}\right]^{9}+2 k_{21}^{\prime n, m}\left(x_{1}^{n, m-1}+v^{n, m / 2)^{2}}\right.}+l_{110 k_{22}^{\prime n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)^{2}\left[\left(1-\theta_{1}^{n, m}\right)\right.} \\
& \left(x_{1}^{n, m-1}+v^{\left.n, m / 2)+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v v^{n, m}\right]^{9}}\right.
\end{align*}
$$

$\frac{\partial^{2} H^{n, m}}{\partial\left(\theta_{2}^{n, m}\right)^{2}}=2 k_{11}^{, n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)^{2}$

$$
+110 k_{12}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)^{2}\left[\theta_{1}^{n, m}\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right.
$$

$$
\left.+\left(1-\theta_{2}^{n, m}\right)\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v^{n, m}\right]^{9}
$$

$$
+2 k_{21}^{\prime n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)^{2}
$$

$$
+110 k_{22}^{\prime n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)^{2}\left[\left(1-\theta_{1}^{n, m}\right)\left(x_{1}^{n, m-1}+v^{n, m} / 2\right)\right.
$$

$$
\begin{equation*}
\left.+\theta_{2}^{n, m}\left(x_{2}^{n-1, m}+v^{n, m} / 2\right)+v v^{n, m}\right]^{9} \tag{23b}
\end{equation*}
$$

COMPUTATIONAL PROCEDURE FOR MULTI-COPY NETWORK

Through thc use of equations (6) through (23) the optimum sequence of decision variabies, $\theta_{1}^{n, m}, e_{2}^{n, m}, n=1,2, \ldots, N$; $m=1,2, \ldots, M$ can he found. The computational procedure used for each copy is esscntially identical to that presented in section 3 for single copy problem except that we have two decision variables $\theta_{1}^{n, n}$ and $\theta_{2}^{n, m}$ at each node (n, n) instead of just one decision $\theta^{n, m}$ as in section 3 .

To solve a multi-copy problcm, the following procedure is employed.

Step 1. Choose a single copy at random.
Step 2. Obtain the optimal traffic assignment for this single copy network using the computational procedurc presented in section 3 .

Step 3. Choose another single copy left at random.
Step 4. Consider the volumes obtained from previous assignments (or previous copy or copies) as fixed, which are given as $v v^{n, m}$ and $v^{n}{ }^{n} m$, obtain the optimal traffic assignment for the single copy from the copy selccted in step 3.

Step 5. Return to step 3 and continue until all copies have been assigned.

NUMERICAL RESULTS

The total accumulated travel time for copy 1 is 33,027 minutes and the convergence is obtaincd in 58 itcrations. Fig.

2 shows the input volumes $v^{n, m}$ and the optimal traffic assignment.

For, copy 2, accordiag to the procedure explained in step 4, the link volumes $v v^{n, m}$ and $v h^{n}$, m are obtained from the optimal traffic assignment of copy 1 , which have the same directions of traffic flow as for copy 2. These volumes $v v^{n}$, man $\mathrm{vh}^{n, m}$ at each link and the input volumes, v^{n}, for copy 2 are shown in Fig. 3 .

The total travel time for copy 2 is 51,206 minutes, which includes the total time obtained on copy 1 . The converge occurred after 57 iterations. Fig. 4 shows the input volumes and the optimal traffic assignment for copy 2 .

For copy 3 again, acoording to the procedure presented in step 4 , the $l i n k$ volumes, $v v^{n, m}$ and $v h^{n, m}$ are obtained from the optimal traffic assignments of cony 1 and copy 2 , which have the same traffic flow directions as for copy 3. These traffic flow volumes, $v v^{n, t h}$ and $v h^{n, n}$ at each link and the input volumes $v^{n, m}$ for copy 3 are presented in Fig. 5. The total travel time for copy 3 is 74,752 minutes, which incluces the total times obtained on copy 1 and copy 2. The convergence occured in 53 . iterations. Fig. 6 shows the input volumes and the optimal traffic assignment on copy 3 .

Fig. 7 shovs the final traffic assignment for all the three copies.

Now the multi-copy problem without turn penalty will be considered.

Figure ?. livput volumes vo AND THE OPTIMAL TRAFFIC ASSIGNMENT FOR COPY 1.

 copy 2/1.

Figure 4. input volumes $v^{n, m}$ and the optimal TRAFFIG ASSIGNOAENT FOR COPY 2/1.

Figure 5. INPUT VOLUMES $\boldsymbol{v}^{m a n}$, UV, min AND vih FOR copr 3/2/1.

Figure 6. RNPUT VOLumEs $v^{m m}$ AND ThE OPTHAL - tramblo assieniment fon copy 3/2/1.

Figure 7. final traffic assignment for 3 COPLES

4-2. Multicopy Network Without Turn Penalty

STATEMENT OF THE PROBLEM

The statement of the problem is essentially the same as for the problem with turn penalty, with the only difference that there is no penalty accessed to any vehicle which makes a right or left turn.

FORMULATION OF THE PROBLEM UITHOUT TURN PENALTY

Considering each node as a stage, the performance equations for a typical interior node (n, n) of a rectangular network can be written as follows:

$$
\begin{align*}
& x_{1}^{n, m}=\theta^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right), \quad x_{1}^{n, 0}=0, \tag{1}\\
& x_{2}^{n, m}=\left(1-\theta^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right), \quad x_{2}^{0, m}=0, \tag{2}\\
& x_{3}^{n, 1 n}=x_{3}^{n, m-1}+T_{3}^{n, m}\left(\theta^{n, m}, x_{1}^{n, m-1}, x_{2}^{n-1, m}, v^{n, m}, v^{n, m}\right), \\
& x_{3}^{n, 0}=0, \tag{3}\\
& x_{4}^{n, m}=x_{4}^{n-1, m}+T_{4}^{n, m}\left(\theta^{n, m}, x_{1}^{n, m-1}, x_{2}^{n-1, m}, v^{n, m}, v v^{n, m}\right), \\
& x_{4}^{0, \pi}=0, \tag{4}\\
& \mathrm{n}=1,2, . . ., \mathrm{N} \quad \mathrm{~m}=1,2, . . \quad . \quad \mathrm{M} .
\end{align*}
$$

The objective function, which is the total accumatated travel time of all the trips in the system of the network, to be minimized can be given by the following equation;

$$
\begin{equation*}
s=\sum_{n=1}^{N} x_{3}^{n, M}+\sum_{m=1}^{M} x_{4}^{N, m} . \tag{5}
\end{equation*}
$$

The Hamiltonian function and the adjoint variables can be viritten as follows:

$$
\begin{aligned}
H^{n, m}= & \sum_{i=1}^{4} z_{i}^{n, m} x_{i}^{n, m} \\
= & z_{1}^{n, m_{\theta} n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m i}+v^{n, m}\right) \\
+ & z_{2}^{n, m}\left(1-\theta^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) \\
+ & z_{3}^{n, m}\left[x_{3}^{n, m-1}+I_{3}^{n, m}\left(\theta^{n, m}, x_{1}^{n, m-1},\right.\right. \\
& \left.\left.x_{2}^{n-1, m}, v^{n, m}, v^{n, m}\right)\right]+ \\
& z_{4}^{n, m}\left[x_{4}^{n-1, m}+T_{4}^{n}, m\left(\theta^{n}, m\right.\right.
\end{aligned} x_{1}^{n, m-1},
$$

$$
\begin{align*}
& +z_{2}^{n, m}\left(1-\theta^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1}, m+v^{n, m}\right) \\
& +z_{3}^{n, m}\left\{x_{3}^{n, m-1}+k_{10}^{n, m}\left[\theta ^ { n , m } \left(x_{1}^{n, m-1}\right.\right.\right. \\
& \left.\left.+x_{2}^{n-1, m}+v^{n, m}\right)+v^{n}, m\right]+k n, m \\
& {\left[\theta^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+v h^{n, m}\right]^{2}} \\
& +k_{12}^{n, m} C_{1}^{n, m}\left[\left\{\theta^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, n}+v^{n, m}\right)\right.\right. \\
& \left.\left.\left.+v h^{n, m}\right\} / C_{1}^{n, m}\right\}^{11}\right\}+z_{4}^{n, m}\left\{x_{4}^{n-1, m}+k_{20}^{n, m}\right. \\
& {\left[\left(1-\theta^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+v v^{n, m}\right]} \\
& +k_{21}^{n, m}\left[\left(1-\theta^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, \pi}\right)\right. \\
& \left.+v v^{n, m}\right]^{2}+k_{22}^{n, m} c_{2}^{n, m}\left[\left\{\left(1-\theta^{n, m}\right)\right.\right. \\
& \left.\left.\left.\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+v v^{n, m}\right\} / C_{2}^{n, m}\right]^{11}\right\}, \tag{8}\\
& z_{1}^{n, m-1}=\frac{\partial H^{n, m}}{\partial x_{1}^{n, m-1}} \\
& =z_{1}^{n, m} \theta^{n, m}+z_{2}^{n, m}\left(1-\theta^{n, m}\right)+z_{3}^{n, m} \\
& \left\{k_{10}^{n, m} \theta^{n, m}+2 k_{11}^{n}, m^{n}, m\left[\theta^{n, m}\right.\right.
\end{align*}
$$

$$
\begin{align*}
& 11 k_{12}^{n, m}\left(\theta^{n, m}\right)^{11} \mid\left(x_{1}^{n \cdot m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+ \\
& \left.\left.v h^{n, m} / c_{1}^{n}, m\right\}^{10}\right\}+z_{4_{4}}^{n, m}\left\{k_{20}^{n, m}\right. \\
& \left(1-\theta^{n, m}\right)+2 k_{21}^{n, m}\left(1-\theta^{n, m}\right) \\
& {\left[\left(1-\theta^{n, m}\right)\left(x_{1}^{n, n-1}+x_{2}^{n-1, m}+v^{n, m}\right)+\right.} \\
& \left.v v^{n, m}\right]+11 k_{22^{n}, m}\left(1-\theta^{n, m}\right)^{11}\left[\left\{\left(x_{1}^{n, m-1}\right.\right.\right. \\
& \left.\left.+x_{2}^{n-1, m}+v^{n, n}\right)+v v^{n, m}\right\} / C_{2}^{n, m} j^{10}, \\
& z_{2}^{n-1, m}=\frac{\partial H^{n, m}}{\partial x_{2}^{n-1}, m} \\
& =z_{1}^{n, m-1}, \\
& z_{3}^{n, m-1}=\frac{\partial H^{n, m}}{\partial x_{3}^{n, m-1}} \\
& =z_{3}^{n, m} \text {, } \\
& z_{4}^{n-1, m}=\frac{\partial H^{n, m}}{\partial x_{4}^{n-1, m}} \\
& =z_{4}^{n, m} \text {, } \tag{12}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{z}_{1}^{\mathrm{n}, \mathrm{M}}=0, \quad \mathrm{n}=1,2, . . \quad . \quad \mathrm{N}, \tag{13}\\
& z_{2}^{N, m}=0, \quad m=1,2, \ldots, M, \tag{14}\\
& z_{3}^{n}, M \quad n, \quad n=1,2, \ldots, N, \tag{15}\\
& z_{4}^{N}, m \quad=1, \quad m=1,2, . \quad . \quad M . \tag{16}
\end{align*}
$$

where

$$
\begin{aligned}
k_{j, q}^{n, m}= & \text { the parameters in travel time - volume relationship } \\
& \text { in which } j=1,2 \text { denotes horizontal and vertical links } \\
& \text { respectively and } q=0,1,2 \text { denotes coefficient num- } \\
& \text { bers. }
\end{aligned}
$$

From eq̧uations (11), (12), (15) and (16), we obtain

$$
\begin{array}{ll}
z_{3}^{n, m}=z_{4}^{n, m}=1, & n=1,2, \cdots, N, \tag{17}\\
m=1,2, \ldots, M
\end{array}
$$

In order to determine an optimal sequence of decision variables $\theta^{n, m}$, to minimize the total accumulated travel time we use the following conditions:

$$
\begin{equation*}
\frac{\partial \Lambda^{n, \pi}}{\partial \theta^{n, m}}=0 \tag{18a}
\end{equation*}
$$

or

$$
\begin{equation*}
u^{n, m}=m i n i m u m \tag{18b}
\end{equation*}
$$

Equation (8) gives

$$
\frac{\partial H^{n, m}}{\partial \theta^{n, m}}=0
$$

$$
\begin{align*}
& =\left(z_{1}^{n, m}-z_{2}^{n, m}+k_{10}^{n, m}-k_{20}^{n, m}\right) \\
& \left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+2 k_{11}^{n, m}\left[\theta^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)\right. \\
& \left.+v h^{n, m}\right]\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+11 k_{12}^{n}, m c_{1}^{n, m}\left[\left\{\theta^{n, m}\right.\right. \\
& \left.\left.\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+v h^{n, m}\right\} / C_{1}^{n, m}\right]^{10} \\
& \left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)-2 k_{21}^{n, m}\left[\left(1-\theta^{n, m}\right)\right. \\
& \left.\left.x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)+v v^{n, m}\right]\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) \\
& -11 k_{22}^{n, m} C_{2}^{n, n}\left[\left\{\left(1-\theta^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)\right.\right. \\
& \left.\left.+v v^{n, m}\right\} / C_{2}^{n, m}\right\}^{10}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) . \tag{19}
\end{align*}
$$

The second partial derivative of the Hamiltonian with respect to the decision variable, $e^{n, m}$ which is used at the computational procedure, is

$$
\begin{align*}
\left.\frac{\partial^{2} n^{n}, m}{\partial\left(\theta^{n}, m\right.}\right)^{2} & =2\left(k_{11}^{n, m}+k_{21}^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)^{2} \\
& +110 k_{12}^{n, m} C_{1}^{n, m}\left[i \theta^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)\right. \\
& \left.\left.+v h^{n, m}\right\} / C_{1}^{n, m}\right]^{9}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)^{2} \\
& +110 k_{22}^{n, m} C_{2}^{n, m}\left[\left\{\left(1-\theta^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)\right.\right. \\
& \left.\left.+v v^{n, m}\right\} / c_{2}^{n, m}\right]^{9}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)^{2} . \tag{20}
\end{align*}
$$

This formulation of the problem also assumes essentially that all flows alon\& the links, in the network under consideration are in the direction of inereasing superseript. This implies that the network destination node is the point (N, M) : i.e., the node farthest to the right and down. The same multiquadrant proeedure is employed, as used in section 3 for single eopy.

COMPUTATIONAL PROCEDURE

The eomputational procedure used for eaeh copy is essentially the same as presented in seetion 3 for single copy problem. Also the proeedure to solve a multieopy problem, is the same as described before in this seetion for the problem with turn penalty.

The total accumulated travel time for copy 1 is 31,710 minutes and convergence took place in 33 iterations. Fig. 8 shows the input volumes $v^{n, m}$ at different nodes and the optimal traffic assignment.

For copy 2 , the $1 i n k$ volumes $v^{n, m}$ and $\mathrm{vh}^{\mathrm{n}, \mathrm{m}}$ are obtained from the optimal traffic assignment of copy 1 which have the same traffic flow directions as for copy 2. These traffic flow volumes, $v v^{n, m}$ and $v^{n, m}$ at each $1 i n k$ and the input volumes $v^{n, m}$ for copy 2 are shown in Fig. 9. The total cravel time for copy 2 is 49,346 minutes, which inclades the total time of copy 1 , and the convergence occurred after 39 iterations. Fig. 10 shows the input volumes and optimal traffic assignment on copy 2 .

For copy 3 again, the $1 i n k$ volumes $v v^{n}, m$ and $v h^{n, m}$ are $o b-$ tained from the optimal traffic assignment of copy 1 and copy 2 , which have the same flow directions as for cony 3. These traffic flow volumes, $v v^{n, m}$ and $\mathrm{vh}^{\mathrm{n}, \mathrm{m}}$ at each 1 ink and the input volumes $v^{n, m}$ for copy 3 are shown in Fig. ll. The total travel time for copy 3 is 72,243 minutes and this includes the total time obtained on copies 1 and 2. The convergence occurred after 34 iterations. Fig. 12 shows the input volumes and the optimal traffic assignment on copy 3 .

Fig. 13 shows the final traffic assignment for all the three copies.

FIgURE 8 INPUT VOLUMES U 7 ,Tit AND THE OPTHMAL TRAFFIG ASSLCN: ENT FOR COPY 1.

Figure s INPUT vOLUMES $v^{-n \pi m}$, vinin AND vh ${ }^{n \prime \prime}$ for copy 2/1.

Figure 10 inpst volumes $w^{2, h}$ and the optmal traffic ASSIGNENT FOR COPY 2/1.

Figure 11 input volumes $v^{n m}$, vu min and wh fon COPY 3/2/1.

Figure 12 lareut velunes vmand the opthanl traffic Assennamit for cop: 3/R/1.

- 6ilona freway (3 lana in one cilrecition)
[-Z-U A lone freeway
- lone arterial street

4 lone arterial streê
a lane collector (or local strect)
Figure 1O. FINAL TRAFEIC ASSIGNMENT FOR з COPIES.

COMPARISON BETWEEN THE RESULTS WITH PFNAITY AND WITHOUT PENALTY

The total travel time for the traffic flow network as shorn by Fig. 1 is 74,752 minutes when the $1 e f t$ turn and right turn penalties are taken into account, and the total travel time for the same traffic flow network is 72,175 minutes when the turn penalties are assumed to be zero. This is quife obvious, because if we assume turn penaltics to exist there is certain amount of time lost at every intersection (node) when a vehicle takes a right hand or left hand turn, but there is no loss of time at any node when the turn penalties are neglected. In fact it is this extra tine at each node which causes an overall increase in the final travel time.

Fig. 7 shows the optimal traffic assignment when turn penalties are considered and fig. 13 represents the ontimal traffic assignment when turn penalties are not considered. Studyiag carefully the traffic assignment pattern at each node ve find that there is a change in assignment characteristic, but this change is not appreciable. For example, consider node (3,3) of Figs. 7 and 13. In Fig. 7, 600 and 700 vehicles enter the node vertically, from above and below respectively. The corresponding numbers of vehicles in Fig. J. 3 are 603 and 720. Also no vehicles leave the node vertically above or below in both figures. 2400 and 50 vehicles enter the node horizontally, from left and right respectively, in Fig. 7, whereas corresponding numbers in Fig. 13 are 2373 and 30 . Finally, in Fig. 7 the number of vehicles which leave the node horizoatally to the left and right are 250
and 3500 respectively. The corresponding number of vehicles in Fig. 13 are 250 and 3500. Thus we find that there is no appreciable change in the trend of the traffic assignment.

The increase in total travel time is 3% when turn penalties are taken into account.

DISCUSSION

The multi-copy solution obiained through the computational procedure already described in this section is not an ahsolute or global optimum solution, but it is a suboptimum solution.

In order to obtain an absolute optimum solution the computational procedure has to be modified to one which is similar to solving a single copy multiquadrant problem. The proposed procedure may be as follows:

Suppose there is a 3 -copy traffic flow network. The procedure described in section 3 for a single copy network is carried through one cycle for copy 1 : Then one cycle is carried out for copy 2 , using the volumes $v v^{n, m}$ and vh^{n}, m previously obtained on copy 1 as fixed inputs to same links of copy 2 . Finally, one cycle is again carried out on copy 3 , using the volumes $v v^{n, m}$ and $v h^{n, m}$, obtained previously on copy 2 as fixed inputs to same links of copy 3. This makes one iteration for the network. Subsequent iterations are obtained and the iterative process is stopped when the new set of decision variahles is sufficiently close to the previous set of all copies to indicate adequate convergence.

The prescnt suboptimal solution is very close or may be the absolute optimum solution because of following reasons:
(i) The formulation of the problem restricts the operation not in a congested situation.
(ii) The calculation of the sum of the total travel time for copies 1 and 2 by the present method uses the link travcl time-volume relationship in the lower portion of line $A^{\prime} B^{\prime}$ of Fig. 2 in section 3 , but in reality it should have used this relationship somewhere in the upper portion of $A^{\prime} B^{\prime}$, because in the computation of travel time for copy 1 the volumes of copy 2 and copy 3 which arc in the same direction and on the same links as for copy 1 arc not considercd, or in other words volumes $v v^{n, m}$ and $v h^{n, m}$ are assumed to be zero for copy 1 . Even in this situation it never goes beyond point B^{\prime} which is the point the links volume reaches its capacity. This is because of the restriction the operation in the portion $A^{\prime} B^{\prime}$. This implies that the sum of the total travel time for each copy may be proportional to the actual travel time.
5. MIMIMIZATION OF THE SUM OF TRAVEL TIME COST AND INVESTMENT COST ON A TRANSPORTATION SYSTEM.

The basic objective of a transportation study as concluded by Zettel and Carll [25], is the economic analysis of such a transportation network which provides valuable guidance in developing a comprehensive long range transportation plan.

In this study a mathematical model has been developed for the economic evaluation ef a transportation system. Like many other studies, a single objective, to minimize the transportation cost, is developed. The transportation cost of any transportation system consists of three basic costs. They are (1) travel time cost, (2) operating cost and (3) investment cost. It has been found through numerous surveys that travel time is dominant as a factor in selecting a particular route and operating cost does not contribute much in selecting a route. Therefore operating cost can be combined with the travel time cost. lhe value of the travel time cost, c_{t}, is assumed to be constant, namely $\$ 1.55$ per hour per vchicle, and the total travel time cost is obtained by multiplying the total travel time by this constant.

Studies have also shown that the travel time cost and the operating cost on a transportation system could be reduced if a proper amount of investment is made on the system. This means that there is also investment cost incurred on the transportation systen. Hence the objective function is reduced to minimize the sum of the travel time cost and the investment cost.
the travel time equation

As discussed in sections 2 and 3 the unit travel time is in general dependent on traffic volume and roadway conditions. The objective of this study as explained before, is the minimization of the sum of the investment cost and the travel time cost of a given transportation system. The investment is an independent variable and it is assumed that it could be expressed in terms of dollars per mile. Since the roadway conditions depends entirely upon the investment made on the roadways, the unit travel time can be expressed as a function of both traffic volume ard investment. The relationship among then is complex. In developing a mathematical model, Wang, Snell and Funk [20,2l] made some assumptions to simplify the relationshio in order to expresthe relationship by a relatively simple equation which is maageable and yet not too far from reality.

In order to express unit travel time as a function of traffic volume and investment, some basic characteristics were observed [20,21]. They were:
(1) Unit travel time was increased as the traffic volume increased.
(2) Unit travel time was decreased as the investment increased.
(3) Unit travel time had a lower limit (free flow travel time).
(4) If the travel time was heid constant, the service volume increased as the investment increased.

Referring back to fig. 2 of section 3 the dotted part of the curve shows the relationship urder congested conditions. Therefore under normal operating conditions, it is logical to assume that unit travel time (in hours per vehicle per mile) is linearly related to traffic volume. This can be represented by following equation:

$$
\begin{equation*}
t=k+k^{\prime} v \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
t & =\text { unit travel time (ir/mi/veh) } \\
k & =\text { free flow travel time (hr/mi/veh) } \\
k^{\prime} & =\text { slope of the curve in Fig. } 2 \text { of section } 3\left(h r^{2} / n i / v e h\right) \\
v & =\text { traffic volume per unit time (veh/hr) }
\end{aligned}
$$

Keeping basic characteristics in mind and further assuming that the free flow travel time is constant for each link and traffic volume served is proportional to investoent for a constant travel time, an equation of the following form may be hypothesized [20,21]

$$
\begin{equation*}
\mathrm{t}=\mathrm{k}_{1}+\frac{\mathrm{k}_{2}}{\theta} \mathrm{v} \tag{2}
\end{equation*}
$$

where
$\mathrm{t}=$ unit travel time (hr/mi/veh)
$k_{1}=$ free flow travel time (hr/mi/veh). The magnitude depends on the maximum speed obtainable or regulated.
$k_{2}=$ coefficient of improvement (dollar-hr/mi ${ }^{2} /$ veh 2). Its magnitude depends on link location and reflects the difficulty of improvemert.

```
0 = equivalent hourlv investment per unit length (dollar/
        mi/hr).
v = traffic volume per unit time (veh/hr).
In the case where old facilities exist, the investment should
```

be expressed as:

$$
\begin{equation*}
\theta=k_{3}+\theta^{\prime} \tag{3}
\end{equation*}
$$

where, k_{3}, in dollars per mile per hour, represents the existing investment and θ^{\prime}, in dollars per mile per hour, is the additional investment.

The general form of the unit travel time equation then becomes

$$
\begin{equation*}
t=k_{1}+\frac{k_{2}}{k_{3}+\theta^{r}} v \tag{4}
\end{equation*}
$$

The characteristics of this equation are demonstrated in Figs. 1, 2 and 3 .

Let L be the length of the link and c_{t} the cost of time. The objective function then becomes
$S=\theta^{\prime} L+\left(k_{1} v+\frac{k_{2}}{k_{3}+\theta^{\prime}} v^{2}\right) L c_{t}$

In this section two cases will be studied in detail.

figure 1. TRAVEL tme-investment curve WITH FIKED VOLUME.

FIgURE 2. tRAVEL time-VOLUME GURVE WITH FIXED INVESTMENT.

FIGURE 3. VOLUME-INVESTMENT CURVE WITH FINED TRAVEL TMME

5-1. Investment vith No fudget constraints

STATENENT OF THE PROBLEA

A general examole of optimal investment policy is studied. Fig. 2 of section 2 shows a basic N x rectangular network with node (N, M) as the destination node, and all other nodes as origins. The input volumes at each node can be obtained from a traffic distribution study. In this particular case the overall system budget is assumed to be unlimited, but it has been considered that there are upper limit and lower limit for investment on each link. The problem is to find an investment policy under each investment condition such that the total cost is mininum under the following assumptions.

1. No turn penalties.
2. Zone centroids coincide with the nodes.
3. Traffic directions are preassigned.
4. Traffic distribution is fixed.
5. Transportation network can be represented by a rectangularly arranged combination of links.
6. Travel time is the only factor that influences the traffic assienment.

Unit travel time on each jink can be exnressed as:
$t_{j}^{n, m}=k_{j 1}^{n, m}+\frac{k_{j 2}^{n, m}}{\theta_{j}^{n, m}+k_{j 3}^{n, m}} x_{j}^{n, m}$
where

$$
\begin{aligned}
& \mathbf{j}=1, \text { for horizontal links, } \\
& \mathbf{j}=2, \text { for vertical links. }
\end{aligned}
$$

FORMULATION OF THE PROBLEM

The performance equations for a typical interior node (nom) as shown in Fig. 4 of section 3 can be written as follows:

$$
\begin{equation*}
x_{1}^{n, m}=\theta_{3}^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) \tag{7}
\end{equation*}
$$

$=\theta_{3}^{n, m}\left(A^{n, m}\right) \quad, \quad x_{1}^{n, 0}=0 \quad$,
$x_{2}^{n, m}=\left(1-\theta_{3}^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)$
$=\left(1-\theta_{3}^{n, m}\right) A^{n, m} \quad, \quad x_{2}^{0, m}=0 \quad$,
$x_{3}^{n, m}=x_{3}^{n, m-1}+\theta_{1}^{n, n} L_{1}^{n, m} \quad, \quad \theta_{1}^{n, m} \geq 0 ; x_{3}^{n, 0}=0$,
$x_{4}^{n, m}=x_{4}^{n-1, m}+\theta_{2}^{n, m} L_{2}^{n, m} \quad, \quad \theta_{2}^{n, m} \geq 0 ; x_{4}^{0, m}=0$,
$x_{5}^{n, m}=x_{5}^{n, m-1}+k_{11}^{n, m} x_{1}^{n, m_{L} n, m} c_{t}+\frac{k_{12}^{n, m} L_{1}^{n, m} c_{t}}{\theta_{1}^{n, m}+k_{13}^{n, m}}\left(x_{1}^{n, m}\right)^{2}$,

$$
\begin{equation*}
x_{5}^{n, 0}=0 . \tag{11}
\end{equation*}
$$

Substituting the value of $x_{1}^{n, m}$ from equation (7) into equation (11), we have

$$
\begin{align*}
& x_{5}^{n, m}=x_{5}^{n, m-1}+k_{11}^{n, m} A^{n, m} \theta_{3}^{n, m} L_{1}^{n, m} c_{t}+\frac{k_{1}^{n, m} L_{1}^{n, m} c_{t}^{n}}{\theta_{1}^{n, m}+k_{13}^{n, m}}\left(A^{n, m} \theta_{3}^{n, m}\right)^{2} \\
& x_{5}^{n, 0}=0, \tag{12}
\end{align*}
$$

$$
\begin{align*}
& x_{6}^{0, t i t}=0 . \tag{13}
\end{align*}
$$

Substituting the value of $x_{2}^{n, m}$ fromequation (8) into equation (13), we have

$$
\begin{gather*}
x_{6}^{n, m}=x_{6}^{n-1, m}+k_{21}^{n, m} A^{n, m}\left(1-\theta_{3}^{n, m}\right) L_{2}^{n, m} c_{t}+\frac{k_{2}^{n, m} L_{2}^{n, m} c_{2}^{n}, m+k_{2}^{n}, m}{\theta_{2}^{n}}\left[A^{n, m}\left(1-\theta_{3}^{n, m}\right)\right]^{2}, \\
x_{6}^{0, m}=0, \tag{14}\\
n=1,2 ; \ldots, N ; \quad
\end{gather*}
$$

where
$x_{j}^{n, m}=$ a state variable representing the number of vchicics on link f imediately beyond node $(\mathrm{n}, \mathrm{m}), \mathrm{j}=1,2$ in which $j=1$ denotes the horizontal link and $j=2$ denotes the vertical link,
$x_{3}^{n, m}=$ a state variahle representing the total investrant on horizontal link from node ($n, 1$) including the horizontal link imfediately beyond mode (n,m), dollars/hour,
$x_{4}^{n, m}=a$ state variable representing the total investment or vertical links from node ($1, m$) including the vertical link immediately beyond node (n, m), dollars/hour, $x_{5}^{n}, m=a$ state variable represcating the total travel time cost on horizontal links from node ($n, 1$) including the horizontal link immediately beyond node (π, m),
$x_{6}^{n, m}=a s t a t e$ variable representing the total travel time cost on vertical links from node (l, m) including the vertical link immediately beyond node (n, m),
$v^{n, n}=$ the number of vehicles entering or leaving the network at node (n, m),
$\theta_{j}^{n, m}=$ the decision variable that represents investments on link j immediately beyond node $(n, m), j=1,2$ in which $j=1$ denotes the horizontal link and $j=2$ denotes the vertical link, in dollars/mile/hour,
$\theta_{3}^{n, m}=$ the decision variable that represents the fraction of vehicles which enter the node and leave on the horizontal link, at rode (n, m),
$k_{j 1}^{n, m}=$ free flow time constant on link j immediately beyond node $(n, m), j=1,2$, in which $j=1$ denotes the horizontal link and $j=2$ denotes the vertical link,
 node $(n, m), j=1,2$, in which $j=1$ denotes the horizontal link and $j=2$ denotes the vertical link,
$k_{j}^{n} 3^{m}=$ existing investment on link j immedintely beyond node $(n, m), j=1,2$, in which $j=1$ denotes the horizontal link ard $j=2$ denotes the vertical link,

```
L N,m}=\mathrm{ length of the link j immediately beyond node (n,m), \(j=1,2\), in which \(j=1\) denotes the horizontal link and \(f=2\) denotes the vertical link,
\(c_{t}=\) time cost, dollar/hour/veh.
```

The objective function S which is to be minimized represents the total accumulated travel time cost and the total accumulated investment cost all over the transportation system.

$$
\begin{equation*}
S=\sum_{n=1}^{N} x_{3}^{n, M}+\sum_{m=1}^{M} x_{4}^{n, m}+\sum_{n=1}^{N} x_{5}^{n, M}+\sum_{m=1}^{M} x_{6}^{N}, m \tag{15}
\end{equation*}
$$

where the first two terms represent the accumulated travel time cost incurred on horizontal and vertical links of the transportation system respectively, and the last two terms represent the accumulated investment cost incurred on the horizontal and vertical links respectively on the transportation system.

The Hamiltonian function and the adjoint variables at the node (n, m) can be written as follows:

$$
\begin{equation*}
n^{n, m}=\sum_{i=1}^{6} z_{i}^{n, m} x_{i}^{n, m} . \tag{16}
\end{equation*}
$$

Substituting equations (7) through (14) into equation (16), we have

$$
\begin{aligned}
& H^{n, m}=z_{1}^{n, m} \theta_{3}^{n, m} A^{n, m}+z_{2}^{n, m}\left(1-\theta_{3}^{n, m}\right) A^{n, m}+z_{3}^{n, m}\left(x_{3}^{n, m-1}+\theta_{1}^{n}, m_{1}^{n}, m\right) \\
& +z_{4}^{n, m}\left(x_{4}^{n-1}, m+\theta_{2}^{n, m} L_{2}^{n, m}\right)+z_{5}^{n, m}\left[x_{5}^{n, m-1}+k_{11}^{n, m} \theta_{3}^{n, m} A^{n, m} L_{1}^{n, m} c_{t}\right. \\
& \left.+\frac{k_{12}^{n, m} L_{1}^{n, m} c}{\theta_{1}^{n, m}+k_{13}^{n, m}}\left(\theta_{3}^{n, m} \Lambda^{n, m}\right)^{2}\right]+z_{6}^{n, m}\left[x_{6}^{n-1, m}+k_{21}^{n, m}\left(1-\theta_{3}^{n, m}\right) A^{n, m} L_{2}^{n, m} c_{t}\right. \\
& \left.+\frac{k_{2}^{n, m} L_{2}^{n, m} c^{n}}{\theta_{2}^{n}, m_{2}+k_{23}^{n}}\left\{\left(1-\theta_{3}^{n, m}\right) A^{n, m}\right\}^{2}\right\}, \\
& z_{1}^{n, m-1}=\frac{\partial H^{n, m}}{\partial x_{1}^{n, m-1}} \\
& =z_{j}^{n, m} \theta_{3}^{n, m}+z_{2}^{n, m}\left(1-\theta_{3}^{n, m}\right)+z_{5}^{n, m} k_{11}^{n, m} \theta_{3}^{n, n} L_{1}^{n, m} c_{t} \\
& +z_{6}^{n, m} k_{21}^{n, m}\left(1-\theta_{3}^{n, m}\right) L_{2}^{n, m} c_{t} \\
& +2 z_{5}^{n, m} \frac{k_{12}^{n, m} L_{1}^{n, m} c_{t}}{\theta_{1}^{n, m 1}+k_{13}^{n, m}} A^{n, m}\left(\theta_{3}^{n, m}\right)^{2} \\
& +2 z_{6}^{n, m} \frac{k_{2}^{n, m} L_{2}^{n, m} c_{t}}{\theta_{2}^{n, m}+k_{23}^{n, m}} A^{n, m}\left(1-\theta_{3}^{n, m}\right)^{2} \quad, \\
& z_{2}^{n-1}, r=\frac{\partial H^{n}, m}{\partial x_{2}^{n-1}, m}
\end{aligned}
$$

$$
\begin{align*}
& =z_{1}^{n, m_{\theta}}{ }_{3}^{n, m}+z_{2}^{n, m}\left(1-\theta_{3}^{n, m}\right)+z_{5}^{n}, m_{k}^{n}, m_{\theta}^{n}, m_{L}{ }_{1}^{n, m} c_{t} \\
& +z_{6}^{n, n} k_{21}^{n}, m\left(1-\theta_{3}^{n, m}\right) L_{2}^{n, m} c_{t} \\
& +2 z_{5}^{n, m} \frac{k_{12}^{n} m_{1}^{n} L_{1}^{m} c_{t}}{\theta_{1}^{n}, m_{1}+k_{13}^{n}} \Lambda^{n, m}\left(\theta_{3}^{n, m}\right)^{2} \\
& +2 \%_{6}^{n, m} \frac{k_{2}^{n, m} L_{2}^{n, m} c_{2}}{0{ }_{2}^{n, m}+k_{23}^{n, m}} A^{n, m}\left(1-\theta_{3}^{n, m}\right)^{2} \quad, \tag{19}\\
& z_{3}^{n, m-1}=\frac{2 H^{n, m}}{\partial x_{3}^{n, m-1}} \\
& =z_{3}^{n, m} \quad \text {. } \\
& z_{4}^{n-1, m}=\frac{\partial H^{n, m}}{\partial x_{4}^{n-1, m}} \\
& =z_{4}^{n}, \mathrm{mi} \quad, \\
& z_{5}^{n, m-1}=\frac{\partial H^{n, m}}{\partial x_{5}^{n, m-1}} \\
& =z_{5}^{n, ~ m i ̀} \quad, \tag{22}
\end{align*}
$$

$$
\begin{align*}
z_{6}^{n-1, m} & =\frac{\partial H^{n, m}}{\partial x_{6}^{\mathrm{n}-1, m}} \\
& =z_{6}^{n, m} \tag{23}
\end{align*}
$$

$z_{1}^{n, M}=0 \quad, \quad n=1,2, \ldots, N$,
$z_{2}^{N, n}=0 \quad, \quad m=1,2, \ldots, M$,
$z_{3}^{n, M}=1 \quad, \quad n=1,2, \ldots, N$,
$z_{4}^{N, n}=1 \quad, \quad m=1,2, \ldots, M$,
$z_{5}^{n, M}=1 \quad, \quad n=1,2, \ldots, N$,
and
$z_{6}^{N, m}=1 \quad, \quad m=1,2, \ldots, M$.

From equations (20) through (23) and (26) through (29), we obtain

$$
\begin{align*}
& z_{3}^{n, m}=z_{4}^{n, m}=z_{5}^{n, m}=z_{6}^{n, m}=1, \tag{30}\\
& n=1,2, \ldots, N, \\
& m=1,2, \ldots, M \text {. }
\end{align*}
$$

The Hamiltonian function then becomes:
$n^{n, m}=z_{1}^{n, m} x_{1}^{n, m}+z_{2}^{n, m} x_{2}^{n, m}+x_{3}^{n, m}+x_{4}^{n, m}+x_{5}^{n, m}+x_{6}^{n, m}$.

The necessary conditions to minimize the objective function, S, are:
$\frac{\partial H^{n}, m}{\partial \theta_{1}^{n}, m}=0 \quad, \quad \theta_{1}^{n, m}>0 \quad$,
$\frac{\partial H^{n, m}}{\partial \theta_{2}^{n}, m}=0 \quad, \quad \theta_{2}^{n, m}>0 \quad$,
$\frac{\partial H^{n, m}}{\partial \theta_{3}^{n, m}}=0 \quad, \quad 0<\theta_{3}^{n, m}<1 \quad$,
when $\left(\theta_{1}^{n, m}, \theta_{2}^{n, m}, \theta_{3}^{n, m}\right)$ is an interior point of an admissible control, or $H^{n, m}=$ minimuin with respect to those $\theta_{j}^{n, m}$ which are at a boundary point of the constraints.
Substituting equations (7) to (14) into equation (31) and taking derivatives with respect to the various decision variables, the following equations are obtained:

$$
\begin{equation*}
\frac{\partial H^{n, m}}{\partial \theta_{1}^{n, m}}=L_{1}^{n, m}-\frac{k_{1}^{n, m} 2_{1}^{n, m} c_{t}}{\left(\theta_{1}^{n, m}+k_{13}^{n}, m\right)^{2}}\left(A^{n, m_{\theta} n, m}\right)^{2} \tag{33}
\end{equation*}
$$

$\frac{\partial n^{n, m}}{\partial \theta_{3}^{n}, m}=\left(z_{1}^{n, m}-z_{2}^{n, m}\right) A^{n, m}+\left(k_{11}^{n, m} L_{1}^{n, m}-k_{21}^{n, m} L_{2}^{n, m}\right) A^{n, m} c_{t}$

$$
+2 \frac{k_{12}^{n, m} L_{1}^{n}, m^{c} c}{3_{1}^{n, m}+k_{13}^{n, m}}\left(\Lambda^{n, n}\right)^{2} \theta_{3}^{n, m}
$$

$-2 \frac{k_{22}^{n, m} L_{2}^{n, m} c_{t}}{\theta_{2}^{n, m}+k_{23}^{n}, m}\left(A^{n, m}\right)^{2}\left(1-\theta_{3}^{n}, m\right) \quad$.

The second partial derivative of the Hamiltonian with re-. spect to the decision variable, θ_{3}^{n}, mhich is used at the computational procedure is,
$\frac{\partial^{2} n^{n, m}}{\partial\left(\theta_{3}^{n, m}\right)^{2}}=2 \frac{k^{n, m} L_{1}^{n}, m c_{t}}{\theta_{1}^{n, m}+k_{13}^{n}, m}\left(A^{n}, m\right)^{2}+2 \frac{k_{2}^{n, m} L_{2}^{n}, m c_{t}}{\theta_{2}^{n}, m+k_{23}^{n}, m}\left(A^{n, m}\right)^{2}$.

Setting equations (33) and (3f) equal to zero and applying the boundary conditions of the decision variables, the values of $\theta_{1}^{n, m}$ and $\theta_{2}^{n, m}$ can be obtained from the following equations:
$\theta_{1}^{n, m}=\sqrt{k_{12}^{n, m} c_{t}} \quad A^{n, m} \theta_{3}^{n, m}-k_{13}^{n, m} \quad$ when $\quad \theta_{1}^{n, m}>0$,
or
$\theta_{1}^{n, m}=0$ when $\quad \sqrt{k_{12}^{n, m} c_{t}} \quad A^{n, m} \theta_{3}^{n, m}-k_{13}^{n, m} \leq 0 \quad$,
$\theta_{2}^{n, m}=\sqrt{k_{22}^{n, m} c_{t}} \quad A^{n, m}\left(1-\theta_{3}^{n}, m\right)-k_{2}^{n}, m \quad$ when $\quad \theta_{2}^{n, m}>0 \quad$,
or
$\theta_{2}^{n, m}=0$ when $\sqrt{k_{22}^{n, m} c_{t}} A^{n, m}\left(1-\theta_{3}^{n, m}\right)-k_{23}^{n, m} \leq 0 \quad$.

When both $\theta_{3}^{n, m}$ and $\theta_{2}^{n, ~} \mathrm{~m}$ are greater than zero, equations (37) and (39) can be substituted into equation (35) to obtain the fol.1owing cquation

$$
\frac{\partial H^{n, m}}{\partial \theta_{3}^{n, m}}=\left(z_{1}^{n, m}-z_{2}^{n, m}\right) A^{n, m}+\left(k_{11}^{n, m_{L}} L_{1}^{n, m}-k_{21}^{n, m_{1} n, m}\right) A_{2}^{n, m} c_{t}
$$

$\theta_{3}^{n, m}$ is eliminated by the substitution and the value of $\frac{\partial H^{n, m}}{\partial \theta_{3}^{n, m}}$ becomes independent of $\theta_{3}^{n, m}$ as shown in equation (41). This implies that the value of $H^{n, m}$ is linearly related to θ_{3}^{n}, n and the extreme of $H^{n, m}$ with resnect to $0_{3}^{n, m}$ occurs at a boundary. In this case, to obtain the minimum value of H^{n}, m ,

$$
\begin{aligned}
\theta_{3}^{\mathrm{n}, \mathrm{~m}} & =0 \quad \text { if } \quad \frac{\partial H^{\mathrm{n}, \mathrm{~m}}}{\partial \theta_{3}^{\mathrm{n}, \mathrm{~m}}}>0 \\
& =1 \quad \text { if } \quad \frac{\partial H^{\mathrm{n}, \mathrm{~m}}}{\frac{\partial \theta_{3}^{n}, \mathrm{~m}}{3}}<0,
\end{aligned}
$$

$$
=\text { any value between } 0 \text { and } 1 \quad \text { if } \frac{\partial H^{n}, m}{\partial \theta^{n}, m}=0 \text {. }
$$

When either $\theta_{1}^{n, m}$ or $e_{2}^{n, m}$ is equal to zero, or when both are equal to zero, equation (41) is no longer valid. Equation (35) is then set equal to zero and solved for the optimal value of θ_{3}^{n},

$$
\begin{align*}
& +2 k_{12}^{n} m_{t} L_{1}^{n}, m_{1}^{n}, m-2 k_{22^{n}}^{n} c_{t} L_{2}^{n, m} A^{n}, m \\
& =A^{n, n}\left[\left(z_{1}^{n}, m_{-z_{2}}^{n}, m\right)+\left(k_{11}^{n}, m_{L}^{n}, m_{1}-k_{21}^{n}, m_{2}^{n}, m\right) c_{t}\right. \\
& \left.+2\left(k_{12}^{n, m} c_{t} L_{1}^{n, m}-k_{22}^{n} m_{t} L_{2}^{n, m}\right)\right] . \tag{41}
\end{align*}
$$

In an urban area, the available space for road construction is often limited. For example, a freeway with more than eight lanes would be very difficult to build near a CBD (central business district) area. It is, therefore, necessary to set an upper limit on the size of the links. This limit can be expressed as a limit on the investment on each link.

Also in developing an urban transportation network, it is sometimes required to provide a minimum level of service for the entire area. For example, arterial strects would be distributed uniformly throughout the whole area. This criterion can be fulfilled by requifing a minimun amount of investment on each link. These upper and lower limits can be expressed matheratically as follows:

$$
\begin{align*}
& \left(\theta_{1}^{n, m}\right)_{\min } \leq k_{13}^{n, m}+\theta_{1}^{n, m} \leq\left(\theta_{1}^{n, m}\right)_{\max }, \tag{42}\\
& \left(\theta_{2}^{n, m}\right)_{\min } \leq k_{23^{n}}^{n, m}+\theta_{2}^{n, m} \leq\left(\theta_{2}^{n, m}\right)_{\max }, \tag{43}
\end{align*}
$$

where
$\left(\theta_{j}^{n, m}\right)_{\text {max }}=$ the upper limit on the investment on link j immediately beyond node $(n, m) j=1,2$, in which $j=1$ denotes the horizontal link and $j=2$ denotes the vertical link,
$\left(\theta_{j}^{n, m}\right)_{\text {min }}=$ the lower limit on the investment on link immediately beyond node $(n, m) j=1,2$, in which $j=1$ denotes the horizontal link and $j=2$ denotes the vertical link.
computational procedure

The above formulation provides the equations (1) through (36) to find the optimal sequence of decision variables $\theta_{1}^{n, m}$, $\theta_{2}^{n, m}$, and $\theta_{3}^{n, m}$. The particular procedure used to accomplish this is as follows:

Step 1. Assume a set of decision variables, $\theta_{3}^{n, m}$.
Step 2. Calculate $x_{1}^{n, m}, x_{2}^{n, n}$ and $A^{n, m}$ by equations (7) and (8), starting at $\mathrm{n}=\mathrm{m}=1$ and proceeding to $\mathrm{n}=\mathrm{N}$ and $\mathrm{m}=\mathrm{M}$.

Step 3. Calculate decision variables, $\theta_{1}^{n, n t}$ and $\theta_{2}^{n, f i n}$, by equations (37) and (39) and check the boundary conditions for each speciai case.

Step 4. Calculate the values of $x_{i}^{n}, \mathrm{ml}, i=3,4,5,6$, by equations (9) through (14) starting at $n=m=1$ and procecding to $\mathrm{n}=\mathrm{N}$ and $\mathrm{m}=\mathrm{M}$.

Step 5. Calculate the adjoint vectors, $z_{i}^{n}, \boldsymbol{m}, i, 2$, with the above $x_{i}^{n, m}$ values, by equations (18) and (19), starting at $n=N, m$ and proceeding backward to $n=m=1$.

Step 6. Calculate $\frac{\partial H^{n, m}}{\partial \theta_{3}^{n}, m}$ and $\frac{\partial^{2} H^{n}, m}{\partial\left(\theta_{3}^{n}, m\right)^{2}}$ by equations (35) and (36) using the values of $x_{i}^{n, m}$ and $z_{i}^{n, m}$ obtained above.
Step 7. Compute a new sequence of decision variables θ_{3}^{n}, from the following equation.
$\left(\theta_{3}^{n, m}\right)_{\text {revised }}=\left(\theta_{3}^{n, m}\right)_{\text {old }}+\Delta \theta_{3}^{n, m}$
where

$$
\begin{equation*}
\Delta \theta_{3}^{n, m}=-\frac{\frac{\partial H^{n, m}}{\partial \theta_{3}^{n, m}}}{\frac{\partial^{2} 1^{n}, m}{\partial\left(\theta_{3}^{n, m}\right)^{2}}} \tag{49a}
\end{equation*}
$$

and check the boundary condition.
Step 8. Return to step 2 and repeat the procedure until the value of the objective function, equation (9), is sufficiently close to the previous value to indicate adequate convergence.

5-2. INVESTMENT UTTH ETXED SY゙STEM BUDGET

Sometimes the total budget for a transportation system improvement is predetermined and fixed. Obviously, the total investment in this case, must be equal to the fixed system budget. This, then becomes a fixed end point problem.

FORMULATION OF THE PROBLEM

The performance equations for a typical interior node as shown in Fig. 4 of section 3 can be written as follows:

$$
x_{1}^{n, m}=\theta_{3}^{n, m}\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right)
$$

$$
\begin{equation*}
=0_{3}^{n, m}\left(A^{n, m}\right) \quad, \quad x_{1}^{n, 0}=0 \tag{45}
\end{equation*}
$$

$$
\begin{align*}
x_{2}^{n, m} & =\left(1-\theta_{3}^{n, m}\right)\left(x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}\right) \\
& =\left(1-\theta_{3}^{n, m}\right) \Lambda^{n, m}, \quad x_{2}^{0, m}=0 \tag{46}
\end{align*},
$$

$$
\begin{align*}
& x_{5}^{n, m}=x_{5}^{n, m n-1}+k_{11}^{n, m L_{1} n, m} c_{1} A^{n, m} \theta_{3}^{n, n}+\frac{k_{12}^{n, m} L_{1}^{n, m} c_{t}}{\frac{\theta_{1}^{n, m}}{L_{1}^{n, m}}+k_{13}^{n, m}}\left(A^{n, m a n} \theta_{3}^{n, m}\right)^{2}, \\
& x_{5}^{n, 0}=0, \tag{47}\\
& x_{6}^{n, m}=x_{6}^{n-1, m}+k_{2 i}^{n, m} L_{2}^{n, m} c_{t} A^{n, m}\left(1-\theta_{3}^{n, m}\right) \\
& +\frac{k_{22^{n} L_{2}, m}^{n, m}}{\theta_{2}^{n, m}}-\frac{2}{L_{2}^{n, m}}+k_{23}^{n, m} \quad\left[A^{n, m}\left(1-\theta_{3}^{n, m}\right)\right]^{2} \quad, \quad x_{6}^{0} \cdot m=0 \quad, \tag{48}\\
& x_{7}^{n, m}=x_{7}^{n, m-1}+0_{1}^{n, m}+\theta_{2}^{n, m} \quad \sum_{n=1}^{N} x_{7}^{n, M}=G \quad, \tag{49}
\end{align*}
$$

where

$$
\begin{aligned}
x_{7}^{n, m}= & \text { a state variable representing the total investment } \\
& \text { on both links from node }(n, 1) \text { including both links } \\
& \text { immediately beyond node }(n, m), \\
G= & \text { total system budget. }
\end{aligned}
$$

Here, $\theta_{1}^{n, m}$ and $\theta_{2}^{n, m}$ are total investments on the horizontal and vertical links respectively at node (n, m), in dollars/hr.

Since total investment is a fixed amount, the objective function becomes:

$$
\begin{equation*}
s=\sum_{n=1}^{N} x_{5}^{n, M}+\sum_{n=1}^{M} x_{6}^{N, m} \tag{50}
\end{equation*}
$$

The Hamiltonian function and the adjoint variables can be written as follows:

$$
H^{n, m}=z_{1}^{n, m} x_{1}^{n, m}+z_{2}^{n, m} x_{2}^{n, m}+z_{5}^{n, m} x_{5}^{n, m}+z_{6}^{n, m} x_{6}^{n, m}+z_{7}^{n, m} x_{7}^{n, m}
$$

$$
=z_{1}^{n, m} \theta_{3}^{n, m} A^{n, m}+z_{2}^{n, n}\left(1-\theta \theta_{3}^{n, m}\right) A^{n, m}
$$

$$
+z_{5}^{n, m}\left[x_{5}^{n, m-1}+k_{11}^{n, m L_{1}^{n}, m} c_{t}\right.
$$

$$
+\frac{k_{12}^{n, m} L_{1}^{n}, m}{\theta_{1}^{n}, m}\left(\theta_{3}^{n, m} A^{n, m}\right)^{2}
$$

$$
\frac{1}{\mathrm{~L}_{1}^{n}, \mathrm{n}}+\mathrm{k}_{13}^{\mathrm{n}, \mathrm{~m}}
$$

$$
+z_{6}^{n, m}\left[x_{6}^{n-1, m}+k_{21}^{n, m} L_{2}^{n, m} c_{t}\left(1-\theta \frac{n, m}{n}\right) A^{n, m}\right.
$$

$$
\left.+\frac{k_{2}^{n}, 2^{n} L_{2}^{n, m} c_{t}}{\frac{\theta_{2}^{n}, m}{L_{2}^{n, m}}+k_{23}^{n, m}}\left\{\left(1-\theta_{3}^{n, m}\right) A^{n, m}\right\}^{2}\right]
$$

$$
\begin{equation*}
+z_{7}^{n, m}\left[x_{7}^{n, m-1}+\theta_{1}^{n, m}+\theta_{2}^{n, m}\right] \tag{51}
\end{equation*}
$$

$z_{1}^{n, m-1}=\frac{\partial H^{n, m}}{\partial x_{1}^{n, m-1}}$
$=z_{1}^{n, m} \theta_{3}^{n, m}+z_{2}^{n, m}\left(1-\theta_{3}^{n}, m\right)$

$$
+z_{5}^{n, m}\left(k_{11}^{n, m_{\theta}}{ }_{3}^{n}, m_{1} n_{1}^{n, m} c_{t}\right)
$$

$$
+z_{6}^{n, m}\left[k_{21}^{n, m}\left(1-\theta_{3}^{n, n}\right) L_{2}^{n, m} c_{t}\right]
$$

$$
+2 z_{5}^{n, m} \frac{k_{1}^{n}, 2^{n} L_{1}^{r_{1}, m} c_{t}}{\theta_{1}^{n}, m}\left(0_{3}^{n, m}\right)^{2} A^{n, n}
$$

$$
\frac{1}{L_{1}^{n}, m}+k_{13}^{n, m}
$$

$$
\begin{equation*}
+2 z_{6}^{n, m} \frac{k_{22}^{n, m} L_{2}^{n, m} c_{t}}{\frac{\theta_{2}^{n, m}}{L_{2}^{n, m}}+k_{23}^{n}, m}\left(1-\theta \frac{n, m}{n}\right)^{2} A^{n, m} \tag{52}
\end{equation*}
$$

$$
z_{2}^{n-1, m}=\frac{\partial H^{n, m}}{\partial x_{2}^{n-1, m}}
$$

$$
\begin{equation*}
=z_{1}^{n, m-1} \tag{53}
\end{equation*}
$$

$$
\begin{align*}
z_{5}^{n, m-1} & =\frac{\partial H^{n, m}}{\partial x_{5}^{n, m-1}} \\
& =z_{5}^{n, m} \tag{54}
\end{align*}
$$

$$
z_{6}^{n-1, m}=\frac{\partial 4^{n, m}}{\partial x_{6}^{n-1, m}}
$$

$$
\begin{equation*}
=z_{6}^{n}, n \tag{55}
\end{equation*}
$$

$$
\begin{array}{rl}
z_{7}^{n, m-1} & =\frac{\partial H^{n}, m}{\partial x_{7}^{n}, m-1} \\
& =z_{7}^{n, m}, \\
z_{1}^{n, M}=0 \quad, \quad n=1,2, \ldots, N, \\
z_{2}^{N, m}=0 & n=1,2, \ldots, M, \\
z_{5}^{n, M}=1 & n=1,2, \ldots, N, \\
z_{6}^{N, m}=1 & n=1,2, \ldots, M . \tag{60}
\end{array}
$$

From equations (54), (55), (57) and (60), we obtain

It has already been stated that $\sum_{n=1}^{N} x_{7}^{n}, M$ is fixed, which is the total system budget, so $z_{7}^{n}, n, n=1,2, \ldots, n$, remains unknown. However the following approach will enable us to find $z_{7}^{n, m}$, at any node (n, m).
At node (N, M),

$$
\theta_{3}^{M, M}=\theta_{2}^{N, M}=0
$$

This gives

$$
\begin{equation*}
\sum_{n=1}^{N} x_{7}^{n, M}=\sum_{n=1}^{N} x_{7}^{n, M-1}=G \tag{62}
\end{equation*}
$$

Substituting the values of the adjoint variables obtained from equations (52) to (60) into equation (51) and then taking the derivative of the Hamilionian function at node ($N, M-1$), partially with respect to $\theta_{1}^{N, M-1}$, we have

$$
\left.\left.\begin{array}{rl}
\frac{\partial H^{N, M-1}}{\partial \theta_{1}^{N, M-1}} & =-\frac{k_{12}^{N, M-1} c_{t}}{\theta_{1}^{N, M-1}}\left(\frac{1}{L_{1}^{N}, M-1}+k_{13}^{N, M-1}\right)^{2}
\end{array} A^{N, M-1}\right)^{2}\right)
$$

We can write down the value of $\mathrm{x}_{7}^{\mathrm{N}, \mathrm{M}-1 \text { from equation (49) }}$

$$
G=\sum_{n=1}^{N} x_{7}^{n, M-2}+\theta_{1}^{N, M-1}+\theta_{2}^{N, M-1}
$$

But $\theta_{2}^{N, M-1}=0$, as no vertical link exists at node ($N, M-1$). This gives

$$
G=\sum_{n=1}^{N} x_{7}^{n, Y-2}+\theta_{1}^{N, M-1}
$$

or

$$
\begin{equation*}
\theta_{1}^{N, M-1}=G-\sum_{n=1}^{N} x_{7}^{n, N-2} \tag{64}
\end{equation*}
$$

Substituting equation (64) into equation (63) gives

$$
\begin{equation*}
\left.z_{7}^{N, M-1}=\frac{k_{1}^{N, M-1} c_{t}\left(A^{N, N-1}\right)^{2}}{\left(-\frac{\sum_{1}^{N=1}}{L_{1}^{N}, M-1} x_{7}^{n, M-2}\right.}+k_{13}^{N, M-1}\right)^{2} \tag{64}
\end{equation*}
$$

or from equation (56)

$$
\begin{align*}
z_{7}^{n}, m & \left.=\frac{k_{12}^{N, M-1} c_{t}\left(A^{N, M-1}\right)^{2}}{\left(\frac{\sum_{n=1}^{N} x_{7}^{n}, M-2}{L_{1}^{N}, M-1}\right.}+k_{13}^{N, M-1}\right)^{2} \tag{65}\\
n & =1,2, \ldots, N ; \quad m=1,2, \ldots, M,
\end{align*}
$$

The necessary conditions for S to be a local minimum is that:
$\frac{\partial H^{n, m}}{\partial \theta_{1}^{n}, m}=0 \quad 0<\theta \frac{n, m}{n}<G-x_{7}^{n}, m \quad$,
$\frac{\partial H^{n}, m}{\partial \theta_{2}^{n}, m}=0 \quad, \quad 0<\theta_{2}^{n}, m<G-x_{7}^{n, m}-\theta_{1}^{n, m}$,
$\frac{\partial H^{n, m}}{\partial \theta_{3}^{n}, m}=0 \quad, \quad 0<\theta_{3}^{n, m}<1$,
when $\left(\theta_{1}^{n}, \theta_{2}^{n}, \theta_{3}^{n}\right.$, mi $)$ is an interior point, or

$$
\begin{equation*}
\mu^{n, n}=\text { minimum } \tag{66d}
\end{equation*}
$$

when $\left(\theta_{1}^{n, n}, \theta_{2}^{n, m}, \theta_{3}^{n, m}\right)$ is at a boundary point of the constraints. Substituting equations (45) to (49) and equation (61) into equation (51) and taking derivatives with respect to various decision variables, the following equations are obtained:

$$
\begin{equation*}
\frac{\partial H^{n}, m}{\partial \theta_{1}^{n}, m}=-\frac{k_{12}^{n, m}\left(\Lambda^{n, m} \theta_{3}^{n, m}\right)^{2} c_{t}}{\left(\frac{\theta^{n}, m}{L_{1}^{n}, m}+k_{13}^{n, m}\right)^{2}}+z_{7}^{N-1} \tag{67}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial n^{n, m}}{\partial \theta_{2}^{n, m}}=\frac{k_{2}^{n, m} A^{n, m}\left(1-\theta_{3}^{n, m}\right)^{2} c t}{\left(\frac{2}{L_{2}^{n, m}}+k_{2}^{n}, m\right)^{2}}+z_{7}^{N, M-1} \tag{68}
\end{equation*}
$$

$\frac{\partial 1^{n}, m}{\partial \theta_{3}^{n}, m}=\left(z_{1}^{n, m}-z_{2}^{n, m}\right) A^{n, m}+\left(k_{11}^{n, m_{L}} L_{1}^{n, m} \cdots k_{21}^{n}, m_{2}^{n}, m\right) c_{t} A^{n, m}$

$$
\begin{align*}
& +2 \frac{k_{12}^{n, m}\left(A^{n, m}\right)^{2} \theta_{3}^{n, m} L_{1}^{n, m} c t}{\frac{\theta_{1}^{n}, m}{L_{1}^{n}, m}+k_{13}^{n}, m} \\
& -2 \frac{k_{2}^{n, m}\left(A^{n, m}\right)^{2}\left(1-\theta_{3}^{n, m}\right) L_{2}^{n, m} c t}{\theta_{2}^{n, m}}+k_{2}^{n, m} \tag{69}\\
& L_{2}^{n, m}+3_{2}^{n}
\end{align*}
$$

The second partial derivative of the Hamiltonian with re-- spect to the decision variable, $\theta_{3}^{n, m}$, which is used at the computational procedure, is
$\frac{\partial^{2} n^{n, m}}{\partial\left(\theta_{3}^{n}, m\right)^{2}}=2 \frac{k_{12}^{n, m}\left(A^{n, m}\right)^{2} L_{1}^{n, m} c_{t}}{\frac{\theta_{1}^{n, m}}{L_{1}^{n, m}}+k_{13}^{n}, m}+2 \frac{k_{2}^{n, m}\left(A^{n, m}\right)^{2} L_{2}^{n, m} c_{t}}{\frac{\theta_{2}^{n, m}}{L_{2}^{n, m}}+k_{23}^{n, m}}$.

Setting equations (67) and (68) equal to zero, we obtain $\theta_{1}^{n, m}=\frac{k_{12}^{n, m} c}{z_{7}^{N, M-1}} A^{n, m} \theta_{3}^{n, m} L_{1}^{n, m}-k_{13}^{n, m} L_{1}^{n, m} \quad$.

COMPUTATIONAL PROCEDURE

By using equations (45) through (72) the optimal sequence of the decision variables $\theta_{1}^{n, m}, \theta_{2}^{n, n}$ and $\theta_{3}^{n, m}$ can be found. The following procedure is used to accomplish this.

Step 1. Assume a set of decision variables $\left(\theta_{1}^{n}, m, \theta_{2}^{n}, m, \theta_{3}^{n, m}\right)$.
Step 2. Calculate values of $x_{i}^{n, m}, i=1,2,5,6,7$ and A^{n}, m starting at $n=m=1$ and procceding to $n=N, m=M$.
Step 3. a.) For the first iteration, calculate $z_{7}^{N, M-1}$ by equation (64) with the above $x_{i}^{n, m}$ and $A^{n, m}$ values and go to step 4.
b.) For the second and the following iterations, calculate $z_{7}^{N, M-1}$ by equation (64) with the above x_{i}^{n}, m and $A^{n, m}$ values. This $z_{7}^{N, M-1}$ value is then compared with the value obtained in the previous iteration. If the two values are sufficiently close, procecd to step 6. If they are not sufw ficiently close, proceed to step 4.

Step 4. Calculate new values of $\theta_{1}^{n, m}$ and $\theta_{2}^{n, m}$ using equations (71) and (72) and check the boundary conditions.

Step 5. Return to step 2.
Step 6. Calculate $z_{1}^{n, m}$ and $z_{2}^{n, m}$ starting at $n=N, m=M$ and proceeding backward to $n=m=1$ by the use of equations thrcugh (61).

Step 7. Calculate $\frac{\partial H^{n, m}}{\partial \theta_{3}^{n}, m}$ and $\frac{\partial^{2} H^{n}, m}{\partial\left(\theta_{3}^{n}, m\right)^{2}}$ by equations (69) and (70), using the values of $x_{i}^{n, m}$ and $z_{i}^{n, m}$ obtained above.
Step 8. Compute a new sequence of decision variables e_{3}^{n}, m from the following equation:

$$
\begin{equation*}
\left(\theta_{3}^{n, n}\right)_{\text {revised }}=\left(\theta_{3}^{n, m}\right)_{01 d}+\Delta \theta_{3}^{n, m} \tag{73}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \theta_{3}^{n, m}=-\frac{\frac{\partial H^{n, m}}{\partial \theta^{n, m}}}{\frac{\partial^{2} H^{n, m}}{\partial\left(\theta_{3}^{n, m}\right)^{2}}} \tag{73a}
\end{equation*}
$$

and check the boundary conditions.
Step 9. Return to step 2 and repeat the procedure until the value of the objective function is sufficiently close to the previous value to indicate adequate convergence.

In the case where a minimum level of service is to be provided, the minimum investment can be treated as the existing facflities. The problem can then be solved by the general method without changing the algoritho. In other words, when the values
of $k_{13}^{n, m}$ are less than the minimum required investment, set them equal to the minimum investment and doduct the difference from the total budget.

The above formulation provides solutions to a singlequadrant network, single-copy problem. To solve a multiquadrant network, multi-copy problem, the procedures developed by Snel1, et. al. $[8,17]$ can be employed.

NUMERICAL EXAMPLES

Three numerical examples are presented iu this section to demonstrate the use of the model. Examples 1 and 2 illustrate the first case of this section under different investment conditions and example 3 illustrates the second case.

A hypothetical network is developed as shown in Fig. 4. Node (4,4) is assumed to be the centroid of the CBD. The input volumes, $v^{n, m}$, are also shown in the figure. All links have an equal length of one mile. The area is divided into two parts by a diagonal line which passes through nodes (1,4) and (4,1). The lower part which is adjacent to the CBD was assumed to be densely developed. The upper part was assumed to be less densely developed. Assuming the maximun speed in the densely developed area to be 60 mph and in the less densely developed area 70 mph , minimum travel times in these two areas become 0.0167 hour per mile and 0.0143 hour per mile respectively. Single line links represent existing local streets and double line links represent existing arterial streets.

Fig. 4. Hypothetical Network and Input volumes $\mathrm{v}^{\mathrm{n}, \mathrm{m}}$ for Numerical Examples 1,2 and 3 .

Input data for the models are summarized in Table 1. Values of $k_{i 2}$ and $k_{i 3}$ are also indicated in Fig. 5 and Fig. 6 respectively. The time cost, c_{t}, is assumed to be $\$ 1.55$ per hour per vehicle as suggested by AASHO [15].

Erample 1

Suppose we are planing for a completely undeveloped area where no facilities exist and there is no budget limitation on link investment. A theoretical optimal system can then be developed to accommode the predicted trip demand. Using the formulation of "investment with no budget constraint" and letting $k_{i 3}^{n, m}=0$, for all (n, m), the resulting system is shown in Eig. 7 . Notice that the system forms a shortest path tree in which only one route is built for each origin-destination pair and all trips are assigned to this route. This result coincides with the analysis discussed in page 120 which shows the linear characteristic of the $\begin{gathered}\text { oroblem under no } \\ \text { init } \\ \text { condition. }\end{gathered}$

Example 2

The hypothetical network shown in Fig. 4 is to be improved with the following conditions:

1. No systen budget limit.
2. A minimum level of service (arterial street) is to be provided for the entire area.
3. Roadway space obtainable is restricted.

	位保	$\mathrm{n}_{1}^{n, m}$	W\% ${ }^{\text {\% }}$	$x_{i 3}^{n, m}$	$0_{\text {a }}^{\text {n, }}$,	$\theta_{i \operatorname{inin}}^{n, i n}$	
2,1	2	U. 014.3	0.00003	8.0	dij	3.0	2,000
	2	0.0143	0.00004	8.0	8	10	
3,2	$?$	0.0213	0.00006	6.0	80	10	3,000
	2	0.012 .3	0.00005	20.0	80	10	
2,3	2	0.0143	0.00006	8.0	80	1.5	0
	2	0.0143	0.00006	8.0	80	10	
124	1	10.0167	1.000	0.00001	100	15	1,000
	2	0.0167	0.00010	15.0	100	15	
2,1	1	0.0143	0.00005	10.0	80	10	3,000
	2	10.0143	0.00005	8.0	80	10	
2,2	1	0.0213	0.00006	30.0	80	10	0
	2	0.0143	0.00005	10.0	80	10	
2,3	1	10.0167	10.00010	25.0	100	35	1,000
	2	10.0167	10.00008	12.0	1200	15	
2,4	1	10.0167	1,000	10.00001	7.00	15	0
	2	10.0167	0.00015	15.0	100	15	
3,1	1	10.0143	10,00006	8.0	80	10	0
	2	10.0143	0.00006	\%. 0	80	1.0	
3,2	$?$	10.0167	0.00008	12.0	100	25	1,000
	2	0.0167	10.00010	15.0	300	15	
3,3	7.	10.0167	0.00015	12.0	100	15	1,000
	2	0.0167	10.00015	12.0	100	15	
3.4	1	0.0167	1.000	0.00001	100	15	0
	2	10.0767	0.00025	15.0	100	15	
4,1	1	10.0167	0.00008	15.0	100	15	1,000
	2	0.0167	1.000	0.00001	100	15	
4,2	1	0.0167	0.00015	15.0	100	15	0
	2	0.01067	1.000	0.00001	100	15	
4,3.	1	0.0167	0.00020	15.0	200	15	0
	2	10.0167	1.00	0.00001	100	15	
4,4	2.	0.0167	0.00001	0.00001	100	15	0
	210	0.0167	0.00001	0.00001	100	15	

$i=1$ for horizontal links
$G=\$ 300.00$
$i=2$ for vertical liks
$c_{t}=\$ 1.55 /$ hour

Toble 2 Input Data of Numerical Emamples 1, 2 and 3.

Fig. 5. k_{12} Values for Numerical Examples 1,2 and 3.

Fig. 6. ki Values for Numerical Examples 1,2 and 3.

Fis. 7. Optimal Investment and Traisic Assigniment Results of Example 1

The investment limits, $\left(\theta_{i}\right)$ min, $i=1,2$, and $\left(\theta_{i}\right)$ max, $i=1,2$, associated with eonditions 2 and 3 are listed in Table 1 . The formulation of this problem has been developed in the previous section under the eategory, "investment with no budget eonstraint".

The results are obtained on an IBM 1620 eomputer and they are presented in Fig. 8. Note that with the minimum level of service provided for the entire area, trips are assigned rather uniformly to take advantage of all facilities. Considering existing facilities as part of the cost, total cost hecomes $\$ 2,875.99(2,603.99+272.00)$. Comparing this cost with the total cost in example $1(\$ 2,819.86)$, the difference is only about two pereent. This indieates that providing a minimum level of serviee might be desirable in an urban area.

Example 3

The hypothetieal network as shown in Fig. 6 is to be improved with a total system budget of $\$ 300 \quad G=300$, equivalent peak hour budget). The resulting traffie assignment and link investments are shown in Fig. 9. Comparing the costs with those obtained in example 2 , it is evident that although investment cost deereases more than 30 percent, total cost inereases only 1.4 pereent. This again points out the advantage of area-wise transportation system development.

The number of iterations and approximate computing tine used for each example are sumarized in Table 2.

Toval Investment $=\$ 445.04$ Mavel Time cost $=52,258.95$
Toval Cost $=\$ 2,603.99$
$\frac{1,143}{(2.00)}:$ Traficic volume

Fig. 8. Optimal Investment and Traficic Assignment Results of Exaninle 2

Fig. 9. Optimal Investment and Traffic Assignment. Results of Exemple 3.

Table 2. Number of Iterations, Approximate Computing Time Used and Total Costs for Numerical Fxamples.

Example No.	$\begin{aligned} & \text { Starting } \\ & \text { Point } \end{aligned}$	Number of Iterations	$\begin{gathered} \text { Time Used } \\ (\text { min. }) \end{gathered}$	$\underset{(\$)}{\operatorname{Total}} \operatorname{Cost}$
1	$0_{3}^{\mathrm{n}, \mathrm{mt}}=0.7$	15	20	2,819,86
2	$e_{3}^{n, m}=0.7$	18	25	2,603.99
	$e_{1}^{n, m}=15$			
3	$0_{2}^{n, m}=5$	18	120	2,639.38
	$\theta_{3}^{n, m}=0.3$			

DISCUSSION

This section doss not consider the taxing policy by including toll to divert the traffic.

If the travellers are told that a particular route will.
take minimum amount of travel time, they will all rush to that route and thus will cause a congestion on that route. In order to avoid this an optimum amount of toll can be fixed on that route, so that both the congestion situation and the free flow situation can be avoided.

ACKHOWLHDGEMENTS

The author thanks Dr. C. L. Hwang, major professor, for his valuable guidance, encouragement and cooperation in the preparation of this report. He sincerely acknowledges the support and encouragenent provided by Dr. M. L. Funk, Dr. F. A. Tillman, Dr. - E. S. Lee and Dr. L. T. Fan.

REFERENCES

1. Erenan, M. F. and Rothruek, C. A., "Prineirles of Highway

Engineering Eeonomic Analysis," Report presentcd at the
44th Annual Meeting of Highway Rescarcin Roard, January, 1965.
2. Campbell, E. W., "A Nechanical Method for Assiguing Traffie to Expressways," Bulletin 130, Highway Researeh Board, Wasbington, D.C., 1956.
3. Caroli, J. D. (Jr.), "A Method of Traffic Assignment to an Urban Network," Bulletin 224, Highway Researeh Board, pp. 64-71, 1959.
4. Charnes, A. and Cooper, W. W., "Extcrnal Prineiples for Stimulating Traffic Flow Over a Network of City Streets," Proceedings of the National Assembly of Sciences, Vol. 44 , No. 2, pp. 201-204, February, 1953.
5. Cheng, y. C.. Hiseng, C. L., and Fan, L. T., "Elementary Interpretation of the Kaximum Principle-Relations Retween the Discrete and the Continwous Nasimum Principle," Bulletin Special Report No. 69, Kansas State University, May, 1966.
6. Natizig, G. B., "The Shortest Path Through a Maze," Operations Rescareh, S: 270-273, 1957.
7. Fan, I. T. and Sang, C. S., "The Diserete Masfmum PrineipleStage Systems Optimization," John Wiley and Sons, New York, 1964.
8. Furk, iA. L., Enell, R. R. and Elackburn, J. B. "optimal Alloestion of Trips to a Street Network," Journal of the Highuay Division, ASCE, Vol. 93, No. HW2, py. 95-113, liovomber, 1967.
9. Garrisca, W. L. and Marble, D. F., "Analysis of Highway Networks: A Linear Programing Formulation," proecedings, Vol. 37, Highway Researeh Board, pp. 1-17, 1958.
10. Grant. E. L., "Principles of Engincering Economy," 4th edition, Ronald, New York, 1960.
11. Guerin, N. S., "Travel Time Relationships," Quality and Theory of Traffic plow-A symposium, Bureau of Highway Traffice, Yale University, 1961.
12. Moore, E. G., "The Shortיst path Through a Maze," proceedings of an Iaternational. Symposium on the Theory of Switehing, Pari IT, Harvard Universitv, pp. 285-292, April, 1957.
13. Oglcsby, C. H. and Grant, E. L., "Economic Analysis-The Fundamental Anproach to Decisions in Highway Planning and Design," Proceedings, Voi. 37, Hishway Research Board, pp. 45-57, 1958.
14. Pontryagin, L. S., Pinltyanskii V. G., Gamkrelidze, , V. V. and Mischenko, E. F., "The Mathematical Theory of Optimal Processes," (English Translation by K. N. Trirogoff), Interscience, New York, 1962.
15. "Road User Benefit Analysis for Highway Improvements," American Association of State Ifighay Officials, Washington D.C., 1960.
16. Shimbel, A., "Applications of Matrix Algehra to Commuication Nets," Bulletin of Sathematical Biophysics, Vol. 15, 1953.
17. Snell, R. R., Funk, M. L., Fan, L. T., Tillman, F. A., and Wang, J. J., "Traffic Assignment: An Application of the Maximum Princiole," submitted to Transportation Science Section, J. of Operations Research, September, 1967.
18. Tillman, F. A., Pai, D. K., Funk, M. L. and Snell, R. R., "An Iterative Approach to Traffic Assignment," to be published Transportation Research, No. 44, Vol. 2. (1968)
19. Wallace, A. M., "Traffic Assignment by Systems Analysis," Ph.D. Thesis, Purdue University, June, 1965.
20. Wang, J. J., "Toward a Solution for the optimal Allocation of Investment in Transportation Network Develonment," M.S. Thesis, Kansas State University, June, 1967.
21. Wang, J. J., Snell, R. R. and Funk, M. L., "Toward a Solution for the optimal Allocation of Investment in Transpor.tacion Network Development," presented at the annual meeting of Highway Research Board, Washington, D.C., January, 1968.
22. Whiting, P. D. and Miller, J. A., "A Method for Finding the Shortest Route Through a Road Network," Gperations Research Quarterly, Vol. 11., No. 1 and 2.
23. Yang, T. C., "Traffic Assignment by Discrete Maximum Principle," M.S. Thasis, Kansas State University, 1965.
24. Yang, T. C. and Snell, R. R., "Traffic Assignment bv Maximum Princinle," Iournal of Highoy Division, ASCE, Vol. 92, No. HV2, october, 1966.
25. Zectej, R. M. and Carll, R. R., "Summary Revicw of Major Metropelitan irea Transportation Studies in the United States," ITTE Special Report, University of California, Berkeley, Nov.. 1962.

```
APPENDIX I COMPUTER PROGRAM FOR
    TRAFEIC ASSIGNMENT PROBLEHS
```

The computer flow chart which illustrates the computational procedure is presented in Fif. l; the FORTRAN progran symbols, their explanations and correspoadins mathematical notations are summarized in T\&ble 1. The computer program for IBM 360/50 follows the symbol table.
calc. $x_{1}^{n, m}(I), x_{2}^{n, m}(I), x_{3}^{n, m}(I), x_{4}^{n}, m(I)$
calc. $S(1)=\sum_{n=1}^{N} x_{3}^{n}, m(1)+\sum_{m=1}^{M} x_{4}^{M, m}(1)$
calc. $z_{2}^{n, m}(I), z_{2}^{n, m}(I)$ backwards

$$
\begin{aligned}
& \text { Write } I, x_{1}^{n, m}(I), x_{2}^{n, m}(I), \theta^{n, m}(I), \\
& z_{1}^{n, m}(I), z_{2}^{n, m}(I), S(I)
\end{aligned}
$$

$$
\text { calc. } \frac{\partial H^{n, m}(1)}{\partial \theta^{n, m}} \text { and } \frac{\partial^{2} H^{n, m}(1)}{\partial\left(\theta^{n, m}\right)^{2}}
$$

$$
\text { calc. } \Delta \theta^{n, m}=-\frac{\partial n^{n, m}(I)}{\partial \theta^{n, m}} \frac{\partial^{2} n^{n}, m}{\partial\left(\theta^{n}, m\right)^{2}}
$$

$$
\text { calc. } \theta^{n, m}(1)=\theta^{n, t}(1)+\Delta \theta^{n, n^{n}}(1)
$$

Fig. 1. Computer Flow Diagram.

Tablc 1. Program Symbols aad Explanation
Frogram
Symbols

ACAP (I)	volume Capacity of link I	$c_{j}^{n, m}$
Allil	first part of Hamilonian required for numerical derivative	
AHI 2.	second part of llamitonian required for nutacrical derivative	
AHV		$v h^{n, m}$
AI (I, J)	total inflov volume at node (I, J)	$x_{1}^{n, m-1}+x_{2}^{n-1, m}+v^{n, m}$
AK (I)		$k_{j 1}^{n, m}$

AKK decimal fraction of the calctlatcd change in the decision variable

AKO (T)
AKI (I)
conversion factor for $\mathrm{k}_{\mathrm{j}}^{\mathrm{n} 2} \mathrm{~m}$
ATEMET
new value of the decision variable

AVV
COP1, COP2 the order of copy loading

$$
D(I, J)
$$

DDH

DELTA
sccond derivativc of Hamiltonian with respcct to the decision variále
$\frac{\partial^{2} H^{n}, m}{\partial\left(\theta^{n, m}\right)^{2}}$

> the maxinum percentage difference
> in total time between successive iterations which will stop the itcrative process

Table 1. Program Symbols and Explanation

DELTB	absolute value of percentage change in total time betwcen successive iterations	
DELTAD		$-\frac{\partial H^{n, m}}{\partial \theta^{n, m}} / \frac{\partial^{2} H^{n, m}}{\partial\left(\theta^{n, m}\right)^{2}}$
D11	first derivative of Hamiltonian with respect to the decision variable	$\frac{\partial H^{\mathrm{n}, m}}{\partial \theta^{\mathrm{n}, \mathrm{~m}}}$
ITER	iteration number	
KEY (I)	denotes that if $\mathrm{KEY}(\mathrm{I})=1$, quadrant I is present and if $\operatorname{KEY}(I)=0$, quadrant I is absent	
KEyso	denotes that if KEYSO $=0$, print copy volumes and if KEYSO $=1$, print total volumes	
LIN	denotes that if $1 T N=1$, time function is linear and if $L I N=$ 0 , time function is non-linear	
LMM (I)	M dimension of quadrant I	M
LNN (I)	N dimension of quadrant I	N
NN	a multiple of 10 that causes print out of copy volumes	
TEMPT	the total time for the previous iteration used to determine whether or not to cease the iterative process	
TIM	the total time for the quadrant for all vehicles upto this copy on the links in the appropriate direction	
TIME (I)	time on quadrant I excluding appropriate boundary links	
TIMM (I)	```time on quadrant T (excluding appropriate boundary links) from previous copies in the same direc- tion on the same linms.```	

Table 1. Program Symbols and Explanation (continued)

TIMP the time for the nuadrant for the vehicles from previous copies in the same direction and on the same links

TPREVT - TTTP
TMII
TMV

$$
\begin{aligned}
& x_{3}^{n}, m \\
& x_{4}^{n}, m
\end{aligned}
$$

TOTT total time including present eopy
TPREVT total time for previous eopies
TTT total time on the present iteration

TTTP
TIMM (1) + TIMM(2) $+\operatorname{TIMM}(3)$
$+\operatorname{Tinm}(4)$
TTTT the total time for the previous iteration used to deeide whether or not the total time is oseillating
$V(I, J)$
VH(1,3)
$v^{n, m}$
$x_{1}^{n, m}$

VHS (I,J) vehicies horizontal at the boundaries between quadrants

VV (I, J)
VVS(I,J) vehieles vertieal at the boundaries between quadrants

2H(2, J)
ZV (I, J)

$$
\begin{aligned}
& z_{1}^{n, m} \\
& z_{2}^{n, m}
\end{aligned}
$$

（ひ）50 $1=1,3$
AHIL（1）$=0$ ． 0
50 AHIC（ 1 ）$=0$ ． 0
Wた1TE（ 3,1111 ）
D） 77 \＆
IF（K゙EY（K））19，778，779
779 LK＝LNN（K）
LC＝LAN（K）
WRITE（3．11）K．LRELC
00 $777 \mathrm{~J}=1 . \mathrm{LC}$
DO $7771=1 . L K$

$D(k, 1, J)=. b$
WRITE（3，2）V（K，I，J），LCH（K，1，J），LCV（K，I，J），AHV（K，I，J），AVV（K，1，J）
777 CONTINUE
776 CONTINUE
WPITE（3．937）
17 1TFR＝1TERK＋1
TTT＝0。
IF（1TER－90）334．383．19
303 KEYSO＝2
$3840614 \mathrm{~K}=1.4$
LN＝LNN（K）
$L M=L$ MM（K）
IF（KEY（K））19．14．618
618 WRITE（3．1）ITER，K
$6: 50041=1 . L N$
DO \＆$j=1 . L M$
」ト $=\mathrm{J}+$ ！
$J M=J-1$
$\square P=I+1$
$\mathrm{I} \mathrm{M}=\mathrm{I}-1$
Ir（I－1）： 9.57 .58
57 IF（J－1）：9．59．03
58 IF（J－1）： 0.61 .026
01 1F（I－LN） 002.003 .19
63 1F（J－LM） 604.056 .19
626 IF（J－LM） 050.615 .19
604 A！（K，I．J）$=$ VHA（K，I，JM）－V（K，I，J）
GO TC 60
050 IF（I－LN） 600.641 .19
$051 \mathrm{Y} \cdot \mathrm{X}=\mathrm{VH}(\mathrm{K}, \mathrm{I}, \mathrm{JiM})+V V(K, 1, \mathrm{JM})$
60 TO 60\％
615 ：F：I－LN）553．377．19
377 VV（K．1，J）$=0$ ．
VH（K，I，J）＝0．
AI $(K, 1, J)=0$ ．
GOTO 4
与9 A1（K，I，J）$=-V(K, I, J)$
GO TO 60
б02 AI（K，I，J）$=V V(K, I N, J)-V(K, \ldots, j)$
go TO 60
600 AI $(K, I, j)=V V(K, I M, J)-V(K, I, J)+V H(K, I, J M)$
GO TO 00
$603 \times x=0.0$
©69 AI（K，I，J）$=V V(K, I M, J)-V(K, 1, J)+V V 5,(\kappa, J)+X x$
GO TG 0.0
6ち3 $x X=V V(K, I N, J)+V H(K, I M, J)$

6010 （ita．
abo $X x=0$ ret．

Gl TU an

4 CONTINUE
w \＆6 60 T0（6．77．678．679．680）．K
677 L二厶。
GU TU 6A：
$6781=3$
60 T0 obl
－．．． $670 \mathrm{~L}=?$
GC TO 681
$680 \quad L=1$
K．O FO 681
681 DO $639 \mathrm{~J}=1 \cdot \mathrm{kM}$
VVS（L，J）$=V V(K, L N-I, J)-V(K, L N, J)$
689 CONTINUE
60 TO（682，683．684．655），K
$082 \mathrm{~L}=2$
GO TO GBE
683 $\mathrm{L}=1$
GO TO 680
W84 $\mathrm{L}=4$
6010686
$6851=3$
686 DU $7871=1$ ．LN
VHS（L，I）$=$ VHI（K，I，LM－1）－V $K, 1, L M)$
78：CONT1NUE
C ．．．．PUNCH VOLUMES • DECISIGN－VECTORS，TOTAL TIME AND－ITER
TIM：P $=0.0$
TIN二期。 0
GO TO（136．157．198．189）．K
$186 \mathrm{~K} 1=\mathrm{LN}-1$
K2＝LM－i
GU TO 190
$1 \varepsilon 7 K 1=L N-1$
K2 $2=L$
GOTO 190
$158 \mathrm{~K} 1=\mathrm{LN}$
$K 2=L K-1$
GO 10190
$189 K 1=L N$
$K 2=L M$
$19000182 \quad \mathrm{I}=2 . \mathrm{K} 1$
DO $182 \quad J=1, K 2$
$K H=L C H\{K, 1, J)$
$K V=L C V\{K, 1, J)$
1F（1TER－1）19．49．48

1 AHV（K，1，J）＋AKO $(K V) * A V V(K, 1, J)+A K:(K H) *(A H V(K, 1, J) * * 11)+A K 1(K V) *$
2 （AVViK，I，J）＊＊ 1 ！）
$401 F(V H 1(K, 1, J)+\operatorname{ArIV}(K, 1, J)-.001) 141 . i 42.142$
141 imh＝0．
GO TG 143

$14311(\operatorname{VV}(K, 1, \ldots)+\operatorname{AVV}(K .1, \ldots)-.001) 144,14, \ldots 145$
$1441 \mathrm{NO}=\mathrm{C}$ ．
（G）TU 146

1ヵ2 CONT1NUF゙
181 T1AE（K）＝T1Pi
いた1TE（3．12）TLNE（K）
1ト（！TER－1）1は．47．5ちる
47 T1MP（ス）＝T1んか
533 GU TO（923．923．923．184）．K
184001 \＆゙S $J=1.4$
IES TTT＝T1T＋TIME（J）
WRITE（3，12）TTT．AKK
IF（TTT－TTTT） 379.923 .380
3\％TTTT＝TTT
GOT0 923
380 AKKE0．7ら＊AKK
1F（ANKー．05）1も01．1402．1602．
1601 AKK $=\mathrm{C} .05$
GE TO ：GO？
1602 TTTT＝TTT
923 G0 TO（720．720．720．999）．K
$49 y$ LF（ITER－1）19．720．721
721 DELTE＝AES（ABS（TTT－TEMPT）／TTT）
TEMPT $=$ TTT
720 Oी $3 \% 1=1$ ．LN
D） $370 \mathrm{~J}=1 . \mathrm{LM}$
$\mathrm{N}=\mathrm{LN}+\mathbf{1 - 1}$
$N=L M+1-J$
$N \mathrm{H}:=\mathrm{N}-1$
$M M=N-$ ：
$N P=N:$
$A: P=M+1$
1F（N－LN）：゙ら，20．19
20 1F（N－LM）25．21．14
$21 D(K, N, M)=1$ ．
$Z H(K, N, M)=C$ 。
ZV（K．N． N ）$=0$ 。
GO TO 370
25 1F（J－1）19．700．709
$709 \mathrm{KH}=\mathrm{LCH}(\mathrm{K}, \mathrm{N}, \mathrm{MP})$
$K V=L C V(K, N, M P)$
IF（VH（K，N．MP）＋AlHV $K, N, M P)-.001) 707.702 .702$
707 โVIt＝0．
GO TO 703
702 TVH＝（VH1 K，N，N，P）＋AHV（K，N，N：P））＊＊ 10
$703 \mathrm{IF}(V V(\kappa, N, M P)+A V V(K, N, M P)-.001) 704.705 .705$
704 TVV＝0．
GO TO $\% 00$

$706 Z H(K, N, M)=L H(K, N, M P) 40(K, N, N H)+Z V(K, N, M F) \neq(1,-D(K, N, N P))+2, \neq A K(K H)$

$21 .-D(K, N, N P))(\& 2) * A L(K, N, M P)+A V V(K \vee N, M b) *(1,-D(K, N, M P)))+A K Q(K H) *$
$3 D(K . N . M P)+A K O(K V) *(1,-D(K, N . N O)+11, * A K 1(K H) \% D(K, N, M P) * Y V H$
$4+11 . * A K i(K V) \div(1 .-D(K, N, M P)) * T V V$
1F（1－1）19．804．700


```
    G1) T0 3%O
700kV=LCV(K.NO,N)
    KH=LC.H(N゙,ND,N法)
    1F(VH(K,NH,M)+AHIV(K,Nな,M)-.001)711,71?,712
/11 TV&1=0.
    -GO TO 713
```



```
713 1F:{VV(K,NP,M)+AVV(K,NP,M)-.001)714.715.715
714 TVV=0.
    GOTO716
7LS TVV=(VV(K,NP,M)+AVV(K,NP,M))㐫安10
```



```
    4+11.*AK:(KV)*(1.-D(K,NP,M))*TVV
    IF(J-1)19.805.370
80, /H(K.N.N)=ZVIK.N.N)
S70 CONTINUE
    1F(ITER-NN*10)1001.1003.19
    100% 1F(K-3)1002,1002.100A
    1004 NN=NN+1
        GO TO 100:*
    1001 1F(KEYSO-1)07.1002.100?
    1002 WR1TE(3.653)T1TL1.T1TLZ.T1TL3.COP1.COO2
        OO 303 1=1.LN
        DO 393 J=1.LM
        IF(KEYSU-1)445.445.444
    445 X11=VV(K゙,1,J)
        N12=VH(K,1,J)
    GOTO 446
    444 <11=VV(K,1,J)+AVV(K,1,J)
    x1.?=VH(K,1,J)+AHV(K,1,J)
    440 FN1TE(3,7G3)1,J,X11, X12,D(K,1,J),ZV(K,1,J),ZH(K,1,J)
    393 CONTENUE
    8/1F(1TER-1)19.10.114
    119 GO TO (18.18.18.120).K
    120 1F(DELTE-DELYN)90.14.15
        901F(KEYSU-1)89.89.84
        89 KEYSO=1+KEYS(1
        GO TO 18
    84 TYTP=TIMM(1)+TIMM(2)+TIMM(3)+TIMM(4)
        TLH=TPREVT-TTTP
        TOTT=TLH+TTT
        WR゙!TE(3.12)TLH
        \forallK1TE(3.12)TUTT
        GU TU 1%
    15 KEYSO=0
    18 DO I3 1=1,LN
        00 13 J=1.LM
        N=LN+1-1
        M=LM+1-J
        KH=LCH(K,N,N)
        KV=LCV(K,N,A)
        1F(I-1)15,371.372
    371 1F(J-1)19.13.37%
    37% DO 37BL=1.3
```

```
    #N=L
```



```
\cap3G R(K,N,M)=,01
    GO 10 4%口
```



```
3.38 D(K.N.M)=.ぱ
49.DI=!\(K,N,M)-02+6F/100.
```



```
9%% A[(K,N,Mi)=1.
```



```
    3 A!(K,N,M)+NKC(KV)化(1, -DI)*NI(K.N.N)
    1F(DI*AI(K,N.M)+A!IV(K.N.:I)=.001)933.934.934
033 TAHH=0.
    \zeta!) }0 9.?5
934 TAHH1=AK1(KH)*(DI*AI(K,N,M)+Atv(K,N,NO))**11
935 1F((1.-D1)*A1(K.N.M)+AVV(K,N,M)-.00:)936.93今,936
936 TAHV=0.
    GO TO 93!
936 TAl|V=AKI(KV)*((1.-O1)*AI(K,N,N)+AVV(K,N,M))&:豖11
939 AH!2(L)=TAHH+TAHV
376 CONT INUE
701 DH={(AH11(3)-AH11(1))+(AH12(3)-AH12(1)))/.02
    IF(LIN-1)3304.305.19
305 IF(OH)302,303,303
SO2 ATEMP}=1.
    CO TO 204
303 ATEMP=0.0
    GO TD 20&
30400H=((AH11(1)-2.*AH11(2)+AH11(3))+(AHII2(1)-2.*AH12(2)+AH(2(3)))
    1\therefore0001
357 DELTAD=-DH/(DDH+0.0000000001)
334 1F(J-1)1〕.820.821
s21 1F(1-1)19.820.32?
820 ATEMP=D(K,N,N) +DELTAO
    GO 10 309
822 IF(AGS(OELTAD)-.1)823.823.825
825 DELTAD=(0ELTTAD/ABS(OFLTAD))*.I
823 ATENP=C(K,N.只)+AKK%ORLTAD
30G 1F(ATEMP-.9906GGG)201.202. 202
201 1F(ATENP-.0000001)203.203.204
202 0(K.N.M)=.9949999
        GO TO 710
203 U(K,N.M)=.0000001
    CO TO 710
204 IF(ATENP-.01)308.203,307
36% IF(ATENP-.99)308.202.30E
308 D(K,N,N)=ATEM, (%
710 Ga TD 13
    13 CONTINUE.
    I4 CONTINUE
        GO TO 1*
        1% <U TC 100
        END
```

APPENDIXII. COMPUTER PROGRAMS FOR COST MLNMMZATIOH PROBLEMS

The computer flow chart which illustrates the computational procadure to obtain optimal sequence of the decision variables $\theta_{1}^{n, m}, \theta_{2}^{n, m}$ and $\theta_{3}^{n, m}$ for section $5-1$, is presented in Fig. 2. Fig. 3 presents the computer flow chart which illustrates the computational procedure to obtain optimal sequence of the decision variables $\theta_{1}^{n, m}, \theta_{2}^{n, n}$ and $\theta_{3}^{n, m}$ for section 5-2. The CORTRAN symbols, their explanations and corresponding mathematical notations are sumarized ir Table 2. The computer programs for IBM 1620 follow the symbol table.

Fig. 2. Computcr Flow Chart fer Numerical Examples of section 5-1.

Fig. 3. Comouter Flo. Chart for Numerical
Examples of Section 5-2.

Table 2. Program Symbols and Explanation

Progeam Symbols	Explanation	Mathematical Symbols
AD		$0_{1}^{n}, m+\theta_{2}^{n}, m$
AI (1,1)	total inflow volume at node (I, J)	$x_{1}^{n}, m-1+x_{2}^{n-1}, m_{r} v^{n}, m$
All		L_{1}
AI. 2		L_{2}
CH1		${ }_{k}{ }_{1 i}, \mathrm{~m}$
CH 2		$\mathrm{k}_{12}^{\mathrm{n}, \mathrm{m}}$
CLi 3		$k_{13}^{\mathrm{n}, \mathrm{ma}}$
$\cos T$	objective function	s
COSTH		$\mathrm{x}_{3}^{\mathrm{n}, \mathrm{m}}$
costr	sum of travel time cost	$x_{3}^{n}, m+x_{4}^{n}, n$
cost	maximum value of total cost	
coster	sum of investment cost	$x_{5}^{n}, m+x_{6}^{n}, m$
costy		x_{4}^{n}, m
CV1	-	$\mathrm{k}_{2}^{\mathrm{n}} \mathrm{j}$ m
CV2		$\mathrm{k}_{22}^{\mathrm{n}}$, nm
CV 3		$k_{23}^{n, m}$
D1		$\theta_{1}^{n, m}$
D2		θ_{2}^{n}, m
D3		$e_{3}^{\mathrm{rl}_{3}, \mathrm{nt}}$

DASM1
DASM?
DAS:T3
DDH
inftial value of $0_{1}^{n, m}$
initial value of $\theta_{2}^{n, m}$
inftial value of $0_{3}^{n, m}$

$$
\frac{\partial^{2} n^{n, m}}{\partial\left(\theta_{3}^{n}, m\right)^{2}}
$$

Table 2. Progran Symbols and Explanation (continued)

DELTB

$$
\left|\frac{s-S \max }{S}\right|
$$

D1I

D 7

$$
\frac{\partial H^{n}, m}{\partial \theta_{3}^{n}, m}
$$

$$
\left|\frac{\left(z_{7}^{N, M-1}\right) \text { revised }-\left(z_{7}^{N, M-1}\right)_{\text {old }}}{\left(z_{7}^{N}, M-1\right)_{\text {revised }}}\right|
$$

GI
G

HV

$$
\mathrm{x}_{1}^{\mathrm{n}}, \mathrm{~m}
$$

IC1 maximum number of iterations

ITER iteration number
KEYSO denotes that if KEYSO $=0$, print copy volumes and if KEYSO $=1$, print total volumes

M M dimension of the network
$\mathrm{N} \quad \mathrm{N}$ dimension of the network

SH1

SH2

SV1

SV2

$$
\begin{aligned}
& \theta_{1}^{n, n} \min \\
& \theta_{1}^{n, n} \max \\
& \theta_{2}^{n}, \pi n \\
& \theta_{2}^{n}, \pi n \\
& m a x
\end{aligned}
$$

T

time cost

V

VV
$\times 5$
$25 P$

ZII


```
            3 F゙ご**T(:511 i&TFR NE* DATA)
```



```
            5 \mp@code { F O R N A T ( 1 4 \% E E R R S R ~ R U N ~ C U T ) }
```



```
            7 FO:W:VT([3,4F15.4)
```



```
    12 FNN:+AT(OF12.5)
    100 RFMD :, 绍, IC:
                            READ &, DHLTA, A<K, T, AK,AFK
                            READ 2, DASNI, DAS!?2, DASM3
                            P(INCl1 &, N,OM,DELTA,AK
                            CNSTP=9999990999.99
                            <FYSS=い
                            On 102 I= 2, V
                            ก^ l\cup2 J=1,i.l
                            心ビM0 2, V(I,J), ML:(I,J),AL2(I,J)
                            PUNCH <2, Y(I,J),NLI(I,J),NL2(I,J)
                            If(I-N! 2wl,2心2,1112
    201 !F(J-v) 3:1,3t,?,1112
    3:123(1,J)=0NSinj
        GこTこ 1.2
    3)2 ञa(I.J)=....
    6^TS 1:2
    20% 气2(1,J)=1.0
    10? CNaTINUG
    D5 103 I=1,N
    00 1U3 J=1,N
    <EAD 2, CHi(I,J),CH2(I:J),(H3(I,J),SHl(I,J),SH2(I,J)
    REAU 2, CVI(I,J),CV2(I,J),CV3(I,J),5V1(I,J),SV2(I,J)
```



```
    I丁游=%
`診 IF(ITER-IC1) 10G1,j11I,J112
JU! ITNF=ITERR+1
    :F(JTER-IC1)321,322,1112
    222 KFYS:=1
    321 MS 211 i=1,N
        DS 21] J=1,:%
        IF(i-1)1\!2:311,312
    311 1F(J-2) ?112,41),412
```

```
    411 \therefore!(:-.!)=V(:..j)
```



```
    V(!, J)=N!(i,J)*(L.-N3(!,J))
    *こ [% そ:1
i+12 AI(! ! J)=:TV(!,J-1)+V{I,J)
    GO T: 83:
3!2 i F (J-1) 1:1%̈.51i,5:2
51) \thereforeI(IPJ)=VV(J-1,J)+V(I,J)
    CETN4F.
5]2A!(I,J)={VV(I,J-1)+VV(I-),J)+V(1,J)
```



```
21)CSNT!NG:
    0人 40:=?, 沱
    『`4u J=1, 品
    IF(riv(i,J))1112,13\,&゙Q0
    135 泣(1,j)=:.
    uく TO 1ib
```



```
    1F(D)(I:J)-SHI(I,J))1む6,lu6,1C7
    16.0 N1(I,J)=SH1(I,J)
    GO TO ] 25
    107 IF(D1(I,J)-5,42(I,J))115,10吕]08
    10ถ :3{1.J!=542(I, 」)
    115 [F(VVGT,N))11]2,5u5,175
    175 [2(I:J)=VV(I,J)*(CV2(I,J)*T)**0.5-CV3(I,J)
        IF(D2(I,N)-SVI(I,N))206,206,207
    2\vartheta6 こ2(I,J)=5V1(I,J)
    GT046
    207 IF(i2(i,j)-SV2(I,N))40,208,2CB
    205 02(1,j)=5V2(I,J)
        65 TS 4*
    50,5 \2(I:J)=0.
    40 CONTINUE
        C气STH=U.?
        CこくTV=0.0
        CこらTT=U.
        DE <2? i=?,N
        [0 2;) J=1,*
        COSTH=CSSTR+DI(I,J)*ALI(I,J)
        COSTV=COSTV+02(i,J)*AL2(I,J)
221 CSSTT=COSTT+(CH:(I,J)*HV(1,J)+CH2(1,J)*HV(I,J)**2/(DI(1,J)+
```



```
    2 (:)2(I,J)+CV3(!,J)))*T*AL2(I,J)
        COSTI=COSTH+COSTV
        CnsT=COSTJ+COSTT
        PUNCF17, ITER,T,A<K
        PUNCH &, COST,COSTI,COSTT
        1F(SENGE SNITCH 2)125,243
    125 TYPE &,COST
```



```
        IF(DELTB-[DELTA) J:U1,2101,1102
1101 IF(KEYSO-1)1163,1111,1112
```

```
12:* A: Y:%o= =
    心こ!011:4
11:.? \therefore-v\0=0
11!4 '^~ 7.il i=1.N
```



```
    LN=N+9-1
    \prime\prime\prime=N+1-J
    N'P=LA:+!
    SP=L品耍
    IF(LY-N)6\1.61?,1112.
612 iF(LN-,')511,613,1122
613 123(LN:(%)=1.6
    /H(LN:L沙)=心.*
```



```
    心こT心2%3
G195F(v-1)1!19,71!.71?
```



```
    ? 2.%(VZ2(LN,目)
    4 T*NL2(LN,OP)
    jF(1-1)1111,311,711
    811 ZV(LN,L,N)=ZH(LN,LM)
    6く ic 231
```



```
    4 ThNL?(NP,LN)
            1F(j-1)111],815,22]
    8]5 ZH(LN,LN:)=ZV(LN,LM)
    23j CNNTIVNE
        1FISENG: S&:TCH 3:I502,25U3
    1503 !F\KFYSO-111b心4,15:2,1112
    2502 P\NCH Y
        心心 ふんん i=1,N
        O& 3u* J=1,*
```



```
    I ZHI(!,j),LV(I,J)
    3M& CNNTINUE
    15*4 IF(SENSE SNITTCH 1)1561,15N7
    15C: READ ?, AK<
    1507 90. 247 i=1, *
    @&&& J=?,品
    IF{[-N)! !?,116.1112.
    1191F(J-t.4)1i%,116,1112
    116 0.3(:, J)=1.し
    GOTS 241
    118 D3(I,J)=0.
        65 TC 24I
    117 IF(AT(I,J)11117,1%1,122
    121 A!(!,J)=1.
```



```
        1r:33(1,N)-1.)257, ž2,262
    262 :%&i:N|=1.
        GO T:217
    2\7 iF(ט.(1, , J)1263.203,217
    26.3 :):(i.j)=_.
    217 @こ TO 241
    24] CNNT:NUE
        CNSTコ=COST
        GOT\Omega 1:!%
1111 P!s:CH 字
        TYPE %
        HAこSE
        GOTこ 1W
1112 TYPE5
        STOP
        ENO
```



```
        「ミ゙心足T(1F)(&.4).
```



```
        LH LV)
    11 f S|,*,AT(7:O22.d+)
    1u% &EA口 1, N: i; IC,NCl
    ALAD 2, JELTA, T,GI, AKK1, AK2 ,UUL
    RFAD?, DASM1, DAS*2, DASM3
    #EAD 2, S1,S52,53,54
    PUNCH 4, N,泎,DELTA,GI,SI,5\2,54,DANMI, UASN'3
    くここTト=心.
    <<YSR=!
    Ma 
    N0 3* J=\,:口
    REA, 2, V(I,J),ALI(I,J):AL2(I,J)
    अ|NCH 2, V(I,J),ALI(I,J),AL2(I,J)
    O!(!,J)=DAS,V1
    D2{!,J)=0ASiviz
```



```
    3. CこN%INUE
        LO 4U I=I,N
    DC40゙こコ,心
    R#゙Au 2, CHI(I,J),CHL(I,N),CHj(I,J),CVL(I,J),CV2(I,J),CVj(I,J)
    4!\mp@code{PuCLH1I,CHI(I,J),Cm2II,J),CHE(I,J),CVI(I,J!,CV2(I,J),CV3(I,J)}
        ! T* R=?
    *C=NC?
yUMG1F(1TrR-iC)41,1111,1Il2
    41 ITER=ITER+1
        Z5ア二じ。
        iF(ITER-IC)42,4シ,111<
    43 < EYSO=]
```



```
        0こ 5心 J=1, 唯
        IF(I-N)21.22,1112
    22 IF(J-N)23,24,1112
    24 !?(I,J)=].
        n1(I,J)=?.
        Dクi!•」!=っ.
        Gヵ Tこ 59
    23 1. (i:j)=1.
        02(i,J)=U.
```

```
    &゙った!
    cl !:(v-i)!:,io, 1122
    26 %:\.ji=..
        !\mp@code{(I P J)=. .}
    50 [Fi:-1):\!?:&4,4%
    1+1!(.1-1):1!?, i5,1%%
    A5 \!(i - .! = ! ! | •J)
```



```
    VV(! •\!={i(j•J)%(1.-j)3(i,J))
    **TA 3'
    47 AI(i,j:=|,V(I,J-J)+V(I,J)
    BR Tこ 40
    4& [F(J-i)!112, 5],n?
    ま1 Ai(i:J)=VV(I-1,J)+V(I,J)
    うこT心40
    52 A!(!:J)=rV(!,J-1)+VV(I-1,J)+V(I,J)
    5^ TS. 4%
    50 cmitjMMF
    A<:`=A.6?
    s?=5\leqslant2
183 DE 6%iJ=1,N
    MO G: J=1, N
    1%(1-N)?\cup1,2i?,]!1?
26.2 !:(J-v+1)ZいI,2%3,204
2v3 : : (i, J)=心゙\-Xj(1,J-1)
    G^TにÓ?
2.4 \5(i,j)=x5(1,j-1)
    びこ6ん
2:] IF(i-i)iII),GI,62
    61 1F(J-1)11112,63,54
    62x:x(I:J)=nl(I,J)+D?(I,J)
    6A TS 6́O
    62 :F(J-1)1112.65:64
    55 X:(i,J)=X5(I-1,M)+D1(I:J)+D2(I,J)
    GOTO Ó\sigma
    64 X5(:,J)=x5(I,J-1)+D1(I,J)+D2(I,J)
    66 1F(X5(i,j)-úl)60,ooj,79
    79 A!=:ゝ?(!,J)+D7(I,J)
```



```
    D2(I,J)=02(I,J)-(X5(I,N)-\tilde{I})*D2(I,J)/AU
    X5(1,J)=GI
60.CONTIAUE
    COSTH=\..
    COSTV=U.
    COSTT=6.
    \070 j=],?!
    0}7\textrm{N
    COSTH=CSSTHi+D1(!,J)
    CESTV=CこSTV+D2(i, J)
    7%COSTT=COSTT+(CH2(:,J)**HV(I:J)*゙&2/(UI(I,J)/ALI(I,J)+CHB(I,J)))*
```


：FISTVSE SAITCH 2167 ，68
67 TYO゙ \therefore ，COST
68 TVLT：＝ASS゙（A！sSH（COST－COSTH）／COST）

1 范 2 ＊

IF（JてーじうZ）211，211，212
$212754=6$
อこ $21.2 \quad i=1, N$
ミロ l l $2 \mathrm{~J}=1$ ，

$1(ヶ, 3(I, J))$ औ゙ 3

1 CVう（I，J！）※゙ッ
A0：2＝AKN $2 *-D+12 /(D 0 \cdot 1+2+0.000000 L 1)$

127 IF（AN2－S21131，133，133
133 A02＝ 52
GE TO 13
$121 \mathrm{IF}(\mathrm{AN} 2+52) 134,135,135$
$23+\wedge \cap 2=-5 ?$
135 ก1（I，J）＝D1（1，J）－An？
1F（D）（I，J）： $123,123,124$
$12301(I, J)=0$ ．
224 IF（AD3－52）136，137，137
137 An $3=52$
Gこ TS 139
136 1F（An．3＋52）138，134，134
138 ADろシ $=-52$
$13902(1, J)=0 己(I, J)-A 03$
IFi（i）（I，J））125，125，126
125 －2（1，J）＝．
126 IF（0）（I，J）－53）141，142，142

！F（OT（I，J）－DT1） 4 43， 342,142
$143 \mathrm{DI}(\mathrm{I} \cdot \mathrm{J})=0 \mathrm{~T} 1$
14？IF（D7（1，J）－54）147，148，148
$14801(I, J)=54$
147 iF $(D ?(1, J)-531144,145,145$

if（ $)$ ？（：J）－DT2）i46，14b，I45
146 D2（I，J）＝リでて
145 IF（1）2（1，J）－St）142，15u，150
$15002(1, J)=54$

```
140 5^ TR :, ?
```



```
211 \
```



```
    L\=\+!-!
```



```
    NP=-N+1
    \thereforeO=LM+?
    1H(LN-N1o1,82,11:2
    8_ IF(! `-W)81, 83,1112
    83j(LN,LN)=1.0
        7H(LN,L品)=!.
        ZV(LN.LN)=i.*
        `.5T: Sw
    81 IF(J-1)i]1.2,34,85
```



```
    4(V3(LNsMP)))*AL2(LN,NP)*T
        1F(!-111112,86,54
    86 2V(LH:LN)=ZH(LN,Li*)
        G^Tミ 6゙い
```



```
    3 CV2(NF,LW)*VV(NP,LV)*(1,-D3(NP,LN))/(DZ(NP,LN)/AL2(NP,LM)+
    4 CVS(NF,LM)))*AL2(NP,LN)*T
        !F(J-1)1112,87,80
    67 2H(LN,Lir)=2V(LN,Li゙)
&C CSMTINLに
    IF(1TEri-iv()69,1&2,1112
    69 if(*ELTij-0ELTi)l83,103,99
99 心!YS{=,
    FFiSENrE SW:TCH 4)?83.98
182. VC=VC+NC1
183 PUNCH5
    0こ 20!=1,N
    ロ@ ¢0 J=1,N
    P&゙NCH 4, I,J,HV(i,J),VV(I,J),DI(I,J),D2(I,J),D3(I,J),ZHi(I,J),
    l ZV(!,J)
%. CこVTINOU
        |F(KEYSO゙-1)7ら,97,1112
    75 IF゙{DENSE SMITCH 3)47,96
    97 门こ 12v t=1,N
    0こ 120゙ J=1, %
120 PUNCH 2, X5(I,J),Z5
    9% IF(DELTU-CELTA)71,71,72
```

```
    7% !F(\:\because`:%-1)73,1711,1112
    7ラ :5\because5:=1
        &-% 88
    7? < [%5\Omega=.
    98 IF(5%"Ct* SHITCH 1)54,95
    94 RFAL ?, AKN!?S1
    25 !N 1.1 i=1,N
    0こ lul J=1,*
    267 1F(AI(1,J))1112,111,113
    111 A!I=!.
    60 TS 112
    113 AII=A!(i,J)
    112 n!+!=2.H(I,J)-ZV(j,J)+(CH1(I,J)*NLI(I,J)-CVI(I,J)*AL2(I,J))%T+2.*
```



```
        2 (VV2(I,J)*AII*(2.-03(I,J))/(0)2(I,J)/AL2(I,J)+CV3(I,J))*AL2(I,N)*T
            MNH1=?.*rr:2(I,J)*NII %NL](I,J)/(DI(I,J)/NLI(I,J)+CH3(I,J))*Tt
    1 2.*CV2(I,J:*AI! *AL2(I,J)/(D2(I,J)/AL2(I,J)+CV3(J,J))*缺
```



```
    IF(AESF(AD11-S1)121,121,222
    127. IF(AD;)142,162,172
    162 AD1=U.-51
    GのTに 121
    172 Anl=sl
    121 D3(I,J)=23(I,J)-AD?
    1F(D3(!,J)-1.1151,152,152
    152 Dz(I,J)=1.
    G气 TO 141
    i51 1F(03(i,J))153,153,1i1
    153 D゙シ(1,J)=U.
    101 COMTINUE
    CNSTP=COST
    心のTこ 亡しひい
1211 PMACH 6
    TYPE 3
    PAUSE
    Gこ TS 1U゙い
111: TVPE 5
    STEP
    END
```

OPTIMAL TRAFFIC ASSIGNMENTS AND ECONOMIC ANALYSES OF TRANSPORTATION SYSTEMS BY THE DISCRETE MAXIMUM PRINCIPLE
by

MUZAFEAR A. SHAIKH
B. S. M. E., University of Bombay, Bombay, India, 1966

AH ABSTRACT OF A MASTER'S RRPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENGE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhottan, Kansas

This report attempts a systematic, elencntary and exhaustivc presentation of the use of the discrete maximum principle to solve traffic assignment and economic analysis problems of transportation systems. Traffic assignment is the process of allocating personal or vehicular trips in an existing or proposed system of travel facilities, and economic analysis deals. with the minimization of the sum of travel time cost, operating cost and the investment cost of the transportation system.

The optimal traffic assignment pattern is obtained in section 2 , by considering the constant travel time-volume relationships. An optimal traffic assignment pattern, based on the nonlinear travel time-volume relationship, is prescnted and a single copy network is considered in section 3 . Section 4 considers an optimal traffic assignment of a multicopy traffic flow network, that is, a mulidestination network with a nonlinear travel timevolume relationship. In section 5, the economic analysis of the trausportation system is studied.

Based on the results obtained from sections 3 and 4 of the report it is concluded that the maximum principle technique makes possible the use of nonlinear travel time-volume relationships. The technique is therefore considered to have the potential to represent a 'real world' situation, that is, it is possible to simulate congestions and delay resulting from increasing traffic volumes.

In section 5 a nonlinear travel time equation is developed, giving the relationshins among tiavel timc, traffic volume and
investment cost. Using this equation, optimum-seeking procedures are developed. Two investment conditions, namely investment with no constraints on budget and investment with fixed budget on a transportation system, are considered.

