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Abstract 

Data clustering is commonly used to analyze data in numerous fields. This thesis 

proposes a new clustering measure, the extremity measure. The extremity measure uses 

two components: the extreme distance, which favors larger clusters, and the central 

distance, which encourages smaller clusters. By balancing these two components, the 

extremity measure successfully quantifies how good a clustering solution is.  

In this thesis, the extreme distance attempts to estimate how extreme a point is 

from its remaining cluster counterparts by using linear programming. This linear 

program, called the Extreme Distance Linear Program (EDLP) estimates how close each 

point is to the convex hull of the remaining cluster points. 

This thesis also proposes a new clustering heuristic called the Simulated 

Annealing using Measurements of Extremity (SAME) heuristic. SAME takes a current 

clustering solution and applies move, split, and dissolve operations to modify, and 

hopefully improve, the current clustering solution. SAME probabilistically chooses 

which of these operations to apply. These operations are based the characteristics of each 

cluster. SAME uses concepts from simulated annealing to decide whether a tested 

modification should be accepted.  

SAME is applied to various benchmark data sets and tested against an 

implementation of the k-means clustering algorithm, which is the most well-known 

clustering algorithm. The clustering solutions generated by SAME and k-means are 

compared using the extremity measure and the silhouette index, which is a commonly 

used clustering measure. In 90% of instances, SAME performs better than the k-means 

algorithm.  Thus, SAME is an effective new technique to cluster data. 
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Chapter 1: Introduction 

 Currently, a huge emphasis is put on tracking everything. Companies, businesses, and 

governments are very concerned with tracking as much data as possible. This increased emphasis 

is commonly referred to as the generation of “big data.” The data is much larger and more complex 

than it was even a decade ago. In fact, there is more data moving across the internet in a single 

second than there was stored throughout the internet just 20 years ago (McAfee, Brynjolfsson, 

Davenport, Patil, & Barton, 2012).  

 This huge influx of information has many ramifications. First, more entities are tracking 

more granular types of data. For instance, a supermarket company that may have tracked its daily 

aggregated totals, now focuses all the way down to the individual transaction level. Additionally, 

the attributes or characteristics are more detailed. Companies track a customer’s purchase history 

to keep track of what they buy, how much of it, how often they buy it, etc. With an increase in data 

complexity, data storage is more challenging. This challenge has led to many data-driven 

companies to offload their data storage into “the cloud” instead of using their own resources. Cloud 

computing is a way companies have combatted the increase in data by using pooled resources and 

huge data warehouses for storage (Mell & Grance, 2009). 

 Another problem with gathering more data is how difficult it becomes to analyze. Data 

analytics takes many different forms based on the applications or questions that one is trying to 

answer. Statistics can be used to create aggregated totals, or to gain confidence in results or 

inferences (Rice, 2006). Artificial intelligence is used to try to process and gain additional 

information from new data over time (Nemati, Steiger, Iyer, & Herschel, 2002). SQL or other 

database resources segment data into reasonably sized chunks of information that are easier to 

understand (Hellerstein, 1999).  
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 Data clustering is a popular data analytics technique and is the topic of this thesis. The 

clustering problem takes a collection of things. A clustering solution identifies a set of clusters 

where each cluster consists of a group of things. The goal of clustering solutions is to group similar 

things, based on their characteristics, in the same cluster. Additionally, dissimilar things should 

belong to different clusters. This vague clustering problem definition has resulted in numerous 

researchers developing many clustering measures along with techniques to find quality solutions.  

1.1 Importance and Complexity of Data Clustering 

 The importance of clustering is its ability to unlock new information. Clustering can be 

used to make generalizations that were otherwise challenging to make. Additionally, clustering 

makes inferences and predictions based on knowledge of previous similar data points. This allows 

for new inputs to be quickly compared to previous data or clusters.  

 The clustering problem typically requires numerical data as input. However, the input for 

many clustering problems is things, which are not necessarily numerical. Much research has been 

done in converting qualitative data to quantitative data (Srnka & Koeszegi, 2007). Once things are 

converted into numerical values, algorithms can use these as input to find quality clustering 

solutions.  

 For example, schools cluster students, which are clearly not numeric values. In 

kindergarten, students are clustered by class. As the students progress, the class begins to form 

new clusters based upon math and reading skills. Eventually, formal exams assign numbers to 

students. Students are then clustered into regular or advanced classes based upon their scores. 

These classes help the schools tailor the experience and learning for each student. Schools also use 

clusters to identify which students are having difficulties with specific subject matter and may 

need extra help (Merceron & Yacef, 2004). By high school, some students are clustered into 

various advanced placement or honors classes. Once students enter college, the clustering changes 
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and now the students are self-clustering based upon majors and/or hobbies. Clustering students in 

schools tends to improve results and numerous other clustering applications show similar positive 

results. 

 There are numerous other industries that use data clustering. Clustering has been applied 

to data streams in data mining (Berkhin, 2006), stock markets (Basalto, Bellotti, De Carlo, Facchi, 

& Pascazio, 2005), and computer network traffic (Silva, et al., 2013). Data mining is strongly 

related to “big data” as its goal is to identify trends or patterns within large data sets. Clustering is 

used in different fashions within image recognition. Initially, it was used to identify if people exist 

in a picture. Now, clustering is used to recognize specific identities of people within a picture (Wu, 

Zhang, Hu, & Ji, 2013). Additionally, clustering has also been implemented in different types of 

market research including tourism (D’Urso, De Giovanni, Disegna, & Massari, 2013) and 

customer market segmentation (Dolnicar, 2003). 

 Developing clusters that accurately fit the data is crucial for clustering to actually add 

value. The numerical complexity makes this a challenge. Imagine you have just 20 data points and 

want to group them in no more than 3 clusters. There are 
320+3

3!
, over 500 million, unique clustering 

solution combinations. This number grows rapidly with the amount of data and potential number 

of clusters. Attempting to find the best clustering solution out of all these combinations is 

challenging, as complete enumeration of possibilities is too time consuming. Additionally, 

deciding what criteria to use to compare clustering solutions is challenging. Most clustering 

measurements use concepts of similarity and dissimilarity in some fashion, which are discussed 

later. 
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1.2 Research Motivation 

 This research’s primary motivation involves developing a new clustering strategy based 

upon polyhedral theory. Only a minimal amount of research on this topic exists.  In fact, only one 

master’s thesis combined polyhedral theory and clustering and that research requires solving a 

quadratic programming problem. Quadratic programs are slow and extending this method to big 

data is unlikely to be successful. The overriding goal is to develop a fast method to incorporate 

polyhedral theory and clustering that could be extended to big data. Using linear programming 

instead of quadratic programming allows for one to rapidly test whether incoming data traffic fits 

within existing clusters and could have applications in big data.  

1.3 Contributions 

 This thesis has three primary contributions. First, a new clustering measure, called the 

extremity measure, is presented. The extremity measure evaluates cluster quality based upon two 

components: the extreme distance and the central distance. The extreme distance estimates a 

point’s contribution to a cluster based on its distance to the convex hull of the remaining cluster’s 

points. One can determine the extreme distance of a single point by solving a simple linear program 

with a small number of variables and constraints in most cases. The central distance is a measure 

of how close each point is to the center of its cluster. This score favorably measures oblong shaped, 

spherical shaped and densely packed clusters. 

 The second contribution is a new heuristic to create quality clusters named the Simulated 

Annealing using Measurements of Extremity (SAME) heuristic. SAME uses three types of 

operations to generate new solutions: moves, splits, and dissolves. These adjustments are 

implemented within a simulated annealing environment help generate new alternate solutions.  

 The final significant contribution is coding and implementing SAME in a computational 

study. When compared to an implementation of the k-means algorithm, SAME performed better 
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in 90% of instances when using the extremity measure as a method for comparison. Additionally, 

an alternate implementation of SAME attempted to optimize the silhouette index. This alternate 

implementation also performed better than the k-means algorithm’s results in 90% of instances.  

1.4 Thesis Outline 

 The remainder of this thesis is organized as follows. The second chapter details the 

background information required to understand this thesis. First, a formal definition of the cluster 

problem and the goal of clustering is provided. Next, types of clustering and their applications are 

presented. Afterwards, a look at measures used to quantify clusters is described. This thesis 

incorporates concepts of polyhedral theory, linear programming, and integer programming, so a 

basic understanding of these topics is given. Additionally, an introduction to general purpose 

heuristics and how heuristics are applied in clustering is discussed. The chapter concludes with a 

discussion of the quadratic polyhedral clustering algorithm, which is the most similar research to 

this thesis. 

  The third chapter explains the concepts of the extremity measure and the SAME heuristic. 

The chapter begins by describing how the extremity measure is calculated through the extreme 

distance and central distance. The heuristics subroutines for generating new solutions by moving, 

splitting, or dissolving clusters are described. The fourth section explains how clusters and 

adjustments are selected at each iteration in the SAME heuristic. The chapter concludes by 

describing how simulated annealing is applied to decide whether or not to accept a new clustering 

solution. 

  Chapter four gives information on implementation and computational results. This section 

starts by detailing the software utilized. The challenges of large data sets and upper limits for data 

set sizes, along with alternate implementations to SAME used in large instances, are provided. The 

third section details how a selected cluster’s operation is chosen based on its attributes. Chapter 
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four concludes with comparisons to the k-means clustering algorithm using the extremity measure 

and silhouette index 

 In chapter five, the thesis discusses future research topics. The clustering problem has been 

approached in different ways, and polyhedral theory is fairly unexplored region. This chapter 

discusses further ways polyhedral theory can be applied to clustering. Additionally, chapter five 

discusses how linear programming can be applied so clustering can be used in big data instances. 
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Chapter 2: Background Information 

 This chapter details the background information required to understand this thesis. A 

definition for the clustering problem and the different types of clustering are provided. The second 

section demonstrates measures used to quantify the quality of a clustering solution. A description 

of general heuristics and how they have been applied to clustering is shown. In the fourth section 

a basic understanding of mathematical programming and polyhedral theory are described. The 

chapter concludes discussing previous common clustering heuristics, including the k-means 

algorithm, mean shift clustering, and the Quadratic Polyhedral Clustering Algorithm. 

2.1 The Clustering Problem 

Clustering is a common and frequently applied data analysis technique. Clustering things 

into groups allows for conclusions to be drawn that were otherwise challenging to determine. 

Most clustering techniques require numerical input.  

In some cases, it is challenging to convert other data types, like categorical data, into 

numerical data (Srnka & Koeszegi, 2007). Recall, the previous school example where educators 

group students in order to make the experience more beneficial to them and their students. 

Students take math timed tests to evaluate their speed and accuracy. Books have Lexile levels to 

quantify a reader’s proficiency based on the books they read. Teachers regularly evaluate 

students on these numbers to re-cluster their classes. Thus, the educational system has taken the 

complexity of a student and converted him or her into a number based upon a perceived math or 

reading skill.  

This type of “data” conversion is frequently necessary prior to supplying a clustering 

problem with input data. Once this data is converted, heuristics or algorithms use this numerical 

data to develop quality clustering solutions. As such, the goal of clustering is to have each cluster 

homogeneously represent all its points.  
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This vague definition has led to many different clustering definitions. Here, partitional 

clustering, fuzzy clustering and hierarchical clustering are briefly presented. Other clustering 

problems exist, but they are less frequently studied.  

2.1.1 Partitional clustering problem 

Partitional clustering is the most regularly applied clustering type and is the focus of this 

thesis. From a set of points, partitional clustering segments the data set into disjoint sets. Each set 

is a cluster and is supposed to indicate similarity between the points in the cluster. However, 

each cluster reports no information on the degree of similarity between points in a cluster in 

partitional clustering.  

Formally, given a set X of points x1,....,xn in m, i.e. xi=(xi,1, xi,2,...,xi,m)m for i=1,...,n. 

A cluster C is a nonempty subset of X. Every feasible solution to the clustering problem 

partitions X into clusters. Equivalently, C is a solution to the clustering problem if and only if C 

={C1,...,Ck} such that ⋃ 𝐶𝑝 = 𝑋𝑘
𝑝=1  and CpCq= for all p,q{1,...,k} and p≠q.  For notational 

convenience, let N = {1, …, n}.  

To help describe this definition, consider the 23 points in 2 given in Table 2.1. Figure 

2.1 depicts these points in a two-dimensional plane. A clustering solution C={C1,C2} is C1={x1, 

x2, x4, x5, x6, x8, x9, x10, x14, x18, x22} and C2={x3, x7, x11, x12, x13, x15, x16, x17, x19, x20, x21, x23}. Observe 

that all 23 points are in either C1 or C2. These clusters are shown in Figure 2.2. Rather than 

providing the set notation, clustering solution are graphically depicted by a boundary where all 

points within the boundary are in that cluster.  
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Data Point Coordinates Data Point Coordinates 

x1 2,7 x13 9,7 

x2 2,10 x14 9,9 

x3 3,2 x15 10,1 

x4 3,5 x16 10,3 

x5 3,8 x17 10,8 

x6 3,12 x18 10,11 

x7 4,3 x19 11,3 

x8 4,6 x20 11,5 

x9 4,10 x21 11,7 

x10 5,7 x22 11,10 

x11 8,7 x23 12,8 

x12 9,5   

Table 2.1 Numerical Data for Example Data Set 

 

Figure 2.1 Picture of Example Data Set 
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Figure 2.2 Graphical Depiction of Clustering Solution 

There are a few reasons that search algorithms for optimizing partitional clusters is 

challenging. One is not knowing the optimal number of clusters. Another challenge involves the 

difficulty in comparing the quality of solutions with differing numbers of clusters. Many 

heuristics require the user to input the number of desired clusters. This is obviously problematic 

as it can create bias. Even with a set number of clusters, the partitional clustering problem with a 

simple objective function is an NP-hard problem (Aloise, Hansen, & Du Gerad, 2007).  

The importance of partitional clustering is held in the applications and inferences made 

by the clusters. Without good clusters, the decisions made on their basis are ill-informed. Below 

are examples of the how good partitional clusters were beneficial in various fields.  

 Many companies use clustering to segment their customers in some fashion (Punj & 

Stewart, 1983). A study was done in Canada of supermarket customers over a 24 week period. 

Customers were grouped using self-organizing maps (SOMs) into 5 categories: loyal big 

C1 

C2 
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spenders, loyal moderate spenders, semi-loyal moderate spenders, semi-loyal potentially big 

spenders, and infrequent customers (Lingras, Hogo, Snorek, & West, 2005). These groupings 

were made based on categories measuring their frequency of visiting the store, how many 

transactions were made during a trip and categories measuring how much they spent during their 

visit. Based on these groupings, the supermarket could decide what types of deals, discounts, or 

advertising were most appropriate. Attrition is a widespread problem in the supermarket 

industry, with an increasing level of competition and a decrease sense of loyalty from customers. 

Since retaining customers was found to be cheaper than finding new customers, the goal was to 

try to reduce attrition of their customer base. To attain this goal, a measure that tries to reduce 

customers lost to attrition was introduced. With this measure, the company can analyze if the 

decisions that they are making based on the customer segmentation are actually reducing the 

customers lost. Over the course of the study, 50 randomly selected customers were monitored 

and their visiting and spending was more consistent once these clustering groups were organized. 

Additionally, data could be used to cluster customers for the purpose of predicting future 

purchases of customers.  

Another study looked into quantifying the actual paths that customers took once they 

entered a supermarket. The goal of this study was to increase the amount of money people spent 

when they entered the store. This study used radio frequency identification (RFID) technology to 

track individual shopper paths (Larson, Bradlow, & Fader, 2005). The supermarket cart’s 

locations were recorded every 5 seconds, which became input into determining the route taken 

through the store. A k-mediods clustering algorithm was used to cluster the paths. Note that k-

mediods is a variation of the k-means clustering, which is presented in section 2.5. The clustering 

solution identified where groups of customers spent different amounts of time in various 
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categories within the store. With these clusters, a supermarket can modify their placement of 

products in order to place things along their current paths in an attempt to have the consumer buy 

new items.  

 There are many other sectors where partitional clustering has been applied. Partitional 

clustering has also been used in the image and pattern recognition to cluster pixels that are next 

to each other in order to distinguish different items within a picture (Matas & Kittler, 1995). 

Partitional clustering has had a huge impact on data mining, as well (Agrawal, Gehrke, 

Gunopulos, & Raghavan, 1998). Partitional clustering applications exist in the distribution center 

problem where one optimally places distribution centers within a network to reduce 

transportation costs to stores (Picard & Ratliff, 1978). Additionally, clustering has been applied 

within distribution centers and warehouses to reduce time spent picking orders (Kim, Heragu, 

Graves, & Onge, 2003).  

2.1.2 Fuzzy clustering 

 Partitioning data sets into clusters, infers that any points that are not in the same cluster 

bear no similarity to each other. This was not a satisfying result to some researchers as if there 

exists some arbitrary cut off as to the amount of similarity required to belong to the same cluster. 

This fundamental issue led to the development of fuzzy clustering introduced by (Zadeh, 1965). 

The idea was to represent cluster strengths using functions, called membership functions, which 

evaluate the similarity of each point to the cluster. This also allows for the clustering solution to 

give insight into how strong the similarity is, which a partitional clustering problem fails to do.  

 A distinct difference between fuzzy and partitional clustering is that solutions of fuzzy 

cluster allows data points to be in multiple clusters and also allows the freedom to be in no 

clusters at all. Usually, these points are assigned weights to each cluster it belongs to define 

which cluster it is most similar to. Fuzzy clustering algorithms are generally seen as mode-
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seeking algorithms, where the clusters find the densest areas in the space. This allows for fuzzy 

clustering solutions to be transformed into partitional clustering solutions by moving points into 

the clusters that they most belong. Fuzzy c-means clustering algorithms (Bezdek, Ehrlich, & 

Full, 1984) are a popular fuzzy logic technique for their obvious parallels with the logic of k-

means clustering, which are be detailed in section 5.  

 Fuzzy clustering has also been used in the realm of marketing applications to group 

customers, but allow them to be identified in multiple target markets (Setnes & Kaymak, 2001). 

Fuzzy c-means clustering has been applied to image segmentation, like partitional clustering has 

(Chuang, Tzeng, Chen, Wu, & Chen, 2006). Fuzzy clustering does a much better job of dealing 

with pixels that appear to be different than the pixels adjacent to it.  

2.1.3 Hierarchical clustering problem 

Hierarchical clustering is a clustering technique that focuses on the strength of similarity 

between data points within a set (Olson, 1995), instead of focusing on creating disjoint sets. 

Hierarchical clustering uses linking criterion to join data points that are most similar. 

Hierarchical clustering is generally seen as a recursive method that continually nests clusters. At 

the lowest level each cluster is a single data point, and at the highest level every point is within 

one all-encompassing cluster. The solution is generally viewed as a large tree, called a 

dendrogram. Figure 2.3 shows an example of a dendrogram. Typically the strength is indicated 

by the level.  

Hierarchical clustering has two different subcategories: agglomerative and divisive. 

Agglomerative is the more commonly used of the two methods and has a bottom up approach. 

Each point is initially a single point cluster. Iteratively, most similar clusters form larger clusters 

until all points are in a single cluster. In agglomerative methods, the linking criterion is easier to 

see. At each step, some linkage score is used to compare each cluster with each other cluster. In 
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general, the clusters with strongest linkage score between them are paired up. Agglomerative 

clustering tends to give more accurate results if one seeks to apply the lower-level, granular type 

results. 

Divisive clustering is a top down method, which builds its hierarchy by starting with one 

large cluster. Iteratively, this cluster is broken down into sub clusters until each point is in a 

single point cluster. Divisive clustering typically provides better results for larger groups or a 

high level viewpoint. 

 

Figure 2.3 

 Graphical Depiction of Dendrogram  

A dendrogram is viewed as the solution to the hierarchical clustering problem. Multiple 

clustering solutions can be generated from a single dendrogram. One could take a level 1 
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strength and have C = {{a, b}, {c, d, e}, {f}} as the clustering solution. A weaker strength level 2 

would give C = {{a, b}, {c, d, e, f}} Thus, a dendrogram creates several different clustering 

solutions, which are based upon a similarity parameter associated with the depth of the tree. 

 Agglomerative clustering has been used in microarray/biological fields to cluster data 

(Chipman & Tibshirani, 2005). These fields use agglomerative clustering because those in the 

biological field are interested in the outcomes of small changes in samples or sample groups. 

Hierarchical clustering has also been applied to image segmentation to distinguish items within a 

picture by building up from the pixel level (Wu & Leahy, 1993). In disaster relief planning, 

hierarchical clustering has been used to identify where to set up make-shift hospitals or 

warehouses to reduce time spent picking up injured people or delivering goods to those who are 

most in need (Özdamar & Demir, 2012). 

2.2 Clustering Measures  

What is a good clustering solution? This question is the subject of much debate and 

researchers struggle to agree on a single measure to quantify the quality of clusters. Thus, 

researchers have created many alternate techniques to measure the quality of differing clustering 

solutions, which is the focus of this section. 

The vast majority of clustering measures are based upon the distance between data points 

or other points of interest in the space. Even calculating the distance between two items is a 

subject of debate. However, most distances are typically evaluated using a p norm. Given two 

points, xi and xj, the p norm is 𝑑𝑖,𝑗 = √∑ |𝑥𝑖,𝑣 − 𝑥𝑗,𝑣|𝑝𝑚
𝑣=1

𝑝
. 

The 2-norm is the most common with 𝑑𝑖,𝑗 = √∑ (𝑥𝑖,𝑣 − 𝑥𝑗,𝑣)
2𝑚

𝑣=1 . This is called 

Euclidean or straight line distance. This thesis uses Euclidean distance in all calculations. When 

p = 1, 𝑑𝑖,𝑗 = ∑ |𝑥𝑖,𝑣 − 𝑥𝑗,𝑣|𝑚
𝑣=1 . This is referred to as rectilinear or Manhattan distance. This can 
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be viewed as how far it would take to travel from one point to the other if space is viewed in 

square blocks, i.e. one cannot travel in multiple dimensions at once. The infinity norm 

is 𝑚𝑎𝑥 {∑ |𝑥𝑖,𝑣 − 𝑥𝑗,𝑣|𝑚
𝑣=1 }. It emphasizes the greatest difference between two points in any one 

dimension. Clustering measures frequently leave the selection of distance to the user.  

Clustering measures are based on two main schools of thought. The first seeks to achieve 

similar points in the same cluster. This is commonly referred to as compactness and is frequently 

measured as the distance between points in the cluster or to the cluster’s centroid. A cluster’s 

centroid, 𝑐𝑝̅, is defined as ∑
𝑥𝑖

|𝐶𝑝|𝑥𝑖 ∈𝐶𝑝 . The second is commonly referred to as separation. 

Separation measures dissimilarity of points in different clusters. Applying compactness and/or 

separation leads to the majority of cluster measures. Clustering solutions 1 and 2 in figure 2.4 

partition the example data set into two clusters and can be compared through clustering 

measures.   

 

Figure 2.4 Clustering Solutions 1(Left) and 2(Right) 

 A standard cluster measure is the root-mean-square standard deviation (RMSSTD). 

RMSSTD only considers compactness. The goal of RMSSTD measures is to reduce the within 

cluster variance and measure the homogeneity of the formed cluster (Rujasiri & Chomtee, 2009). 

This measure uses the distances between the cluster’s centroid and its data points as a basis to 
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compare solutions. For this reason, RMSSTD generally favors spherical clusters. Formally, 

RMSSTD=((∑ ∑ (𝑥𝑖 − 𝑐𝑝̅)2)/ ∑ (|𝐶𝑝| − 1))𝑘
𝑝=1𝑥𝑖 ∈𝐶𝑝 

𝑘
𝑝=1

1/2
. Solution 1’s RMSSTD is 4.55 

whereas solution 2’s RMSSTD is 5.89. Since the goal is to reduce the variance, solution 1 is 

better with this criteria.  

The Davies-Bouldin index is more focused on the separation criteria (Bouldin & Davies, 

1979). Each cluster is compared to all other remaining clusters. The highest score is its cluster 

similarity. The DB index is the average of all cluster similarities. Thus, the goal is to minimize 

these similarities and achieve higher distinctness between clusters. Formally,  

DB index=
1

|𝑘|
∑ 𝐶𝑝

𝑘
𝑝=1 𝑀𝑎𝑥𝑞,𝑞≠𝑝{

1

|𝐶𝑝|
∑ 𝑑(𝑥𝑖,𝑐𝑝̅̅ ̅.) +

1

|𝐶𝑝|
∑ 𝑑(𝑥𝑗,𝑐𝑞̅̅ ̅.)/𝑥𝑗 ∈𝐶𝑞𝑥𝑖 ∈𝐶𝑝

𝑑(𝑐𝑝̅̅ ̅ ,𝑐𝑞̅̅ ̅.)}. 

Solution 1’s DB index is 0.81 whereas solution 2’s DB index is 1.66. Since the goal is to reduce 

the similarity between clusters, solution 1 is better with the DB index.  

The silhouette index is a commonly used measure that takes both compactness and 

separation into consideration (Rousseeuw, 1987). Let ai be the average distance between point i 

and the other points that are in the same cluster. Let bi be the smallest average distance between 

point i and any other cluster’s points. The silhouette index is define as: 𝑠𝑖 =
𝑏𝑖−𝑎𝑖

max {𝑎𝑖,𝑏𝑖}
. By its 

definition, si, is always between -1 and 1, where a score closer to 1 means the point is close to its 

own clusters’ points and not close to any other clusters’ points. Thus the goal is to 

maximize ∑ 𝑠𝑖𝑖∈𝑁 . Solution 1’s silhouette index is 11.13 and solution 2’s silhouette index is 4.76. 

Thus, solution 1 is better using the silhouette index.  

Using all three of the above clustering measures, clustering solution 1 was better than 

clustering solution 2. However, many other measures exist. Several other measures are described 

in depth in (Liu, Li, Xiong, Gao, & Wu, 2010). So the question beckons ‘Which measure is 

best?’ In general, there is not one single measure that is agreed upon as the best, which is why so 
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much research has been done in clustering measures and heuristics. Once a distance measure and 

score criterion are established, a methodology should be used to generate solutions. The 

following section details general heuristics and how they can be used to generate such solutions. 

2.3 General Heuristics 

A basic understanding of general heuristics is needed before diving into clustering-

specific ones. Since clustering is NP-complete, most research has focused on heuristic 

techniques. Heuristics are methods to solve problems. Most heuristics focus on practicality and 

intuitive processes. As such, most heuristics do not guarantee optimality, but instead try to find 

sufficiently good solutions in a reasonable amount of time. This section describes several 

heuristics that have been applied to clustering. To understand how heuristics generate new 

solutions, an explanation on the concept of neighborhoods and neighboring solutions is 

necessary. 

2.3.1 Neighborhoods 

A key component of the majority of generalized heuristics involves a neighborhood. 

From a solution, a neighboring solution is a feasible solution that is similar to the existing 

solution in some well-defined way. An existing solution’s neighborhood consists of all 

neighboring solution. 

Formally, given some problem ∏, let S be the set of all feasible solutions to ∏. Let S1 ϵ 

S. If S2 ϵ S and |S1-S2| < ε, then S2 is a neighbor of S1 where | | and ε are well defined in some 

fashion. Furthermore, Nε(S1) = {S ϵ S: |S1- S| < ε}. Finally, if problem ∏ has an objective 

function, then zs denotes the objective value of S for all S ϵ S. 

Many heuristics move from a neighboring solution to a new solution by slightly adjusting 

the current solution in an attempt to find a good solution. Bit-swapping is an example of such a 
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technique. Bit-swapping methods keep all things the same about a certain solution except 

changing one attribute. Imagine that a pizza restaurant has six toppings and one seeks the best 

combination of pizza toppings. If the current solution is beef and pepperoni, two neighboring 

solutions by bit swapping would be beef, pepperoni, and mushrooms or just pepperoni. 

For clustering, numerous neighborhoods could be defined. A neighboring solution could 

keep all points in the same clusters except for moving one point to a different cluster. 

Alternately, swapping two points in adjacent clusters could be a different neighboring solution. 

Removing a point from a cluster and making it an outlier, could be another example of a 

neighboring solution. These examples describe how clustering neighborhoods differ. 

Fundamentally, the neighborhood is completely based on how a heuristic defines | | and ε. 

Neighborhood search techniques create adjustments to the current solution. At some 

solutions, called local optimal solutions, all neighbors are inferior. Formally, S ϵ S is a local 

optimal solution for a minimization problem if zs ≤ zs’ for all S’ ϵ Nε(S). Additionally, S ϵ S is a 

global optimal solution for a minimization problem if zs ≤ zs’ for all S’ ϵ S. Clearly, researchers 

seek methods to leave local optimal solutions and to try to find global optimal solutions. Here 

hill climbing, simulated annealing and tabu search are presented in the next section.  

2.3.2 Hill Climbing 

Hill climbing is a neighborhood search technique. Hill climbing algorithms are based on 

the physical analogy of climbing a hill. Imagine a person in the mountains trying to find the 

highest peak in a hilly region. The person decides to only move in a direction up the hill. Every 

so often, the person looks around and sees if there is a better direction to move to find a higher 

elevation. While climbing, the person never goes in any direction that would take him back down 

the hill. Obviously, a peak is reached when any movement from that spot would start taking the 
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person down. The whole concept of hill climbing algorithms is to continue going up the hill and 

never accept any decrease in objective function value. This type of search terminates once a local 

optimal solution, but it may not necessarily be the global optimal solution.  

At every iteration, hill climbing algorithms take the existing solution and seeks a 

neighboring solution that has a better objective value than the current solution. If such a 

neighboring solution exists, this solution replaces the current solution. This step repeats until 

there are no more improving neighboring solutions. 

Hill climbing algorithms work well on problems that are convex, because there only 

exists a single local optimal solution, which is also the global optimal solution. If the goal is to 

find the highest peak in a hilly region, a hill climbing algorithm does not guarantee to find the 

highest of all the peaks in the region; but it would just guarantee to find one of the peaks. 

Formally, hill climbing algorithms for minimization problems begin with k = 1 and an S1 

ϵ S. Let S’ ϵ Nε(Sk) such that zs’ ≤ zsk
. Assign k to k+1 and Sk to S’. If no such S’ exists, terminate 

and report Sk as the solution. Thus, hill climbing algorithms guarantee zS ≤ zS’ for all S’ ϵ Nε(S).  

Clustering is neither a convex feasible region nor does it have a convex objective 

functions. Some hill climbing algorithms use random restarts to generate other local optimums. 

With these restarts, the hope is that one of the local optimums found is also the global optimum. 

2.3.3 Simulated Annealing 

Simulated annealing is another frequently used heuristic to generate quality solutions. 

This technique is based on the principles of metal annealing (Eglese, 1990). Physical annealing 

melts a substance before it lowers the temperature over a long period of time. Crystalline solids 

are heated initially and then cooled at a very slow rate to reach a crystal lattice configuration free 

of defects. Without this process, these solids would not be able to reach different states. This 

thermodynamic analogy leads to the properties of simulated annealing algorithms.  
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In this analogy, different states correspond to different feasible solutions that would not 

be possible without simulated annealing. In simulated annealing algorithms, a neighboring 

solution is generated based off the current solution. Unlike hill climbing, simulated annealing 

accepts worse neighboring solutions in order to search a larger region of the solution space. At 

each iteration, simulated annealing algorithms compare the objective of a current solution, zt, to 

a newly generated solution, zt+1. An initial temperature, T0, sets the cooling schedule. Like the 

cooling during annealing of metals, the probability of accepting worse solutions is reduced over 

time. After every iteration, the temperature, T, is lowered to decrease the acceptance probability 

over time. Usually, Tt+1=Tt*c where c=1- ε. A common acceptance probability is as follows: 

P (Accepting t+1 solution) = {
1, if 𝑧𝑡+1better than 𝑧𝑡 

𝑒
|𝑧𝑡+1−𝑧𝑡|

𝑇𝑡 , if 𝑧𝑡+1worse than 𝑧𝑡 
 

Simulated annealing has both positive and negative features. Simulated annealing escapes 

local optimal solutions that hill climbing algorithms cannot. Simulated annealing guarantees 

optimality if ran for infinite time (Ingber, 1993). However, simulated annealing takes a longer 

time to terminate in good solutions than some heuristics. This is due to the probabilistic nature of 

simulated annealing. With this inherent randomness, bad accepted changes can lead simulated 

annealing algorithms to explore neighborhoods that are not near the global optimal solution.  

 The biggest challenge of simulated annealing is picking a temperature and a 

neighborhood. Picking a temperature that cools too slowly results in the heuristic taking a long 

time to run. If it is cooled quickly, the whole space may not be navigated effectively and the 

heuristic may get stuck in a single neighborhood for a long period of time. The temperature is 

generally problem-specific, with each type of problem having a temperature that yields better 

results. 
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Simulated annealing has been validated as a practical heuristic to generate near optimal 

solutions for multiple different clustering criterion (Brown & Huntley, 1992). Duczmal (2004) 

used simulated annealing as a way to identify clusters with arbitrary shapes and not necessarily 

spherical. For Duczmal’s application, the clusters were viewed from a graphical perspective and 

additional connected subgraphs were added to clusters using simulated annealing principles. 

Additionally, simulated annealing heuristics have been applied to various problems with routing. 

One application uses simulated annealing to solve routing problems where things can only be 

delivered in certain time windows (Lin, Vincent, & Lu, 2011).  

2.3.4 Tabu Search 

Tabu search is a neighborhood search heuristic that is based on disallowing tabu or 

forbidden moves. A list tracks recent changes on a tabu list, or historical record. Tabu search is 

implemented mainly in nonlinear or combinatorial problems (Glover & Laguna, 1998). 

Formally, given some problem ∏, let S be the set of all feasible solutions to ∏. Tabu 

search begins with S1 ϵ S, i = 1 and an empty tabu list T. The main step finds a neighboring 

solution Si+1 ϵ Nε(Si). If Si+1 is not in T, then Si+1 is added to T and if |T| > k, then the oldest item 

in T is removed. In performing these operations, if a solution is discovered that is better than the 

best known solution, this solution becomes the new best known solution. These main steps 

continue for a set number of iterations. The algorithm terminates and reports the best known 

solution. 

Choosing a neighboring solution can be iteratively applied either deterministically or 

probabilistically. That is, some tabu search applications use hill climbing techniques, whereas 

others accept worse candidate solutions with some probability. One benefit tabu search has over 

other search heuristics is its ability to avoid cycles. For example, given S 1 and S 2 many search 
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heuristics have some probability of accepting S 2 even if it is worse than S1. A few moves later, 

the heuristic may potentially attempt a move back to S1. After some threshold of iterations, 

moves are taken off the tabu list. By removing some attempted operation from the tabu list, these 

operations can be reattempted and are potentially beneficial moves now that the current solution 

is different than it was. 

Keeping track of a tabu list, increases the memory needed for a heuristic. A challenge of 

tabu lists is not knowing how long an item should be kept on the list. If the list is too long, then 

the list may be disallowing moves that would actually be good for long periods of time. If the list 

is too short, cycles may occur.  

Additionally, there is a tradeoff for what information is stored during the tabu list. For 

instance, if one keeps track of potential moves the tabu list may look like this: {x5, x3, x7}. This 

type of list shows what points were moved, but not where they were. So maybe x5 should try a 

move to a different cluster than the one previously tried, but with this memory format it is not 

allowed to attempt such a move until x5 is taken off the list. Additionally, one could keep a 

separate list with the clusters the points tried to move to. Even then, maybe x5 should try the 

exact same move because the moves taken while it has been on the list could make this a 

beneficial move. Furthermore, the tabu list could keep track of the whole solution at every 

iteration instead of just the moves or clusters. This leads to the user having to decide what to 

track and weigh the costs of more memory with the benefits of having a more detailed history list 

of previous iterations. 

The probabilistic nature of simulated annealing is combined with a systematic algorithm 

incorporating tabu lists in a tabu search hybrid for clustering in Osman and Christofides (1994). 

The cooling schedule aspects of simulated annealing are based on the oscillating fashion of tabu 
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search. An alternate to k-means clustering, which is discussed in section 2.5, named k-harmonic 

means uses tabu lists as a way to overcome some fundamental problems researchers have with 

the k-means algorithm (Güngör & Ünler, 2008). 

Additionally, a common use of tabu lists is optimally scheduling flow in a manufacturing 

cell. Tabu search is used to efficiently schedule jobs within these cells by sequencing part 

families and jobs within families (Skorin-Kapov & Vakharia, 1993). Tabu lists have also been 

used to schedule jobs in a job shop environment where parts can only be run on certain machines 

(Colorni, Dorigo, Maniezzo, & Trubian, 1994).  

2.4 Mathematical Programming and Polyhedral Theory 

Besides a general knowledge of clustering, mathematical programming is necessary to 

understand this thesis. Basic concepts from polyhedral theory, linear programming (LP) and 

integer programming (IP) and are presented here. 

2.4.1 Polyhedral Theory 

A primary emphasis of this research involves linear algebra. The vectors, v1, v2, …, vp, are 

linearly independent if no vector is a linear combination of the other vectors. This occurs if, and 

only if, the unique solution to ∑ 𝛼𝑖
𝑝
𝑖=1 𝑣𝑖 = 0 is 𝛼𝑖 = 0 for all i =1, …, p. In an n-dimensional 

space, at most n vectors can be linearly independent. Another important concept is the span of 

vectors. The span of a set of vectors is the set of linearly independent vectors. In many 

applications, whether the vector spans the real space is important. If the vectors do not span the 

real space, then the vectors are not fully dimensional.  

The concept of a convex hull is central to the extremity measure. When viewing a set of 

points, the convex hull is the intersection of all convex sets that contain all of the points. A set X 

is convex, if and only if, αx + (1-α) x’ ϵ X for all x and x’ ϵ X and α ϵ [0,1]. The convex hull of a 
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set of p points, x1, x2, …, xp, is the space defined by all linear weighted combination of these 

points. Formally, this convex hull is: 

{yϵ𝑛: y =  ∑ 𝛼𝑖
𝑝
𝑖=1 𝑥𝑖 such that ∑ 𝛼𝑖

𝑝
𝑖=1  = 1, 𝛼𝑖  ≥ 0 for all 𝑖 = 1, … , 𝑝}. 

 Affine independence is used to calculate the dimension and span of the convex hull of a 

set of points. A set of p points are affinely independent if, and only if, the unique solution to 

∑ 𝛼𝑖
𝑝
𝑖=1 𝑥𝑖 = 0, ∑ 𝛼𝑖

𝑝
𝑖=1 = 0 is 𝛼𝑖 = 0 for all i =1, …, p. Additionally, the dimension of this 

convex hull is p-1. This can be viewed as letting one of the p points becoming the origin and 

subtracting each of the other points to create linearly independent vectors.  

 A polyhedron is a shape in n dimensional space that has defined edges, faces, and 

vertices. Formally, a half space is {xϵ𝑛: aTx≤b} where aϵ𝑛, and 𝑏ϵ. A polyhedron is the 

intersection of a finite number of half spaces. Consequently, a polyhedron cannot have curves or 

any other different shape. A convex hull of a finite set of points is an example of a polyhedron. 

For the remainder of this thesis, the convex hull of a cluster is shown to define the boundary of 

the cluster. These are depicted in Figure 2.5. 

 

Figure 2.5 Updated Clustering Solutions 1(Left) and 2(Right) 
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 Extreme points are vital to this research. An extreme point is a point that cannot be 

expressed as a convex combination of the other points in a set. Formally, xϵX is an extreme point 

if, and only if, there does not exist an x’, x’’ϵX such that ½ x’ + ½ x’’ = x and x’≠ x’’. 

2.4.2 Linear and Integer Programming 

 Linear programs (LP) are a class of problems that optimize a linear system of equations 

and achieve the best possible outcome subject to constraints. LPs have broadly solved many 

optimization problems. The feasible region of all bounded LPs are convex solution spaces that 

are polyhedrons.  

To formulate an LP, let the decision variables be x. These variables can be changed or 

altered to improve the output or goal. Linear constraints must be formulated to form a feasible 

region that typically limits the objective values. Formally, an LP is defined as:  

Maximize cT x 

Subject to: Ax≤b 

      x≥0. 

where Aϵ𝑚𝑥𝑛
, bϵ𝑚

, cϵ𝑛
.  

The simplex algorithm (Dantzig, 1947) solves linear programs by moving along the 

edges on the feasible polyhedron until the optimal solution is obtained. The simplex algorithm 

always moves from one extreme point to another extreme point in the direction of best marginal 

improvement. Since the space is convex, there is always be a direction of improvement unless 

the current feasible solution is also optimal.  

Interior point algorithms are another class of solvers for linear programs that search 

through the interior of the feasible space. Interior point algorithms run in polynomial time 



27 

 

(Karmarkar, 1984). Consequently, any linear program defined in chapter 3 can be solved in 

polynomial time.  

Integer Programs (IP) take the form of an LP, but the variables are also constrained to be 

integer values. In IP, the spaces are not convex polyhedrons. It is challenging to define the 

boundaries of the integer space given the constraints which define the linear space. Instead of 

trying to define those edges, most integer programming algorithms use other techniques to still 

utilize the simplex algorithm. Usually this involves cutting the space and relaxing integer 

restrictions iteratively to find the optimal solutions. These techniques are time intensive because 

they may solve an exponential number of LPs to find the optimal solution to the IP. 

2.5 Heuristics for Clustering 

Besides general purpose heuristics, an understanding of commonly used clustering heuristics 

is needed. Researchers have used concepts from the previously mentioned measures and general 

heuristics to create clustering-specific heuristics. Jain (2010) and Halkidi (2001) have compiled 

lists of clustering methods. Here the k-means clustering algorithm and mean shift clustering are 

presented. 

2.5.1 K-means Clustering Algorithm 

K-means is the most well-known and applied clustering algorithm. This is due to its 

simplicity and how available applications support some variation of a k-means clustering. 

Python, Matlab, and R programing language are just a few software with k-means algorithm 

implementations. K-means attempts to partition data points into k clusters. The goal of k-means 

clustering is to reduce the squared error distances between a cluster’s points and the cluster’s 

centroid. 

 To start the algorithm, a number of desired clusters, k, is required as input as well as 

initial centroids of each of these clusters. Each data point is then assigned to the cluster of the 
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centroid it is closest to. At each iteration, the centroids are recalculated as the average of that 

cluster’s points. Points are then reassigned if there is a closer centroid. These steps are repeated 

until some terminal iteration, or until no points can move to a different cluster.  

 For example, let’s use k-means to cluster the points in Table 2.1 into two clusters. An 

intuitive implementation of the initial k-means with k=2 would be to pick the two furthest points 

away from each other, x6 and x15, as the initial cluster centers. All points are then assigned to the 

closer of these two centers, as shown in Figure 2.6. The center point of each cluster is calculated 

and denoted by the hollow circle in the picture. All the points are then be assigned to the closer 

of these two new centers, as shown in Figure 2.7. In this example, x22 is the only point that moves 

in the first iteration. This repeats until some threshold of iterations, or until no changes are made. 

For this example, the solution terminates in clustering solution 2 from Figure 2.5. 

 

Figure 2.6 Initial k-means solution 
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Figure 2.7 k-means solution after 1 iteration 

K-means can be viewed as a sort of hill climbing algorithm. This is because the generic 

algorithm only takes changes that improve the solution. This yields a smaller region searched for 

solutions and does not guarantee global optimality. As such, there are different implementations 

of k-means that deal mainly with generating better initial guesses for cluster centroids, or 

generating random starting guesses and different values of k. The hope is that multiple retries 

with different starting points result in good clustering solutions. Much research has been done 

into optimizing the k-means algorithm to reduce time and increase cluster strength (Hartigan, 

1979; Kanungo, 2002). The simplicity of the k-means algorithm leads to many people without 

optimization backgrounds to gravitate towards it for their applications. One of the biggest 

weaknesses with k-means is its inability to form “non-spherical” clusters.  

2.5.2 Mean Shift Clustering 

Many researchers dislike k-means requirement to input the number of clusters. Mean shift 

clustering is another common clustering heuristic created that does not require this input (Cheng, 
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1995). Mean shift clustering attempts to find good clusters by identifying areas of points that are 

dense. In addition to the data set, mean shift clustering requires kernels as input. Kernels are 

spheres in n-dimensional space with a center and radius. These kernels are used to quantify how 

dense a particular region is. Generally, these kernels are initially spread evenly throughout the 

space. At every iteration, these kernels search neighboring regions for areas of higher density. 

This criteria of density leads researchers to classify mean shift clustering as a mode seeking 

algorithm. If a kernel can no longer find an area of higher density, it no longer shifts. Once no 

kernels are able to shift, the heuristic terminates. Note that kernels can, and in many cases do, 

converge to the same location. Thus, mean shift clustering can generate a different number of 

clusters than the number of initial kernels. These kernel centers become the centroids of the 

clusters and data points are then grouped into clusters according to which kernel center each is 

closest. Because the kernels only shift to areas of higher density, mean shift clustering can be 

seen as a hill climbing algorithm.  

A benefit to mean shift clustering over k-means clustering is the number of clusters is not 

needed as input. The downside of mean shift clustering is the necessary input of the number of 

kernels, as well as their centers and radii, which can impact the solution. Mean shift clustering 

can use restart techniques like some k-means applications, but picking an appropriate radius and 

initial placement for the kernels is not trivial.  

2.5.3 Quadratic Polyhedral Clustering Algorithm 

The quadratic polyhedral clustering algorithm (QPCA) is the most closely related 

research. QPCA is a clustering algorithm that uses data points distance to the closest boundary of 

the remaining polyhedron of the other cluster points as its clustering quality criterion (Kayarat, 

2005). Each data point’s score is obtained using quadratic programming to find how close a point 



31 

 

is to the convex hull of the remaining points. This allows for non-spherical clusters as long as 

each point does not add a large amount of thickness to the cluster size by itself.  

 QPCA uses proximity graphs to form initial clusters using the clique algorithm. That is, 

any two points, or vertices, whose distance between them is less than some threshold, ε, are 

connected via an edge. After all edges are formed, any subset of nodes that form a clique are 

joined into initial clusters. The clique algorithm requires O (n4) effort.  

From this initial solution, each data point’s contribution to the cluster score is the 

minimum Euclidean distance from that data point to the convex hull of the remaining cluster 

points. QPCA defines y= {y1, y2,…, yv} as the coordinates of the closest point in the convex hull 

to the test point, xq. QPCA utilizes the following quadratic program to obtain the minimum 

distance from xq to y: 

CSq=Minimize [(y1 - x q,1)
2 + (y2 - x q,2)

2 + … + (yv – xq,v)
2 ] 

Subject to ∑ α𝑖 ∗ 𝑥𝑖,𝑣  𝑥𝑖∈𝐶\{𝑥𝑞} = 𝑦𝑣 for all v=1,…,m 

     ∑ α𝑖𝑖: 𝑥𝑖∈𝐶\{𝑥𝑞} = 1 

                 α𝑖  ≥0 for all 𝑖: 𝑥𝑖 ∈ 𝐶\{𝑥𝑞} 

     y unrestricted. 

From every points distance, the total cluster score can be calculated. Each cluster’s score is 

calculated as the sum of every point distance in its cluster. Formally,  

𝐶𝐶𝑐𝑝
= ∑ 𝐶𝑆𝑖

 𝑖:𝑥𝑖∈𝐶

 

 The total clustering solutions score is the sum of the cluster scores plus a constant, 𝜆, multiplied 

by the number of clusters in order to penalize the algorithm from having every cluster with only 

one point as the best solution. Formally, z =∑ 𝐶𝐶𝑐𝑝

𝑘
𝑝=1 + 𝜆𝑘. The goal is to minimize z.  
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QPCA utilizes merge, split, and move subroutines to generate new clustering solutions. 

The merge subroutine takes two clusters and combines them into one cluster. The split routine 

takes one cluster and splits into multiple clusters by utilizing a smaller version of the initial 

clique algorithm. The move subroutine moves a single point from one cluster to some other 

cluster. QPCA uses hill climbing logic to decide whether or not to accept solutions. That is, only 

a new solution with an improvement to z is accepted. 

At every iteration, each point with the worst score in each cluster is tested for a move. It 

is removed from the cluster and tested to find the closest cluster. If it is too far away from this 

cluster, the point becomes a single point cluster, referred to as a singleton. If it is close enough, it 

makes the move to this cluster. Note that this cluster may have been its previous cluster, which 

can be viewed as the algorithm affirming that currently this point has nowhere better to move to. 

After these moves, QPCA attempts a split routine on the worst cluster and is accepted if the 

newly formed clusters using the modified clique formulation is better. After the split routine, 

merges are attempted if two clusters centroids are less than some threshold.  

Note that solving a quadratic program is more time intensive than solving linear program. 

As such, QPCA only uses 30 iterations of these move, split, and merge routines to maintain a 

reasonable run time for the algorithm. This leads to challenges for QPCA in cases of big data. If 

only 30 iterations are run, it is more difficult to have confidence in how close the answer is to 

optimal. The next chapter discusses how this research resolves this issue.  
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Chapter 3: Extremity Measure and SAME heuristic 

This chapter explains the primary contribution of this research, which are the extremity 

measure and the Simulated Annealing using Measurements of Extremity (SAME) heuristic. 

Initially, this chapter defines the extremity measure and its two components: the extreme 

distance and the central distance. The second section explains how neighborhoods are defined by 

SAME. That is, the neighborhoods for moves, splits and dissolves are explained. To begin 

iterating through these neighborhoods, an IP is used to generate an initial feasible solution. In the 

fourth section, the methods that the SAME heuristic uses to select clusters and neighborhoods for 

adjustment at each iteration are presented. The chapter closes with how SAME applies simulated 

annealing to determine whether a new solution should be accepted or rejected based on its 

quality. 

3.1 Extremity Measure  

 Recall from chapter two that many clustering measures focus on cluster separation and/or 

compactness. The extremity measure (EM) is composed of the extreme distance and central 

distance of each point. The extreme distance estimates how extreme a point is to the remaining 

cluster. The central distance measures how close a point is to the middle of the cluster. Although 

both values are measures of compactness, the extreme distance encourages large clusters, while 

the central distance desires small clusters. Thus, these two components interact to create quality 

clustering solutions.  

The primary concept of extreme distance involves convex hulls. Any cluster point that is 

an extreme point to the clusters convex hull contributes a positive value to this measure. 

Alternately, any point within the convex hull is more similar to the other cluster points than the 

extremities and should penalize nothing.  
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A clustering solution’s extreme distance begins by the calculating the extremity of each 

point. The point, xq, is removed from its cluster and tested against the convex hull of the cluster’s 

remaining points. If xq is in this convex hull, then it is not an extreme point and its extreme 

distance, eq, is 0. If not, then xq is an extreme point of the cluster’s convex hull. An obvious 

measure of xq’s extremeness is the distance from this point to the remaining convex hull. The 

exact distance can be calculated by solving a quadratic program, which was introduced by 

(Kayarat, 2005). Quadratic programs are too slow and a primary goal of this research is to 

eliminate the quadratic part for a faster distance calculation. This research approximates the 

distance by solving a linear program, called the Extreme Distance Linear Program (EDLP).  

Given a clustering solution with xq in some cluster C, the concept of the extreme distance 

involves creating xq as a convex combination, 𝛼𝑖, of xi for all xi ϵ C\{xq}. If xq is not extreme, 

then such a convex combination exists. However, if xq is extreme, then no such solution exists. 

Consequently, the requirement that each αi ≥0 is relaxed. To achieve this, substitute αi with αi
+- 

αi
- to create the formulation. The αi’s are split into two decision variables for ease of only 

contributing value to the objective function when a point requires a negative weight. Define 

2|C|-2 decision variables αi
+ and αi

-
 for all xi ϵ C \ {xq}. Formally, the EDLP is:  

Minimize   eq =∑   𝑥𝑖∈𝐶\{𝑥𝑞}  αi
-
* di,q 

Subject to:  ∑   𝑥𝑖∈𝐶\{𝑥𝑞}  (αi
+ 

- αi
-) xi,v= xq,v 

for all v=1,…,m. 

       ∑   𝑥𝑖∈𝐶\{𝑥𝑞}  (αi
+

 - αi
-) = 1 

        αi
+ and αi

- ≥0 for all i: 𝑥𝑖 ∈ 𝐶\{𝑥𝑞} 

The objective function sums each negative weight multiplied by the distance between xq 

and xi. If αi
- > 0, then xi is generally “opposite” of xq in the polyhedron. By multiplying by the 

distance between xi and xq, the term αi
-
* di,q approximates how extremely opposite xq is with 



35 

 

respect to xi. Minimizing the sum of all such instances results in an approximation of xq’s 

extremeness.   

Note that if the objective function attempted to merely minimize the sum of αi
-, then the 

consistent solution is to pick the point that is farthest from xq, as this point’s αi
- value could be 

very small. For instance, if a point is twice as far away from xq than xi, the contribution of xq’s 

extremeness would be cut in half with this objective function. Consequently, the distance term is 

a necessity.  

The first set of constraints maintains that xq is a linear combination of the other points in 

the cluster. Note that if it is within the convex hull of the other points then this combination is 

convex and αi
-=0 for all i= 1, …, p. The second constraint line maintains that the weights must 

sum to 1, just like the convex hull formulation. EDLP’s optimal solution never chooses a non-

zero value for αi
+ and αi

- for some i. This is because EDLP could just reduce both variable values 

by the minimum of those two and maintain feasibility while reducing negative weights. As such, 

a constraint is not necessary to make sure that a point does not have multiple weights.  

Examine C1 in clustering solution 1 of Figure 2.5, where x6 is an extreme point. EDLP 

quantifies how extreme this point is. Figure 3.1 graphical depicts this situation. Applying EDLP 

to x6 results in e6=2.5. The decision variable values for this solution are α2
+=0.625, α9

+=0.625, α3
-

=0.25 with αi
-=0 and αi

+=0 for all other variables. Note that the distance between x3 and x6 is 10. 

Since x3 is the only point with the negative weight, α3
-* d3,6= e6=0.25*10=2.5. Note that trivially 

the distance from x6 to the remaining convex hull is 2. This gives an example of how EDLP 

approximates this distance with some accuracy without having to solve a quadratic program.  

Now consider x4, which is on the interior of the convex hull. A solution to EDLP for x4 

could be α3
+=0.5, α5

+=0.5 with αi
+=0 and αi

-=0 for all other variables. This means x4 is a convex 
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combination of the other points and is not an extreme point. Thus, x4’s extreme distance is 0. 

Table 3.1 gives the extreme distances for every point in this cluster. Thus, the extreme distances 

of the points of C1 contribute 9.06 to z. 

 

Figure 3.1 Graphical Depiction of Extreme Distance Concept 
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Figure 3.2 Graphical Depiction of EDLP Solution to e6 

 

q eq 

1 0.42 

2 0.84 

3 2.69 

4 0 

5 0 

6 2.5 

7 0.89 

8 0 

9 0.22 

10 1.5 

Total 9.06 

Table 3.1 Extreme Distances for C1 

 A point’s extreme distance has several favorable properties. Observe that a point has an 

extreme distance equal to 0 if, and only if, the point is not an extreme point of the cluster. 
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Furthermore each point has an extreme distance calculation, so a value exists to decide which 

points should potentially belong to other clusters.  

One challenge with EDLP occurs if a cluster is not full dimensional. In this situation, a 

point may be tested against the remaining convex hull of points whose span does not contain the 

test point. In this case, EDLP is infeasible. In the event that an EDLP is infeasible, then the point 

is given an extreme distance of a large value, M. Thus, good clustering solutions avoid scenarios 

where points are not in the spans of the other points in the cluster.  

If the extremity measure only incorporates the scores from EDLP, then problems arise. 

Given a cluster, adding an additional point reduces or maintains the value returned from EDLP 

of all current points within the cluster. The added point makes the polyhedron larger and could 

not make the distance from each point to the polyhedron any smaller. Thus, adding points is 

likely to improve the objective score. Consequently, EDLP encourages large clusters. For this 

reason, a second component is added to the measure to counteract this tendency.  

 The second component of the extremity measure, which balances EDLP’s propensity to 

create large clusters, is called the central distance. This is accomplished by incorporating the 

distances between each point and its cluster centroid. Large clusters tend to have longer distances 

to the centroid and are less compact. Given some xi in cluster C, its central penalty is defined the 

distance xi to 𝑐̅. Thus, the cluster total central distance contributes to the objective value as a 

function of ∑  𝑥𝑖∈𝐶 𝑑(𝑥𝑖,c̅ ).  

Intuitively, there should be some weighting factor, 𝜆, that balances how much a 

clustering solution’s score is attributed to extreme distance versus this central distance 

penalization. Given some 𝜆 ≥0, the extremity measure of cluster C is: EC= ∑ (𝑒𝑖 + 𝑥𝑖∈𝐶 𝜆 ∗

𝑑(𝑥𝑖,𝑐̅ )). Table 3.2 gives the central distance contribution for every point in C1 where 𝑐1̅ is (3.3, 
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7), along with the total contribution with 𝜆=0.5. Thus, E1=9.06+13.85=22.94. Note that using the 

same logic E2 can be computed as 25.55 

q 𝒅(𝒙𝒊,𝐜̅ ) 

1 1.3 

2 3.26 

3 5.00 

4 2.02 

5 1.04 

6 5.00 

7 4.06 

8 1.22 

9 3.08 

10 1.70 

0.5 ∗ ∑  

𝑥𝑖∈𝐶

𝑑(𝑥𝑖,c̅ ) 
13.85 

Table 3.2 Central Distances for C1 

 The quality, zC, of a clustering solution is the sum of the extremity measure of every 

cluster. Consequently, z= ∑ 𝐸𝐶𝑝

𝑘
𝑝=1 . Given two clustering solutions C1 and C2 with zC

1
 < zc

2
, then C1 

is a better clustering solution than C2. Using the concept of neighborhoods, the SAME heuristic 

attempts to minimize z.  

A primary purpose of this research is to eliminate the requirement to solve a quadratic 

program. EDLP estimates this distance by solving a simple linear program with only 2 |C| -2 

variables. Furthermore, there are only m+1 constraints. Thus, this technique runs in polynomial 

time and these linear programs are quickly solved. Another research goal arises from big data. 

Testing how new data relates to existing clusters may be of importance depending on 

application. This can now be accomplished extremely fast, and EDLP may become a new 

effective method to classify whether or not an incoming data point belongs to an existing cluster.  
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3.2 Neighborhoods of SAME heuristic 

 This section details the types of neighborhoods that SAME considers. Moves, splits, and 

dissolves are modifications to an existing solution that define its neighborhood. Moves are 

smaller changes whereas dissolves and splits can greatly change the solution. 

3.2.1 Move Operation 

At times a point may clearly be assigned to an inappropriate cluster. The move operations 

seeks to rectify this issue. The primary concept behind the move neighborhood is to move a 

single point from one cluster to a different cluster.  

Formally, given a clustering problem ∏, C = {C1,C2…,, Ck} ϵ S, and C’ = {C’1,C’2…,, 

C’k}ϵ S then C’ ϵ Nε
move

 (C) if, an only if, there exists clusters Cp and Cq along with a point xi 

such that C’p = Cp \{xi}, C’q = Cq ∪{xi} and C’r = Cr for all r in {1,…,k}\{p,q}. One can easily 

expand upon this definition of εmove by moving multiple points. 

Consider the clustering solution 1 from figure 2.1 and examine x1 in C1 . Moving this 

point to C2 creates a new clustering solution. Figure 3.3 depicts the C1 and C2 before and after the 

move operation. Table 3.3 shows how this move impacts the extreme and central distances’ 

contribution to the extremity measures of the clustering solution, if 𝜆=0.5. Notice that C1’s 

central distance went down while C2’s central distance went up. This is frequently the case for a 

cluster reducing its size and a cluster increasing its size, respectively. In this instance, x1’s move 

increase the central distance in C’2 significantly. Consequently, this move may not be 

advantageous.  
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Figure 3.3 Move Operation of x1 

 

Solution Contribution C1 Score C2 Score Total Score 

Before 

Move 

Extreme 

Distance 

15.89 10.19 72.66 

Central 

Distance 

30.08 16.50 

After 

Move 

Extreme 

Distance 

18.08 10.74 75.62 

Central 

Distance 

27.25 19.55 

Table 3.3 Comparison of Move Operation Score Change 

Fortunately, the move operation can be efficiently implemented. In the majority of 

situations, calculating the new extreme distances requires far fewer than the anticipated |C’p| + 

|C’q| EDLP solutions. More on such an efficient implementation is discussed in chapter 4. 

3.2.2 Dissolve Operation 

Sometimes an entire cluster is not compact. In this case, a dissolve operation may be 

useful. A dissolve operation moves all the points within a cluster simultaneously and assigns 

them to the other clusters.  

Formally, given a clustering problem ∏, C = {C1, C2, …, Ck} ϵ S, and C’ = {C’1, C’2, 

…,C’k-1}ϵ S. Then C‘ϵ Nε
dissolve

 (C) if, an only if, CqC’q for all qϵ{1, …, k-1}. 

To fully demonstrate the dissolve operation, examine the clustering solution with 3 

clusters in figure 3.4. If C3 is picked to dissolve, all of its points move to C1 or C2. Table 3.4 
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shows how this move impacts the extremity measures of the clustering solution when 𝜆=0.5. 

Note that the total central distances after the dissolve are bigger than before the dissolve. This 

property holds true for the dissolve operation as more clusters leads to bigger distances between 

a clusters point and its centroid. Since the total score went down, this operation would be 

advantageous given 𝜆=0.5.  

 

Figure 3.4 Dissolve Operation of C3 

Solution Contribution C1 Score C2 Score C3 Score Total Score 

Before 

Dissolve 

Extreme 

Distance 

9.30 22.02 8.49 79.99 

Central 

Distance 

20.34 8.48 11.35 

After 

Dissolve 

Extreme 

Distance 

9.14 12.68 Dissolved 

 

64.28 

Central 

Distance 

28.26 14.20 

Table 3.4 Comparison of Dissolve Operation Score Change 

3.2.3 Split Operation 

Sometimes a cluster is not compact and should be broken down into multiple clusters. In 

this case, a split operation may be useful. A split operation involves taking a cluster and 

partitioning the points into two new clusters.  
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Formally, given a clustering problem ∏ and C = {C1,C2, …, Ck} ϵ S and C’ = 

{C’1,C’2,…,C’k+1} ϵ S. Then C’ϵ Nε
split

 (C) if, an only if, Cq = C’q for all q ϵ {1, …, k-1} and 

C’k ∪ C’k+1 = Ck,.  

To demonstrate the split operation, recall clustering solution 2 in figure 2.1. If C2 is 

picked to split, some of the points split into C’2
 
and the others become C’3. Figure 3.5 depicts this 

situation. Note that splitting C2 led to the sum of the central distances of C’2 and C’3 to be less 

than C2. Table 3.5 shows in this instance, this reduction did not outweigh the increase in the 

extremity measures so this may not be an advantageous operation.  

 

Figure 3.5 Split Operation of C2 

Solution Contribution C1 Score C2 Score C3 Score Total Score 

Before 

Split 

Extreme 

Distance 

9.08 7.86 X 

 

47.49 

Central 

Distance 

13.86 16.69 

After 

Split 

Extreme 

Distance 

9.08 5.86 13.23 52.78 

Central 

Distance 

13.86 6.98 3.77 

Table 3.5 Comparison of Split Operation Score Change 
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3.3 Initialization and Input to SAME 

 To start iterating through SAMEs neighborhoods, an initial C is required as input. A 

better initial clustering solution should reduce the amount of time SAME needs to generate 

quality solutions. If SAME just randomly generated initial clusters, then it may take a while to 

find a good region of neighboring solutions. As such, SAME forms initial clusters whose average 

distance between cluster points is below a certain threshold, ε. SAME sets ε to be such that the 

average cluster arc length is below 25% of the average arc length in the data set. Formally, ε 

=0.25*(∑ (𝑑𝑖,𝑗))/(
|𝑁|2−|𝑁|

2
) 𝑖,𝑗:𝑖,𝑗 ∈𝑁:𝑖<𝑗 , though this threshold can be chosen arbitrarily. Using 

integer programming, SAME maximizes the amount of points in a cluster while maintaining this 

condition. Each data point has a decision variable, wi, that is 1 if it is the cluster and 0 otherwise 

for all i=1,…,n. Additionally, yi,j=1 if i and j are both selected for current cluster and 0 otherwise 

for all i,j=1,…,n and i<j The initialization IP is as follows:  

Maximize: ∑  𝑖∈𝑁  wi 

Subject to: ∑ (𝑑𝑖,𝑗 − 𝜀) ∗ 𝑥𝑖,𝑥𝑗:𝑖,𝑗 ∈𝑁:𝑖<𝑗  yi,j ≤ 0 

      wi + wj + (1- yi,j)  ≤  2 for all i,j=1, …, n and i<j 

      wi + wj + (1- yi,j) ≤ 2 for all i,j=1, …, n and i>j 

      wi ϵ {0.1} for all i=1, …, n 

      yi,j ϵ {0.1} for all i,j=1, …, n and i>j. 

The first constraint maintains the average distance threshold. The second and third sets of 

constraints deal with forcing the wi and yi,j variables to link together. These constraints force that 

if wi and wj are both 1, then yi,j is forced to be 1 and vice versa. Any point xi whose wi=1 is 

assigned to a cluster and removed from the IP formulation. The IP reruns until all points are 

assigned to clusters or it turns infeasible. If the IP becomes infeasible, then there are some 
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outlying points that did not fit with the remaining cluster points. These outliers are assigned to 

the most similar cluster. 

 This Initialization IP generates quality clustering solutions. However, this IP has 

computational time challenges with larger data sets. Chapter 4 presents an upper bound to where 

this IP is practical and also presents a heuristical approach in cases where it is not. 

3.4 Main Step of SAME 

 This section describes two important steps of SAME that occur at every iteration: new 

solution generation and a decision of whether or not to accept this new solution. At each 

iteration, a cluster must be selected. After a cluster is selected, a type of neighborhood operation 

is selected. A specific new clustering solution is generated based on these two decisions. This 

new clustering solution is accepted or not accepted using principles of simulated annealing. The 

flowchart in Figure 3.6 is a graphical depiction of SAME. The loop terminates at some threshold, 

max iterations.  
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Figure 3.6 Flowchart of SAME 
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3.4.1 Generating New Solutions 

 The goal of SAME is to generate a quality solution. Thus, SAME strategically generates 

new solutions that are more likely to give better results. At each iteration of SAME, a cluster is 

selected for operation. Since the goal is to minimize the sum of each cluster extremity measure 

score, intuitively the clusters that contribute the most to the total score should have a higher 

chance of changing. As such, the probability of some cluster p being selected is: 
𝐸𝐶𝑝

∑ 𝐸𝐶𝑝
𝑘
𝑝=1 .

. This 

allows for all clusters to be potentially selected for some change, while targeting the worse 

clusters more frequently. For example, recall clustering solution 1. The extremity measure values 

of C1 and C2 were respectively 22.94 and 25.55 with a cumulative value of 48.49 Thus, C1 and C2 

have a 
22.94

48.49
=47.30% and 

25.55

48.49
=52.70% chance of being selected, respectively.  

 Once a cluster is selected, one of three types of neighboring solutions is selected. A 

move, split, or dissolve operation is probabilistically chosen based on two factors: the number of 

points in the cluster and the cluster’s extremity measure. A split operation is more likely when a 

cluster has more points. A split operation is also more likely if the cluster has a bad extremity 

measure. A dissolve operation is more likely if it has a smaller number of points, and thus the 

whole cluster should be disbanded. A dissolve operation is also more likely if a cluster has a bad 

extremity measure.  

Since the probability of the three operations must sum to one, the move probability is just 

1 minus the split and dissolve probabilities. In general, moves are likely when the selected 

cluster has a good extremity measure and should consider a smaller change and not disband the 

cluster entirely. One can manipulate these probabilities according to the dataset characteristics. 

The probabilistic functions used by SAME are discussed in Chapter 4.  
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 A cluster that selects a move, must find which point within the cluster it should move. In 

SAME, the point selected to be moved is a probabilistic function based on each point’s extreme 

distance. That is, the probability that point xi is selected to move equals 

ei / ∑ 𝑒𝑖𝑖:𝑥𝑖∈𝐶 . Note that this concept is similar to the initial cluster selecting probability function. 

If SAME chose a move operation for C1 in clustering solution 1, x1’s chance of moving is 

0.42/9.06 = 4.63%. Note that this function does not allow any interior points to be selected. For 

example, x4 has no chance of being selected since e4=0. This helps ensure that the convex hulls of 

our clustering solutions do not intersect each other as that would trivially be seen as a bad 

partitional clustering solution.  

A cluster that selects a dissolve operation, divvies its points up between every other 

cluster. Each point in the cluster to be dissolved, finds which point it is closest to between all the 

other clusters and joins that cluster. A dissolve operation can be viewed as multiple move 

operations occurring simultaneously. Each point within the cluster moves to the most similar 

cluster. See Figure 3.4 for a graphical depiction of this operation. 

A cluster that selects a split operation, partitions its points into two new clusters. To 

obtain these two split clusters, an integer program is created that minimizes the sum of all 

distances between points within each split cluster. Each data point in the cluster has a decision 

variable, fi, which is binary and identifies which of the two new formed clusters this point is 

assigned. Additionally, gi,j, is a decision variable that is also binary and takes a value of 1 if i and 

j are in the same new cluster and 0 otherwise. Formally, the split IP is: 
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Minimize ∑   𝑥𝑖,𝑥𝑗∈𝐶:𝑖<𝑗  di,j*gi,j 

Subject to: ∑   𝑥𝑖∈𝐶  fi ≥ m+2
  

      ∑   𝑥𝑖∈𝐶  fi ≤ |C|-(m+2) 

      (1- fi)+(1- fj) + (1- gi,j)  ≤ 1 for all  𝑖, 𝑗: 𝑥𝑖,𝑥𝑗 ∈ 𝐶and i<j 

     fi + fj + (1- gi,j)  ≤ 1 for all 𝑖, 𝑗: 𝑥𝑖,𝑥𝑗 ∈ 𝐶and i<j 

     fi + (1- fj) + gi,j ≤ 1 for all 𝑖, 𝑗: 𝑥𝑖,𝑥𝑗 ∈ 𝐶and i<j 

    (1- fi) + fj + gi,j ≤ 1 for all 𝑖, 𝑗: 𝑥𝑖,𝑥𝑗 ∈ 𝐶and i<j 

    fi ϵ {0,1} for all 𝑖: 𝑥𝑖 ∈ 𝐶 

   gi,j ϵ {0,1} for all 𝑖, 𝑗: 𝑥𝑖,𝑥𝑗 ∈ 𝐶and i<j. 

 The objective function minimizes the sum of the distances between all points in each 

cluster. Recall the example shown in Figure 3.5. In this example, all distances of points within 

C’2 as well as all distances between points within C’3 contribute to the objective function. The 

first two constraints seek to maintain full dimensionality when running EDLP once these two 

new clusters are formed. If these constraints were not in place, a solution to the split IP could 

result in a cluster that is not fully dimensional. This situation would yield infeasible results in 

EDLP. The next four constraints have to deal with forcing the fi and gi,j,, variables to link 

together. These constraints force that if fi and fj are either both 0 or if they are both 1, then gi,j,  is 

forced to be 1. Consequently, the objective function increases by the distance between any i,j 

such that gi,j, =1. Any xi such that fi =0 is assigned to a new cluster, while any xi such that fi =1 is 

assigned to the other new cluster. 

3.4.2 Solution Acceptance 

Recall, simulated annealing is a popular technique used to generate good solutions. The 

general concept of simulated annealing is to have some probability of accepting a neighboring 
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solution that is worse than the current one. This allows for heuristics to move out of local optimal 

solutions. The probability of accepting the new solution is based on two things: the score 

difference, and the “temperature,” T. In SAME, the score difference is defined as Δz where Δz = 

(𝑧𝑡+1 − 𝑧𝑡)/𝑧𝑡.The greater the relative score increase, the lower the acceptance probability. 

Alternatively, if Δz<0, then the new solution should be accepted. An initial temperature, T0, is 

chosen to start the simulated annealing process. As the iterations increase, the temperature 

decreases. Formally, Tt+1= Tt*c, where c is a coefficient of annealing that is slightly below 1. The 

acceptance probability is formally:  

P (Accepting Ct+1) = {
1, if 𝛥𝑧 <  0 

𝑒
−|𝛥𝑧|

𝑇𝑡 , if 𝛥𝑧 ≥  0 
 

Any accepted solution is checked to see if it is better than the current best solution. If it is 

better, then it replaces that solutions. That way when SAME terminates, it can report the best 

solution, which is not necessarily the current solution at termination. The specifics of how 

SAME was implemented to test its merit are provided in Chapter 4.  
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Chapter 4: Implementation and Computational results 

SAME is a general framework to create clustering solutions. This chapter describes this 

research’s particular implementation of SAME and efforts made to reduce its computational 

effort. In addition, the chapter presents some computational results of SAME on some clustering 

benchmark sets from Sieranoja and Fränti (2018) and Dua and Graff (2019). 

SAME was implemented in the Python 2.7.14 programming language. For subroutines 

using linear or integer programming, Python interfaced with ILOG CPLEX Optimization Studio 

version 12.8. All computational studies were performed on a 3.84 GHz computer with 8 GBs of 

RAM. 

 This chapter begins with implementation adjustments that are made to SAME in large 

data set instances. Next, the key implementations of EDLP are described. The functions used to 

define the move, dissolve, and split probabilities are provided. Finally, computational results of 

SAME are compared to the k-means algorithm.  

4.1 Eliminating Integer Programs 

 In some instances, the integer program involving the initial clustering solution can be 

very cumbersome. This integer program presented in section 3.3 requires decision variables for 

all n points in a dataset, as well as a decision variable for every i,j combination of points within 

the dataset such that i<j. This requires |N| + 
|𝑁|2−|𝑁|

2
 decision variables. Additionally, |N|2 - |N|   + 

1 constraints are required to link these variables and maintain the distance threshold. As |N| 

increases, this implementation is not computationally efficient enough to warrant the time spent 

setting up an initial feasible solution. Some large datasets studied resulted in the computer 

crashing while trying to solve the integer program. In this research’s computational studies, 

datasets where |N|>150 implemented an alternate approach.  
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 In these scenarios, an agglomerative clustering approach is taken. This routine requires a 

desired amount of clusters, k, as input, and some bin size, ε. The clustering routine starts with n 

clusters each of size 1. The heuristic searches through all the points, and any points whose 

distances are between 0 and ε are joined into the same cluster. If those two points had other 

points that they had previously been clustered to, then all of their previously clustered points are 

also combined into a single cluster. Once the distance matrix has been traversed, the current 

upper threshold becomes the new lower threshold and the upper threshold is doubled. If ε is set 

too high so all the points fit into a single cluster on the first iteration, then ε is halved. This 

continues until the number of clusters has been reduced to k or less. SAME runs many iterations 

to reduce the impact that this initial k input has on the final solution.  

A similar problem arises in the split IP presented in section 3.2.3. This integer program 

requires decision variables for all points in a cluster, as well as a decision variable for every i,j 

combination of points within the cluster such that i<j. This requires |C| + 
|𝐶|2−|𝐶|

2
 decision 

variables. Additionally, 4*(|N|2 - |N|) +2 constraints are required to link these variables and 

maintain full dimensionality of the new clusters. Though this integer program is less time 

intensive than the initialization IP, as |N|>|C|, the split IP can be implemented numerous times 

during a single application of SAME. As such, this research implements an alternate approach 

whenever |N|>150.  

 A heuristical approach to split is taken in these larger instances. Since the split operation 

creates two clusters, the two furthest points within a cluster, p and q, are identified and put into 

separate clusters. These two points each then find the closest points to them throughout the rest 

of the original cluster points and join with them until each disjoint cluster could be fully 

dimensional. Like the IP, this requires m+2 points in each cluster. At this point, the heuristic 
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attempts to segment the rest of the points optimally. As such, each remaining point is joined to 

either cluster based on whether it is closer to point p or point q.  

4.2 Efficiency in Calculating the Extreme Distance 

During an iteration, EDLP could be run as many as n times if the cluster is large. If one 

ignored the idea of neighborhoods and reran every point in every cluster in every new clustering 

solution, it could take a long time to find the new objective value. This research stores all the 

points extreme distances and decision variable values for all α+
  and α-

. This allows SAME to 

only update the new clustering solution from the previous solution instead of resolving 

everything. Obviously, any unaffected clusters do not require recalculating their extreme 

distances.  

To reduce the time spent evaluating the extreme distances of a cluster, the coefficient 

basis, right hand, and objective function are all uploaded into CPLEX prior to calculating a 

cluster’s score. The initial basis assumes no particular xq and instead includes all points in the 

initial formulation. In addition to the formula given for EDLP in section 3.1, a constraint is 

added  ∑  𝑖: 𝑥𝑖∈𝐶  0*(αi
+

 - αi
-) = 0 that is initially useless. To calculate the extreme distance of each 

point in the cluster, only three alterations per point are made to this formulation: the right hand 

side, the objective function and this added constraint. To test a point the right hand side of the 

first m constraints is adjusted to xq,i for all i=1,…,m. The objective function’s coefficients are 

adjusted to di,q for every αi
- variable. Additionally, the coefficients for αq

+
 and αq

- are set to 1 in 

the last constraint, which forces these variables to take a value of 0 in the solution. This is 

important so a point cannot take itself for a weight when being tested. Consequently, only 

|C|+m+2 adjustments are needed to the uploaded EDLP to calculate a new point’s extreme 

distance. Thus, EDLP can rapidly calculated the extreme distance for each point in the cluster.  
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Since checking stored solution values is much faster than running linear programs, some 

preprocessing can help improve the computational speed of EDLP. One strategy is to recognize 

that if a point’s extreme distance is 0 and the cluster is expanding through either a move or 

dissolve operation, then that point’s extreme distance is still 0, and there is no need to solve an 

EDLP. For example, given a clustering solution C let SAME attempt to move point xq from C1 to 

C2. Any point in C2 with an extreme distance of 0 before the move is still 0 after the move. This 

is because it can maintain the same convex combination of αi’s with no weight taken for αq
+=0 

and αq
-=0. This is intuitive and does not require an EDLP instance to be run. 

Another strategy is to realize that any point in C1 that did not use αq in its stored convex 

combination solution from EDLP when that cluster was formed at a previous iteration still 

trivially can take the same convex combination of αi’s. That is, if it its optimal solution has αq
+=0 

and αq
-=0, then its solution will not change. Removing one point from a large cluster does not 

change the boundary that much so a large majority of instances these two checks can 

significantly reduce the number of EDLPs solved during the move operation.  

4.3 Probabilistic Functions for Selecting an Operation 

 Recall that a selected cluster’s operation is probabilistically chosen based on two factors: 

the number of points in the cluster and the clusters’ extremity measure. A split operation is more 

likely when a cluster has more points and a bad extremity measure. A dissolve operation is more 

likely if a cluster has less points and a bad extremity measure. Moves are likely when the 

selected cluster has a good extremity measure. SAME assumes a probability function based on 

these factors and for simplicity sake assumes they are independent. Since the probability 

functions are a function of two variables, three independent functional values are necessary to 

create a plane that can define a probability of choosing an operation based on |C| and Ec. Note 

that these probability functions are the probabilities for attempting an operation, not necessarily 
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accepting the new neighboring solution. Table 4.1 provides an example clustering solution, 

where m=2, that is used to demonstrate these probabilities.  

Cluster |Ci| Ec 

1 4 26 

2 6 26 

3 10 45 

4 15 48 

5 15 60 

Table 4.1 Clustering Solution for Operation Probabilities Example 

For a split, a cluster must have at least 2*(m+2) to hopefully maintain full-dimensionality 

of the each cluster. As such, any cluster smaller than this should has a 0% chance of splitting 

regardless of the quality of the cluster. If a cluster has a great score, the probability should be 

lower. Consequently, the best cluster score has a 0% chance, even if it is also the largest cluster. 

The 3rd functional value used by SAME sets an upper bound set on the split probability, which 

occurs at the biggest cluster with the worst score. SAME uses 25% as the max split probability. 

Table 4.2 explicitly gives the three functional values. Using linear algebra a function, 

P(split)=f(|C|, Ec)= βsplit*|C|+γsplit* Ec +δsplit, is created that holds all 3 functional values true. In 

general, βsplit=
0.25

𝑀𝑎𝑥𝑝{|𝐶𝑝|}−(2∗(𝑚+2)−1)
, γsplit=

0.25

𝑀𝑎𝑥𝑝{𝐸𝑝}−𝑀𝑖𝑛𝑝{𝐸𝑝}
 , and  

δsplit=. 25(1 −
𝑀𝑎𝑥𝑝{|𝐶𝑝|}

𝑀𝑎𝑥𝑝{|𝐶𝑝|}−(2∗(𝑚+2)−1)
−

𝑀𝑎𝑥𝑝{𝐸𝑝}

𝑀𝑎𝑥𝑝{𝐸𝑝}−𝑀𝑖𝑛𝑝{𝐸𝑝}
 .   

|C| Ec Chance of Split 

2*(m+2)-1 Maxp{Ep} 0% 

Maxp{|Cp|} Minp{Ep} 0% 

Maxp{|Cp|} Maxp{Ep} 25% 

Table 4.2 SAME’s Functional Values for the Split Probability Function 
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For the clustering solution C given in Table 4.1, 2*(m+2)-1=7, Minp{|Cp|)=4, 

Maxp{|Cp|)=15, Minp{Ep}=25, and Maxp{Ep}=60. Consequently, for this example βsplit=
1

32
, 

γsplit=
1

136
, , δsplit= 

−113

544
. Intuitively, βsplit and γsplit should always be greater than 0 since the chance 

goes up with an increase in cluster points and extremity measure. Since there is a chance that a 

cluster’s probability given this function is less than 0, any number below 0 is given a 0% chance. 

Table 4.3 gives the split probabilities for all of the clusters in C. Note that clusters 1 and 2 have 

no chance since they are too small. Also note that cluster 5 has a 25% chance since it is the 

biggest and worst cluster. Additionally, clusters 3 and 4 are somewhere between 0-25% since 

they are not extreme in at least one of the criterion.  

Cluster P(Split) 

1 0% 

2 0% 

3 2% 

4 16% 

5 25% 

Table 4.3 Split Probabilities for Clustering Solution 

 In general, a cluster’s extremity measure and its amount of points vary proportionally. As 

such, the smallest, best cluster has a 5% chance of dissolving as does the biggest, worst cluster. 

This creates a line that defines the “average” probability of dissolve at 5%. An upper bound is 

again set on the max probability. In SAME, the smallest cluster with a bad extremity measure 

should have a max probability of 25%. Table 4.4 explicitly gives the three functional values. 

Using linear algebra a function, P(Dissolve)=f(|C|, Ec)= βdissolve*|C|+γdissolve* Ec +δdissolve, is 

created that holds all 3 functional values true. In general, βdissolve=
−(0.25−0.05)

(𝑀𝑎𝑥𝑝{|𝐶𝑝|}−𝑀𝑖𝑛𝑝{|𝐶𝑝|})
, 

γdissolve=
(0.25−0.05)

(𝑀𝑎𝑥𝑝{𝐸𝑝}−𝑀𝑖𝑛𝑝{𝐸𝑝})
, δdissolve= 0.25 +

(0.25−0.05)(𝑀𝑖𝑛𝑝{|𝐶𝑝|})

(𝑀𝑎𝑥𝑝{|𝐶𝑝|}−M𝑖𝑛{|𝐶𝑝|}
−

(0.25−0.05)(𝑀𝑎𝑥𝑝{𝐸𝑝})

(𝑀𝑎𝑥𝑝{𝐸𝑝}−𝑀𝑖𝑛𝑝{𝐸𝑝})
 .  



57 

 

|C| Ec Chance of Dissolve 

Minp{|Cp|} Maxp{Ep} 5% 

Maxp{|Cp|} Minp{Ep} 5% 

Minp{|Cp|} Maxp{Ep} 25% 

Table 4.4 SAME’s Functional Values for the Dissolve Probability Function 

Consequently, for the clustering solution C given in Table 4.1 βdissolve=
−1

55
 , γdissolve=

1

180
,  

δdissolve=
−113

3740
 . In general, βdissolve is less than 0 and γdissolve is greater than 0 because the 

probability decreases with more points and increases with a bigger extremity measure. Table 4.5 

gives the dissolve probabilities for all of the clusters in C. Note that cluster 1 has a higher chance 

than cluster 2 because it is both smaller with the same extremity measure. Also note that cluster 5 

has a higher chance than cluster 4 because it has a worse score with the same number of points.  

Cluster P(Dissolve) 

1 5% 

2 1% 

3 6% 

4 4% 

5 5% 

Table 4.5 Dissolve Probabilities for Clustering Solution 

Since the probabilities must add to one, the probability of attempting a move operation is 

just a function of the split and dissolve probabilities. For the clustering solution, these 

probabilities are given in Table 4.6. Because of the above methods, SAME attempts many more 

moves than splits and dissolves since there is at least a lower bound of 50% probability of 

choosing a move. Based on experimentation, moves were attempted close to 90% of the time 

whereas splits and dissolves were each attempted in approximately 5% of iterations.  
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Cluster P(Move) 

1 95% 

2 99% 

3 92% 

4 83% 

5 70% 

Table 4.6 Move Probabilities for Clustering Solution 

4.4 Computation Results 

 SAME was tested on benchmark data sets from (Sieranoja & Fränti, 2018) and (Dua & 

Graff, 2019). The data sets and their characteristics are contained in Table 4.7. SAME was 

compared to a k-means implementation that uses k random points in the data set as the starting 

centroids. For comparisons sake, the same parameters were chosen for the same data set. That is, 

max iterations=5000 and 𝜆 is some constant for both k-means and SAME. The weighting 

constant, 𝜆, varies depending on different characteristics of the data set. It particularly has to do 

with the density of a cluster. As such, each data set has some range of 𝜆 that give better results. 

This research recommends 0.01≤ 𝜆 ≤10. The particular value used per data set is given in Table 

4.7. Additionally, all runs of SAME used T0=20 with c=0.99 for its cooling process. On the first 

iteration, a 1% increase in objective function value has a 99% acceptance probability. At 

iteration 720, a 1% increase has an acceptance probability of 50%. By iteration 5000 this 

probability has dropped to <0.0001%. These parameters, T0 and c, can be adjusted to change how 

quickly this cooling process occurs.  

 SAME and k-means were both compared using the extremity measure and silhouette 

index. SAME, initially was implemented using the extremity measure to accept new solutions 

and generate new solutions. The principles of SAME could be optimized for any of the other 

criterion as a basis for accepting or rejecting new solutions and storing the best solution. 
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Data Set Data 

Points 

Dimensions Number of 

clusters 
𝜆 used Source(s) 

A1 3000 2 20 0.01 (Sieranoja & 

Fränti, 2018) 

32dim 1024 32 16 0.1 (Sieranoja & 

Fränti, 2018) 

Buddy Move 249 6 Unknown 1 (Anjali & Renjith, 

2014) 

Breast Cancer 116 9 Unknown 1 (Patrício, et al., 

2018) 

Breast Tissue 106 9 Unknown 1 (Dua & Graff, 

2019) 

Faculty 

Perceptions 

913 53 Unknown 0.5 (Dua & Graff, 

2019) 

Forest Fires 517 9 Unknown 2 (Morais & Cortez, 

2007) 

Happiness 

Survey 

143 7 Unknown 0.5 (Dua & Graff, 

2019) 

Immunotherapy 90 8 Unknown 0.5 (Khozeimeh, et al., 

2017) 

Iris 150 4 3 0.01 (Sieranoja & 

Fränti, 2018) 

Istanbul Stock 

Exchange 

536 8 Unknown 1 (Akbilgic, 

Bozdogan, & 

Balaban, 2013) 

Sales 

Transactions 

811 53 Unknown 10 (Tan & San Jau, 

2014) 

Seeds 210 7 Unknown 0.5 (Dua & Graff, 

2019) 

Stone Flakes 79 8 Unknown 1 (Dua & Graff, 

2019) 

Travel Reviews 980 11 Unknown 2 (Shini, Sreekumar, 

& S, 2018) 

User 

Knowledge 

Modeling 

403 5 Unknown 1 (Dua & Graff, 

2019) 

Vertebrae 310 6 Unknown 5 (Dua & Graff, 

2019) 

Wholesale 

Customers 

440 6 Unknown 0.5 (Dua & Graff, 

2019) 

Wine 178 13 3 1 (Sieranoja & 

Fränti, 2018) 

Yeast 1484 10 8 0.5 (Sieranoja & 

Fränti, 2018) 

Table 4.7 Experimental Data Sets 
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SAME was implemented to optimize the extremity measure. Many of these data sets 

required the agglomerative approach to form initial clusters as the size was too big to run the 

initialization IP. In data sets with a known number of clusters, this was selected as the initial 

number of clusters. In sets with an unknown k, some initial random k was chosen between 4 and 

12. Since SAME was run for 5000 iterations, the impact these initial clusters had on the final 

solution has minimal. For a like-for-like comparison, k-means was implemented with the same k 

value as the clustering solution generated by SAME. SAME and k-means are compared in Table 

4.8. 
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  SAME k-means   

Data Set Number 

of 

Clusters 

Time 

(s) 

EM Time 

(s) 

EM % Decrease 

A1 20 4841 136846 36 163711 16% 

32dim 16 8601 78088 25 84283 7% 

Buddy Move 8 2291 14580 2 15018 3% 

Breast Cancer 3 2380 26135 2 29964 12% 

Breast Tissue 3 1892 690105 1 1736472 60% 

Faculty 

Perceptions 

3 49012 28848 83 27771 

-4% 

Forest Fires 11 7905 53561 6 57843 8% 

Happiness 

Survey 

3 3322 277 2 280 

1% 

Immunotherapy 3 1303 4640 1 7951 42% 

Iris 3 1331 132969790 2 288284098 54% 

Istanbul Stock 

Exchange 

3 7106 21 9 22 

5% 

Sales 

Transactions 

4 17461 7345 49 16894 

56% 

Seeds 3 4905 268 2 289 7% 

Stone Flakes 3 1679 4357 1 4886 11% 

Travel Reviews 4 8267 758 5 779 3% 

User 

Knowledge 

Modeling  

15 403 197 3 199 

1% 

Vertebrae 14 1527 36623 18 39216 7% 

Wholesale 

Customers 

3 440 1318096 5 1408957 

7% 

Wine 3 4623 13073189 3 13201260 1% 

Yeast 5 1484 186 21 70 -165% 

Average 6.5 6538  14  17% 

Table 4.8 Comparing SAME to k-means using the Extremity Measure 

 In 90% of the instances the final clusters provided by SAME were better than that of the 

k-means algorithm. Though these instances took approximately 2 hours on average to run versus 

less than a minute, better clustering solutions were generated. In the instances where SAME was 

better, an average extremity measure improvement of 17% was seen with the % improvement 

defined as  
𝐸𝑀𝑘−𝑚𝑒𝑎𝑛𝑠−𝐸𝑀𝑆𝐴𝑀𝐸

𝐸𝑀𝑘−𝑚𝑒𝑎𝑛𝑠
*100%. However, in some cases where the final clustering solution 

generated by SAME was better using the extremity measure, it was not better in other common 



62 

 

clustering measures. As such, an additional versions of SAME can be created based on the 

measure. 

In an alternate implementation, SAME attempted to optimize the silhouette index. In this 

implementation, 𝛥𝑧 was a function of the difference in the silhouette index, rather than the 

extremity measure, between the current and previous clustering solutions. However, the extreme 

distance and extremity measure concepts were still used to generate new solutions; the measure 

was just used as a new criterion to accept or reject new solutions and update the best solutions. 

For a like-for-like comparison, k-means clusters were run on the same k values as the optimal 

clusters generated by SAME. Table 4.9 gives the time and score comparison of silhouette index 

values generated between SAME and k-means. In 90% of instances SAME performed better. 

Though these instances took approximately 4 hours on average to run versus less than a minute, 

better clustering solutions were generated. In the instances where SAME was better, an average 

silhouette index improvement of 53% was seen with the % improvement defined as 

 
𝑆𝐼𝑆𝐴𝑀𝐸−𝑆𝐼𝑘−𝑚𝑒𝑎𝑛𝑠

𝑆𝐼𝑘−𝑚𝑒𝑎𝑛𝑠
*100%. 

In summary, using both the extremity measure and the silhouette index, SAME produced 

better solutions than the k-means algorithm. Although SAME requires more time, this tradeoff 

appears to be valuable. This research has shown that estimating the polyhedral distance with 

linear programs can be an effective method to evaluate and generate clustering solutions.   
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  SAME k-means   

Data Set Number 

of 

Clusters 

Time 

(s) 

SI Time 

(s) 

SI % Increase 

A1 20 6201 2455 36 2335 5% 

32dim 16 9872 976 25 828 18% 

Buddy Move 5 4026 135 2 107 26% 

Breast Cancer 6 1370 100 1 79 27% 

Breast Tissue 7 1162 89 1 104 -14% 

Faculty 

Perceptions 

4 71432 370 68 365 

1% 

Forest Fires 6 10044 429 7 378 13% 

Happiness 

Survey 

3 2875 42 1 29 

45% 

Immunotherapy 4 1699 73.07 1 32 128% 

Iris 11 927 104 2 24 333% 

Istanbul Stock 

Exchange 

8 6819 347 6 152 

128% 

Sales 

Transactions 

3 14056 169 61 90 

88% 

Seeds 4 4782 130 2 129 1% 

Stone Flakes 4 475 43 1 40 8% 

Travel Reviews 13 15681 565 12 454 24% 

User 

Knowledge 

Modeling  

15 4542 279 3 231 

21% 

Vertebrae 9 3254 236 3 166 42% 

Wholesale 

Customers 

7 1218 91 6 74 

23% 

Wine 7 2039 74.9 2 83 -10% 

Yeast 7 117291 888 29 763 16% 

Average 7.95 13988  14  53% 

Table 4.9 Comparing SAME to k-means using Silhouette Index 
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Chapter 5: Conclusions and Future Research 

 This thesis has three primary contributions. The first is a new clustering measure called 

the extremity measure. The extremity measure was developed to incorporate concepts of 

polyhedral theory into clustering without solving quadratic programs, so the score of a newly 

generated solutions could be calculated quickly. This is in part aided by the implementation of 

EDLP where only the number of points in a cluster plus the number of dimensions in the data set 

adjustments to an existing EDLP are necessary to calculate the extreme distance of each 

additional point in a cluster. Since EDLP approximates the distance from a point to the 

remaining convex hull of a cluster, oblong clusters have the ability to score well with the 

extremity measure, which is not necessarily the case with other measures.  

 The second contribution is a new heuristic named the Simulated Annealing using 

Measurements of Extremity (SAME) heuristic. SAME uses three types of operations to generate 

new solutions. One benefit of SAME is its ability to reduce or increase the number of clusters 

throughout the heuristic using split and dissolve operations whereas many clustering methods, 

like the k-means algorithm, require an input value for the number of clusters which cannot 

change.   

Additionally, SAME generated quality clustering solutions. In 90% of instances, SAME 

had a better extremity measure score than the final formation of the k-means algorithm 

implemented. SAME was also optimized for the silhouette index by accepting, rejecting and 

keeping track of the best solutions based on this measure. SAME performed better than k-means 

in 90% of cases when optimizing according to the silhouette index. This leads one to determine 

that using SAME and its simulated annealing principles has merit in clustering and can be 

extended to various other clustering measures.  
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Using linear programming instead of quadratic programming allows for this research’s 

concepts to be applied to big data. Notice that the datasets used were not big data instances. 

However, the resultant clusters can be used to test large amounts of data points versus existing 

clusters very fast using EDLP. An experiment was created where points were tested against a 

cluster with 10 dimensions and 20 extreme points. EDLP was able to test whether or not data 

points belonged to this cluster at a rate of 10,000 data points per second. Additionally testing 

whether a point is inside or outside of a current cluster’s convex hull only requires the extreme 

points. So variables are only needed for these extreme points instead of needing variables for 

every point within a cluster.  

5.1 Future Research 

 This research’s main motivation was to use linear programming to quickly approximate 

how close a data point is from the convex hull of a set a points. Since this is already an 

approximation, solving EDLP quicker while maintaining some degree of accuracy may be of 

use. This would allow SAME to be applied to even larger datasets and generate solutions faster. 

EDLP could use a reduced number of variables that coincide with the extreme points of a cluster, 

instead of using all the points within a cluster. This should not impact the objective value much, 

because EDLP’s solutions generally assigned the decision variables corresponding to interior 

points to be zero.   

 The extremity measure heavily relied on the 𝜆 value chosen to weigh how much the 

central distance versus the extreme distance should impact the overall cluster score. SAME 

should be applied to clustering sets with given good clustering solutions, not just their scores. 

Then SAME could have better approximations on what 𝜆 value should be chosen based on the 

size of the clusters, the amount of clusters, and how dense clusters are for a given data set. 

Additionally, the effects of normalizing data should be studied. Since the extremity measures 
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uses the raw data’s distances, the values grew quite large in some of the benchmark instances 

studied. Normalization could also help fine tune SAME so that each parameter in a data set had a 

more relevant impact on the clustering solution and keep the extremity measure solution in a 

more normal range.  

 Lastly, this research could be further expanded into big data for using SAME to establish 

initial clusters and then use EDLP to test incoming data rapidly. If each cluster had a parallel 

processor responsible for it, then each incoming data point could be rapidly tested for whether it 

fits within that existing cluster. 
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