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CHAPTER 1

INTRODUCTION

The introduction of stochastic evolution equations as models for

real physical systems offers a more general formulation when compared

with the more traditional description involving ordinary or partial

differential equations. A very general stochastic formulation with wide

applicability to systems described by random vectors evolving through

interactions among entities in the population is known as the master

equation (Gradiner, 1983; Van Kampen, 1981). In this formulation it is

assumed that individual entities change state with a certain probability

per unit time. This is in contrast to the deterministic approach where

entities change state at an exact, predetermined moment in time. The

stochastic formulation is therefore more general, encompassing

deterministic motion as a special case.

The Justification for the introduction of stochastic kinetics is

best found in the increasing complexity of macroscopic systems involving

many degrees of microscopic freedom. Although it is assumed that the

fundamental laws of physics apply to microscopic entities, in principal,

these laws leave room for a wide range of macroscopic behavior which,

although in theory predictable, will contain some degree of unpredict-

ability. (The prediction of the behavior of an individual droplet in a

swarm of similar droplets whose motion, although governed by the funda-

mental laws of conservation of momentum and energy, is erratic, offers an

example of a situation where an exact deterministic description is bound

by immense difficulties. Such obstacles can, however, be eluded by

employing a stochastic description as was recognized by physicists, in

particular Albert Einstein, in the now classical description of Brownian
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motion.) There are, of course, numerous situations where stochastic

kinetics are inappropriate and should be avoided. These systems are

characterized by their simplicity and relatively few degrees of freedom.

However, even these well understood systems can become "chaotic",

leaving only the possibility of a probabilistic interpretation. The

transition from laminar to turbalent flow is such an example.

A second class of systems for which the stochastic formulation is

known to be superfluous in an engineering sense, although entirely

applicable, are those involving an extremely large number of independent

entitles. These systems are usually described by the thermostatic state

variables of temperature, pressure, or volume which are the net average

result of the complicated motion of fundamental entities governed by the

laws of physics expressed through the equations of quantum mechanics.

The methods of Statistical Mechanics, which are based partly on proba-

bilitic assumptions, have shown that for a large number of independent

entities, the fluctuations away from the thermostatic quantities will be

negligibly small; thus allowing for a deterministic treatment of the

system. Such behavior is also to be expected in systems described by

population balance equations such as the master equation. Indeed, It is

this fact upon which the successful application of approximation

techniques such as the System Size Expansion (which is to be introduced

in the following chapter) is predicated. Therefore, a second charac-

teristics (in addition to the random behavior of the fundamental

entities) possessed by systems to which the master equation formulation

shall be applied is that of having a relatively low number of funda-

mental entities (low being any number which one could actually count in

a reasonable span of time). There is, however, no theoretical restric-
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tion to such systems. In fact, the master equation formulation has been

successfully applied to molecular systems involving an Avagadro's number

of fundamental entities.

In the following chapters, the master equation shall be derived and

applied to specific systems of interest to chemical engineering. An

approximation method will allow for the solution of the master equation

to yield the mean, covariances, and correlation functions of the random

variables. The last two of these quantities are of particular interest

since they allow for an extended description of the system beyond the

deterministic mean value equations. In particular, the correlation

function offers a way of deriving rate constants from the steady state

data which would prove important when applying the models to real

systems.

Mention shall also be made of stochastic differential equations.

These equations find extensive use in describing system embedded in a

noisy environment subject to externally driven fluctuations. However,

they can also be used in connection with the coefficients found from the

master equation to describe systems subject to internal fluctuations due

to discrete changes In size of the random variables. It is important to

note that only by first deriving the master equation can the noise term

in the stochastic differential equation be found. The stochastic

differential equation with an arbitrary noise term has no direct

physical interpretation in terms of the parameters of the system whereas

the master equation does. Combining the two allows one to use simula-

tion procedures designed for integration of stochastic differential

equations with the noise terms uniquely determined from the master
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equation. Simulating the behavior of a complex system such as a

f luidized-bed reactor then reduces to the simulation of a vector

stochastic differential equation with uniquely determined noise terms.
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CHAPTER 2

DERIVATION OF A GENERALIZED MASTER EQUATION

FOR DISCRETE POPULATIONS

It will be assumed Chat a population of discrete entities exists and

evolves through interaction between entities; that the entities possess cer-

tain characteristics, such as size, temperature and chemical makeup, which

distinguish groups of entities from other groups; and that the entities

exist in a Euclidian space of zero or higher degree. A stochastic model for

this population can be derived based on the concepts of probability theory.

The resultant expression for the joint probability of the random variables

designating the distinct groups of entities in the population is known as

the master equation (see, e.g., Van Kampen, 1981; Gardiner, 1983).

The master equation arises directly from the assumption that the interactions

between entities possess the Markov property, depending solely on the present

state of the population, and not on its past states. Populations whose

interactions do not possess this property can be successfully described,

however, by a Markovian model if states can be combined in such a way that

the explicit dependence on past states vanishes. Such processes are some-

times called Multiple-Markov processes, since multiple states are combined

to form new Markovian states.

In the following, the random variable N will be used to denote the

number of entities in a specific group in the population. Subscripts will

be used to denote to which group N refers, i.e., {N.
: jc{l , 2,3, . . . } } could

be used to denote the number of entities possess ing characteristic j, where

each characteristic has been assigned a positive integer. Similarly, multi-
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pie subscripts will be used when distinct groups of characteristics are to

,„ ,. t J, j i } i e. {-« -1,-2,0,1,2,...,+"}} could
be denoted, i.e., iNj .:j E U, I, ->••• '• i t i

, , ,
.

be used to denote the number oE entities with characteristic j, located at

point i on the real number line.

When a population possesses continuously distributed characteristics,

or if the population is continuously distributed in the Euclidian space, the

random variable denoting the number of entities possessing a certain attri-

bute at a specific point in the space will be written in functional form,

e.g., (N(r,x):re [a.b], Kt(-",H). Note, however, that the random varia-

ble may be both subscripted and in functional form, as in cases where the

population possesses both discrete and continuous characteristics or is

distributed in a discrete or continuous space.

The joint probability of the random variables (n) will be denoted as

P({n},t), or simply P, when { (n) :n € (0, 1

,

i, 3 , . . . ) 1 .
i.e.. when the state

space of N consists of the positive integers. However, for convenience of math-

ematical manipulation, it will sometimes be desirable to approximate n as

a positive real number, i.e.. Un} :n c [0,-H») }. in which case Che joint

probability density function of {N} will be denoted as p({n},t). or simply

p. In both expressions t refers to time since the model describes a process

evolving in time. P({n},t) is interpreted as PK^, N^, .
. . }, t) or

P({N
1
(x

1
)-n

1
(x

1
). N

2
(x

2
)=n

2
(x

2
)....).t), which is the joint probability that the

random variable ^ has a value of n^ and the random variable N
2

has a value

of n , etc., at time t. It is also necessary to define a conditional prob-

ability, P({n}
1
,t

1
|{n} ,t ). which is the probability that Che random varia-

ble N has a value of nu>
and the random variable N., has a value of n^, etc.. at

time t ,
given that the random variable ^ had a value of »,„, and the random

variable N
2

had a value of n
2Q

. etc.. at time t
Q

.
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2 1 DERIVATION OF MASTER EQUATION

Letting V « and V.« -« < - * ~" tlM lnterVal Cendlng tOV3rd

,er o. Che conditional probablUcy KW^IW,-" "» "< "^^ '"
*

Taylor series. Noting that

P(U)
1
.e|lnJ .t) - 6

k
(tnl

1
-(nJ )

where

6
k
(.) is the Kronecker delta; It has the property that

«
k
(0)-l. «\x)-0 for all x € ((-*,4-)-{0}}

The Taylor expansion of

P((n} 1>
t+T|{n} ,c)

yields

6
k
({n)

1
-{»> > -t

Jj

W
e
(U^^«kcW

1
-W ) - tVWo-UV + o(x

2
)

tl-, £ W
t
({ n } ,{n))]6

k
({n}r {n} ) + ^({..^.{a}^ + 0(x

2
) (>1 )

The quantity w^fnj^fn},) is the transition probability per unit time

that the population changes fro™ state {n}
Q

to (n}., in the time interval

between t and tT. The quantity X I «((«)„. W)^(("V ("V '» "I- total

Ini . .

',
, f,™, ct,tc (nl to any other state during the time

probability of a transition from state inj
Q

to any

interval between t and fl. Therefore. X^M^M,) ^ the probability of a

transition from («.)„ to M, during the time IntervM between t and C+T, and

»-,I W
t
((n} .(n))]6

k
((n}

1
-{nV + TW

(
({»)„. {-}„> is the probability that no

transition, occur during the time lnterv.1 between t and t+T.
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Ass um ing chac Che sca.es of c h e populace possess che Harkov property.

P(ln) ,t+T) can be expressed as
1

1

P ((n) +T) . Z P(t-)
l
.t+T|{n} .t)F(l«) .t)

In),

(2-2)

1

'

""'0

By resorting to Eq . 2-1, Eq. 2-2 can be written as

PlCn^.t+T) - P((n)r t)

T

- £ [W ({n}.(n} /Pl<n).t) - U
t
((n}

1
.(r,})P((n)

1
,c)] (2-3)

In) '

Taking the limit as T *0 yields

dP({n},.t)
I t W ({!»},{»), }?((>}.

O

(2-4)
dc

in)
'

where (^({lOj^Mj) is defined as

W (ln},.{n),) - -I W ({n} ,{n}) (2-5)
C l * {n}

C

(n}#{n}
1

Equation 2-4 is known as the master equation, and, as written, is

valid for {{n>- {n.}:i eZ}. U the population possesses both discrete and

continuous characteristics, i.e.,

{{n} - (n^x)}: i E Z. x e <-~, +~)

}

the master equation can be expressed as

dP((n}. ,t) ,, ,,
l_i i /W

t
((n},{n}

1
)P({n),t)dx (2-6)

where the summation is over all discrete characteristics and an Integral

is performed for each continuous characteristic.
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To resort to the master equation to model the evolution of a population of

entities, it is necessary to derive an expression for W ({n},{n} ) for the

system under study. However, before proceding to specific examples, it

is desirable to discuss methods of solving, albeit approximately, the

master equation. In most cases, the exact solutions for Eq. 2-4 are

not available. Therefore, approximation techniques have been developed

to simplify the solution, or at least to find the moments of the random

variables {N}. One such method is known as the System Size Expansion or

simply the Master Equation Expansion (see e.g., Van Kampen, 1981; Gardiner,

1983).

2.2 MASTER EQUATION EXPANSION

The master equation, as given in Eq. 2-4, is in the form of an ordinary

differential equation. Since P({n},t) appears only to the first power, the

equation is linear. However, if the state space is large, Eq. 2-4 is one of

a larger system of coupled equations - one for each possible state. For

example, for the set of two random variables

{{n}. = {n
1
.,n

21
}:n..e{0,l}, ie{l, 2, 3,4} , jell, 2}},

there are four possible events

M^tO.O}, {n}
2
=U,0}, {n}

3
={0,l}, {n>

4
={l,l}

Note that the state space of either of the two random variables, n,. and n
21

consists of two events, i.e., {0,l}. The resulting system of differential

equations could consist of four coupled equations. In general, if the number

of random variables is j, and k(j) is the number of events in the state space

of the random variable j, then the number of coupled differential equations

could be equal to Kk(j). Even if j=l, this could still result in a very large

j

system of equations, if, for example, k(l) consisted of all the integers.
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It is necessary, therefore, to develop an approximation procedure for the

solution of such equations.

When the change in the random variable during a transition is relatively

«11 compared to the value of the random variable, an approximation method

known as the System Size Expansion can he employed (see, e.g., Gardiner, 1983).

f unities fall into the category of systems to which the

Most populations of entities [all

h. successfully applied since the number of entities

System Size Expansion can be successfully PP

l„ ,, group tends to increase by one or a few entities during any given inter-

action. Pot example, during the coafescenee of two bubbles of different

sizes,. denoted by sizes 1 and 2, the number of bubbles of size 1 decreases by

one and that of size 2 also decreases by one; in contrast, the number of

bubbles of size 3 increases by one. Similarly, if two bubbles of size 1

coalesce, the number of bubbles of size 1 decreases by two, while the number

of size 2 bubbles increases by one. In both cases the change in the number of

entities in any group increases or decreases by a small amount (one or two).

If the population is large, the number of entities in each group will usually

be much larger than two, and the System Size Expansion yields a valid

approximation.

For a system where the System Size Expansion approximation is not valid

due to the smallness of the population size, it is usually possible to solve

the equation without approximation. If, however, the population is large, but

the changes during the transitions are also large, it is sometimes possible to

redefine the random variable. For example, a new random variable, N., could

be defined as s.N* = N. where s . t U .2, 3, . . . }. N* is then the number of sub-

groups of the original group of N. entities where each subgroup contains s.

individual entities. The number of entities that can participate in generating

a given subgroup must be at least as small as the smallest change resulting



2-7

from an interaction in the population. For example, if group i changes by

twenty during each interaction, ., must be less than or equal to twenty. For

Che System Size Expansion to be valid, s. must be chosen so that s.« <*.>

uhere <N.> is the average number of entities in group 1. In the following,

it shall L assumed that the System Size Expansion is valid for the system in

question.

The use of the System Size Expansion is also predicated upon the fact that

£or most systems involving interactions between entities in a population, the

u k„ r „f entities in a group following a trans-

magnitude of the change in the number ot entities g

•hi . o the number of molecules, but the dependence

ition is an extensive variable, e.g., the numoer

of the rate of transition on the number of entities is expressed as an

intensive variable, i.e., concentration of molecules. For first order de-

pendence of the rate of transition on the number of entities, it is always

possible to use either the extensive or intensive variable. For second or

higher order interactions, it is almost always best to express the rate of

transition as an intensive variable.

Consider a population consisting of groups A and B undergoing second

order interactions between them in a system of volume B. Suppose that q

entities are in group A and r entities are in group B, and that a transition

takes place when an entity from group A meets an entity from group B. In

most cases, the rate of such a transition will be not only proportional to q

times r, but also inversely proportional to the volume squared. This follows

intuitively from the image of the entities moving freely in the volume «.

Decreasing will increase the number of collisions between species A and B.

The rate of transition is thus dependent on the density or concentration of

entities in the system. For systems confined to a lower degree Euclidian

space, the proper intensive variable can be defined by dividing the extensive
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variable by l
d

where I is Che characteristic length of the system, and d is

the spatial dimension. In all cases d will be used as the system size, i.e.,

[a = i
d

: I E(0, +«=), d ' {1,2,3 }}

Under the assumption that the System Size Expansion is valid, the terra

representing the rate of transition, W
£
< {n} , {n}^ , in the master equation,

Eq. 2-4, is first rewritten as W ( {ni ; {n^-fn}) , where {n}, - {n} is the

size of the change in the random variable, (N), during a transition. Let-

ting [t,\ = (n) -{n}, the rate of transition can be expressed as W
(

(«n);{S/> •

It can further be rewritten as

W
t
({n};{5)) - ^

t
({£};{€}) (2-7)

if it is assumed to be a homogeneous function of the random variable. The

rate of transition is now a function of the intensive random variables {N/J2},

and the System Size Expansion can be introduced.

Making a change of variables and introducing the new random variables

{Z} and Che deterministic variables {$} such that

{n} = f2{0(c)} + n
1/2

(z}

the rate of transition is written as

W
t
({n};{U) = n*

t
C(*(t) + Sf

1/2*hU» (2-8)

It will be seen later that the deterministic variables W correspond to

the macroscopic behavior of the system. The master equation is then of

the form

dP({*(t)-K!
_i ' i

z } t) ,,, _ 1/2
- - I L Sty ({4>(t)+« ' z};i.)P[{^(.t)+y- z},t)

dt , .. t
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To proceed with Che expansion, it is useful to first define the first

and second jump moments, A. and B , respectively, and X^ and 8 , as

follows:

A
i
({n}) - Z (n^n^iytnMn^)

= £W {n}; ? .)

i

= n£5
1* t

({<t>(0-K2"
1/2

z};C
i

) . (2-10)

^({(tj+fi"
1'^)) - Of^Cn}) ,

(2-11)

and

B ({n}) - 2 l (»
1f i

)(«
jl
-"

]

)9
t
({n, ' (n, l

)

n
i
n
j

i i e^w^Cnhq.Sj)
5 i

5
j

SI. E ZE,XAA{<t>M*<f
in

};£, ,£,.) ,

(2 12)

%
i;j

({*(t)+fl"
1/2

z }) - n
_1

Bl .({n})
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The expression W ({n}}£. ,?.) denotes the dependence of the rate of trans-

ition on both n and n.. If no such dependency exists, W ({n};£ ,£,) is

identically zero. The master equation, Eq. 2-4, can then be expanded to yield

3p({z},t) _ n
l/2

E
^i 3p({z},t)

3t dt 3 z

-n
l/2

z J-n ({$(t)+n"
1/2

z}) P ({z},t)]

i
z
i

2

+ | z z
3

[S,,({itl (t)+n"
1/2

z})p({z},t)]
2 y^tej ij

+ (Kff
1
) (2-14)

where p({z},t) is the probability density function of the new random

variables {Z}, and 0(ft~ ) represents terms of order fi and smaller.

-1/2
To proceed further, the expansions of X. and B.. in powers of Q

must be performed; they yield

1L
i
«MtWinzh - S

t
({«Kt)}) + n^'hz^^a'Ht)}) + o^- ) (2-15)

%^a$<.t)-«r
1/2

z}) = s
lj

({<(,(t)}) + o(n"
1/2

) (2-16)
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The expanded master equation is then of the form

3t . dt 3z,
l i

i
1 3z

i u 1J 3z
i *

4?- + o (
Q- 1/2 ^+ 5 gEB., 5

"/ + 0(fl '
) (2-17)

2 . . lj 3z,3z
.

1/2
The term of order on both sides of this expression cancel if $ . obeys

d
«i -

"dT" A.({*(t)}) (2-18)

Letting ^ approach infinity, the last term on the right-hand side of Eq.

2-17 vanishes and the System Size Expansion yields

H-i?«5^v1+ i^ijrfrf: < 2-">

where A , A , and B are given by Eqs. 2-15 and 2-16.
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Even in the form given by Eq. 2-19, the master equation for the system

may still involve a large number of variables { z} , since the number of

random variables is equal to the number of distinct groups in the population

which may be large. However, Eq. 2-19 is a linear Fokker-Planck equation

whose solution yields a multinomial, normal distribution. The linearity

of a Fokker-Planck equation is in reference to the coefficients A and B .

A Fokker-Planck equation is said to be linear if it can be written in the form

shown in Eq. 2-19, and the coefficients do not depend on the random variables

(zl. In the case of the master equation, the coefficients, although linear,

are time dependent through the dependence on W which obey the system of

coupled, possibly non-linear, differential equations given by Eq. 2-18. To

solve Eq. 2-19, it is necessary to first solve Eq . 2-18 for {$}, and then to

solve the Fokker-Planck equation using W • Solving Eq. 2-18 for {$} can

itself be a non-trivial problem, especially if the equations are non-linear.

Methods for solving Fokker-Planck equations with constant coefficient matrices,

A and B , are available, but the addition of a time dependence quickly

increases the complexity of the problem.

Such problems can be circumvented in cases where a complete expression

for p({ z },t) can be substituted by expressions for its moments; in particular,

the means. <Z >. and the cross-moments <Z.Z >. This is done by multiplying
i i j

Eq. 2-19 by z. or z.z., respectively, and integrating over all variables

from -°° to +». Doing so, integration by parts yields,

4- <Z.> = lL<l > C 2 - 20 >

dt i j ij i
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and

dt
Z
i
Z
j

> = jj'VW +VW + B
ij (2-21)

Using Eqs. 2-20 and 2-21, the covariances of {z} can be shown to be,

^€ov[ ZlZ.] = Z{Cov[ZkZj ]5
lk

+ CovtZ^JK^} + t
±i (2. 22)

Returning to the original random variables, {n}, expressions for their

means and covariances in terms of Eqs. 2-11 and 2-22 can be found to be

A<N > = ^± + o^-i<z>
dt i dt dt i

= ffl. + n
1/ hK..<z.>

<N >

= ns^-jf-) ( 2-")

and

^CovfN^] = n^CovtZ.Z..] (2-24)

Letting p
t

= <N
1
>/Q, Eq. 2-23 reduces to

IT - V p
i>

(2 " 25)

which is an equation involving Che population density of each of the

specific groups as predestined for the successful use of tha Systems Size

Expansion. Equation 2-24 can also be written in terms of intensive variables.

Doing so yields

dT
Cov llflf) 4dT Cov(ZiV < 2" 26 >
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2.3 DERIVATION OF CORRELATION FUNCTIONS

Thus far, expressions for Che means and the covariances of the random

variables have been derived, but these yield little information about the

dynamic character of the fluctuations. Quantities known as the auto-

and cross-correlation functions can, however, provide this information.

These functions provide a measure of the influence of a value of a random

variable at time t on the values of the random variables at time t+T. For

a Markov process the auto- and cross-correlation functions can easily be

derived (see Gardiner, 1983), and obey the same equations as <Z.>, Eq. 2-20.

Defining the correlation matrix as

K..(x) - <Z
i
(0)Z.(T)> (2-27)

the following set of differential equations can be derived relating

K. (t) to Cov[Z.Z.]

:

&«« " Mjk
K
ik

(T) < 2
- 28 >

J k

with K. .(0) = Cov[Z.Z.]

where A., = A., ({4 })
jk jk

(<f) } = steady-state values

Cov[Z.Z ] " steady-state covariance

Equation 2-28 is a direct result of the linear nature of Eq . 2-20 and

the fact that the process is Markovian. It also follows from Eqs. 2-27

and 2-28 and the relationship between the random variables {z} and the

original random variables {n}, that the correlation functions for the random

variables {N} can be found from Eq. 2-28 using the initial conditions,

K. (0) - CovtN.N.]

Cov[N N. ] = steady-state convariance
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2.4 CHANGING TO A NEW RANDOM VARIABLE

For many systems under study, direct information about

the random variables {N} themselves is not sufficient. Instead,

the desired variables may be some function of {N}, and therefore it is

necessary to derive the means and correlation functions of these variables

from the available information on {N}. When the new random variable

is a linear combination of {n}, e.g.,

S * ZsJ*. (2-29)

S = new random variable

s. = constant coefficient relating N. to S

its mean and correlation function can be shown to be,

<S> = Zs
i
<N

1
> (2-30)

K(T) = <S(0)S(T)> - <S(0)><S(t)>

= ZEs.s.K.

.

(2-31)
. . i ] i] v '

Therefore, for systems where the rate of transition can be formulated

and behaves according to the conditions set forth, the master equation can

be solved approximately for the means and the correlation functions of the

random variables of interest. Thus, it is possible to study the effects of

stochastic kinectics on the evolution of the population and its effects on

the behavior of the system; a possibility not available using the convention-

a deterministic approach which yields equations only for the means, i.e.,

Eq. 2-25.
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The master equation with the attendant System Size Expansion

offers advantages over other stochastic formulations. For example, for

non-linear systems, there is the well-known problem of coupling between

moments of differing orders. In most formulations this problem is circum-

vented by assuming independence between random variables, or some other

ad hoc procedure. By using a power series expansion, the System Size

Expansion follows a more rational pathway; retaining a linear coupling

between the means and the fluctuating components of the random variables -

a coupling which is ignored or distorted when using an ad hoc approach.

In situations where the System Size Expansion is not applicable, most ad

hoc procedures are also invalid, and the system is best handled by a

simulation procedure such as a Monte Carlo method.
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NOTATION

A. = First jump moment.

A. = A
1
/W

A.

-

= coefficient in the expansion of A^

B-

•

= second jump moment

K - Bij^

CovlN.N.l = <N.N.> - <N.XN.>
i J i J i J

Cov[Z.Z.] - <Z.Z.> - <Z.><Z.>

K(t) = correlation function for S.

K..(t) • correlation matrix defined as <Z.(0)Z (t)> for Zj and

Z., or as <N (0)N.(T)> - <N
i
(0)><N (t)> for N

i
and N .

N. = number of entities possessing characteristic j.

N .

= number of entities possessing characteristic i and
i,j characteristic j .

N(r,x)drdx number of entities possessing characteristic r and

characteric x, where r and x are continuous variables.

<N> = expected value of random variable N .

p({n} t) = joint density function of continuous random variables

{N}.

P({n),t) joint probability of random variables {N}.

P({n}, ,t, |{n} ,t ) = conditional probability of random variables {N^ at

time t given the value of the random variables IN}

and time t-.

s. = constant coefficient relating N to S.

S = new random variable.

<S> = expected value of S.

W ({n} ,{n} ) = intensity of transition function from state {n}^ to

state {n}..

Z, = fluctuating component of the random variable N .
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<Z.> = expected value of the random variable Z .

<Z.Z.> = expected value of the product of the random variables
1 J Z. and Z..

i J

Greek Letters

k k k
u (x) Kronecker delta where 6 (0)=1 and 6 (x)=0 for x^O.

F = Size of the change in the random variable N..

P
t

= <n
±
> /a

T = small time interval tending toward zero.

deterministic variable corresponding to the macroscopic

behavior of N . ,

ty ({q};!^}) homogeneous intensity of transition function.

Q system size
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CHAPTER 3

APPLICATION OF GENERALIZED MASTER EQUATION

TO BUBBLE POPULATION IN A BUBBLING FLUIDIZED BED

Suppose that Che bubble population in a fluidized bed possesses the

necessary characteristics, e.g., the Markov property and the necessary

information, e.g., the dependence of interactions on bubble density,

is available. Then a stochastic model based on the master equation can

be formulated and successfully solved. In modelling the fluidized bed,

the bed is traditionally divided into vertical compartments and each

compartment is modelled as an individual reactor. Following this tradition,

it is first assumed that bubbles coalesce only inside each compartment,

and transfer only to the succeeding compartment above it - both actions

taking place at a rate dependent on the volume of an individual bubble.

It also must be assumed that coalescence between the bubbles is pro-

portional to their number density in the compartment.

3.1 DERIVATION OF MODEL

Following the notation developed in the preceding section, a

set of random variables can be defined as

{N : i £ {1,2 M}, j £ {1,2,3,...}}
ij

N number of bubbles in compartment i with volume jAV.
ij

M = number of compartments.

AV • small unit of volume which is usually taken to be equal

to the volume of the smallest bubble.

additional assumption is that all coalescence events involve only two bubbles.
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Letting A., represent a bubble of size jAV In compartment 1, it is

seen that the interaction during coalescence can be represented by the

following equations;

M - J

n n n (a. . + a., - a. ,.,. J

1-1 j-i k-i 1J lk l(j+k;

where II is taken to mean "for all".

Similarly, equations for the movement of bubbles between compartments

can be represented by

K-l »

n II [A .
* A 1W j=l « <

1+1 >J

In addition to these events, bubbles are added to the bed in the

first compartment and leave the bed from the last; equations

for these events are, respectively,

Q tX, - A, .]

1-1
J 1J

and
oo

n Ik,. + v.]

where X. and Y. are dummy symbols representing the inlet and outlet

environments.

As previously, the set of random variables will be denoted by {N}

,

and the volume of the system by il. However, since the rates of transi-

tion are assumed to be dependent on the number density of bubbles in

an individual compartment, the reduced volumes

F. - V./fl for all i (3-1)
l l

need be introduced; in this expression V is the volume of compartment i.
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Expressions for Che rates of transition due to coalescence can now

be derived. Letting 3 . (j , k) be the rate constant for the coalescence

between bubbles of size j and size (k-j) to form bubbles of size k in

compartment i, the rates of transition can be written as

w
t
({n

iu-j )
' n

ij •V 1 {n
i(M >-i.»

1J
-i.»

lk
tl»

n..n.

" B
i
(J '

k)
ffl for all i,j,k; k ^ 2j (3-2)

W„({n,,,n., },{n. .-2,n.,+l})
t ij lk ij lk

n. .(n. .-1)
= B

i
( J' k) F~i for a11 i 'J»k S k " 2J (3-3)

where all random variables which remain constant during a transition

have been omitted from the notation for {n}.

Similarly, letting Yj(J) be Che rate at which bubbles of size j

leave compartment i and enter into compartment (i+1) , the rates of

transition can be written as

= YjUJn for all i,j; i < M ( 3_ 4 )

For bubbles exiting from the bed through compartment M, the rates of

transition are

V {V' {n
Mj-

l}) " VJ )n
Mj

for a11 J
(3" 5)
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Finally, for bubbles entering the bed through the first compartment, i.e.,

compartment 1, immediately above the distributor plate at a rate of flf(j)

bubbles of size j per unit time the rates of transition are

W
t
(.{n

1
.},{n

r
.+l}j - «f(j) Eor a11 i (3-v)

Given the rates of transition, the master equation for the system

is now determined and the System Size Expansion can be applied to solve

for the means and the correlation functions ot {n}. l'he first step is

to rewrite the expressions for the rates of transition in terms of {n}

and {t,} which yields the following expressions:

W ({n.. .,n..,n., };{-l,-l,l})
t ik-j ij ik

n. n .

= g.(j.k)-
1

j,
£ J for all i,j,k; M2j (3-7)

1 n..(n -1)

W
t
({n..,n

ik
};{-2,1}) = S.(j.k) -|

fl

1J
for all i,j,k; k=2j

W ({n.^n.^, .};{-l,l}) = YiUK; for all i,j; i'M (3-8)

W
t
({n

Mj
h{ -1}) = YM

Q)n
Hj

for a11 j (3_9)

W
t
({n

i;)
};{!}) - M(j) for all j (3-10)

where all null elements in the set {?} are omitted, and the remaining ele-

ments correspond to those in{n} t
e.g.,

({n.. };{!}) • ({n.. };{?.. = l})

.

(3-11)

Note that the two sets of subscripts are identical, thereby indicating

the correspondence.

The next step is to calculate the jump moments, A„ and B^ , but

first an arrangement must be made to account for the double subscript

on the random variables {n}. This can be accomplished by changing

to a single subscript t defined as
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(3-12)
I = j+e(i-l)

where

j = subscript denoting the bubble size

i = subscript denoting the compartment number

M
£ = max{ (V./AV)}

1-1
X

the variable n. . now appears as

n
j+e(i-D

Rewriting the expressions for the rates of transition using this notation

yields

w
t
(tVj+£ (i-i)

,n
J +£ (i-i)'

n
k+£ (i-D

};{" 1, " 1 ' I})

1+£ (i-l) k-i+eli-1)
for all i>j>k: mi (3_ 13)e.u.k) -' o

V {VE (i-i)'
IWi-D };{ -2,1})

• S.lJ.k) -J—>—

^

V^tt-UaW*"1,1 *'

= Y
i
(j)n

j+€(i-l)

^(i-ll'Ved-l)'
1 '

for all i,j,k: k=2j
(3_ 14)

for all i,j: i < « (3-15)

Wjtn.^^^^-l}) - yn
^. +^ 1}

for all 3
(3-16)

W
t
({n. };{!}) - SH(j) for a11 3

Expressions for A, and B. are now derived as follows:
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M £ E . >. k
a - r Z{L -{-& (H-k+j-ei+e) - 6 U-j-ei+e;

+ fiVk-ei*:)][l - 6
k
(k-2j)]3

i
(j.k)

n^< 1- 1>Yi^(l-l)
i

£
k k

+ Zl-2 6 (H-j-ei+c) + 6 (i-k-ei+E)]

k

*
k
„, ,m« f u Ve(i-l) (Ve(i-l) -I)

6 (k-2j)B.(j,k) -^
p n
i

+ (-6
k
(I^j-ei+E) + 6

k
(e.-j-Gi) ] [1 - 6 U-M)]Y

1
(j)n

j+E(
._

1)
}

E
k

e
k

+ £ 6 a-j)Wf(j) (3-18)

J

M e E
1 k k

B. = I Z{L ±[-6 (t-k+j-ei+e) - & (JH-ei+e)
Jun , , L

i j k

+o
k
U-k-el+e) ] [-6

k
(x»-k4j-ei-K:)

-6
k
(m-j-el+t) -+6

k
(m-k+Ei+s) ]

.u-«V-2j)j Bl(j.k)

n
i^u-i)Vi+E (i-D

+ £[-26
k
a-j-ei+£) + 6

k
(i-k-ei+e)]I-2iS

k
(m-j-ei+€)

k

^ k
(^k-£ i+t)1 6

k
(k-2J )B

i
a,k)

ni^ i- 1^< i- 1 ?~
1)

+ [-6
k
(l-j-Ei+c) + 6

k
(£-j-£i)][-6

k
(m-j-ei+€) + 6

k
(m-j-ei) ] [l-5

k
(i-m) ]

•Vj)IW-i) }

e
k k

+ E5 (£-j-eH+E)6 (*-n,)YM (J)'Vj+£(M„1 )

£ . .

+ I 6 U-j)6
K
(H- m)fif(j) (3-19)

J

with the first of these expressions, Eq. 2-18 can be used to find
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d
*P

M £ £
1 k k k

-r^-l E{j:i[-5
K
(l-k+j-Ei+e) - sV-j-ei+E) + 5 (i-k-Ei+e)]

dt
i j k

2

k
B
i
(j>k)

£
k k k

B
i

( J' k)

+ Z[-26
K
(S.-j-ei+e) + 6

K
(?,-k-Ei+E) ]& (k-2i)-±=

k i

',

j+E(i-l) 9k-j+E(i+l)

+ [-fiV-j-si+s) + 6
k
a-j-ei)][l - ^(i-^lY^J)^^^.^!

£ e (3-20)

- I 5
k
(i-j-eltte)YMCJ)*j4e(H.1)

+ * * Ci-J)f(j)

j j

Since it is no longer necessary to use a single subscript, this expression

can be simplified by returning to double subscripts, yielding

m

d<P
l

e-m fS.Oa.j+m) 2 B^Cj ,m)

j=i x. j-i *

Bj(m,2m)
2 fc

F. L-V-^fa +WW 1 -* (9- i)]

+ f(m)6
k
(Jt-l) (3-21)

where J? corresponds to the compartment and m to the size.

To calculate the moments of the fluctuating component, it is necessary

to identify A as given in Eq . 2-15. This gives rise to

M e £
i k k

A. - Z Z[Z ±1-6 (fc-k+j-Ei+e) - 6 (i-j-ei+e)
lm

i j k
2

k k
B
i
(jlk)

+ 6 (£-k-Ei+e)][l - 5 (k-2j)]—
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•
[Wi-l) 5 C-WJ-et+e) + *k_j+£(1_1)

5
k
(»-J-ei+£ )j

+ n-2o
k
(Z-j-Ei+E)+6

k
(»L-l<-Ei+E)]5

k
(k-2j)-

F
i

' 2 ')'j+e(i-l)
6k(t,1

-J- £i+€ )

+ [-« (2-j-£i+E) + 6
k
((L-j- £ i)j[i- (5

k
(i .

•Y. (j)« (m-j-ei+E) }

M);

- I 6
k
(>i-j-Ero+En

M
(j)<5

k
(ra-J-EM+E) (3-22)

Changing again to double subscripts, this expression in conjunction with

Eq. 2-20 leads to

d<Z
tn]

>
^ £-m e

£
(m,j+m)

dt A -*-?_ Wf."6*!,* + <*!..>,. J

2 S
£
(j,m)

, =1 F
£

*m *m-: tj *2.m-j J

g
£
(m,2m)

^W^WH-'Vl)] (3-23)

To calculate CovfZ^Z^] from Eq . 2-21, it is first necessary co flnd

**ij£m
from B

Hm
in Eq

• 3" 19 this yields

i i

- B
t
(..j>%6a + 6

k
(j

. ra)

E

?Si(j ,j+k)
!i|!ii
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IP
+ S

k
U-m) Z g^k.J)

lk
F
13 "k

k=l

2 2

+ 26
k
(j-m)8.(j,2j)?

ij - 6
k
(j-2m)S.(n,,j)-p!

6
k (2j-m)8.(j,m)^i + 6

k
(j-m)Y

1
(j)<(>

ij

+ <5

k
(j-m)[l-5

k
(i-l)]Y

1_ 1
(J)*

i. lj

+ 6
k
(j-m)(5

k
(i-l)f(j)!

6
k
(il-l+i)6

k
a-n.)Y

i_ 1
(j)<t>

i_ lj

6
k
(Jl-i-l)6

k
(j-m)Y

i
(j)<t

ij
(3" 24 >

Using this expression and an expression for i^ in double subscripts,

Eq. 2-22 yields the following equation for the rate of change of

Cov[zijV :

A e-J B (j,j+k)

t^hi 2!^ -
-

fefx
F^ ^ikCov[Z ij

Z^ ] +
*ij

CovIZ
lk

Z
to ] 3

E-ra g (in,m+k)
-

kf x
F^

{ **k
Cov'V«J + h^'Vu 11

l
2

J e.(k.j)
+ £ ~1 {lkCov t Z

l j
- k

Z
£»

J + l J -k
Covl2

lk
Z
to

,}

k=l i

l
2

J 6,(k,m)

*£ ~\~ { ^kC°v l Zta-kV + V-k CovlZ ijZlk ])
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+ [1-6
K
(1-1)]Y, ,(j) Cov(Z. 2 ]

L -

1

i— 1 j tra

+ u-aVim^OO cov[z..
2l _ lra

]

C-j 14 (m.m+lo B <J,2j)

k=l L l

I
1

]l 2> B (k,j)

K=l X

+ [l-6
k
(i-l)]Y

i_ 1
(j)*

1_ lj
+ «

k
(i-l)f(j)]

B,.(m,j+m) B.(j,m) B^ra.j)

F. im ij F. Im-j ij F. ij-m ira

B (»,j>
k

6 (j,m)

<5

k(j-2m)-^ *^ - 6
k
<in-2j>

p ^. >

6
k
(j-m){6

k
(^-i+l)Y

i _ 1
(j)0

i_ lj
+ 6

k
(£-i-l)Y. (:)(»..} (3-25)

Using this expression with Eq. 2-24 then yields the rate of change

of the Cov[N, .N« ] which are the random variables representing the number

of entities in each group of the population. The size of Eq. 3-25 is

evidence as to the tenuous nature of an assumption of independence

between random variables. Such an assumption would lead to covariances

of zero between all pairs of unequal random variables. With Eq. 3-25 it

is possible to calculate these covariances in a rational manner without

resorting to ad hoc assumptions of independence.
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Furthermore, using Eq. 3-23 with Eq. 2-28, expressions for the correla-

tion functions of the random variables {N} can now be derived, and are

as follows:

e-m B.(m,k+m)

m
2 6

t
(k,m)

e
A
(m,2mJ

s
" 2 F^~ *im

K
ijS,m

V^iJk^MWt 1 - 5^-1'^^-!. (3-26)

with

K. (0) = Cov[N..N„ ]
ijiim ij £m

where

ij> " steady-state value of <j>.

Cov[N..N„ 1 = steady-state covariances
ij x,m

The system can now be characterized by the means found from Eq. 3-21

and the correlation functions found from Eq. 3-26 of the random variable

representing the number of bubbles of a given volume in a given compartment.

In contrast to the deterministic study of this system, where only the

means of the random variables are studied, the correlation functions

allow for the study of the effects of dynamic variations from the means

on the behavior of the fluidized bed. These effects have been previously
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studied by using a Langevin approach with fluctuations represented by the

ad hoc addition of a noise term. With the information gained from Eq. 3-26

about the correlation functions of the random variables, this Langevin

approach could be improved by using these correlation functions, or correla-

tion functions derived for the random variable of interest, to specify

the behavior of the added noise term ; thus placing an otherwise ad

hoc procedure on a more rational basis. Such a project could however

introduce substantial difficulties since the correlation functions

would no longer necessarily behave in a mathematically simple fashion.

Knowledge of the correlation functions found from Eq. 3-26 could however

lead to better assumptions about the type of noise term to employ when

an approximation is deemed necessary.

3:2 DETERMINATION OF RATE-OF-COALESCENCE FUNCTION

The rate of coalescence function Bk (j ,k) , should possess certain

properties in order for it to properly model the phenomenon of bubble

coalescence. Some of these properties are:

i) 8 (i,j) should be equal to zero for i=0 or for j-i=0

ii) B. (i,j) should have a maximum at 2i=j

iii) B. (i,j) should approach infinity as jAV approaches V
fc

iv) B (i,j) should be approximately linear for small i for a given j

Property i) follows from the intuitive picture of two bubbles coalescing

in a volume of V
fc

upon collision. Property i) thus states that as the

sizes (volumes) of the bubbles become smaller and approach zero, the

probability of a collision in a compartment with constant volume also

approaches zero, thereby rendering the rate of coalescence to approach

zero. Property ii) follows from property i) , the property of symmetry

with respect to i and j-i which B
k
(i,J) must possess, i.e.,



3-13

SfcCi.J) " 6
k
(j-i,j)

and the Intuitive picture of colliding bubbles, suggesting that B
fc
(l,J)

should be continuous and possess no local minimum in the interval 1 £ (0,j).

Property iii) is a result of the finite volume of the compartment. When

two bubbles are in a compartment of volume V
fc

and the combined volume

of the two bubbles is close to V. , it would be expected that the two

bubbles coalesce almost instantaneously, thereby giving rise to

e
k
(i,J) +- as jAV - V

k

Property iv) results from similar reasoning applied to the other extreme.

If two small bubbles are in a large compartment, they should feel no

restriction due to the finiteness of the compartment size and behave as if

tne7 vere in an infinite space. In this extreme it could be expected that

the rate of coalesence would be linearly proportional to i for a given j.

There are many possible candidates for a function which possess

properties i) through iv) ; one of the simplest of such functions is

V 1 -*' "Wv<j)[\^lAv-J
(3_27)

where B, is a parameter which can be recovered by fitting the model

to the observed population distribution data. Other functions are possible

for 6, (i,J), and the optimal functional form for 6 (i,j) can be selected

based on a detailed study of the phenomenon incorporating known bubble

behavior. However, use of Eq. 3-21 will allow for preliminary characteri-

zation of the effects of the fluctuations in the bubble size distribution

in a fluidized bed.
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3.3 DETtKMlNATlON OF OTHE* SATES QF THAWSIUCW FUNCTIONS

Besides che rate of coalesence function, two further functions remain

to be specified; these are Y
fc
(J) and f (J)- The flrs c of these functions can

be approximated by considering the velocity of bubbles of volume jAV in a

fluidized bed, u(J ) , and the height of compartment k, h
k

- The velocity of

a bubble in a fluidized bed has been shown to be approxijuately

u(J) -0. 7908^1 Q AV)
1/6 »- 28 >

Using this expression, the rate at which bubbles of size jAV leave compart-

ment k can be approximated as

Y o) - kirns,am 1/6
(«»

k- \

Determination of the rate of entrance of bubbles of size JAV into the

first compartment, Of (J), requires some knowledge as to the size distribution of

the bubbles entering into the bed, and of the volumetric rate at which gas

enters into the bubble phase at the distributor plate. C. If it Is assumed

that all bubbles entering into the first compartment are approximately of

the same size, the distribution of bubble sizes can be written as

o\j-l>
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and £(j) as

k G
t(j) - 6 Ci-D ^v

f ^(j-»

C - (U - Unf )s

k.
(3" 30 >

U - superficial gas velocicy

U « minimum superficial gas velocicy for fluidization
mf

S = cross-sectional area of the f luidized-bed

Darton et al. (1977) have given Che expression for iV as

AV = 2.2676{(U-U
mf)-^} 6/5

(3_ 31)

where N
Q

is the number of orifices in Che distributor plate; f in Eq. 3-24

can thus be seen to be

g
3

N
6

f - I f
,1/5

Q l 60(U-U ,)S J (3_32 >

mi

Equations 3-21, 3-23, 3-25 and 3-26 specify the races of cransicion

funccions in the present stochastic model of the bubble population.,
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3.4 DETERMINATION OF COMPARTMENT HEIGHT

When using a compartmental model of a fluidized bed, it is common to

base the compartment height on the average bubble volume in the compart-

ment. In this model, however, the compartment height appears in the

transition rates and can therefore be used to control the relative prob-

ability of coalescence versus exiting from the compartment. This results

from the fact that h appears in Eq. 3-23 to the inverse one power. In-

creasing h, will thus decrease the rate of transition without much effect

on the rate of coalesence. In a larger compartment it would be possible,

therefore, to effect a large number of coalescence events involving a single

volume element.

By decreasing h, it is possible to reduce the probability that a

single volume element will coalesce and thus to control the possible bubble

sizes which can be formed in a given compartment. For example, by reducing

h it is possible to control the probability that a single bubble entering the

compartment is involved in one or two, or more coalescence events. If

h. is properly chosen, it would be safe to assume that only bubbles formed

by a maximum of two coalescence events are present in the first compartment.

This would restrict the possible bubble sizes in the first compartment to

j £ (l, 2, 3, 4/; all other sizes being of very low probability.

To determine which values of h, should be used in order to safely assume

that the probability of coalescence is less than the probability of exiting from

the compartment, the ratio of the rate of coalescence to the rate of exit

must be considered. If it is desired to limit the maximum number of

coalescence events to two per compartment, the maximum bubble size in

the compartment k. is
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4
k
av

Equation 3-23 for a bubble of this size yields

Y (4
k
)
- 0-7988y£(4

k
AV)

1/6
(3_ 33)

which is the rate of exit.

The rate of coalescence depends not only on size of the largest bubble,

but also on the size and number density of the bubbles with which it can

coalesce. Since, in general , knowledge of the number density of the bubbles

requires a solution of the model, a more conservative estimate can be used.

The most conservative estimate available is found by using the number of

bubbles of size 1 in compartment 1. Calling this estimate $ , it is found

that

(3-34)
YXU)

Using the maximum value of 3. (4 »j)> Cne ratio of probability of coalescence

to probability of exit is found to be

S,(4\4
k+V Bk\(AV) Is-t^W £0"

— = (3-35)

Yk
(4

k
)F

k
2(0.7098)

2
g 4

k/6

Setting this expression equal to a constant, C, which can be controlled

so that the ratio is less than one by a derived percentage, yields the

following expression for h, ,

h = 4C AV (0.7908)
2
g 4

k

(3_ 36)

2SCC0.7908) g - B
k

(AV)
//J

f
Q
n 4

31C/b

Equation 3-29 can now be used to determine the height and thus the volume

of each compartment.
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3.5 EXAMPLE CALCULATION FOR THE FIRST COMPARTMENT

As an example of using the stochastic model, a calculation will be

carried out using the following parameters

:

U - U , = 2 cm/s
mf

N
Q

= 10

S = 314 cm

g = 980 cm
2
/s

2

AV = 5.23 cm
3

at = 120.1 s
_1

B = 330.5 s" 1

C = 1

h = 9.90 cm

V = 3108.6 cm
3

where h. was found using Eq. 3-36,

The choice of h. has been made such that the maximum size bubble in

compartment one is 4AV, which results from two coalescence events starting

from bubbles of size AV. Since the maximum number of coalescence events is

restricted to two, the following coalescence events are possible:

A
ll

+ A
ll * A

12

A
ll

+ A
12 * A

13

A
12

+ A
13 * A

14

All other coalescence events are considered to occur with very low probability

and thus can be neglected. Equation 3-21 can now be used to find

d*n 6,(1,2) (3,(1,3)

-g • -2 \— 4 X
-^— *u *12

- Y.d)^ + f (3-37)
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d<|>
12 S1

(2,3; 8
1
(i,2)

2— • §r— 12*I1
+ —$j *n (3-38)

- 2 -ij— *12
- Y .(2)*12

d$
13

S
1
(l,3)

It F *12*11 " Y
l
(3)

*13 (3" 39)

d$
14 B x

(2,4)
2

dt F
x

' Y14

Assuming steady-state behavior for

<N
xi
>= aj>u, i £ {1, 2, 3, 4},

- Y (4)*,, (3-40)

Eqs. 3-37 through 3-4U reduce, respectively, to the following expressions;

8,(1,2) B (1,3)
2 —— <N > + — <N ><N „>

V 11 V 11 12

+ YjU) <NU> - S3f
Q

(3-41)

Sjd.2)
2

3,(2,3)

V
x

<KU > " ^7— <N
12

>V
6,(2,4)

- 2^— <N
12

> - Y
1
(2XN

12
> = (3-42)

6,(1,3)
<N

i3
> Tjm; <u^ <*!!> (3-«>
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8,(2,4)
<N

14
> " ^W\ <N

12
> C3-«4)

Solving Eqs. 3-41 through 3-44 with the assumed parameters yields

<N > = 11.333

<N
12

> - 3.116

<N
13

> = 3.245

<N n/ > = 1.277
14

Noting that

Cov[N..N..] =Var[N..], (3-45)
ij ij ij ' * '

Eq. 3-25 in conjunction with Eq. 2-24 leads to the following expressions;

A
6,(1,2)

-var[Nu ] =-8-^— <Nu>Var[Nu ]

6,(1,3)
-2 —

5

{<N
12

>Var[Nu ] + <»u> Cov^N^]}

6, (1,2) ,

- 2Yl (l) Var[N
11

] + 4 — <HU>

6,(1,3)
+ y <N

i;L
> <N

12
> +Y(1)<N

11
> + Qf (1) (3-46)

. 6,(1,3)— Cov[N
1]L

N
12

]
= ^ {<N

11
>Cov[NuN

12
] + <N

12
>Var [Nu ] }

6,(2,4) 6,(1,23

- *t-
J^- <«12>

+ ~^~ <N11>] C°^\l »J2
"

8,(1,3)

y
{<N

12
>Cov[N

11
N
12 J + <NU > Var[N

12 ]}

6,(1,2)
+ 2 — <Nu>Var[N

11 ] - [YjU) + Yj_(2) JCO'{»uIi
12

1

8,(1,3) 8,(1,2)
+ -

V
-— <NU > <N

12
> - 2 -4-_ <NU > (3-47)
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A „ r„ „ ,

6
1
(1 ' 2)- Cov[NllN 13 J = -4 —— <N

11
>Cov[NuN

13
]

1

6,(1,3)
5 {<N

12
>Cov[NuN

13
] + <Nu >Cov[N

12
N
13

]}

3,(1,3)
+ 2 — f<N

11
>Cov[NuN

l2
] + <N

12
>Var[N

11 ]}

tY
1
(D + ^O)] Cov[NnN

13
]

6,(1,3)
<N, ,> <N,_>- -«U' -«

12
-

(3-48)

A
6,(1,2)- Cov[NuN

14
] = -4—- <NU > Cov[NuN

14
]

6,(1,3)
{<N

1
->Cov[N.

1
N ] + <N 11 >Cov[N 1

,N J }
V, 12

-" VL "
1 1 14

' "11 ^ v
'"i2 14

6.(2,4)
+ 2 —Y— <N

12
>Cov[HuN

l2
]

tYx
(l) +Y

1
(A)] Cov[N

11
N
1A J

(3-49)

A
6,(1,3)

^ Var[N
12 ] - -2 ~ f<Nll

> Var L N i2
] + ^^Covt^N^]}

6,(2,4)
-8 —

5

<N
12

>Var[N
l2

]

6,(1,2)

+4 -^ <N
ll
>Cov[N

ll
N
l2

J " 2V 2) Var [ N
i2

]

6,(1,3) 8.(2,4) ,

+__ <lin> <Ni2>+ 4 ___ <Ni2 >

6,(1,2)

+ -~ <Nu > + V 2) <N
i2

> (3_50)
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d
Ml, 3)

Cov(N,
9
N, J = — {<Nn > CovlN

12
N
13

] + <NU > Cov^N^]}
at l 12 13' V. 11

,(2,4)

T— <N
12

> C-IN
12

N
13

]

e,(i,2)
+ 2—— <NU > Cov[NnN

13
]

+ 2

6^1,3)
{<N

11
>VartN

12
] + <N

12
> Cov[NuN

12 J}

[Yl (2) + Y
x
(3)] Cov[N

12
N
13

]

(1,3)

V,
<HU> <NU > (3-51)

(1,3)- Cov[N
12

N
14

] - - ~Y— {<Nu >Cov(N
12

N
14

] + ^CovU^] !

e,(2,4)

+ 2

+ 2

-J-— <N
12
>CovlN

12
N
14

]

,(1,2)

V
<Nu>Cov[NuN

i4
]

1

,(2,4)

1 <N
12

>Var[N
12

]

[Y
x
(2) + Tl (4)] Cov[N

12
N
14 ]

1^,(2,4)

2 "V" <N12> (3-52)
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d B,(1.3)- Var [N
13

] - 2-— [^CovlN^] + ^^CovtH^] )

S (1,3)
- 2y

1
(3) Var[N

13
] + 2 — <NU > <N

12
>

+ Y
1
(3) <N

13
> (3-53)

, 8,(1,3)- Cov[N
l3

N
i4

] = 2 -iy— { Nu Cov[N
12

N
14

] + CN^CovIH^]

J

3,(2,4)
+ 2 — <N

12
> Cov[N

12
N
14 ]

- [yx
O) +Y1W] Cov[N

13
N
14

] (3-54)

. 8,(2,4)& Var[Nu ] - 4 -^j— <Nn > CovlN^]

6,(2,4) ,

- 2YX
(4) Var[N

14
] + — <N

12
>

+ Y
x
(4) <N

14
> (3-55)

Solving Eqs. 3-46 through 3-55, again under steady-state conditions and

with the assumed parameters , yields

Var[Nu ] = 9.405 Cov[N
12

N
13

J
= -1.067

Cov[N jN
2

] = -0.643 Cov[N
12

N
14

] = -0.082

Cov[N N ] = 0.366 Var[N
13

] = 2.855

Cov[N
1]

_N 1 = -0.088 Cov[N
13

N
14

] - -0.143

Var[N 1 - 2.532 Var[N
l4

J
= 1.210



3-24

These values of the covariances can now be used as Che initial conditions

for solving Eq. 3-26 for the correlation functions which are of the form,

d
6,(1,2) 0,(1,3)

dT
K
ljll

= - [4 ~^- <*!? + -V^— <N12> + V^ljll

B,d,2)--T— <Nu>Kljl2
(3-56)

d
6,(1,2) 6,(1,3)

dT
K
ljl2

= U ~X~ <**? " "^— <N
12

>] K
ljll

S
1
(l,3) S

1
(2,4)

where

-I— ^ll*
+ 4 " *"»» + V 2)]K

lil2
(3_5?)

d 6,(1,3) 6,(1,3)

dr" ^13
= 2^— <N

12
> K

1J11
+ 2 -V—"V K

ljl2

- Yi( 3 ) Kiji3 » 58 >

d
6 (2,4)

dt
K
ljl4 " 2

-Vf- <N
12

> K
ljl2 " V* )K

ljl4
»" 59 >

j = 1,2,3,4

<N, .> = steady-state value
lj

Solving these equations with the initial conditions and the assumed parameters

yields the following expressions:
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Klm (T) - e
9 1X [9.4052 cos(4>T) - 2.8715 sln(*T)

]
(3-60)

Knl2 (T) = e"
9 lT [-0.6416 co3 ((J)T) - 10.8546 sin'.'<t>T) ]

(3-61)

K
1113

(T) = e"
9lT

[1.504 cos(*T) + 7.6055 sin(<J>T) ]
- 1.1385e"

6 2T (3-62)

Klm (T) = e"
8lT

[0.8575 cos((l)T) + 2.2990 sln(i)>T) ] - 0. 9457e"
9 2T (3-63)

K12u (t) = e"
9lT

[-0.6416 cos((j>T) + 2.5111 sin(*T)] (3-64)

K
1212

(T) = e~ 9lT [2.5320 cos(((>T) + 1.3423 sln(<t>T) ]
(3-65)

K
1213

(T) = e~
9lT [-1.9186 cos(<)>T) - 0.7030 sln(ifT) ] + 0.8519e~

9 2T (3-66)

K
1214

(T) = e"
9lT [-0.6351 cos(<t>T) - 0.1218 sin(<)>T) ] +0. 5530e~

y3T
(3-67)

K
1311

(T) = e"
9 lT [0.3657 cos(*t) - 1.0809 sin(<t>T) ] (3-68)

K
1312

(t) - e~
9lT [-1.0666 cos(4>T) - 0.6739 sln(it>T) ]

(3-69)

K
1313

(T) - e"
9 lT [0.8187 cos(4>x) + 0.3728 sin(())T) ] + 2.0359e"

92T (3-70)

K13U (x) = e"
9 lT [0.2747 cos(((>T) + 0.0747 sin«T) ]

- 0.4173e~
93T

(3_ 71 )

K14U (T) - e~
9lT

[-.0882 cos (((it) - 0.0551 sin(*T)

]

(3-72)

KU12 (T) = e"
9 lT [-.0821 cos (((it) - 0.4358 sin($T)] (3-73)

K
1413

(T) = e
-9lT

[0.0502 cos(((>T) - 0.0648 silHlfrT)] - 0.1928e~
92T (3-74)

K
1414

(T) = e" 9lT [0.0124 cos(((it) - 0.0228 sin(<(>T) ] + 1.1977e"
9
3
T

(3-75)

In these expressions,

8
X

= 15.6971, 8
2

3.9565, 6
3
= 1.2775, $ = 4.4283

As mentioned earlier, it is (Often the case that the variables of

interest are not the number of bubbles, but some other characteristics, e.g.,

the total surface area of the bubble phase in a compartment. In this case,

the surface area of the bubble phase in compartment 1, S. , can be related to

the number of bubbles of size jAV in compartment 1, N
1

. , through Eq. 2-29.

With s. equal to the surface area of a bubble having a volume of jAV, Eq.

2-29 yields
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S
l

=
.

Z
,

S
i
N
i (3-76)

1=1

Assuming spherical bubbles, the assumed parameters yield the following

values for s ;

s = 14.570 cm
2

s
2

= 23.130 cm
2

s = 30.308 cm
2

2
s. = 36. 716 cm
4

It then follows from Eq. 2-30 that

<S
1
> = 382.431 cm

2

and from Eq. 2-31 that

+ 1749. 778^ e~
S2T

+ 1113.733 e"
93T

(3-77)

K (t) - e -
1 [2584.679 cos(4>t) + 263.483 sin(((>T)

]

where

9
X

= 15.6971, 8
2

= 3.9565, 9
3

= 1.2775, * = 4.4283

Setting T = in Eq. 3-77 yields

Var[S ] = 5448.190

SdlSjJ = 73.812

This indicates that fluctuations in the total surface area of the bubble

phase are relatively large since the standard deviation is 19.30 percent of

the mean.
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A dimensionless correlation function can be found by dividing K (t)

by Var[S ] yielding

p (t) - e"
9lT [0.4744 cos(t))T) + 0.0484 sin(<J>f) ]

+ 0.3212e
9
2
T
+ 0.2044e"

9 3T (3-78
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NOTATION

A„ = first jump moment .

A n
= coefficient matrix from the expansion of A,.

Jun x,

B, = constant appearing in the expression for the rate of

coalescence in compartment k.

%
B„ = second jump moment.
Jem

C = constant used to set compartment height.

Cov[N..N
ft

1
= <N..N n >-<N..><N„ >

lj Jim ij x-m ij Jim

Cov[Z..Z n ]
= <Z..Z„ >-<Z..><Z

(1

>
ij J6m ij tin ij lm

F. = V./fi
l l

g = gravitational constant.

G = (U - U ,)S
mi

h, = height of compartment k.

K, (
T

)
= correlation function of S.

.

KiWT) = <N
ij

(0)N
£m

(T)> - «u<0>x»ta
CT)>

M = number of compartments.

N = number of orifices in the distributor plate.

N.. = number of bubbles in compartment i with volume jAV.

<N..> = expected value of N...

s. = surface area of a bubble of volume jAV.

S = cross- sectional area of f luidized-bed.

S. = surface area of the bubble phase in compartment 1.

<S.> = expected value of S-

.

Sd[S
1

]
- (VartSj)

172

u(j) = linear velocity of a bubble of volume jAV.

U = superficial gas velocity
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U r = minimum superficial gas velocity for f luidization.

V. = volume of compartment i.

r 1
2 2

Var[S,] = <S, > - <S.>

W ({•},{*}) = intensity of transition function.

<Z n > = expected value of the fluctuating component of N
fcm

Greek Letters

3.(j»k) - rate constant for the coalescence between bubbles of size j

and size (k-j) in compartment i.

Y . ( j ) = rate at which bubble of size j leave compartment i.

k „k k
6' (•) = Kronecker delta where 6 (0)=1 and 6 (x)=0 for all x^O.

AV = small unit of volume which is usually taken to be equal to the

volume of the smallest bubble.

e = volume of largest compartment divided by AV.

constants appearing in correlation functions.V D2' D
3

£,, = size of change in random variable N...

p 1
(t) = dimensionless correlation function.

<f)

= constant appearing in correlation functions.

<J>„
= <N >/Qr £m £m

0* = number of bubbles of size 1 in compartment 1.

Q = system size.

&f(j) = rate at which bubbles of size j enter the bed into compartment 1.
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CHAPTER 4

APPLICATION OF GENERALIZED MASTER EQUATION

TO COALESCENCE AND DISPERSION PHENOMENA

Suppose that a population of entities, or synonymously particles, exists

and evolves through coalescence and dispersion of individual entities. Also

suppose that the interactions amoung the entities in this population possess

the Markov property, and information on the rates of the interactions is

available. A stochastic model based on the master equation can be developed

by extending and modifying the model established in the previous section for

pure coalescence. For simplicity a system containing only one compartment will

be considered. Extension to two or more compartments is straightforward; this

can be accomplished by adding a subscript denoting the compartment number and

deriving transition rates similar to those defined in the previous chapter.

It will again be assumed that entities coalesce at a rate dependent on their

sizes, and that a single incident of coalescence involves only two entities.

The rate of dispersion of an entity will be assumed to be dependent on

its size, and furthermore, it will be assumed that a breakage event produces

only two smaller entities. The latter assumption, though it appears tenuous,

can be strengthened by including a variable to account for the "distance" of

an entity from its formation. In this way, particles which have Just been

formed can have a higher breakage rate, thus accounting for the experimental

observation that particles appear to form many daughter particles after breakup.

The words "distance" is intentionally somewhat vague and could refer to

distance in space, time, or any other factor which would increase the pro-

bability of the entity to breakup after it has been formed. Intuitively, the
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breakage race of Che entity as a function of the distance from its formation

should decrease Co an asymptotic value as the distance increases. Thus the

assumption of binary breakage can be retained, but at the expense of the

addition of a new variable.

4.1 DERIVATION OF MODEL

Following the previous notation, a set of random variables is

defined as

{N : i £ (1,2 M}, j £ (1,2,3...

where

N = number of entities of size j AV at a "distance" of iAS from
ij

formation

MAS - "distance" at which the breakage rate equals its asymptotic

value

AV = small unit of size corresponding to the smallest possible entity

Letting A., represent an entity of size j AV at a "distance" of iAS from its

formation, the interactions during coalescence can be represented by

MM""
n n n n [a..+a. A„

4i4)r
J

1-1 m=l J-1 k-1 1J "" Mj+k>

where

ij + mk „i th i rounded to the nearest integer
* j+k

Note that in the summation as indicated, all interactions are counted

twice, except those where both i=m and j=k. This must be taken into

account when the master equation is derived. Note also that I is

set equal to the size weighted "distances" of the two coalescing entities.

Other conventions could be used to simplify the resulting equation if

desired.

Similarly, the interactions during breakage can be represented by

AU + A10-W J

M oo *
n

i=i

n

J-2 k=l
A
ij



4-3

Scattering, i.e. , the movement of entities to a greater "distance" from

formation can be represented by

M-l

1=1
l

iJ (i+l;j J

In addition, the entities can be added to or leave from the compartment:

These events can be represented, respectively, by

*

x
*3 >V

M »
n n

i-i j=i
[A. . + Y .

IJ iJ

and

where X and Y are dummy symbols representing the inlet and outlet environments,

respectively. Note that the entities entering the compartment are assigned a

value of MAS to their distance variable. This follows from an assumption

that the entering entities breakup at the asymptotic breakage rate.

The set of random variables will be denoted as Cn} and the volume

of the compartment as ft. As in the previous section,, the rates of trans-

ition due to the various interactions can now be derived. Let 6 (i,k)
im

be the rate constant for the coalescence between entities of size j AV a distance

iAS from formation and entities of size (k-j)AV a distance mAS from formation to

form entities of size kAV with an average distance IAS from formation. Then, the

rates of transition due to coalescence can be written as

W
t
({n

ij'
n
mk-j'

n
S,k

}
'

Cn
ij-

1 ' tWr1 ' n
Jlk
+l}) (4-D

i. (j,k)
ij

n
mk'3

for all i, j, m, k, I: lj«m or V.4Zj , % = [
>J+m (k" J )

]
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for all i, j, k: i=ra and k=2j

In these expressions, all random variables which remain constant during a

transition have been omitted from the notation for {n} for simplicity.

Let a.(j,k) be the rate at which entities of size jAV, having a

"distance' iAS from formation, break apart to form entities of size kAV and

(J-k)AV. Then the rates of transition due to breakage can be written as

W
t
({n.r n

lk
, n^}, {n..-l, n^+1, n^+1}) (4-3)

- ^(j.Wn

for all i.j.ki j^2k

W
t
({n. j>

n
lk

} ) (tiy-1, n.
k
+2}) = a. Cj ,k)n. . (4-4)

for all i,j ,k: j=2k

Letting K .(j) be the rate at which entities of size jAV and a "distance"

iAS from formation move to a"distance" (i+l)AS, the rates of transition

for scattering can be written as

w(tnij'Vxa K ln
ij

-1
' Vw +1}) =K

i
(j)n

ij (*-5)

for all i, j : i^m

Similarly, letting ftf(j) be the rate at which entities of size jAV are

added to the compartment from the environment, the rates of transition for

entrance of entities can be written as
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W(.{n.
fl

}, (n
Mj

+l}) - «f(j) for all j (4_ 6)

Finally, let Y , t j ) be the rate at which entities of size jAV and

"distance" iAS from formation exit from the compartment. Then the rates of

transition due to exiting can be written as

W({n..}, {n..-l}) = Y.(j)n.. for all i,j (4_ 7 )

With the rates of transition known, the master equation is specified, and

the System Size Expansion can be applied to solve it for the means and corre-

lation functions of the random variables. The first step in this approach

is to rewrite the equations for the rates of transition, Eqs. (4-1) through

(4-7), in terms of {n} and {£}, respectively, as follows:

for all i,j,m,k,S,: i/m or M2j , I =
[

1] +
^

k~j)
]

W
t
({n.., n.

k
}; {-2, l}) = S^Cj.k) "n^J

(4_ 9)

for all i,j,k: i=m and k=2j

w
t
({n

ij'
n
ik'

n
^-k)}; {

- 1
-

l
-

1}) = V j ' k,n
ij < 4- 10 >

for all i,j,k: j^2k

w
t
(tn

ij
,n

ik }; {_1
-

2)) = Vj,k)n
ij t 4- 11 )

for all i,j ,k: j=2k
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V {n
ij 'Vtfj }; t-1. ID -*

t
0)n

±j (4-12)

for all i,j : ij«M

W
t
(.{n

M
_.}; {1}) = f2f (j>n

±J
for all j (4_ 13)

W
t
({n

ij
}; {-1}) = Y

i
Cj)n

ij
for all i,j (4-14)

where, as In Che previous chapter, all null elements in the set {?} are

omitted, and the remaining elements correspond to those in {n}.

As previously, the next step is to calculate the jump moments, A. and

B
hn'

after arran8in8 co chanS e the double subscript to a single one. denoted

as h; for convenience, it is defined as

h = j + E(l-l) (4-15)

where

j = subscript denoting the size of an entity

i = subscript denoting the "distance" from formation

E =
size of the largest possible entity

AV

The variable n. . now appears as
ij

PK

j+eCi-l)

Introducing this notation into the expressions for the rates of transition

gives rise to



W
t
an

j+E (i-l)'Vj +E (m-l)'\+e(£-l) };{- 1 '- 1 ' 1})

(j k)
j+EU-i) k-.1+e(m-l)

(4-16)

for all i,j,m,k,£: i/m or k/2j ,
£=[ii±SitJl]

H
t»°^ (1. 1)

.n^
(1. 1)

};{-2,l»-^ J ,l t )

V«l-l) (V E.I-l)-
1)

(4. 17)

for all i,j,k: i=ni and k=2j

V {nj+e<i-irVVk},{~1,1,x}) -
a
i

(J' k>v£( i-i)
(4-18)

for all l.j.k: ji^k

w
t
({n

j +£( i-i)'
n
k

} = {
- 1 ' 2}) =ai«- k)Ve (i-i)

for all l,j,k: j=2k

(4-19)

W
t
({
»J4.(1rW B

34«lJ{{
-1 - 1J) =*i (J)n

j+c(i-l) (4-20)

for all i,j : i^m

W
C
({Ve(M-l) h{l}) *"f(J) for all j (4-21)

V {n
j +£( i-l)

};{- 1}) = Y
l
(J)n

j+t (l-l)
for a11 *-l (4-22)
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Expressions for i and B are now derived, respectively, as follows

k ' nEUyl-S'fti-k+j-Ei+E) - S
k
(h-]-Ei«)

£ i in j k

+ 6
k

( h-k-£St+E) ] U-6
k
(i-m) 5

k
(Tc-2j ) ]

6
k
(£-[(ij-hn(k-j))/kj)e

i3n
(j,k) J+eCi-D^-i+£ (m-l)

+ 5:n-z6
k
(h-j-£i+£ ) + 6

k
(h-2j-E i+e)]B,.(j,2j /j +£(:i-1)

^

n
i +£(1- 1)

"1)

i J

+ EZE^t-S (n-j-£i+£; + o
k
(.h-k) + 6

k
(h-j+k)][l-6

k
(j-2k)]a.(j,k)n

ij k
x j+f-u-i)

+ T.L I-6
k
(h-2j-£i+€) +

2<5k
(h-J)Jci.C2j > j)n

2
.

+E;
i j

J

M£
k k k

+ EZ [-6 (b-j-Ei+E) + 6 (h-j-£i)][l-6
K
U-M)]»c.(j)n

E
k

+ IS (h-j-£M+E)flf(j)

11 & ( h-J-E i+E)Y
1
(j)n

j+£(1_ 1) (4-23)
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i
- ZtZ II i[-6k (h-k+j-ei+£) - <5

k
(h-j-£i+£) + 6

k
(h-k-EJt+£)] [-6 (n-k+j-£i+£)

hn „ . . . 2
I l m j k

- S
k

(.n-j-ei+E ; + sV-k-^+e)] [l-6
k

( 1 H,;a
k
(k-2j) ]

Me
k k k

+ F.Z [-26 (h-j-el+e) + & (h-2j-£i+e)] [-26 (n-j-ei+e)

i i

6
k
(n-2 j -ei+£ )]S il

( J .2 j;

n
i
+E(i - i)(^ (i- 1)

' 1)

M E e
l k k k k

+ ZIL ±[-6 (h-j-ei+E) + & (h-k) + 6 (.h-j+kj ] [-6 (n-j-ei+e)

ijk

+ 6
k
(n-k) + 6

k
(n-j+k)][l-6

k
(j-2k)]a.(j,k)n._K.

(
._

1)

+ IE [-6
k
(h-2k-ei+e) + 2<5

k
(h-k) ] [-6

k
(n-2k-£i+e) + 2S

h
(n-k)]

i k

a
i
C2k ' k)n 2k+e(i-l)

+ Z Z [-6
k
(h-j-£i+£) + 6

k
(h-j-£i)][-6

k
(n-j-£i+£) + 6

k
(n-j-Ei)]

i j

[l-6
k
(i-m,]K. C j)nj+EU_ 1)

£
b k

+ E6 (h-j-eM+e)<5 (h-n)ftt(j)

j

Me
+ IE6k(h-j-£i+E)6

k
(h-n)T.(j)n. +e( ._

1) (4_ 24)



4-iO

The first of these expressions together with Eq. (2-18) gives

d<(> M E M M e
,

-jf
- ££{11 z-if-6 (h-k+j-ei+e) - 6

K
(h-j-ei+«;) + 5

h
(h-k- Ei+£)

]

i j t m* k
*

.[l-6
k
(i-ra)6

k
(k-2j)J6

k
(t-[(ij+m(k-j))/k])

3
im (J ' k) *j+£(i-l)

il,

k-j+e (m-l)

+ [-2«
k
(h-j+£i+E) + «

k
(h-2j-ei+£)]6..(j,2j)^

2

+E;(
._

i)

+ Ey[>-6
k
(h-j-Ei+£) + 6

k
(h-K) + 6

k
(h-j+k)][l-5

k
(j-2k)]a.(j,k)<J.^ ,. ,.

.
L 1 j+eii-lj

+ [-6
k
(h-2j-Ei+E) + 2o

k
(h-j)]a.(2j,j)(t.

2
.

+£(1_ :L)

+ [-6
k
(h-j-Ei+£) + 6

k
(h-j-£i)][l-6

k
(i-M)]<.(j)*

j+e( ._
1)

- «
k
(h-j-ei+e)Y

1 U)<l'j^(i.1)
}

e
k

£5 (h-j-£M+E)Qf(j) (2-25)

Simplifying this expression by returning to double subscripts yields
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d
*J,m 1

M E

,
M M m-1

+
2

£i: E tl+« (i-k)o
K
(m-2j)]6

K
(A-[(iJ+k(m-j))/m])B,.(j,a)* *Ik J

' ij km-j
i-fc j

[-1
2 M E

k
- Ea.(m,k)<}> + Z E(5 (S.-1) [l+<5

lc

(j-2m) Jo. (j ,«)*,

.

k ™ ij i 1J

[l-6
k
(«-M)]K

£
(m)^m + [l-sVDlK^On)*^

Y
£
(m)<f,

£m
+ 5

k
(*-M)fCm) (4-26)

where

« U-[(ij+k(m-J))/m]) = 1 If S. - [(ij+k(m-j))/m]

[(ij+k(m-j))/m] = (ij+k(m-j) /m) rounded to the nearest Integer

The moments of the fluctuating component can be found from the following

expression for i ;

x
M M M e e

A^ = j t I I Z I [-5 (h-k+j-ei+E) - o
k
(h-j-ei+£) + 6

k
(h-k-eJl+e)][l-6

k
(i-m)6

k
(k-2j)]

i i m j k

.6
k
(£-[(ij-hn (k-j))/k])B

im (j > k)[0
j+£( ._

1)
6
k
(n-k+j-em+£)

+ *k-j+E(m. 1)
«
k
(n-J-^+£ )]
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Me
+ 21 £[-26 (h-j-Ei+E) + 6 (h-2j-ei+e)]B..(j,2j)A 5

k
(n-j-Ei+e)

. . 11 Jt£(,1 L)

l

M e £
k k k k k

+ TEI E[-6 (h-j-el+e) + 6 (ta-k) + 6 (h-j+k] [l-6
K
(j-2k) ]o. (j ,k)S

K
(n-j-£i+£)

ilk 1

+ I E£-«
k
(h-2j-ei+c) + 26

k
(h-j)] a (2j , j )«

k
(n-2j-ei+ E )

i J

M E

+ £ £[-6
k
(h-j-£i+E) + 5

k
(h-j-Ei)][l-6

k
(i-M)]<.(j)6

k
(n-j-ei+E)

* J

1

Me
+ E !:6

K
(h-j-Ei+E) Yl(j) « (n-j-ei+E) (4. 27)

1
j

Changing to double subscripts, this expression in conjunction with Eq. 2-20

yields

d<Z~ > ,H E-m

-25— - - Tl
J
S^fa,**) t*

lj
<z
ln> + <V*±» +

ta
<z

lj
> +WV 1

i J

r
M M m-1 , , .

+ k £' I [l-H5
K
(i-k)<5

K
(m-2j)]6 (l-[(ij+k(m-j))/m])

'i k j

L-(1.t) [*. .<Z. .
> + <Z. ,>*, .]

Ik " ij km-j ij km-j

r-i M£
rk

S a
£
(m,k)<Z

i
> + I l& (1-1) [1+6 (j-2m) ]a . (j ,m)<Z . .

:

k i 1
iJ

[l-6
k
(il-M)]<

)l

(m)<Z
|liii

> + [l-5
k
Ol-l)]<

i
,_ 1

(m)<Z
!l
_lm

>

Y4<»)
<Z

la
> (4-28)
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Expressions for the rate of change of eov[Z Z ] can be found from Eq
im pq

4-27 for A
hn , Eq. 4-24 for B

hn
and Eq. 2-21 after changing to double

subscripts; this yields

IF
C °v[Vpq ] " "

1\ J

Pufr.tJWjj Cov[Z
lm

Z
pq

] + * im
Cov[Z ljZpq ]

+ 4. Cov[Z..Z ] + <(>. .Cov[Z. Z ]}T
?.m ii pq 11 la pq

1
ME-q

-?I J 8 ,(q,q+j) (<t> 4 Cov[Z„ Z. ] + $ . Cov[Z„ Z J2
t

. pi^'^ T
pj M iq

J T
iq 4m pj

+ <i> Cov[Z. Z..] + <)>..Cov[Z,. Z ])T
pq Hm lj lj un pq

2I-B,.(m,2m) <j> + g (q,2q) <(, ] Cov [Z Z JM £m pp " n T
pq J,m pq

M M m-1
+ -rF T, £ [l+<5

K
(i-k)(5

K
(m-2j)]5 (H-f (ij+l-(m-]))/m])

i k j

5 , (j>m){*, .Cov[Z, .Z ] + <)>, .Cov[Z..Z ]}
ik VJ ' ylT

ij
L km-j pq

J rkm-j lj pq

1
M

"
q_1

k k k
+ jl Z I [l+6

K
(i-k)5

K
(q-2j)]6-

K
(p-[(ij±k(q-j))/q])

i k i

(J.q) t^jCovtZ^Z^.] + ^.Cov[Z^Z..]}

[f] Ef]

[ X a„(m,k) + I a Cq,k)]Cov[Z„ Z ]

k *
k P £m pq
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ME
+ ZZS (j,-l)[l+6 (j-2m)]a.(j,m)Cov[Z..Z ]

l
j i ij pq

ME
+ EZfr, (p-l)[l+5 (j-2q)]o.(j,q)Cov[Z„ Z..]

£ j
1 to ij

[l-6
k
(S^M)Jic (m)Cov[Z Z ]* £m pq

" U-«
k
(p-M)] Kp (q)CovtZ

&a
Z
pq

]

+ [l-6
k
(«,-l)]K ,(m)'Cov[Z, ,

Z ]

Jo—

i

J6-lm pq

+ [l-6
k
(p-l)]< (q)Cov[Z. Z ]p—

1

Jem p-lq

[Y£
<«> +Y

p
(q)]Cov(Z

tm
Z
pq

]

Ik k
Me-m

+ J
6 W-P)6 (m-q)£ £ [1+5 C«.-i)« (m-j)]6

J
, i

(ni ) m+j)
1 j

x.q lm *:m lj

1 .k, s ?r, ,.k. .s k.+2* (A-P) S [1+6 (£-i)6 (m-q)]3 (q,m+q)

am T £m xq

-| Z"[l+6
k
(i-)l)6

k
(2m-q)]e

ijl
(m,q)[6

k
(p-[()iq-£«+im/q])

hl-JiM + « VlttnH-lq-inO/q])^.^]
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i

M
k k k

jZ [1+6 (p-i)6 (ra-2q)]B
pl

(q,m)l6 U"[ Ipm-pq+iqO/n]

)

k
•A <J. +6 (J.-[(pq+im-iq)/mJ)$ *

]

pm-q lq pq
T un-q

Ik k
M'Me

+ ±f(.m-n)6 <.l-p)ZZ E[l+6 (k-i)6 (m-2j)]
ikj

•6 (i-[kj+im-ij/m ])B
ki

(j,m)c()
kj

4).
oi
_.

[f]

+6
k
(p-!.)6

k
lm-q) Z <*.<"tk)*j

ta
k

6
k
(p-l) [l+6

k
(L>-2q) ]o. (m,k.)<p."IT—** T

too

- 6
k
(£-l)[l+6

k
(q-2m)]a (q,m)(j>

. . He-rn

+ 6 a-1) 6 .(q-m^ (,l-?)Z Z [1+6 (k-m)]a (m+k.m)<((

i k

k k
M

k
+ 6 (1.-1)6 W-p)2[l+6 (q-m)Jo

i
(q+m,q)<ti

1

+ 6
k
(q-m){6

k
(p-H)[l-6

k
(£-M)]ic

Jl

(m)(ti
Jliii

+ 6
k
(p-S.)[l-6

k
(p-M+l)]<

p+1
(m)4

lp+liii

6
k
(p-H+l) [l-6

k
(H-M) ]<

£
(m)*

im

+ 6
k
(H-p+l)U-6

k
(p-M)]K

p
(m)(ti

pra

+ 6
k
(p-Z)6

k
(m-q){6

k
(£-M)f(m) +Y.lm;<f. > (*"29)

it £ in



4-16

Finally, Eq. 4-28 in conjunction .with Eq. 2-28 yields the following

expressions for the correlation functions of the random variables {n};

£ K
pqta

(T)
' " 3*

E

fBU<».-*l>H«W *LK
pq£j

+ *LKpqij
+ *ij>W

- 26u (m,2m)
4>s.m

K
pqim

MMa-1
+

2
Z £ E [l+6

k (i-k)6 k (m-2j)]6k (8.-[(ij+k(m-j)/m])
ik J

ikU ' ; iJ pqkm-j km-j pqij

[f]

Me
+ ^ £ 5

k
(£-l) [l+5

k
(j-2m) ]ct. (j ,m)K

-[l-<5V-M)]K
£
(ni)K

Ml-^d-DX^WK^^^

-V>K
Pqi»

(4"30)

with the initial condition

K . (0) = Cov[N. N ]

pqilm Im pq
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where

f>„ = steady-state value of d>

Cov[N N ] = steady-state covariances

Equations 4-26, 4-29, and 4-30 respectively, for the means, the covariances

and the correlation functions thus provide a viable description of the stochastic

evolution of the coalescence-dispersion system. It is however, possible,

to consider the variables denoting the size of entities as continuous.

This can be effected by redefining the functions a(.), 8(.,.), f(-), Y(.)

and k(.) as continuous functions. The continuous size variable will be

denoted as v or v' . Transformation to continuous functions proceeds

as follows:

!

tl
(m,m+j) B

£1
(v,v+v')dv'

a
£
(m,k) —* a

a
(v,v')dv'

Yj,(m) Y
£
(v)

<
Jl
(m) K

£
(v)

f(m) f(v)

Equation 4-26 can;, now be written in continuous form as

p (.v) M v -v
x 1_ , max r , , . ."3^— " "

-f ' B
£l

(v,v+v ,

X<t>
|l

(v')<f>
i
(v) + (^(v^lv'^dv'

,M v

+
2
Z ! e

ik*(
T'. v'*

1
-(v ')*

w
*(v-v')dv'

i
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/ a
A
(v,v')$

4
(v)dv'

M , max
+ Z6 (£-1) / tt.lv'.vJt.tv'Jdv'

[l-(5
k
(S,-M)]K

£
(v)<f,

Jl

(v)

+ [l-«
k
(«.-l)jK:

l_ 1
(v)<t.

£_ 1
(v)

Y^(v)^(v)

+ S
k
(2.-M)f(v)

(4-31)

where

Zv — iv

'

k* " t _ i ] with k* rounded Co the nearest integer.

note that several terms, e.g.,

Bu (m ' 2m)*L

which are in Eq. 4-26, no longer appear in Eq. 4-31 in continuous

form. This results from the limiting process where AV •* 0. In such

a limit, the expression 8u (m,2m) describes the transition between

two points, m and 2m, and since the area under a point approaches zero

as AV-<- 0, this term offers no contribution. This always occurs in

transforming a discrete variable to a continuous one whenever a

point discontinuity exists in an otherwise continuous variable. This

indicates that caution must be taken when describing a discrete system
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by a continuous function. It is not possible to transform the continuous

function back to the discrete description unless the behavior at ,°very

discontinuity is known.

Equation -4-29 can now. he .written 'in continuoua form as

Tt
Cov 1Zjl Cv)Z

p
(v«)] = --±E / e

£
.(v,v+v'){$

£
(v')Cov[Z

1
(v')Z

p
(v*)]

+ ^(vJCovU^v'JZ (v*)] + 4>

)l

(v)CovlZ
i
(v , )Z

p
(v*);

+ $
i
(v')Cov[Z

a
(v')Z

p
(v*)]}dv'

u v -v*
_M max
jZ I pi (v*,v*+v

,

){<t>
p
(v')Cov[Z

)l

(vjZ.(v*)]

+ $ (v*)Cov[Z (v)Z (v')J + <j> (v-OCovfZ.CvJZ.Cv')]
x x. p p X, 1

+ 4i

i
(v')Cov[Z

Jl

(v)Z (v*)]}dv*

M v
+ &/ B i (V,v){*, (v')Cov[Z (v-v')Z (V*)3

i lk P

+ d>, .(v-v')Cov[Z.(v')Z (v*)]}dv"
k* l p
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^M v*

+
2
Z 7 6

ik
,(v•,v*){*

i
(v')Cov[Z

)l

(v)Z
k
,(v*-v ,

)]

+ *k
.(v*-v')Cov[Z

Jl
(v)Z

i
(v

, )]}dv'

V V*
2 2

[ / a.(v,v')dv' + / a (v*,v')dv']Cov[Z„(v)Z (v*)

]

p * p

M max
+ 16 (J.-1) / a.(v\v)Cov[Z.(v')Z (v*)Jdv"

1 v 1 1 P

M , max
+ Z<5 (p-1) / a

j
(v , ,v*)Cov(Z.(v)Z.(v , )]dv'

I w* 1 It 1

Ll-6
k
(J.-M)]K

£
(v) CovtZ

Jl

(v)Z (v*)]

[1-6 (p-M)]K
p
(v*)Cov[Z

£
(v)Z (v*)]

+ [l-6
k
(£-l)]K

;l
_ 1

(v)Cov[Z
e_ 1

Cv)Z (v*)J

+ [l-6
k
(p-l)]K

p
_ 1

(v*)Cov[Z
i
(v)Z _ 1

(v*)]

- [Yj,(v) + Y
p
(v*)]Cov[Z

i
(v)Z (v*)]

Ik k
M max

+ ji (.1-1)6 (v-v*)£ / g .(v,v+v' )[<}>. (v')<f>.(v)

+ ^(v^Cv'Jjdv'
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where both

Ik k
M v

+ y6 (J,-p)6 (v-v*)I / &r,Av' ,v)<PAv')<t>.(v-v')dv'
iO

U
* *

k k
2

+ 6 (S.-p)6 (v-v*) / a.(v,v')#.,(v)dv'
*

k k k "*
+ & (6.-1)6 (v-v*)6

K
(£-p)E / a.(v-rv',v)4,.(v+v , )dv'

10

+ 6
k
(v-v*){6

k
(p-)l)[l-a

k
(l!.-M)]K

£
(v)<t>,

l

(v)

+ 5 (p-mi-6
k
(p-M+l)]K

+1
(v)$

+1
(v)

5
k
(p-S>+l) [l-6

k
(£-M)]K^(v)*^(v)

+ 6
k
(8.-p+l)[l-6

k
(p-M)]K {vHAv)}

P *

+ 6 (p-i)S (v-v*){6
k

(m-M)f(v) + y^v^Cv)} (4_32)

k* - [*v- lv'
jv-v 1 '

k l v* - v'

, pv* - IV

are rounded to their respective nearest Integers. The number of terms in

Eq- 4-32 is substantially smaller that that of Eq. 4-29 because of numerous

point discontinuities in the latter.
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Finally, Eq . 4-30 in continuous form yields

p.
. M max

3T
K
p;l

(v*' v ' T) = "
2
l f eu (v,v-tv')[^(v')K (v*,v,T)

+ $*(v)K
4
(v*,v',T) + **(v)K ^v^v'.t)

+
S

i
(v , )K

p£
(v*,v,T)]dv'

.M v

+
2
Z
/ Sik*

(v
'

,v) [Vv '> K
pk* (V *' V~V '' T)

'i0

+ <t>ki
(v-v')K

1
(v*,v',T)]dv'

/ a (v,v')K (v*,v,T)dv'
p *

, M max
+ 6 (Jl-l)E / a. (v',v)K . (v*,v',T)dv'

[l-<5
k
(«,-M)]K

;l

(v)K
pJl

(v* > v,T)

+ U-sV-DJk^vJK (v*,v,T)

Tj_(v)K
p)l

(v*,v,T) (4-33)

with the initial condition

K
Pn

(v*' v,0) = Cov [ N
s/

v ) N (
V*)J
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where

J)p(v) = steady-state value of <p (v)

Cov[N
p
(v)N (v*)J « steady-state covariances

. . ,Jlv-iv ?
. , ,k* = I— Tj rounded to the nearest integer

v-v b

Returning to Eq. 4-31 and considering the special case of M = 1

(all entities disperse at their steady-state rate) , or the equivalent

case where 3(-,->, ct(.,.) and Y(-) do not depend on the "distance" from

formation, the balance equation reduces to

v -v
3rh ( '\

max

-f^
2- - - / 0(v,v+v , )^(v')<(>(v)dv'

v MM
+ k i ' 3(v' , v)Z E4. (v')<f> (v-v')dv'

1

2

- / a(v,v')<)>(v)dv'

max
+ / a(v',v)<t>(v')dv'

- Y(v)<(i(v)

+ f(v) (4_34)

M M
$(v) = £ *,(v) , <D(v') - I * (v')

£
*

i
X

This expression is of Che same form as other expressions which have been

used to model coalescence and dispersion (see, e.g., Tavlavides and Bapat , 1983).

where
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The first two terms on the right-hand side represent, respectively, loss

and formation of entities of size v due to coalescence. The third and

fourth terms are the corresponding terms for dispersion. The fifth term

represents the exit of entities from the compartment; The last term

represents the entrance of entities into the compartment.

It is also possible to transform the "distance" variable into continu-

ous form by introducing the following transformed functions-

Sj.Cv.v+v') + S;s,s' ,v,v+v')ds'

cij/v.v 1

) + a(siV{v')

o..(.v',v) * a(s' ,v' ,v)ds'

<
ll-l

(v)<(,
Jl-l

(v) "K
Jl

Cv) *4 (v) * " ^(s.^'Ms.v:)]

Y£ (v) + Y(s,v)

6
k
(5.-M)fif(v) + f(M,v)

Transforming Eq. *»3_1 to continuous form using these functions yields

v —v
ia/„ \ 1 « max
d<Ms,v) 1 - .,

3t " 2 ' ! ets.s'.vVJIMs.v'JiKs'.v) + <Ks,v)<t>(s',v')]dv'ds'

M v

+ J f f 6(s',s*,v',v)<Ks',v')<|>(s*,v-v')dv•ds ,

V

2

- / a(s,v,v')<t>(s,v)dv'

. M max
+ 6 (s) / / «(s\v',v)<Ks\v')dv'ds'

v

1

" g^[<(s,v)l}l(s,v)]
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Y(s,v)((>(s,v)

+ f fM.v) (4-35)

where

(sv - s ' v'

)

(v - v')

The governing equations in continuous form would appear to be much

simplier and, therefore, preferable for application; however, it is usually

necessary to revert them back into discrete form for computation. As

noted earlier, care must be taken since terms have been dropped in

the limiting process for obtaining the continuous form. Therefore, a

rigorous application of the population balance approach to a discrete pop-

ulation should resort to the discrete governing equations, i.e., Eqs. 4-26,

4-29 and 4-30 at the onset.

4.2 DETERMINATION OF THE RATE-OF-COALESCENCE FUNCTION

The rate-of-coalescence function for two droplets in the dispersed phase,

one with size v and the other with size v', to form a droplet of size (v+v')

where the rate of coalescence does not depend on the "distance" variable, has

been given by Tavlavidas and Bapat (1983) to be a function of two separate parts

g(v,v+v') - h(v,v')X(v,v') (4-36)

where
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h(v,v') = collision frequency of a droplet pair

X(v,v') coalescence efficiency function (the probability of

coalescence between two droplets given that they

have collided.)

For liquid droplets in a turbulent flow field, Coulaloglou and

Tavlavides (1977) have derived the following expression for the collision

frequency;

h(v
>
V '> " S TT? ^ 3

+ v'
2/3

)(v
2/9

+ v'
2/9

) (4-37)

where

C = constant

£ = power dissipation per unit mass

<t>
= dispersed phase holdup

They have also derived the following expression for the coalescence

efficiency function;

u p £ 1/3 ,1/3
,(v,v') - exp C -C

4
(-
I^-r)( - I

fr (4.38 )

a (1+$) v + v'

where

C, = constant

U
c

= dynamic viscosity of the continuous phase

p
c

= density of the continuous phase

O = interfacial tension

Following Howarth's (1964) observation that the energy of collision is

the controlling factor in the coalescence process, Sovova (1981) has

derived the following expression for the coalescence efficiency function;



A(v v') = exi>r-C
o (v

2/3
+v'

2/3
)(v+V)

(
'

6XP[C
5 ^2/3^/3^,^2/3^,2^

1-27

(4-39)

where

Cj. constant

D = impeller diameter

According to Tavlarides and Bapat (1983), this expression predicts that

the coalescence efficiency decreases with a decreasing droplet size, in

contrast to Eq. 4-38. They also note that both functions are valid,

each in a certain energy range - Eq. 4-38 for low energy collisions, and

Eq. 4-39 for high energy collisions.

The present model includes the "distance" from formation

as a parameter*, naturally it can be incorporated into the rate of coales-

cence function. Intuitively a recently formed droplet would possess a

higher energy, and thus would be best described by a function of the form of

Eq. 4-39. A droplet whose "distance" variable is much greater than 1

(i.e., close to the asymptotic rate where the "distance variable is equal to M)

would be expected to have a lower energy and could be described by a function

similar to Eq. 4-38. In this way a natural distinction between high and low

energy droplets can be incorporated into the description of the system.

4.3 DETERMINATION OF THE RATE-OF-BREAKAGE FUNCTION

It would seem logical to divide the rate-of-breakage function into two

distinct parts, the first corresponding to the frequency of breakage, and the

second corresponding to the probability of forming a daughter droplet of a

certain volume. The rate-of-breakage function thus would be of the following

form;
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o^Cv.v*) - ai(v,v')aj(v) (4-40)

a (v,v') = probability of forming a daughter droplet of size

v' given that a droplet of size v has broken apart

2
a. (v) = frequency at which a droplet of volume v and a

"distance" IAS from formation breaks apart.

Note that it is also likely that a (v,v') would depend on the "distance"

from formation, in this case it would be written as ctj(v,v').

Coulaloglou and Tavlarides (1977) have derived an expression for

the breakage frequency as a function of the volume of a droplet in

a dispersed phase system; it is

2
1/3 Co

" (V) = C
6 ^2/9

eXp(" ~
v
5/9

£
2/3

} (4-41)

where

C-,C_ = constants
o /

The effect of the "distance" from formation can be included in the

2
breakage frequency expression, a (v) , by assuming that the power-dissipation

per unit mass, e, is dependent on the distance from formation. This follows

from the intuitive notion of droplets breaking in regions of high energy,

and thereafter migrating into regions of low energy. The resultant expression

then would be of the form

2 Ef1 / 3 c
7
a

Vv) " C
6 27?

6XP( 579-273

>

(4-42)
v p v E,

d *

where £
p

> unlike e, depends on the "distance"f rom formation.

To arrive at an expression for probability of forming a daughter

droplet of size v 1 given that a droplet of size v has broken apart, cc (v,v')i
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it is best to first define the random variables of interest. For

clarity, discrete droplet sizes will be used in what follows.

Let iAV be the. volume of a droplet of size v. From the con-

servation of volume and the assumption of binary breakage it follows that

the daughter droplets will have volumes jAV and (i-j)AV where

J E (1,2 1-1}

Thus, letting

Z = volume of the original droplet

X volume of the smallest droplet

and

Y = volume of the largest droplet,

breakage of a droplet results in the ordered pairs (X,Y) , i.e.,

{(Z) + (X.Y); x E {1, 2, 3
[f] }

,

Y e
{[f], [§]+*, [f]+2

z-1}}

X ^ Y

where each ordered pair has a joint conditional probability

f
X,Y|z

(x,y
'

z) = P(X=*> Y=ylz=z) (4-43)

In deriving an expression for a (i,j),' the event of interest is the

one where X is equal to j. Consequently, a^i.j) can be found by summing

over all possible values of x and y in Eq. 4-43 with z-i, under the constraint

that x is equal to j, i.e.,

a (i,j) I Z 5
k
(x-j)5

k
(y+x- z)P(X=x,Y=y|Z=i)

x-1
r
i.

'

-P(X-j, Y=z-j|z=i)
(4 _44)
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Note that from the definition of the event space of X, the following must be

true

* ,
Z a (i,j) = 1

J =1 (4-45)

Common practice is to normalize a (i,j) (see, e.g., Tavlarides and Bapat, 1983) as

i' 1
1

I a (l,j) = 1 (4-46)
1-1

and then to include a constant of 2 in the final expression for a„(i,j).

This practice is entirely in line with the derivation of Eq. 4-45, because

of the following symmetry;

[V i-i
1 1

I a (i,j) I a (i,j) ; i odd
]-l

i

(4-47)

[f]+l

2
1

1_1
1

£ a (i,j) I a (i,j) ; i even (4-48)

j=1
J-ff]

where

[j] » integer part of —

A disadvantage of this practice is that when i is even and volumes are dis-

crete, the point [-«] must be included in both summations. To circumvent this

difficulty, it is best to normalize a (i,j) only on the interval {1, [-r]

}

, as

in Eq, 4-45. This eliminates the necessity of including the constant factor

of 2 in the derivation. Note, however, that if this convention is used

[Eq. 4-46], the breakage terms in line 3 of Eq. 4-26 must be modified as

follows

:
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2 M£
- I [1 - - 6 (m-2k)]a

J

:(Di,lc)*
tn|

+ t I 6 U-l)a (j.m)*
k i j

J

Similar modifications must be made in EqSo 4-28, 4-29, 4-30.

The resultant equations will hereafter be refered to as the modified forms of

the governing equations.

It should be emphasized that all the results derived in this section

strongly depend on the assumption of binarv breakage, since all symmetry

arguments loose their validity when other cases are considered. For

example, the assumption that the number of daughter droplets is either

two or three leads to the ordered triplet

1 * o V

where

X
l * X

2 i X
3

The resulting breakage distribution "function will then contain three

variables, i.e.

,

a.(i,j,k) - probability that a droplet of size iAV breaks apart

to form droplets of sizes jiV, kAV, and (i-j-k)AV

where j<k< i-j-k
where

— —

j E (0,1,2,3 [|]}

k E {j,j+l,j+2 [i=l]} for j^O

or

k e {1,2,3, ...,[{]} for j-0

By the definition of ordered triplet, a (i.j.k) normalizes as

follows:

tj) [¥) if1

Z Z a (l,j,k) + Z a (1,0, k) - 1 {4-49V
j-1 k-j 1 k-1 :
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By defining 3(1,0,0.) - 0, it normalizes as

Z Z a^i.J.k) - 1 (4-50)

1-0 k-j

For a given 1 and j, a(l,j,k) possesses a symmetry about the point

((l-j)/2], i.e.,

Z a (1,1, k) - & a (1,1, k)
;

for -=* M^l

£ a (i.l.k) - T a (i.j.k) . for i=l = [i=l] (4-52)

k
2

It is obvious, therefore, that with this definition of the breakage distribution

it. will be impossible, in -general, to reduce the expression to the

form 3a (1,J) as is usually done (see, e.g., Tavlarides and Bapat, 19S3)

.

It is possible, however, to derive a breakage function of the form

3d (i,l):l e {1,2,3 i-l), from the expression for aU.J.k) for the

case where three daughter droplets are formed. Noting again that

o^i.J.k) - PCXj-1, x
2
=k, x

3
=i-i-k|z-i) ( 4~ 53 >

the expected number of daughter droplets of size ZAV, K[H(A)], can be found

as follows:

tf] [^-]

E[N(£)] - Z Z («
k
a-)) + <S

k
a-n) + 6

k
a-i+l+n)}a

1
(i,l,n) (4-54)

1=1 n-l



-'.-33

Note chat, because of the restriction to ternary breakage,

i-1

Z E[Nte)] = 3 (4-55)

1-1

Therefore, the following distribution function can be defined;

1
1_1

1

a (l,t) " E[N(H)]{ t E[N(S.)]J

-jE[NU)] (4-56)

where

^ 1
I a (i»£> - 1

£=l

indicating that a (i,Jt) normalizes to one on the interval {l,i-l}. This defi-

nition of the breakage function can be extended to cases where any number

of daughter droplets is formed. Similar to the derivation of Eq. 4-54,

E[N(£)] can be found for cases where combinations of two or more daughter

droplets are formed. It is also evident from Eq . 4-54 that, in general,

the breakage function will be unsymmetrical about the mid-point, [-r-J* except

in the special case where the number of daughter cells is equal to two.

Therefore, it is not possible to use the same breakage distribution for

every case by simply multiplying the binary breakage distribution by the

number of daughter droplets formed.

A more rational approach to finding the distribution of daughter drop-

lets could start with the probabilities of the ordered sets. Each ordered set

represents a set of droplets of differing sizes, and thus differing energy

per unit volume relative to the starting droplet; the smaller droplets usually

have the highest energy per unit volume due to increased surface tension.
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Consequently, probabilities could thus be assigned according to the relative

energy per unit volume of ordered set i.

One possible assignment of probability for binary breakage could start

with the distribution of the excess surface energy per unit volume amoung

the volume elements in the original droplet. The surface energy of a

2/3
droplet of volume vn is essentially equal to dv„ where is the surface

tension. If this energy is distributed evenly amoung the volume elements in

the original droplet, a sub-volume with volume v will have a surface energy

of

2/3
V
l „ e-,,ov' — (4-57)

v
G

-1/3
or a surface energy per unit volume of av . Furthermore, if during breakage

two droplets are formed, one with volume v , the other with volume (v -v )

,

the surface energies per unit volume of these droplets relative to the

original droplets are, respectively, proportional to

a[v^- vj
/3

] (4-58)

and

o[(v -v
i
y
1/^ vj

/3
]

(4-59)

If v. is small, Che excess surface energy of v. relative to that of v„ is

very large (Eq. 4-58 ). This excess energy is poorly distributed since it

resides in the small volume element v.. The rest of the volume element,

(vn
- v.)>has a very low excess surface energy relative to v_ (Eq. 4-59) .

A normalized distribution of the excess energy per unit volume can be

defined as a function of v„ and v. using Eqs. 4-58 and 4-59 as follows:
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1/3 1/3 1/3

(v
Q

- Vj) (v
Q

- v
x

)

f(v) -
, 1/3, 1/3 , 1/3, . 1/3 1/3 ,, .„.
(v

o " V (v
o " 2v

i
} + v

o
V
l

(4"60)

1 - s 1
for T - V - ~2

f(v)

1/3. 1/3 , 1/3.
v
l I v "

(v " V ] (4-61)

1/31/3. 1/3 , 1/3, . 1/3 1
lv " V (v

"
2v

i >
+ v

o
V
l

for - — < v < - — and — < v < —

f (v) =0 for -»<v£--^and-^£v<+<» (4-62)

o< Vl <^

Note that f(v) is a piecewise uniform distribution on the interval

(- v/2, V V^) with the mean of zero and the variance of

1/3 1/3 3 3.8/3 8/3,, 1/3

a (v v 1 = — — f
" ' 1 J Q !—

1

(4-631U0'V 12
l

, 1/3 , 1/3,, ,1/3 ^ 1/3 1/3 J ^ bi>

(» -2v
L

)(v -
Vl ) + Tj v

Q

where

0<v
1 <-f
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2
The variance, , is a measure of the distribution of the excess

energy among the vo lume elements in the daughter droplets. When

v. = V-./2, the variance is a maximum, indicating that the excess energy

is evenly spread amoung the volume elements . As v approaches zero

,

2
also approaches zero, indicating that the excess energy is poorly

distributed among the volume elements, i.e., that all the excess energy

resides in the small droplet of volume v while the other droplet of

volume (v_- v.) has very little excess energy relative to the original

droplet.

If it is assumed that the probability of a specific pair of drop-

lets is directly proportional to the distribution of excess energy,

p[Cw v
i
)] " °2(vv

i3
(4 64)

0< vllT ,

Chen Che probability of a specific pair can be calculaced as follows:

2, . . 2,
PK'i-VV 1

=
° (V V [

L ° (V V ] (4-65)
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where the summation is over ail droplets, each with a volume less

that or equal to v 12. For example, given that v 4AV, the possible

pairs are (1,3) and (2,2), and therefore, v. = iAV: where ic { 1 ,2 1

.

The probabilites in this case are thus

P[(1.3)l - ,
g2<4,1?

,
< 4-«>

2
(4,1) +

2
(4,2)

g2
< 4 - 2 ' , (4-67)P[(2,2)] = —

9

o (4,1) + a (4,2)

or, using the notation defined in Eq .
4-53

a, (4,1) - .
°2(A ' 1) (4-68)

1
a (4,1) + a (4,2)

a,(4,2) .
g2(4

- 2) (4-69)
1

a (4,1) + a (4,2)

To find the expected number of daughter droplets of size IAV, Eq.

4-54 can be employed in the form corresponding to binary breakage, i.e.

[f]

E[N(8.)I = £ (oV-j) + 5
k
(C-i+j))a (l.j) (4-70)

j-1
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Furthermore, Eq. 4-70 give rise to the following expressions;

2
k k

E[N(1)] = Z (6
K
(l-j) + 6

K
(j-3)}a (4,j)

= a (4,1) (4-71)

2
k k

E[N(2)] = Z {& (2-j) + S
K
(j-2)}a (4,j)

j-1

2a (4,2) (4-72)

2
k k

E[N(3)] = Z {6
K
(3-j) + 6

K
(J-l)}a (4,j)

3-1

= a (4,1) (4-73)

These expressions together with Eq. 4-56
, in turn, yield the distribution

function, i.e. ,

aV.D = ^(4,1) (4-74)

a
1
(4, 2) = a (4,2) (4-75)

a
1
(4,3) - ^a (4,1) (4-76)

or, by resorting to a (4,1) and a. (4,2) as defined, respectively, by Eqs.

4-68 and 4-69,
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O (4,1) (4.2)

a
1
(4.2) - .

°
2
<*' 2 >

2
t«- 7 «>

(4.1) + O (4.2)

These expressions in conjunction with Eq. 4-63 yield

o
1
(4.1) - o

1
(4. 3) - 0.1197 (4-79)

a
1
(4.2) -0.7606 t 4" 80 '

According to Eq. 4-46 , these expressions normalize to one and, therefore,

a constant of 2 must be included In the final expression of a(i.j) as

indicated earlier. The modified fonns of the governing equations must

also be used.

With additional information on the distribution of energy containing

eddies in the turbulent flow field which Initiates the breakup, it nay

be possible to further refine the expressions for the probability which

are assigned to the ordered sets (,f. Karsimhan et al. 1979). For example,

given a certain eddy with a specific energy content, if Is plausible that

the ordered set resulting from the interaction between this eddy and the

original droplet will have a relative energy less than or equal to the

energy content of the eddy; the remainder of the energy is transformed into

the kinetic mode. To determine the unconditional droplet distribution, the

distribution of the energy content of the eddies in the flow field need be

used in conjuction with the conditional probability of a specific droplet
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distribution, given that the droplets have been formed by an eddy with a

specific energy content. Letting P[ (X)
±
|z] be the conditional probability

of the ordered set (X^ given that it was formed through the interaction of

the original droplet with an eddy of energy content Z, and f(z) be the

probability density function for eddies with energy content Z, the

unconditional distribution would then be

(4-81)
+0°

P[(X)
i

] = / P[(X)
i
|Z]f(z)dz

Note that P[(X).] for ternary breakage is equivalent to

P(X.=j, X,=k, X
3
=-i-j-k|z=i) which appears in Eq. 4-53.

4.4 DETERMINATION OF OTHER RATES OF TRANSITION FUNCTIONS

The rates of -transition functions yet to be specified are those

corresponding to the rate of change in the "distance" variable, K
±
(v) ,

the rate of exit, Y. (v) , and the rate of entrance, ft^(v). The last

of these can be determined from the volumetric flow rate

into the compartment, q, and a factor equal to the number of droplets

of size v per unit volume of inlet flow, f
Q
(v), i.e.,

nf(v) - f (v)q < 4" 82 >

The rate of exit, y.(v), can be determined from the flow pattern

in the compartment. For completely mixed flow,

Y±
(v) -

jj

< 4- 83 >
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Determination of the rate-of-transition function corresponding to

the change in the "distance" variable, K.(v), requires some knowledge of

the processes leading to the rate of droplet breakage after the droplet is

sufficiently far from its formation. If it is assumed that the principal

factor is the movement of the droplet away from its point of formation,

then the quantity of interest is the velocity of the droplet. If a

droplet with a volume of v and a density of p receives kinetic energy from

the continuous phase in proportion to its surface area, then it will have

a velocity inversely proportional to its density and volume; more

specifically,

u ,

1
. (4-84)

p
l/2v

l/6

Under the assumption that < ,
(v) is proportional to this velocity, it can

be expressed as

P v

Naturally, this expression can be further refine by including additional

information on the mechanisms of breakage.

4.5 EXAMPLE CALCULATION

In the present example, the parameters will be chosen so that only

the following interactions need be considered;

A
i2 , 1=1,2

A
i2

+ A
il ' A

i3 >

i=1 ' 2
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12
+ A

12
> A

14 , 1 - 1,2

13
+ A

ll "
A
14 i = 1,2

A A + A
14 13 11 i - 1,2

A
14 "

A
12

+ A
12 1 = 1,2

A
13 '

A
12

+ A
ll .

1 - 1,2

A
i2 "

A
ll

+ A
ll .

i = 1,2

A,. A , j - 1,2
1J 2j

X
2

*"

22 (entrance)

A
ij

* Y
ij (exit) , i,j « 1,2

Note that M = 2 and that coalescence Is assumed to take place only between

entitles whose "distance" variables, i, have the same value. Also note that

only entities of size 2 exist in the entrance stream.

The transition functions used-found using arbitrary constants and Eqs.

4-65, 4-37, and 4-85 - are ;

YjU) - 0.1

S2f(j) - 106
k
(j-2)

0^(4,1) = 4.658 ct

2
(4,l) = 0.9316

0^(4,2) = 7.929 a
2
(4,2) = 1.5860

0^(3,1) - 5.809 a (3,1) = 1.1618

0^(2,1) -10.128 a
2
(2,l) = 2.0256



^(1) = 10,,0

^(2) = 8.,909
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n
_1

e(l,4) = 0.0427

f2

_1
B(2,4) = 0.0584

fi

-1
B(l,3) = 0.0271 e (3) = 8.327

n
-1

B(l,2) = 0.0125 ic (4) = 7.937

Since the breakage function used here normalizes on the interval [1,[— 1]

the governing equations in the original or unmodified form, Eqs. 4-26

4-29, and 4-30, apply.

For the interactions included in this example, Eq. 4-26 reduces

to

d
*ll-
3r - -28a,2)*u$u - B(l,3Hu <t>12

- 6(1,4)0.^3

+ 2o
1
(2,l)<D

12
+ ot

1
(3,l)<(.

:L3
+ 0^(4,1)^

+ 2o
2
(2,l)((,

22
+ o

2
(3,l)*

23
+ a

2
(4,l)*

24

- Kia)*u - Y
1
(l)*u (4-86)

d*12—
t

26(2,A)cp
12

cp

l2
- 6(1,3) $u*u + B(l,2)*u*u

- ^(2,1)^2 + 20^(4,2)^ + 2a
2
(4,2)*

24

+ a
1
(3,l)4i

13
+ a

2
(3,l)*

23

- <
1
(2)«

12
- Y

l(2H12 (4_ 3?)



a
1
(3,l)*

13
+ a

1
(4,l)<()

14
+ a

2
(4,l)*

24

d*
14^-= s:2,4)<))

12
<t>12 + &a,4)$u*13

- ^(4,1)*14

d*
213» = -26(i,2)*

21
*21

- ua.3)«
21

4.
22

- Ba,4)#
2i*23

d6
22— = -2B(2,4)<t.

22
*
22

- e(l,3H
21*22

+ 8(1,2)*
21«21

d0
23

dt -0(1,4)*,,*,, + 3(1,3)*,.*,, - a,(3,l)*r
21

T
23 2V22 2

V
' '

y 23
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Kl (3)*13
- Yl (3)*

13
(4-88)

V4 > 2) *14 " K
x
(4) *14 " Y

l
(4) *14

(4-89)

+ ^(i)^ - Y2 (i)*21
(4-90)

- a
2
(2,l)<(i

22
+ <

1
(2)*

12
- Y

2
(2)*

22
+ f(2) (4-91)

+ K
l
(3)*13 " VW 23

(4-92)
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d*24— = B(2,4)4>22<(,^ +..S(i,4)*
21*23

- a
2
(4,l)*

a
2
(4,2)<|l24 + <

1
(4)<(i

14
- Y2 (4)4>

24
(4-93)

At steady state, these equations reduce,, respectively, to

2
= -0.025<Nn > - 0.027KN ><N

12
> - 0.0427<N><N >

+ 20.236<N.„> + 5.809<N,,> + 4. 658<N, .

>

12 13 14

+ 4.0512<N.-> + 1.1618<N.,> + 0.9316<N„.> - 10.1<N, n
> (4-94)

22 2 3 24 11

= -0.1167<N
12

>
2

- 0. 0271<NU><N > + 0.0125<NU>
2

- 19.137<N n
_> + 15.858<N n7 > + 3.1720<N..>

12 14 24

+ 5.809<N > + 1.1618<N > (4-95)

= -0.0427<NU><N
13

> + 0.0271<N
1:L

><N > - 14.236<N
3
>

+ 4.658<N
14

> + 0.9316<N
24

> (4-96)

- 0.0584<:i, o
>
2
+ 0.0427<N 11 xN, > - 20.624<N,.> (4-97)

12 11 13 14

= -0.025<Nn >
2

- 0.027KN ><N > - 0.0427<N ><N >

+ 10.0<N
1;L

> - O.KN > (4-98)
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= -0.1167<N
22

>
2

- 0.027i<N
21

><N
22

> + 0.0125<N
21

>
2

- 2.1256<N > + 8.909<N > +10 .22
».""-"

12
' +10.0 (4_99)

-0.0427<N
21

><N
23

> + 0.0271<N
21

><N
22

> - 1.2618<8-->

+ 8.327<N
13

>
(4_ 100)

= 0.0584<N
22

>
2
+ 0.0427<N

21
><N

22
> + 7.937<NU > - 2.6176<N

24
>

(4_101)

Solving these equations yields the following values for the average number

of droplets in the compartment at steady-state,

<NU> = 14.830 <N
21

> - 61.271

<N
12

> = 3.239 <N > - 15.371

<N > = 0.994 <N
23

> = 8 - 72 3

<N,.> = 0.060 <N,,> = 14.159
14 24

Since eight random variables are involved in the present problems, Eq.

4-29 for the covariances of the random variables yields 36 coupled

equations. These equations are

^Var[Nn ] = -8JJ
1
B(l,2)<Nu >Var[N

11 ]

2si 3(1.3) {<N
12

>Var(N
11

l + <Nu>Cov[NuN,,])
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-28
1
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13
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11
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N
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] }
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2
+ n"

1
S(l,3)<N

11
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>
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X
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21

><N
23

> + n
_1

6(i,3)<N
21
><N

22
>

+ a
2
(3,l)<N

23
> + Y

2
(3)<N

23
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^Cov[N
23
N
24

] -fl
1
e(l,4){<N

21
>Var[N

23 l + <N
23

>Cov[N
21

N
23

]

}

+ 2fl
_1
8(2,4)<N

22
>Cov[N

23
N
22 ]

- iT1B.l,4){<N
21
>Cov[N

23
N
24

] + <N
23
>Cov[N

21
N
24

]}

+ n _:L
6(l,3){<N

21
>Cov[N

22
N
24

] + < N
2 2
>Cov[N

21
N
24

,}

- [a
2
(3,l) +a

2
(4,l) +a

2
(4,2) + Y

2
(3) + YjWlCovtH,,*,]

+ <
i
(3)Cov[N

13
N
24

] + <
1
(4)Cov[N

14
N
23

)

- tt~ B(l 4)<N ><N >U'" N
21 23 (4-136)

^Var[N
24

] = 4fi-
1
B(2,4)<N

22
> Cov(N

22
N
24 ]

+ 2f2
-1
B(l,4){<N

21
>Cov[N

23
N
24

] + <N
23

>Cov[N
2J

N
24 ]

- 2[«
2
(4,1] +"

2
(4,2) + Y

2
(4)]Var[N

24 ]

+ 2<
1
(4)Cov[N

14
N
24

]
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+ [a (4,1) + a
2
(4,2)]<N

24
> + Y

2
(4)<N

24
>

(4-137)

From the assumed values of Che transition functions and the steady-state

values for <N..>, the following values for the steady-state covariances have

been obtained from the steady-state solution of Eqs. 4-102 through 4-137;

Var[N
1]_]

= 24.6553

Cov[NuN
2

] = 1.9747

Cov[N jN ] - 0.8728

CovISLjHj.] - 0.1223

Var[N
12

]
= 4.5873

Cov[N
12

N
13

] 0.2335

Cov[N N ] = 0.0891

Var[N ] = 1.0495

Cov[N
13

Nu ] 0.0235

Cov[N N
21

] = 0.3745

Var[N ,] 0.0830

Cov[H, .H„] = 0.0996
14 21

Cov[NuN
21 ] 17.9258

Cov[N
11

N
22

]
= -2.0765

Cov[NuN
23

]
- 0.5485

Cov[NuN
24 ] 1.3126

Cov[N
12

N
21

]
- 0.9555

Cov[N
12

N
22

l 0.9462

Cov[N
12
N
23 ] -0.0822

Cov[N
12

N
24

]
= 0.4948

Cov[N
13

N
22

]
= 0.0336

Cov[N
13

N
23

]
» 0.4810

Cov[N
13

N
24

]
= 0.9966

Cov[N
14

N
23

]
- 0.0232

Cov[N
14
N
24

] 0.0735

Cov[N N ] = 0.0427
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Var[N
21

] = 76.7055

Cov[N
21
N
22

] = -0.0960

Cov[N
21
N
23

] = -1.0200

Cov[N
21
N
24

] = -0.9034

Var[N
22

] = 6.0388

Cov[N
22
N
23

] = -1.5183

Cov[N
22

N
24

] = -1.3060

Var[N
23

] = 7.5051 Cov[N
23
N
24

] - -0.0015

Var[N
24

] = 15.0449

Furthermore, Eq. 4-130 yields the following set of coupled linear

differential equations for the correlation functions;

dx pqll
(x) = -4fi B(1,2)<N11

>K
11 pqll

n*
i
B(1.3)C<N

12
>K

pqll
+ <Hu>K

Ml2 ]

!2

-1
6(l,4)[<N

13
>K
pqU + <Nu>K

pql3 ]

+ 2a
i
(2 - 1)Kpql2

+ a
i
(3 '

1)K
pql3

+ a
i
(4 '

1)K
pql4

+ 2a
2
(2 '

1)K
Pq22

+ a
2
(3 '

1)K
pq23

+ a
2
(4 '

1)K
pq24

[Kl (l) +Y1
(l)]KpqU

(4-138)

4* ,„(T) = -Si
1
B(1,3)[<N 1

>K + <H.,>K „]
dx pql2 11 pql2 12 pqll

M S(2,4)<N
12

>K
pql2

+ 26 (l,2)<Nu>Kpqll



+ a
i
(3 * 1)K

pq13
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(4,2)V4
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2
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1)K
pq23
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2
(4 ' 2)K

Pq24
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- [^(2,1) + ^(2) + Y
1
(2)]K

pql2 (4-139)

£ K
pql3

(T) =
-fi

"l6(1
' 4)[<Nll

>K
pql3

+ <N
13
>K

pqll ]

+ Q- 6(1,3) [<Nu>K
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+ <N
12
>K

pqll ]

+ a
i
(4 ' 1)Kpql4

+a
2
(4 - 1)K

pq24

[c^O.D +<
x
(3) +Y

1
(3)]^pql3

(4-140)

-^-K ,. (t) = Q
1
B(1,4)[<N11 >K ,, + <H,,>K „

dx pql4 v " 11 pql3 13 pqll

+ n B(2,4)<N
12
>K

pql2

[^(4,1) + ^(4,2) + <
x
(4) + Y

1
(4)]K

pql4 (4-141)
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pq22
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-A" 8(1,4) [<N
23
>Kpq21+ <N

21
>K

pq23
]

+ K
l
(1)K

pqll " Y
2
(1)K

pq21
(4-142)
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J?
K
pq22

(T) =
-f2

"
lB(1

' 3 > [<N
21

>V2 + <N
22
>K

Pq 2l]

- 4fi-
1
e(2,4)<N

22
>K

pq22
+ 2 B (l,2)<N
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> Kpq21
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pq22
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S K
pq23

(T) = -^ls(1 ' 4)[<N21
>K

pq23
+ <N

23
>K

Pq21
]

+ fJ

-1
B(l,3)[<N

21
>K

pq22
+ <N

22
>K

pq21
]

- [a
2
(3,l) + Y

2
0)]K

pq23

+ k (3)K (4-144)

K
Pq24

:T) " o"
1
Ba.*)t<»a>V1a3

+ W21 1

+ fJ-
1
S(2,4)<N

22
> Kpq22

[a
2
(4,D +a

2
(4,2) + ^Wll^

+ K
l
(4)KpqU < 4- 145 )

where

P - 1, 2

q = 1, 2, 3, 4

These equations are solved with the steady-state covariances as the Initial

conditions to yield
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(,) - C
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pq ij pq ±3 1 lj 1

+ C
(3
>[A

(2W T * A^Wxle" 2\ C<
4
>A<*>e"
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'

pq ij 1 ij 1 Pq ij
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sin<(>,T]e
4
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+ C
(6>[A<*Wt + A<!Wx]."V C<

7
>A<

7 >e

~95T

pq ij 2 ij
T
2 pq Ij

*^%8>
-

6

where

1 or 2 j,q = 1,2,3, or 4

8 = 14.5268 *
1

» 0.5219

9 - 2.0515 , - 2.4904

8 - 11.3521

6, - 6.1783
4

8 = 20.2468

8, = 21.9965
o

and
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It is also possible to redefine the random variables such that

only the size is included as a parameter. Doing so yields a new set

of random variables

{N.: jeU.2,3,4}}

where

N = N . + N_. (4-147)

The expected values of the new random variables, <N.>, can be found

from the expected values of the original random variables

<N.> = <N .> + <N..> (4-148)
J lj 2J

<N > = 76.1007

<N > = 18.6131

<N > = 9.7161

<N,> = 14.2191
4

The correlation functions of the new random variables, K (t) , can

be found from Eq. 4-146 using the following relationship;

2 2

K ,(t) = I I K ,,(t) (4-149)
<"

p=li=l
Pqij

This expressions then, in turn, yields
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K ,(T ) = B
(1)

e
1

+ [B
(2)

cos4> T + B^Viaf^le
qj qj qj i qj l
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(6W T ]e ^
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95T

B<?."V (4-150)

q,j « 1,2,3, or 4
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<"-

B<
2 > =

qj

B
(3)

=

qj

B
(4)

=

qj

B
(5

> =

qj

qj

-0.0794 0.2328 0.0177 0.0013

-0.1808 0.5302 0.0403 0.0030

-0.5359 1.5717 0.1194 0.0090

0.0308 -0.0902 -0.0069 -0.0005

92.6251 -25.9451 -11.8717 22.6798*

6.0645 -0.5848 0.2774 2.1731

-5.8694 6.2573 5.1201 1.4125

15.2713 4.4118 6.2699 9.1070

-213.9932 17.5527 -12.7065 -78.5822~

1.4157 -0.5983 -0.3725 0.2220

77.4456 -8.3492 2.7080 27.2060

_ 85.0532 -10.7376 1.4892 28.9097,

" -8.7493 -15.5642 4.0725 2.1360~

-1.5121 -2.6898 0.7038 0.3692

-1.9603 -3.4873 0.9125 0.4786

2.0484 3.6440 -0.9535 -0.5001

53.9435 41.6767 8.5176 -24.1405

0.2084 12.0821 -2.4306 -3.2014

7.8345 -4.8510 3.3620 -0.8250

-18.3480 -7.5660 -4.1852 6.5858

67.8447 -59.5853 32.5494 -2.8228

15.9811 -3.9846 5.7060 -3.1362

-3.7053 -5.4155 -0.0876 2.2858

-14.8573 18.3039 -8.1500 -0.6740
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qj

0.0700 -0.0437 0.0009 -0.0029

-2.2023 1.3735 -0.0295 0.0923

1.1167 -0.6965 0.0150 -0.0468

0.2955 -0.1843 0.0040 -0.0124

s
(8)

qj

-0.5979 0.4012 0.0388 -0.0426

-1.6202 1.0873 0.1051 -0.1155

0.1902 -0.1277 -0.0123 0.0136

1.3332 -0.8947 -0.0865 0.0951

Setting T=0 in Eq. 4-150 yields the following expressions for the

covariances of the new random variables;

VartN-J = 137.2124 Cov[N N ] = -1.3335

Cov[N N ] = 0.7577 Cov[N N ] = -0.6794

Covin N] = 0.7758 Var[N ] = 9.5166

Cov[N N ] - 0.6311 Cov[N N ] = 1.0418

Var[N
2

] = 12.5185 Var[N
4

] = 15.2749

Furthermore, since the total surface area of the dispersed phase is an

important parameter in determination of the interphase mass transfer, an

expression for the dispersed phase surface area, S, can be derived as follows:

S - I s.N.

J-l
J J (4-151)

where

s .
= surface area of a droplet of size j



4-78

For spherical droplets, the following relationship for s. can be found;

s. = C = surface area of the smallest droplet

s
2

= 1.5874C'

s
3

= 2.0801C

s, = 2.5198C
4

From these values, the expected value of the total surface area of the

dispersed phase can be found as

<S> = 161.6869C

The correlation function for the random variable S, K(T) , can be found

from Eq. 4-150 as

4 4

K(T) = Z £ s s. K . (T)

8.T

where

= B^e" lT + [B
2
cos*

1
T + B

3
sin<(> T]e" 2

+ B
4
e 3

T
+ [ B cos* T + B sin^.Tje" 4

T

+ B
7
e"

9
5T + B

8
e"

9
6T

(4_ 152)

4 4

B, = Z I s s. B (^k 1 J qj

B = 5. 8407

C

2
B
5

= 42.6324C

B
2

= 286. 4792

C

2
B, = 30. 2486

C

6

B
3

= 240. 3999 C
2

B
?

0.0243C

B
4

= -22.5513C2 B
g

= -0.0120C 2
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Setting T=0 in Eq. 4-152 yields the following value for the variance

of the total surface area of the dispersed phase;

2
Var[S] = 312. 4133 C or sd[S] - 17.6752C

The standard deviation of the mean is thus 10.93 percent of the mean total

surface area of the dispersed phase, a dimensionless correlation function,

p(T), is found by dividing K(t) by Var[S] yielding

p(T) - 0.0187e 1 + [0.9170 cos0 T+ 0.7695 sin <t>,T]e 2

_e,T -6.x
- 0.0722 e 3 + [0.1365 cos <(>

2
T + 0.0968 sin $,t]« * (4-153)

where

9j = 14.5269 *1
- 0.5219

9
2

« 2.0515 <j>

2
2.4904

9
3

= 11.3521

9, = 6.1783
4

Note that the correlation functions given by Eq. 4-30 could be found

experimentally from, for example, continuous observation of the steady-state

bubble population using a photographic technique combined with a method to

determine the size and number of bubbles in each image. This would necess-

arily require a large number of images taken at known time intervals (i.e.,

a movie camera) , and thus a systematic method of image analysis would be

highly desirable.
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NOTATION

first jump moment.

% 'X,

A, = coefficient matrix in the expansion of A, .

A. .

= constants appearing in the correlation functions.

B, = constants appearing in the correlation function of S.

B, = second jump moment.

hn hn

constants appearing in the correlation functions.

C = surface area of the smallest droplet.

C. ,C,,C, ,C C ,C, ,C, = constants.
1 3 4 5 6 7

c
(-)

pq = constants appearing in the correlation functions.

Cov[N. N ]
= <N, N > - <N„ ><N >

11 pq Sm pq Jim pq

Cov[Z. Z ]
= <Z„ Z > - <Z. ><Z >

lm pq J6m pq Jon pq

D = impeller dimeter.

f(v) = distribution function for excess energy.

f(z) = distribution function for energy in eddies.

f I (x.ylz) = probability of X and Y conditioned on Z.
x,y

|

z '

h(v,v f

)
= collision frequency of a droplet pair.

K(t) = <S(0)S(t)> - <S(0)><S(t)>

K (t) = <N (0)N.(t)> - <N (0)><N.(t)>

K. . (r) = <N (0)N„ (T)> - <N (0)><N„ (T)>
iqx.m pq J.m pq lm

K „(v*,v,T) = continuous form of K „ (t).
pt pq£m

MAS = "distance" at which the breakage rate equals its
asymptotic value

N. = number of entities of size jAV.

N(£) = number of droplets of size £AV formed upon breakage.
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N-

.

= number of entities of size jAV at a "distance" of jAS.

<N..> = expected value of N...

q = volumetric flow rate.

s = surface area of a droplet of size jAV.

S = surface area of the dispersed phase.

<S> = expected value of S.

Sd[S] - (Var[S])
1/2

v„ = volume of original droplet.

v, = volume of smallest droplet formed by binary breakage.

Var[S] = K(0)

W (*,*) = intensity of transition function.

X = volume of the smallest droplet formed.

Y = volume of the largest droplet formed.

Z = volume of the original droplet.

<Z„ > = expected value of fluctuating component of N...
x-ra Xj

Greek Letters

ct
i
(j»k) = rate at which entities of size j AV and distance IAS

from formation break apart to form entities of size
kAV and (j-k)AV.

= continuous form of a.(j,k).

continuous form of a.(v,v* )•

probability that a droplet of size iAV breaks apart
to form droplets of sizes jAV, kAV and (i-j-k)AV.

probability of forming a daughter droplet of size vr

given that a droplet of size v has broken apart.

frequency at which a droplet of volume v and a distance
&AS from formation breaks apart.

a
±
(v ,v' )

a(s,v,v'

)

0^(1 ij:,k)

1.
a (v. , v' )

2, ^
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6. (j ,k) = rate constant for the coalescence between entities of
size jAV a distance iAS from formation and entities
of size (k-j)AV a distance mAS from formation to form
entities of size kAV with an average distance £AS from
formation.

8- (v,v') = continuous form of 6- (j»k).
lm im

l(s,s' ,v t v*

)

= continuous form of 8- (v,v' )•

Y-(j) = rate at which entities of size jAV and distance iAS
from formation exit from the compartment.

Y . (v) = continuous form of Y-(J)

y(s,v) = continuous form of y,(v).

k k k
6 (*) = Kronecker delta where 6 (0) = 1 and 6 (x)=0 for x^O.

AV = small unit of size corresponding to the smallest
possible entitiy.

AS = discrete unit of distance.

e = size of largest possible entity divided by AV.

power dissipation per unit mass.

constant appearing in tha correlation functions.V 92' e3»W 9
6

K,(j) = rate at which entities of size jAV and a distance
iAS from formation move to a distance (i+l)AS.

K.(v) = continuous form of k. (j )

.

l i
J

k(s,v) = continuous form of K.(v).

A(v,v f
)

= coalescence efficiency function.

U = dynamic viscosity of the continuous phase.

E.

.

= size of change of random variable N...

p
= densityofthe continuous phase.

p. = density of dispersed phase.

p(x) dimensionless correlation function.

a = interfacial tension.

2
O (vn » v i)

= variance of excess energy distribution.

4>
= dispersed phase holdup.
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<b
,<J>

= constant appearing in the correlation functions.

<)>(v)
= total number of entities of size v divided by SI.

cp (v) = continuous form of 4>„ .

<|>(s,v) = continuous form of 4>.(v).

Q = system size.

ftf(j) = rate at which entities of size jAV are added to the

compartment.

£2f(v) = continuous form of £!f(j).



CHAPTER 5

APPLICATION OF GENERALIZED MASTER EQUATION
TO COALESCENCE AND REDISPERSION ON A TWO DIMENSIONAL LATTICE

Suppose that a population of entities, e.g. atoms, exists on a two

dimensional lattice - positioned at lattice points - and evolves through

coalescence and migration of individual entities and/or entire groups

of entities. Also suppose that the interactions among the groups of

entities in this population possess the Markov property, and information

on the rates of interactions as a function of group size, relative

position on the lattice, and other state variables is available.

A stochastic model based on the master equation can be developed

by extending the model established in the preceeding chapter for

coalescence and dispersion. It, however, will be necessary to include

two subscripts Indicating the position on the 2-D lattice at which

the groups of entitles are located; thus modifying the definition of the

random variable. In this phapter, the random variable will denote

the number of entities (size of group) located at a particular lattice

point. It will be assumed that individuals or groups of entities

migrate across the lattice and coalesce with other individuals or

groups at a rate dependent on the sizes of the groups involved, and

their relative position on the lattice. It will also be assumed that

a single incident of coalescence involves only two groups of entities

from neighboring lattice points.

A physical example of such a system is that of sintering and

redispersion in supported metal catalysis (see, e.g., Ruckenstein and
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Dadyburjor, 1983, for a current review of the subject). Parameters which

influence the direction and extent of sintering and redispersion include

time, temperature, vapor phase composition, the presence of other species,

and properties of the substrate and the metal. Several deterministic

models have been used to describe the process including (1) migration of

entire groups of atoms with coalescence, (2) migration of single atoms

which are captured by large groups, and (3) a combination of both (1) and

(2). The present stochastic model would fall into catagory (3). Most

models consider one or both of two cases as the limiting rate process.

In one case, diffusion across the substrate, i.e. surface diffusion, is

the limiting step. The other case considers coalescense at the interface

between groups as the limiting rate. In general, migration of larger

groups is expected to be slower than that of smaller groups. Ruckstein

and Dadyburjor (1983) note that the determining forces for the migration of

large groups appears to be the liquid-like behavior of groups of atoms at

temperatures near the Tamman temperature and/or a relatively .weak-.,

metal-substrate interaction. They also present rate constants for

coalescence of neighboring groups of atoms. This detailed information

could be incorporated in the rate functions of the present stochastic

model when applying it to the sintering and redispersion phenomenon.

5.1 DERIVATION OF MODEL

Following previous notation, a set of random variables is defined

{N.. : i c {1,2,3,...}, j E {1,2,3,...}}

where

N - number of entities in the group located at the point {i,j}
on the 2-dimensional lattice.
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Migration of entities will be assumed to be one of two types. The first

type is movement of Individual entities from the group at point {l,j} to

one of the eight surrounding lattice points, {i-l,j}, {i+l,j}, {i,j-l},

{i,j+ll, [1+1,j+U, (i+l.j-l). (l-l.j+l), or U-l.J-1}. The second type is

movement of the entire group of entities at the point {i,j} Co one- of the eight

surrounding lattice points. When the group at point {i,j} consists of only

one entity, the distinction between the two types of motion is superfluous

since both are identical.

In the following, let a(n
pk

,n. .) be the rate at which individual

entities at the point {p,k} migrate to the point li.j}. Note that, if

there is a group of entities at the point Cl.j), then afn^.n^) is also

the rate of coalescence between the group at {p,k} and the group at {i,k}.

By the assumption of migration occuring only between neighboring lattice

points, the point {p,k} must be one of the eight points specified in the

preceding paragraph. Note also that U&l^.Oy) can be a function of the

group distribution on the lattice, as well as other state variables. The

rate of transition due to the migration of individual entities can then be

written as

V£ntrV} ' {n
ij
+1 'npk~

1>) " • (v a
«

)E0,
»k"

1) (5-1)

where

for all i.J.p.k. : p e (1-1,1,1+1), k e (J-l.J .J+U.

and (p.k) |l (i,j)

<

H(x)
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Let 8(n n ) be the rate at which the entire group of entities at
pk ij

the point {p,k} migrates to the point U,j}. Note, as with a (npk i n
i;j)

•

B(n ,n .) can also represent the rate of coalescence when there is a
pk ij

group at the point {i,j}. Again, due to the assumption of migration to

neighboring lattice points, the point {p,k} must be one of the eight

neighboring points of the point U,j}. The functional dependence of

6(n .n ) should be considered to include the entire group distribution
pk' ij

on the lattice in addition to the other state variables. The rates of

transition due to migration of entire groups of entities can now be written

for all i.J.p.k : p e {i-l,i.i+l}, k e {j-l.j.J+D.

and (P.k) * (i.J)

Note that the inclusion of other processes, such as addition or

disappearance of entitles at lattice points from the environment,

can be expressed through additional rate functions. These processes

will be excluded for simplicity in the following discussion.

The transition rates given in Eqs. 5-1 and 5-2 determine the

stochastic evolution of the system. Note, however, that the application

of the System Size Expansion is hindered by the fact that the transition
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represented by Eq. 5-2 involves changes in Che random variable of

a large relative magnitude. The discussion, however, shall proceed

in ignorance of this fact in order to illustrate the resulting diffi-

culties.

The first step in the application of the System Size Expansion is

to rewrite the expressions for the rates of transition in terms of {n}

and {£}> respectively, as follows:

W
t
({nlj>npk };{l,-1})

= a(n
pk

,.
1]

)H(Vl) (5-3)

V {n
ir

n
Pk

};{n
Pk'-

n
Pk

}) " »<vV «-«

for all i,j,p,k : p E {i-l,i,i+l}, k e { j-l,j , j+1}

,

and (p,k) ji (i,j)

Note that, as in previous chapters > all null elements in the set {£}

are omitted, and the remaining elements correspond to those in {n}.

The next step is to calculate the jump moments, A, , and B ,

after arranging to change the double subscript to a single one,

denoted as h; for convenience it is defined as

h = j+e(i-l) (5-5)

where

i,j- coordinates of the point {i,j}

c " maximum value of j
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The variable n . now appears as

n
j+E(i-l)

Using this notation in Eqs. 5.3 and 5,4 gives rise to

V {VE (l-iy
n
k+E (p-l)

};{1 '-1}) = a(n
fe+e(p-X)»

n
j+c(i-l) )

'H(n
k+E (p-l)

_1)
(5-6)

V {Ve(i-l)'VHe(p-l)
}:{n

k+e(p-l) ,
-n

k+£ (p-l)
})

= B(Ve (P-l)'
n
j+e(i-l> ) (5-7)

for all i,j,p,k : p e (i-l,i,i+l}, k c {j-l,j,j+l},

and (p,k) |< (i,j)

Expressions for A, and B are now derived as follows:

A. = E E E E A(ijpJ)[6
k
(h-j-ei+E) - 6

k
(h-£-ep+e) ]

• ta(n
i+e (p-l)'

n
3+e (i-l)

)H(n
»+e(p-l)"

1)

+ n
M-e (p-l)

B(n
l+e(p-l)

,n
j+e(i-l) )] (5-8)
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BL = E E Z E A(ijp<L)[6
k
(h-j-ei+E) - <5

k
(h-H-ep+e) ]

hn
i J P

•[S
k
(n-j-Ei+e) - 6

k
(n-«.-ep+e)]

' ta(n
*+E (p-l)'

n
J+e(i-l)

)H(n
i+e(p-l)"

1)

+ n
i+E (p-l)

n
£+E (p-l)

6(ll
^e(p-l)'

n
j+c(i-l) )1 (5-9)

where

A(ijp£) = (6
k
(p-i)[6

k
(il-j-l) + 6

k
U-j+l)]

+ «
k
(Jl-j)[5

k
(p-i-l) + 6

k
(p-i+l)J

+ 6
k
(p-i-l)[6

k
(il-j-l) + 6

k
(i-j+l)]

+ 6
k
(p-i+l)[6

k
U-j-l) + 6

k
()l-j+l)]}

Note that A(ijpH) restricts the summation to include only the eight

surrounding lattice .points. The first of these expressions can be

used with Eq. 2-18 to find

d
*h k k^=nn A(ijpH)[S (h-j-ei+e) - 6 (h-i-ep+e)]

i J P i

'

[

""la(fi
^+e(p-l)'

n
*j+e(i-l)

)H("^+E (p-l)-
1)

+ n+£ (p-l)
S(n*£+£ (P-l)'

n
*j +e (i-l)

)] ( 5
- 10 >



This expression can be simplified by returning to double subscripts, i.e.

-jil = 2 l ACijpOfn^oCn.)) ,n+
lj

)H(Q((i
pJt

- D
p *

- f!

_1
a(n*

1;)
,n(f

pk
)H(n ((li;]

-i)

+ p^V'"*^ " *ij
B(fl

*ij
,n

*p)l
)1 (5"u >

or, in terms of <N.,> (the mean number of entities aluthe point- {i»«J-ii,

JJ<Iij>
- E I &(ijp£)[a(<N >,<N >)H(<N >-l) - a(<N.

j
>,<N

pk
>)H(<N

ij
>-l)

P *

+ <H
pt

>"<"
Pi

>
»
<
"u

>
J - <VB(<V' <V)]

(
5 - 12 >

To proceed further, the expansion of Eq. 5-8, after a change of

variables, as indicated in Eqs. 2-15 and 2-11, respectively, is necessary.

However this step requires knowledge of the exact functional dependence

of the transition rate functions, a and 8, on the random variables

{n}. To simplify the resulting discussion, it will be assumed in the

following that a and 8 depend only on the number of entities located

at the point of origin of the migration, i.e.,

a(V n
ij

)
= ciV (W3)

i(n
p£'

n
ij

)
= c

2
n
pl (5 " 14)
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where c. and c„ are constants depending only on state variables such

as temperature and pressure, but not on the group distribution.

With this assumption, i can now be written as

A, >HH A(ijp£)[t5
k
(h-j-ei+e) - 5

k
(h-£-ep+e) ]^ i]pt

• [c
l

( *Z+e(p-l)
+ frl/2z

*+e(p-l)
)H(,V£ (p-ir

1)

-1/2
+ W Z+e(p-l)

+ " Z
t+e(p-l) )

•^Wp-D + ""1/2z
£+e(P-l)

)] < 5
~ 15 >

-1/2
Expansion of this expression in powers of ft

' can now proceed as

follows (only the terms appearing between the last pair of square

brackets in Eq. 5-15 are shown. The other terms remain unchanged);

" [c
2*i+e(p-l)*£+£ (p-l) ]

1/2
+ [ 2c

2
Z
i+E (p-l)W(p-l) ]

+ [c
l*«.+E (p-l)

H(n
£+e(p-l)-

1) +C
2
Z
J+c(p-l)

Z
*+e(p-l)]

Note, that as expected, a problem has arisen. Comparison with Eq. 2-15

will reveal that two new terms are present in the expansion, i.e.,

1/2
terms to the powers ft and ft . These terms result from the fact

that the changes in the random variable are of the same order of

magnitude as the random variable itself. In this case, separation

of the mean and the fluctuating components is, strictly speaking,
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invalid. Results obtained upon continuation of the expansion must

be viewed with some skepticism, and accepted only if shown applicable

by actual simulation of the process. In any case, the next step in

the expansion would be to separate out those terms in Eq. 5-16 which

only contain the mean ($0^./ _11^ - This procedure yields the following

expression [ of. Eq. 5-11J

;

d+,M

p *

+ "C2W-"C
2*iJ*iJ

] (5" 17)

or, in terms of <N..>(cf. Eq. 5-12],

d^Ny* S Z A(ij.pH)[c
1
<N

pJl
JH(<N

pC
>-l) - c1<Sli

>tfi<H >-l)

P *•

+ C
2
<N

p£
>2

" Vi/ 1 (W8)

Comparison of Eq. 5-16 with Eq, 2-15 leads to the following expression

for V :

X « Z Z Z Z A(ijpJt)[6
k
(h-j-£i+£) - 6

k
(h-Z- Ep+e) ]

UP!
.«

k
(n- i-£p+E )[2nc

2^+E;(p_1)

+ C
l
H(<\+c(p-l)

>-1 >] "- 19 )
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Note that the fourth term in Eq. 5-16 does not have a corresponding

term In either Eq. 5-17 or 5-19. This is in accordance with the

linear noise approximation upon which the System Size Expansion is

based. However, this term is of the same order of fi as some of the terms

appearing in Eq. 5-17 for the mean, and therefore cannot justifiably

be excluded. However, continuing dauntlessly, Eq. '5-19 in conjunction

with Eq. 2-20 yields

d<Z >

-jf
1-- I Z A(ijp£)[c

1
<Z

pJl
>H(<N

pJl
>-l) - c

1
<Z

ij
>H(<N

i;
.>-l)

+ 2c
2
<N

P £
><Z

p i
> " 2 W'V 1 <5" 20)

Expressions for the rate of change of Cov[Z Z ] can be found from

Eq. :.5-19 for A^, Eq. 5-9 for B
hn

and Eq . 2-22, after changing to

double subscripts; this yields

dt"
C0v[ZijV =

I

Z ^(ljhq)[c
1
H(fi*

hq
-l)Cov[Z

hq
Z
pl ]

- c^C^-DCovtZ^]

+ 2c
2
^hq

Cov[Z
hq

Z
pJ

- 2c
2
nt

1J
Cov[Z

lj
Z
pt ]]

+ A(p«,hq)[ Cl H(nit>, -lJCovfZ.,^ ]1 nq lj ng

c
1
Hte*prl)Cov[Z1 .Z

pt
]

+ 2c
2^hqCov[Zij

Z
hq ] - 2c

2
n*

pt
Cov[ZljZpl ]]

+ 6
k
(i-p)6

k
(j-£)A(ijhq)[c

1
0>

hq
H(n,(,

hq
-l) + c^ 2

*^ ]
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+ 6
k
(i-p)«

k
(j-«A(p£hq)[c

1
4. H(&f> -1) + c^Q 3

]}

+ C 2"
2

*p£
+ C

2^*ij ] (5_21)

or, In terms of Cov[N N .],

^ Cov[N H] = E E {A(ijhq)[c
1
H(<N >-l)Cov[N N ]

h q

- c
1
H«N.

j
>-l)Cov[N

iJ
N
p
^]

+ 2c
2
<N
hq

>Cov[NhqNp£ ]

2C2 <Nij >Cov[NijNpZ ]]

+ A(pjhq)

[

C] H(<N >-l)Cov[N N ]

- c
1
H(<N

p
> -l)Cov[N

i;j
N
pI,]

+ 2c
2
<N

hq
>Cov [HyS^]]

+ 5
k
(i-p)S

k
(j-«.)A(ijhq) [ Cl<Nhq

>H(<N
hq

>-l) + =
2
<N

hq
>3]

+ 6
k
(i-p)6

k
(j-OA(p)lhq)[c

1
<N

pJl
>H(<N

p;l
>-l) + c

2
<N

p|l
>
3
]}

- A(ijp£)[ Cl <N >H(<N >-l) + c
1
<N.

j

>H(<N
ij

>-l)

+W>3+C
2
<N

ij
>31 (5_22)
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The correlation functions of the random variables {N} can be found

from Eq. 5-20 in conjunction with Eq . 2-28, as

£W° "
I I

^'^t'l^V-^iJhq

c,H(<N >-l)K. . . + 2c. <N, >K_,„
1 pi ijp£ 2 hq ijhq

2c
2
<M

pl
>K

lJpl
1 (5 " 23)

with

Cy (0) = Cov[NljNpJ

where

Cov[N. ,N „] steady-state covariances
ij P<1

The evolution of the population of entities on a 2-dimensional lattice

can now be characterized according to the mean number of entities at a

lattice point (Eq. 5-18.) and the dynamic fluctuations about the mean

'.( Eq. 5-22 with Eq . 5-23).

5.2 EXAMPLE CALCULATION FOR A SMALL LATTICE

To illustrate the application of the equations derived in the preceding

section, an example calculation will be carrled-out for a 2X2 lattice

with the initial condition of 10 entities at each lattice point. For

this case Eq. 5-18 yields
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iKl* " 'l^V11 + -1<N
2 2

>H(<N
22

>-1 )

+ c
1
<N

21
>H(<N

21
>-l) - 3c

1
<Nu >H(<N >-l)

+ c
2
<Nu >

2
+ c

2
<N

22
>
2
+ c

2
<N

21
>
2

- 3c
2
<Nu >

2

(5 . 24)

^<N
12

> = c
1
<Nu >H(<N

11
>-l) + Cl <N22

>H(<N
22

>-l)

+ c
1
<N

21
>H(<N

21
>-l) - 3Cl <N12

>H(<N
12

>-l)

+ c
2
<Nu >

2
+ c

2
<N

22
>
2
+ c

2
<N

21
>
2

- 3c
2
<N

12
>
2

(5_ 25)

dI
<N

22
> = c

1
<N

11
>H(<Nn >-l) + c

2
<N

12
>H(<N

12
>-l)

+ C:L <N21
>H(<N

21
>-1) - 3Cl <N22

>H(<N
22

>-l)

+ c
2
<Nn >

2
+ c

2
<Nu >

2
+ c

2
<N

21
>
2

- 3c
2
<N

22
>
2

(5_ 26)

^<N
21

> = c
1
<N

11
>H(<N

11
>-l) + c

1
<N

12
>H(<N

12
>-l)

+ c
1
<N

22
>H(<N

22
>-l) - 3Cl <N21

>H(<N
21

>-l)

+ c
2
<
Nll >

2
+ c

2
<N

12
>
2
+ c

2
<N

22
>
2

- 3c
2
<N

21
>
2

(5. 27)

with

<N
1X

> = <N
12

> = <N
22

> = <N
21

> - 10.0 at t-0
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By symmetry, it follows that the solution to Eqs. 5-24 through 5-27 is time

invariant, and thus

<N > = 10.0

<N > - 10.0

<N
22

> 10.0

<M > = 10.0

Note, symmetry also requires that, at steady-state,

Var[N ) = Var[N
12

] - Var[Nn ] = Var[N
22

] = Var

Cov[NuN
12

] - Cov[NnN
21

] = Cov[NuN
22

] = Cov[N
12

N
21

]

= Cov[N
12

N
22

] = Cov[N
21
N
22

] = Cov

Thus, at steady state, Eq. 5-21 yields the following two expressions

= (e, + 20c
2
)(Cov - Var) + lOCCj + 100c

2
) (5-28)

= (c + 20c
2
)(Var - Cov) - 100^ + 100c

2
) (5-29)

which are identical, except for a constant of -1. Adding the two

expressions found from Eq. 5- 21 for non-steady state conditions

yields the following identity;

Var + Cov = constant (5-30)
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Assuming that the initial values of the lattice point group sizes

are known exactly yields

Var + Cov = (5-31)

Solving Eqs. 5-28 and 5-31 yields the following values for Var and

Cov;

c + 100c
Var = \ + 20 e

2

> "-32)

c + 100c-
COV = ~\ + 20 e

2

} ( 5-33)

Equation 5-32 reveals the conditions under which the System Size

Expansion is valid, i.e., when C-,>>c
2

and thus Var y_ 5. This is of

course the case when migration of individual entities is dominant.

In the other extreme, c_>>c., the variance approaches 25, indicating

that the fluctuations in the random variable are of the same order

of magnitude as the mean. In this case the System Size Expansion

loses its validity.

Continuing, the correlation function can be found from Eq. 5-23.

Letting

K* = K
±jlj

(T) (5-34)

K = K
ljpil

M. tfP. Jr-S. (5-35)

results in the following two expressions;
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^=3(c
1
+ 20c

2
)(K-K*)

(5 _ 3g)

~ = (Oj_ + 20c
2
)(K + K*) (5-37)

with

K*(0) = Var

K (0) = Cov

The solution of these equations yields

-e t -e t

K*(t) = Var[1.4449 e - 0.4449 e ]

-6 T -8 T

K (T ) = Cov[0.3110 e
±

+ 0.6890 e 1

(5-38)

(5-39)

where

e
x

= 3.6458 (Cl + 20c
2

)

B
2

= 1.6458 (c + 20c
2 )

Note that the final form of the correlation function suggests a

method with which the constants c and c„ can be determined from
1 2

experimental data. If the steady-state time series of the number of

entities at a point on the lattice could be observed, and the corre-

lation function determined, then the values of the correlation function

at T=0 and at any other point, say T-l, uniquely determine the two

constants, c
1

and c , i.e.,
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c + 100c

K* (0) = Var = 5(
Ci + 2Q ^

) (5-40)

-6 -6

K*(l) = Var(1.4449 e - 0.4449 e ) (5-41)

8 = 3.6458(Cl + 20c
2
)

6
2

= 1.6458(c + 20c
2

)

Solution of Eqs. 5-40 and 5-41, given K*(0) and K*(l), then yields

c and c_. For example, given K*(0) = 10 and K*(l) = 5, c. and c,

are found to be

c = 0.10905

c
2

= 1.8174 x 10" 3

This method, when contrasted with the more common method of determining

the constants from transient (non-steady state) data, would appear

to be advantageous since data collection under transient conditions

is more demanding, and must be repeated many times to obtain meaning-

ful results. Measurement of the correlation function, however, is

done at steady-state conditions, and thus can be performed in a single

run of sufficient duration to ensure that the correlation function

can be accurately determined.

5.3 MONTE CARLO SIMULATION OF PROCESS

For large lattices, or conditions where migration of entire groups of

entities is important, exact calculations using the expressions derived in
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Che proceeding section can be unwieldy or inaccurate, in which case direct

simulation of the process is a valuable alternative. Handa and Matthews

(1983) have used a Monte Carlo approach to investigate sintering and

redispersion of supported metal catalysts for the caae of migration of

single atoms for both diffusion and coalescense as the limiting rate.

Simulation of the present model using the Monte Carlo approach requires the

generation of uniformly distributed random numbers from which decisions are

made as to which of the processes will occur, and over what time interval.

By definition of the rates of transition function, the probability that a

particular event occurs during a small time interval, say with rate of

transition equal to A
, given that an event has occurred is given by

x
i

P(Event l| Event has occurred) - rr— (5-42)

where the summation is over all possible events. Note that the event

with the largest transition rate is the one most likely to occur.

One important property of processes which have the Markov property

is that the waiting time between events is exponentially distributed

with the parameter equal to the rate of transition. It is this

property, along with Eq. 5-42 which allow for the simulation of the -

process by generation of uniform random numbers.

For the 2-<limensional lattice, let

e - maximum value of the index J

n - maximum value of the index i,

i.e., the lattice is a c x n rectangular lattice. The total number of

lattice points is then ne. For lattice points on the interior of the

lattice there are a total of sixteen transition rate functions (for

each of the eight neighboring lattice points, there is one transition

rate for individual entitles, and one for the entire group). For
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lattice points on the edge, excluding corner points, there are ten

transition functions; for corner points, six. There are, thus a

total of 4(4en - 3t - 3n + 2) transition functions for the entire

lattice. Note that some of these may very well be equal to zero,

e.g., when there are no entities at the lattice point in question.

For the purpose of the simulation, each of the 4(4en - 3e - 3n + 2)

transition functions is assigned an index running from 1 to 4(4tn-

3e - 3n + 2). The generic symbol A is used to denote the transition

function with index i.

Assuming that the transition rate functionals are known, the

simulation itself begins by stipulating initial conditions for the

state variables, and the number of entities at each of the en lattice

points. The simulation clock should also be set at its starting value.

With this information, the transition rates, A , can be calculated for

each i. The simulation can then proceed as follows:

0) Set an index equal to zero, i.e.,

J =

i) Calculate rate functions A for all i

ii) Calculate A* = EA

i

iii) Generate a uniform (0,1) random variable X

lv) Calculate

Y
i V*

v) Add one to index, i.e.,

J * j+1

vi) Return to step v) with Y,,, = Y, - A . , if Y >A

Proceed to the next step if Y . < A
J - J
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vii) Adjust the number of entities at lattice points according

to event j

viii) Generate a uniform (0,1) random variable, X

ix) Calculate waiting time

W = -ZnCXp**"
1

x) Adjust simulation clock

t - t+W

xi) Print current time and lattice distribution

xii) Return to step 0)

The means, covariances, and correlation functions for each lattice

point can be found from the results of the simulation. Model parameters

can then be correlated with these statistics in order to determine

the effects of parameter changes on the dynamic behavior of the group

distribution. The large amounts of data generated from such a simulation

will require efficient computational algorithms for handling and processing.

Treating the output in step xi) as the signal from a real experimental

observation, it would be possible to use online techniques for the direct

calculation of the means and correlation function using available computer

software. In this way, storage of all the data generated during the

simulation would not be necessary, representing a large savings in computer

memory space.
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NOTATION

A. first jump moment.

A. = coefficient matrix from expansion of A, .

B = second jump moment.

hn hn

C ,

C

= constants

Cov[N..N J = <N..N -> - <N..XN „>
ij p£ ij p{. ij p2

Cov[Z..Z .] = <Z..Z „> - <Z..XZ „>
ij p* ij p£ IJ pi.

H(x) = Heaviside step function.

K
ij P il

(T) = <N
1
.(0)N..(T)>- <N..(0)><N..(T)>

N.

.

= number of entities in the group located at the point
{i,j} on the 2-dimensional lattice.

<N..> = expected value of N. .

.

W = waiting time.

W (-,-) - intensity of transition function.

X , X- = uniform (0,1) random variables.

<Z. > = expected value of fluctuation part of N. .

.

Greek Letters

Ot(n . ,n..) = rate at which individual entities at the point {p,k}
migrate to the point li,jj.

6(n ,n..) = rate at which the entire group of entities at the point
{p,k} migrates to the point {i,j}.

k k k
6 (•) = Kronecker delta where 6 (0)=1 and 6 (x)=0 for x^O.

A(ijp&) = 1 for neighboring lattice points, and otherwise.

£ = maximum value of index j

.

H = maximum value of index i.
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3
1
,0. * constants appearing in correlation functions.

X, = rate of transtion of event i.
l

4>. .
= <n. ,>/Q

fi = system size.
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CHAPTER 6

APPLICATION OF GENERALIZED MASTER EQUATION
TO COMBUSTION OF PARTICLES IN A FLUIDIZED-BED REACTOR

In a fluidized-bed reactor operating under conditions where the

solid particles introduced and combusted in the reactor have a non-

negligible residence time, the external gas concentration variations

in different parts of the reactor coupled with the random motion of

the particles will influence the time needed for total conversion.

The random motion of the solid particles suggests the utilization

of a stochastic compartmental model where the random variables are

the number of solid particles of a given size in a given compartment.

Since the rate processes responsible for the reduction in size of the

particles are on a molecular scale, these processes can be assumed

to obey deterministic rate equations. Assuming stochastic rate equations

would yield equivalent results, with additional effort, and would

indicate that the resulting distribution is a sharp spike (variance

approximately zero) about the deterministic results. In contrast,

the random motion of a finite population of particles about the interior

of the bed could result in a significant distribution in the concentra-

tion of reactant gas. The magnitude of variance of this distribution

will depend on the magnitude of the reactant gas inter-compartmental

exchange rate. If the rate is very large, then the variance of the

concentration distribution will be negligible. If the rate is small,

then the random accumulation of particles in regions of high or low

concentration should result in a significant spread in the concentration

distribution. Note, however, that the rate is dependent upon the rates
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of coalescense and movement of the bubbles in a compartment. These processes

and the resulting bubble population distribution were modeled in an earlier

chapter where it was seen that fluctuations in Che population distribution'

can be quite significant. Such fluctuations would lead to a stochastic

d4scription for the inter-phase gas exchange rate, and thus to a description

of the concentracion in each phase of each comparCment as a random variable.

6.1 TWO PHASE MODEL BALANCE EQUATIONS

It will be assumed that the fluldlzed bed can be modeled using Che

cwo-phase model presenCed by PeCers et^ al. (1982) wherein che material

balance equacions for Che reacclng gas in boch phases of comparcraent

p of the m compartments are written as;

Bubble phase

dC
b

V. -j-£ - U. AC. - U. AC. + G. AC
b dt bs , b , bs b t>e e
p p-1 p-1 P P P P

+ F
be

V
b

(C
e

- Cb> (6" 1J

P P P P

for compartment p where

1 <_ p <_ m

Emulsion phase

dC

e -V ——c- - U AC - U AC - G. AC
mf e dt ea , e _ es e be e

p p-1 p-1 p p P P

F V (C - C. ) + V n (6-2)
be b e b e e

P P P P P P

for compartment p where
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es . >
p-1 -

U > 0,
es —

P

dC
e

E CV -j-2- -|d
I

AC + U AC - AC
m£ e d t es e es . e . t.e e

p p p+1 p-1 p-I P P

Fv V v (C - C v ) + V n
be b e b e e

P P P P P P

(6-3)

for compartment p where

U <
es ,

—
p-1

U < 0,
es —

P

dC

E ,V —t-2- = U AC - U AC - G. AC
mf e dt es , e es e be e

p p-1 p P p+1 P P

F, V, (C - C, ) + V n
be b e b e e

P P P P P P
(6-4)

for compartment p where

U <
es —

P

U < 0,
es ,

—
p-1

and
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dC
e

e -V —r-^ - V AC - u AC
mf e at es , e es e

P P-l P P P

- G. AC
be e

P P

- F. V, (C - C. ) + V nbe b e b e e
P P P P P P

for compartment p where

where

U >
es —

P

U <
es ,

—
p-l

A « cross-sectional area of the bed

C
b

= gas concentration in the bubble phase in compartment p
P

C = gas concentration in the emulsion phase in compartment p6
P

F. = gas interchange coefficient from the bubble phase to

p the emulsion phase in compartment p per unit volume
of the bubble phase

G = crossflow from the bubble to the emulsion phase
be

P
U, = superficial gas velocity in the bubble phase in compartment p

P
U = superficial gas velocity in the emulsion phase in compart-

p ment p

V - volume of the bubble phase in compartment p

P
V = volume of the emulsion phase in compartment p

P
e - void fraction of the bed at U ,mi mf

n~ = reaction rate in compartment p

P
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Noce, following the discussion in an earlier chaptar on "Che stochastic nature

of the bubble population in a fluldized-bed, several of the quantities which

appear in Eqs. 6-1 through 6-5 should be considered as random. These

Include V. , V , C, ,C , U. , U , G. , F ; all of which depend on
b e b e bs es be be rPPPP P P P P

the characteristics of the bubbles in the compartment, n is also a random
e
P

quantity depending on the random motion of the solid particles throughout

the bed. In this light, Eq. 6^1 through 6-5 should be considered as

Stochastic Differential Equations with non-white noise terms. The actual

nature of the noise term can be found from the correlation functions derived

in Che chapter on modeling the bubble population mentioned earlier.

However, since the noise is non-white noise, it is more difficult

to deal with, and may require a simulation procedure such as chat

employed by Ligon and Amundson (1981) in their sCudy of correlaced

noise models. The focus of this chapcer will, however, be Che effect

of the random motion of solid particles on Che reaction Ceirm, n^

P

6.2 STOCHASTIC MODEL FOR SOLID PARTICLES

In Che following ic is assumed thaC Che solid phase In Che fluldlxed-

bed reactor Is made-up of lnerc fluidized solids plus a small fraction

of solid particles which are Involved In reacClon. In this way ic can be

safely concluded thac Che reacClon does noC significancly change

the nature of the emulsion phase, e.g., the voidage is the same as

in Che absence of reaction. It Is visualized ChaC reaccing particles

enter Che reactor at some point (comparCmenC) and clrculace becween

compartments until they are completely consumed. The solid phase is

thus atcributed a clrculacion race, which may or may not be compartment

specific, which determines the extent of solid mixing in Che bed. In
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this context perfect mixing would correspond to an infinite circulation

rate. It will be assumed that such solid mixing rates are available

or can be found from experimental studies.

Focusing attention, then, on a single solid particle in a compartment

of the reactor, it can be seen that at any instant this particle has

a certain probability to change compartments (a probability which is

proportional to the circulation rate between the two compartments in

question) or to remain in the compartment of origin, in which case it

will continue to degrade at a reaction rate dependent on the reactant

gas concentration in the compartment. There are, therefore, two

important characteristics attributable to a particle: its size, and

its location.

Turning attention to the population of particles as a whole,

a stochastic model based on the master equation can be developed

to model the distribution of particles of differing sizes in specific

compartments in the bed. In the following, the random variables of

interest are

{N (r): p e {1,2 m}, r e [0,R]}

where

N (r)dr = number of particles in compartment p with a size between

r and r+dr

m number of compartments

R = maximum particle size

As discussed earlier, the size variable, r, obeys a differential

equation dependent on the reactant gas concentration in the compartment.
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Assuming that chemical reaction controls, and that the particles are

shrinking spheres, results in the following expression for first-order

kinetics;

, bk
dr a „
dT " "

-J- \ (6-6)
B p

where

r = radius of particle

b = mols of solid per mol of gas consumed

k = reaction rate based on surface reaction
s

p„ molar density of solid

C = gas concentration in emulsion phase of compartment p

P

Note that through C , Eq. 6-6 is compartment specific. In the
6
P

discussion following Eq. 6-5, it was noted that C is . a random
e
P

quantity due to fluctuating nature of the bubble population. In this

case, Eq. 6-6 should be written as a stochastic differential equation

with a noise term corresponding to the concentration fluctuations; from

which it follows that r is also a random quantity.

The fluctuating part of the random variables, N (r) , should
P

contain terms due to both the random motion between compartments, and

to the random nature of the size variable. The rates of transition

functions for these processes can be written as follows:

Movement between compartments

W
t;

({n
p
(r),n

j
(r)},{n

p
(r)-l,n

j
(r)+l}) = Y

pj
n
p
(r) (6-7)

for j e {p-l,p+l}



5-8

where

Y rate at which particles in compartment p move to
P-1 compartment j

Change due to reaction

where

W ({n (r),n (r-dr)},{n (r)-l,n (r-dr)+l}) = v ri (r) (6-8)
t p p p p p p

for all p

/dr. .

v = -(-—) in compartment p

Note that particles are restricted to movement to either the next

highest or next lowest compartment. Equations 6-7 and 6-8 can

be written in terms of in) and {£} as follows;

W
t
({n

p
(r),n

j
(r)},{-l,l}) = Y

pj
n
p
(r) (6-9)

for j e {p-l.p+1}

W
t
({n

p
(r),n

p
(r-dr)},{-l,l}) = v a_(r) (6-10)

for all p

where, as in previous chapters all null elements in the set (5)

are omitted, and the remaining elements correspond to those in (n).

To continue in the same manner as was done in previous chapters

the continuous variable, r, must first be partitioned into a discrete

set with index i and characteristic size e, i.e.,

r * ie
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V 1 * equivalent of v for discrete r
P P
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With this transformation, Eqs. 6L 9 and 6-10 can be written as

W
(

.({a
p
a),a

J
(i)},{-l,l}) = Y

pj
n
p
(i) (6-H)

for all i, and j e {p-l,p+l}

W
t
({n

p
(i),n

p
(i-l)},{-l,l}) = v

p
n
p
(i) (6_ lz)

for all p and i

Finally, to include the addition of particles to the bed, the following

transition rate is needed,

W
t
({n

p
(i) },{!}) = [2f (i) (6-13)

for all p and i

where

ftf (i) " rate at which particles of size ie are added to
compartment p

The jump moments can now be calculated after the change to a single

index denoted by the subscript h; for convenience it is defined as

h = Phn(i-l) (6-14)

where
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p « subscript denoting the compartment number

i = index denoting particle size

m = number assigned to last gorapartxaent

The variable n (1) now appears as
P

ip-hn(i-l)

The jump monents, A, and B, , can now be found as follows;

i =Hl Z[-<5
k
(h-p-mi+m) + a

k
(h-j-mi+m)

]

P i 1

[6
k
(j-p+l)(l-S

k
(j))

+5k
(J-p-l)(l-6

k
(p-m))]y

pj
n
p+m(i_1)

+ [-6
k
(h-p-mi-hn) + «

k
(h-p-mi+2m) ]

'Vp+m(i-D

+ 5 (h-p-mi+m)£!f (i) } (6-15)

B
hn

= Z I { ^[-^(h-p-mi+m) + «
k
(h-j-mi+m) ]

P i J

k k
• [— fi (n-p-mi+m) + 6 (n-j-mi+m)]

.t«
k
(j-p+l)(l-«

k
(J)) + 5

k
(j-p-l)(l-6

k
(p-m))]

• Y
pj

n
p+m(i-l)

+[-Sk (h-p-mi+m) + «
k
(h-p-mi+2m)

]
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k k
.[-& (n-p-mi+m) + & (n-p-mi+2ni) ]

p p-hn(i-l)

+ 6
k
(h-n)6

k
(h-p-mi+m)J2f (i) } (6-16)

The first of these expressions together with Eq. 2-18 gives

d<V«» . ., „k .*
JP.
dt ^'pp+l'" vr ""' J

' 'pp-
= "{Ypp+l

[1" 6 (p_m)] + Y
PP-1

[1
" 6 (P

"1)1} <N
D
(i)>

+[l-6
k
(p-m)] Yp+lp <Np+1

(i)> + [l-«
k
(p-l)]y

p_lp
<N

p
_1

(i)>

+ v'(<N (i+l)> - <N (i)>)
P P P

+ at (i) (6-17)

or, in terms of the continuous variable r,

9<N (r)>

-{[1 - 6"(p-m)] Y 1
+ [1 -o Cp-JL)]'Y

x
}<N (r)>

dt l l A " u ^_m '' J <
pp+l

T lx
'

u ^"-^"pp

+[l-«
k
(p-m)] Yp+lp <Np+1

(r)> + [^(p-DJy^p^^r^

3<N (r)>

p dr p
+ fif (r) (6-18)

where

dr
d = -<—

>

P dt p

:*)*expected value of - — I in compartment p
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The moments of the fluctuating component can be found from the

following expression for A, ;

X. = E E { E[-5
k
(h-p-mi+m) + «

k
(h-j-mi+m)

]

P i i

.[«
k
(j-p+l)(l-6

k
(j)) + <5

k
(j-p-l)(l-6

k
(p-m))]

.
Y 6 (n-p-mi+m)

+ [-<5
k
(h-p-mi+m) + «

k
(h-p-mi+2m)

]

.\i'S (n-p-mi+m)} (6-19)

Transforming into a continuous size variable, this expression in con-

junction with Eq. 2-20 yields

d<Z (r)>

dt
< (1- 6 <«**> J'pp+1 + [1" S (p-1)]Y

PP-i
;<Z

P
(r)>

+ [l-«
k

(P-m) ]Vlp <
Zp+i (r)> + [l-6

k
(p-l)]Vlp<Z

p_l(
r)>

J<Z (r)>
+ v

p —dr (6-20)

Note that, except for the term due to addition of particles, <N (r)>
P

and <Z (r)> obey the same equations. This is due to the fact that the

rates of transition are linear functions of n (r).
P

To calculate Cov[Z (r)Z (s)] from Eq. 2-21, it is first necessary

to find B (r,s) from B, in Eq. 6-16; this yields
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S-,<r,8) - Sl~
l
5
k
(r-s){&

k
( P-i)Y fl-6

k
(p-l)]<N (r)>

PJ PP~-L p

+ 6
k
(p-j)Y

pp+1
fl-6

k
(p-m)J<N (r)>

- «
k
(p-j-l)Yn,n-6

k
(j)]<N (r)>

PJ P

- 6
k
(p-j+l) Y [l-6

k
(p-m)]<N (r)>W P

- 5
k
(p-j+l) Yjp [l-6

k
(p)]<N.(r)>

- 6
k
(p-j-l)Y

jp
[l-6

k
(j-m)]<N (r)>

+ <5

k
(p-j) Y;i+1

.[l-«
k
(p)]<N

p+1
(r)>

+ «
k
(p-j)Yp+lp

[l-6
k
(p-l-m)]<N _1

(r)>

+ «
k
(p-j)M

p
(i)} (6-21)

With Eq. 6-19 and this expression, the following expression for-

Cov[N (r)N (s)] is found;

^•CovtN
p
(r)N

j
(s)] = -{ [l- 6

k
(p-m ) ] + [l-6

k
(p-l)J Y ^CovfN (r)N (s) ]

+ [l- 5
k
(p-m)] Yp+lpCov[Np+1

(r)N
j

(s)]

+ U-6
k
(p-l)] Yp_1

Cov[N _1
(r)N (s)]

+ v -$- Cov[N (r)N (s)]
P or P J

-{U-6
k
(j-ni)J Yjj+1 + Il-6

k
(j-l)jY }Cov[N (r)N (s)]

+ [l-«
k
(j-m)] Yj+lj Cov[N

p
(r)N

J+1
(s)]

+ [l-a
k
(j-l) ] Yj _lj

Cov[N
p
(r)N

j
_1

(s)]
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+ v, f- Cov[N (r)N, (s)]
j 3s P j

+ 6
k
(r-s){(6

k
(p-j) Ypp_1

(l-«
k
(p-l)]

+6
k
(p-j)Y

pp+1
f'l-fi

k
(p-m)]

-«
k
(p-j-l) Ypj

-6
k
(p-j+l) Ypj [l-«

k
(p-m)]3<N

p
(r)>

-(5
k
(p-j+l) Yjp

+6
k
(p-j-l) Yjp [l-«

k
(j-n1))]<N

j

(r)>

+<5
k
(p-j)Yp+lp

[.l-« (p-l-m)]<N
p
_1

(r)i

+6
k
(p-j)f!f

p
(r)} (6-22)

Note that this expression follows by ignoring the fluctuating component

in Eq. 6-6. To include this component, it is necessary to add two

additional terms to Eq. 6-22. These terms are

3<N (r)>
<N

j
(3)% >

3r < 6
- 23 >

3<N (s)>
<N (r)v > i- (6-24)

p oj 9 s
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where

<v > =
op

2 2bV
<V

Op
(0)v

op
(T)> = ~T<lC

e
(0) " <C

e
»)»HC (t) - <C (t)>]>

P
B P p p p

<[C
e

(0) - <C
e

(0)>][C
e

(t) - <C
e

(t)>]> - Correlation function
p p p p

of concentration

fluctuations in compart-

ment p

Writing Eq. 6-18 as a stochastic differential equation yields,

3n (r)

-ft C[1" 6 (p-m)1v+i + ll~ s (p-1)h
pP-i

}Vr)

+ ^-6k
(p-m) ] Yp+lpnp+1

(r) + [l-6
k
(p-l)] Yp_lp

n
p_l(

r)

3n (r) 3n (r)

p 3r o 3r
P

+ V° + W(t)
(6-25)

where

W(t) = noise term yielding Eq. 6-21

i.e.,

<W(t) [n

p
(r) + n

J
(s)]> = B (r,s) (6-26)

Starting with the random variable in discrete form, n, , and using

Eq. 6-15 and 6-16, this stochastic differential equation can also

be written as
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dn
h

- A^dt + C
hi
dW

i
(t) (6_ 27)

where

E. C, ,C, - B,
i hi in hn

dW (t) " multivariable Wiener Process

A,' = A, with v' replaced by (v 1 + v' (t)), where «' (t)
Ti Ti p p op op

is the discrete form of v defined after Eq. 6-24
op

This expression can transformed to the same form as Eq. 6-25, or worked

with directly. In either case, the non-white nature of the noise

term, v , leads to difficulties. Gardiner (1983) presents a solution
op

for the case when the noise is uncorrelated, and Van Kampen (1981)

has an approximation procedure tor almost white noise. In this system,

depending on the rates of coalescence and movement of the bubbles,

the correlation time for the concentration fluctuations may be signi-

ficant, thus neither method would be valid. In this case dynamic

simulation of the process may be a valuable alternative (Ligon and

Amundson, 1981).

By assuming that the fluctuating terms arising from the concentration

fluctuations (Eqs. 6-23 and 6-24) are negligible, it is possible to continue

the calculation, and to derive the following expression for the correlation

function;
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^K
jp

(s,r,T) = - {[-6
k
(p-m) ] Ypp+1 + [l-«

k
(p-1)]Ypp_i}K .

p
( s ,

r;T)

+[l-6
k
(p-m)]Y

p+lp
K.

p+1
(s,r,T) + [l-6

k
( p-l)]

•ViPKj P-i
(s,r,T)

+V
p 37

K
jp

(s > r ' T) < 6~28 >

where

K. (s,r,0) = Cov[N.(s)N (r) ] at steady-state
JP J P

Including the noise term in this expression would require the addition

of the term

3|
K (nj( s),np

(r)v
op ) ^

, i.e., the cross-correlation between n.(s) at time zero and n (r)u
J p op

at time t.

At steady-state, Eq. 6-18 with Eq. 6-6, reduces to

bk d<N (r)>

1T C
e —t—= {[1~ S (P-m ) ] ^

PP+l
+ (l-^(P-l)]y

pp_1
}<N

p
(r)>

B p

•ri-sVm)]Vlp <Np+1 (r)>

•[l-6
k
(p-l)b <N ,(r)> - Of (r) (6-30)

p-ip p-i p

If the feed particles are all of size R, then this expression can be

written as
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bk d<N (r)>— c
£p
-£ -{[ l-i tP-m) h

pp+1
+ [l-6

k
(p-l) ir

pp.1
}<N

p
(r)>

-[l-«
k
(p-m)]Vlp <Np+1 (r)>

-fL-6
k
(p-l)] y <N ,(r)> (6-31)

P-lP P-l

with

P B
F
P

<N (R)> -

p
x

' bk C
s e

P

where

F « number of feed particles per unit time fed Into compartment p

Under the same conditions, Eq. 6-22 for the covariances can be written

as

bk

77 % i + °
ej b Cov[N

p
(r)N

j

(s)] - { [l-«
k

(P-m)l Y
pp+1

+ tl-^(p-l)]^1
.Cov[N (r)N (s)]

-[l-^(p-m)] y ,, Cov[N ., (r)N.(s)]
p+lp p-t-1 J

-[1- ^(p-l) ] Y
p_lp

Cov[N
p
_1

(r)N
j

(s) ]

+ {[l-<5
k
(j-m)]Y

jj+1
+ tl-^G-l)]}

.Cov[N (r)N (s)]
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with

-[l-5
k
(j-m)] Y .

+lj
Cov[N

p
(r)N.

+1
(s)]

-[l-6
k
(j-l)] Yj _lj

Cov[N
p
(r)N

j
_1

( S )]

-6
k
(r-s) { (6

k
(p-j ) [l-6

k
(p-l)

]

y

pp-1

+fi
k
(p-j)[l-6

k
(p-m)] Ypp+1

-5
k
(p-j-l)Y

pj

-S
k
(p-j+l)[l-«

k
(p-m)]Y

pj
)<N (r)>

-(6
k
(p-j+l) + 6

k
(p-j-l)[l-6

k
(j-m)l Yjp )

.<N (r)>

+«
k
(P-:)Yp+lp

(<N
p+1

(r)>

+ [l-6
k
(p-l-m)J<N ,(n)>)} (6-32)

p-1

Cov[N (r)N (s)] = Cov[N (s)N (r)

]

P P P P

P R
Cov[N (R)N (R)] = Var[N (R)] = ..

°
Var[F ]

P p p DK C p6
P

Cov[N (R)N (s)] = Cov[N (r)N (R) ] =

where

Var[F ] = variance in Che feed rate to compartment p
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Similarily, Eq. 6-28 for the correlation functions reduces to

, bk
rr K.(s,r,T) - —1 C t^K (s.r.t)
3t jp p

B
e 3r jp

' -ai-6
k

( P-m)l Ypp+1 + [l-S^p-DlYp^}

.K
jp

(s,r,x)

+ [l-5
k
(p-m)]VlpK.

p+1
(s > r,T)

+[l-6
k
(p-l) lYp^pK^^Cs.r.T) (6-33)

with

K. (s,r,0) = Cov[N. (s)N (r) ]

The solution to Eqs. 6-31 through 6-33 characterizes the random

variable by their means and correlation functions. The relationship

between N (r) and n in Eqs. 6-2 through 6-5 must be found in order
P %

to use information on N (r) to calculate the effect of its stochastic
P

nature on the value of C . For a single particle of size r, the rate
6
P

at which it consumes reactant gas is given by

2
4irr k C (mols/sec-particle)

S
P

The combined rate for all particles of all sizes in dompartment p

is thus

R
2

4nk C / r N (r)dr (mols/sec)
3 e

p
P
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V n in Eqs. 6-2 through 6-5 is then
e e ^ R

P P

R
2

V n -4 irk C / r N (r)dr (6-34)
e e s e „ p '

P P P

Note, as indicated earlier, both C and N (r) are random variables, and
6
P

P

thus n is also random. With this in mind, Eqs. 6-1 through 6-5-p]*is
fi

p
Eq. 2-27 could be treated as a system of stochastic differential equations

with correlated noise terms.

6.3 EXAMPLE CALCULATION FOR TOO COMPARTMENTS

For the case of two compartments (m=2) Eq. 6-31 reduces to the'

following two expressions;

bk d<N (r)>

S % Si =
^12

<N
l
(r)> - ^21 <N2

(r)> (6~35)
D 1

bk d<N (r)>— C
fi2

— = T21
<Nn (r)> - Y12

<N
l(

r)> (6-36)

Combining these expressions yields

C <N
l(

r)> + C <N <r)> = A (F + F ) (6-37)12 s

Either Eq. 6-35 or Eq. 6-36 can then be used with Eq. 6-37 to yield

C

<N
l(

r)> = 9{ Y21 (F
1
+ F

2
) + (Ji yuh - Y21 F

2
)exp[f^-]} (6-38)

6
1

e
l

e
2

C

<N
2
(r)> - 6{y

12
(F

1
+ F

2
) + (^ y

21
F
2

- Yi2Fl)exp[|i^]} (6-39)
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where

°B
(Ce/21

+ C
e
2

Y12>

bk
s<V21

+ \yU> '
bk

s

Y21
Note that as Y12 > y

21
+ +»> with -— • a

. , ,

P
B
a(F

l + F2>

P-(F + F )

<N,(r)>
2
W bk (aC + C )

s el e
2

for all r except r R.

With a=l, this limit represents perfect mixing with one-half the particles

in compartment one, and the other half in compartment two (assuming

equi-volume compartments). In this case the average rate of reaction

would be uniform throughout the bed , if the gas concentration is also uniform.

The covariances can be found by solving Eq. 6-32. For m-2

this expression reduces to

bk— C (^- + T^CovCH, (r)N (s) ] = 2 Y ,Cov[N (r)N (s) ]

- Y21
Cov[N

2
(r)N

1
(s)]

Y21
Cov[N

1
(r)N

2
(s)]

6
k
(r-s){ Yl2 <N1

(r)>

+ Y21
<N

2
(r)>} (6-40)
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bk—- (C ir-+C -r^-)Cov[N,(r)N
1
(s)] - Y, 1

Cov[N,(r)N
1
(s)]

p e_ dr e.ds z X zi z l
D Z 1

-Y12
Cov[N

1
(r)N

1
(s)]

+Y12
Cov[N

2
(r)N

1
(s)]

-Y
21
Cov[N

2
(r)N

2
(s)l

+5 (r-s){Y
21

<N
2
(r)> + Y

12
<N

1
(r)>} (6-41)

bk

P

2, <C
e I7 +Ce

^)C°v[N
1
(r)N (s)] = Y12

Cov[N
1
(r)N

2
(s)]

B 1 2

-Y
21
Cov[N

2
(r)N

2
(s)]

+Y21
Cov[N

1
(r)N

2
(s)]

-Y12
Cov[N

1
(r)N

1
(s)]

+6^(r-s){Y
21

<N
2
(r)> + Y

12
<N

x
(r)> J (6-42)

bk

r'
C
e

( 37
+ 17)CovtN2

(r)N
2
(s)3 = 2 Y21Cov[N

2
(r)N

2
(s)]

B 2

-Y12
Cov[N

1
(r)N

2
(s)]

-Y12
Cov[N

2
(r)N

1
(s)]

-6 (r-s)(Y
21

<N
2
(r)> + Y12

<N
1
(r)>} (6-43)
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These equations are discontinuous at r=s, and must be solved for the two

cases, r=s, and r#s, separately. The resulting sets of coupled partial

differential equations may impose difficulties since the auxiliary

conditions at the boundaries are not entirely evident. These problems

can be avoided by working exclusively in the discrete form. If the size

variable, r, is partitioned into n parts, the resulting system of m-n(m.n-l)

linear equations relating the covariances can be easily solved. The

task is facilitated by low degree of inter-dependence amoung the

variables, and the fact that the dependence on the size variable

only includes the size of the variable in question and that of the one

immediately proceeding it.

The correlation functions also involve a set of coupled partial

differential equations. In the case of m=2, these are

3
bK 3-K^Cs.r.t) -— C ^K.

l(
s,r,x)

D 1

= -Y12
Kj

|1
(s,r,T) + Y21

K
j2

(s,r,T) (6-44)

3
bk

-K
j2

(s,r, T)--^C
e2
-K

j2
(s,r,x)

" -Y
21
K
J2

(s,r,T) + Y
12

K
j;L

(s,r,T) (6-45)

for j 1, 2

As with the covariances, these equations can be handled in discrete

form, however they involve a set of coupled ordinary differential equations

which will require the calculation of the eigenvalues and eigenvectors
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of the system of equations. As the partition of the size variable

becomes smaller and smaller, the discrete formulation will approach

the continuous one.

To calculate the concentration of reactant gas in each compartment

it is necessary to solve the balance equation introduced earlier.

The parameters which enter these equations depend on the bubble size

distribution in the bed. A complete model of the bed can thus be

developed if information about the rates of reaction, bubble coalescence

and movement, and particle migration are known. The resulting set of

coupled stochastic differential equations, with the noise terms uniquely

specified by the underlying processes, could be studied to determine

the effects of the fluctuating nature of the fluidized bed on the reactant

gas concentration profile. Such a project would involve a simulation

procedure where the coupled stochastic differential equation are solved

with the random noise terms being generated according to expressions found

,

for the correlation functions of the underlying processes. It is also

possible to write the entire set of equations in the form of Eq. 6-27.

The resulting vector stochastic differential equation could then be solved.

Note that the noise terms are uniquely determined in Eq. 6-27 through the

relationship between the second jump moment, B., and C . in Eq. 6-27,,

i.e., (Ryter and Deker, 1980)

£ C. . C. = B, (6-46)
. ni in hn

B is explictly determined by the underlying processes, e.g. rates of

coalescence and migration, and thus C can be found from Eq. 6-46.
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NOTATION

A = cross-sectional area of the bed.

A, = first jump moment.

A.* = A with fluctuating reaction rate.

A = coefficient matrix from the expansion of A. .

hn n

b = mols of solid per mol of gas consumed.

B, = second jump moment.

B, = Bu /Q
hn hn

Q
b = gas concentration in the bubble phase in compartment p.
P

C
e
P

gas concentration in the emulsion phase in compartment p.

C, .
= coefficient matrix on noise term in the Stochastic

Dif f erentical Equation.

Cov[N (r)N.(s)] = <N (r)N.(s)> - <N (r)><N.(s)>
P J P J P J

Cov[Z (r)Z.(s)] = <Z (r)Z.(s)> - <Z (r)><Z.(s)>

F = number of feed particles fed into compartment p.

F
be = gas interchange coefficient from the bubble phase to

P the emulsion phase in compartment p per unit volume
of the bubble phase.

Q
be = crossflow from the bubble to the emulsion phase.

P

= reaction rate based on surface reaction.

K. (s,r,T) = <N.(s,0)N (r,x)> - <N. (s,0)><N (r ,l)>

m = number of compartments.

N (r)dr = number of particles in compartment p with a size
between r and r+dr.

<N (r)> = expexted value of <N (r)>.

r = radius of particle.

R = maximum particle size.
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U
bs

p

U
es

P

P

V
e
P

Var[F ]

P

w
t
(-,0

<z
p

( P )>

superficial gas velocity in the bubble phase in .

compartment p

.

superficial gas velocity in the emulsion phase in

compartment p.

= volume of the bubble phase in compartment p.

= volume of the emulsion phase in compartment p.

= variance in the feed rate to compartment p.

= intensity of transition function.

= expected value of fluctuating component of N (r)

.

Greek Letters

y ,

= rate at which particles in compartment p move to compartment j.

5
k
(-) = Kronecker delta where 6 (0)=1 and 6 (x)=0 for x#).

E = characteristic unit of size.

E = void fraction of the bed at U r .

mf mi

n = reaction rate in compartment p.
e
P

= constant.

V = rate of size reduction of particles in compartment p.

P

v = fluctating component of V .

op P

p = molar density of solid.
B

= constant,

fl = system size.

ftf (i) = rate at which particles of size ie are added to compartment p.
P
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

This study has yielded the following conclusions:

1. A generalized master equation for discrete or continuous variable

systems evolving through changes in the number of entities in the

population has been derived and approximate solutions have been

found using the System Size Expansion. It is thus possible to

characterize the population by solving differential equations for

the mean and covariances of the number of entities in the

population. The dynamic behavior of the population is expressed in

the form of the correlation functions which can be determined

uniquely from the expressions resulting from the System Size

Expansion. This formulation thus offers a viable alternative to

the traditional deterministic population balance equations.

2. Given the rates of coalescence and the rise velocity of bubbles in

a f luidized-bed, it is possible to model the fluctuations as well

as the average of the number of bubbles of varying size in a

bubbling f luidized-bed.

3. The compartment height in the present model for a bubbling

fluidized-bed can be used to control the number of bubbles sizes

which must be considered in each compartment. This in turn makes

it possible to solve the bubble coalescence model to determine the

mean and variance of the number of bubbles in a compartment.
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A. For the parameters considered, it is shown that fluctuations in the

total surface area of the bubble phase in the first compartment of

a bubbling f luidized-bed have a standard deviation of more than 19

percent. These fluctuations would effect the inter-phase mass

transfer and thus reaction rates in the emulsion phase. The

magnitude of the effects can be studied using the correlation

function and a suitable stochastic differential equation.

5. It is demonstrated that a generalized master equation derivation of

the population balance equation for coalescence and dispersion

phenomena involving binary breakage and coalescence leads to a

result which parallels that used in the literature for the mean

number of particles of a given size.

6. In addition to an expression for the mean number of particles of a

given size, the more general stochastic derivation gives rise to

expressions for the covariances and correlation functions. These

expressions can in turn be used with time series analysis to

determine rate constants from steady-state population data, thus

freeing the experimental study of the system from the necessity to

correlate transient data in the effort to extract the rate

constants.

7. By introducing a new variable representing the "distance" of a

particle from formation, it has been shown that the assumption of

binary breakage is still logically tenable. The determination of

binary breakage rates as a function of the new varible Is however

an important, unaddressed obstacle to the implementation of such a

strategy, which can only be resolved by further study.
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3. The transformation of a discrete size variable to the continuous

one which is usually found in the literature has been successfully

performed. However, it has been shown that due to certain point

discontinuities in the discrete equation, the limiting process, as

the size interval tended to zero, results in the absence of several

terms in the continuous counterpart. These point discontinuities,

which exist most notably at points where two particles of equal

size are formed from a parent particle, cannot be recovered,

without a priori knowledge of their form, when transforming the

continuous equation back to the discrete form. Therefore, for

systems which are truely discrete in nature, the proper route for

their modelling would begin with the discrete equation containing

all the necessary terms.

). The probability of forming a daughter particle of a certain size

given the size of the parent particle was derived from the

probability of the possible ordered sets (those sets with non-zero

probability) . For breakage other than binary, it is noted that

this probability will be unsymmetrical about the point correspond-

ing to one-half of the parent particle. This, in turn, implies

that the breakage function for systems exhibiting breakage of

higher order than binary breakage cannot be rationally modeled by

using the breakage probability for binary breakage multiplied by

the order of breakage as is common practice in the literature.

Such a distribution does normalize properly, but is necessarily

symmetrical and thus is in contridication with the rigorous

derivation.
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10. A rigorous approach to the derivation of the daughter particle size

distribution was presented by consideration of the excess surface

energy per unit volume among the daughter particles. Heuristic

arguements assigning the variance of the excess surface energy

distribuion as a direct measure of the probability of an ordered

set led to reasonable expressions for the daughter particle size

distribution.

11. An example calculation for a coalescence and dispersion system led

to an expression for the average total surface area of dispersed

phase as well as expressions for the covariance and correlation

function. In this example the standard deviation of the total

surface area of dispersed phase was more than 10 percent, indicat-

ing that fluctuations may effect the inter-phase mass transfer

processes.

12. A generalized master equation for coalescence and redispersion on a

two dimensional lattice has been studied; it is found that when

migration and coalence of entire groups of particles are included,

and the rate of constants are significant, the System Size

Expansion fails.

13. A Monte Carlo procedure is presented; it is used to simulate the

coalescence and redispersion process on a two dimensional lattice.

Such a simulation procedure is necessary when the System Size

Expansion fails to be valid.
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14. Due to the fluctuations In the bubble population In a fluidized-bed

reactor, the quantities which appear in the two-phase model

equations for the reactor will be stochastic. This implies that

these equations can be treated as stochastic differential equations

to determine the influence of the fluctuations on the concentration

at the outlet and inside each phase of each compartment.

15. The random motion of solid particles undergoing combustion in the

emulsion phase of a fluidized-bed can be modeled using a

generalized master equation given the inter-compartmental migration

rates. The fluctuations in the particle number can be incorporated

into the two-phase model equation yielding a vector stochastic

differential equation where the noise terms are uniquely determined

by the underlying processes of bubble coalescence and bubble/

particle migration.

16. An example calculation involving a continuous particle size

resulted in expressions for the correlation functions and

covariances which involved partial differential equations for which

no solution is given. It is however to be noted that

discretization leads to a unique solution from which, in the limit

of decreasing step size, the limiting solution to the continuous

case can be found.

17. The vector stochastic differential equation governing the

stochastic evolution of the variables describing a fluidized-bed

reactor can, in principal, be uniquely determined from a model for

the coalescence and migration of bubbles and a model of the

particle migration between compartments. However, the solution of
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this equation will require a simulation procedure, possibly

involving non-white noise, to produce any tangible results

concerning the effects of the fluctuations on the operating

conditions in the reactor.

Recommendations for future work are listed below.

1. Determination of coalescence rate expression for bubbles in a

bubbling f luidized-bed . In the present study a simple form for the

rate expression was assumed to allow for an example calculation.

For future study, an expression based on bubble hydrodynamics would

be necessary. The resulting expression should, however, still

possess the properties outlined in the section on determination of

rate-of-coalescence function in Chapter 2.

2. Relate time constants in correlation functions to model parameters .

In the example calculations presented, all time constants in the

correlation functions have a unique numerical value since numerical

values were assumed for the original rate constants. It would be

highly desirable to determine these time constants as functions of

the assumed rate constants. This would allow for comparison

between experimental data and the theoretical correlation functions

from which the rate constants could be determined.

3. Determination of breakage rates as a function of the "distance"

from formatation, and determination of the rate of change of the

"distance" variable . A new variable describing the "distance" from

formation has been introduced to describe coalescence and

dispersion phenomena. However, no physical basis has been proposed



7-7

for measurement and correlation of such a variable. Thus, further

use of such an approach will require information about the rates of

breakage as a function of this variable, as well as information

about the mechanisms by which a particle becomes more and more

distant from its formation.

4. Calculation of the daughter size distribution and the probabilities

of forming ordered sets from fundamental knowledge about particle

energy levels and particle-fluid interactions . A method has been

presented for determining the daughtersize distribution from the

probabilities of forming the possible ordered sets. These

probabilities, however, must be found from fundamental knowledge

about the system under study. For dispersed fluid phase droplets,

it has been proposed that the excess surface energy may be related

to these probabilities. However, experimental investigation as

well as deeper theoretical study should be combined to further

pursue the question.

5. Simulation and comparison of generalized master equation for

coalescence and redispersion on a two dimensional lattice . It has

been shown that in some cases the System Size Expansion is not

valid necessitating the use of a Monte Carlo simulation procedure.

It would, therefore, be of interest to apply both methods to a

system where the rate constants are known (e.g., sintering and

redispersion In supported metal catalysis) to determine the

relative error of the System Size Expansion approximation as

compared to the exact simulation results. Furthermore, the

simulation results can be used to determine the rate constants
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through the use of the auto-correlation function. The relative

sensitivity of the model to changes in parameters could then be

determined.

6. Solution of the vector stochastic differential equation governing

the evaluation of a f luidized-bed reactor . The random motion of a

fluidized-bed reactor induced by the coalescence and migration of

bubbles and the random motion of the solid particles in the

emulsion phase results in a vector stochastic differential equation

whose noise terms are uniquely determined by the above processes.

The solution of this non-linear, multiplicative noise, vector

differential equation is non-trivial even when reduced, through

addition of variables, to a process involving only white noise.

Its solution is, however, necessary in order to ascertain the true,

non-stationary behavior of the fluidized-bed reactor.
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ABSTRACT

A stochastic population balance based on the conditional

probability of a transition between two particular states of the

population which is assumed to possess the Markov property is derived.

In the literature the resulting expression is known as the master

equation as it offers a general formulation with which many physical

processes can be modeled. An analytical solution to the master equation

is however not guaranteed, and thus a rational approximation technique,

known as the System Size Expansion, is used to obtain expressions for

the means and the correlation functions of the random variables which

characterize the population. The correlation functions are particular

to the stochastic treatment, and allow for a quantification of the

dynamic behavior and magnitude of the fluctuations in the population.

The generalized master equation is applied to model four systems of

interest to chemical engineering. These systems are: (i) the bubble

population in a bubbling fluidized bed, (ii) coalescence and dispersion

in dispersed phases, (iii) coalescence and redispersion on a two

dimensional lattice, and (iv) combustion of particles in a fluidized bed

reactor. All the populations modeled in these systems are characterized

by their complex behavior depending on difficult to quantify variables,

and by the relatively small number of members in the population. These

characteristics are hallmarks of populations for which the master

equation, and stochastic formulations in general, can offer an important

modeling alternative.


