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I. INTRODUCTION

—The problem of elastic buckling of plates is often encountered in

plate girder design as well as in airplane construction. In all cases

of plate buckling, the critical values of normal or shearing forces are

proportional to the flexural rigidity of the plate. Hence, the stability

of the plate can always be increased by increasing its thickness. How-

ever, such a design will not normally be economical with respect to the

weight of material used. A more economical solution is obtained by

keeping the thickness of the plate as small as possible and increasing

the stability by introducing reinforcing ribs. With this in mind, this

research has presented an analytical analysis of the elastic buckling

of stiffened plates.

As there are many cases of plate buckling, this study was limited

in scope to rectangular plates of finite length, simply supported at the

four edges and submitted to the action of uniformly distributed shearing

stresses along the four edges. The plates are reinforced by a single

longitudinal stiffener at various positions defined by the parameter n

as shovm in Fig. 1.

In analyzing the elastic buckling problem of a plate subjected to

pure shear, the critical shearing stress x can be expressed as:
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in which k is the plate buckling coefficient, E is the modulus of elas-



ticity, y is Poisson's ratio and B is the web sleiiderness ratio. From

the above equation it can be observed, in the case of constant B, that

the critical shearing stress depends only on the buckling coefficient k.

For a rectangular plate with one longitudinal stiffener, the values of

k depend on a, the aspect ratio of the plate, n > the stiffener position

parameter and y* the stiffener rigidity ratio. This research has deter-

mined the minimum stiffener rigidity ratio y* required to obtain the

^maximum buckling coefficient k for various values of a and t\. Approx-
max

imate design curves have also been prepared



II. BJ.VIEW OF LITER.\TURE

---»?
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In solving plate buckling problems, several methods have been

developed. Among them, the differential equation method is the most

exact one. However, since a solution using the differential equation

is only possible in a few special cases, this theoretical method finds

little use in practical work. There are three approximate methods

which are of interest and of practical use:

(i) . Finite Difference Method

(ii) . Statics Method
'

>_

(iii) . Energy Method

Although these three methods are approximate solutions to plate buckling

problems, by using a high-speed digital computer the desired accuracy

can be achieved within a reasonable amount of time. <

In the early part of the 19th century, Navier and Saint-Venant

derived the differential equations of a plate subjected to lateral loading

and lateral loading combined with bending and tension or compression

2 3
acting on the edges, respectively. ' But, for the case of stiffened

plates under shear, investigations have been completed only in the past

46 years (1921 - 1967).^

In 1921, Timoshenko published a paper on the stability of stiffened

plates, which is notable not only because it represents one of the first

on the subject, but also because the energy method was used for the first

time to obtain approximate solutions to stability problems of stiffened

A 5
plates. ' With the assumption that the plate is homogenous and isotropic.



Southwell has also treated this problem extensively. In 1929, Bergmann

and Reissner extended Southvrell's work to include the case of homogeneous

and orthogonal-anisotropic plates with stiffeners of vanishing and com-

paratively low bending stiffness running longitudinally. In 1930,

Schmieden investigated the case of two or more longitudinal stiffeners

having equal bending stiffness, but his d-ta are confirmed only for t,he

case of infinitely low bending stiffness. In 1923, Ruber established

the theory and the general differential equation of bending in orthogonal-

9
anisotropic plates. Seven years later, Seydel applied his differential

equation to solve the same structure subjected to shear. In 1931,

Timoshenko extended his own energy method from the case of one stiffener

3
to two stiffeners. In 1947, T. K. Wang extended Timoshenko 's energy

method to any number of stiffeners. Design curves also have been presented

. TT » 11 -m Wang s paper. ..v..- ^

Recently, a series of papers by Kloppel and Scheer have treated a

multitude of combinations of stiffener arrangements for simply supported

12 13
rectangular plates. ' Based upon these papers, Kloppel and Scheer

published a handbook in which various types of results based upon computer

solutions have been shown in tables and charts.

Most el^.stic buckling investigations of plates under shear have been

done analytically. In the area of experimental work, Scott and Weber

conducted a few tests in order to verify Timoshenko 's theory. Moore

15also reported on 60 different tests on aluminum-alloy 17S-T plats girders.
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III. METHOD OF ANALYSIS

1. Introduction

As mentioned above j there are three approximate methods for solving

plate buckling problems that are of practical use. In this research

the Rayleigh-Ritz energy method was used because it is the most convenient

method for numerical calculation, especially using an electronic computer.

Although the finite-difference method is also a powerful method for

computer programming, for the case of stiffened plates one has to set up

different simultaneous equations for different parameters. With the

Rayleigh-Ritz method the buckling matrices can be set up for a general

case and directly utilized for chosen values of the parameters. In 1960,

Kloppel and Scheer published a handbook which presents tables and charts

covering a large number of elastic stability problems for stiffened,

simply-supported, rectangular plates. These tables and charts were

obtained using the energy method, and a digital computer was utilized to

solve the buckling matrices for the various problems. However, in this

handbook, the minimum stiffener rigidity ratio Y" was not given for any

of the cases considered. Also, two sim.ple approximate formulae, i.e..

\.ax
= ^^-^^ + 5.34/[a/(l-n)]^}/(l-n)^•' (2)

for a/(l-ri) < 1

'^max
= ^^-^^ "* ^•00/[«/(l-n)^]}/(l-^)^ (3)

for a/(l-ri) > 1



were Cxaployed to calculate the upper l:imltln& buckliDg values for the

care of a rectangular plate v/ith one longitudinal .stiff ener subjected

to pure shear. In this research, the limiting buckling values were

calculated by a more exact raethod. In addition, the curves for the

minimum stiffener rigidity ratio y* are also presented for different

plate aspect ratios and position parameters. Simple cubic polynomial

equations have also been obtained to fit those curves for practical

design purposes.
. .

:
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In general the Rayleigh-Rit?, ii;ethod is obtained in the following

steps: first, assume the solution in the foria of a series which satisfies

the boundary conditions but with undetermined parameters A^.; second,

insert these functions into the expression for the potential energy or

the compleraentary energy, and carry out any required integration. The

resulting expressions are functions of the undetermined parameters A^^^,

where m = 1, 2, . . .. Since the potential energy or the com.plementary

energy must be a minimum for equilibrium, these parameters can be deter-

mined from the minimizing conditions

Stt
= 0, i-- = 0, . . . or

8Aj ' SA

3j7;

^1 ^h3A, 3a.

in which i: is the total potential energy and ']* is tfie correspondent

complementary energy. If m. parameters are taken, Eq. 4 gives ra



simultaneous equations from which these parameters may be solved. In

this investigation, a double Fourier series

w(x,y) =: E Z A SIN -"^ SIN ^ (5)

m n

was assumed to represent the deflection surface of the plate in the z

direction. The potential energy of the plate was calculated from this

assumed function. In Eq • 5, A are the undetermined parameters, where
^ ' mn

m"l, 2, . . .,n=l, 2, . . ., and a and b are the dimensions of the

plate in the x and y directions, respectively. Since this investigation

deals with the elastic buckling of the plate, the minimizing conditions

of the derivatives of the total potential energy based on Eq. 5 give m x n

homogeneous linear equations form a buckling matrix [M] of m x n order.

For the sake of easy computation of the, smallest eigenvalue, that is,

the dimensionless buckling coefficient k, of the matrix [M] , the matrix

[M] is separated into two matrices [A] and k[B] . Eventually, the following

matrix equation will be obtained: "": -

, J^ . ^

[A] = k[B]
' .^ ^.' .

•

. (6)

in which both [A] and [B] are square matrices of m x n order. Solution

of Eq. 6 will yield k values for different n and a values,

2. Assumptions

The following assumptions were used in this investigation:



1. Rooke's lav; Is valid.

2. The plate is homogeneous and isotropic.

3. Boundary stresses are unifor;iily distributed.

4. Any stretching in the roiddle plane of the plate is negligible.

5. The deflections of the plate are small.

3. Derivation of the Governing Matrix Equation

The following energy equations will be employed to derive the governing

3
matrix equat3,on: ,

(1) Internal energy of the plate,
,

U == ^ //{( -'i^ + ^^ )2 - 2(1-;.) [
-^-^-f

^} - (
-^^- )']} dxdy (7)

P 3x 3y 3x 3y 3x3y

(2) Internal energy of the stiffener

EI ,2

s 2 2 (y=n-b)
3x

(3) External energy of the plate

W= t • T ff ^^ dxdy
'

(9)
dx 3y

(A) Total potential energy

= U + U - W (10)
p s

The derivation of the governing matrix equation can be carried out



in the following steps:

1. Calculation of derivatives

V7(x,v) = E E A SIN SIN —r^ (11)
mn a b

m n

^--i- I I^A COS ^^ SIN^ (12)
9x a mn a b

ni n

•^ = + E E ^'^- A SIN 21^2. cos ^^ (13)
3y b mn a b
^ m n

-^4 = - E E ^^ A SIN 25?^ SIN^ "

(14)
„ 2 2 mn a b .

dx m n a

^^=-EE-H-A SINSI25, siN^ (15)^2 , 2 mn a b - -

dy m n b

2 2

-r—r— = + E E ;— A COS COS —r^- . (16)
dxdy ab mn a b ' .

m n

2. Orthogonal relationship of the assumed double Fourier series

a =0 for m r p
r SIN —;|^ SIN ^~- dx' { (17)

= ^ for m == p

a
___

=0 for m 7^ p
/ COS --- COS ^-^ dx { (18)
o a a a ^ . ^ -^

= — for m -= p
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a • =0 for m + p = even

/ SIN ^^ COS £-^-^ dx { ,
(19)

^ for m + p = oddo a a * 2a m
TT 2 2

m - p

3U

3. Calculation of the internal energy of the plate, U and ^ • C

mn

T^ a b ' 2 ,2 „ ^2 ^2 ^2 ,

"p ==

2 ^o ^o ^^ 72 + 72 ^ - 2(1--) t -^ 72 - ^ -^^ ^ ^
^"^y

(20)

Substituting w and its derivatives from Eqs . 11, 14, 15 and 16

into Eq. 20, it can be shown that the integral of the terms in the

brackets vanishes:

/ / 2(l-y) E Z E Z { ^54^ -A A • SIN ^^^ ' SIN ^IZ
00 z, 2 mn pq a bmnpq ab

SIN ^^ • SIN^ - ™^ A -A • COS 2^
a b /, z mn pq a

a b

cosm . COS £^ • COS ^ }dxdy
b a b -^

2 2 4 2 2 4
„.T v.mniT mn7r.a_b,2 „ /-nx

Z E 2(l-y)
( -2-2 27- ) 2 2 ^mn

= ° ^^1)

m n a b a b

So, Eq. 22 is obtained,

TT - D .
^"^

. a . b ^ „ .2 , 2 ^ 2 2.2
U =^—TTTT ^^A (m +an)
P z "4 2 2 mn

a m n
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V:-
2

= • \ • -4 • ^ ^ A^ (m^ + aV)^ (22)
e 8 a3 mn

m n

in which

o,-
'''2^'''— - ""'':'' (23)

12 • b • (1-y )

and

3U a IT t o o o o

—f^ = :j- 'A (m + a n ) (24)A , 3 mn .mn 4a

3U
To simplify setting up the matrix equation,

"
is multiplied

oA

4fi 4a
by a constant C ( C = —

^

= v ). So,

tiT • b • TT • D

. /

8U ,3 a • iT^ • t „ , „ „

TT^ • C = -^^ •
-^ ^ -A (m^ + a n^) = A • R (25)

dA ^2 .3 mn mn mn
mn tiT o 4a

e

in which R = (m*^ + n )
"

%- - (26)mn

4. Calculation of the internal energy of the stiffener U and • C
s 3A

ron

EI a 2 -

„ _ s . , 8 w .2

s 2 o 2 (y=n'b)
dX

^^c ^ ^ 9 9
-^- • V ; Z E Z E A A m p^ SIN -^^40 mn pq a

a m n p q '^^
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SIN ^-— • SIN nirn ' SIN qrrn) dx
a

EI ^4 ,

-~ •^•-IzZEmA A SIN riTin • SIN OTrn
2 4 2 ran mq ^

a m u q
^

2 t L 4
Y, • a • Ti • 7" • -^ j: Z X m A A SIN nTtn
L e 4 J nin mq

a m n q ^

SIN qTTn (27)

Multiplying the derivative of U with respect to A with C,
s

"^

r.;n
'

3U^
4a-^ 2

^

irn tir o a
e

Z A . SIN q-nn
mq ^

q

4
= 2m • Yt SIN niTT-i Z A SIN qirn

L mq ^

q

S • SIN mrn Z A SIN q7rn (28^)m m.q
^ -. ^'^^'

q

in which

^m
= 2 •

ni
• Yl (29)
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5. Calculation of the external energy of the plate W and —— • C
oA

nin

TT I ^ . r r °W dW , .W= + t'T/ / TT-^T" dxdy
o o 3x 3y

-^

2 a b
= + t • T • -\- / /{ZZZZm-q-A -A

a'D o o mn na
m n p q .

*^^

COS 2IL2i . SIN 5121 . SIN 2IZ . cOS ^IZ
} dxdy

a a b h ^

2 / u
TT 4a"b „ „ „ „ . . mnpq= + t • T • —r- -^^V^ Z E E I A -A

a-b 2 mn pq , 2 2. , 2 2.
IT mnpq ^^ (p -m ) (n -q )

= - 4t • T • Z Z Z Z A -A --—^-V__ (30)mn pq , 2 2, , 2 2s
^^^

mnpq *^^ (m -p ) (n -q )

(III } =odd)
n + q

The derivative of W v;ith respect to A is as follows;
mn

f- • C - - 8t • , I I A •

, f'"', ,
(31)

<::?'-°^^)



aw
Multiplying —— by C,

mn

3W
9A

C = - -%— • 8t • T • Z E A
.mpg^

mn
2

tTT G p q
pq , 2 2s / 2 2v^^ (m -p ) (n -q )

(
"• + P = odd )
n + q

in which

6. Calculation of the total energy IT

n = U + U
P s

- W

= a
t ^ ^ ,2 > 2, 2 2,2-=-EEA (m + an)
3 mn

a m n

+ Y a tr^'-'-^EEZm A A SIN n-rrn • SIN qirn
'L e A3 mn mq

a m n q

14

- T • k E E A

p q

_mnp^

pq , 2 2x . 2 2.
*^^ (m -p ) (n -q )

(32)

T = 32a'

Tr2

(33)

+ 4-t-T-EEEEA A
mnpq

m
2 2w 2 2,mn pq / 'i ^\ r ^ ''^

n p q
* ^ (m -p ) (n -q )

(34)
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7. Calculatici, of —— L

mn

9U 3U 3W
in

. r EL. . c + —^ • C • C
JT ^ ~ 8A ^ 9A "^ 3A

mn mn mn mn

= A • R + S • SIN nTrn Z A SIN qun
mn mn m mq

+ T • k • E E A
, 7^% ,

(35)

*^^ (m -p ) (n -q )p q

911

8. Setting —— * C equal to zero

mn

A • R + S • SIN nirn E A SIN qirn
mn mn m n °^*1

+ T . k • E E
,
fP\ ,

= .
(36)

p q (m -p ) (n -q )

or

A • R + S • SIN nTin E A SIN qTrn
mn mn m n '"'^

= -k • T • E E A -y-™V-^ ™
p q ^^ (m -p ) (n -q )
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9. Setting up the buckling matrix

Choosing different values A^ ^ , A, „ , ... A in Eq. 37, the following
'^ 11 12 mn

matrix equation is obtained:

[A][X] = k[B][X] . ., (38)

in which both [A] and [B] are symmetrical matrices of m x n order, [X] is

a column matrix of independent variables known as the eigenvector.

4. Solution of the Matrix Equation

The buckling coefficient k in Eq. 38 is, mathematically, the

smallest eigenvalue of that matrix equation. There are many numerical

18 19
approaches ' to the solution of Eq. 38. The successive rotation

19
method was used in this investigation. This method requires the

transformation of Eq. 38 into the form •

*-".'

[Q][Z] = k[Z] (39)

in which k is the eigenvalue of [Q] and [Z] is the eigenvector corres-

ponding to that specific eigenvalue, [Q] is a new matrix derived from

[A] and [B] . The method also requires that [Q] be a symmetrical matrix

after the transformation. Then, successive rotation transformation are

applied to both sides of Eq. 39, until [Q ] is obtained such that all
m

nondiagonal terms are zero. The diagonal terms of this [Q ] will then
m



17

be equal to the eigenvalues and the smallest one (absolute values

considered only) is the buckling coefficient sought.

Eq. 39 can be obtained according to the following steps:

1. Examine the positive definiteness of matrices [A] and [B] of Eq,

20
38 . If both [A] and [B] are positive definite or only [B] is positive

definite, Eq. 38 can be used directly to obtain Eq. 39. If neither

[A] nor [B] is positive definite, there is no guarantee that a real

solution of eigenvalues exists. If only [A] is positive definite,

Eq. 38 should be arranged in the form •

[B][x] =
f:

[A][x] (40)

For the case of a stiffened plate subjected to pure shear, [B] is always

not positive definite. Therefore Eq. 40 x-zill be used to derive Eq . 39

2. Diagonalize [A]

[A] can be diagonalized by Introducing a sequence of squares

matrices [T ] and operating as follows.

[A] = [A ]
o

fT^]' [A^._^] [T^J=- [A^]

(41



so that

18

[T^]' . . . ['i2]'[T^]'[A][T^][T^] . . . [T^] == [A^] (42)

ia Eqs, 41 and 42, [T ] is a rotation matrix

[T^]

1

1

• •

P q

• •

C -s

10
10

S c

(43)

where C = COS0 and S = SINQ. The rotation matrix is employed such that

each [T^] causes a particular off-diagonal element a^^ in [A_] to vanish.
pq

As [T ] is an orthogonal matrix, the transpose of [T ] is equal to it;

inverse

[T^]' = [T^]
-1

(44)

It can be shown also that the product of any two orthogonal matrices
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remains orthogonal. Therefore, if we let

[V] = [T^][T2] . . . [y

we obtain

,-1

(45)

[V]"-" = [V]' = {[T^][T2] . . . [T^]}' = [T^]' . . . [T2]'[T^]' (46)

So Eq. 42 becomes

[V]'[A][V] = [A^] ; (47)

and

[V][V]'[A][V][V]' = [V][A^][V]' :, •
_. . (48)

or

[A] = [V][A^][V]' (49)

Letting

[D] = [A^],

Eq. 49 becomes
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[A] = [V][D][V]'
.

... (50)

3. Substitute Eq. 50 into Eq. 40 •

'

[B][x] = I [V][D][V]'[x] '

•

(51)

4. Premultiply both sides of Eq. 51 by [V]

'

'

[V]'[B][x] = ^ [D][V]'[x] ,, (52)

5. Define [H] = [V]'[B][V] and [Y] = [V]'[x].

Eq. 53 takes the form

[V][Y\ = ^ [D][YJ /
^

(54)

5. Take the square root of [D]

As [A] is assumed to be positive definite, every element oi the

diagonal matrix [D] is real and positive. In other words, [D] can be taken

as \
.

>"
., ...

[D] = [G][G] (55)

in which g. .
= v^dTT (56)

such that
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IHJIY] =^ IG]IGJ[Y] (57)

or

[GI^^IHIIGI'^LGIU] = ^ [G][Y] (58)

Let [G] "''[H][G]~-'" = [Q] and

[G][Y] = [Z]

Equation 58 becomes

[Q][z] = J [z] (59)

7. Diagonalize [Q]

.

^
-

The technique described in step 2 can be employed to diagonalize

[Q] . The final result becomes

[Q] = [S][K][S]' (60)

in which [S] is a square matrix of n eigenvectors assembled together,

[K] is of the form . '^

1/k ~

l/k^

l/k^

0.00
1/k

n
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1/k^, l/k^, . . . 1/k are eigenvalues of [Q] . The buckling coefficient

k is k. in Eq. 61 that has the smallest absolute value.

5. Programming the Problem for Computer

Solution

Though all buckling coefficients in this research were calculated

by high-speed IBM 360/system computer, for the sake of generality the

FORTEAN IV program is not presented in this thesis. Instead, a complete

flox<r diagram has been developed in Appendix I. The steps of this flow

diagram, simply follow the numerical procedures derived in the previous

section. '•;,

'. ..v!?! -J-
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IV. SELECTION OF THE SERIES COMPONENTS AND ACCURACY

As introduced in Section III, the estimated approximation

miTx
w(x,y) = I Z A -SIN --"- • SIN -^ : (62)mn a • bm n •

.

was assumed to solve the buckling coefficient problem. For a very rigor-

ous solution, the two summations over m and n would have to be taken from

1 to °>; from this a matrix of infinite order would result. Although an

exact solution is not available from Eq. 62, through correct selection of

the series components, sufficiently accurate buckling coefficients, which

deviate at most around 2% from the exact solution, can be obtained. From

21 22extensive calculations by Borsch-Supan ' and based on preliminary work

in this investigation, the choice of the components should be as follows:

1. For plates with a symmetrical stiffener arrangement, both m and

n vary from 1 to 6.

2. For plates with a < 3 and without a symmetrical stiffener arrange-

ment, m = 1 to 5.

3. For plates without a stiffener, the choice of the components

varies greatly. In general, m = 1 to 5, n = 1 to 6 for 0.5 < a < 1,

and m = 1 to 7, n = 1 to 5 for 1 < a < 6. •
.
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V. RESULTS AND DISCUSSION

1. Limiting Buckling Values

The limiting buckling values (upper limits) are the buckling values

related to the "Euler" buckling stress of the whole plate. When the

stiffened plate (Fig. 1) is subjected to shearing stresses, if the

rigidity of the stiffener is not large enough, the inclined waves of the

buckled plate run across the stlffener and buckling of the plate is

accompanied by bending of the stiff ener. By subsequent increase of the

rigidity of the stiff ener, a condition in which each part of the plate will

buckle as a rectangular plate with simply supported edges and the stiffener

will remain straight, may be finally achieved. The upper limits of the

buckling coefficients are those corresponding to the limiting buckling

values.

Theoretically, the above-mentioned limiting buckling values are not

the maximum buckling values attainable. If the rigidity of the stiffener

is increased beyond the point where the plate obtains its limiting buckling

value, greater buckling values can be obtained. However, because of the

following two conditions the limiting buckling values have been referred

to as maximum buckling coefficients throughout this research:

(1) The possible increase of k above the limiting buckling value

only extends from Otol5%, however the corresponding required

increase in the rigidity of stiffener is much higher than that

required below the limiting buckling values.

(2) The dimensions of the matrices would be enormously large in
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order to have sufficiently exact values above the limiting

buckling values.

„... As the limiting buckling values can be calculated by assuming that

each part of the stiffened plate buckles as a rectangular plate with

simply supported edges, some buckling values for unstiffened plates are

needed first to calculate these limiting buckling values. These buckling

values for unstiffened plates k are tabulated in Table 1 for values of a
u

ranging from 0.625 to 6.0. The corresponding stiffened plates are also

listed in the table. ' '
• ' '

From the buckling coefficients listed in Table 1, the limiting

buckling values for the corresponding stiffened plates k can easily be
max

calculated by the following equation:

k = k /(1-n)^
^'

"^:^ V (65)max u ^ '

The results of this calculation are presented in Table 2. For comparison,

approximate values obtained using Eqs. 2 and 3 are also included in Table 2.

For design purposes, the more exact values based on the Rayleigh-Ritz

method have also been presented in graphical form in Fig. 3.

From Fig. 2, it can be observed that there are some discontinuities in

the curves, e.g. at ct = 1.6, 2.8, for n = 0.2; a = 1.26, 2.1, 3.0 for

n = 0.4; etc. This phenomenon can be explained as follows: the limiting

buckling values were calculated by a matrix of(mxn)x(mxn)
dimensions, in which m and n are components of the assumed double Fourier's

series, for the unstiffened plate. Because of the symmetry of the plate.
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the matrix can be split into two independent matrices, one for m + n = even

and the other for m + n = odd. Calculations show that the two matrices give

the critical values alternately. The discontinuities are transition points

from one group to another group of matrices,

2. Charts of Minimum Rigidity Ratio vs. Plate Aspect Ratio

Following the procedures of the flow diagram in Appendix I and using

the limiting buckling values of Table 2, the minimum required rigidity

ratio Y* (EI /bD) for m.aximum buckling coefficients have been calculated

for n - 0.2, 0.3, 0.4 and 0.5. The results are presented graphically for

o ranging from 0.5 to 3.0, in Figs. 4, 5, 6 and 7.

3. Use of the Charts ^^

Although the minimum required rigidity ratio y* ^as been calculated

only for n = 0.2, 0.3, 0.4 and 0.5, the charts presented in Figs. 4,5,6

and 7 can be used to advantage in the folloxjing two ways:

(1) Apply the polynomial interpolation method to obtain the desired

Y* values. A flow diagram for the computer solution of this

method is presented in Appendix III.

(2) Follow the procedures of the floxj diagram of Appendix I to

find Y* values by computer and check some points with the

charts. If smaller matrix dimensions are used, determine the

factor of deviation. Then, approximate results can be obtained

by multiplying each answer with the factor of deviation.

For Y* values between a = and a = 0.5, a linear variation
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between the origin and the calculated value of Y" at a = 0.5

gives satisfactory values.

4 . Approximate Design Equations

It was observed that the curves in Figs. 4 through 7 have some common

characteristics. Considering a curve as shown in Fig. 2, it is obvious

that each section of the curve as indicated in the figure represents the

corresponding curve in Figs. 4 through 7. With this in mind, a curve-

fitting process has been carried out by the method of Least Square. As

there is one inflection point to each curve, a cubic function was

assumed. The results were as follows:

Y* „ o = 22.4 - 79.3a + 81. Sa" - 18.9a ,

n = 0.2

2 3
- 18.9a

for 0.5 < a < 2.0 (66)

Y* ^ , = 23.5 - 86.8a + 93. 4a^ - 20. Sa^ ,

'n = 0.3

for 0.5 < a < 2.5 (67)

Y* „ ,
= 13.3 - 57.0a + 72. la^ - 13. 7a"^

,

'n = 0.4

for 0.5 < a < 3.0 (68)

Y* r, r = 27.7 - 142.7a + 199. 2a^ - 39. 7a^ ,

n = U.J

for 0.5 < a < 3.0 (69)
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Though Eqs. 66, 67, 68 and 69 are of the same type, an attempt to estab-

lish the function y* = fCa,ri) was not successful. For comparison, the

approximate equations have been plotted with the calculated curves as

shovm in Figs. 8, 9, 10 and 11.

i
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VI. CONCLUSIONS

With the investigation limited in scope to the case of a simply

supported plate stiffened by one longitudinal stiffener, the following

conclusions can be drawn: .__ -

(1) The Rayleigh-Ritz method can be used to analyze the buckling

of stiffened plates with good accuracy if enough coefficients

of the assumed series are used.

(2) From Table 2, it can be concluded that the limiting buckling

values (upper limits) calculated from Eqs . 2 and 3 are not

all conservative compared to those values determined using the

Rayleigh-Ritz method.

(3) The limiting buckling values are not the maximum buckling

coefficients attainable.

(4) If the aspect ratio a of the plate is constant, the minimum

rigidity ratio y"" increases as the position parameter n increases.
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VII. RECOMMENDATIONS FOR FURTHER STUDY

The following are recommended as subjects for further investigation.

(1) Determine the minimum stiffener rigidity ratio Y" for cases of

more than one longitudinal stiffener and of longitudinal and

transverse stiffeners crossing each other orthogonally under

all kinds of stress boundary conditions.

(2) Investigate the possibility of obtaining the equation

Y* = f(a,n)

in which a is the aspect ratio of the plate and n is the

location parameter of the stiffener, for each case.

(3) As the limiting buckling values are not the maximum buckling

values attainable, using larger buckling matrices to investi-

gate the behavior of the plate beyond the limiting buckling

values is recommended

.

'

(4) Find y* based on the maximum buckling values, provided the

maximum buckling values have been determined as indicated in

the above recommendation.
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Table 1. Buckling coefficients for unstiffened plate

o
k

By Formula*

Values
Corresponding Stiffened

Plate
p Calculated'"-* n a

0.63 17.45 17.716 0.2 0.50

0.71 14.60 14.310 0.3 0.50

\ 0.83 11.24 11.518 0.4 0.50

1.00 9.34 9.343 0.5 0.50

0.93 10.17 9.999 0.2 0.75

1.07 8.84 , 8.753 0.3 0.75

1.25 7.90 7.781 0.4 0.75

1.50 7.12 7.083 0.5 0.75

1.25 7.90 7.781 (>.2 1.00

1.43 J 7.29 7.232 0.3 1.00

1.67 6.78 6.834 0.4 1.00

2.00 6.34 6.561 0.5 1.00

1.56 6.98 6.976' 0.2 1.25

1.79 6.59 6.713 0.3 1.25 _

2.08 6.26 6.481
•

0.4 1.25

2.50 5.96 6.069 • 0.5 1.25

1.88 6.47 6.643 0.2 1.50

2.14 6.21 6.401 0.3 1.50

2.50 5.96 6.069 0.4 1.50

3.00 5.78 5.863 0.5 1.50

2.50 5.96 6.069 0.2 2.00

2.86 5.83 5.903 0.3 2.00

3.33 5.71 5.801 0.4 2.00

4.00 5.59 5.640 0.5 2.00
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Table 1. (Continued)

o
"

k Values Correspondi'jg Stiffened

Plate
V.

By Formulas'' CaIculated"" T) a

3.13 5.75 5.824 0.2 2.50

3.57 5.65 5.724 0.3 2.50

4.17 5.57 5.616 0.4 2.50

5.00 5.500 5.552 0.5 2.50

3.75 5.62 5.679 0.2 3.00

4.29 5.56 5.605 0.3 3.00

5.00 5.500 5.552 0.4 3.00 .

6.00 5.451 5.493 0.5 3.00

*Calculated by formulas: . .

ky = 4.00 + 5.34/a ^, for a < 1 (63)
VI -

f

k = 5.34 + 4.00/a ^, for a > 1 (64)

**Calculated in this research by Rayleigh-Ritz Method.
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Fig. 1 . Notation of the Plate
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NOTATION

a = length of plate

b = vjidth of plate

3 2
D =^ Et /12(l-y ), flexural rigidity of plate

E = modulus of elasticity

I = moment of inertia of sLiffener
s

T = shear in pounds per square inch

T = critical shearing stress in pounds per square inch
cr

t = thickness of plate

a - a/bj aspect ratio of plate

6 = b/t, slenderness of plate

b - location of stiffener from x-axis

n = b /b , stiffener location parameter

Y^ = EI /bD, stiffener rigidity ratio
L s

Vi
= Poisson's ratio

W = deflection of plate in z direction

A = coefficient of double Fourier series
mn

U = internal energy of plate

U = interiiai energy of stiffener

W = external energy of plate

I! -- U + U - W, total potential energy of the system
p s

[>I] = buckling matrix

[A],[i)] = subm.atrices of [M]

a = Ti^-Et^/12b^(l-y^) ,.
* •
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3 2 3 4
C = 4a /tTT a = 4a /bir D

^ 2 ^ 2 2,2
R = (m + a n )mn

4
S = 2in Y.m ii

3 2
T = 32a /tt

in,n,p,q = integers, number or subscripts

a = aspect ratio for unstiffened plate

k = buckling coefficient of stiffened plate

k = buckling coefficient of unstiffened plate

Y* = least required rigidity ratio

k = upper limit of buckling coefficient of stiffened plate
max
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APPENDIX I

FLOW DIAGP^AM FOR SOLUTION OF BUCKLING COEFFICIENT

The following symbols are used in the flo^^7 diagram:

A, B = matrices of Eq. 38.

am, an = number of components of the assumed series in x and y

directions, respectively.

N = order of matrices A and B

k = smallest eigenvalue of Eq. 38, also the buckling coefficient,

a = aspect ratio of the plate

Y^ = stiffener rigidity ratio

n = location of the stiffener

The arguments used in the subroutine JACOBI are defined as follows;

N = order of the given real symmetric matrix [Q]

Q = the matrix [Q] to be diagonalized (This input matrix is later

destroyed)

M = the number of rotations performed

V = storage for eigenvectors



Cl) . Main Program 1
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START

SET UP

[A] and

[BJ

CALL*
JACOBI(A)

TRANSPOSE""
Diagonalized

[A]

TRANSPOSE

[TJ— [T]'

= [TP]

*Diagonalization of

Matrix [A]

**As [A] is a symmetrical matrix

JACOBI(A) diagonalizes only

the upper triangular part.

After transposition of [A],

[A] = [T]' [A][T]

[W] = [TP]

X [B]

[AA] - [U]

X [T]

A(I,I) -

l./A(I,I)

NO
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[BAB] = [AB]

X [A]

CALL*

JACOB I (BAB)

SELECT THE
SK'ILLEST

ABSOLUTE
VALUE OF

[BAB] = EIN

*Diagonalize [BAB]

[BAB] = [XX]' [BAB] [XX]

[BAB] of right hand side

is a diagonalized matrix

PUNCH

"[A] is not definite"



(2) . Main Program 2 - Set up matrix [A]

53

A(i,j) =

m = 1

n = 1

i = 1

J
=

P = 1

q =

q = q + 1

J = J + 1

A(i,j) = 2m Y SIN (pirn)
Li

SIN(qTrn)
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YES

i = i + 1

in = i/an

j = in X an

+ 1

'

p = p + 1

q = 1

^

m = m + 1

i = i + 1

in = i/an

j = m X an

YES



(3) . Main Program 3 -- Set up matrix {B]

55

m == 1

n •= 1
(

i »= 1 * \

J
- 1

P = 1
(

q
- 1 \

NO

B(i,j) = -32a' mnpq

2 , 1 2.. 2 2,
TT (m -p ) (n -q )

YES

q = q + 1

NO YES

B(i,j) =

J = J + 1

p = p + 1

q = 1

i = i + 1>
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:yes [A] and [B] have been

set up

J = 1

n = n + 1

^
> an \^NO

^^ES

'

m = m + 1

n = 1

' ^



C4) . Subroutine - JACOBI

57

SUBROUTINE JACOBI (N, Q, M, V)

YES

M =

1 = 1

X(I) =

MJ = I + 1

J = MJ

NO
•

X(I) = Q(I,J)

' '

IH(I) = J
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1 = 1

YES

XMAX = XCD

IP = I

JP = IH(I)

NO

EPSI = 10
-8

1 = 1 + 1

NO ^
RETURN

M = M + 1

'

TANG = 2Q(IP,JP)

Q(IP.IP) - Q(JP,JP) + y(Q(IP,IP)-Q(JP,JP))'- + 4(Q(IBJP))^

YES
I TANG = - TANG

2 1/9
COSQ = (1 + TAN G)

SING = COSG + TANG

oiwy — lAi^a" uuoy o
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on = Q(iP,iP)

'

Q(IP,IP) = B^^

Q(JP,JP) - B^^

Q(IP,JP) =

>

TEMP
COS©

K = IH(1)

•

TEMP = Q(I,K)

Q(I,K) =

•

MJ = I + 1

X(I) =

J = MJ
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^
NO

X(I) = Q(I,J)

IHCD = J

Q(I,K) = TEMP

YES
1 = 1 + 1

NO

X(JP) =

1 = 1

0..>_^_^I-I^ -0

<

TEMP = Q(I,IP)

Q(I,IP) = COSO"

TEMP + SIN0*

Qd.jp)

NO

xCD = iQCi.iP)

IH(I) = IP

Q(I,JP) =|-SINa
*Tr:MP + cosa*

Q(I,JP)

X(I) = |q(i,jp)

IH(I) = JP
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APPENDIX II

FLOW DIAGRAM FOR POLYNOMIAL INTERPOLATION OF BUCKLING COEFFICIENT

The following symbols are used in the flow diagram:

N = number of known buckling coefficients

NN = number of buckling coefficients to be calculated

x( ) = a values (aspect ratio of the plate) of NN buckling

i

I coefficients.

Zx( ) = a values of kno^m buckling coefficients

Y( ) = known buckling coefficients corresponding to Zx( )
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ABSTRACT

This thesis presents an analysis of the elastic buckling of a simply

supported rectangular plate reinforced by a single longitudinal stiffener

and subjected to uniformly distributed shearing stresses along the four

edges. The variables considered in the analysis were the plate aspect

ratio (width-to-depth ratio) , the longitudinal stiffener position and the

rigidity of the stiffener. The purpose of the investigation was to deter-

mine the optimum stiffener rigidity for various stiffener positions and

aspect ratios.

The Rayleigh-Ritz energy method was used in this research to derive

the governing matrix equation, which in turn was programmed for computer

solution using the successive rotation method of analysis.

The results are presented in the form of optimum rigidity ratio versus

aspect ratio curves. For design purposes, approximate formulas for these

curves were determined by curve fitting procedures.


