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Abstract

Price changes affect the profitability of agricultural land use at the inten-

sive margin (i.e. crop choice) and the extensive margin (i.e. land devoted to

crop production). Understanding how prices impact localized land use de-

cisions is important for predicting how production and its allocation across

producers change with prices. Due to its wide expanse and diverse geography,

the productivity US land differs across space and uses. Understanding the

drivers of land use decisions while accounting for such diversity is essential

for accurately modeling supply response at the regional and national level.

This dissertation contains two studies that provide insight into how price

changes impact land use decisions at the extensive and intensive margins.

In the first chapter examine the corn supply-price relationship in the

United States. I perform this analysis using field-level data across the con-

tiguous US (CONUS). This study is unique in that it incorporates micro-level

data from over 3 million fields to estimate region-specific supply response and

then aggregates results to the national level. The dataset used in this study

is nearly comprehensive, representing field-level decisions across fields that

accounted for over 88% of national corn production between 2009 and 2016.

The findings from this study illustrate the importance of incorporating

heterogeneity in supply response models. Supply response to price differed

substantially across regions with high supply sensitivity in the north-central

US and Mississippi River Delta, moderate sensitivity in Corn Belt states, and



low sensitivity in the western and Gulf Coast states. The relative importance

of corn production in the in the Corn Belt states of Iowa, Illinois, Indiana,

and Nebraska meant that it was far less sensitive and, in the long-run, more

stable to price changes than national corn supply as a whole. Including

heterogeneity in supply response also provided policy relevant context to

supply response studies. Overall supply response was negatively correlated

with area yields. This meant that price changes have a larger effect on planted

corn acres and a smaller effect quantity of corn itself.

In the last chapter I examine the impact that ethanol plant capacity has

on local land use at the extensive margin. The Renewable Fuel Standard

(RFS) has been one of the most influential agricultural policies in the past

20 years, increasing general US crop prices by over 20% and inducing a sub-

stantial in US ethanol production capacity (Carter et al., 2016; Roberts and

Schlenker, 2013). Its effect on cropland extensification was a concern before it

was passed since the policy includes a stipulation forbidding ethanol produc-

tion on cropland converted after 2007. Lands at the extensive margin tend to

be less productive and more environmentally sensitive. Extensive transitions

also tend to be less frequent than transitory breaks in crop rotations making

their impacts longer-lasting.

The goal of this final analysis is to isolate the impact of ethanol expan-

sion on cropland transitions from the general price changes. The concurrent

increase in general crop prices and ethanol construction from the RFS compli-

cates the estimation of plants’ effects. I isolate these effects using difference-

in-differences (DID) which removes impact from common price trends be-



tween the treatment and control group. The standard DID approach results

show significant pre-treatment effects stemming from non-random ethanol

plant construction. Treatment is likely non-random since ethanol plants lo-

cate in areas that provide better returns. Factors that impact the returns to

plants confound the analysis since they likely also impact cropland transition

decisions. To address this, I use propensity score matching to ensure these

confounding factors are identically distributed between the treatment and

control groups. Under the matched DID models, the expansion of ethanol

plants tended to increase cropland retainment and reduce lands transition-

ing from non-cropland to cropland. While these results seem contradictory,

they are consistent with the findings in recent literature. These impacts are

thought to arise due to higher program retention in the major US cropland

retirement program CRP due to changes that disproportionately impacted

major ethanol production areas.
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Chapter 1

Introduction

E pluribus unum, “Out of Many, One”, the motto of the United States and

the inspiration for the title of this dissertation. While an important reminder

to the origins of the United States, this motto also parallels agricultural

production in the US. Many individual producers contribute to the nation’s

total crop production and while facing differing constraints under different

environments. In this dissertation I study the nature of this heterogeneity,

how producers respond differently to changing prices and local demand and

how these differences correspond to aggregate changes. The following two

chapters in this dissertation cover how changes in local prices and demand

influence farmers’ extensive and intensive land use decisions.

In the context of this dissertation, the choice of crops is considered an

intensive margin decision, and the amount of land devoted to crop production

is an extensive margin decision. In the next chapter I study how changes in

crop prices influence intensive land use decisions. Specifically I estimate

the impact of price changes on the probability of planting corn across the

United States. This study utilizes a large field-level dataset consisting of
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over 32 million observations, which accounted for over 80% of the total US

corn acreage between 2009 and 2016. To incorporate heterogeneous price

response the across the country, I divide the national sample into Major Land

Resource Areas (MLRAs) and estimate separate across these areas. I find a

high degree of supply response heterogeneity across the country. Supply in

some areas was over three times more sensitive to price changes relative to

the Corn Belt. In other areas, the supply of corn barely responds to prices

at all. When results are aggregated across the country, I find that models

that do not account for heterogeneity in supply response tend to under-

estimate supply elasticities. Similarly, studies that proxy nationwide supply

elasticities with their Corn-Belt counterparts also underestimate nationwide

supply elasticities.

In the final chapter of the dissertation I study how changes in local ethanol

plant capacity impact extensive land-use decisions, the conversion to or re-

tainment of cropland. Cropland conversion is important as lands at the

extensive margin tend to be more environmentally sensitive and less produc-

tive as cropland. The remote sensed data used to identify field-level land uses

across the US often sensed using satellite imagery and often identified with

error. These errors compound when identifying sequences of choices such

as more permanent extensive land-use transitions (Donaldson and Storey-

gard, 2016). In this study I use a unique land conversion dataset to mea-

sure whether land was converted to cropland and the year of conversions.

This dataset specially constructed to address potential errors with validation

against surveyed National Resources Inventory (NRI) observations, filtering

2



by consistent observations, and removing lands that are more prone to mea-

surement error (Lark et al., 2017).

I use these data to estimate the effect of ethanol plant construction on lo-

cal cropland conversion or retention. The “treatment” of interest is whether

a field was in an area of expanding ethanol capacity. I define these treat-

ment groups using a geocoded dataset of over 200 ethanol plants across the

country. Treatment and control groups were then defined using the prox-

imity of the plant after accounting for each plants’ capacity, county yields,

and assumed conversion rates on land surrounding the plants. The goal is

to isolate the effect of the plant from general price changes. I do this using

a variety of difference-in-differences (DID) procedures which difference out

the effects of changes common to the treatment and control groups. Like the

previous chapter, I control for potential heterogeneity in the responsiveness

to price. In this study I do this using propensity score matching with the

difference-in-differences approach. Like other producers, plants are profit-

seeking and therefore choose non-random locations that will produce higher

expected profits. For instance, plants may choose to locate in areas with

higher crop productivity to retain a consistent supply of raw inputs. With

matching, comparable treatment and control groups can be constructed so

that the DID estimates are more likely attributable to the treatment effect

from the ethanol plant. This helps correct for potential bias of the DID

approach. An event study reveals statistically significant treatment effects

four years prior to plant construction. This suggests that the assumptions

needed for the DID approach to yield a causal estimates do not hold and

3



justify the use of the matching procedure. The matched DID estimates were

generally more statistically significant giving evidence that ethanol plants

increase cropland retainment but decrease cropland conversion. These re-

sults are contradictory since ethanol plants generally strengthen basis which

should, ceteris paribus, make crop production more profitable for area farm-

ers. Recent literature with similar findings suggest that concurrent changes

in land retirement programs could have discouraged cropland conversion and

disproportionately impacted areas with higher ethanol production. This and

balancing problems from the matching procedure suggest that adding more

matching variables, particularly ones relevant to the Conservation Reserve

Program (CRP), could improve the analysis.

In the following chapters in this dissertation I utilize large amounts of

field-level data across the major growing areas in the United States. Remote

sensed datasets have been used in a variety of applications across economics

and useful for providing data that is difficult to observe otherwise and pro-

vide micro-level surveillance over wide expanses (Donaldson and Storeygard,

2016). The agricultural economics discipline has benefited greatly from the

use of field level data, allowing for accurate the estimation of the incidences

of subsidies to assessing the environmental impact of crop production (Hen-

dricks et al., 2014b; Kirwan and Roberts, 2016). In this paper, this higher

spatial resolution allows for more accurate measurement of regional crop

choices at the field-level and broader land use within unique neighborhoods

of ethanol plants. Without these disaggregated datasets, researchers often

rely on datasets that average over political areas such as states or counties.

4



Averaging observations across arbitrary lines can mask correlations in fea-

tures of interest and lead to aggregation bias (Blundell and Stoker, 2005).

Observing behavior closer to the level where individuals make decisions can

help identify these correlations that would otherwise be lost due to averag-

ing. For instance, I found that fields experiencing extremely wet planting

conditions were less likely to plant corn in a given year. Widespread wet

planting conditions generally increase expected harvest prices due to reduc-

tions in expected aggregate supply. With remotely sensed data, weather

can be more accurately measured at the field-level, accounting for fields with

more moderate planting conditions and controlling for omitted variable bias.
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Chapter 2

Estimating Heterogeneous
Corn Supply Response to Price

2.1 Introduction

Accurate supply elasticities are critical when estimating the distribution of

economic surplus, the reallocation of production across producer groups,

and the impact of production externalities brought about by price changes.

While they represent general supply movements, elasticities ultimately arise

from the responses of individual producers as prices change. In this pa-

per, I construct corn supply response estimates for the Contiguous United

States (CONUS) by constructing a set of 122 heterogeneous regional sup-

ply response estimates using observations across 3.6 million fields. Because

corn production takes place over an environmentally, climatologically, and

economically diverse area, accounting for heterogeneity is important to ac-

curately estimate supply response in the US as a whole. I find that there is

high degree of heterogeneity in corn supply response across the US and that

models that do not allow for coefficient heterogeneity tend to underestimate

6



nationwide elasticities and misrepresent supply dynamics.

Tractably producing accurate national supply elasticities is challenging.

Using national or state average prices and quantities to estimate elastici-

ties can average out potentially important correlations within the country

or state. Using smaller regional samples may not represent the country as

a whole. With remote sensed data from the Cropland Data Layer (CDL), I

model supply response over a field-level dataset that is reasonably represen-

tative of the US as a whole. This dataset accounted for over 80% of the total

planted corn acreage and over 90% of corn production between 2009 and

2016. I estimate supply response by modeling crop choices conditional on

past choices. Modeling crop choice separately across more than 100 areas of

the country and conditioning on past crop choices allows for variable supply

response across areas, parsimoniously incorporates desirable rotational con-

cepts of crop choice modeling, and reduces computational complexity across

the large dataset.

Under this framework, I assume that supply responds to prices through

only crop choice. To construct acreage response estimates, I multiply the

estimated planting probabilities by field acreage. To compute quantity re-

sponse I multiply by county yield estimates. Marginal effects and elasticities

are then computed using estimated crop choice marginal effects with respect

to crop prices under the assumption that yields are not correlated with prices

variations. However, this does not mean quantity response should equal the

acreage response. Corn planting decisions were found to be more sensitive to

price changes in areas with lower yields which drove acreage response below

7



quantity response.

Modeling over separate subnational samples of the data helps identify ar-

eas of the country where crop choices are more sensitive to price fluctuations.

In general, I find that there is a high degree of supply response heterogeneity

across the country. Supply in some areas was elastic while supply in other

areas was uninfluenced by price changes. The diversity of supply response

across the United States is pertinent to the study of regional effects of poli-

cies that impact domestic prices. In particular, I found that producers in the

environmentally sensitive Prairie Pothole Region were more far responsive

to price changes than the average farmer in Corn Belt states. Environmen-

talists are especially concerned with the expansion of cropland in this area

as it serves as an important breeding and habitat area for many species of

migratory waterfowl (Wright and Wimberly, 2013). While assessing the en-

vironmental impact of national corn supply response is beyond the scope of

this paper, these findings suggest that there are potential benefits to using

models that allow for more localized supply response heterogeneity. The high

variability in the US corn supply response across regions also means that the

supply a given region is less representative of the country as a whole. Re-

gional elasticities particularly Corn Belt estimates are often produced in the

literature. The Corn Belt elasticities in this paper were approximately half

of their national counterparts.

To understand the benefits of using more micro-level data, it is useful

to discuss why modeling with average aggregated data can produce different

results. Modeling supply response with a single set of coefficients is ap-
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propriate when either producers respond to prices identically or when price

variation is independent across individuals. While restrictive, homogeneity

in response across all agents within a group will, by definition, imply that

the mean response will equal the individual response. This was often an

assumption in early supply response studies e.g. (Chavas and Holt, 1990;

Lee and Helmberger, 1985) The second less restrictive assumption is that

price variation occurs randomly across the sample. Modeling over average

aggregate variables when price fluctuations are non-random can bias esti-

mate in a fashion similar to omitted variable produces bias. This bias arises

when non-random price fluctuations are correlated with omitted field-level

features that also impact crop choices (Blundell and Stoker, 2005). There are

a variety of field-level features which can impact cropping decisions. At the

national-level, soil quality on average is static but is highly heterogeneous

within the country. For this reason, a national aggregate model effectively

omits the influence of soil quality. While this can be partially addressed by

modeling with state or county-level data, these areas are not delineated by

agriculturally relevant features and can similarly omit variation in relevant

field-level variables. Areas with higher quality soil may be more apt to plant

corn as prices change than areas with more marginal soils. If price fluctua-

tions were non-random and tended to be more extreme in areas with higher

soil quality, then models estimated using aggregated variables would over-

estimate the supply response relative to estimates built up from separately

modeled-individual responses.

For similar reasons, models that allow for heterogeneous response across
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regions should be incorporated to reduce bias. Using models that restrict

the responsiveness of producers to the country average is biased when prices

do not change uniformly across the country. If prices are more variable in

areas where producers are more sensitive to price variation, models that

do not allow for heterogeneous coefficients will tend to underestimate the

true price response of the country since the model will underestimates price

responsiveness in areas with higher price variability. Using disaggregated

field-data to estimate models with heterogeneous response is ideal since it

allows observations that are likely to respond similarly to price to be grouped

to improve the overall estimation of supply response.

In this paper I compare national elasticity measures between two mod-

els. While both were estimated using field-level observations, the first model

pools observations over the entire national sample to produce a single set of

coefficients for the nation. The second model allows for coefficient hetero-

geneity by separately estimating supply response over different subsamples of

the national sample. The result of this analysis shows significant differences

between the pooled and heterogeneous models which suggests that behav-

ioral homogeneity and random price assignments do not likely hold. This

indicates that there could be pooling bias and models that allow for supply

response heterogeneity are preferred.

Provided that yields are do not respond to prices, homogeneous supply

response implies that the acreage response should, on average, equal the

quantity response. Homogeneity in planting response implies that planting

decisions are made similarly across the entire sample therefore should be
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uncorrelated with yields. Homogeneity in supply response also implies that

the impact of production externalities (e.g. environmental) brought about by

price changes is also homogeneous since cropping decisions are not correlated

with impact potential.1 I find that this generally does not hold as supply

response was correlated with several variables of interest. For example, crop

choice was more sensitive to prices in areas with lower yields which lead to

a quantity response that was below the acreage response. This is consistent

with the results of the conceptual model of Lubowski et al. (2006) in which

producers allocate land across uses to maximize profits. Generally speaking,

crop choices will be more responsive to price changes when crop producers

are more indifferent between choosing one crop or another as when two crops

provide similar profits for a given set of prices. This was more likely when

corn yields are relatively low.

Incorporating heterogeneous supply response across an area as vast and

variable as the United States is computationally challenging. To retain

tractability, oftentimes compromises in observations or scope need to be

made to estimate supply response models under more complex contempo-

rary modeling frameworks. Smaller samples may not be as representative

to the national-level and more aggregated models may suffer from aggrega-

tion bias. The current supply response literature places more emphasis on

incorporating heterogeneity (Haile et al., 2016; Lacroix and Thomas, 2011;

Motamed et al., 2016). Many do so using a fixed effect or additive separable

1While the task of attributing environmental harm to changing agricultural practices
due to price changes is beyond the scope of this paper, environmental impact is an area
where knowledge of heterogeneous response can be applied.
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heterogeneous effect frameworks. Models allowing for heterogeneous supply

response coefficients are also becoming popular as more evidence of non-

additive heterogeneity in supply response comes to light (Koutchadé et al.,

2018). Seen as a major component of supply response, more of the literature

now incorporates rotational frameworks. To include the influence of rotations

while allowing for heterogeneity many researchers utilize variants of multi-

nomial discrete choice models. In particular, random parameter and latent

class multinomial discrete choice models are popular as they can consider

sequential choices with many alternatives (Claassen et al., 2017; Langpap

and Wu, 2011). While these models are highly flexible, they are also com-

putationally burdensome and many of these studies utilize regional data and

are limited to datasets on the order of less than 1,000 observations to a little

over 100,000 observations.

Estimating regional supply response, Hendricks et al. (2014b,c) provide

a promising alternative to multinomial discrete choice modeling frameworks

when working with larger datasets. They utilize a Markov chain framework

and model conditional crop transitions using two or more individual discrete

choice models to characterize crop transition probabilities. Heterogeneity is

introduced in these models using control variables within the models and by

estimating these models over different subsets of the dataset. Modeling across

separate regions of the country introduces heterogeneity in the model. Mod-

eling crop transitions conditional on previous choices allows for the analysis

of rotations. This is desirable since crop choices, especially in the short-run,

are often motivated by the benefits of rotating crops. This framework is also
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convenient as the total sample is divided first by region, and then again when

conditioning the sample over previous crop choices. While this methodology

requires more regressions, each regression is computationally simple. This

helps retain tractability even over large datasets (Hendricks et al., 2014b,c).

As such, this study uses the Markov chain transition framework and focuses

on the impact that prices have on the probability of planting corn and is able

to model over a dataset with over 30 million observations.

2.2 Conceptual Framework

In this section I provide an overview of the Markov transition regression

approach. Markov chains are used for a variety of purposes and describe

sequences of state probabilities. In this model “state” probabilities refer to

probabilities that a particular crop is grown in a particular period. Con-

ditional transition probabilities are probabilities that a crop choice is made

conditional on crop choices that precede it. Conditional transition prob-

abilities are a primary component of Markov chains. Since, in rotations,

the benefits of planting a given crop are conditional on past crop choices,

Markov transition regressions naturally incorporate rotational concepts that

are desirable in crop supply response models.

Suppose farmers choose among K alternative crops. These conditional

crop choice probabilities help describe the Markov chain shown in equation

2.1. The K × K matrix (T) is the conditional transition matrix. This

matrix is composed of conditional transition probabilities Pi|jt equal to the

probability that crop i is chosen at time t given crop j was chosen in period
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(t− 1). The 1 × K vector (pt) is a vector of state probabilities at time

t. Unlike the transition matrix, the state probability vector is composed of

unconditional probabilities that a farmer will plant a particular crop
(
Pkt
)
.

T× pt−1 = pt (2.1)

T =


P1|1
t P1|2

t · · · P1|K
t

P2|1
t P2|2

t · · · P2|K
t

...
...

. . .
...

PK|1t PK|2t · · · PK|Kt

 ; pt =


P1
t

P2
t
...

PKt

 (2.2)

The goal of the analysis is to estimate the probability that a particular

crop is planted in each period and on each field. Formally the goal is to char-

acterize pt and its relationship with crop prices. A complication of using the

Markov chain in equation 2.1 is that the state probability is dependent upon

all previous state probabilities. Therefore, to estimate the state probability

of planting some crop in a given period would require all of the previous

state probability estimates. To avoid the complication of nesting probability

estimates, this study focuses on the steady state probability, the state proba-

bility vector after it has stabilized over time. This is represented in equation

2.3 as the steady-state version of the Markov Chain where p is stable over

all time periods ceteris paribus.

T× p = p (2.3)

In this case, p can be characterized entirely by the elements in the conditional

transition matrix, in other words, rotational incentives.

With the importance of rotations in mind, Hennessy (2006) provides im-

portant theoretical insights on how one might characterize these rotation
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choice incentives. In particular, he shows that if the practical impact of ro-

tation crops comes through changes in yield or input requirements, then the

profitability of a given rotation simplifies to a linear function of the yield

and the input benefits.2 Hennessy simplifies the approach with the concept

of a rotation “memory”. The memory of a rotation refers to the maximum

length of time that a lagged choice can influence contemporaneous yields or

input requirements. For instance, if rotations have a memory of two, then a

crop choice made two periods in the past could influence contemporaneous

yield or effective input. Under crop rotations with a one-period memory,

only the previous crop choice could influence contemporaneous yields. This

study assumes that rotations have one-period memory since it is implicit to

the simple Markov chain in equation 2.3. Hennessy found evidence for a

one-period memory rotations in the state of Iowa (Hennessy, 2006).

Crop rotations with a single-period memory greatly simplify the analysis

as it means that only the one-period-lagged choices need to be accounted

for in the modeling process. For instance, if crop rotations only involved

corn (crn) and soybeans (soy) and had a one-period memory, the mod-

eling framework would need to account for the crop sequences {crn, soy},

{soy, crn}, {crn, crn}, and {soy, soy} but not, for instance, {crn, crn, soy}.

If {crn, crn, soy} were selected, then the first two letters of the rotation im-

ply that the optimal crop to follow a corn decision would be corn. However,

the last two letters of the rotation imply that the optimal crop to follow corn

2While the functional form of the model is simplified, the results of Hennessy (2006)
do not imply that these benefits will be the same across different observations and hence
heterogeneous marginal effects are still relevant.
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would is soybeans. This is because only the previous letter matters to the

contemporary decision for rotations with one-period memory. While assum-

ing that rotations have a single period of memory restrict the set of rotations

that need to be modeled, these rotations may involve more than two crop

choices. For instance if I added another land use choice of fallowing (fal),

then {crn, fal, soy} would be a relevant crop rotation. This would imply

that it is optimal to fallow for a season following a corn-production year,

plant soybeans following a fallow year, and plant corn following a soybean

year. Even with a single-period memory assumption the modeling framework

can still become complex when more crops are added.

Corn supply response is the primary focus of this analysis. Because

there are many relevant alternatives to corn and this relevancy differs across

the country, I simplify the rotations by considering two crops, corn (crn)

and some “other” competing crop (oth). Under the assumption of one-

period memory rotations, I only need to consider the set of rotations R =

{{crn, crn} , {oth, oth} , {oth, crn}} where {crn, crn} is continuous corn, {oth, oth}

is continuous other crop selection, and {oth, crn} is a other crop - corn rota-

tion3. Since the steady-state probabilities are all functions of the transition

probabilities, the initial modeling goal is to estimate the conditional transi-

tion probabilities and their relationships with crop prices.

3Here a {oth, crn} rotation is equivalent to a {crn, oth} rotation since it specifies an
other crop follows a corn crop selection and vice versa.
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2.3 Methodology

To estimate heterogeneous supply response across the United States, a set

of Markov transition regression models were run over different subsets of the

national sample. Across regressions, data were divided into groups delineated

by both Major Land Resource Areas and soil texture classifications where

separate regressions were estimated for each group. The procedure is equiva-

lent to estimating a regression over the entire national sample and including

first-order group interactions with a series of group-specific dummy variables.

Following Hendricks et al. (2014b), I utilize two Markov transition equations

to define the elements of the conditional transition matrix. One equation

models the probability of planting corn given the previous planting decision

was corn and the second models the probability of planting corn given some

other crop was previously planted. These two models can be characterized as

first-order Markov transition probability equations describing the probability

that a farmer plants corn conditional on the previously planted crop. These

choices are characterized by the indicator variable ykit where:

ykit =

{
1 | Crop k planted on field i at time t
0 | Otherwise.

(2.4)

Equations 2.5 and 2.6 show the structure of the Markov transition prob-

abilities of planting corn given corn or some other crop was planted in the

previous year respectfully.

yCCit = E
[
yCit | yCit−1

]
= Λ

(
β10 + βC1 P

C
it + βO1 P

O
it + γ1Xit | yCit−1 = 1

)
(2.5)

yOCit = E
[
yCit | yOit−1

]
= Λ

(
β20 + βC2 P

C
it + βO2 P

O
it + γ2Xit | yOit−1 = 1

)
(2.6)
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Here yCit is an indicator variable if corn were grown on field i at time t, PC
it is

the expected harvest-time corn price, PO
it is the expected harvest-time other

price index, and Xit contains field-level controls. These controls include

extreme pre-plant precipitation, field i’s slope, soil productivity, irrigation

status, and a time trend. Λ (·) is the logistic distribution. Only fields raising

either corn or other crops between the two consecutive periods are in the

sample used to estimate these models. Functionally, these two equations are

identical with the only difference between them being the samples used to

estimate the relationship.

Equation 2.7 shows the structure of the Markov chain that is being es-

timated. Since this analysis admits only two crop choices, the conditional

transition probabilities can be simplified using the compliment of the non-

corn transitions. Here (Pit) is the steady state probability of planting corn.

In this way, the left hand side variables for the two models are conditional

probabilities of {crn, crn} and {oth, crn} planting sequences.4 The estimated

coefficients βC and βO are of interest as they are used to estimate the marginal

effect that crop prices have on the conditional probability of planting corn in

the contemporary period.

4Note that sequences are not the same as rotations. While rotations are repeated,
sequences need not be. For instance a crop sequence {oth, crn} occurs when a farmer
plants the other crop in the previous period and corn in the following period. An {oth, crn}
rotation is when a farmer plants some other crop in the previous period and corn in the
following period and then immediately repeats this sequence. In other words, if a farmer
adopts the {oth, crn} rotation, half of the time, he will plant an {oth, crn} sequence
and the other half he will plant a {crn, oth} sequence. Conversely, continuous rotations
(e.g. the {crn, crn} and {oth, oth} rotations) are entirely comprised of their respective
continuous sequences and are therefore identical to their respective sequences.
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[
yCCit yOCit(

1− yCCit
) (

1− yOCit
) ] [ Pit

(1− Pit)

]
=

[
Pit

(1− Pit)

]
(2.7)

The steady-state probability of planting corn in period t takes the form

of equation 2.8. Assuming steady-state probabilities exist, they can be es-

timated using Cramer’s rule over the steady-state Markov process.5 The

steady state probability is completely characterized by the probabilities of

switching from crop to another. The steady state probability will be above

0.5 if transitions from non-corn to corn are more likely than switches away

from corn.

Pit =
yOCit

1− yCCit + yOCit
=

yOCit
yCOit + yOCit

(2.8)

With the structure of the Markov chain in mind, I define short and long-

run effects of price changes on the probability of planting corn. From the

Markov chain, the two state probabilities are shown in equations 2.9 and

2.10.

P = PyCCit︸ ︷︷ ︸
PCC

+ (1− P) yOCit︸ ︷︷ ︸
POC

(2.9)

(1− P) = PyCOit︸ ︷︷ ︸
PCO

+ (1− P) yOOit︸ ︷︷ ︸
POO

(2.10)

The state probabilities are made up of two sequential probabilities. Since the

data in this analysis is restricted to those planting corn or some other crop,

any field planted in corn would must have transferred from corn to corn,

5The steady-state probability of planting the other crop is the complement of the
steady-state probability of planting corn.
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or from the other crop to corn. The probability of a field planting a corn-

to-corn sequence
(
PCC

)
plus the probability of field planting an other-to-

corn sequence
(
POC

)
therefore equals the steady-state probability of plant-

ing corn. The short-run marginal effect assumes price changes impact the

state probability of planting corn only through the transition matrix. Since

the impact from the transition matrix alone does not contain any influence

from the change in the steady state variable, it is considered a transitory

influence from price and is therefore called the “short-run” marginal effect.

Any marginal effect that incorporates influence from changes in the steady-

state relationship is therefore referred to as as a “long-run” marginal effect.

Equation 2.11 shows the short-run marginal effect when the price of crop k

changes.
∂P
∂P k

∣∣∣∣
SR

= P
∂yCC

∂P k︸ ︷︷ ︸
∂PCC

∂Pk

∣∣∣
SR

+ (1− P)
∂yOC

∂P k︸ ︷︷ ︸
∂POC

∂Pk

∣∣∣
SR

(2.11)

The long-run marginal effect allows influence from changes in the steady

state probability as well as the transitory effects of the transition matrix.

Equation 2.12 shows the long-run marginal effect of a price change and can

be derived by inserting the derivative of equation 2.8 as a second term. Like

the short-run marginal effects, the long-run state marginal effects will be a

sum of the long-run marginal effects of prices on the sequence probabilities

POC and PCC .

∂P
∂P k

∣∣∣∣
LR

=
∂P
∂P k

∣∣∣∣
SR

+
[
yCCit − yOCit

] [1− yCCit ] ∂yOC

∂Pk + yOCit
∂yCC

∂Pk

[1− yCCit + yOCit ]
2︸ ︷︷ ︸

∂PCC

∂Pk

∣∣∣
LR

+ ∂POC

∂Pk

∣∣∣
LR

(2.12)
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The long-run marginal effect shares much of its functional form with the

short-run effect and differs only by the second component in equation 2.12.6

Understanding this component is important for understanding how short

and long-run elasticities and marginal effects differ. If farmers that planted

corn in the previous period had the same probability of planting corn as

those planting the other crop in the previous period, then the long-run effect

would equal the short-run effect. Since there are typically returns to rotating

crops, it is more likely that a field not in corn plant would plant corn in the

next period than a field continuously plants corn
(
yOC ≥ yCC

)
. If this is the

case, then the additive term will take on the opposite sign as the last ratio

component. Since the “y” terms are all conditional probabilities, they take

values between zero and one. Also note that the denominator is squared and

is therefore always positive. Therefore, the sign of the ratio term will take the

signs of the derivatives in the numerator. It is expected that these derivatives

have consistent signs for a given crop k. If the derivative is with respect to

corn prices, these derivatives are expected to be positive since higher corn

prices make producing corn more profitable regardless of the previous crop

choice. If the crop price k is for some other crop, these derivatives are

expected to be negative since higher “other” prices raises the profitability of

the other crop relative to corn ceteris paribus. Since the returns to rotations

are likely to imply (yOC ≥ yCC), the long-run marginal effect will be smaller

in magnitude than the short-run effect.

6This model can also be characterized as a standard dynamic model with a lagged
dependent variables. Under this model short-run marginal effects involve the effect con-
temporary prices while long-run effects also incorporates the influence from the lagged
dependent variable.
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The effect that prices have on rotations can be found using the sequential

marginal effects as well. In the case continuous corn or continuous other-crop

rotations, the sequential marginal effects will equal the rotational effects.

This is because individuals in the continuous corn (other) rotation perform

a corn-corn (other-other) planting sequence in every year. This is not true

for those in the other-corn rotation. Half of the years, individuals in these

rotations perform a other-corn planting sequence and the other half they

perform a corn-other planting sequence. As such, the probability of a other-

corn rotation is the sum of these sequential probabilities. Equations 2.13,

2.14, and 2.15 show the relations between each rotational probability and

the sequential probabilities. Since every rotational probability is a linear

function of the sequential probabilities the rotational marginal effects will be

linear functions of the sequential marginal effects.

P{CC}ROT = yCC (2.13)

P{OO}ROT = 1− yOC (2.14)

P{OC}ROT = yOC + 1− yCC (2.15)

Under this framework, supply responds to price only through crop choice.

To compute the expected acreage for a given field, I simply multiply the state

probability by the field acreage to obtain the field’s expected planted corn

acres. To obtain the expected quantity I multiply this last term by the field’s

county-level acreage. This is shown in equations 2.16 and 2.17 respectively.

acrescrnit = Pit × acresi (2.16)
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qtycrnit = Pit × acresi × yieldcrnit (2.17)

Since only the crop choice probability is modeled as a function of prices, price

fluctuations influence planted acreage and quantities through this probability

term as shown in equations 2.18 and 2.19.

∂acrescrnit
∂P k

=
∂Pit
∂P k

× acresi (2.18)

∂qtycrnit
∂P k

=
∂Pit
∂P k

× acresi × yieldcrnit (2.19)

From the summation rule of differentiation, aggregating these marginal

effects to the national level is as simple as summing them across all i fields.

Equations 2.20 and 2.21 show the estimated national aggregate planted corn

acreage and 2.22 and 2.23 show the aggregate marginal effects for corn

planted acres and quantity respectively.

acrescrnt =
∑
i

acrescrnit (2.20)

qtycrnt =
∑
i

qtycrnit (2.21)

∂acrescrnt
∂P k

=
∑
i

∂acrescrnit
∂P k

(2.22)

∂qtycrnt
∂P k

=
∑
i

∂qtycrnit
∂P k

(2.23)

Weighted acreage elasticities were calculated according to equation 2.24.

Here P k is the price of crop k, P̄ k is the national average of the kth crop’s

price, and acresi is size of field i. Equation 2.25 shows the formula for the
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quantity weighted elasticity where yieldcrnit is the estimated yield for each

field estimated at the county-level using NASS data.7

εacres =
∑
i

(
∂Pit
∂P k

× acresi
)

P̄ k∑
i Pit × acresi

(2.24)

εqty =
∑
i

(
∂Pit
∂P k

× acresi × yieldcrnit
)

P̄ k∑
i=1 Pit × acresi × yieldcrnit

(2.25)

2.3.1 Standard Error Calculation

Supply’s response to price is the relationship of interest. Estimates of both

the effects and their standard errors are needed to identify statistically sig-

nificant effects. To characterize these standard errors, it is important to

understand how prices vary over time. If futures prices varied over time

while basis patterns remained perfectly fixed, then only the temporal vari-

ation would be used in estimating coefficients. Stable spatial correlation in

prices violates the independence assumption in regression analysis and biases

standard errors downward. Figures 2.1 and 2.2 show the box plots for the

corn price and other price index for each year of the analysis. These plots

show evidence of consistent basis patterns arising over time since the vari-

ance is similar in each year. This illustrates that the price variation is larger

between years than it is within years. Taken together this means there are

likely within-year dependence problems in the dataset.

The dependence of observations in the dataset complicates the estima-

tion of the standard errors of the coefficients since it effectively shrinks the

7A simple linear trend model was used to estimate county yields.
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degrees of freedom. A common way to correct the estimation of the stan-

dard error is to first suppose that observations can be clustered such that

there is observational independence across clusters while allowing observa-

tional dependence within clusters. If the number of clusters is large, then the

coefficient variance can be estimated with the “sandwich” matrix, an average

of the variance-covariance matrix across the clusters. The goal in averaging is

to produce a unbiased estimator for the coefficient variance. Therefore, when

the number of clusters is “small” an unbiased estimate of variance cannot be

obtained by computing the sandwich matrix. While the minimum number of

clusters needed to obtain an unbiased estimator is debated in the literature,

generally 30 to 50 clusters are considered minimally sufficient (Cameron and

Miller, 2015; Cameron et al., 2008).

Figure 2.1: Corn Price Distributions by Year
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Figure 2.2: Other Price Distributions by Year

Under the standard criteria, the number of clusters in this analysis would

be considered small since at most there are 13 clusters, one for each year be-

tween 2004 to 2016. In this case, the standard error can be estimated using

the wild bootstrap. Unlike the usual paired bootstrap procedure the wild

bootstrap preserves the distribution of the original error terms and indepen-

dent variables. The wild bootstrap creates pseudo-error terms by multiplying

the errors from the original regression by some random perturbation with a

mean of zero and a unit standard deviation. This effectively ensures the

pseudo-error terms have the same distribution as the original error terms. In

the wild bootstrap, the pseudo-error terms are added to the corresponding

dependent variable estimates to produce pseudo-dependent variables which

are then used to obtain a new set of coefficients. The standard wild boot-
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strap is not practical when using the logit model or any other model esti-

mated through maximum likelihood since errors are not observed. Instead I

use the wild score bootstrap from Kline and Santos (2012) recommended by

Cameron and Miller (2015).

The wild score bootstrap is similar to the standard wild bootstrap except

the score function components are perturbed instead of the error terms. The

score function of the logit model is shown in equation 2.26. Here yit is the

dependent binary variable, Zit is a (1× k) vector of independent variables,

and θ is a (1× k) vector of coefficients where i indexes observations. The

wild score bootstrap creates coefficient replications by perturbing the original

score function components by some random variable (Wt) where E [Wt] = 0

and V [Wt] = 1 and then performing an additional Newton-Raphson iteration

using the perturbed score function, shown in equation 2.27. Here (n) is

the total number of observations,
(
θ̂
)

is the original coefficient vector and

(−H−1) is the Fischer Information matrix. This bootstrap procedure has

a key advantage that once the original model is estimated, bootstrapped

coefficients can be produced analytically without re-estimating the model

or computing the Fischer Information matrix at each iteration (Kline and

Santos, 2012). This attractive feature of the score bootstrap keeps the 1,000

iteration bootstrap over the 32 million observations in this dataset tractable.

∂`

∂θ
=
∑
i

[
yit − (1 + exp {−Z′itθ})

−1
]

Zit (2.26)

27



θ̂wild = θ̂ −H−1 1

n

∑
i

[
yit −

(
1 + exp

{
−Z′itθ̂

})−1
]

ZitWt (2.27)

To compute cluster robust statistics using the wild score bootstrap, a

common perturbation value Wt is applied to every observation within each

cluster by year (t). To simplify the wild bootstrap, the random perturba-

tion (Wt) usually takes on discrete values. Popular choices of Wt include

the Rademacher distribution where Wt takes on values of either 1 or −1

each with probability 1
2
, or the values suggested by Mammen (1993) where

Wt = −(
√

5−1)
2

with probability
(
√

5+1)
2
√

5
and Wt =

(
√

5−1)
2

with probability

(1−
√

5−1)
2
√

5
. While simple, the small number of potential values for Wt restrict

the number of samples that can be generated over the limited number of

clusters. Regressions with a minimum of year of 2008 have only 9 clusters

which means that there will only be (29 = 512) possible randomized samples

using the traditional weighting. I instead use an alternative weighting scheme

proposed by Webb (2013) which allows Wt to take on six values according to

equation 2.28. This method helps retain a simple sampling distribution while

increasing the number of potential random samples when there are only a few

clusters (Webb, 2013). As a result, Webb’s distribution expands the potential

random samples of the nine-year clustered bootstrap to (69 = 10, 077, 696).
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Wt =



−
√

3
2

with probability 1
6

−
√

2
2

with probability 1
6

−
√

1
2

with probability 1
6√

1
2

with probability 1
6√

2
2

with probability 1
6√

3
2

with probability 1
6

(2.28)

A series of 122 models were separately estimated to produce the original

coefficients. While these models were estimated separately, their results need

to be aggregated to produce national wide elasticity statistics. To ensure that

for each group, clusters were treated uniformly across different replications,

the clustered weights were applied identically over every model. That is, for

each of the 1,000 replications, weights were randomly drawn for each year

between 2004 and 2016 and identical replication-year weights were used in

all of the 122 estimated models.

Note: I am currently in the process of computing the stan-

dard errors for the statistics to follow and will appear in future

updates.

2.4 Data

Field Boundaries and Crop Choice

The goal of this study is to estimate the effect that price changes have on the

likelihood that farmers plant corn relative to other crops while allowing for

potential heterogeneity. Data were broadly used to (1) identify crop choices of
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individual producers over time, (2) incorporate relevant heterogeneity across

the United States, and (3) serve as independent price variables and regres-

sion controls. The USDA’s Cropland Data Layer (CDL) provides a set of

farm-level crop choice observations from as far back as 1997 to present. The

available crop price data restricts the analysis between 2004 and 2016. The

CDL identifies crop-choice using remote sensing, primarily via satellite. This

provides a categorical raster image of the CONUS at a 30m resolution. The

2008 Common Land Unit (CLU) shapefile dataset provides field-level bound-

aries across the United States.8 Using these boundaries, I crop choices and

other field-level attributes to a given field using raster cells that overlap with

an off-centroid point in each field boundary. Areas of the country with miss-

ing common land unit boundaries were filled in with boundaries from Yan

and Roy (2016).

Regions

To incorporate heterogeneity in this study, I estimate separate models over a

set of geographic boundaries known as Major Land Resource Areas (MLRAs)

that were established by the Natural Resource Conservation Service (NRCS).

The set of MLRAs consist of 278 subregions within the US that are broadly

categorized using regional characteristics such as physiography, geology, cli-

mate, water, soils, biological resources, and historic land use. These features

are relevant for agricultural productivity making these regions a convenient

way of incorporating heterogeneity in row crop agriculture across the coun-

8These boundaries were generously provided by Josh Woodard and Ag-Analytics
(Woodard, 2016a,b).
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try. Physiography considers the general elevation of the area above sea level

in feet and relief. These features are associated with drainage properties.

The geology criteria refers to general geologic properties of the land such

as rock age. Climate delineations were produced using Parameter-Elevation

Regressions on Independent Slopes Model (PRISM) data based on ranges of

annual precipitation, seasonal precipitation distribution, annual temperature

ranges, and seasonal freeze statistics. The water criteria considers water re-

sources available, its quality and quantity, and water use within the region.

This includes seasonal effects and intertemporal usage such as drought-year

water usage. The soil criteria characterizes the soil taxonomy to the “great

group” as defined in the Soil Survey Geographic (SSURGO) and SSURGO2

database. Soils at the great group level are defined by characteristics such

as salinization, wetness, and other important soil properties such as fragipan

which impacts water and root penetration (Soil Survey Staff, 2014). Biolog-

ical resources involve the descriptions of the dominant flora and fauna in the

area. The last category, land use, was produced using the 1997 National Re-

sources Inventory (NRI) data on land use. The NRI consists of survey data

collected at five year intervals at over 800,000 sample sites in the 50 United

States, Puerto Rico and the US Virgin Islands. Land use categories used for

MLRAs include cropland, grassland, forest, urban development, water, and

other (Natural Resources Conservation Service, 2001; NRCS, 2006).

The use of MLRAs as a control for spatial heterogeneity is convenient

since they simultaneously control for many important agricultural productiv-

ity predictors. The NRCS defines smaller subregions within MLRAs. How-
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ever, most of these subregions do not have enough observations to model

separately and therefore MLRAs were used instead.

MLRAs are attractive alternatives to using political boundaries such as

counties since they are characterized by important agricultural features.

However, a challenge of using CDL observations with MLRAs is that not

all states entered the dataset in the same year. For example, North Dakota

entered the CDL in 1997, its inaugural year, while Texas observations first

became available in 2008. Models were run at the MLRA-level and to avoid

issues where a subset of states were represented due to CDL data availability,

I removed observations before the MLRA had full coverage. For instance,

Iowa entered the dataset in 2004 while Minnesota entered the CDL in 2006.

The dataset for an MLRA that overlaps with Iowa and Minnesota and no

other state will begin in 2006 as this is the latest year between 2004 and

2006. Figure 2.3 shows the MLRA map and earliest year of analysis for each

MLRA dataset.
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Minimum Year By MLRA

2004.0
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2005.0
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2007.5

2008.0

Figure 2.3: Minimum Observation Year by Major Land Resource Area

Soil texture statistics were used with MLRA boundaries to characterize

model heterogeneity. To do this I constructed the commonly used 12 texture

classification groups using SSURGO designations and soil texture percent-

ages (Benham et al., 2009). I then aggregated the 12 classes into 5 classes

according to table 2.1. The 5-group classification tended to retain more ob-

servations within each group which ensured there were an adequate number

of observations in each regression. Even so, there were many instances where

the within-MLRA texture classification groups were too small to reliably esti-

mate the models. In this case, the soil texture classifications were aggregated

yet again. If a soil texture group within an MLRA had less than 20,000 ob-

servations, it was combined into the next closest group within an MLRA.

The “closeness” of these groups was determined by the distance between the

mean values of silt and clay percentages that define the texture groups. For

instance, the “clayey” five group texture classification has a mean proportion
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of 22.3% silt and 58.6% clay and the medium class has a mean proportion of

25.5% silt and 13.6% clay. This means that the two groups have a distance of

(0.223− 0.255)2 + (0.586− 0.136)2 = 0.204. Table 2.2 shows the soil texture

distances.

Table 2.1: Soil Texture Classifications
Group 12 Desig. Group 5 Desig.

Sand Sandy
Loamy Sand Sandy
Sandy Loam Moderately Sandy

Silt Medium
Silt Loam Medium

Loam Medium
Clay Loam Moderately Clayey

Sandy Clay Loam Moderately Clayey
Silty Clay Loam Moderately Clayey

Sandy Clay Clayey
Silty Clay Clayey

Clay Clayey

Table 2.2: Soil Texture Group Distances
Texture Group Clayey Medium Mod. Clayey Mod. Sandy Sandy

Clayey 0 0.204 0.104 0.416 0.681
Medium – 0 0.0445 0.158 0.365

Mod. Clayey – – 0 0.113 0.286
Mod. Sandy – – – 0 0.0435

Sandy – – – – 0

Prices

The importance of including and expectations in prices has been a persistent

issue in agricultural supply response literature (Gardner, 1976; Haile et al.,
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2016; Miao et al., 2016; Nerlove, 1956; Roberts and Schlenker, 2013). A com-

mon theme is that, when modeling planting decisions, it is important to use

prices that reflect harvest-time expectations at or before the time planting.

The earliest and simplest forms of expected prices were simply the previous

years lagged harvest price (Lee and Helmberger, 1985; Whittaker and Ban-

croft, 1979). In Nerlove’s famous supply response paper, he assumed that

price expectations come only from past realizations of prices and used lagged

prices and lagged dependent variables as right hand side variables(Nerlove,

1956). Others have used futures prices since, under the efficient market hy-

pothesis, these prices should reflect information about expected future price

changes (Gardner, 1976; Haile et al., 2014). Roberts and Schlenker (2013)

argue that futures prices are endogenous to expected plantings and argue

that they should be instrumented using purely exogenous variables such as

past weather, and yield shocks. Hendricks et al. (2014a) replicate this study

and find that instrumenting futures prices is unnecessary and harmed model

precision (Hendricks et al., 2014a; Roberts and Schlenker, 2013).

I employ a mixture of pre-plant spot and futures prices to form the ex-

pected price series. To be clear, the expected prices are the harvest prices

that farmers expect as they make their planting decisions. Under the ef-

ficient market assumption, the price of the harvest-time futures contract

represents the expected price of the commodity at harvest time in a delivery

location. The nearby futures price is the expected price of the commodity at

the delivery location at some imminent date. The difference between these

two contracts gives the market’s expected cost of carrying the product be-
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tween the nearby date and harvest time. That is, it is the market’s expected

cost that a farmer would incur if she were to store grain until harvest time.

Adding the current local spot price to the cost of carry gives the expected

harvest-time price for a given location.9

Much of the nation’s corn acreage is planted in the month of April with

planting starting in early April or late March. I assume that the planning

process begins in the months of January and February as this gives time for

required crop specific land preparation before planting begins. To construct

expected prices, I first average local daily spot prices over the course of

the months of January and February which I call the planting price
(
CP
it

)
.

Next, I average daily the nearby futures contract price
(
F P
t

)
and the harvest-

time futures contract price
(
FH
t

)
for the respective commodities in January

and February. I construct the expected harvest-time spot price expectations

according to equation 2.29.

Eit
[
PH
it

]
= F PH

t +
[
CP
it − F PN

t

]
=

[
F PH
t − F PN

t

]︸ ︷︷ ︸
Expected Cost of Carry

+CP
it (2.29)

In this analysis I use the prices of corn, soybeans, hard red winter wheat,

hard red spring wheat, soft red winter wheat, rice, and cotton. These prices

are all quoted in dollars per bushel with the exceptions of rice and cotton

9An alternative interpretation of this expected price comes from the perspective of
a farmer performing a short hedge. In a short hedge, farmers sell harvest-time futures
before planting. They would then buy back the futures contract and sell their commodity
at harvest time. As a result they would receive the harvest-time basis (the spot price
minus the buyback futures price) and initial future sale price. If the pre-plant basis for
the nearby contract is consistent with the nearby harvest-time basis, then this also equals
the expected harvest-time price for the farmer.
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which were quoted in dollars per pound. Daily values for futures prices

for these commodities are readily available from the Data Transfer Net-

work (DTN). Spot price datasets were constructed using a combination of

data from the Data Transfer Network (DTN) and Cash Grain Bids (CGB).

The pre-plant price was the market’s average expected price in January and

February. To ensure that the estimates are not dictated by a small number

of observed prices, I remove markets with less than 10 spot-price observa-

tions over January and February. Figure 2.4 shows the price coverage by

crop. Between 2004 and 2016 there were 1,367 corn, 1,252 soybean, 84 hard

red spring wheat (HRSW), 96 hard red winter wheat (HRWW), and 123

soft red winter wheat (SRWW) price locations with consistent observations.

Rice and cotton prices were collected from the National Agricultural Statis-

tics Service’s (NASS) at the national level from 2004 to 2016. Coverage for

the continuously observed local markets was rather good, and densely covers

most of the major field crop production areas.

Using the center of the market city as a reference, I used these prices to

construct annual basis maps for each commodity over the contiguous United

States. After estimating the expected commodity prices over the markets I

interpolated these estimates using ordinary kriging. Ordinary kriging has ad-

vantages over other interpolation procedures such as inverse distance weight-

ing since it takes the spatial correlation of the observations into account to

minimize the variance of the estimates.10 Basis map values were estimated

10Ordinary kriging requires the estimation of spatial dependence and the variogram.
While estimation problems can persist, much of the observations were within areas with
dense market coverage. It is therefore unlikely that error from variogram misspecification
would influence the bulk of used areas of the map.
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Figure 2.4: Commodity Price Locations Continuously Observed Between
2004 and 2016

over a raster image with a resolution of 0.01 square degrees (or approximately

36 square miles). Figure 2.5 shows an example of the corn basis map in 2009

and their respective standard errors for the localized markets of corn. To

maintain consistency of the price expectations estimates over time, the orig-

inal observation set contains only markets with continuously observed price

averages in every year from 2004 to 2016.
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Figure 2.5: 2009 Corn Expected Price Map

In this study I characterize the other crop price using a weighted aver-

age of soybeans, HRWW, SRWW, HRSW, cotton, and rice prices. Using
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a common weighting scheme for every field is problematic since the set of

relevant alternative crops to corn production will differ by the area of the

country. For instance, cotton may be a relevant alternative crop in the Mis-

sissippi River Delta area but an irrelevant choice in Wisconsin. To account

for this, I construct the other crop price as a Laspeyres Index. This is the

same index that is used to compute the Consumer Price Index. To track

price changes within a given region I create a “basket” of commodities in-

dexed from k = 1, . . . , K using produced quantities of these crops in some

base period (period 0). Equation 2.30 shows the functional form where P k
it

is the price for commodity k at time t and qk0 is the total quantity of crop

k produced in period 0. Using unique price indices for each MLRA ensures

that the other crop price will largely consist of crops grown in the region. For

instance, the dominant alternative crop to corn in the state of Iowa is soy-

beans. If the alternative acreage only consists of soybeans, then qk
′

0 = 0 ∀k′

where k′ is not soybeans, which means that only soybeans prices would enter

the price index.

PO
it =

∑K
k=1 P

k
itq

k
0∑K

k=1 P
k
i0q

k
0

(2.30)

There are several complications to using the standard Laspeyres index in

this study. First, crop choices are subject to change over time so it is unclear

whether using the observed quantity produced in a single period qk0 sensibly

represents the typical crop choice basket over the course of the study. Second,

the analysis is at the CLU level, each of which has a single observation in

each year. A particular crop planted at the beginning of the analysis does not
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preclude another crop from being considered in the future. Properly defining

of the initial quantity qk0 is important so the alternative crop price index

properly represents the prices of corn alternatives across different areas of the

country. Lastly while I observe crop choices on some fields before 2008, the

CDL dataset did not gain full coverage until 2008. To address these issues, I

modified the Laspeyres index. In particular I define qk0 as the MLRA-specific

total production of crop k from 2008 to 2016. I compute total production by

each MLRA for each crop by merging the field-level data with a county-level

yield dataset, multiplying the yield with the field-level acreage choices, then

summing over the MLRA from 2008 to 2016. Average annual yield data for

each of these crops are available at the county-level through the National

Agricultural Statistics Service (NASS).11

Controls

The final component to the data are the field-level controls. These controls

incorporate individual field heterogeneity and reduce potential bias in the

price coefficient estimates. To control for soil differences at the field-level, I

include the National Commodity Crop Productivity Index (NCCPI) and the

field’s slope as regressors. The NCCPI index takes many facets of the soil

pertaining to productivity into account. More detail of the NCCPI values can

be found in Dobos et al. (2008). The slope of the field is a key determinant

11The computation of this crop basket assumes that every crop grown in an area from
2004-2016 was a relevant crop over the entire course of these years. While technological
changes could introduce some of these crops over time, incorporating technological trends
into the production basket weakens the effectiveness of the price index since temporal
variation in the index will not entirely be due to price variation.
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of runoff, and erosion and is a common control in the literature (Wang et al.,

2015; Wu et al., 2004a).

Weather is also a factor that can influence crop choice. Since the analysis

is over planting decisions, pre-plant weather is of interest. Extremely wet

conditions can potentially delay planting and could cause farmers to plant

alternative crops such as soybeans with later planting dates. Extremely dry

conditions may have similar effects and may persuade farmers to switch to

more drought resistant crops. I incorporate extreme planting precipitation

conditions with two binary indicator variables. These variables were calcu-

lated using planting precipitation data percentiles from the field’s respective

MLRA between 1983 and 2016. The first variable indicates whether the field

experienced exceptionally dry pre-planting conditions in a given year and

equaled one if the April-May precipitation was at or below the MLRA’s the

25th percentile. 12 The second variable indicates wet planting conditions and

equals one if the field’s April-May precipitation was at or above the MLRA’s

75th percentile precipitation. Lastly, I control for irrigation by including a

2012 Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture

Dataset (MIrAD) dataset which gives information on the irrigation status

over the conterminous United States. This variable equals one if the field

was irrigated and zero if non-irrigated (Brown and Pervez, 2014).

12Corn planting for many of the largest corn producing states is most active in these
months (NASS, USDA, 2010).
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Crop Definitions and Data Filtering

Due to the diversity of suitable crops, constructing a parsimonious supply

response model over an area as large as the United States is challenging.

The Cropland Data Layer distinguishes a variety of crops, however their re-

spective prices are more difficult to find. In addition, many crops do not

have associated futures contracts which makes expected prices difficult to

construct. Since I account for heterogeneity using pooled regressions at the

MLRA-texture group level, I needed to ensure each of the regressions have

enough observations to produce reliable estimates. The Markov transition

probability regression modeling strategy requires that the training data con-

sists of only observations with two consecutive corn or other-crop choices

which can constrain the MLRA-texture group sample size.

For these reasons I divided the observation strata into 5 groups: corn,

priced crops, other crops, cropland, and non-cropland. Table 2.3 shows the

CDL observation designations. Corn consists of observations where the CDL

signifies only a conventional corn observation. That is, “corn” does not

include double-cropping observations involving corn (e.g. double-cropping

corn and soybeans), or less conventional varieties such as sweet corn, or

popcorn. Priced crops are crops with expected prices that enter the “other”

crop price index value (soybeans, rice, non-Durham wheat varieties, and

cotton) and associated double-cropped observations with these crops (e.g.

winter wheat-cotton double cropped observations). Other crops are crops

that are assumed to be substitutes in production to the priced crops. This

category includes double-cropped observations containing these crops. The
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“Cropland” category contains other crops that are less substitutable to the

priced crops. This category includes specialized fruit and vegetable crops and

perennial crops such as alfalfa. The final category, non-cropland, contains

land uses that are not immediately suitable for crop production including

marshland, pasture, and developed lands.
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Table 2.3: Cropland Data Layer Observation Designations
Corn Sweet Potatoes Greens Squash

Cotton Triticale Herbs Strawberries
Rice Alfalfa Honeydew Melons Sugarcane

Soybeans Almonds Lettuce Sweet Corn
Spring Wheat Apples Mint Switchgrass
Winter Wheat Apricots Misc Vegs Tobacco

Barley Aquaculture Nectarines Tomatoes
Buckwheat Asparagus Olives Turnips
Camelina Blueberries Onions Vetch
Canola Broccoli Oranges Walnuts

Dry Beans Cabbage Other Crops Watermelons
Durum Wheat Caneberries Other Hay/Non Alfalfa Barren

Fallow/Idle Cropland Cantaloupes Other Tree Crops Clouds/No Data
Flaxseed Carrots Peaches Deciduous Forest

Hops Cauliflower Peanuts Developed (All Levels)
Lentils Celery Pears Evergreen Forest
Millet Cherries Peas Forest

Mustard Chick Peas Pecans Grassland/Pasture
Oats Christmas Trees Peppers Herbaceous Wetlands

Other Small Grains Citrus Pistachios Mixed Forest
Potatoes Clover/Wildflowers Plums Nonag/Undefined

Rape Seed Cranberries Pomegranates Open Water
Rye Cucumbers Pop or Orn Corn Perennial Ice/Snow

Safflower Eggplants Prunes Shrubland
Sorghum Fruits Pumpkins Water

Speltz Garlic Radishes Wetlands
Sugar Beets Gourds Shrubland Woody Wetlands
Sunflower Grapes Sod/Grass Seed

Legend
Priced Crop Other Crop Cropland Non-Cropland
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Using the CDL classifications in table 2.3, I remove MLRA-texture groups

using a set of three hurdles. The first hurdle filters out MLRA-texture groups

with less than 20% of its total acreage in corn, priced crops, other crops, or

cropland to remove areas with low agricultural activity such as desert, and

mountainous or developed areas. The second hurdle ensures that the price

index reasonably applies to relevant alternatives to corn production. Since

the price index is constructed using prices from the “priced” crops and need to

represent the prices of the “other” crops, the second hurdle removes MLRAs

where less than 50% of the other crop acreage is composed of priced acreage.

Lastly, since corn is the main crop of interest, the third hurdle ensures the

MLRA-texture groups have enough corn observations to effectively model

the relationship between corn plantings and price. This threshold removes

MLRAs with less than 10% of their total other crop acreage in corn. In

addition to these three hurdles, I also remove MLRA-texture groups with

less than 50,000 total observations and MLRA-texture groups where less

than 20,000 observations enter either of their respective Markov transition

regressions.13

Data Summary and Probability Estimates

Table 2.4 shows the summary statistics for corn plantings, and the field

controls. After filtering, the data include a total of 69 MLRAs and over

32 million individual observations across 3.6 million fields. I estimated a

total of 244 separate Markov chain transition regressions across 122 total

13Observations also exclude CLUs that are smaller than 15 acres.
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MLRA-texture group subsamples. According to the Cropland Data Layer

and county-level NASS estimated yields, these MLRAs accounted for over

90% percent of the national corn production between 2009 and 2016 and

over 80% of corn planted acres when compared with NASS estimates. While

this may suggest that the sample is biased toward areas with higher yields,

the sample omits fields that are less than 15 acres since these fields make up a

relatively small portion of overall supply and area. Smaller fields are known

for being less productive (Lubowski et al., 2008). However, adding these

fields would increase the sample size and, by extension, the computational

burden considerably. The average field in the sample had a 40% chance of

planting corn in a given year from 2009 to 2016. A mean corn planting

probability under 50% should be expected since, under many rotations, corn

is rotated out for another crop every other year.

Table 2.4: Summary Statistics and NASS Comparison

Statistic Dataset Value NASS Value Pct. of NASS Value
Total Corn Acreage? 596,968,262 731,786,000 81.58%

Total Corn Qty. (bu.)? 95,040,212,033 105,300,000,000 90.26%
Mean Prob. of Corn Planting? 40.90%

No. of Obs. 32,127,647
No. MLRAs 69

No. MLRA-Texture Groups 122
No. of Fields 3,694,282

Total Field Acreage 217,310,028
Mean Field Size (acres) 58.82
Share of Irrigated Fields 8.52%

Mean Field Slope 3.09%
Mean NCCPI Soil Index 0.58

? Indicates values from 2009 to 2016
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I also present the computed the mean sequential and state probabilities

by year. The state probability of planting corn in a particular year is equal

to the probability of performing an other-corn planting sequence plus the

probability of performing a corn-corn sequence. Figure 2.6 shows the mean

values for the sequential and steady-state probabilities by year with the ac-

companying price variables.14 This figure shows that probabilities have the

expected correlations with prices, the probability of planting a continuous

corn or a other to corn sequence, and the steady state probability of planting

corn are all positively correlated with the corn-other price ratio while continu-

ous other sequences are negatively correlated with the corn-other price ratio.

Rotations are a disproportionately important component of the steady state

probability of corn. Recall that this is equal to the probability of planting

a continuous corn sequence plus the probability of planting a other-to-corn

sequence. Figure 2.6 shows that roughly two-thirds of fields planted to corn

transitioned from the other crop in the previous year.

14Note that the probability of performing a (Corn-Other) planting sequence will equal
the probability of the (Other-Corn) sequence since these probabilities are estimated at the
steady-state.
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2.5 Results

2.5.1 Elasticity Comparison

In this first subsection of the results I compare the short and long-run own-

price corn in this paper acreage elasticities with others found in the litera-

ture. Since the goal of this paper is to compare regions of the country and

national-level elasticities. I compare elasticities from studies that conducted

analysis over a multi-state area summarized in table 2.5. Many of the earlier

studies employed simple models over short state-level panels and had elastic-

ities around 0.2. Whittaker and Bancroft (1979) used a simple log-log OLS

model with a lagged price variables across a 44 observation state-level panel.

Lee and Helmberger (1985) estimated separate models over different years to

study the impact of farm programs. They used 3SLS procedure across four

states to take advantage of autocorrelation across time and contemporane-

ous correlation across states. When accounting for farm programs, they get a

similar own-price acreage elasticity similar to Whittaker. It was popular over

the 1990s to incorporate risk preferences into elasticity estimates, Chavas and

Holt (1990) and Chavas et al. (1996) used national-level data to estimate corn

and soybean acreage elasticities. To incorporate risk preferences, they used

the expected utility model framework using mean and variance of per acre

returns, and farm values as farm wealth proxies. Holt (1999) also utilized a

risk-preferences framework assuming that producers maximize the certainty

equivalent when making crop choices. Holt (1999) had by far the largest elas-

ticities in this set finding elastic planted corn acreage response. He suggests
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that a the relatively short panel in part attributed to the unusually elastic es-

timate. Langpap and Wu (2011) model crop choice at the Natural Resources

Inventories (NRI) site level. NRI site data is collected and distributed every

5 years. In their model, farmers make crop decisions to maximize utility

and are modeled using a multinomial logit framework which they used to

distinguish to non-crop and crop decisions and between different crops (e.g.

corn,soybeans,wheat,hay). While they had a rich dataset over a large area

of the corn belt, only 20% of their dataset could used for modeling due to

the computational complexity of the multinomial logit model.

Huang et al. (2010) model corn, soybeans and wheat production and

incorporate the influence of yield response in their estimates. Kim and Mos-

chini (2018) use a similar model but exploit the temporal price variation

that resulted from demand changes due to Renewable Fuel Standard leg-

islation between 2005 and 2007. Both Huang et al. (2010) and Kim and

Moschini (2018) utilize single differenced Arellano-Bond estimators which

estimates supply response with a fixed-effect framework and includes a dif-

ferenced lagged independent variable using the generalized method of mo-

ments. In their paper Hendricks et al. (2014c) used the Markov transition

regression used in this paper to estimate supply response over Iowa, Illinois,

and Indiana. They compared their estimates with the estimates of the fixed-

effects models including the Arellano-Bond estimator and found that fixed

effect approaches tend to to underestimate supply elasticities and generally

had considerably larger standard errors. They also found that modeling over

county-level variables tended to bias long-run effects upward and short-run
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effects downward. Both Hendricks et al. (2014c) and Kim and Moschini

(2018) found that the short-run elasticity was larger than the long-run elas-

ticity. Crop production is unique in that oscillating production between

different products improves yields, reduces input usage, and reduces produc-

tion risk. These rotational benefits encourage producers to resume standard

cropping patterns after a price shock leading to a smaller longer-run effect

of prices.

The nationwide results in this paper were estimated over a representative

field-level sample which tracks the decisions and field-level controls of over

3.6 million fields. As such, the results from this model should not suffer

from pooled bias that others modeling with county or state-level statistics.

Because the total area consists of over 80% of the corn-growing area of the

country over the years of the analysis, the data is also likely representative

at the national level. In this paper I provide two sets of elasticities estimates,

the first is over four states within the corn belt, Iowa, Illinois, Indiana, and

Nebraska and the second is at the national level. The Corn Belt elasticities

were similar to the ones found by Hendricks et al. (2014c). This is unsurpris-

ing since this paper uses a similar method over a similar area. Furthermore,

this procedure allows for heterogeneity in planting response across the coun-

try and likely provides a good quantity and acreage response estimates. The

Corn Belt estimates were below the estimates in Kim and Moschini (2018)

but this likely arises from differences in the growing areas. The national

elasticity estimates were large relative to many of the other estimates. The

expanded and more heterogeneous area considered in this study is likely a
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contributer to the larger estimates. Areas that are less dependent on consis-

tent corn production may be more likely to plant corn after a price increase

since corn is a less competitive crop choice. A smaller change in the relative

price of corn in these areas may be more decisive in determining the crop

choice relative to areas where corn is grown on a regular basis.

Table 2.5: Own-Price Corn Acreage Elasticity Estimates From the Litera-
ture

Study Years Coverage Resolution SR Elast. LR Elast.
Whittaker and Bancroft (1979) 1963-1974 IA,IL,IN,OH State 0.221 –

Lee and Helmberger (1985)
1948-49, 1951-53, 1980 IA,IL,IN,OH State 0.118 –

1961-73, 1978-79 IA,IL,IN,OH State 0.249 –
Chavas and Holt (1990) 1954-1985 United States Country 0.166 –

Chavas et al. (1996) 1954-1985 United States Country 0.249 –
Holt (1999) 1991-1995 IA,IL,IN,MI,MN,MO,OH,WI State 1.04 –

Lin and Dismukes (2007) 1991-2001 IA,IL,IN,MI,MN,MO,OH,WI State 0.345 –
Langpap and Wu (2011) 1979-1997 58,579 NRI sites in Corn Belt NRI Site 0.246 –

Huang et al. (2010) 1977-2007 U.S. counties County 0.510 0.980
Hendricks et al. (2014c) 2000-2010 IA,IN,IL Field 0.40 0.29

Kim and Moschini (2018) 2005-2015 12 Midwest States County 0.50 0.39

This Paper
2009-2016 IA,IL,IN,NE Field 0.390 0.259
2009-2016 United States Field 0.674 0.526

2.5.2 Control Coefficient Summary

While the coefficient values for the control variables are not the primary in-

terest of this paper, they help characterize why differences in planting prob-

abilities arise across the country. The coefficient values in logit models do

not correspond to marginal effects however their signs are consistent with the

signs of the corresponding marginal effects. Since many of the variables act as

controls and are not the primary focus of the analysis, coefficient statistics

are shown in tables 2.6 and 2.7 to illustrate the general relationship be-

tween the transition probabilities and the controls. Coefficient values varied

widely across the different models. Across every control, the minimum co-
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efficient value was negative and the maximum coefficient value was positive.

The coefficient signs within the quartiles were largely consistent between the

transition probability regressions. The price coefficients conform to economic

theory. Corn transitions tend to be positively correlated with corn price and

negatively correlated with the other price index. The probability of planting

corn was negatively correlated with the slope of the field. This is consistent

with expectations since fields with steeper grades require more fertilizer and

herbicide due to runoff and are generally more difficult to farm. The positive

dry planting indicator coefficients and the negative wet planting indicator

coefficients were also expected. Planting is time consuming and requires a

large amount of workable field hours within specific windows of the year.

Dry conditions during the corn planting season ensure farmers that planting

can conclude within the optimal seasonal window. Conversely wet planting

conditions create a host of problems including reduced yields and severe soil

compaction and planting delays also lead to yield penalties (Farnham, 2001;

MacKellar and Anderson, 2016). Since corn is generally planted earlier in

the year, it is not surprising that wet pre-plant conditions were negatively

correlated with corn planting. The productivity of the soil also had a positive

effect on the probability of planting corn. The positive coefficient on the soil

productivity index is expected since, from a nutrient standpoint, corn is a

relatively demanding crop. Irrigated fields were more likely to plant corn.

Corn tends to have a more demanding evapotranspiration requirements. It is

therefore not surprising that transitions to corn are more probable on fields

with irrigation (Stone and Schlegel, 2006).
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Table 2.6: Other-Corn Markov Transition Regression Coefficient Summary
Coefficient Min 1st Quartile Median Mean 3rd Quartile Max
Intercept -264.76∗∗ -136.747∗∗∗ -73.468∗∗∗ -68.154∗∗∗ -14.969 138.297∗∗∗

(107.705) (9.043) (5.843) (8.969) (9.754) (29.582)
Corn Price -0.752∗∗∗ 0.089∗ 0.378∗∗∗ 0.236∗∗∗ 0.52∗∗∗ 2.203∗∗∗

(0.169) (0.052) (0.045) (0.056) (0.073) (0.309)
Other Price -5.253∗∗∗ -1.084∗∗∗ -0.708∗∗∗ -0.425∗∗ 0.101 2.228∗∗∗

(0.709) (0.190) (0.129) (0.168) (0.164) (0.610)
Slope -0.471∗∗∗ -0.052∗∗∗ -0.012∗∗∗ -0.009 0.036∗∗∗ 0.237∗∗∗

(0.091) (0.003) (0.004) (0.006) (0.008) (0.037)
Precip. Q1 -0.705∗∗∗ -0.055 0.098∗∗ 0.107∗∗∗ 0.192∗∗∗ 1.037∗∗∗

(0.175) (0.048) (0.040) (0.037) (0.042) (0.216)
Precip. Q3 -0.605∗ -0.23∗∗∗ -0.103∗∗∗ -0.103∗∗∗ 0.042 0.572∗∗∗

(0.326) (0.034) (0.026) (0.024) (0.027) (0.212)
NCCP Soil Index -10.379∗∗∗ 0.236∗∗∗ 1.25∗∗∗ 1.09∗∗∗ 2.238∗∗∗ 8.058∗∗∗

(0.369) (0.035) (0.032) (0.042) (0.063) (0.870)
Irrigation Status -1.151∗∗∗ -0.099 0.221∗∗∗ 0.194∗∗ 0.46∗∗∗ 2.62∗∗∗

(0.169) (0.075) (0.075) (0.085) (0.082) (0.039)

Note: Std. Errors in (), *** 1%, ** 5%, * 10% Sig. Lvl.

Table 2.7: Corn-Corn Markov Transition Regression Coefficient Summary
Coefficient Min 1st Quartile Median Mean 3rd Quartile Max
Intercept -408.784∗∗∗ -5.457 40.08∗∗∗ 55.217∗∗∗ 90.063∗∗∗ 206.754∗∗∗

(71.910) (11.801) (13.278) (11.765) (16.177) (34.704)
Corn Price -0.373∗∗ 0.083∗∗ 0.271∗∗∗ 0.243∗∗∗ 0.413∗∗∗ 1.329∗∗∗

(0.158) (0.039) (0.046) (0.047) (0.054) (0.162)
Other Price -3.004∗∗∗ -1.111∗∗∗ -0.59∗∗∗ -0.465∗∗∗ -0.043 1.511∗∗

(0.476) (0.164) (0.135) (0.140) (0.115) (0.639)
Slope -0.318∗∗∗ -0.036∗∗∗ -0.005∗∗∗ -0.007∗∗∗ 0.024∗∗∗ 0.408∗∗∗

(0.034) (0.002) (0.002) (0.002) (0.002) (0.099)
Precip. Q1 -0.533∗∗∗ -0.097∗∗∗ 0.054∗∗∗ 0.029 0.18∗∗∗ 1.011∗∗∗

(0.097) (0.025) (0.020) (0.021) (0.023) (0.169)
Precip. Q3 -0.411∗∗ -0.132∗∗∗ -0.016 0 0.088∗∗∗ 0.456∗∗∗

(0.163) (0.015) (0.010) (0.015) (0.017) (0.079)
NCCP Soil Index -4.462∗∗∗ -0.88∗∗∗ -0.293∗∗∗ -0.19∗∗∗ 0.633∗∗∗ 3.528∗∗∗

(0.320) (0.055) (0.024) (0.051) (0.055) (0.453)
Irrigation Status -10.806∗∗∗ -0.256∗∗ -0.066 -0.015 0.293∗∗∗ 1.331∗∗∗

(0.307) (0.121) (0.099) (0.102) (0.074) (0.083)

Note: Std. Errors in (), *** 1%, ** 5%, * 10% Sig. Lvl.
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State Probability Elasticities and Marginal Effects

I now move to the primary focus of the paper, the relationship between corn

plantings and prices. Table 2.8 shows the marginal effects and elasticities

of the steady-state corn-plant probability with respect to prices. Like the

coefficients in the transition equations, the price marginal effects and elas-

ticities on corn probability were highly varied across the models. The 1st

and 3rd quartiles of the elasticities are less than one suggesting that plant-

ing response is inelastic to prices. There were however, extremely sensitive

areas with elasticities reaching as high as 4 which indicate that these areas

are highly responsive to prices. Figure 2.7 shows that fields that were highly

sensitive to corn prices were also highly sensitive to other prices. While ex-

tensification of corn production may occur due to price changes, the high

degree of correlation between the corn and other-price elasticities suggests

that cropland is not disproportionately added in areas due to higher corn

prices.

The interquartile ranges of the marginal effects conform with economic

theory. Higher corn prices tended to coincide with greater likelihood of plant-

ing corn and higher prices for other competing crops tended to reduce the

likelihood of planting corn. The results from table 2.8 also show that the

supply response in the short-run is larger than the supply response in the

long-run which (Hendricks et al., 2014c) showed occurs due to temporary

rotational changes from price changes. Since there are benefits to rotating

crops, producers are more likely to perform short-run adjustments to the

rotational pattern as a result of a price change than to alter their rotations
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over longer periods of time.

Table 2.8: Summary of Marginal Effect and Elasticity Price Response Statis-
tics

Statistic Min 1st Quartile Median Mean 3rd Quartile Max
SR Corn ME -0.066 0.024 0.045∗ 0.057∗∗∗ 0.079∗∗∗ 0.318∗∗∗

(0.107) (0.027) (0.026) (0.020) (0.021) (0.084)
LR Corn ME -0.077 0.018 0.033∗∗ 0.044∗∗ 0.057∗∗∗ 0.4∗∗

(0.102) (0.029) (0.016) (0.018) (0.005) (0.172)
SR Other ME -0.705∗∗∗ -0.187∗∗∗ -0.094∗∗∗ -0.114∗∗∗ -0.026∗∗∗ 0.237∗∗∗

(0.030) (0.007) (0.009) (0.007) (0.010) (0.047)
LR Other ME -0.944∗∗∗ -0.137∗∗∗ -0.065 -0.092∗∗ -0.022 0.231

(0.167) (0.039) (0.053) (0.045) (0.067) (0.267)

SR Corn Elast -0.541 0.269 0.461∗ 0.714∗∗∗ 0.815∗∗∗ 4.518∗∗∗

(0.911) (0.293) (0.165) (0.251) (0.054) (1.839)
LR Corn Elast -0.683 0.178 0.346∗∗ 0.605∗∗ 0.623∗∗∗ 4.261∗∗

(0.724) (0.155) (0.195) (0.241) (0.287) (0.434)
SR Other Elast -4.332∗∗∗ -0.683∗∗∗ -0.312∗∗∗ -0.558∗∗∗ -0.119∗∗∗ 0.474∗∗∗

(0.871) (0.294) (0.269) (0.258) (0.214) (1.193)
LR Other Elast -4.086∗∗∗ -0.542∗∗∗ -0.24 -0.488∗∗ -0.094 0.375

(0.183) (0.024) (0.029) (0.035) (0.045) (0.095)

Note: Std. Errors in (), *** 1%, ** 5%, * 10% Sig. Lvl.
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Figure 2.7: Average Group Short-Run Elasticities
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2.5.3 Supply Response Across Space

Modeling at the subnational level allows for price response comparisons across

the entire country. Heterogeneity in supply response was allowed across a

total of 122 MLRA-soil texture groups subdivided over 69 MLRAs across

the CONUS. Figure 2.8 and 2.9 show the field-level own and cross-price

marginal effects on the probability of planting corn respectfully.15 These

results illustrate the response heterogeneity across the country. Generally

speaking, supply inside the traditional Corn Belt tended to have a middling

response to corn prices. In states like Iowa, Illinois, Indiana, and Nebraska,

a $1 increase in the price of corn increases the steady-state probability of

planting corn by approximately 10%. Corn supply in the eastern Dakotas,

western Minnesota, southern Wisconsin, central Michigan, and the Missis-

sippi River delta was more sensitive to price fluctuations since a $1 increase

in the price of corn would increase corn plantings by nearly 30%. Not every

area outside of the Corn Belt had such sensitive corn supply however. Corn

planting decisions were less sensitive to prices in states like Kansas, and areas

along the east coast. This could be due to heterogeneity in growing condi-

tions. In particular, western Kansas is prone to droughts and relies heavily

on irrigation.

The disproportionately high drought pressure in the production areas

Kansas and Colorado could be the reason that production does not respond

much to prices as general drought conditions in the US tend to elevate prices.

15The plotted results are a 3% random sample of the overall field-level results. These
results were sampled randomly to reduce computational time. The sampled plot is nearly
identical to the complete plot.
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The moderate price response in the traditional corn states such as Nebraska,

Iowa, Indiana, and Illinois is likely due to the fact that the most popular

crop rotations in these states already include corn. Starting prices may be

another explanation for high sensitivities in the North Central US. The ba-

sis patterns in figure 2.5 were generally consistent from year-to-year. Corn

prices in the eastern Dakotas and western Minnesota tend to be lower rela-

tive to the rest of the country which may make growing corn in the region

unprofitable without transient upward price fluctuations. If this is case, the

region may respond more aggressively to an increase in prices than areas with

consistently favorable prices.

Maps 2.8 and 2.9 also show that there is a degree of within-MLRA dif-

ferences in price sensitivity. The MLRA on the border of North Dakota

and Minnesota provides a clear example of within-MLRA heterogeneity by

soil texture type. The Red River of the North provides the boundary for

these two states. Soils in this area tend to contain more clay and the area

is more susceptible to flooding in early springs. This could be a reason why

corn plantings are less sensitive to price. Other researchers have noted that

supply in this area of the country is especially sensitive to price changes,

particularly among primary crop producers (Wang et al., 2017).
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Figure 2.8: Average MLRA-Group Short-Run Own-Price Marginal Effect
over CONUS

Figure 2.9: Average MLRA-Group Short-Run Cross-Price Marginal Effect
over CONUS
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2.5.4 Rotational Response

Since crop rotations describe the dynamic patterns of crop choices and have

environmental benefits relative to continuously producing a single crop, price

impacts on rotations are also important. Table 2.9 shows the distribution of

average partial marginal effects affects across individuals within the MLRA

groups. Continuous corn rotations were fairly rare among producers. On

average fields had a 12% probability of planting to continuous corn. On

average fields had a 30% probability of planting other crops continuously

while other-corn rotations were dominant rotation as the average field had

over a 50% likelihood of rotating between corn and the other crops.

Table 2.9 shows that rotational marginal effects generally had signs con-

sistent with economic theory. Higher corn prices corn tended to increase the

probability of planting continuous corn rotations and decrease the probabil-

ity of continuous other rotations. The opposite was true for increasing the

prices of other competing crops. Generally, prices did not impact the prob-

ability of performing a corn-other rotation as prices had a near-zero median

marginal effect. The small effect that price changes had on rotating between

crops is not surprising since on average half of farmers in a corn-other rota-

tion plant corn and the other half plant some other crop. This means that a

price fluctuation in a given year encourages half of the farmers that planted

the other crop in the previous year to continue the rotation and discourages

the other half that planted corn in the previous year to break the rotation.

Unlike the state probabilities, the short-run rotational probabilities tended

to be smaller in magnitude than their long-run counterparts. This is due
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to the fact that rotational probabilities are a multi-year concept. It would

therefore make sense that a temporary fluctuation in prices would not have

a large influence over multi-seasonal decisions of farmers relative to a more

persistent price change.

I also include the elasticity estimates of the rotations in table 2.10. The

results are similar to those by Hendricks et al. (2014b) and indicate that the

rotations are quite sensitive to corn price fluctuations. On average fields the

probability of planting continuous crop rotations were elastic to prices. Since

mono-cropping is a detrimental to yields, and brings environmental concerns,

these results indicate there could be significant environmental impact for

policies that increase relative domestic price of corn.
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Table 2.9: Rotational Estimated Probabilities and Marginal Effects

Statistic Min Q1 Median Mean Q3 Max

PCC 0 0.039 0.086 0.125 0.183 0.907
POO 0.001 0.06 0.188 0.302 0.529 1
POC 0 0.38 0.66 0.57 0.76 0.99

∂PCC

∂PC |LR -0.586∗∗∗ 0.009 0.024∗ 0.035∗∗∗ 0.058∗∗∗ 0.371∗

(0.109) (0.008) (0.013) (0.013) (0.018) (0.214)
∂PCC

∂PC |SR -0.045∗ 0.007∗∗∗ 0.018∗∗∗ 0.024∗∗∗ 0.04∗∗∗ 0.125∗∗∗

(0.024) (0.002) (0.004) (0.004) (0.006) (0.011)
∂POO

∂PC |LR -0.81∗∗∗ -0.068 -0.027 -0.053∗ -0.014 0.73∗∗∗

(0.092) (0.045) (0.033) (0.030) (0.014) (0.145)
∂POO

∂PC |SR -0.321∗∗∗ -0.04∗∗∗ -0.021∗∗∗ -0.033∗∗∗ -0.01 0.077∗

(0.025) (0.004) (0.005) (0.004) (0.007) (0.040)
∂POC

∂PC |LR -0.082 -0.015 0 0.009 0.02 0.32∗

(0.100) (0.026) (0.023) (0.021) (0.016) (0.179)
∂POC

∂PC |SR -0.049∗∗ -0.012∗∗∗ 0 0.004 0.014∗∗ 0.16∗∗∗

(0.025) (0.003) (0.004) (0.004) (0.006) (0.025)
∂PCC

∂PO |LR -0.91∗∗∗ -0.136∗∗∗ -0.051∗∗∗ -0.072∗∗∗ -0.01 1.14∗∗∗

(0.109) (0.008) (0.013) (0.013) (0.018) (0.214)
∂PCC

∂PO |SR -0.323∗∗∗ -0.083∗∗∗ -0.037∗∗∗ -0.05∗∗∗ -0.008 0.257∗∗∗

(0.028) (0.015) (0.009) (0.010) (0.005) (0.087)
∂POO

∂PO |LR -1.423∗∗∗ 0.013 0.052 0.108∗∗∗ 0.165∗∗∗ 1.846∗∗∗

(0.092) (0.045) (0.033) (0.030) (0.014) (0.145)
∂POO

∂PO |SR -0.15 0.01 0.038∗∗∗ 0.065∗∗∗ 0.088∗∗∗ 0.729∗∗∗

(0.095) (0.018) (0.014) (0.012) (0.012) (0.077)
∂POC

∂PO |LR -0.726∗∗∗ -0.057∗∗ -0.002 -0.018 0.04∗∗ 0.183
(0.100) (0.026) (0.023) (0.021) (0.016) (0.179)

∂POC

∂PO |SR -0.364∗∗∗ -0.038∗∗ 0 -0.008 0.034∗∗∗ 0.164∗∗

(0.061) (0.016) (0.011) (0.011) (0.008) (0.082)

Note: Std. Errors in (), *** 1%, ** 5%, * 10% Sig. Lvl.
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Table 2.10: Rotational Price Elasticities
Statistic Min Q1 Median Mean Q3 Max

∂ΠCC

∂PC |LR Elas. -0.904∗∗∗ 0.638 1.15∗ 1.534∗∗∗ 2.09∗∗∗ 6.47∗

(0.168) (0.540) (0.608) ( 0.567) (0.647) (3.732)
∂ΠCC

∂PC |SR Elas. -0.685∗ 0.381∗∗∗ 0.818∗∗∗ 0.882∗∗∗ 1.361∗∗∗ 3.227∗∗∗

(0.370) (0.099) (0.164) ( 0.130) (0.190) (0.271)
∂ΠOO

∂PC |LR Elas. -5.555∗∗∗ -2.229 -1.093 -1.333∗ -0.41 1.592∗∗∗

(0.629) (1.468) (1.321) ( 0.751) (0.415) (0.315)
∂ΠOO

∂PC |SR Elas. -4.41∗∗∗ -1.546∗∗∗ -0.735∗∗∗ -0.921∗∗∗ -0.252 1.067∗

(0.345) (0.138) (0.162) ( 0.115) (0.161) (0.559)
∂ΠOC

∂PC |LR Elas. -6.124∗∗∗ -1.671∗∗∗ -0.851∗∗∗ -1.162∗∗∗ -0.322 1.398∗∗∗

(0.734) (0.097) (0.210) ( 0.208) (0.579) (0.262)
∂ΠOC

∂PC |SR Elas. -2.736∗∗∗ -1.082∗∗∗ -0.635∗∗∗ -0.64∗∗∗ -0.172 1.406∗∗∗

(0.235) (0.189) (0.149) ( 0.126) (0.111) (0.476)
∂ΠCC

∂PO |LR Elas. -1.019 -0.179 0.04 0.29 0.365 4.403∗

(1.252) (0.318) (2.655) (0.691) (0.298) (2.470)
∂ΠCC

∂PO |SR Elas. -0.746∗∗ -0.138∗∗∗ 0.042 0.16 0.28∗∗ 2.332∗∗∗

(0.376) (0.031) (0.734) ( 0.137) (0.121) (0.371)
∂ΠOO

∂PO |LR Elas. -2.303∗∗∗ 0.118 0.676 0.941∗∗∗ 1.637∗∗∗ 5.432∗∗∗

(0.148) (0.410) (0.426) ( 0.260) (0.139) (0.426)
∂ΠOO

∂PO |SR Elas. -2.069 0.067 0.471∗∗∗ 0.628∗∗∗ 1.111∗∗∗ 2.836∗∗∗

(1.310) (0.122) (0.173) ( 0.114) (0.150) (0.298)
∂ΠOC

∂PO |LR Elas. -4.23∗∗∗ -0.343∗∗ -0.033 -0.251 0.168∗∗ 1.217
(0.585) (0.158) (0.425) ( 0.301) (0.068) (1.192)

∂ΠOC

∂PO |SR Elas. -2.242∗∗∗ -0.285∗∗ -0.037 -0.137 0.119∗∗∗ 0.949∗∗

(0.379) (0.123) (2.145) ( 0.191) (0.030) (0.474)

Note: Std. Errors in (), *** 1%, ** 5%, * 10% Sig. Lvl.
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2.5.5 Comparing Heterogeneous and Pooled Models

Preventing bias is one of the primary motivations for estimating the model

using heterogeneous coefficients. To illustrate the benefits of incorporating

heterogeneity, I estimate a second model where each Markov transition equa-

tion is estimated once over the entire pooled national sample. The pooled

model is nearly identical to the earlier model that incorporates heterogene-

ity through MLRAs and soil-texture groups. Under both models, the price

variables are identical at the observation level. That is, I reuse the “other”

price index from the earlier framework at the observation-level. Since the

other price index was constructed using MLRA-level production baskets, I

include MLRA fixed-effects in the pooled model by adding MLRA-specific

dummy variables. Without the MLRA fixed-effects, the model produced

results that were inconsistent with economic theory (e.g. increasing corn

(other) prices decreased (increased) corn acreage). While the heterogeneous

modeling framework estimates distinct coefficients over subsets of the na-

tional sample, the pooled model does not. Because of the large sample, com-

putational problems arose when estimating over the entire national sample.

For the sake of tractability, I estimate the pooled model using a 10% ran-

dom sample of the total national sample. This 10% subsample had 3,212,765

observations.

In the final results section I compare corn quantity and acreage elasticity

estimates using the national sample shown in table 2.11 and a subsample of

the Corn Belt states of Iowa, Illinois, Indiana, and Nebraska shown in table

2.12. In each table, acreage and quantity elasticities are estimated using
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two different models. In the first model, elasticity estimates are constructed

using the aggregated results from the heterogeneous regional elasticity esti-

mates. The second set of elasticities were constructed using a single pooled

logit model over the entire sample. Both estimates were constructed as a

summation over field-level data and therefore the only differences between

these estimates arise from the heterogeneous coefficients in the aggregated

model. These tables help illustrate the benefits of modeling supply response

with heterogeneous response, and how the response from even important

production areas can differ from national estimates.

Result 1: At the national-level, acreage elasticities tend to be

larger than quantity elasticities.

The first result is that acreage tended to be more sensitive to prices than

quantity. This finding is consistent with an underlying assumption in Ri-

cardian rent theory which posits that the marginal product of the lowest

quality land used in production will be at or just above land rental rates.

When land is fixed in supply but heterogeneous in productivity, as prices

increase, less productive land can and will be profitably brought into pro-

duction (Barlowe, 1972; Ricardo, 1891). These findings are also consistent

with Lark et al. (2015) who found that the expansion of new acres tended

to come from marginal land that was less suitable for cultivation. Under

the Corn-Belt-only estimates, the acreage and quantity weighted elasticities

are much closer together. This is likely due to more behavioral and yield

homogeneity at the regional-level relative to the national-level. With less

yield variation, the covariance between yield and planting decisions is likely
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to reduce. This can be shown using the definition of correlation in equa-

tion 2.31. If the correlation between two random variables Y and Z remains

fixed, reductions in the variance either Y or Z reduce the covariance. In

other words, the covariance between planting and yields potential will likely

go down when yields are more homogeneous.

Cov [Y, Z] = Corr [Y, Z]
√
V ar [Y ]

√
V ar [Z] (2.31)

Result 2: Nationwide heterogeneous elasticities are larger than

the pooled elasticities especially in the short-run.

The second result relates to differences between heterogeneous elastici-

ties and pooled elasticities. At the national-level, the estimated elasticities

that allow for heterogeneous coefficients tended to be larger than the pooled

estimates. In the short-run, these differences were substantial, ranging from

7% to 11%. These differences were present but less pronounced in the long-

run elasticities which only differed by around 3%. However, this is does not

indicate that a lack of in the long-run estimates of the bias from the pooled

model. The delta values in the tables are akin to the coefficient on a lagged

dependent variable in a dynamic model. In this view, while the pooled model

underestimates the short-run elasticity, it also underestimates the size of the

lagged dependent coefficient which just happens to bring the long-run elas-

ticities between the models closer together. This suggests that the pooled

approach generally underestimates acreage and quantity response and that

there is merit to incorporating heterogeneous coefficients. Under the national

dataset, the pooled model tends to underestimate supply response but in the

corn-belt sample, the pooled model overestimates supply response. The likely
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reason for this is the pooled model averages the impact of price changes over

the entire national sample. Averaging over the pooled model reduces the

influence from areas with larger supply-response and creates discrepancies

between the heterogeneous aggregate and the pooled estimates.

Result 3: The difference between short run and long run effect is

more pronounced in the Corn Belt than in nationwide estimates.

Tables 2.11 and 2.12, include “delta” statistics on the elasticities. These

terms are the percent difference in the LR elasticity relative to the short-run

elasticities and are analogous to the coefficient on the lagged dependent in a

typical dynamic model (Hendricks et al., 2014c). Generally speaking, these

delta terms indicate whether fields tend to continuously grow a single crop

crop (positive delta) or transition from one crop to another (negative delta).

From the functional form of the long-run marginal effect in equation 2.12,

this will be proportional to the difference between the long and short -run

marginal effects shown in equation 2.32.[
yCCit − yOCit

] [1− yCCit ] ∂yOC

∂Pk + yOCit
∂yCC

∂Pk

[1− yCCit + yOCit ]
2 (2.32)

Relative to the rest of the country, the long-run marginal effect was much

smaller than the short-run effect inside the Corn Belt. Provided that the

coefficient values take on the same value as the marginal effect, long-run ef-

fect will be smaller than the short-run effect when the first bracketed term is

negative. This occurs when fields are more likely to transition to corn when

some other crop is planted in the previous period. While always positive, the

denominator in the ratio term is conditional probability that a field will tran-

sition to a different crop between one period and the next. The denominator
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will be smaller when likely to consistently host the same crop from year to

year will have a smaller denominator. Subsequently the long run price effect

on these fields will be smaller than the short-run. The numerator is a mea-

sure of the effect that prices have after two or more periods. The
(
1− yCC

)
term is the probability that a field planted to corn will switch to the other

crop. If such a transition is made, marginal effects for fields that planted the

other crop in the previous period will be relevant in predicting future crop

choices. Similarly, the yOC term is the probability that a field is planted to

corn given some other crop was planted previously. If a field indeed moves

from the other crop to corn then the marginal effect of prices conditional on

corn being planted will be relevant for predicting the next crop choice.

The values in table 2.13 show the conditional and sequential probabilities

in and outside of the Corn Belt. The conditional probability values in this

table show that the consistent rotational patterns within the Corn Belt are

likely the reason that the long-run effect is smaller relative to the the short-

run effect. Constructing the bracketed term on the left of equation 2.32,

from the conditional probabilities in the table shows that the term was nearly

nearly nine times higher in the Corn Belt. The larger differences between the

long and short-run elasticities within the Corn Belt relative to the national

level is likely attributable to the popularity of the corn-soybean rotation

within the Corn Belt. This could also be a result of the more established corn

production within the Corn Belt relative to outside areas and that permanent

price increases could lead to permanent expansions into new corn growing

areas. High prices in the Corn Belt may persuade farmers to make a one-year
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short deviation in their rotations but, as table 2.13 shows, farmers that plant

some other crop in the previous period were considerably more likely to plant

corn in the subsequent period than farmers outside the Corn Belt.

Result 4: Nationwide elasticities were much larger than the

Corn-Belt elasticities.

The nationwide heterogeneous aggregate elasticity estimates in table 2.11

were nearly twice the size of the Corn Belt heterogeneous elasticities in table

2.12. This that the corn supply in the Corn Belt is much less sensitive to

price changes than the supply from country as a whole. Corn is generally

better suited to the traditional Corn Belt states making it relatively prof-

itable to produce each year. The conceptual model in (Wang et al., 2015)

suggests that supply response will be larger in areas where the probability of

a binary planting decision is close to 50%. If this is the case, under a binary

choice framework, the probability of making one choice or the other are rel-

atively close. Therefore, any change in the relative profitability of between

the choices will influence planting decisions more than otherwise. In the case

of the Corn Belt, the corn-soybean rotation extremely popular sequential

crop choice. Table 2.13 shows conditional and sequential probabilities for

the different pairs of planting decisions. Approximately 75% of the Corn

Belt sample was in a other-corn rotation. From this table, I can infer that

the probability of a producer deciding on a continuous corn rotation is 15.3%

and the probability that a producer chooses a continuous other crop rotation

is 9.7%. Adding the remaining sequential probabilities gives the probabil-

ity that a farmer rotates crops each year. This implies that producers in
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the Corn Belt have a 75% probability. Produces inside he Corn Belt,that

planted an “other” crop in the previous season had an 80% probability of

planting corn. Outside of the Corn Belt these producers would have a 37%

probability of planting corn.

This means that conditional on the crop choice in the previous year was

not corn, farmers in the Corn Belt are very likely to plant corn in the subse-

quent period. The high degree of correlation in the marginal effects suggest

that rotations make up a high degree of supply response decisions and that

soybeans-to-corn transitions likely make up an important component in the

state probability of planting corn. In this way it is not surprising that farmers

in the Corn Belt are less sensitive to prices. Those that were in the soybean

stage of their rotations in the previous year are already more predisposed to

planting corn in the first place. If this were the case, then I would expect

that the supply response in similarly productive areas outside of the Corn

Belt would be more sensitive to prices.
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Table 2.11: Nationwide Corn Elasticities With and Without Heterogeneity
Weighting → Acreage Quantity

Statistic ↓ Model → Het. Aggr Pooled Het. Aggr Pooled
Own-Price SR Elasticity 0.674∗∗ 0.568 0.644∗∗∗ 0.545

(0.266) (–) (0.094) (–)
Own-Price LR Elasticity 0.526∗∗ 0.502 0.496 0.468

(0.219) (–) (0.082) (–)
Own-Price Delta -0.281 -0.133 -0.299 -0.165

Cross-Price SR Elasticity -0.496∗ -0.413 -0.47∗∗∗ -0.396
(0.266) (–) (0.0346) (–)

Cross-Price LR Elasticity -0.398∗ -0.365 -0.370 -0.340
(0.231) (–) (0.219) (–)

Cross-Price Delta -0.246 -0.132 -0.269 -0.165
Note: Std. Errors in (), *** 1%, ** 5%, * 10% Sig. Lvl.

Table 2.12: Corn-Belt Elasticities With and Without Heterogeneity (IA, IL,
IN, NE)

Weighting → Acreage Quantity
Statistic ↓ Model → Het. Aggr Pooled Het. Aggr Pooled

Own-Price SR Elasticity 0.390∗ 0.437 0.391∗∗∗ 0.432
(0.234) (–) (0.0835) (–)

Own-Price LR Elasticity 0.259 0.313 0.260∗∗∗ 0.306
(0.235) (–) (0.0839) (–)

Own-Price Delta -0.505 -0.396 -0.505 -0.411
Cross-Price SR Elasticity -0.252∗∗∗ -0.322 -0.253∗∗∗ -0.318

(0.0274) (–) (0.0274) ()
Cross-Price LR Elasticity -0.169 -0.231 -0.170 -0.226

(0.166) (–) (0.166) (–)
Cross-Price Delta -0.489 -0.396 -0.488 -0.410

Note: Std. Errors in (), *** 1%, ** 5%, * 10% Sig. Lvl.
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Table 2.13: Conditional and Sequential Probabilities In and Outside of the
Corn Belt

Crop Choices
Region Probability Corn→Corn Other→Corn Corn→Other Other→Other

Outside Corn Belt
Sequential 0.111 0.241 0.241 0.407

Conditional 0.315 0.372 0.685 0.628

Corn Belt
Sequential 0.153 0.375 0.375 0.097

Conditional 0.29 0.795 0.71 0.205
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2.6 Conclusions

Understanding nationwide crop supply response statistics are useful in a va-

riety of areas. In this paper, I assumed that responds to price exclusively

through crop choice. I estimate the effect that prices have on the corn acreage

and quantity by multiplying field acres and county yields by the marginal

effect of prices on the probability of planting corn. The relationship be-

tween crop choice and prices were modeled separately across 122 subregions

of the country using a set of conditional Markov chain transition regressions.

The data in the study sets itself apart from the literature by including crop

choices at the field-level that account for over 80% of the land devoted to

corn production in the US between 2009 and 2016. The results show that

modeling supply response without accounting for heterogeneity can lead to

bias in national elasticity estimates, particularly in the short-run. They also

show that regional supply, even in the Corn Belt tended to be less sensitive

than the national estimates. This cautions against extrapolating such esti-

mates to the nation or to other regions. Regional corn supply response was

found to be highly heterogeneous with the Northern Plains states and the

Mississippi showing especially high sensitivity and western Kansas and the

Gulf states exhibiting low sensitivity.

Heterogeneous supply response is useful in a variety of applications. For

instance, since river systems can carry fertilizer contaminants across vast dis-

tances, the impact of runoff externalities are worse near the mouthes of major

river systems (Wu et al., 2004b). Understanding where supply is especially

responsive to prices can help policymakers better understand the secondary
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impacts of policies distorting domestic prices. Identifying areas where corn

planting decisions respond to prices can also provide a richer analysis of the

supply response of other crops. If corn supply response displaces the pro-

duction in areas that specialize in other crops, researchers can provide a

richer explanation of cross-price elasticities. For example, the corn supply

in the upper Mississippi River Delta was highly sensitive to prices. This

is an important production area and helps explain why some in the litera-

ture find a relatively large cross-price cotton supply elasticity on corn prices

(Vorotnikova et al., 2014). Lastly, modeling at the field-level and allowing

for heterogeneous response helps address aggregation bias when estimating

nationwide supply response which are also used for a variety of purposes

across agricultural economics.

There are a variety of extensions that can be made in the area of hetero-

geneous supply response. While the models attempt to embed heterogeneity

in the production decisions, it is not clear at what point the relevant hetero-

geneity is fully captured. The work of Athey et al. (2016) provide promis-

ing, data-driven modeling options for incorporating latent heterogeneity over

large datasets. Further analysis can be performed to establish the cause of

the heterogeneous supply response. In particular, the results from this study

could enter a second stage regression as a dependent variable with regional

farmer characteristics as independent variables.
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Chapter 3

Estimating the Local Impact of
Ethanol Plants on Cropland
Transitions

3.1 Introduction

The first chapter of this dissertation focused on how crop choice varies with

prices, in this chapter, I shift the focus of supply response to the extensive

margin and study how broader land usage changes with the intervention

of new local ethanol demand. The 2007 Renewable Fuel Standard (RFS)

had a dramatic impact on row crop agriculture within the United States.

Roberts and Schlenker (2013) estimate that a third of corn production goes

into ethanol production. Along with a precipitous rise in corn dedicated to

ethanol production, the RFS also induced widespread investment in ethanol

processing plants. To address the concerns of cropland extensification from

environmental groups, policymakers included a stipulation in the policy to

lessen its impact. This stipulation forbids land converted into farmland after

76



2007 from being used to produce ethanol (EPA, 2010). In this chapter I

assess the local impacts of introducing ethanol plants on land use.

The RFS mandate has significantly impacted national and international

markets across several primary crops. Over a third of corn in the US was di-

verted to producing ethanol and increased major commodity prices by 30%

(Carter et al., 2016). As a major exporter of corn, the RFS redirected a

third of US corn production and 5% of the world’s caloric production to

ethanol(Roberts and Schlenker, 2013). By substantially increasing the de-

mand for ethanol, the RFS caused a dramatic expansion of US ethanol pro-

duction, more than doubling production capacity within a few years after its

passage. Since producers use land to produce profits, the plausible influence

that ethanol plants have on land choice is channeled through its impact on

crop prices. The introduction of ethanol plants can substantially change the

local basis in an area by increasing local prices in the area surrounding the

plants (McNew and Griffith, 2005). The expansion of ethanol capacity in

the wake of the passage of the RFS of 2007 provides an ideal scenario to

study the local impacts of ethanol plant on cropland conversion and reten-

tion. Since the RFS also produced a general price increase, I seek to isolate

the local impact from ethanol plants using a set of difference in differences

(DID) approaches.

Utilizing corn ethanol as a source of transportation fuel dates back to

the 1920s. Through a series of increasing mandates, the Renewable Fuel

Standard, (RFS) passed in 2007, was a major contributor to a surge in US

ethanol plant investment. Starting from less than 6 billion gallons of ethanol,
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the RFS progressively mandated the use of over 36 billion gallons of biofuel

for transportation purposes by the year 2022. Subsequently the total US

production capacity boomed after 2008 with the surge of new investment.

Figure 3.1 shows the total US ethanol plant capacity over time. Further

fluctuations in capacity occurred after 2013 when policymakers, faced with

mandate compliance issues due to economic and technological constraints,

began relaxing the mandate schedule (Lade et al., 2018).
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Figure 3.1: US Ethanol Plant Capacity (Nebraska Energy Office, 2016)

Cropland conversion attributed to the RFS as a whole has been a popular

subject of research. Yearly cropland-to-grassland transitions are relatively

less frequent and therefore even small changes in conversion incentives can
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have a large relative impact on the conversion rate (Carriazo et al., 2010). In

an influential article, Searchinger et al. (2008) found that through direct price

effects and indirect effects on global trade, the RFS caused a 10.8 million

hectare expansion of cropland globally with 2.2 million hectare expansion

from the US alone (Searchinger et al., 2008). To study the impact that the

RFS had on nitrogen leaching into the Gulf of Mexico, Donner and Kucharik

(2008) simulate the expansions cropland that would likely be made to comply

with the 15 billion gallon ethanol production target for 2022 from the RFS.

While they estimated that no expansion of corn land would be needed if yields

improve at their current rate, shortfalls in yield improvements could lead to

a 9% expansion in corn growing area between 2008 and 2022 to meed the

mandate requirements Donner and Kucharik (2008). Using estimates derived

from the CDL Wright and Wimberly (2013) found that corn and soybean area

displaced 1.3 million acres of grassland in the Dakotas, Minnesota, Iowa, and

Nebraska between 2006 and 2011.

When aggregated across the US, the long-run composition of land use

has been remarkably stable. Between 1910 and 2004, overall cropland has

only increased by around 3% (Lubowski et al., 2006; Ramankutty and Foley,

1999). However, there has and continues to be dynamic changes at the

regional level with areas like Midwest gradually making up larger shares of

the national cropland over time. Transitions between uses is also common.

Over 15% of the cropland in 1997 was CRP or some other use in 1982.

Transitioning land from non-crop uses such as hay production and pasture

land to cropland tends to be detrimental to the environment. Lands at the
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extensive margin tend to be less productive as cropland than permanent

cropland (Huang et al., 2010; Lubowski et al., 2006). These lands tend to be

less productive and more difficult to work due to lower quality soils and higher

slopes. Since land at the extensive margin generally requires more fertilizer

to profitably raise crops, farming on newly converted cropland tends to have

a greater environmental impact than long-established cropland (Lubowski

et al., 2006).

While many have studied the impact the RFS has had on crop conversion

as a whole, less attention has been given to studying the localized impacts

of ethanol plant expansion. While the RFS produced general impacts in

cropland conversion, the associated rise in ethanol capacity due to the RFS

provides a useful dataset to estimating the impact of ethanol plant con-

struction on cropland conversion and retention. In this study I use a series

of difference-in-differences models to estimate these local impacts across a

thirteen-state corn-growing region of the corn-growing United States.

Using current sources of remote sensed data to estimate broader land

transitions is difficult. In the previous chapter, I used the Cropland Data

Layer (CDL) to estimate the response of crop choices to changing prices.

While the CDL is generally useful for determining land cover, it is less ap-

propriate for identifying land use. For example, accurately classifies the land

cover for major commodity crops at a rate of 90% or higher. However, due

to methodological changes to the CDL, the base data layer has a tendency

to over-estimate cropland expansions (Lark et al., 2017). To address this, I

utilize data from Lark et al. (2015) which was specially designed to address
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potential cropland transition and classification bias in the CDL.

To cover the general methodology and findings of land use studies on

ethanol plants, I’ll discuss a few articles and then discuss my methodology for

this chapter. With an influx of new corn demand for ethanol in local markets,

many have studied the impact that the increases in local demand brought

about by added ethanol capacity. There are several challenges to these types

of studies. The first is an endogeneity issue, ethanol plant locations are

endogenous to the supply of corn in the area. Much of the methodological

effort in studies on the impact of ethanol supply has been to address the

endogeneity of plant location. Motamed et al. (2016) used a instrumental

variable approach to account for this. They noted that ethanol plants tend

to locate in areas close to railroad lines since ethanol is often transported

via rail. They argue that since many of these lines have been established

since the 1970s and that grain transport from field is normally by truck

and not rail. Therefore the only way that railway line proximity to the

field influences contemporary planting decisions is through the ethanol plant

proximity. They found that capacity changes had a significant and positive

effect corn planting and agricultural acreage. Specifically found that a 1%

increase in ethanol capacity within an area causes a 1.5% increase in corn

acres within the area and a 1.7% increase in agricultural acres and found

that these effects were larger in areas with less corn Motamed et al. (2016).

The majority of similar studies use some sort of a difference in differences

(DID) design. To construct treatment and the control groups that are com-

parable, most studies either used some form of propensity score matching or
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fixed effects regressions. Generally studies relying on remote sensing data

used the propensity score matching approach. Arora et al. (2016) studied

how land-use decisions of farmers in the Dakotas were impacted by the con-

struction of 15 individual ethanol plants in the area between 2005 and 2013.

They used a combination of difference-in-differences (DID) framework with

a psropensity score matching framework. In their analysis, they specified a

control group and treatment groups by isolating areas closer to one of 15

ethanol plants (for the treatment group) and further away (for the control

group) from the plants. They then estimated propensity scores over the

treated and control group to estimate the probability that a control group

observation would be in the treatment group. A major contribution of this

paper was they used a flexible DID structure that relaxes the parallel trend

assumption. While their DID step was sophisticated, their propensity score

matching step was very simple. Matching used the quadratic form of only two

variables, the Land Capability Classification (LCC) codes and slope. They

then select for their treated and untreated samples using a one-to-one nearest

neighbor algorithm with the added restriction that the observations used in

the analysis had to a untreated match within a given radius. To perform the

propensity score matching, they used a logit model with quadratic weighted

land slopes and quadratic weighted LCC as predictors. Their results were

mixed, indicating a positive treatment effect for some ethanol plants and a

negative treatment effect for others (Arora et al., 2016). However, because

their propensity score matching fit was so simple, bias in the matching pro-

cess could be impacting their results (Smith and Todd, 2005).
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There has been evidence for a positive impact of ethanol plants on regional

extensive land changes. Brown et al. (2014) studied the effects that plants

had on corn extensification and intensification in the state of Kansas. Using

the Cropland Data layer, a county-level control for alternative corn demand

from the cattle industry within the state, and spatial lags and errors to

account for potential spillover effects from overlapping markets. They found

that the proximity to ethanol plants positively impacted the likelihood of

planting corn land extensification (Brown et al., 2014).

Ifft et al. (2018) studied the impact that county-level ethanol plant ca-

pacity had on the re-enrollment of expiring CRP land. They also used a

DID strategy using non-ethanol producing counties as the control group in

conjunction with fixed effects to ensure that county and time effects were

stable across the treatment and control groups. Contrary to expectations,

they found that CRP re-enrollment increased in ethanol producing counties

relative the control group after the RFS and cite concurrent changes in the

CRP program as the reason (Ifft et al., 2018).

I’ll lastly discuss Towe and Tra (2012) who also used the DID approach.

In their study, they estimated the impact ethanol capacity changes had on the

farmland values for over 50 ethanol plants. They classified parcels as “close”

to an ethanol plant as ones that were within 30 miles of a plant. Their method

is similar to the approach of Arora et al. (2016) but they utilize a considerable

number of controls during the propensity score matching step. In addition,

they use a difference-in-difference-in-differences (DDD) approach, testing the

difference between the treatment effects from areas that experience ethanol
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expansion before and after the 2005 RFS mandate. They found that there

was a statistically significant treatment effect in the post 2005 RFS mandate

but not before. Because both treated and untreated parcels were exposed to

higher prices in the post RFS time period, they concluded that there was a

land capitalization premium for being near ethanol plants when demand was

high.

In this paper, I employ a method similar to Towe and Tra (2012), a

DID approach with propensity score matching. Like Towe and Tra (2012),

this study uses the decisions around multiple plants to estimate the a single

treatment effect, and also emphasizes plant capacity as opposed to simply

the construction of the plant itself. Like Towe and Tra (2012), I also found

the vast majority of ethanol plants the dataset do not add capacity once

they are built. That is, most of the increase in total ethanol capacity comes

from the construction of new plants being built in 2007 and coming online

in 2009. Unlike Towe and Tra (2012) I want to determine the impact of

new ethanol going into the production regions and not the passage of RFS

legislation. I therefore use changes in plant capacity and their correspond-

ing construction years to delineate treatment and control groups over time.

Generally construction on ethanol plants takes around two years, I there-

fore restrict control groups during the matching procedure in the propensity

score matched DID approach and compare it with the traditional linear DID

approach. This study expands on the dataset of Towe and Tra (2012) and re-

fines the treatment assignment by considering multiple treatment years and

using the capacity of the plant to determine the area being treated by new
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plant construction. Many of the controls used in Towe and Tra (2012) are

already collected or are readily available and also apply to cropland conver-

sion including the NCCPI, crop price basis, weather controls from PRISM,

and irrigation information.

3.2 Data

This study covers a 13-state region in the north-central United States out-

lined in figure 3.2. This area was chosen for several reasons. The first is that

the majority of the country’s ethanol plants are located in the north-central

US. Secondly, cropland transitions differ across the US. Crop transitions in

this region of the country tended to be more homogeneous and are charac-

terized by transitions between to cropland and uncultivated usage such as

pasture and hay production as opposed to transitions to and from forestry

land that is more popular in the south (Lubowski et al., 2006).

Theory demands that all variables that plausibly impact either the treat-

ment assignment or changes in the outcome variables should be used to match

treatment and control observations. Generally speaking, matching methods

benefit the analysis by eliminating two sources of bias. The first source of

bias is some treated and control individuals may not be comparable. That is

to say, they may not have a common support over observable, pre-treatment

variables. Another source of bias that matching methods help eliminate

is a non-uniformity of the distribution of relevant time invariant variables.

The process of matching explicitly connects treated and control individuals

together by these observable features so that the matched groups are com-
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Figure 3.2: Region of Interest and Ethanol Locations

parable with one another. Failure to include relevant controls leads to poor

matching and consequentially hinders the ability of matching to eliminate

this bias (Heckman et al., 1997). It is therefore crucial that these controls

are properly justified as relevant in treatment assignment or the evolution of

cropland transitions.

3.2.1 Cropland Transitions

The dependent variables in this study are the conditional land-use transi-

tion probabilities that were constructed from a long-term cropland conver-

sion dataset. These probabilities are approximated using a field-level raster

dataset (Lark et al., 2015). The raster cell that intersects with the centroid

of each field is used to estimate the broad land use. The dataset consists of

a set of binary variables and accompanying observation years. This binary
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dataset contains four codes indicating: (1) the field was continuously cropped

from 2008-2016, (2) stayed as non-cropland from 2008-2016, (3) transitioned

between non-cropland to cropland, and (4) transitioned from cropland to

non-cropland. Since the outcome variables consist of a set of binary vari-

ables, the model will estimate the probability of a field transitioning from

one broad land use to another. By restricting the dataset into fields that

were either always cropland or ones that converted out of cropland, the con-

ditional probability of cropland retainment can be modeled. Likewise, by

restricting the dataset to fields that were either always in non-cropland or

transitioned to cropland, the conditional probability of cropland conversion

can be modeled.

Lark et al. (2015) constructed this dataset using data from the Cropland

Data Layer (CDL). Using remote sensed data to describe long sequential

transitions is difficult since each observation is measured with some poten-

tial error which compounds the uncertainty of the estimate. First, to improve

classification of the CDL, they divided the CDL land coverage indicators into

crop and non-crop uses. Since idled or fallow lands were generally temporarily

out of crop production, they were considered crops. These binary data layers

were then “stacked” onto one another, assigning each cell a sequence of crop

status indicators over each year. These sequences were called “trajectories”.

An example of a trajectory for a field in cropland in the final two years of a

6 year interval converted would be represented in binary is “000011” where

zero indicates non-cropland and one indicates cropland. To improve the qual-

ity of these trajectory estimates, they applied spatial and temporal filters.
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They then sorted these trajectories into the categories: (1) No-Change, where

the land use was consistent over the entire study period (e.g. “000000” or

“111111”), (2) Change, where a transition was made but remained consistent

for the remainder of the study period, (e.g. “001111” or “111100”) (3) Noise

where a single transitory change was made (e.g. “001000” or “101111”), and

(4) Flip-Flop where a change was made consistently for at least two years

and then reverted back to the original status (e.g. “011010” or “001100”).

Flip flops were considered misclassified and removed from the analysis alto-

gether. Noise trajectories were considered “No Change” trajectories with a

measurement error and reassigned so that a “001000” noise trajectory was

reclassified to a “000000” no change trajectory and a “101111” was reclas-

sified as a “111111” no change trajectory.1 Lastly, fields with less than 15

acres were removed since fields with smaller area are especially prone to

measurement error.

The decisions to move land into of cropland is of interest in this study. I

collectively refer to these decisions as cropland transitions. Fields can either

transition from cropland to cropland or retain cropland, or transition from

some non-crop use to cropland or convert to cropland. These are represented

as two binary variables. The first measure I call cropland retention (C | C)it.

This is equal to one if field (i) was in cropped in the year t given it was

cropped t − 1. The second is called cropland conversion (C | N) this is a

binary variable equal to one if the field were cropped in year t given it was

not in cropland in year t − 1. Like the previous chapter, these transitions

1A converted field would not convert back to the original status.
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can be thought of as elements in a Markov transition matrix.

By defining the dependent variables in a similar way to Chapter 1, the

models estimate the change in the probability that land is being retained

as cropland or transitioning to cropland from the expansion of an ethanol

plant. One dependent variable is defined as the conditional probability that

a given piece of land transitions into cropland given cropland was observed

in the previous year
(
PC|C

)
. The second dependent variable is defined as the

conditional probability that a given piece of land is converted into cropland

given that it was observed as non-cropland in the previous period
(
PC|N

)
.

3.2.2 Matching Variables

Soil Controls

Many of the variables relevant to crop choices are also relevant to broader land

use choices. For this reason many of the variables used in the previous chapter

are utilized here. Soils characteristics are an important time-invariant feature

of fields. Land that transitions from cultivated to non-cultivated cropland

tends to be lower quality marginal land Lubowski et al. (2006); Wright and

Wimberly (2013). Therefore, the slope of the field, soil texture, the NCCPI

soil productivity index, and irrigation status likely correlate with transition

benefits. There are soil features that are also likely to determine the relative

profitability of broad land uses. In the SSURGO data, soils defined as hydric

are soils that “are sufficiently wet in the upper part to develop anaerobic

conditions during the growing season” (NRCS, 2018). Conceptually these

are soil that are likely to retain excessive moisture in the topsoil and hamper
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plant development. The final soil variable I include as a matching variable

is wind erodability. Wind and water erodability is inversely related to crop

yields in general and a criteria for acceptance in the Conservation Reserve

Program (CRP), a land retirement program. Slope is a field characteristic

that is highly related to water erosion and fields with steeper slopes are

generally more difficult to farm than fields with gentler grades.

Climate Controls

Some of the controls in the previous chapter are not appropriate for cropland

conversion. Cropland conversion as it is defined in the dataset is a longer-

term production decision and therefore transitory weather shocks aren’t likely

to impact these decisions. This is not to say that weather plays no impact

however. The climate of an area may impact broader land use by restricting

the suitable set of crops of an area. To control for climate I construct 30-

year growing-season mean and variance estimates for growing-season extreme

degree days, growing degree days, and precipitation. I assume a growing

season to be between April 1st and September 30th for each year. Extreme

degree days are a measure of exposure extreme temperatures at or above

30◦C and growing degree days are a measure of exposure to suitable heat

units for most crop throughout the course of a season. For each grid PRISM

cell, observations on degree days and precipitation between 1984 and 2004

were used to construct mean and standard deviation statistics. These climate

statistics were then applied to each field whose centroid lies inside each cell.
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Price Controls

Crop prices can impact the relative profitability between crop and non-crop

uses and therefore need to be controlled for. The introduction of ethanol

plants have been shown to increase the basis within an area around them

and would therefore using yearly prices would make it difficult to distinguish

the effect of the introduction of a new plant (McNew and Griffith, 2005).

However, the basis patterns before plants enter the market may be of interest.

In the first chapter, I found that crop producers in areas that initially have

exceptionally low prices were more receptive to price increases and the same

could be true of local land conversion with ethanol demand. To control

for relative local prices I include the 2004 field-level expected corn prices

from the previous chapter. Since these prices correspond to a single crop

year, variation it will only vary cross-sectionally by the basis pattern. Basis

patterns may also help control for treatment assignment. Crop prices are

input prices to ethanol plants and therefore areas with lower prices would be

advantageous to an ethanol plant ceteris paribus.

Location Controls

Proximity to major population centers may also impact land use choices. The

proximity to major cities potentially impacts both the likelihood of treatment

and the land use choice itself. Fields closer to larger urbanized areas likely

have different competing land uses than those farther away from major urban

centers. Recreational and agri-tourism uses for farmland are more feasible

for farmland closer to major urban centers. Farmland may be more likely

91



to become urbanized itself as since developed land generally produce higher

returns relative to cropland. The proximity to major urban centers could

also be an indicator of transportation costs to final intermediate or final con-

sumers for potential crop producers and ethanol plants. Ethanol is generally

too corrosive to be transported by pipe, therefore plants generally utilize rail,

barge or over-the-road trucking all of which are likely to be more developed

closer to urban markets. Transportation costs differ by land-use, land that

is in pasture or in uncultivated crops such as hay have little to no trans-

portation costs while the transportation costs for raising crops and logging

are relatively significant. To account for this I include a dummy variable

indicating whether a field is within 30 miles of a major urban city defined as

areas a population of 100,000 or more people.

3.2.3 Ethanol Plant Location and Capacity

In similar studies analyzing the impact of ethanol plant construction ob-

servations are generally assigned into treatment and control groups using a

simple distance from the plant itself. While studies often consider several

radii, a common radius are considered across every plant in the study (Arora

et al., 2016; Ifft et al., 2018; Motamed et al., 2016; Towe and Tra, 2012).

In this paper, I incorporate the impact of plant capacity in the treatment

assignments. To assign observations into treatment and control groups I use

Ethanol Production Capacity by Plant archived dataset provided by the Ne-

braska Department of Energy. This dataset provides a listing of over 200

ethanol plants and tracks each plant’s the production capacity in millions of
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gallons per year by month. To estimate the treatment effect of the ethanol

plant, I assigned fields to a control or treatment group based their proximity

to the plants. To construct neighborhoods around the plants I first geocoded

each plant using the centroid of the city in the plant’s address.

The Nebraska Energy Office data tracked the capacity of US ethanol

plants on a monthly basis. From 2005 to 2016 there were 497 ethanol plants

in the dataset. To define my treatment and control groups, I use the field’s

Euclidean distance from the plant to delineate treatment and control groups.

This study examines the impact of of ethanol capacity changes in a total of

217 market cities with annual nameplate ethanol plant capacity from 2008

to 2016. The literature on the effect that an ethanol plant has on local basis

patterns is rather weak. McNew and Griffith (2005) found that the presence

of an ethanol plant strengthened local basis but the capacity of of a plant

does not influence how far this influence reaches. However, their dataset con-

sisted of only 12 plants with a relatively uniform and small capacities McNew

and Griffith (2005). The average market city in this dataset had just over

73 million gallons of ethanol per year in nameplate capacity and nameplate

capacity ranged from 420 million gallons per year to only a 1 million gallon

per year. This suggests that the analysis would benefit by considering dif-

ferent sized neighborhoods based on the size of the plant. I constructed four

neighborhoods for each plant in the study based off assumptions on the land

devoted to ethanol production around the market city. Neighborhoods were

delineated by the radial distance away from the market city.

To construct these neighborhoods I assume that a certain percentage
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of the land immediately surrounding the plants is planted to corn that is

subsequently converted into ethanol and that the plant fills its capacity. I

assume constant productivity between plants such that one bushel of corn

can produce 2.8 gallons of ethanol (Jackson, 2018). I use simple land con-

version rates and yields to then estimate the treatment radius. A square

mile (known as a section) has 640 acres. The radius can then be found us-

ing the NASS county yields and the formula for the area of a circle. For

example, an ethanol plant with 300 million gallon per year capacity in a

county with a yield of 160 bushels per acre requires 300 million gal
2.8 gal per bu

= 107.14

million bushels of corn. Which would require 107.14 million bushel
160 bu. per acre

= 669, 625

acres, or 669,625 acres
640 acres per sq. mile

= 1, 046.29 square miles. This creates a neigh-

borhood about the ethanol plant with a radius of
(

1,046.29
π

) 1
2 = 18.25 miles.

The neighborhood radius can therefore be computed as equation 3.1. Here

capit is the market city’s total capacity in gallons per year, yi is the average

estimated yield measured at the county-level over 2009 to 2016, and prop is

the proportion of crop acres used for ethanol production. Since the exposure

to close ethanol production capacity is considered the treatment, I allow the

neighborhoods to vary over time with capacity changes.2

rpropit =

(
capit
2.8

yi
640

1

prop

1

π

) 1
2

(3.1)

Figure 3.3 shows a random sample of the treatment groups under the

different distance thresholds in 2016. Observations in blue, red, green, and

2I hold yields fixed at the average of the county yields from 2009 to 2016. Since
transitions are long-run, I do not consider individuals that go from treated to untreated.
That is, I only consider expansions.
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black are treated CLUs under the assumptions that 10%, 25%, 50%, and

100% of the area is planted to corn which was then used by the plant to

produce ethanol. On average the 100% radius was 8 miles, the 50% radius

was 11 miles, the 25% radius was 15 miles, and the 10% radius was 24 miles.

While these radii vary by plant, the average distances are in line with the

distances considered by (Towe and Tra, 2012) who used radii of 10, 20 and 30

miles. The total sample consists of about 5 million CLU fields. Treatments

were assigned by year.

The goal of this study is to determine the impact of an ethanol plant

entering a local market. The decisions from fields that had been near an

ethanol plant for many years would not be of interest since their decisions

could be influenced by post-treatment price variation that is unrelated to the

plant itself. Therefore a “treated” field is one that was newly introduced to

ethanol plant capacity. In other words, a field that was within a treatment

group for the first time in a given year.

Table 3.1 show the proportion of the sample, that was treated in each

year under each ethanol land conversion assumption. The relative sizes of

the treatment groups span a wide range from only less than 1% of all CLUs

being treated in a given year to over 10% all CLUs being treated. The share

of treated observations fluctuates according to the incoming ethanol capacity

entering in each year.
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Figure 3.3: 2016 US Ethanol Plant Neighborhoods

Table 3.1: Newly Treated Sample Proportions by Year
100% Radius 50% Radius 25% Radius 10% Radius

Year Treat. Obs. Treat. Frac. Treat. Obs. Treat. Frac. Treat. Obs. Treat. Frac. Treat. Obs. Treat. Frac.
2009 34746 1.70% 64491 3.40% 111311 6.80% 144610 12.60%
2010 10864 0.50% 23081 1.20% 35410 2.30% 40573 4.00%
2011 4625 0.20% 8622 0.50% 11537 0.80% 13394 1.40%
2012 6206 0.30% 10496 0.60% 19063 1.30% 31979 3.20%
2013 334 0.00% 557 0.00% 632 0.00% 758 0.10%
2014 7019 0.30% 12453 0.70% 17834 1.20% 24260 2.60%
2015 5089 0.30% 8590 0.50% 13393 0.90% 22601 2.50%

3.3 Conceptual Model

This paper does not explicitly study how the quality of cropland change

as prices change. However, it is a motivation for understanding extensive

decisions. Previous literature has shown land transitioning to and from crop

production is less suitable for crop production (Lubowski et al., 2006; Wright
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and Wimberly, 2013). As a consequence, inputs used on these lands are

not as productive and are over-allocated relative to more productive lands.

Because of this, and the fact that many agricultural inputs such as fertilizer

have environmental externalities, researchers cite that crop production on

converted land could be relatively environmentally harmful (Lubowski et al.,

2006).

Suppose farmers allocate their land across two different uses, crop pro-

duction (C), and some other use (O) in order to maximize profits. Land is

assumed to vary by some crop suitability index (θ) where higher values of

the index indicate higher crop productivity. This suitability varies accord-

ing to a density distribution (g (θ)) with the proportion of land below some

quality θ̄ is G
(
θ̄
)
. The farmer is considered a price-taker in both activities

and must decide on the threshold value of land quality to allocate to crop

production θ̄. Figure 3.3 shows an example of cumulative distribution and a

chosen threshold. It is assumed that all the land is used between these two

uses. Therefore the area to the left of the threshold in black will be con-

verted to non-cropland and the remaining under the distribution area will be

in crop production. The farmer’s production in one activity is assumed not

to impact the other activity, that is, production is non-joint between the two

activities.
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Profits between these crop and non-crop activities differ by the quality

of land that is used in the production. In this way the total profit for the

farmer can be described as equation 3.2. Where fC and fO are the per-acre

total product of crop and non-crop activities as a function of the cropland

suitability of the land. Without loss of generality, the unit price from the

non-crop activity is set to unity and the price of the cropped product is set to

pC . The total profits are determined by the quality within the chosen section

of the distribution and by the amount of land area allocated to each activity.

Profits are therefore a convex combination of the returns to each respective

activity. It is assumed that ∂fC
∂θ

, ∂fO
∂θ

are both positive, ∂
2fC
∂θ2

and ∂2fO
∂θ2

are both

negative. Since θ is a crop suitability index, it is also assumed that that the

marginal effect of an increase in the land quality is higher for the cropping

relative to the non-cropping activity. That is, ∂fC
∂θ

> ∂fO
∂θ

for all levels of θ.

The price-taking profit-maximizing farmer will then select the optimal land-

quality threshold by setting the first order condition equal to zero, shown

in equation 3.3.3 The first two terms represent the change in profits due to

area effects. Increasing θ̄ reduces the amount of land allocated to cropland

and adds it to non-crop uses. The next two terms represent the impact that

threshold increases have on the average productivity of land for each use.

Increasing θ̄ increases the average productivity across both practices.

Π (θ) = max
θ
{G (θ) fO (G (θ)) + pC (1−G (θ)) fC (G (θ))} (3.2)

3I simplify notation for readability.
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∂Π
(
θ̄
)

∂θ
= gfO − gpCfC +Gf ′Og + (1−G) pCf

′
Cg = 0 (3.3)

With the first order condition for allocation of land I solve for the change

in the land quality threshold using implicit differentiation in equation 3.4.

The denominator term is a second derivative of a profit function with respect

to a decision variable and therefore should be negative meaning the sign

is dictated by the sign of the numerator. The final form shows that the

relationship can be represented as a function of the elasticity of marginal

product to quality. Conceptually, as long as the increase in land quality

dedicated to cropland does not lead to a substantial proportional increase in

crop output, the threshold value of cropland will decrease with prices. The

effect will be especially high when less land is devoted to cropland (high values

of G
(
θ̄
)
) since a small change in land allocation contributes a proportionally

large increase in crop output. Since 1− G is less than one, the crop output

elasticity will need to be especially elastic for this term to be positive. Since

much of the area under crop production already have higher yields, it is

unlikely that a reallocation would have this kind of effect and therefore in

practice, cropland quality is likely to fall as crop prices increase. Using

the same steps, equation 3.5 shows the model also predicts that when the

elasticity of crop output is sufficiently small, crop yields will also tend to

decrease as crop prices increase.

∂θ̄

∂pC
= −

∂2Π
∂θ∂pC
∂2Π
∂θ2

=
g [fC − (1−G) f ′C ]

∂2Π
∂θ̄2

=
gfC

[
1− (1−G)

f ′C
fC

]
∂2Π
∂θ̄2

(3.4)
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∂fC
∂pC

|θ=θ̄=
gfC

[
1− (1−G)

f ′C
fC

]
−pCg

=
fC

[
1− (1−G)

f ′C
fC

]
−pC

(3.5)

3.4 Methodology

The goal of this paper is to estimate the impact that ethanol plant construc-

tion has on local land use decisions. Isolating the impact of changing local

ethanol plant capacity is difficult because the RFS contributed to both in-

creased ethanol production capacity and elevated crop prices. In addition,

where ethanol plants choose to locate is likely non-random. The start-up

costs for an ethanol plant can be considerable ranging between just over

$1.00 to $3.00 per gallon of capacity (Shapouri and Gallagher, 2005). This

corresponds to an approximate start-up cost of $140 million for the average

plant in the sample. Problems arise when isolating the causal treatment ef-

fect of the ethanol plant since this means that a field’s proximity to plants,

and therefore the treatment assignment is non-random. Due to this consid-

erable start-up costs, it is reasonable to assume that ethanol plants choose

to locate in areas where local producers are willing and able to sufficiently

supply the plant. It is likely that the same factors that encourage a field

to supply an ethanol plant are also related to the relative profitability of

crop production such as yield potential and crop suitability. Models that

fail to account for non-random treatment assignment would be biased since

they would attribute influence from variables that influence the treatment

assignment to the treatment itself.

The Rubin-Neyman causal model (RNCM) provides a theoretical founda-
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tion for computing causal estimates. This model in the simplest from has a

single treatment year, two states, treated and untreated, and two assignment

groups the treatment group and the untreated (control) group. The goal of

the RNCM is to estimate the effect that the treatment has on an outcome

variable of interest (Y ). With this there are three observed outcome values

across the sample, for each individual, Yi,t0,0, for individuals in the treatment

group before treatment period, Yi,t1,0 for individuals in the control group af-

ter treatment period, and Yi,t1,1 for individuals in the treatment group after

treatment period.

If individuals are assigned to either a treatment group or a control group

(D = 1 and D = 0 respectfully), and the outcome variables take on values

Yi,t1,1 after the individual (i) is exposed to a treatment and Yi,t1,0 if untreated

after the treatment period, the goal of the model is said to estimate the av-

erage treatment effect on the treated (ATT) shown in equation 3.6. Here

X are a set of individual controls, D is the treatment assignment, and Y

is the outcome variable. The ATT is of particular interest when treatment

assignment is non-random since the estimated effect of the treatment on

untreated individuals is generally not relevant outside of prediction applica-

tions. Researchers get to observe the treated state of the outcome variable

for individuals in the treatment group, and untreated outcome variables for

individuals in the control group. They do not get to observe the counterfac-

tual outcomes, the untreated outcome variable for the treatment group and

the treated outcomes for the control groups. Therefore the challenge that

underlies producing a causal estimate is that while the first term in equation
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3.6 is observed, the second term is generally unobserved.

ATT = E [Yi,t1,1 | X,D = 1]− E [Yi,t1,0 | X,D = 1] . (3.6)

While the treatment effect cannot be observed directly, making certain

assumptions allows researchers to estimate it. In particular, if researchers

assume that treatment was assigned at random and the outcome variable was

identically distributed across the treatment assignments, a researcher could

simply use the control group’s observed average post-treatment outcome as

an unbiased estimator of counterfactual outcome (E [Yi,t1,0 | X,D = 0]). In

many cases however, the treatment assignment is non-random, making this

invalid.

The difference-in-differences (DID) method is one way estimating the

treatment effect. The DID is a panel approach in which the pre- and post-

treatment period values are used to estimate the treatment effect. The first

“D” in the DID approach comes from the fact that we are computing the be-

fore and after treatment outcome variables for both the treated and control

groups. The second “D” is when these differences are differenced between

the treatment and control groups. By the second differencing step, the DID

approach has the benefit of controlling for time varying variables that are

common to both the treatment and control groups. This is useful in this

study since the RFS policy impacted the world prices for major commodities

as well as plant construction. This means that areas that were outside of

ethanol-producing regions also likely experienced elevated prices.

Smith and Todd (2005) provide a good overview of the DID matching
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methodology. They represent the treatment effect estimation procedures

using two distinct equations for treated individuals and untreated individuals

in equations 3.7 and 3.8. Where the U terms have a mean of zero. The

outcome variable can be written as a linear combination of the two left hand

side variables such that Yit = DiY1it + (1−Di)Y0it. Therefore, the outcome

variable between the two groups can be represented in a the single equation

shown in 3.9. Here α (Xit) = φ1 (Xit) − φ0 (Xit) + U1it − U0it is a function

of the controls as are the φ terms. The alpha term is the treatment effect

and, represented this way can vary according to the control variables. The

goal is therefore to find the estimate of α which in case of this analysis is

the conditional treatment effect of changes in local ethanol plant capacity

conditioned on cropland transition variables.

Y1it = φ1 (Xit) + U1it (3.7)

Y0it = φ0 (Xit) + U0it (3.8)

Yit = φ0 (Xit) +Diα (Xit) + U0it (3.9)

The DID approach uses the pre-and post-treatment values from the treated

and control groups to estimate the treatment effect (α). Here t1 is the post-

treatment time period and t0 is the pre-treatment time period. The DID

approach requires several assumptions to be valid. The first is that the

differences between the treated and untreated error terms are mean zero

(E [U1it − U0it] = 0) and that the error difference and therefore the difference
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in the conditional outcome variables are independent (E [(U1it − U0it)Di] = 0).

This means that the treatment assignment is not correlated with the con-

ditional estimate of the outcome variables which precludes endogeneity in

treatment assignment. Furthermore, the conventional DID approach also as-

sumes for a given time period t, (φ1 (Xit)− φ0 (Xit)) is a constant. This is

called the parallel trend assumption.

Under these assumptions, the standard DID estimator can be written as

equation 3.10. A look at equation 3.10 shows that the DID treatment effect

estimate
(
αDID

)
amounts to a break from the trend in the output value pre

and post-treatment that is attributed to the individuals in the treatment

group. This is illustrated in figure 3.5, where the treatment effect is the

difference between the observed post-treatment outcome and the predicted

counterfactual of the treatment group in the post treatment period. It also

graphically shows the parallel trend assumption at work as the treatment

effect is estimated as the difference between the realized and assumed par-

allel counterfactual trend. While the counterfactual trends in the outcome

variables are assumed constant across the treatment and the control groups,

the value of the output variable can differ across the groups. In the case

depicted in figure 3.5, the treatment group groups outcome variable is twice

as large as the control group. This is useful since RFS policy is responsible

for an increase in ethanol plant construction as well as an estimated 30%

increase in corn prices (Roberts and Schlenker, 2013). By differencing, the

DID estimator removes the influence of the common increase in crop prices

that both the treated and untreated fields experienced.
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Yit1 − Yit0 = φ (Xit1)− φ (Xit0) +Diα
DID + (Uit1 − Uit0) . (3.10)

●

●

●

●

●

●

Treatment 

 Effect

2

3

4

5

6

0 1

Time

O
ut

co
m

e

Treatment

treated

untreated

Status

observed

unobserved

Figure 3.5: Treatment Effect Illustration

With its focus on the change in outcome variables across time and groups,

the DID approach is useful in many settings. However, the parallel trend as-

sumption may not be valid. With respect to ethanol plants, it is reasonable

that ethanol producers select where to place plants based off of profit mo-

tivations. In chapter 2 I show that there is a high degree of price response

heterogeneity across the country. Plant investors may therefore choose to

construct plants in areas where farmers are more sensitive to price changes.
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Areas where long-term extensive transitions are not as sensitive to changing

crop prices limit the nearby crop product that could be sold to the plant

when prices rise.

Matching estimators are one way to address failures in the parallel trend

assumption. The standard DID approach assumes that all individuals in the

treatment group would have the same counterfactual trend as every individ-

ual in the control group. Matching relaxes this assumption by conditioning

it on the values of observables (X) where (X) is similarly defined in equation

3.9. Matching estimators rely on the assumption that individuals inside and

outside of the treatment groups are functionally identical provided that the

features that impact the likelihood of being in the treatment group are con-

trolled for. Formally this means that Y1, Y0 ⊥⊥ D | X meaning that the values

of the outcome variables are independent of the treatment assignment given

independent variables. Without the DID approach the matching estimator

would be:

αM =
1

n1

∑
i∈I1∩SP

[
Y1i − Ê [Y0i | Di = 1, Pi]

]
, (3.11)

where Pi is the ith individual’s probability of being in the treatment group,

I1 is the set of individuals in the treatment group, SP is the common sup-

port, n1 is the number of treated observations, and Ê [Y0i | Di = 1, Pi] =∑
j∈I0 W (i, j)Y0j. Here W (i, j) is the weight between the observation (i) in

the treatment group and the observation (j) in the control group. W (i, j) is

larger when the probability of treatment is more similar between i and j.

While I’ve stated how matching works generally, in practical applications,

observations are matched using many independent variables. As the dimen-

107



sion of the independent variables grows, it becomes less likely that matches

will be found due to the curse of dimensionality (James et al., 2013). To

control for this, often propensity score matching is used where individuals

close in some propensity score φ (X) are assumed to be close matches. Of-

tentimes the propensity score is an estimated probability of being in the

treatment group given the independent variables. A slight extension to the

conditional independence is needed to accommodate propensity score match-

ing Y1, Y0 ⊥⊥ D | φ (X). Conceptually this means that if individuals in the

treatment groups and control groups that are close in the propensity score

are sufficiently similar to one another, then the treatment assignment is the

only feature that can explain average difference between the treatment and

control outcomes.

There are many ways to assign weights (and define the support SP ) in

the matching procedure. Like many statistical procedures, the choice of

the matching procedure manages a bias-variance trade-off. A single-nearest

neighbor match tends to have low bias since only the closest individual in the

group control is matched to each treated individual. This procedure has high

variance since the counterfactual value is influenced by a single observation

within the sample. Since the dataset is large, I use a ten-to-one oversampled

nearest neighbor match where every treated field is matched with the ten

nearest control fields. A drawback to oversampling is that controls become

less comparable to the treated field. To regulate this, I restrict relevant

control fields to be within a quarter of a propensity score standard deviation.

To assign the weights I set W (i, j) equal to one if treated individual i is
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matched with the control observation j and zero otherwise.

αDIDM =
1

n1

n1∑
i

[
Y1t1i − Y0t0i −

∑
j∈I0∩SP

W (i, j) (Y0t1j − Y0t0j)

]
(3.12)

The primary benefit for using propensity score matching in this study is

that matching helps control for heterogeneity in observable characteristics

that can either impact the treatment assignment or the treatment effect.

Without matching, non-random treatment assignment can bias the ATT es-

timate. While the standard DID approach helps address potential design

problems related to non-random treatment assignment, it relies on the par-

allel trend assumption. In the face of heterogeneous treatment imply that the

parallel trend assumptions are valid for some subsamples of the treatment

and control groups but across the groups. Figure 3.5 illustrates that while

the outcome variable was higher in for the treated group, the DID approach

can still properly estimate the treatment effect. In the context of this study

this means that the adjustments that treated and untreated fields to their

output values are expected to be the same the pre- and post-treatment pe-

riods absent the influence from the treatment. Demonstrated in the earlier

chapter, supply response to prices was highly heterogeneous across the US.

If ethanol plants were aware of this, they may choose to locate in areas with

supply that was more or less price sensitive.
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3.4.1 Expected DID Results with Conditional Transi-
tions

In the next section I present the results of the difference in difference models.

Before I move on to the results I will explain what the expectations on

the signs are and how to interpret the tables. The dependent variables are

conditional changes in extensive uses, cropland or non-cropland. My initial

expectations are that in the presence of ethanol plant capacity, a field that

is currently in non-cropland would be more likely to switch to cropland after

the initial influence of an ethanol plant. If on the other hand the field were

currently used to produce crops, I would expect the ethanol plant exposure

to help retain area in cropland.

Suppose that new ethanol plant enters a region in 2011 and I have two

identical fields inside and outside of this region. Suppose in 2008 both fields

begin in cropland and remain in cropland until 2011. I expect that the

influx of new demand to entice the treated field to convert from non-cropland

to cropland. Since I do not allow more than one switch, this transition is

considered permanent. Tables 3.2 and 3.3 show the scenarios for the treated

and control fields respectively. A single year is lost when computing the

conditional transition, and an additional year is lost when computing the

differences in transitions across time. Because the treated field transitioned to

cropland in 2011, they had a non-cropland to cropland conditional transition

in that same year. Differencing the non-cropland to cropland conditional

transition in the prior year, the difference will be a positive 1 in 2011. While

the treated field does not transition from non-cropland to cropland in the
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subsequent year, the conditional transition will not be (-1) in 2012. The

reason is that it is a conditional transition and therefore will be undefined

when the previous land use was not in non-cropland. Differencing the two

differences, table 3.4 shows that expected DID estimate to be positive.

Table 3.2: Expected Outcome For Treated when Treatment in 2011 and
Initially Non-Crop

Year Crop (C) Non-Crop (N) (C | N)1 ∆ (C | N)1

2008 0 1 – –
2009 0 1 0 –
2010 0 1 0 0
2011? 1 0 1 1
2012 1 0 0 -1
2013 1 0 0 0

Table 3.3: Expected Outcome For Control when Treatment in 2011 and
Initially Non-Crop

Year Crop (C) Non-Crop (N) (C | N)0 ∆ (C | N)0

2008 0 1 – –
2009 0 1 0 –
2010 0 1 0 0
2011? 0 1 0 0
2012 0 1 0 0
2013 0 1 0 0

Table 3.4: Expected Cropland Transition DID
Year ∆ (C | N)1 ∆ (C | N)0 DID
2010 0 0 0
2011? 1 0 1

Tables 3.5 and 3.6 show the same scenario except each field is initially

planted to cropland. In this case, I would expect that after 2011, fields that
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are exposed to local ethanol demand would be more likely to retain land in

cropland. If this is the case then the control group, without the influence

of the plant, may transition its land to non-cropland. Since the statistic of

interest is crop retainment or the conditional transition to cropland given

cropland was initially planted, the control group would therefore have a neg-

ative change in cropland retainment. As before, since these are conditional

transitions, they are only comparable if in the previous year, both fields

were in cropland. Therefore, the expected cropland retainment DID is still

positive, as shown in table 3.7.

Table 3.5: Expected Outcome For Treated when Treatment in 2011 and
Initially Crop

Year Crop (C) Non-Crop (N) (C | C)1 ∆ (C | C)1

2008 1 0 – –
2009 1 0 1 –
2010 1 0 1 0
2011? 1 0 1 0
2012 1 0 1 0
2013 1 0 1 0

Table 3.6: Expected Outcome For Control when Treatment in 2011 and
Initially Crop

Year Crop (C) Non-Crop (N) (C | C)0 ∆ (C | C)0

2008 1 0 – –
2009 1 0 1 –
2010 1 0 1 0
2011? 0 1 0 -1
2012 0 1 0 0
2013 0 1 0 0
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Table 3.7: Expected Cropland Retainment DID
Year ∆ (C | N)1 ∆ (C | N)0 DID
2010 0 0 0
2011? 0 -1 1

3.4.2 Ethanol Expansion Areas by Year

The use of a DID matching procedure was motivated by its ability to purge

bias resulting from distributional differences of relevant observables. The

standard DID approach is useful on its own when the parallel trend assump-

tion is valid across the treatment and control groups. To illustrate the general

relationship between ethanol capacity and cropland transitions, I first show

the results of four event studies. Event studies are a simple extension of the

DID approach which allows the impact of the treatment to vary at differ-

ent points in time relative to the treatment time period. Modeling as an

event study is useful since ethanol plants take around 2 years to complete on

average meaning that the land use decisions could be impacted by the an-

ticipation of incoming ethanol demand during the construction phase. The

event study considers the distinct treatment effect differences as far back as

4 years before the treatment and up to 6 years after the initial introduction

of ethanol capacity.4

The matching version of the DID estimator is the most complicated model

I ran in this paper. Not every plant was constructed in the same year and

fields that were previously treated are not suitable controls in the matching

4Lags greater or equal to four are combined to ensure adequate variation in the variable.
Therefore, the “minus 4” term will be 1 for a field treated in 2015 will be 1 when year is
2009, 2010, and 2011.
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process. I divided the sample in several ways to construct the datasets that I

eventually performed the matching over. Firstly, since the outcome variables

of interest were conditional transitions from cropland and non-cropland, I

only considered fields that had cropland planted in the previous period when

estimating the effect of ethanol plant on the probability of cropland retention.

Likewise, for cropland conversion, I considered only fields that were not in

cropland in the prior period. Second, because previously treated observations

are not suitable controls for the contemporaneously treated individuals and

ethanol plants entered markets in different years I subset the samples further

by year where for a given year, only fields that were either exposed to ethanol

plant capacity in the given year, never exposed to ethanol plant capacity,

or were exposed at least one year after the current year. I made this last

restriction because ethanol plant construction takes one to two years and it

is reasonable that farmers in the area would anticipate new capacity entering

the area in the year leading up to its opening.

Fields were considered treated if they were exposed newly to ethanol

plant capacity. Because of this, the treated groups in a given year tended to

decline over time. Figures 3.6 and 3.7 show the ethanol expansion areas when

I assume either a 25% or 50% area corn-ethanol conversion rate. The radial

assumptions change the shape of the expansion areas where under smaller

radii there are expansion areas within more dense ethanol coverage and under

larger radii there are larger expansion areas near the fringe of corn-growing

regions. While the literature gives some attention to the radius size, to my

knowledge no one has discussed that smaller radii tend to designate more
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treated fields in areas with denser ethanol plant markets. The figures also

show that ethanol expansion was more frequent in the earlier years. Much

of the expansion in 2009 was from new plant construction while later years

expansion was from additional capacity being added to existing markets. The

2013 crop year saw the smallest increase in ethanol capacity with caused by

modest expansions to existing capacity. In all but 2013, for every year of the

study, at least one ethanol plant came online in a new market.

Figure 3.6: Areas of Ethanol Expansion by Year with 25% Conversion As-
sumption

115



Figure 3.7: Areas of Ethanol Expansion by Year with 50% Conversion As-
sumption
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3.5 Results

3.5.1 Transitional Summary

I start the results section by summarizing the starting and ending status of

land in the dataset. Table 3.8 provides a summary of fields in the dataset

starting in either cropland or non-cropland in 2008 and their respective end-

ing status by 2016. Before sub-sampling, the total dataset consisted of a little

over 5.6 million fields with approximately equal proportions in non-cropland

and cropland.

Table 3.8: Fields by Starting and Ending Status from 2008 to 2016
Starting Land Status

Non-Cropland Cropland
Ending

Land Status
Non-Cropland 95.1%

(2,477,004)
0.7%

(20,072)

Cropland 4.9%
(127,530)

99.3%
(3,017,893)

Total Count 2,604,534 3,037,965

Overall, fields tended to retain their original status. Cropland conversion

was far more common than cropland abandonment with over 95% of fields

starting in non-cropland remained in non-cropland over the course of the

study, and over 99% of fields starting in cropland remained in cropland. In

the subsections to come these numbers are good to keep in mind. The lack

of general movement in cropland status by the majority of lands restricts

the size of the coefficients that follow. For instance, plants could not, on

average, reduce the probability of cropland conversion by over 5%. Many of

the results to follow have small coefficient values. In context however, they

can be fairly influential. For instance a 0.1% increase in cropland retention
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means the probability of cropland abandonment falls from 0.7% to 0.6%, a

proportional decrease of 14% in overall cropland abandonment. A 0.1% in-

crease in cropland conversion increases the probability of cropland conversion

from 4.9% to 5.0% which is proportional increase of 0.02 in overall cropland

conversion.

3.5.2 Difference-In-Differences Results

Here I present the results of the standard DID procedure across every radius

assumption over two subsamples. The first subsample is a standard sub-

sample of across the entire national dataset. I call this the “unrestricted”

sample. For the second subsample I use only those fields that were consid-

ered a part of the common support during the propensity score matching

procedure. Separate matching is performed over each year so I draw a ran-

dom sample over fields in at least one of the common supports for one of

the years of the analysis. Due to computational complexity I took a random

sample from these 5 million fields. Both subsamples contain 60,000 fields

with approximately 8 observations between 2009 and 2016. Tables 3.9 and

3.10 show the results of the standard DID approach estimated using a year

and field-fixed linear model estimated over unrestricted samples. Table 3.9

shows that being exposed to ethanol plant capacity makes fields more likely

to retain land in cropland.

Exposure to new ethanol plants increased cropland retainment by around

a tenth of a percent. This corresponds to approximately a 14% decrease in

the amount of abandoned cropland. While insignificant at the 100% and
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50% radii, it was significant at the 95% and 90% confidence level for the 25%

and 10% radii assumptions respectively. There are two potential reasons for

the differences in significance, firstly because they are larger, the 25% and

10% radii generally consider more fields as treated this leads to a higher

proportion of treated observations in a given dataset. This in turn reduces

the estimated variance on the treated coefficient. A second reason could be

due to the fact that the larger radii assumptions (e.g. the 10% and 25%) tend

to designate more fields outside of dense markets as “treated” while smaller

radii tend to “fill in” within dense markets as capacity expands. Fields

outside the traditional corn markets may be less likely to inherently retain

cropland which could lead to more dramatic changes once ethanol plant enter

their area. Table 3.10 shows the DID results for cropland conversions. When

considering conversion, the treatment effect was not consistent in sign across

the different radii and was insignificant.

Table 3.9: DID Results for Cropland Retention Over Unrestricted Sample

Dependent variable:

Crop-to-Crop Transitions
100 Pct. Radius 50 Pct. Radius 25 Pct. Radius 10 Pct. Radius

(1) (2) (3) (4)

Ethanol Plant Neighborhood 0.001 0.0001 0.001∗∗ 0.001∗

(0.001) (0.0005) (0.0004) (0.0003)

Fixed Effects Yes Yes Yes Yes

Observations 470,056 470,247 469,785 470,136
F Statistic 83.883∗∗∗ (df = 8; 410048) 76.543∗∗∗ (df = 8; 410239) 86.714∗∗∗ (df = 8; 409777) 82.628∗∗∗ (df = 8; 410128)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.10: DID Results for Cropland Conversion Over Unrestricted Sample
Dependent variable:

Non-Crop-to-Crop Transitions
100 Pct. Radius 50 Pct. Radius 25 Pct. Radius 10 Pct. Radius

(1) (2) (3) (4)

Ethanol Plant Neighborhood 0.0002 −0.001 −0.0003 −0.001
(0.003) (0.002) (0.002) (0.001)

Fixed Effects Yes Yes Yes Yes

Observations 466,733 466,551 466,255 466,378
F Statistic 326.064∗∗∗ (df = 8; 406725) 331.570∗∗∗ (df = 8; 406543) 326.623∗∗∗ (df = 8; 406247) 330.381∗∗∗ (df = 8; 406370)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The common support represents the fields with a propensity score above

the lowest propensity score for treated observations and below the highest

propensity scores for the untreated observations. Conceptually the common

support is a set of observations where the treated and control groups have

a comparable conditional probability of receiving treatment at some point

in time. Using observations that are only in the common support ensures

that observations between the treatment and control group are somewhat

comparable in observations that could influence treatment effects. The com-

mon support is plotted in figure 3.8 where non-common support observa-

tions are in red and common support observations in black. Although there

was considerable geographical overlap, there were areas with fewer fields

within the common support. The circular areas inside were generally ar-

eas that had long-established ethanol plants. Since these plants were long

established, they were removed altogether from the common support. The

common support also removed areas with marginal cropland in the western

Dakotas, southern Missouri, northern Wisconsin and Minnesota and eastern

Ohio. Tables 3.11 and 3.12 show the results of the DID models over different

radii assumptions for cropland retainment and cropland conversions over the
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common support of within the matching procedure.

Figure 3.8: Common Support Area with the 50% Radius Assumption

Tables 3.11 and 3.12 show the DID results for observations in the com-

mon support. In general, the cropland retention results were very similar

across the radii. At the 100% radius, the treatment effect was not statis-

tically significant. and the coefficients had smaller standard errors under

larger radii. While most of the coefficients were positive, they lack statisti-

cal significance. The more interesting results were on the non-cropland to

cropland transitions. While the model suggests there is a negative treat-
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ment effect between ethanol plants and cropland conversion and the effect is

even significant under the 50% treatment radius, the sign flips positive and

is highly significant at the 10% radius indicating a 0.3% increase in cropland

conversion under the 10% radius. This corresponds to a 6% increase in the

lands converted to cropland. Since larger radii “treat” more of the sample

outside of dense ethanol markets, this could suggest that the treatment effect

is larger in areas where the ethanol industry is not as established. This is

consistent with the recent findings of Ifft et al. (2018) who note that CRP

policy changes increased the rate of CRP acres retained in CRP and was

particularly influential in areas with greater ethanol production.

Table 3.11: DID Results for Cropland Retention Over Common Support

Dependent variable:

Crop-to-Crop Transitions
100 Pct. Radius 50 Pct. Radius 25 Pct. Radius 10 Pct. Radius

(1) (2) (3) (4)

Ethanol Plant Neighborhood −0.00002 0.001 0.001 0.001
(0.001) (0.0005) (0.0004) (0.0003)

Fixed Effects Yes Yes Yes Yes

Observations 471,058 470,575 468,462 465,424
F Statistic 67.281∗∗∗ (df = 8; 411050) 61.144∗∗∗ (df = 8; 410567) 84.240∗∗∗ (df = 8; 408454) 98.028∗∗∗ (df = 8; 405416)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.12: DID Results for Cropland Conversion Over Common Support
Dependent variable:

Non-Crop-to-Crop Transitions
100 Pct. Radius 50 Pct. Radius 25 Pct. Radius 10 Pct. Radius

(1) (2) (3) (4)

Ethanol Plant Neighborhood −0.003 −0.004∗∗ −0.0004 0.003∗∗∗

(0.003) (0.002) (0.002) (0.001)

Fixed Effects Yes Yes Yes Yes

Observations 463,487 464,033 465,386 466,712
F Statistic 396.613∗∗∗ (df = 8; 403479) 383.124∗∗∗ (df = 8; 404025) 357.353∗∗∗ (df = 8; 405378) 341.349∗∗∗ (df = 8; 406704)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.5.3 Event-Study Results

I repeat the DID analysis by considering crop retention and cropland con-

version models but now consider the event study models. Event studies are

nearly identical to the DID approach. Instead of a single treatment effect

variable that remains one for every post-treatment year, event studies sep-

arately consider the effect of being inside of a treatment group before and

after treatment. In this event study, I include 11 different year-treatment

combinations ranging from being in a treatment group 4 years before treat-

ment to being in a treatment group 6 periods after treatment. Figures 3.11

and 3.12 show whisker plots of each of the year-treatment coefficients un-

der unrestricted samples across all four treatment radii. Across these figures

the coefficient variance tends to decrease as the treatment-year lags decline.

This is because the majority of treated individuals were treated in earlier

sample years (e.g. 2008 and 2009). The relative lack of variation in the

pre-treatment variables led to higher variance. Likewise, the variance on co-

efficients related to the larger 10 and 25% radii were smaller as well. This

is because larger radii treat more observations leading to higher variability

in the treatment-year variables. Interestingly, 3.11 shows that being in an

ethanol expansion area four years before the expansion takes place were less

likely to retain cropland. This persisted until two years after the expansion

had taken place after which, there was no statistically significant effect. It is

unlikely that an ethanol plant would impact planting decision 4 years prior

to its construction. It is more likely that ethanol plants locate in areas where

there is less cropland retention and then after the expansion takes place, the
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plant has a negligible effect on cropland retention. A low rate of cropland

retention may be a consequence of lower crop prices which would correspond

to lower input costs to the plant. The results of the cropland transition event

study in figure 3.12 show that, while often not significant, there is a small

increase in the probability of transitioning to cropland following an ethanol

plant expansion. Figures 3.11 and 3.12 are the event study coefficients for

cropland retention and cropland conversion when the sample is restricted to

the common support. These graphs have the same general trends as their

unrestricted counterparts but many of the coefficients become insignificant

at the 95% confidence level.

3.5.4 Matching DID Results

The results of the event study suggest that the expansion of ethanol plants

were not random. The non-zero pre-treatment effects from the event study

were detected up to four periods before the plant came into the area. This

suggests that the treatment assignment is significant correlated with crop-

land choices. This and the the attenuation of the post-treatment effects

under the common support seems to suggest that the DID approach can be

improved through matching. Tables 3.13 and 3.14 show the average treat-

ment effect on the treated (ATT), for each year, their respective p-values,

and a 95% confidence intervals under the 25% and 50% radii assumptions for

cropland retention and transitions respectively. Matching requires pairing

treated fields with control fields that were either never treated or treated at

least one period after the given year. To compute the p-values and confidence
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intervals, I used a Welch two-sample t-test. In 2013 the government first ad-

justed the mandate in response to economic and environmental constraints

of reaching the increasing blending requirements. This lead to a temporary

stagnation in ethanol construction due to regulatory uncertainty. While con-

struction resumed after 2013, it was considerably slower than the initial RFS

policy years of 2008 and 2009. Since, under the matching procedure, for

each year, newly treated observations needed to be matched with control

observations and there was a lack of expansion in 2013, these observations

were removed from all matched models. Further years were removed from

the 50% radius matched DID study there was a lack of variability in the

outcome variable for the treated groups. The matched DID procedure indi-

cates shows that in most years, there were significant treatment effects. In

particular cropland retention was significantly higher in areas with expand-

ing ethanol production. The probability of land transitioning to cropland

dropped when ethanol capacity entered the market. The confidence inter-

val indicates that new ethanol production lead to up to a 1% reduction in

cropland.

While they may seem contradictory, taken together, these results agree

with the recent work of Ifft et al. (2018). They found that changes to the

Conservation Reserve Program (CRP), a voluntary cropland retirement pro-

gram, that occurred around the same time as the 2007 ethanol mandate may

have contributed to higher re-enrollment rates in CRP. In particular, the

continuous CRP (CCRP) and the temporary extension re-enrollment (REX)

contracts which both make re-enrolling in CRP easier and less risky were
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used extensively in the late 2000s. They found that in areas with ethanol

production, CRP re-enrollment was especially high. While these changes

could have impacted CRP retention, they likely had little to no impact on

enrollment. To enroll land in the CRP program, producers are often placed

on waiting lists unless the land is especially sensitive or small. Fields under

15 acres were omitted. These CRP changes therefore would not impact crop-

land retention. Ifft et al. (2018) also note that the impact of these changes

are likely to disproportionately impact areas with high ethanol production.

Findings with the standard DID at the 10% radius under a common support

are consistent with this. Under the 10% radius which showed a positive ef-

fect on cropland conversion from ethanol plant expansion. Since radii under

a 10% conversion assumption are larger, land expansions will be further away

from established ethanol production areas.

Table 3.13: Cropland Retention Transition Matching Difference-in-
Differences Estimates

25% Radius 50% Radius
Year ATT Est. ATT P-Value 95% Conf. Int. ATT Est. ATT P-Value 95% Conf. Int.
2010 0.0020 0.0000 0.0013 0.0027 0.0021 0.0000 0.0012 0.0031
2011 0.0038 0.0000 0.0022 0.0054 0.0032 0.0002 0.0015 0.0049
2012 0.0018 0.0002 0.0009 0.0027 0.0018 0.0047 0.0006 0.0031
2013 – – – – – – – –
2014 0.0005 0.0455 0.0000 0.0009 – – – –
2015 0.0005 0.0455 0.0000 0.0009 0.0002 0.3174 -0.0002 0.0006
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Table 3.14: Cropland Conversion Matching Difference-in-Differences Esti-
mates

25% Radius 50% Radius
Year ATT Est. ATT P-Value 95% Conf. Int. ATT Est. ATT P-Value 95% Conf. Int.
2010 0.0029 0.7741 -0.0169 0.0226 -0.0070 0.0000 -0.0095 -0.0045
2011 -0.0094 0.0000 -0.0133 -0.0056 -0.0086 0.0015 -0.0139 -0.0033
2012 -0.0077 0.0000 -0.0109 -0.0045 – – – –
2013 – – – – – – – –
2014 -0.0055 0.0005 -0.0086 -0.0024 – – – –
2015 -0.0043 0.0000 -0.0063 -0.0023 -0.0041 0.0027 -0.0068 -0.0014

The ATT values overall were fairly small in magnitude but not inconse-

quential. Land-use transitions do not occur frequently and therefore even

small changes can have long-term implications. Generally around 98% of

land in cropland remained cropland in the next year. Therefore, the most

retainment could increase by was 2% making a 0.3% change influential to

the status quo. Similarly approximately 95% of non-cropland remained in

non-cropland in the subsequent year. At the lower bound, the model sug-

gests that the introduction of an ethanol plant lead to a 1.3% reduction in

cropland conversion. Caution should be taken with these estimates however.

While the models produced a mixture of expected and unexpected results,

the balancing statistics of the matching procedure indicate that the matching

did not perform well. Recall that in matching, the goal is to pair treatment

observations with control observations that are close in the control variables.

In this way, the difference in the outcome variable between the treatment and

control group can be attributable to the treatment. If matching is performing

well, then the distributions of the matching variables should be similar across

the treatment and controls. Tables 3.15 and 3.16 show the years where the

matching variables were identical across the groups at the 95% confidence
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level for cropland retainment and conversion respectively. While nearly all

of the matching variables had at least one year where they were statistically

identical across groups, few were identical across all years. This indicates

that the matching process could be improved if more variables were added.

For 2010, matching was considerably poor, balancing only corn basis in the

cropland retainment model with a 25% radius. This suggests that more

variables need to be added to the set of matching variables. Obvious variables

to include are county-level CRP payment indicators used by Towe and Tra

(2012) and (Ifft et al., 2018).
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Table 3.15: Cropland Retention Matching Covariate Balanced Years at 95%
Confidence Level

Balanced Year
Variable Name 25% Radius 50% Radius

Slope 2015, 2014, 2011 2015, 2011
Sand % 2015, 2014
Silt % 2015, 2011 2015, 2011

Population 100k 2015, 2011 2011
NCCPI 2015, 2011 2015, 2011

Wind Erosion Index 2015, 2014, 2011 2015, 2011, 2010
Hydric Status 2015, 2012, 2011 2015, 2012, 2011

Land Res. Region F 2011 2011
Land Res. Region G
Land Res. Region H 2011 2011
Land Res. Region J 2012, 2011 2015, 2012
Land Res. Region K 2015, 2014 2015, 2011
Land Res. Region L 2015
Land Res. Region M 2015 2015, 2011
Land Res. Region N 2012
Land Res. Region O
Land Res. Region P

Corn Basis 2004 2011, 2010 2012, 2011, 2010
GDD Mean 2011

GDD Std. Dev. 2012 2012, 2011
Extreme DD Mean 2012 2012, 2011

Extreme DD Std. Dev. 2012 2011
Precip. Mean 2011 2015, 2011

Precip. Std. Dev 2014, 2011 2015, 2011
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Table 3.16: Cropland Conversion Matching Covariate Balanced Years at
95% Confidence Level

Balanced Year
Variable Name 25% Radius 50% Radius

Slope 2015, 2014, 2012, 2011, 2010 2015, 2011, 2010
Sand % 2014 2015, 2011, 2010
Silt % 2015, 2014 2015, 2011

Population 100k 2015, 2014, 2012, 2010 2010
NCCPI 2015, 2014, 2011 2010

Wind Erosion Index 2014, 2011, 2010 2015, 2010
Hydric Status 2015, 2012, 2011, 2010 2015, 2011, 2010

Land Res. Region F 2015 2015
Land Res. Region G
Land Res. Region H 2015, 2014, 2012 2011
Land Res. Region J 2015, 2011
Land Res. Region K 2015
Land Res. Region L 2015
Land Res. Region M 2015, 2014, 2012 2015, 2011, 2010
Land Res. Region N 2012
Land Res. Region O 2015 2015, 2011, 2010
Land Res. Region P

Corn Basis 2004 2014, 2011, 2010 2015, 2011
GDD Mean 2014, 2011 2015, 2011

GDD Std. Dev. 2014, 2012, 2011 2015, 2011
Extreme DD Mean 2014, 2012, 2011 2015, 2011

Extreme DD Std. Dev. 2014, 2012, 2011 2015, 2011
Precip. Mean 2015, 2014, 2011 2015, 2011, 2010

Precip. Std. Dev 2015, 2014, 2012, 2011 2015, 2011, 2010
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3.6 Conclusions

Land transitions at the extensive margin have widespread implications for

environmental and efficiency outcomes in agriculture. In this chapter, I use

broad land use decisions across nearly 5 million fields in 13 states and how

they were impacted by the introduction and expansion of ethanol plants. Us-

ing the difference-in-differences (DID) approach, event studies, and a match-

ing DID, I modeled cropland retainment and conversions over four different

treatment assignments. The results suggest that fields in areas with ethanol

plant expansion were more likely to retain land in cropland after the expan-

sion. However, there was also evidence that ethanol plant expansions lead

to a reduction in cropland conversion. Changes to the CRP program that

encouraged re-enrollment around the same time the RFS ethanol mandates

came into effect may explain these contradictory results. In addition, the

balance statistics for the matching variables across treatment and control

groups indicate that the matching could be improved by adding more vari-

ables. If the impact of CRP program changes is the driver of the results,

this suggests that county-level CRP payment information could be added as

parameters in future iterations of this study.

There are several extensions that could be made to improve future anal-

ysis. Firstly other variables can be introduced into the model. Two feasible

variables are the field’s distance from railway lines and the field’s distance

from major metropolitan areas. The distance from railway lines has been

identified as a potential control for distance from an ethanol plant. Mo-

tamed et al. (2016) used this variable as a instrumental variable arguing that
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the field’s distance from an ethanol plant has little bearing on contempo-

rary crop decisions and is positively correlated with the proximity of ethanol

plants. Towe and Tra (2012) used the distance from railway lines as a match-

ing parameter for similar reasons. Towe and Tra (2012) also use distance to

metropolitan areas as another control. This control correlates with distance

to markets and therefore transportation costs. In this way the distance to

metropolitan areas can be viewed as both a control and for ethanol plant

location. Since transportation costs are not equal across all land uses. For

example heavy logging from forestry use has unique transportation need that

conventional crop production does not (Lubowski et al., 2006).

Other extensions are methodological. The economics community is be-

coming more interested in utilizing machine learning in performing analysis

over “big” datasets (Varian, 2014). Since inference is the goal of most of

economic analysis, the use of machine learning is complicated in economic

research. However, there is a growing interest in using machine learning in

intermediate steps of analysis where the prediction and classification capa-

bilities of these methods can be exploited without compromising theoretical

grounding of the primary model. Matching procedures is one area where

machine learning, particularly classification trees and their variations hold

promise (Athey and Imbens, 2016; Lee et al., 2010). While expansive, much

of the data went unused due to computational issues. While computational

time can still be problematic under large datasets, classification trees are

often less computationally burdensome than models utilizing maximum like-

lihood and come with the added benefit of being able to incorporate highly
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non-linear control relationships.
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