

Beach Museum Web Application

By

Nithin Kumar Kakkireni

 B. Tech., Shiv Nadar University, 2016

A Report

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

 Department of Computer Science
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2018

 Approved by:

Major Professor

Dr. Daniel Andresen

Copyright

© Nithin Kumar Kakkireni 2018.

Abstract

This project involves in developing a responsive web application for Beach

Museum at Manhattan, Kansas. Application is built on development boxes using

Amazon web services. Project is built on MVC architecture that helps user to search

images, create their own collection from the images and include an admin module.

Migrating the current existing SQL database to couchDB for better performance of the

available data. Integrated Apache Lucene to support text search in the couch database

writing different indexes to retrieve the results. Implementing core functionalities like

basic search, advanced search, filter objects with respective to artist, decade, object

type and relevance using different indexes and Mango queries in the couchDB. Search

Results are further chunked and displayed to the user. Web storage API’s were used to

provide the functionality for a user to create their own collection (set of Images). Built

an Admin module to perform CRUD operations the database. Admin module involves

in creating exhibitions, adding/editing works and artists in the couch DB.

iv

Table of Contents

List of Figures ... viii

List of Tables .. xi

Acknowledgements .. xii

Chapter 1 - INTRODUCTION ... 1

Description .. 1

Motivation ... 1

Problem Solved: .. 2

Paper Structure .. 2

Chapter 2 - Tools and Technologies Used .. 4

MVC Architecture... 4

Model .. 4

View .. 4

Controller .. 4

Advantages of using MVC controller ... 5

Storage Database... 6

HTTP API ... 7

Apache Lucene.. 7

Programming Languages Used ... 8

JQuery ... 8

PHP ... 9

HTML5, CSS .. 9

Amazon Web Services .. 9

AMAZON VPC .. 9

Chapter 3 - Project Requirements ... 11

Scope of the Project: ... 11

Environment.. 11

Requirements .. 11

Functional Requirements .. 11

Version -1.. 11

v

Version -2.. 12

Technical Requirements.. 12

Chapter 4 - System Design ... 13

Use Case Diagram... 13

Activity Diagram... 15

User ... 15

Admin.. 16

Data Layer... 16

Artist Meta data:.. 17

Artist Metadata.. 19

Login Metadata ... 20

Indexes .. 21

Views Created In CouchDB.. 21

Scoring in Lucene: .. 22

Cloud Storage.. 23

Chapter 5 - Building the System ... 24

Designing Views ... 24

Basic Search .. 27

Mango Queries .. 29

HTTP API END POINTS ... 30

Web Storage API’s.. 31

Session Storage: .. 31

Local Storage .. 32

Advanced Search... 32

Artist Search.. 32

Forming Mango Query ... 32

Home Page .. 33

Gallery Page .. 34

Filters: ... 34

Search Results: .. 36

Object Page ... 37

vi

Work Object Page: .. 37

Artist Object Page ... 38

Your Collection... 38

Admin Module .. 38

Login Page .. 38

Profile Page ... 39

Add/Edit a Collection.. 39

Add/Edit a Work ... 40

Add/Edit an Artist ... 41

Chapter 6 - Going into the Application... 41

Output Screens .. 42

Home page: ... 42

Advanced Search... 43

Gallery Page .. 46

Filters .. 47

Search Results ... 48

Pagination.. 49

Object Page ... 50

Work Object Page ... 50

Add to Collection .. 51

Image View ... 52

Multiple images... 52

Data of the work.. 52

Artist Object Page ... 53

Your Collection... 54

Exhibition Page ... 57

Admin Page... 57

Profile Page ... 58

Chapter 7 - Security and Exception Handling .. 61

AMAZON VPC .. 61

Hashing of password:.. 63

vii

OWASP Mod security .. 63

Exception Handling... 64

Chapter 8 - Testing the Application .. 66

Unit Testing... 66

Integration Testing .. 68

Performance Testing ... 71

Chapter 9 - Accessibility to Elder Users ... 74

Chapter 10 - Conclusion and Future Work ... 76

Conclusion .. 76

Future Work .. 78

Chapter 11 - Bibliography... 79

viii

List of Figures

Figure 1 Share Responsibility Model (https://aws.amazon.com/compliance/shared-responsibility-

model/) .. 10

Figure 2 Use-Case Diagram .. 14

Figure 3 User Activity Diagram.. 15

Figure 4 Admin Activity Diagram .. 16

Figure 5 Work data model .. 18

Figure 6 Artist Metadata ... 20

Figure 7 Login Metadata... 20

Figure 8 CouchDB Design Documents... 21

Figure 9 CouchDB Index document ... 22

Figure 10 CouchDB Document Index II... 22

Figure 11 Cosine Similarity .. 23

Figure 12 Code snapshot for designing views .. 25

Figure 13 Snapshot of code including controllers .. 26

Figure 14 Result from Lucene .. 27

Figure 15 Result from Lucene II... 28

Figure 16 Code snapshot of using Jquery Autocomplete UI .. 29

Figure 17 Couch DB Mango Query ... 30

Figure 18Code Snapshot forming Mango query... 33

Figure 19 Snapshot of highlight query.. 34

Figure 20 Snapshot of filter query .. 36

Figure 21 Add Collection Query... 40

Figure 22 Edit Collection Query ... 40

Figure 23 Home Page.. 42

Figure 24 Advanced search page .. 43

Figure 25 User's previous searches ... 44

Figure 26 Autocomplete jQuery for Artist.. 44

Figure 27 Responsive UI for artist search... 45

ix

Figure 28 Gallery Page ... 46

Figure 29 Filters .. 47

Figure 30 Filter results .. 47

Figure 31 Search Results .. 48

Figure 32 Thumbnail of Work .. 49

Figure 33 Pagination ... 49

Figure 34 Work Object Page... 50

Figure 35 Multi View Page ... 51

Figure 36 Add to Collection ... 51

Figure 37 Feed Back from Add to Collection... 51

Figure 38 Feed Back II from add to collection ... 52

Figure 39 Artist Object Page... 53

Figure 40 My Collection Page .. 54

Figure 41 Slide Show of thumbnails... 55

Figure 42 Full View of an Art... 56

Figure 43 Exhibition Page .. 57

Figure 44 Admin Page .. 57

Figure 45 Add to Collection Page.. 58

Figure 46 Edit Collection Page ... 58

Figure 47 Add Work Page .. 59

Figure 48 Add Artist Page .. 59

Figure 49 Edit Work Page... 60

Figure 50 Edit Artist Page... 60

Figure 51 AWS VPC Security .. 63

Figure 52 Exception Handling I.. 64

Figure 53 Exception Handling II .. 65

Figure 54 Throughput graph for 10 users ... 72

Figure 55 Throughput for 100 users ... 73

Figure 56 Throughput for 1000 users ... 73

Figure 57 Hover image I ... 74

Figure 58 Hover Image II.. 74

x

Figure 59 Buttons with text I .. 75

Figure 60 Buttons with text II ... 75

xi

List of Tables

Table 1 VPC Inbound security groups .. 61

Table 2 VPC Out Bound Security Group ... 62

Table 3 Integration Testing Test Cases ………………………………………………………… 71

Table 3 Integration Testing Test Cases ………………………………………………………… 73

xii

Acknowledgements

I would like to express my sincere gratitude to my Advisor, Mentor, Instructor and Major

Professor, Dr. Daniel Andersen for his support and trust.

I am also grateful to my committee members Dr. Mitchell Nielsen and Dr. Torben Amtoft

for their encouragement and taking their time to serve on my committee.

My special gratitude goes to Jason Bengston, Julie Bell and the library staff for

constantly supporting me to finish this project. It would have been very difficult without their

support.

I would like to thank my parents Mr. Prasad and Mrs. Geetha Vani for having faith in me

and for their love and blessings. Special thanks to my brother Nikhil Prasad and my sister

Sahithy and my best friend Sravani for being my support system. I could not have achieved any

of this without them.

I would also like to acknowledge the support of Mariana Kistler Beach Museum

providing funding for this work.

1

Chapter 1 - INTRODUCTION

 Description

The current project involves the construction of web application for Beach Museum. This

application is used to represent various museum activity and data on a single application. The

objective of the project is to develop interactive user interface that helps users to view what’s

going on with the beach, to view museum artifacts, highlights. It also maintains a NoSQL storage

database Couch DB. It also maintains information about different roles, artist makers and their

produced arts.

Users can also create their own collection from the set of images. Filtering arts by artist

name, image view, object Type and also by decade are some of the important and interesting

features in the website. Using the web application users can extensively search for arts produced

and also know about them in detail. In addition, staff/admin can add exhibitions that are held in

the museum. They can also add/edit arts and artist in the database.

 Motivation

The motivation to develop Beach Museum Web Application is to provide user a good

efficient and handy search art and artist images. The most important influential factors of the

project are interesting functionalities and show case the arts in different ways which the previous

web application is missing.

 Features like drag and drop, retrieving the results for each search, chunking the results

and pagination techniques, creating one’s own collection makes this application more feature

rich.

2

Problem Solved:

The previous web application only deals with showing a list of arts in a single template that

makes users very tough to deal with user interface and it has no specific search functionality

which is a major draw-back. There are many core implementations in the present web

application compared to the previous web application.

The previous web application data is stored in a SQL database which is highly

inconsistent. The present web application deals with NoSQL database that that helps to retrieve

arts faster than SQL and much simpler and efficient to build when dealing with such data.

Integration of Apache Lucene to the present web application made to deal with search

functionality easier and efficient to use.

 The main motivation of the project is my urge to understand and learn web technologies

dealing with NoSQL databases, performing innovative and crucial factors such as providing

filters, arts with respective to the artist, creating own collection, showcasing the exhibits, slide

show and admin modules that helps staff to perform CRUD (CREATE, READ, UPDATE,

DELETE) operations in the couch database.

 The other important feature to discuss about the project is security measures taken to

preserve the web application in several different ways.

 Paper Structure

The remaining paper is organized is such a way that one can clearly understand and have

a crisp knowledge on the web application.

• Architecture

• Project Requirements

3

• Implementation of the project

• Important project features

• Different prototype versions

• Results

• Testing

• Future work

• Conclusion and Credits.

• References

4

Chapter 2 - Tools and Technologies Used

 MVC Architecture

 Model

It basically represents the shape of the data and business logic. Model objects retrieve,

store model state in a database. Model is where the application’s data objects are stored. To gain

a clear understanding of the model, we have settings file incorporated in the project where we

can add more attributes for a search, add or remove different object types, decades and their

thumbnails images.

 View

View known as user interface, these are the views that are presented to a user and how

users interact with the application. The view generally consists of HTML, CSS, and JS.

Basically, creating different DOM elements and accessing them would be done in View. There

are different views in our project. Our project has many views which each of them would be

explained later. Some of them are home page, header page, admin page, advanced search,

collection page, etc.

 Controller

 Controller can also be defined as the brain of the web application. The controller is the

decision maker and acts a bridge between the model and view. The controller basically updates

the view whenever a model is change. It adds several event listeners to the view and updates the

model when the user manipulates the view. Basically, it receives the user request and translates

them into actions that Model should take. Then it also handles the response by assigning it to a

view. [1]

5

Figure 1 MVC Architecture (https://forum.pasja-

informatyki.pl/331330/public-zmienna-w-php-jak-zapisywac-oraz-odczytywac-w-

roznych-plikach)

From the figure, we can clearly say that user request or data is handled by the controller.

The controller also selects the view object that is applicable based on the user request. Once the

type of the request is determined, a behavior request is transmitted to model which implements

the functionality or retrieve the content required to accommodate the request.

Below figure depicts a sequence diagram for a single request/response pair.

 Advantages of using MVC controller

a. Parallel development can be done using MVC. In web applications MVC model

allows that one programmer can work on a view while other can work on a controller

which makes the speed of the development phase in the application

6

b. It has ability to provide multiple views for a model. It helps to remove code

redundancy as it separates data and business logic from the display.

c. MVC also support asynchronous technique, which help developers to develop an

application that can load very fast.

d. There would be no problem even if we update the view or modify a view. Generally

views tend to change frequently but the business logic is the same which reduces the

effort of coding it every time.

e. MVC returns the data without formatting which can be used for any interface. [2]

 Storage Database

 The important feature that needs to made when selecting the database is what type of data

we are working on. SQL databases have limitations in terms of speed and scalability when it

stores high amount of data. When we try to query huge data, RDBMS doesn’t sound like to be a

good option because of its relational nature. One of the main purpose to implement couch

database is because of its features for massive performance and scalability.

Couch Database server hosts databases that store a set of documents in JSON format.

Each document in the database has its own name. The database provides us RESTful HTTP API

for performing CRUD operations in the database documents.

 Documents in the CouchDB are the main unit of data and can consist any number of

fields along with different data types and can also include attachments with any file format.

Updating of documents can happen or never happen that is it either succeeds or fails

completely.

7

Each Document is stored in B-tree and has a sequence ID. If there is any update to the

database then it creates a new ID. These are updated simultaneously when documents are saved

or deleted. [3]

 In order to view data in a structured format we can write views in JavaScript and store

them in database as design documents.

 HTTP API

This API has been heavily used in this project to generate the results. It is primary

method of interfacing to a CouchDB database or document. All the requests to the CouchDB are

made using HTTP. The requests can be categorized as get, post and put requests. All the

responses are generated in a JSON object. If there are any errors found in the requests, it replies

back with the simpler HTTP status codes. [4]

 Apache Lucene

Lucene is an open-source platform that helps to perform full text search engine. Lucene

provides full text search using term frequency and Inverted document frequency known as TF-

IDF method. Lucene can be used to sort with respect to any filed, allows simultaneous updates

and searching which is fast, memory efficient.

In order to integrate lucene with CouchDb we need to configure settings in our Couch

DB’s local.ini file. CouchDB-lucene runs on a single standalone Java Virtual Machine. In order

to enable CouchDB-lucene we must provide an index function in the database. It basically

returns a single document object which consists of several other documents.

Lucene supports two types for searching the input. One is the string format and other is

the text format. The difference is, in the string format it basically functions as whole text search

8

where string tokenization doesn’t come in place where as in the text format it tokenizes the word

and retrieve the results according to the score generated.

In order to search we can use HTTP GET or POST. We can also give several search

parameters. The parameters we used in this project are

• include_docs: Basically CouchDB –lucene returns only the unique ids of the

database if include_docs is set to true, it retrieves all the fields in document.

• Q: This parameter stores the string or text on which search operation is

performed.

• Skip: the number of results to be skipped

• Limit: Limit the number of results.

There are several other search parameters such as highlights, sort, stale, force_json where each

has its own functionality. [5]

 Programming Languages Used

 JQuery

JQuery is a JavaScript library that helps to access DOM elements, animations, event

handling and AJAX which is much simpler to use that works across multiple browsers. In order

to access CouchDB and retrieve results from it we make several calls to the database using its

HTTP API with get, put and post calls in jQuery.

Several request using $.get (), $.post () are done to the need of the method to retrieve the

results from the database. The $.get () method loads data from the server using a HTTP GET

request. The $.post () method loads data from the server using a HTTP POST request

Several plugins such as auto-complete, time slider are used to enable rich features in the

web application.

9

 PHP

It is one of the most used server scripting language, tool that helps to build dynamic and

interactive web applications.

 HTML5, CSS

Programming languages that are basically used to develop user interfaces and style them.

Several web storage API’s are used in this project to provide some functionalities that will be

discussed later in this paper.

 Amazon Web Services

Amazon web service are cloud services platform offering compute power, database

storage, content delivery etc. There are several instances in AWS domain. We use

Amazon EC2 instance for our project.

AMAZON VPC

It is known as virtual private cloud which is also a cloud computing service that enables

launch the resources in a virtual network. Using VPC sysadmin would have control over

networking environment that includes creating sub nets and configuring our own rout tables for

inbound and outbound in the network. We have our set defined rules in the VPC to enhance

security of the web application. There are several other security measures taken into account for

the application such as OWSAP MOD security, SSL etc.

10

Figure 1 Share Responsibility Model

(https://aws.amazon.com/compliance/shared-responsibility-model/)

The responsibility of securing the cloud will be with AWS that is Amazon would perform

security measure to protect hardware, software and also the networking for the services that are

stored in AWS Instance.

We are responsible for security in the cloud. This constitutes the work and security we

implement in our VPC such as security groups, managing guest operating system, implementing

firewall such as OWASP Mod Security. [6]

11

Chapter 3 - Project Requirements

It is said that if you don’t know how well you are doing then you know you are not doing very

well.

 Scope of the Project:

The scope of the project “Beach Museum Web Application” is to enable the users to

search the art works/artist, create a set of arts as a collection that might be available to print or

download as pdf and creating a platform that helps museum staff to edit their database. The

motive of developing this application is to design a feature rich application making the user

interface more interactive.

 Environment

• The Beach Museum application will be written in HTML, CSS, PHP and JavaScript

• The database for storing would be NOSQL database known as couch Database.

• The servers are located in Amazon Web Services which is highly secured and is

accessible to set of admins only.

 Requirements

 Functional Requirements

 Version -1

1. Users can be able to perform single text search.

2. Users can search with different fields.

3. Users can create/edit their own set of collection.

4. Users can view download/able to print their own set of collection.

12

5. Users can filter the search results by artist name, object type, decade.

6. Users can see the exhibitions going to be held and that are held in the museum till

now.

7. Users can select a set of art works with respective to object type and decade.

8. Admin can perform CRUD operations on the database.

 Version -2

1. Users can create a set of art works in their own set of collections.

2. Users can share their own collection with the museum’s copyright in social Media

content.

 Technical Requirements

1. Cross Browser/platform support

2. Mobile Support (for advanced smart phones/tablets)

3. The system should be built using free open source software.

13

Chapter 4 - System Design

After the requirement phase, the next step is to system design. The design of the system is

usually depicted in the form of various UML diagrams. UML diagrams are one of the most

efficient way to visualize the data and understand the requirements and specifications of the

design.

 Use Case Diagram

Figure shows the Use Case Diagram for the Museum Web Application. It shows all the

functionalities a single user can perform in our application. It depicts the relationship and use

case in which the user is involved. The below use case diagram shows two roles User and Admin

where they can interact with the system and achieve functionalities like searching the collection,

view arts, view exhibitions, create set of art works as a collection etc.

14

Figure 2 Use-Case Diagram

The above diagram represent how user can interact with the system. User can search, view

art/artist, search by object type/decade/highlight. User can also view exhibitions and create their

own collection of images.

15

 Activity Diagram

Figure shows the Activity Diagram

 User

Figure 3 User Activity Diagram

16

 Admin

Figure 4 Admin Activity Diagram

Activity Diagram shows the application flow from one activity to other activity. User’s view

starts from the give set of activities and move forward to next set of activities based on their

areas of interest.

 Data Layer

Data is stored in NoSQL database. The name itself suggests that the data is not

structured. Data is stored in CouchDB. Each Art/Work object which they are stored in a JSON

format is known as document. A set of documents create a database. Museum has its own SQL

data storage till now which we processed and converted them into NOSQL database for better

performance and utilization of the data.

17

 Artist Meta data:

 "_id": Unique Index of CouchDB (String),
 "_rev": Revision Id (String),

 "pid": picture Id (int),

 "artist_id": Artist Id (int),
 "artist_name": Artist (String),

 "all_images_string": List of multiple image names using comma as delimiter (String).
 "roles_string": List of different roles for a work using comma as delimiter (String),
 "Dimensions": List of different dimensions using comma as delimiter (String),

 "object_title": Title of Work (String),
 "Description": Description of Work (String),

 "portfolio_info": Portfolio of Work (String),
 "Edition": Edition of Work (String),
 "year_from": Year starting (int),

 "year_to": Year ending (int)
 "Dating": Dating of work (String)

 "Date": Date Range (String)
 "Medium": (String)
 "extended_medium": (String),

 "object_type": (String)
 "credit_line": Credit Line of work (String),

 "accession_number": (String)
 "acquisition_date": (String)
 "view_status": "(String)

 "Flag": (String)
 "Artist": Artist Id (int)

 "Mode": Mode of work (String)
 "Type": Artist/work (String),
 "Decade": (int)

 "Roles": [
 {

 "Role": (String),
 "role_id": (String)
 }

],
 "Images": [],

 "Thumbs": [],
 "_attachments": {
 "4687_super.jpg": {

 "content_type": "image/jpeg",
 }

18

Figure 5 Work data model

19

 Artist Metadata

{

 "_id": CouchDB Index (String),

 "_rev": Revision Id,

 "PID": Foreign Key to connect work document (int),

 "group_code": Group Code (int),

 "Name": Name (String),

 "sort_name": Last Name + First Name (String),

 "birth_place": (String),

 "Sex": (String),

 "Nationality": (String),

 "birth_date": (int),

 "death_date": (int),

 "date_range": (String),

 "Bio": (String),

 "Mode": (String),

 "Type": (String),

}

20

Figure 6 Artist Metadata

 Login Metadata

{

"Type": (String),

 "Name": (String),

 "Salt": Salted Password (String)

 }

Figure 7 Login Metadata

21

 Indexes

In order to create index CouchDB we need to create views. Views are generally used for

many purposes in CouchDB. Views which are written in JavaScript helps to view data in a

structured format or the view we require. They are generally map reduce programs. We don’t

need to specifically write a view with each document in the database. The view document is

applied to whole documents inside the database and retrieve results.

We created indexes in our database to enable full text search using the lucene plugin.

When we try to query the database using this index it returns set of documents in a JSON object

whenever there is a hit in the field which ever used in index. It also produces a score using Term

Frequency and Inverse Document Frequency algorithm.

 Views Created In CouchDB

Below figure shows type of views created as design documents in CouchDB.

Figure 8 CouchDB Design Documents

Below figure gives us a glimpse of CouchDB view

22

Figure 9 CouchDB Index document

In the above figure, we are indexing fields while creating a document and adding all the fields

we want to search the text and return the document as index. When we try to query this view

with a search parameter q=text returns all the documents where there is a hit in the fields.

Figure depicts various indexes written if we want to search for only one field

Figure 10 CouchDB Document Index II

Scoring in Lucene:

Scoring in lucene is implementation of both vector space model and Boolean retrieval

model. It determines how relevant a give document is to a User’s query. It reduces the document

list using Boolean retrieval model and then applies vector space model to the remaining list to

find the scores of each document. Vector Space Model uses cosine similarity to compute the

23

scores of each document. Score document d for query q is the cosine similarity of the weighted

query vectors V(q) and V(d):

Figure 11 Cosine Similarity

The vectors denoted are computed using TF-IDF values and results are generated in

decreasing order of the scores calculated. [7]

 Cloud Storage

In the first requirement phase, each Art/Work has a single image which is then used to

form different thumbnails, super and high quality images using Imagick tool in PHP and stored

them in CouchDB under attachments. The requirements continue to grow, clients came up with

multiple views of an art. Storing all them in the database would definitely lose query

performance. In order to optimize the performance, the images are stored in a cloud folder whose

paths are mentioned in a field array in NoSQL database.

24

Chapter 5 - Building the System

This section provides detail implementation of the project. Important features of the web

application are clearly described.

 Designing Views

Though there are several controllers in the application, there are only limited views built

in the application. The views of the application are

1. Gallery

2. Object

3. Profile

4. Login

5. Index

6. Header

7. Advance Search

8. About

9. Contact Us

 All the controller scripts are included with respective to the get parameter in the URL in the php

pages. Below figure shows implementation of this feature which helps to reduce writing

redundancy views.

25

Figure 12 Code snapshot for designing views

In the PHP file, we echo the JavaScript function to access the get variables. In the above screen

shot if the type variable is work, the object view displays the art work and its description. If the

type is artist, it changes the view to display artist details and works produced by the artist.

In a similar way we can include controllers with respective to the get parameters as show in the

below figure.

26

Figure 13 Snapshot of code including controllers

From the above script we can clearly deduce that after getting the get variable from the

URL, page is requesting to call its respective controller to perform the operations and display

results according to the controller defined view.

27

 Basic Search

The most important feature of the application is the full text search. Search functionality

is performed using apache lucene and creating indexes.

Ways to create an index are clearly described in System Design. After creating an index in the

database we try to query it for whole database to find if there is any hit. From the presentation

layer we send a HTTP request to the design document and retrieve results in the form of a JSON

object which are then forwarded to Gallery page where we try to display the results using other

controllers. The HTTP request for basic search is done in basic search controller.

Below shows a sample HTTP requests to retrieve the results using the created index.

 http://dev-beach.ksulib.net:5986/_fti/local/beach_data/_design/search/search?q=fred

The request above gives all the documents where there is a match with Fred in the

database. The fetch duration of term Fred is less than a second. But the query is limited to search

for only 25 results, as the 25 value is default taken in CouchDB HTTP API.

Figure 14 Result from Lucene

As we can see though the total results are 28 it only displays first 25 items. To solve this

we need to pass a get parameter called as limit in the HTTP request as shown

http://dev-

beach.ksulib.net:5986/_fti/local/beach_data/_design/search/search?q=fred&limit=100000

It basically gives the limit to show those many documents if present.

http://dev-beach.ksulib.net:5986/_fti/local/beach_data/_design/search/search?q=fred
http://dev-beach.ksulib.net:5986/_fti/local/beach_data/_design/search/search?q=fred&limit=100000
http://dev-beach.ksulib.net:5986/_fti/local/beach_data/_design/search/search?q=fred&limit=100000

28

Figure 15 Result from Lucene II

The present query retrieves the values of CouchDB Id’s only. To get the full document

we add one more parameter include_docs which is set to true to retrieve the results.

29

The querying of the database with the index named search and its parameters retrieve the

required results. The retrieved results are then sent to a gallery search controllers and image

chunk controller and pagination controller to display the results which will be discussed further.

The input box used for search is then integrated into JQUERY Autocomplete UI to store user’s

last five searches and recommend them when searching happens.

Figure 16 Code snapshot of using Jquery Autocomplete UI

 Mango Queries

Before going into the further implementation of the project, I would like to discuss

mango queries that are helpful to query the database which are heavily used while building this

application. Mango queries are basically JSON objects that helps to query database.

A mango query generally consists a selector that is expressed as JSON object describing

documents of interest. Below figure depicts a Mango query

30

Figure 17 Couch DB Mango Query

From the above mango query, we can see that all the fields that are to be queried will be

written in year directly or using regex expressions. In the above query, it’s trying to retrieve all

the documents whose year is greater than 2010. The remaining fields in the query tell the

database to retrieve the result in such format. It is requesting the database to retrieve the specific

fields, while sort them with year field and show only two results without skipping any of them.

 HTTP API END POINTS

After writing a mango query, the next question is to how we use this query to have effect

on database. The CouchDB HTTP API presents a way doing that by giving a post request with

an endpoint /db/_find which takes this JSON object as a parameter in the post request and

retrieve the results from the database.

The response from the HTTP request is also a JSON object with docs, warning, execution

stats and bookmark fields if there is a successful response for the query. The status codes for the

end points are

• 200 OK –Successful

• 400 Bad Request

• 401 Unauthorized.

31

• 500 Internal Server Error

There are several other HTTP API end points that are used to provide CRUD operations

in the database.

a. /db/_find - retrieves the result from mango queries

b. GET /db –gets the information of the database.

c. PUT /db - inserts/edit a document in the database

d. DELETE /db/ -deletes the full database in CouchDB

e. DELETE /db/_id – deletes the document that has id given in the parameter.

 Web Storage API’s

Web Storage API’s are heavily used in this application. There are two types of web

storage API’s

• Session Storage

• Local Storage

The data is stored in key/value pairs in both storages. When the data is retrieved from storage we

can use several functions such as JSON.parse () to convert them into objects. If we want to store

an object data convert the object into JSON.stringify () to store them in the Storage API’s [8]

 Session Storage:

Session Storage maintains a storage till the duration of the session. The data expires

when you close the browser. Methods used are

a. SessionStorage.setItem(“”,””);

b. SessionStorage.getItem(“”);

c. SessionStorage.removeItem(“”);

32

 Local Storage

Local storage stores the data until and unless it is explicitly deleted or the clear the

browser’s cache. The methods used are same as the session storage.

 Advanced Search

 This feature is implemented for a user to enable search on multiple fields. In the

presentation layer, there are several input fields and dropdown boxes to get the user’s input and

process those using controllers.

 Artist Search

One of the important feature of the application is to enable search of a work for a given

artist. The results are retrieved in the same manner from the mango query and the end point. The

application provides a responsive menu which is shown in further sections that displays all the

artist names present in the database. To achieve this feature we created a modal that displays list

of artist names that are sorted according to its first letter. To retrieve the results whole database is

queried to find the artist names. We created empty arrays to each alphabet. While parsing the

response we try to find if the present artist already exists in the array, if not found we add the

artist name to its respective array else we discard it. The web page loads it in user interface

while loading the advanced search page. When clicked on a artist name, the value is displayed on

the input label provided.

 Forming Mango Query

When a user press search button a function in the controller gets called that forms a

mango query using the input values taken while accessing the DOM elements. The query is

formed with the help of regex operations to optimize the search functionality in the application.

33

Figure 18Code Snapshot forming Mango query

Then we call a post request to the database using the find endpoint to retrieve the results

and render them on the gallery page. Before moving into other pages, we will store the query in

the session storage for further usage.

 Home Page

The home page has different sections such as highlights, object type and decade and

exhibitions. Each section has its own mango query that helps to retrieve results of that type. For

highlights, the selector object consists of field known as flag which is set to highlight. For the

object type, the field in the selector is object type which is set to the particular object Type. And

for decade, the selector field is set to decade. When a particular object is selected, the mongo

34

query is formed in the index controller and stored in the session storage API removing if there is

any query present in the session storage before. The concept of storing these queries is discussed

in the next section.

Figure 19 Snapshot of highlight query

 Gallery Page

The results retrieved from previous mango queries are rendered in this phase of web

application. There are several functionalities that are implemented in this phase which will be

discussing one by one in this section.

 Filters:

Filters are used for filtering the search results that needs to be displayed. Filters that can be

applied to search results in the application are as follows

a. Relevance

As the full text search retrieve results based upon the vector space model and it’s

scores. Relevance is a filter item that helps user to sort the works with a given

priority level to the fields.

b. Currently On View

This filter item is to display all the works that are currently available at the

Museum.

35

c. Acquisition Date

It sorts the results according to the Acquisition Date in descending order and

renders the results.

d. Image Available

There are several works in the database where they have all the values but no

corresponding image in the database. This filter rules out all the works and

displays those which have an image.

e. Filter By Artist

One can choose an artist to retrieve his works from the produced results.

f. Filter By Medium/Technique

One can choose any medium or technique the art is made.

g. Filter By Decade

This gives all works made in that decade.

 Not only mango query we also save several other key/value pairs in the session storage at

the same time. After retrieving the result and before rendering them into gallery page we parse

the data, and store all mediums, techniques and artist names in session storage to render them as

well in the gallery page.

All the session storage items are assigned to null whenever there is a fresh search or user

goes back to the home page or advanced search page. This functionality is written in each

controller to ensure data loads correctly to its respective search results.

Whenever a user clicks on a filter, it calls a method that helps to redefine the present

query and add the field in selector to perform a filter operation and render results. In order to go

back to the actual result page, before modifying the query it is stored in session storage as the

previous query and the present query has been modified and are stored in the session storage.

Below code snippet shows this functionality.

36

Figure 20 Snapshot of filter query

 Search Results:

Ten search results are rendered in the gallery web page. The limit is set to 10 in the

controller but can be changed to any number. Changing it to higher number made the web

application unresponsive and taking huge time to render them.

 Pagination Controller and Image Chunk Controller are the two controllers that

specifically deal with pagination of the result items. The logic behind the pagination controller is

the skip and limit fields in the mango query.

37

Skip field generally skips the top k results and produce the data whereas limit field limits

the data to k results. A click Integer is stored in the session storage object which is used to see

which page user clicks or helps to implement the logic of pagination. For an example if you are

in page 2 of the search results, the integer is updated to 2 and the skip field in the mango query is

update to (2-1)*10 which is 10 and limit is 10 which tells the CouchDB to produce the results

and skip first 10 documents but show only 10 documents skipping those, which displays

documents from 10-20.

The search results are rendered in such a way that whenever work is clicked, it goes to

object work page or if the artist is clicked, it goes to the artist page.

 Object Page

 Work Object Page:

This page has two sub sections where one section shows the full actual view of the

image. The other section deals with providing data of the selected work item such as Artist

Name, Role Names, Description, Credit Line ,Accession No, Dimensions and many more.

Users can create their own collection using Add to Collection button in the object page.

Add to collection button checks if the work is already in user’s own collection then it discards

the action giving a warning message else, it adds to the user’s own collection. The entire user’s

collection is stored in local storage of the browser so that his collection remains same once even

if he terminates the session.

38

There are also multiple views for each work, showcasing the work in different directions.

All the thumbnails are rendered under the actual image and is shown when user selects a

particular view of the image.

 Artist Object Page

This page also has two subsections where one section contains the information about the

artist and other section contains all the works produced by artist with pagination. Each work is

the redirected to the Work Page if they are clicked.

 Your Collection

This view enables the user to look all his set of works in a collection. User can delete a

work using the X button placed over each image. It also removes the object id in the session

storage. This page also implements a slide show functionality that enables user to view their set

of works in a slide show.

 User can clear all the works in his collection using Clear Collection button which also

removes the session storage. Whenever a user clicks on one of his collected work it redirects to

the work object page.

 Admin Module

 Login Page

Admin requires to login the web application to perform CRUD operations on the

database. The hashed password is stored in the database for security. We use PHP session to

preserve the logged in state of the authenticated users. After admin submits their own credentials

we validate the user while hashing the password from the string and if they are successful we

39

authenticate the user and store their logged in status by using $_SESSION which is a super

global. Once the user logs out we clear his session using unset () method. [9]

The md5 () function is used in PHP to hash the password input text and validate it the

hashed password stored in the CouchDB.

 Profile Page

After authenticating the admin page, admin can now add/edit a collection, a work art and

also an artist. The loading of profile page takes some time because it read all the data in

the database and put them in their respective columns.

 Add/Edit a Collection

Admin can add a collection or edit existing collections. For adding a collection admins

can provide the description of the collection, name of the collection and list of works from a drop

down box which is integrated with jQuery auto complete plugin which helps to find an art with

that sequence. After designing a collection when admin uses add collection button, it forms a

JSON object including all the selected and inputted fields, then requests a HTTP put call to

database using the endpoint PUT /_db.

Admin can edit a collection while selecting a collection from the input box. It generates a

list of all works present in the artist. Admin can add a work or remove a work from that

collection, after he finish selecting his collection he just use Edit collection which makes a same

HTTP put request to the database using the endpoint. One question arises here, will there be data

redundancy. The answer is No, while creating JSON objects we also include the unique id of the

collection in it which helps CouchDB to replace the present collection in the database.

These collections are nothing but the exhibitions held in the museum which are rendered

on the home page.

40

Figure 21 Add Collection Query

Figure 22 Edit Collection Query

Add/Edit a Work

Admins can add a work or edit a work using this application. The logic is the same as

requesting a HTTP API and put them in the database. We added a drag and drop feature in our

application so that admin can just drag and drop his image in the selected area to upload a new

image. If the artist is not available in the database, the admin has to first add the artist using add

artist column and then add a work to database.

41

The reason doing this is, adding a work creates a document with artist name and also his

id in it. And we are linking the artist page to object page in the presentation layer. So if we add

them before giving a description to the artist, there might be 404 error from the database.

 Add/Edit an Artist

Admins can add an artist /Edit artist details in the database.

Chapter 6 - Going into the Application

This Chapter gives us a walk through the application giving out results and how they are

implemented. I would like to present this using output screens.

42

 Output Screens

 Home page:

Figure 23 Home Page

As discussed above one can search the database which acts as full text search.

Users can also enter advanced search page by clicking on the links. Users can also select

highlight works in the museum or select list of works of their object type or decade. When we try

to do one of the action, we redirect into gallery page.

43

 Advanced Search

Figure 24 Advanced search page

User can input any one of the field to search the museum database. As discussed above

the first search is the same basic search which also stores user’s previous last five searches.

44

Figure 25 User's previous searches

The artist in the advanced search page can be selected in two ways.

1. Directly inputting the artist name

2. Use the drop down menu.

Figure 26 Autocomplete jQuery for Artist

45

Figure 27 Responsive UI for artist search

After clicking on the search button, the below screen shot gives us a description how a gallery

page looks like.

46

 Gallery Page

Figure 28 Gallery Page

The above screen has different sections

a. Filters

b. Search Results

c. Pagination

47

 Filters

Figure 29 Filters

When you click on Filter by Artist, it opens up a list of all artists specific to that search

results to narrow down more the results. When we click on one of the artist redirects to the

gallery page rendering all the works having the artist as the selected artist.

Figure 30 Filter results

48

From the above screen, we can see (-) symbol indicating that selected artist results are being

rendered on the page. Clicking on (-) in the filter removes that filter and return to previous search

results page.

 Search Results

Ten search results are rendered in the results column. Remaining results are rendered

using the pagination controller logic as discussed in the above section.

Figure 31 Search Results

From the above screen shot, we see results based on the mango query. Each result has a

title and an artist name which are hyperlinks to the object page. It re-directs to artist page if we

select on artist name or redirects to work page if we click on its title name or on image.

49

Figure 32 Thumbnail of Work

If there is no image in the database, this standard image is taken as reference to display.

 Pagination

Pagination shows us which we are in and also controls the navigation of search results.

Figure 33 Pagination

Pagination is dynamically changed whenever there is a change in mango query or basic

search query.

50

 Object Page

 Work Object Page

Figure 34 Work Object Page

51

Figure 35 Multi View Page

Object Page consists of four sections.

 Add to Collection

This button is clicked to have this work in your collection. It provides a feedback if the

action is successful or not.

Figure 36 Add to Collection

Figure 37 Feed Back from Add to Collection

52

Figure 38 Feed Back II from add to collection

 Image View

This section shows the actual Art that is selected. This section dynamically shows

multiple views when clicked on one of the images.

 Multiple images

As seen in the screen shot it displays all the multiple image views as

thumbnails and display in a container which are clickable elements to show

them on the image view.

 Data of the work

This section gives us total description of the work selected. The description has artist

names and also other people who had different roles in making the art which are both hyperlinks

to the artist object page.

53

 Artist Object Page

 This page consists of two sections. One section displays all the works produced by the

artist and the second section contains all the information present in the database for an artist.

All the works shown are hyperlinks to the work object page.

Figure 39 Artist Object Page

54

 Your Collection

Figure 40 My Collection Page

The view is same as the search results page with a new feature (X) in place. We can

delete a work from our own collection. We can also our own collection as slide show and can

also clear all the works in a collection with a single button.

Below figure depicts slide show of the collection.

55

Figure 41 Slide Show of thumbnails

The second icon shown above enables the user to display the image in full screen

mode.

56

Figure 42 Full View of an Art

The third Icon allows us to print the work. When the first icon is clicked, it goes back to

your collection page.

57

 Exhibition Page

This page is similar to object page where one section shows the works in the exhibition

and the other section provide details about the exhibition.

Figure 43 Exhibition Page

 Admin Page

Figure 44 Admin Page

58

 Profile Page

The profile page has multiple views in a single page. Below screenshot shows the profile

page.

Figure 45 Add to Collection Page

Admin can select to add or edit in the main drop down box that renders the below the

input view.

Figure 46 Edit Collection Page

59

Admin can then select either to modify a collection, work and artist.

Figure 47 Add Work Page

The above screen displays the interface of adding a work. The white background is the

drag and drop area which enables admin to drag an image and drop there.

Figure 48 Add Artist Page

60

Figure 49 Edit Work Page

Figure 50 Edit Artist Page

61

Chapter 7 - Security and Exception Handling

This Chapter deals with security measures performed to protect application and database storage.

Security is one of the top priority as it helps to prevent malicious use or accidental damage to

data.

The entire security layer is developed by the System administrator at Hale Library, Manhattan

Kansas. The server and database are hosted on Amazon web services VPC environment. Only

administrator can access the Amazon Web Service using two layer authentication. One layer is

the authentication key provided by Amazon and the second one is key that generates for every 30

seconds.

 AMAZON VPC

In Virtual private cloud, we define security group that is set of IP configuration rules that allows

to communicate with the server to have access on the files.

The below table shows a clear description of the security groups.

Table 1 VPC Inbound security groups

Source Protocol Port Range Comments

0.0.0.0/0 TCP 80 Allow inbound HTTP access from all

IPV4 addresses.

::/0 TCP 80 Allow inbound HTTP access from all

IPV6 addresses

0.0.0.0/0 TCP 443 Allow inbound HTTPS access from all

IPV4 addresses

62

Library network’s

public IPV4 address

range

TCP 22 Allow inbound SSH access to instances

from IPV4 address in the network

Table 2 VPC Out Bound Security Group

Destination Protocol Port Range Comments

The id of the security

group for database

servers

TCP 1433 Allow outbound

MSSQL server access

to instances in the

specified security

group.

There is a difference between creating security groups in ER2 instance and VPC. Because any

Amazon EC2 security groups created won’t work inside the VPC. Amazon VPC security groups

have additional features such as admin can change the security groups even after the instance is

launched and also is able to specify any protocol with a standard protocol number. [10]

63

Figure 51 AWS VPC Security

 Hashing of password:

Passwords for admin login are stored using the md5 hash function so that no one could ever read

password.

 OWASP Mod security

It consists of rules that builds a web fire wall which helps to detect web attacks while providing

alerts.It provides protection against several categories including SQL injection, Cross site

scripting and local File Inclusion etc. [11]

64

Exception Handling

We provided many exception handlings in the web application to enhance user interface

and perform more optimally. Some of the exceptions handled are

• If there are no search results, it displays a warning such that there is no search

result found.

• If user tries to play with filters such as applying all the filters and there are no

results with the last filter used, it displays a warning message saying that there are

no search results for the filters and retains the same results as before applying the

filter.

• When a user tries to go to collection page with no items in it. It automatically

reloads to the home page.

• When admin tries to give invalid fields while performing CRUD operations, on

the database, it gives a warning and the HTTP request is canceled.

Figure 52 Exception Handling I

65

Figure 53 Exception Handling II

66

Chapter 8 - Testing the Application

Once the development phase is completed, the next important phase is the testing phase. Any

application should be tested meticulously so that the user can be assured of a functioning and

reliable product. Testing becomes one of the major part of the project which should take

adequate time. It is not possible to test for all the documents in the databases but need to check

for corner cases. Various types of testing needs to be performed such as Unit testing, integration

testing to evaluate the performance of the system.

 Unit Testing

Several Unit tests are performed in the application that helps to understand if each block

is functioning as expected. Unit testing could be performed by sending mock requests to each of

the methods in the controller class.

Some of the Unit test cases are:

First Test Case:

dev-beach.ksulib.net:5986/_fti/local/beach_data/_design/search/search?q=fred&limit=100000

Status code: 200 OK

Second Test Case:

 Query: {"selector": {"type":"works","_id":"3b98d092829c96aa5c869c99141ff4e6"}}

 URL: http://dev-beach.ksulib.net:5984/beach_data/_find

Request Method: GET

Status Code: 200 OK

http://dev-beach.ksulib.net:5986/_fti/local/beach_data/_design/search/search?q=fred&limit=100000&include_docs=true

67

Third Test Case:

 Query: {"selector": {"type":"works","object_type":"Prints"},"limit":10,"skip":0}

 URL: http://dev-beach.ksulib.net:5984/beach_data/_find

Request Method: POST

 Status Code: 200 OK

Fourth Test Case:

query: {"selector": {"type":"works","_id":"0014b0c128944a3bb264bb8f7d28c20e"} }

url: http://dev-beach.ksulib.net:5984/beach_data/_find

Request Method: GET

Status Code: 200 OK

Fifth Test Case:

query: {"selector": {"type":"works","_id":"0014b0c128944a3bb264bb8f7d28c20e"} }

url: http://dev-beach.ksulib.net:5984/beach_data/_find

Request Method: GET

Status Code: 200 OK

SixthTest Case:

query: {"selector":

{"object_title":{"$regex":"(?i)woman"},"year_from":{"$lte":2200,"$gte":1200},"artist_name":"George

M. Kren"},"limit":10,"skip":0}

 url: http://dev-beach.ksulib.net:5984/beach_data/_find

Request Method: GET

Status Code: 200 OK

http://dev-beach.ksulib.net:5984/beach_data/_find
http://dev-beach.ksulib.net:5984/beach_data/_find
http://dev-beach.ksulib.net:5984/beach_data/_find
http://dev-beach.ksulib.net:5984/beach_data/_find

68

 Integration Testing

We need to check if the system is performing as it requested to so. So when all the

modules are integrated we used integration testing to see if modules can be integrated properly.

Below are the few integration Test cases that are done manually.

Table 3 Integration Testing Test Cases

Test Case Expected Results Result

Start of the web application Home page should rendered Pass

Selecting Advanced search

link in the home page

Should re-direct to the

advanced search page

Pass

Clicking on the artist drop

down menu

Should show all the artist

sorted alphabetically

Pass

Selecting all the fields and

selecting the search with

object title which has

women

Should display all the results

whose title has woman in it

Pass

When clicked on the artist

filter

Should show the works

made by the artist in the

search results

Pass

69

When clicked on the decade

filter

Should show the works

made in that decade

Pass

When clicked on the

object/medium technique

filter

Should show the works

produced using that

medium/technique

Pass

When selected on currently

on view filter

Should show the works that

are currently on view in the

museum

Pass.

When clicking (-) in filters Should show the works that

belong to the previous query

removing the filter option

Pass

When clicking on an object

type in home page

Should display the works of

that object type

Pass

When clicking on a decade

in home page

Should display the works of

that decade

Pass

When clicking on the

exhibition items

Should display all the works

in that exhibition

Pass

When clicking on a

thumbnail of an art

It should redirect to work

Object Page

Pass

When clicking on

thumbnails of multiple view

It should render the selected

view in the object page

Pass

When clicking on artist

hyper link

It should redirect to the artist

object page

Pass

70

When clicked on add to

collection

Should check if the work is

in collection, if not should

add it

Pass

When clicked on (X) in your

collection page

Should remove the work

from the my collection page

Pass

Click on search or browse Should navigate to home

page

Pass

Click on about in navigation

bar

Should navigate to about

page

Pass

Click on contact us in

navigation bar

Should navigate to contact

us page

Pass

Click On Admin module Should Naigate to admin

login

Pass

When admin enters the

credential details

It should authenticate the

admin and display profile

page if successful

Pass

Click on Add collection Adds a collection in the

database

Pass

Click on (X) from the list of

works populated

Should remove the work in

the list

Pass

Click on a work in the list Should display image in a

modal

Pass

71

Drag and drop an image in

add work page

Should Take the image and

save it in the database

Pass

Edit a collection Should edit a collection in

the database

Pass

There are several other possible integration test cases in the web application. The above table

represents the test cases that are of highly important.

 Performance Testing

Performance Testing is done to ensure if our application handles high number of users

and realize how fast is our system responding.

I used JMeter tool to visualize throughput and response time. Throughput helps us to

analyze how many users per minute can our system handle and response time provides how

quick our application to perform a single request.

 In JMeter we design test cases defining how many users to perform a request. We

designed three test plans for each having 10 users, 100 users and 1000 users which performs an

HTTP request to the application. The request is basically a search query that helps couch

database to perform full text search using Apache Lucene.

 The HTTP request used for testing is

dev-kakkiren.ksulib.net:5986/_ft i/local/beach_data/_design/search/search?q=Elizabeth&include_docs=true

It is a search request for the database call to search the word Elizabeth in the whole database.

No of Threads(No of Users) Ramp Time Throughput

10 1 ~ 500/minute

http://dev-kakkiren.ksulib.net:5986/_fti/local/beach_data/_design/search/search?q=Elizabeth&include_docs=true

72

100 1 ~2000/minute

1000 1 ~15000/minute

Figure 54 Throughput graph for 10 users

The above figure clearly shows the throughput is 518.919/minute.

73

Figure 55 Throughput for 100 users

Figure 56 Throughput for 1000 users

74

Chapter 9 - Accessibility to Elder Users

A web application is good when only it accessible to all kinds of users. So in the web

application several measures were taken to make our web application accessible to Elder Users.

• For vision problem, the web application has several hover functionalities that helps elder

users to see which thumbnail the user is looking on or which list item user’s mouse cursor

is on.

Figure 57 Hover image I

Figure 58 Hover Image II

• According to W3C the default text size is 16 whereas the minimum text size is 14.

75

• Each button and redirected links are clearly given a description with a text and also with a

specific hover functionality that helps to make it more accessible to the persons with

cognitive disability.

Figure 59 Buttons with text I

Figure 60 Buttons with text II

76

Chapter 10 - Conclusion and Future Work

Conclusion

The Beach Museum Web Application is a solution to deal with high amounts of data

which is inconsistent and also provides many features that enable user to utilize this application

and find their interest of art at the Museum. It also provides what all exhibitions are being

presented at the beach museum. The project works as efficient search engine that helps to

produce results very quickly and render them in the user interface.

 The web application is user friendly, any user can easily find the details and

understand a work and also can view all the works produced by their favorite artist/maker. This

web application is highly useful for those users who had interest in art/artist data.

The phases of project development have made to learn several programming practices

using the web development technologies. It also has given hands on experience working with

NOSQL databases.

77

Table 4 Lines of Code

 Language Lines of Code

Java Script (Controllers) 2846

PHP (Controller) 154

 JavaScript (View) 1468

 HTML5, PHP,CSS (View) 4281

 Total 8749

The above table depicts the breakdown of the lines of code in my project without adding CSS

LOC.

78

 Future Work

As discussed in the project requirements version 2 has many changes such as users can

create their own set of collection which enables them select a set of works. In the current web

application there is only one collection per browser that collects all the works selected by a user.

In version 2, users can share a work of art or an entire collection in social media such as

Facebook, Instagram, and Pin Interest with a museum label.

Admin module can be further extended like implementing the functionality to add one or

more images in the Add work column.

Increasing level of Accessibility for Keyboard shortcuts.

Relevance: This features helps to sort the search result images given a priority to the

searched fields. We are thinking of using web workers to call several HTTP Indexes at a time

and deal with the application.

There are indexes that are created for full text search as discussed earlier has problems

with scalability issues. If the search results are more (like >3000), then the throughput of the http

request is degrading heavily. In version 2 of the application, new indexes will be created

analyzing the bottlenecks of the present indexes and also would shift to a new development box

with higher resources and configurations.

79

Chapter 11 - Bibliography

[1] M. Papagelis, "Web App Architecture," [Online]. Available:
http://www.cs.toronto.edu/~mashiyat/csc309/Lectures/Web%20App%20Architectur

es.pdf. [Accessed Febraury 2018].

[2] "Six Advantages of Using MVC architecture," Brainvire, 28 April 2016. [Online].

Available: https://www.brainvire.com/six-benefits-of-using-mvc-model- for-
effective-web-application-development/.

[3] A. S. Foundation, "Technical overview Apache CouchDB," [Online]. Available:

http://docs.couchdb.org/en/latest/intro/overview.html.

[4] "CouchDB HTTP API," Apache Software Foundation., [Online]. Available:

http://docs.couchdb.org/en/latest/api/index.html.

[5] R. Newson, "CouchDB-lucene," [Online]. Available: https://github.com/rnewson/couchdb-
lucene. [Accessed March 2018].

[6] "Shared Responsibility Model," AWS, [Online]. Available:
https://aws.amazon.com/compliance/shared-responsibility-model/. [Accessed march

2018].

[7] "Apache Lucene Scoring," Apache Software Foundation, [Online]. Available:
https://lucene.apache.org/core/3_5_0/scoring.html#Changing%20your%20Scoring

%20--%20Expert%20Lev. [Accessed March 2018].

[8] C. Ihrig, "An Overview of Web API storage," Site Point, 15 May 2012. [Online].

Available: https://www.sitepoint.com/an-overview-of-the-web-storage-api/.
[Accessed March 2018].

[9] "PHP Manual predefined variables," [Online]. Available:

http://php.net/manual/en/reserved.variables.session.php. [Accessed march 2018].

[10

]

"Security Groups for your vpc," Amazon Web Services, [Online]. Available:

https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.
html. [Accessed March 2018].

[11

]

"OWASP ModSecurity Core Rule Set project," [Online]. Available:

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set
_Project. [Accessed April 2018].

80

