A Gear Selection Aid For Agricultural Tractors
by

DENNIS K. MATTESON
 B.S., Kansas State University, 1979

A MASTERS THESIS

submitted in partial fulfillment of the . requirements for the degree MASTER OF SCIENCE

Department of Mechanical Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas

Approved by:

PREFACE

This thesis describes the design, construction and testing of a device designed to assist the operators of agricultural tractors to minimize fuel usage during field operations. This project was conceived by Dr. Mark Schrock. His work in promoting gear-up and throt-tle-down while working for the Agricultural Extension Service provided much of the insight necessary during development of both hardware and software. His assistance and encouragement as both an advisor and friend has made the project much easier.

I would like to give a special thanks to International Harvester for providing the tractor and their technical assistance for this project.

I would also like to acknowledge and thank my major advisor, Dr. J. Garth Thompson for his assistance during this project. He was very helpful with the technical aspect of implementation. His assistance in the implementation of the electronic hardware saved countless hours of delay during equipment development.

I would also like to acknowledge and thank Mike Schwarz and the Agricultural Engineering Department for allowing the use of computer equipment and software Mike had developed for previous projects as well as providing ideas for the software for this project.

And finally, a special thanks to my family. Without their support I would not have been able to finish this project.

Chapter

1 Concept Development 1
2 Methodology 7
3 Hardware Development 14
4 Engine Performance Mapping 22
5 Development of the Models 29
6 Computer Program 32
7 Testing 45
8 Conclusion 50
Bibliography 52
Appendix 53
A 54
B 59
C 61
D 67
E 73

Table:
6a - Cassette Tape Data Storage 41
6b - l-min and 4-sec Data 42
$6 c$ - Outputs for SYM Keyboard Display 42
6d - Table for Gear Interactions 43
$6 e$ - Lookup Table for Gear Ratio Lights 44

Figure:

2a - Photograph of the IH Tractor 13
3a - Photograph of the SYM-1 and Cassette 20
3b - Circuitry for Interfacing Magnetic Pick-ups 20
3c - Photograph of the Display Unit 21
4 a - Schematic of Fuel Flow Switching 28
7a - Operator Log Sheet 49
7b - Estimated Fuel Savings 49

Chapter 1
 CONCEPT DEVELOPMENT

Project Justification
Rising fuel costs have prompted farmers to explore ways of optimizing fuel efficiency in operating their equipment. Diesel fuel prices, for example, increased 588\% from 1972 to 1981. This increased cost has made the farmer aware of energy-saving modifications and practices in operating farm equipment.

Gear Up and Throttle Down
Many methods of reducing fuel consumption already have been implemented with varying degrees of success. Gear up and throttle down effectively reduces fuel consumption during light field operations with agricultural tractors, Hauck ${ }^{l}$ (1979).

The basic concept of gear up and throttle down is to operate the tractor at the most fuel-efficient engine speed and gear ratio while maintaining the desired ground speed. This practice was promoted during the mid to late '70s by Kansas State University Extension Agricultural Engineering Department. Although this practice cannot be implemented in all agricultural field operations, it can be beneficial when the tractor is being operated at less than full load. The savings afforded by gear up and throttle down are due to the reduced engine friction, hydraulic pumping, and fan losses.

Estimated Savings
Chancellor ${ }^{2}$ (1981) estimated a potential fuel savings of 10% and
an increased rate of work of 17% by operating a tractor at its most efficient torque-speed combination during a field operation. The estimation was based on a hypothetical transmission, selecting from 32 possible gear ranges for light loading during a single field operation. The simulation provided for sampling and changing gears at 10second intervals. The increased rate of work indicated that the tractor also changed field speed in the optimization.

Stevens ${ }^{3}$ (1981) evaluated the fuel savings resulting from operating a John Deere 4640 tractor at 1700 rpm instead of full throttle. The study was based on draft data from 10 relatively low-power requirement field operations. The savings ranged from 13 to 36%, depending on the extent of loading and field variation.

Operator Concerns

The main concern in implementing gear up and throttle down is engine damage. Diesel engines and turbochargers can be damaged by prolonged excessive loading at low engine speeds. This overloading at low rpm often is referred to as "lugging." Lugging for short periods will not damage engines, but lugging for extended periods may damage pistons, bearings, and turbo chargers.

Limitations of Application

Gear up and throttle down also is limited to field operations where implements are not driven by the power take-off (pto). The pto speed is directly proportional to the engine speed, and most ptodriven equipment must be operated at an engine speed of 2100 rpm . Another limitation is the reduction in reserve power, or ability to
recover from short intervals of overloading. At lower engine speeds the torque rise is reduced, thus limiting the ability of the engine to recover during field operations with highly variable loading, such as chiseling or plowing.

The use of gear up and throttle down is believed to be limited. Much of the hesitancy is due to insufficient information provided by the tractor instrumentation and the operator's lack of familiarity with the procedure. Feedback from the tractor to the operator could greatly enhance the use of gear up and throttle down. In most situations, the operator cannot estimate the loading of the engine or the potential fuel savings from using gear up and throttle down. The operator may be reluctant to use the practice because he thinks it may damage the tractor. Depending on the load, this damage may be either real or imaginary, but to the operator, it is a real concern. During most light field operations, the operator can be assured he will not damage the tractor by gear up and throttle down. As the loading is increased, however, the possibility of overloading is increased, and the operator becomes hesitant to implement gear up and throttle down.

Operator Interface

If the operator had information indicating the tractor could be operated in a more optimum range without damaging it, the operator's reluctance would be decreased. A gear selection aid could provide this link between the operator and the tractor. If the operator knew the optimum operating range, engine speed, and estimated fuel savings, he would have all the necessary information as well as the incentive to use gear up and throttle down.

Incentive for Development
Several recent developments have decreased the cost and enhanced the feasibility of developing equipment to implement a gear selection aid for the gear up and throttle down concept. The analysis necessary for evaluating the engine load, ground speed, engine speed, fuel consumption, and potential fuel savings is complex. Although it may have been possible to implement this concept by using TTL or CMOS devices, the microprocessor greatly increased the flexibility of the implementation.

The price, size, and calculating power of microprocessors have changed drastically in recent years. Single board microcomputers with 4000 bytes of RAM and 2000 bytes of ROM can be purchased for less than $\$ 300$. The physical dimensions of these units are about the size of a sheet of notebook paper and less than an inch thick. These units can be programmed to do all calculations necessary for the optimization routines.

Electronic sensors capable of direct connection to the microcomputer also have enhanced the implementation. Automotive and agricultural equipment now use digital electronics that are less expensive, more accurate, more reliable, and more rugged than the older analog technology.

The reserve torque capacity of tractor engines also has increased with the newer engine designs. Many of the early turbocharged diesel tractor engines had a relatively sharp torque drop with reduced engine speed. When the engine was loaded and the rpm decreased, the torque
also decreased rapidly, thus causing the engine to lug or stall. This made operating the engine at speeds less than 1800 rpm possible only during light loading. The more recent tractor engines have relatively high torque rises, which helps to minimize the possibility of overloading or lugging the engines.

The drawbar pull, or draft, for most field operations increases with ground speed. Thus, if the ground speed is decreased, the draft decreases. If the engine torque remains constant or increases, the tractor can maintain short periods of overload without having to shift down. After the field conditions have changed and the draft has decreased, the tractor will be able to resume its previous ground speed. If the draft is increased for an extended period of time, the operator should select a lower gear ratio.

Implementation Criteria
Equipment to encourage the use of gear up and throttle down must meet several criteria. The device must be accurate enough to achieve the desired results, reliable within the constraints of the design criteria, and easily understood by the operator. Because the device is transferring information rather than providing direct implementation, the device also must have credibility with the operator.

In this project all the tractor's original instrumentation was left operational. This allowed the operator to use the instrumentation to set engine rpm and check such items as ground speed and exhaust gas temperature. The operator was advised to monitor all safety indicators, such as the exhaust gas temperature warning indicator, and to stop operations if any sign of engine overloading or
damage occurred. Because the device recommended operations within the constraints of the tractor safety indicators, the operator was provided with the confidence to implement the suggestions. If the operator had any concern about the tractor's ability to operate at the recommended ranges, the operator was able to check the instrumentation to verify the tractor's performance.

Project Objective
The objective of this project was to build and evaluate a gear selection aid to assist the operator in minimizing fuel consumption during field operations. To evaluate the performance of the gear selection aid, the tractor and operator's performance were monitored both before and after the device was made operational. Engine speed, ground speed, and rack position were recorded and stored so the operator's performance as well as the performance of the gear selection aid could be evaluated. The number of times the gear selection aid recommended gear changes and how often the operator responded to those recommendations was also recorded. Thus, the success of implementation could be determined. The data also provided information to optimize the different variables used in the optimization routines.

Thesis Objective

The objective of this thesis is to explain how a gear selection aid with data collection was designed, constructed, installed, and tested on an International Harvester 3588 agricultural tractor. Because the data analysis will be the topic of another thesis, there will be only minimal discussion of the data collected during testing.

MEIHODOLOGY

Fuel Optimization Alternatives
Several methods of implementing fuel optimization routines for agricultural tractors are possible. The choices range from simply educating the operators about the economic advantages of gear up and throttle down to a device having complete control of the tractor. Attempts at educating operators have met with limited success. Complete control of tractor engine speed and gear selection would be quite expensive and may not be accepted by the tractor owners.

The exact savings of the different methods are almost impossible to calculate. If the operator is given sufficient information, presen-ted in an understandable format; a large portion of the potential savings may be realized. This project was based on the idea of providing the necessary information to the operator and leaving the implementation to the operator's discretion. Because the key to implementing the optimization routine was the interfacing between the tractor and the optimization device, it was important to find a tractor that could be modified and instrumented with the appropriate sensors, data manipulation equipment, and a display.

Equipment for Implementation
The International Harvester Company loaned the Agricultural Engineering Department at Kansas State University a Model 3588, 4-wheel drive tractor to use on this project, (Fig. 2a). This tractor has two important features which simplified the implementation of the instru-
mentation for this project. The tractor has electronic instrumentation and an American Bosch fuel-injection system.

The tractor's electronic instrumentation incorporated magnetic pick-ups for engine speed and wheel speed. By sensing the outputs of these pick-ups rather than developing new engine and wheel speed sensors, the development time of the project was reduced. The American Bosch fuel injection system was also an important factor in simplifying the instrumentation for this project. Rather than using a mechanical load transducer and a fuel meter to measure load and fuel consumption, the engine speed and rack position were used to estimate the fuel consumption and engine load using mathematical models.

Optimization Procedure
To determine the recommended gear ratio/engine speed, the engine speed and position of the fuel metering rod (rack) were used to calculate an estimate of the present load and fuel consumption. Assuming the same ground speed and engine load, the program then computed the fuel consumption for successively higher gear ratios and correspondingly reduced engine speeds until the program estimated an engine overload or an engine underspeed condition. The estimated fuel consumption at each gear ratio was compared with the present fuel consumption estimations to determine potential fuel savings.

If the estimated minimum fuel usage resulted in a predicted savings of greater than . 5 gallons per hour (gph), the display was enabled. The estimated present fuel flow, predicted fuel savings, recommended gear ratio, and recommended engine speed were displayed to
the operator. Specific details of the development and use of the model are given in Chapters 4, 5, and 6. After developing, testing, and verifying the opimization models, it was important to develop a method of presenting the information to the operator in a manner that would be acceptable and meet the design constraints.

Design Criteria

The main design criteria were that the device be reliable, accurate, easy to understand; and above all, be credible with the operators. The reliability and accuracy of the device were verified during several stages of testing. This included several hundred hours of testing during the performance mapping and other laboratory tests and approximately 100 hours of field operations by the research staff. After the unit was built, it was tested in the lab using a signal generator to simulate ground speed and a dynomometer to simulate field loading. By using the simulated loading, the range limits could be tested, and the accuracy of the calculations could be verified. The next step was to determine if the display presented the information to the operator in a way that made it easy to implement the recommendations.

Because the operator often is doing several tasks during tractor operations, the device also must be easy to understand. To accomplish this, a light on the display panel alerted the driver when new information was displayed. The present fuel consumption, recommended gear ratio and engine speed, and the potential fuel savings were displayed to the operator. The operator then had the information necessary to make the gear change, but the actual implementation was still at the
operator's discretion.

Field Operation
Because the device was designed to assist the operator only during field operations, it was important that the device be activated only during the field operations. If the display were allowed to operate during activities other than field work, the display would give erroneous recommendations, and the operator would soon learn to ignore the display. Ground speed and time were used as an indication of when the tractor was operating in field conditions.

Most field operations require a ground speed of from four to nine miles per hour and are operated within this range for extended periods of time. Other operating modes such as moving the tractor to and from the field and connecting to implements are either outside this range of speed or are for short periods of time. The program required the tractor to be operating between four and nine m.p.h. for at least one minute before the display could be activated. Because the tractor was to be operated under lightly loaded conditions where wheel slippage is minimal, the wheel speed and ground speed are approximately the same. Wheel speed is easier to detect so it was used as an indicator of when the tractor was operating in field conditions.

It was also important to monitor the peak field loading conditions to eliminate possible overloading. If the engine was operated for more than eight consecutive seconds with an average rack position of greater than 90% of full rack, the calculations for savings were not performed for that minute. This minimized the possibility of
selecting a gear range that could cause overloading of the engine. This overloading would result in the operator having to shift down from the previously recommended gear range and could reduce the credibility of the device.

Operator Interface

When the operating parameters are within the program limits and an output is displayed, the operator can choose to implement or ignore the recommendations. The display will stay on for one minute regardless of whether the recommended changes are made. The display is then disabled for the next minute. This one minute delay occurs any time the display has been on. At the end of the minute, the calculations are performed to determine if a recommendation should be made. If the operator did not make any changes and the field conditions have not changed, the calculations should result in the same recommendations to the operator.

If the operator makes the recommended changes, the display will still remain on for the entire minute. This gives the operator enough time to check that the new gear range and engine speed are correct. The display then will be disabled for the next minute. After the recommended change has been made, the optimization routines will occur every minute but the display will stay off unless the field conditions change. The reason the display stays off is that the routine has been optimized for that specific field loading pattern.

This display format was designed to help operators that are leery of the recommended changes. If the operator thinks the gear ratio displayed is too high and engine speed too low, he can choose a gear
ratio between the present gear and the displayed gear. If the sel-ec-ted gear ratio and engine speed do not result in performance within optimum gear ratio and engine speed after a one minute interval. If the field conditions have not changed, this recommendation will be the same as the previous one.

Data Collection

To determine how often the display was enabled and if the operators implemented the recommended changes, a data collection system was added. The data recorded were time, average rack value, pulse counts from the engine and transmission pick-ups, and the recommended gear ratio and engine speed. The previous 30 minutes of data were stored on cassette tapes at 15-minute intervals for later analysis. By storing 30 minutes of data each 15 minutes, the data were duplicated to provide a backup in case of tape reading problems. The analysis was performed using the DEC PDPIl/34 computer in the Agricultural Engineering Department.

International Harvester Model 3588 Tractor
Fig. 2a

HARDWARE DEVELOPMENT

Selecting the Camputer
Several types of computers could have been used for on-board computing and data collection for this project. The inexpensive single-board, eight-bit microcomputers, such as the SYM-l, and the medium cost eight-bit micros with disc drives, such as the Apple II, were considered in detail.

The Apple II had been used by the Agricultural Engineering Department for machine language program development, but had not been tested in the field environment. The main advantage of the Apple II was the availability of floppy disc drives. The disc drives would allow for more data storage but were unproven for unattended operation in a harsh environment. Because the speed and quantity of storage necessary could be met with cassette tapes and because cassette tapes are more rugged, it was determined that cassette tape storage should be used for this project.

The SYM-l had been used in environments with large temperature swings, but had not been used in environments with the vibration encountered in the field operation. To minimize vibration and temperature swings, the computer and associated periphials were mounted in the cab of the tractor. The operator cab of the tractor is mounted on isolation dampers and is air conditioned and heated for the operator's comfort. By mounting most of the equipment inside the cab, the equipment was in a relatively stable environment during the operation. The
cab reached temperatures higher than $100^{\circ} \mathrm{F}$ when not being used, but during the field operations the cab was air conditioned.

After evaluating previously developed data collection software and hardware, it was decided to minimize the hardware costs and size and to reduce programming time by using a SYM-1 microcomputer with cassette tape storage (Fig. 3a). The SYM-1, built by the Synertec Corporation, is an inexpensive single-board computer that has been used successfully for data logging and control applications within the agricultural and mechanical engineering departments. Some of the inhouse software, such as data collection and real time clock subroutines, could be used with minimal changes, thus reducing the development time.

Real Time Clock
The previously developed real time clock with its own back-up battery and hardware that provided the day of the year, and time of day in hours, minutes, and seconds was important to the project. A MSM5832RS clock chip and associated circuitry had been developed and tested on the SYM-1 microcomputer, Schwarz ${ }^{4}$ (1984). The clock was interfaced to the SYM-1 using external port A. The clock provided the timing needed for determining when to collect data, calculate potential savings, and store data on tape. Interfacing the computer to the magnetic pickups for engine and wheel speed was accomplished by using operational amplifiers.

Interfacing Tractor Instrumentation
To avoid disabling or loading of the tractor's existing instru-
mentation, capacitor coupling to the magnetic pickups was used, (Figure 3b). For each pickup a capacitor was connected to each lead. The other end of the capacitors was connected to the inputs of the appropriate operational amplifier. Balancing resistors were used as shown to keep the inputs of the operational amplifier at approximately six volts. The outputs of the amplifiers were connected to pulsecounting inputs of port PB6 on the SYM-1.

Sensing Rack Position

Sensing of rack position was not available on the tractor's standard instrumentation, therefore a method of sensing the fuel metering rod, commonly referred to as the "rack", was developed. The rack position was determined by sensing the rotational position of a shaft. The shaft was accessible by removing a cover from the fuel pump. Because the shaft did not extend outside the fuel injector housing, it was necessary to extend the fuel metering shaft to allow attachment of a position sensor.

Several methods of measuring the rotation of the shaft were considered. The first consideration was the use of a potentiometer and a regulated power supply to provide an analog signal. Limitations associated with potentioneters are their non-linearity and drift when subject to temperature variations. The analog signals are also more susceptible to noise problems than digital signals and the analog signal would have to be converted to a digital signal before interfacing to the SYM-1. To eliminate the analog signals and minimize electrical interference problems a djgital rotary position encoder was used for this project.

To determine the required resolution of the encoder, it was necessary to determine the amount of rotation of the fuel metering shaft. To accomplish this, the position of the shaft was marked with the throttle set to the minimum position. The tractor was loaded to maximum horsepower using a dynamometer, and maximum shaft rotation was marked. The difference between the minimum and maximum position was approximately 60°. Encoders were available in either eight or 10-bit resolution for 360° of rotation. Eight-bit units have an accuracy of approximately 1.41 degrees of rotation per bit. The 10-bit unit has an accuracy of .35 degrees per bit. To achieve the accuracy required by the mathematical model the 10 bit unit was selected.

After reviewing specifications of several encoders, it was determined that the Litton Model 76-NB10-2-S-1, 10 bit, absolute rotary encoder (Appendix A) would have suitable resolution and would withstand the vibration and temperature environments. The encoder was ordered with gray code conversion to natural binary. The gray code eliminates the possibility of getting incorrect readings during state changes of the encoder.

Installing Encoder

Mounting the encoder required modification of the fuel pump cover. A machined aluminum plate was used to attach the encoder to the fuel injector pump housing. The shaft of the metering rod was extended and a zero-backlash flexible coupling was used to connect the encoler to the shaft. Because the encoder was locater on the engine, it was exposed to high vibration levels and large temperature vari-
ations. After attaching the encoder to the fuel injector pump, it was determined that the heat transfer to the encoder was causing the encoder temperature to exceed the specifications given for the encoder. To accomplish some thermal isolation, an asbestos gasket was installed between the adapter plate and the encoder. With this modification, the encoder case temperature was limited to a maximum of $160^{\circ} \mathrm{F}$ during full load dynamometer testing. This temperature was within the specifications of the encoder. The electrical interface connection to the SYM-1 was port PAO, bits 0 through 7. The power supply for the encoder was provided by the SYM-1.

Power Supplies
The power for the instrumentation package was provided by the tractor battery through voltage convertors and regulators. The SYM-1, the digital encoder, and the display unit, required five volts dc. This was provided by a Lambda Model LASl405 dc-to-dc converter. The six volts dc required by the recorder was provided by a Radio Shack 12 volt dc to 6 volt dc converter.

Display Unit
The display unit was designed to provide the operator with the recommended gear selection and engine speed. The tractor had a dual range differential, a four-range manual transmission, and a hydraulically activated dual range torque amplifier. This provided 16 possible gear ratios. The original concept was to display the gear number, one through 16. This would have been quite confusing unless the operator was familiar with the gear ratios for this particular
tractor and would have required the operator to determine mentally the three control settings required to obtain the recommended gear ratio.

To simplify the display and provide more concise instructions to the operator, the gear selection display was designed using a combination of light-emitting diodes (LEDs) (Fig. 3c). The recommended gear ratio was displayed by lighting one of two LEDs for the T / A, one of four LEDs for the transmission gear, and one of two LEDs for the range of the differential. Because the engine speed will vary by a few hundred rpm in typical field operations, the recommended engine speed was rounded to the nearest hundred and displayed using two sevensegment displays to indicate hundreds and thousands of rpm.

Estimater fuel consumption and estimated fuel savings were calculated to the nearest tenth of a gallon per hour (gph). The maximum anticipated fuel consumption was less than 10 gph , so the estimated fuel consumption and estimated fuel savings were displayed using two seven-segment displays for each value.

SYM-1 Computer by Synertec Corporation
Fig. 3a

From Magnetic
Pickups

Magnetic Pick-up Interface
Eig. 3b

Display Unit for Optimization Device
Fig 3c

Chapter 4
 ENGINE PERFORMANCE MAPPING

Performance Map Criteria
Mapping the engine performance was critical for developing the models used during this project. The tractor used for this project was furnished by International Harvester Corporation. The International Harvester Company provided recommended limits for operating of the engine safely: a minimum engine speed of 1200 rpm for full load and a maximum exhaust gas temperature (EGT) of $1400{ }^{\circ} \mathrm{F}$ for any loading. During the mapping, the engine was operated at speeds as low as 1500 rpm with wide open throttle, and the EGT remained below the $1400^{\circ} \mathrm{F}$ limit.

A performance map for the engine was provided with the tractor; however, this performance map was not sufficient for this project because it did not include fan, hydraulic, and other drive train losses. The modeling also required a value for the rack position corresponding to each point of the engine performance map. This position was not provided with the original engine map. Other measurements necessary for the engine mapping were engine speed, engine load, and fuel flow. The engine speed and rack position measurement were implemented as described in chapter 3. Measuring the fuel flow was necessary for mapping the engine, but a mathematical model was used during the field testing.

Fuel Measurement
The fuel flow was calculated by measuring fuel weight at the
beginning and end of each test and dividing by time. The diesel fuel from the diesel injection pump is not completely consumed by the tractor engine. Some of the fuel is passed through the injector and returned to the fuel tank. This "return" fuel is necessary to prevent the injector from overheating. The quantity of return is highly variable and dependent on engine speed and load. To measure only the consumed fuel, two three-way valves were added to the fuel lines (Fig. 4a). One valve selected the supply, either tractor tank or weigh scale, and the other valve selected the return path, either tractor tank or weigh scale.

During warm-up and between tests, both the supply and return were set to position A. During each test, the supply and return were set to position B. Because the return was going back to the weigh scale, the change in quantity of fuel in the weigh scale represented the actual fuel consumed by the engine. The weigh scale was filled by pumping fuel from the tractor tank to the weigh scale. This was accomplished by setting the supply valve to position A, opening the fill valve, and turning on the auxiliary fill pump. During most of the testing, this allowed the weigh scale to be filled while the engine temperature was stablizing between tests. After filling the weigh scale, the fill pump was turned off and the fill valve was closed.

Fuel Temperature
Before the performance mapping could begin, it was necessary to investigate the effect of fuel temperature on engine performance. ${ }^{5} \mathrm{Wu}$
and McAulay indicate an inverse relationship between fuel temperature and horsepower output for a diesel powered engine. To determine if the supply fuel temperature effected the engine performance, the temperature of the fuel supply was subject to temperature variations much larger than could be experienced during actual field operations.

The fuel supply line was disconnected from the inlet of the fuel filter. A finned tube heat exchanger was connected between the fuel line and the fuel filter. Thermocouples were placed on the surface of the fuel line at five locations; the supply tank, before the heat exchanger, after the heat exchanger, at the inlet to the injector pump, and the outlet of the injector pump.

The tractor engine was operated at various speeds and loads while the temperatures, engine speed, fuel flow, and horsepower output were recorded. The heat exchanger then was submerged in an ice bath to cool the fuel supply. The engine speeds and loading were repeated, and the temperatures, engine speed, fuel flow, and horsepower output were recorded.

The temperatures recorded at the inlet of the injector pump and the outlet of the injector pump were approximately the same regardless of supply fuel temperature, engine speed, or engine loading. This stable fuel temperature was attributed to the large heat transfer surfaces provided by the fuel filters, fuel lines, the injector pump, and the relatively slow flow rates.

Further analysis of fuel consumption for the entire range of engine loads and fuel supply temperatures indicated no significant change in engine performance due to changes in fuel supply tempera-
tures. Therefore, the fuel supply temperature was disregarded in the performance testing and modeling. The heat exchanger then was removed from the fuel supply line before the final engine mapping was performed.

Data Collection

During the performance mapping, engine speed, fuel weight, rack position, dynamometer torque, and time of day were recorded. Engine speed, rack position, and time were recorded and stored on cassette tape by the SYM-1. The fuel weight was measured by suspending a twogallon tank from an Ametek model BA-25-LB strain gage transducer (Appendix B). The strain gage was powered and sensed by a Calex model 166 voltage to frequency converter (Appendix C). The output, which was proportional to weight, was connected to port PB6 pin A of the SYM-1.

A program was written for the SYM-1 to count the pulse inputs from the engine speed and fuel weight during each two-second interval, and to store these values in memory. At the end of each two-minute test, these stored values and the time were recorded automatically on cassette tape.

Dynamometer torque and exhaust gas temperature were recorded manually at 15 -second intervals during each test. The torque was read from the digital display on the Model NEB 400 A\&N dynamometer. The exhaust gas temperature was read from the tractor instrumentation.

Testing Range

The engine loading was for the range of 50% to full load for
engine speeds of 1500 rpm to wide open throttle. The tractor was operated at wide open throttle, and the load was increased until an engine speed of 1500 rpm was maintained. Data then were recorded for this condition. The load was decreased until an engine speed of 1700 was maintained at wide open throttle. This process was repeated at 200 rpm steps until approximately 50% of the full load, 75 horsepower, was reached.

During the next series of test points, the engine load was reduced approximately 10 horsepower for each of the engine speeds previously determined until a minimum of 75 horsepower was recorded. This was accomplished by having the tractor operator set the engine rom while the dynamometer was set to the appropriate load. After this set of data was collected, the loads were reduced another 10 horsepower for each of the engine speeds until 75 horsepower was recorded. Testing Procedure

The test procedure for collecting each data point on the performance mapping follows.

1. The tractor is started and idled with the pto off and the fuel selectors in position A.
2. The fuel fill valve is opened, and the fill pump is turned on until the weigh scale is full. The fill pump is turned off, and the fill valve is closed.
3. When the engine water and oil temperatures indicate the engine is warm, the pto is engaged with no load on the dynamometer. Then the dynamometer load and engine speed were set.
4. The engine exhaust temperature is monitored until it stabilizes.
5. The fuel selectors are switched to position B.
6. The SYM-l data collection is started, and the operator records the exhaust gas temperatures and oto torque and horsepower every 15 seconds.
7. At the end of the two minutes, the dynamometer load is reduced while reducing the engine speed. The pto is disengaged, and the engine is set to idle.
8. Steps two through six are repeated for each of the test points.

Fuel Flow Switching Valves Fig. 4a

Chapter 5

DEVELOPMENT OF THE MATHEMATICAL MODELS

After collecting data for the performance map, different models were evaluated by the statistics department at KSU. It was determined that a linear regression model did not fit the parameters with the desired accuracy. The regression procedure in the Statistical Analysis System (Helwig, 1979) was tested. This procedure provided models with accuracy well within the project guidelines, so it was used to develop the mathematical models for engine loading, fuel consumption, and rack position.

To simplify the model, the average rpm and encoder readings were subtracted from the data values before entering the value into the equation. For the original data these values were 1921.51 and 128.054, respectively.

Horsepower Calculation:

Average horsepower is predicted by using the rack position and the engine rpm in the following equation.

Equation 1

```
hphat \(=2.070851+(.023899 *\) rpm \()+(1.681623 *\) rack \()\)
    \(-\left(.00003113075^{*} \mathrm{rpm} \mathrm{m}^{\mathrm{rpm}}\right)+\left(.001008684^{*} \mathrm{rpm}^{*} \mathrm{rack}\right)\)
```

where:
hphat $=$ ptohp predicted from the model
rpm $=($ engine rpm$)-1921.51$
rack $=($ encoder reading) -128.054
The "F" statistic of this model is 2804.53 and the "R squared" value is 0.9968 for the range of engine speeds and loads used during the dynamometer tests. Both the "F" statistic and the "R squared"
values indicate a good fit to the original dynamometer data.
Fuel Flow Calculation:
Average fuel flow is predicted by using the rack position and the engine rpm in the following equation:

Equation 2

```
ffhat \(=45.331760+\left(.016695^{*}\right.\) rpm \()+\left(.539934^{*}\right.\) rack \()\)
    \(-\left(.0000055161^{*} \mathrm{rpm}{ }^{\star} \mathrm{rpm}\right)+\left(.0019968\right.\) *rack*rpm \(\left.^{*}\right)\)
    \(+\left(.0002517891{ }^{\text {rpm* rack }}\right.\) )
```

where:
ffhat $=$ predicted fuel flow in $\mathrm{lbs} / \mathrm{hr}$
rpm $=$ (engine rpm)-1921.51
rack $=$ (encoder reading)-128.054
The "F" statistic of this model is 2637.99 and the " R squared" value is 0.9973 for the range of engine speeds and loads used during the dynamometer tests. Both the "F" statistic and the " R squared" values indicate a good fit to the original dynamometer data.

Rack Position Calculation:
Average rack position is predicted by using the engine rpm and the predicted horsepower from the first equation as follows: Equation 3

```
rackhat \(=-1.310154-(.015853 *\) ram \()+(.615521 * \mathrm{hp})\)
    \(+\left(.00002779667^{*} \mathrm{rpm}{ }^{\star} \mathrm{rpm}\right)-\left(.000372483^{*} \mathrm{rpm}^{*} \mathrm{hp}\right)\)
```

where:
rackhat $=$ predicted encoder reading -128.054
rpm $=($ engine rpm$)-1921.51$
$\mathrm{hp}=($ engine hp$)-104.53$
The "F" statistic of this model is 2129.37 and the " R squared" value is 0.9958 for the range of engine speeds and loads used during the dynamometer tests. The " F " statistic and the " R squared" values both indicate a good fit to the original dynamometer data.

The rpm and the rack data were "normalized" as discussed before,
128.054 must be added to the rackhat to obtain a predicted encoder reading.

Chapter 6

COMPUTER PRCGRAM

Machine Language Assembler
The computer programs used for the SYM-l computer were developed on an Apple II computer using a machine language assembler. The programs were transferred to an EPROM which was used on the SYM-1. The SYM-l computer has the capacity for two EPROM chips, one of which can be used to boot the system. Because the SYM-l must be initialized each time the tractor is started, the circuit board was modified to boot from the EPROM program when the power is turned on or the computer is reset. Reset was provided by either manual reset or by an external automatic reset circuit.

Autamatic Reset

The automatic reset was implemented to initiate a reset if the computer program gets lost. To accomplish the reset an external 4047 multivibrator circuit was added. The 4047 was operated in the astable mode and a time constant per cycle of 30 seconds was implemented. When operated in this mode, retriggering causes the time period to start over. Every second the SYM-l main program retriggers the 4047, which prevents the output from changing states. The output was connected to a logic gate on the hardware reset. The only time the one second interruption would not occur was when the program saves data to cassette tape. Saving data to tape required approximately 10 seconds, therefore the time constant on the 4047 was set to 30 seconds to allow saves to tape without resetting the program.

Data Storage

Data read from the instruments was in fixed point binary form. To perform the calculations and store and display the results, several other forms were required.

The data saved on tape and the values used in the model equations are average values of several data samples. The calculations to obtain the averages and the calculations of the model equations were performed in floating point form to insure adequate precision in the results. A set of floating point subroutines were used which had been developed and tested on the SYMI by Mike Schwarz of the Agricultural Engineering Department. Data was converted from binary form to floating point form for the calculations and converted back to binary form for storage on the cassette tape. Values to be displayed including fuel flow, fuel savings and engine rpm were converted to $B C D$ for use by the display output routines.

The data was recorded on cassette tape using a Radio Shack Model TRS81 audio tape recorder controlled by the microcomputer. When the tractor key switch was on, data was saved on the tape every 15 minutes. The computer copied the data for the previous 30 minutes during each save to tape. This provides duplicate copies of each set of data.

There are no means of sustaining the power to the recorder after the key switch is off, thus if the key is turned off at 10 minutes after the data was saved on tape, the last ten minutes data would not be saved. The maximum amount of data that could be lost is 15 minutes. If the tractor is operating properly, it should be allowed to
idle for several minutes after heavy field operations. Therefore, in the last five to 10 minutes, the tractor should not be used in field operations.

Determining Field Operations
The optimization routines were designed for operating in actual field conditions, therefore the specific times of operation, types of field operation, etc. were unknown. To determine when the tractor was operating in field conditions and to account for the variability of the load, the optimization routine used a combination of l-second, 4second, and l-minute averages. The l-second and 4-second values of rack, engine speed, and transmission speed were used to determine load peaking and to count operation changes that could give false averages. These peak loads and changes were counted by "flags".

Out-of-Range Indication

Each flag uses one byte of memory. Bit seven is used to indicate the event is happening and bits 0 to 6 were used to count the number of times the event occured during each minute. For example, if the operator stopped for 30 seconds during one minute, the averages for engine speed, ground speed, and rack used in the calculations, would not be a good indication of the actual working conditions. To detect this change in operation, the program monitors the ratio of engine speed and ground speed. When this ratio changes, bit seven of the gear change flag is set. The bit stays set until the ratio of engine speed to ground speed is not zero and is the same for at least two seconds. Then bit seven is cleared, and one is added to the value of
the gear change flag and bit zero of the mflag is set. The mflag is the minute flag. When any flag is incremented the minute flag is set to indicate that there was a change or out-of-range measurement during that minute. After the mflag is tested at the end of each minute, the mflag is shifted to the left. This allows the program to determine if the flags were set during any of the previous eight minutes.

Memory Storage

The computer RAM serves as a temporary storage location for calculations and for storing information to be recorded on tape. The main storage area for saving data on tape is arranged in sets of 10 bytes starting with the most current data at address 200 hex. Each time data is added, it is moved up ten bytes in memory. This stacking arrangement of the data in memory occupies memory from 200 hex to the end of the 4 K of RAM (Table 6 a).

The data was either 4-second or 1-minute data depending when it was saved into memory (Table 6b). The 4 -second data is stored in memory every 4 seconds, whenever the clock minute value ends in a 5 or O. The first seven bytes are averages of the four previous l-second samples. As a means of checking the output routines, each 4-second save used the last three bytes to store the number of flags for gear change, transmission change, and overload. There were 15 data sets for each minute of 4 -second saves.

The l-minute data is stored for each minute that the 4-second data is not stored. The values stored are the sums of the 4 -second averages for that minute. The program saves data on tape during one of the minute saves four times per hour. The save takes approximately

10 seconds, and data collection is terminated during the save on tape so the number of 4 -second samples are counted and recorded to prevent errors in the minute averages.

Keyboard Display
The main program also is used to update and scan the keyboard display on the SYM-l computer. This display is located on the computer and is not accessible to the operator, but it is necessary in monitoring the parameters or memory values when trouble shooting. The real time clock and the other monitored values are displayed in a sequential repeating format on the SYM-1 keyboard display (Table 6c).

Main Program Initialization

The main program consists of a combination of monitoring, calculating, and recording routines. As the program resets, it assigns the interrupt vectors and copies the initialization values from ROM to the appropriate RAM locations. The program then sets the input and output ports. The memory used to store data is then set at zero. The program then jumps to the main program.

One Second Calculations
The program monitors the seconds of the external clock. Whenever the second's value changes, the program jumps to the interrupt routine. This interrupt stops the keyboard display routine, then reads the engine and transmission parameters into the RAM one-second locations. The counters for engine and transmission speed are then set at zero, and the counters restarted. The value for seconds is
then compared to the seconds value during the last interrupt to check if more than one second has elapsed since the last interrupt occurred.

If it has been longer than one second since the last interrupt, the program will return from interrupt to the display program until the next interrupt. If it has been one second since the last interrupt countl, the number of 1 -second averages since the last 4 -second calculation, is incremented, and the l-second values are added to the 4-second sums. The second's value is then checked to see if it is time to do the 4-second calculations. If it is not time, the program returns from interrupt to the display routine.

Four Second Calculations
If the second's value is divisable by four, countl is tested to see if there are four l-second values in the 4 -second sums. If there are not, the 4 -second sums are set to zero and the program jumps past the 4-second calculations and checks if it is time to do minute averaging.

If countl is 4, countl is set to zero and count2, which is the number of four-second averages since the last minute calculations, is incremented. The ratio of transmission and engine pulses are compared to a gear ratio table to determine the present operating gear. This gear ratio is compared to the last 4-second gear ratio to determine if the operator has changed gear ratios. If the gear ratio has changed or the ground speed is zero, the gear change flag bit seven of SFLG2 is set. If the gear ratio has not changed, the gear change flag is tested. If bit seven is set and the gear ratio is the same as the previous 4-second average, the SFLG2 is incremented, bit 7 is cleared
and bit zero of MFLG is set. The 4-second values are divided by four to get the 4-second averages.

Next, the tractor ground speed and engine load are checked. If the ground speed is not between three and 10 mph then SFLG3, the ground speed out-of-range indicator, is set and bit zero of MFLG is set. If the engine rpm is less than 1500 and the rack is greater than 95 percent, the program checks bit seven of SFLG4, the overload indicator flag. If it is not set, the program sets bit seven. If it is set SFLG4 is incremented, bit seven of SFLG4 is cleared; and bit zero of MFLG is set. The 4-second averages then are added to the minute sums, the 4-second averages and count 2 are set to zero, and count3, which is the number of 4 -second averages added to the minute averages, is incremented.

If the clock's minute value ends in either 5 or 0 , the 4 -second averages are copied to the data area of RAM for storing on tape at a later time. The program checks to see if the seconds value is 56 . If it is not, the program returns from interrupt to the display routine. Otherwise the program checks the status of the display. If it has been on during the last minute, the display is turned off and bit zero of mflag is set to prevent the display from coming on for the next minute.

1-Minute Calculations

First, bit zero of mflag is checked to determine if operation is within operating parameters. If mflag is not zero, the program shifts the mflag left and jumps to see if it is time to record on tape, then
returns from interrupt to the display routine. If mflag is zero, the minute sums are divided by count 3 and mflag is shifted left. These values are used as the average rack position, engine speed, and ground speed for the last minute. The minute averages are used to calculate the average horsepower (equation 1, Chapter 5), fuel flow (equation 3, Chapter 5), ground speed, and the gear ratio for the last minute. The memory locations reserved for these calculated values are set to zero. Values for fuel flow, engine speed, and rack are estimated for the higher gear ratios.

The estimated values assume the same average horsepower because the ground speed is assumed constant. By knowing the present gear ratio and the ground speed, the next higher gear ratio is used to calculate the new engine rpm. If this calculated engine speed is greater than 1500 rpm , the program calculates the new rack value. (equation 3, Chapter 5). If the calculated rack is less than 95 percent of the maximum rack, the fuel flow is calculated using the values for engine speed and rack value (equation l, Chapter 5). The program repeats the tests and calculations for the next higher gear. These calculated values are stored in memory according to the gear ratio used for each calculation (Table 6d). The calculations continue until the engine rpm is less than 1500 or the calculated rack is greater than 95 percent of maximum.

After the calculations for all gear ratios within the specified range of engine speed and rack are complete, the program determines the minimum computed fuel flow. This fuel flow is compared to the previous minute's fuel flow. If the savings is $.5 \mathrm{gal} / \mathrm{hr}$ or greater
the program sets display output flag. A second check is performed to determine if the gear ratio corresponding to the minimum fuel flow provides a savings of .2 gallons/hour more than the next lower gear ratio. If the optimum gear does not provide a savings of at least .2 gal/hr more than the next lower gear, that lower gear was recommended to the operator.

The fuel flow, engine rpm, and fuel savings were converted to and stored in decimal format so they can be sent out the port to the latches and decoder drivers in the display. The gear ratio was decoded for the display by a look-up table in ROM (Table 6e). This table was used to indicate the positions of the three shift levers. The selected gear ratio, engine rpm, fuel flow, fuel savings, and time were also stored in RAM for recording on tape. The program checks the output flag to determine if the optimization results should be displayed to the operator. If the output flag is set, the recommended values for T / A, range, gear, and engine speed are displayed with the present fuel flow and estimated savings.

Saving Data on Tape
The program sets the minute averages to zero and checks to determine if it is time to record the data on tape. If the minute value was 56, the header data which contains the time and flags, has moved to the stack, the interrupts are disabled, and the data for the last 30 minutes is recorded on tape. The program then enables the interrupts and returns to the display routine and the main program starts over.

Fir'st 6 bytes
Next 10 bytes
Next 10 bytes
Next 10 bytes
Next 10 bytes
Next $1 / 2$ bytes
Next 10 bytes
Next 18 bytes
Next 10 bytes
Next 18 bytes
Next 10 bytes
Next 1 (2) bytes
Next 10 bytes
Next i(2) bytes
Next 10 bytes
Next 10 bytes
Next 10 bytes
Next 1 b bytes
Next 10 bytes
Next in bytes
Next 10 bytes
Next 1 bytes
Next 10 bytes
Next 18 bytes

Conterits

Year, Mirith, Day, Hour, Mirute, Seccrids (Header) Mirobte data from mruute 15
$15 t h 4$-second data from inmute 15
14 th 4 -second data from minute 15
13th 4-second data from mirute 15
1玉th 4-secorid data from murite 15
11th 4-secorid data from mirute 1.5
10th 4-second data from miriute is
$9 t h 4$-secord data from mimute 15
Bth 4-second data from mariste 15
7 th 4-second data from mirute 15
6th 4-secorid data from minute 15
Sth 4-secoric data from mimute 15
4th 4-secorid data from minute 15
3rd 4-secord data from mimute 15
Erid 4-second data from mirute 15
1st 4 -second data from mirute 15
Minute data from mirute 14
Minute data from miriute 13
Minute data from mirute 1 a
Mirmte data from mimute 11
15th 4-second data from manute 10
14 th 4 -secrind data from mirute 10
13 th 4 -secorid data from miriste 10
1Eth 4-secornd data from mirute 10
11th 4-second data from miriste 10
$10 t \mathrm{~m} 4-$ second data from minute 10
3th 4-second data from minute 14
8th 4-second data from mimute in
7th 4-second data from milute 10
Eth 4-seccird data from imniste 107
Sth 4-second data from minite 10
4th 4-seccird data from minute 10
3rd 4-second data from miriste 10
Erid 4-second data from mirute 10
1st 4-secind data from marute 10
Mirute data from miriute 9
Mirilte data from miruste 8
Minute data from mimute 7
Mirute data from minute E
15 th 4 -second data from iniriute 5
14 th 4 -second data from inl riute 5
13tn 4-secerid data from minilte 5
12th 4-second data from minute 5
11th 4-seccirid data from mimute 5
10th 4-secund data from mimute 5
Эth 4-secorid data from minute \bar{y}
8th 4-second data from minute 5
7 th 4 -second data from mimute 5
6th 4-secand data from mimute 5
Sth 4-second data from mimute 5
4th 4-seciond data from mirnute 5
3rd 4-second data from minute 5
End 4-secorid data from mirute 5
lst 4-secorid data from mirilte 5
Mirute data from minute 4
Miriste data from minute 3
Miriute data from mirute E
Minute data from minute 1

Byte
00-01 4-second average of transmission speed pulses
02-03 4-second average of engine speed pulses
04-05 4-second average of rack pulses
06 Number of l-second samples in the 4-second averages
07
08
09
4 -second sum of Flag 2
4 -second sum of Flag 3
4 -second sum of Flag 4

Contents of 1-Minute Data
00-02 l-minute sum of transmission speed pulses
03-05 l-minute sum of engine speed pulses
06-08 l-minute sum of rack positions
09 Number of l-minute samples in the 1 -minute sums

DATA STORAGE TYPES

Table 6b

Sequence Number*
01
02
03
04
05

Contents

Year Month Day
Hour Minutes Seconds
Transmission Speed
Engine Speed
Rack Position

* Sequence numbers may be selected manually to observe a specific display, otherwise the sequence is repeated with each sequence displayed for two seconds.

SYM-1 KEYBOARD DISPLAY

Table 6c

Memory Location
0142
0143
0144
0145
0146
0147
0148
0149
014 A
014B
014 C
014D
014 E
014F
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
015A
015B
015C
015D
015E
015F
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
016 A
016B
016 C
016D
O16E
016F
0170
0171

Content
Fuel Flow for gear ratio 1
Fuel Flow for gear ratio 2
Fuel Flow for gear ratio 3
Fuel Flow for gear ratio 4
Fuel Flow for gear ratio 5
Fuel Flow for gear ratio 6
Fuel Flow for gear ratio 7
Fuel Flow for gear ratio 8
Fuel Flow for gear ratio 9
Fuel Flow for gear ratio 10
Fuel Flow for gear ratio 11
Fuel Flow for gear ratio 12
Fuel Flow for gear ratio 13
Fuel Flow for gear ratio 14
Fuel Flow for gear ratio 15
Fuel Flow for gear ratio 16
Engine Speed for gear ratio 1
Engine Speed for gear ratio 2
Engine Speed for gear ratio 3
Engine Speed for gear ratio 4
Engine Speed for gear ratio 5
Engine Speed for gear ratio 6
Engine Speed for gear ratio 7
Engine Speed for gear ratio 8
Engine Speed for gear ratio 9
Engine Speed for gear ratio 10
Engine Speed for gear ratio 11
Engine Speed for gear ratio 12
Engine Speed for gear ratio 13
Engine Speed for gear ratio 14
Engine Speed for gear ratio 15
Engine Speed for gear ratio 16
Rack Position for gear ratio 1
Rack Position for gear ratio 2
Rack Position for gear ratio 3
Rack Position for gear ratio 4
Rack Position for gear ratio 5
Rack Position for gear ratio 6
Rack Position for gear ratio 7
Rack Position for gear ratio 8
Rack Position for gear ratio 9
Rack Position for gear ratio 10
Rack Position for gear ratio 11
Rack Position for gear ratio 12
Rack Position for gear ratio 13
Rack Position for gear ratio 14
Rack Position for gear ratio 15
Rack Position for gear ratio 16

Gear	Binary \#	T/A		Range			Gear		
		ON	OFF	LO	HI	1	2	3	4
1	15	*		*		*			
2	16		*	*		*			
3	25	*		*			*		
4	26		*	*			*		
5	45	*		*				*	
6	46		*	*				*	
7	85	*		*					*
8	86		*	*					*
9	19	*			*	*			
10	1 A		*		*	*			
11	29	*			*		*		
12	2A		*		*		*		
13	49	*			*			*	
14	4A		*		*			*	
15	89	*			*				*
16	8A		*		*				*

* Indicates light is on

LOOK-UP TABLE TO CONVERT GEAR NUMBER
TO DISPLAY OUTPUTS
Table 6e

Laboratory Testing
Testing of the software and hardware was accomplished in two phases. The first phase of tests was conducted in the Agricultural Engineering Laboratories. The tractor was connected to a pto dynamometer to allow loading of the tractor. The transmission pulse input was connected to a signal generator to simulate different ground speeds. By selecting the load and transmission pulse input, different field conditions were simulated.

During the initial testing of the instrumentation the program was intermittently reset and data was lost. After observing the tractor operation it was determined that when the electric fuel transfer pump was activated the SYM-1 would reset. The reset was a result of the inductive voltage spikes on the power supply for the SYM-1. These inductive spikes were eliminated by the use of an LC filter between the 5 vdc supply and the SYM-1 computer.

After two days of testing, oil began to leak from the digital encoder. This was caused by the crankcase pressure forcing oil around the shaft seal of the encoder. The encoder was designed with a dust seal but without an oil seal. To eliminate this problem, the adapter plate for the encoder was machined to allow an oil seal between the adapter plate and the encoder. An oil drip line also was added between the seal and the engine to reduce the pressure against the seal and to discharge the accumulated oil. Returning the oil to the engine
would have required extensive design and the the quantity of oil was so small that the oil was allowed to drip below the engine to the ground.

Field Testing
During the second phase of testing the tractor was operated by the research personnel on the Delbert Stadel farm near Manhattan. The purpose was to operate the tractor in as many different loading conditions as possible to check the program before putting the tractor in the field with the cooperators. During the first few days of the field tests the rack encoder failed. This failure went undetected until the data was anlayzed due to the operation in lightly loaded field conditions. The encoder is a gray code to binary encoder so when the power source failed the failure mode created a binary output of 55. This rack reading corresponds to a low rack value. This resulted in the program always iterating until the engine speed was 1500 rpm. This failure indicates the need to add a test for the external sensors to the software if further development is pursued.

After replacing and recalibrating the encoder the testing was continued. The tractor was operated with a relatively light load by using an undersized field cultivator. The tractor was operated at a ground speed of 4 mph with a low gear ratio to allow wide open throttle operation. After the display came on to indicate the optimum operating gear, the tractor was shifted up one gear instead of changing to the recommended gear ratio. The engine speed was set to provide the same ground speed. This condition was maintained until the display came on again. By observing the outputs as the gear range was
changed, it was observed that if speed was held constant and the savings potential was above the .5 gph minimum the device would always indicate the same optimum gear and engine rpm independent of the operating gear. This test was repeated at different ground speeds and load conditions. The results were repeatable even with some variations of field conditions.

The tractor was operated in the Manhattan area for several days by Delbert and Lee Stadel. They were instructed to operate the tractor during different field operations and to implement any changes recommended by the optimization routines unless the tractor could not be operated in the recommended gear range and engine speed. This in field testing allowed for checking of reliability of the system and also provided verification of the optimization routines.

Collecting Operating Data
After testing the tractor and equipment in the Manhattan area, the tractor was taken to various locations throughout Kansas. During this testing the operators were allowed to operate the tractor for at least two days without the display. They were instructed to operate the tractor the same way they would operate their own tractor. During this period the instrumentation was recording all the data but without the display. This provided the base fuel consumption used in calculating the fuel savings during implementation. To determine the type of field operations and implements being used during the tests, each operator was given a log sheet (Fig. 7a) and was instructed to complete it at the end of each day or whenever implements were changed.

When the tractor was moved between cooperators the cassette tapes containing the field data were brought to the Agricultural Engineering Department and read using a data transfer routine. This routine was in ROM on a SYM-1 that was dedicated for data transfers. The routine read the tape and transferred the data into data files on the PDP/1134.

Estimated savings for the four operators during the first year was 19.8\%, (Fig. 7b). The range of savings for each operator ranged from 0% to 37%. The operator that had no savings was proficient in the use of gear up and throttle down. Since he was operating within commented that he would periodically shift to a lower gear and higher engine speed so the display would come on and he could compare his previous setting to the optimum. The maximum savings occured on the lightest loading when the tractor was operated at wide open throttle.

The reliability of the instrumentation was demonstrated by another researcher, Michael Blumanhourst. His research included improving the accuracy of the model over a wider range of loads. He operated the tractor and instrumentation over a period of two more years with no changes to the hardware. This further testing validated the durability and practicality of the design. A complete description of the data analysis is described in the research thesis by Michael Blumanhourst, Agricultural Engineering, 1984.

Chapter 8
 CONCLUSION

A gear selection aid for agricultural tractors can be implemented, and it can increase fuel efficiency in a variety of field operations. By providing the operator with sufficient information, it was shown that savings up to 37 percent are possible, Blumanhourst (1979). The average savings for the first 10 operators using this aid was 12.5 percent. The savings is dependent upon the operator's knowledge and the nature of the loading of the tractor. Most operators noted the aid provided them additional savings, even if they were aware of the gear up and throttle down practice.

During the first two years of testing, the equipment experienced only a few problems. Most of the problems were correcting during the first few months of operation and were associated with the hardware. This low failure rate indicates the hardware used during this series of tests was able to withstand the harsh environments associated with field operations.

To prevent underloading, a method of determining load variability needs to be implemented. An example for this need would be a tractor operating with intermittent field loading such as turning around at the end of the field. When the tractor turns around, it may be operated within the ground speed criteria for field operations, but the implement will be out of the ground thus giving a false average loading. Unless the operator changes the gear ratio or clutches the tractor, the optimization routine would use these values and could
recommend an operating range that could cause overloading.
A recommendation made by several of the operators was to leave the fuel-flow display on all the time. This would give the operator an indication of engine loading and would indicate that the device was operating.

For this technology to be implemented economically and to gain widespread use, the manufacturers of tractors need to be involved. This would allow minimizing of equipment costs by integrating the hardware and software into the existing instrumentation. This would also provide credibility compared with an add-on device.

Further research is needed to allow more exact selection of the limits of the optimization routines. Because this project involved only one tractor, any estimations of savings for implementation to other tractors may be premature. By implementing this concept onto more tractors with different engine sizes, a better relationship between engine size and savings could be determined.

1. Hauck, D., V.L. Hofman, Gear Up...Throttle Down! North Dakota State University Cooperative Extension Service, 1979.
2. Chancellor, W.J., Substituting Information For Energy In Agriculture, Transactions of the ASAE, Vol. 24, No. 4, p.802807, 813, 1981.
3. Stevens, L.E., A.D. Spencer, V.G. Floyd, and W.W. Brixius, Energy Requirements for Tillage and Planting, ASAE paper 81-1512, 1981.
4. Schwarz, M.D.,Data Logger Using the SYM-1 Microcomputer, Masters Thesis for the Dept. of Agricultural Engineering, KSU, 1984.
5. Wu, T., and K.J. McAulay, Predicting Diesel Engine Performance at Various Ambient Conditions, SAE 730148, warrendale, PA, 1973.
6. Blumanhourst, M.B., Evaluation of a Gear Selection Aid for Agricultural Tractors, Masters Thesis for the Dept. of Agricultural Engineering, KSU, 1984.

APPENDIX

Appendix:
A - Litton Encoder Data Sheet 54
B - Ametek Strain Gage Transducer Data Sheet 59
C - Calex V/F Converter Data sheet 61
D - Software Flow Diagram 67
E - Program Listing 73

Appendix A
Litton Encoder Data Sheet

Designed specifically for those demanding applications which require high immunity to mechanical stress, cannot tolerate a failure of the illumination source and where absolute (wholeword) encoding is essential.

FEATUAES

- LOW COST • ABSOLUTE ENCODING
- CHOICE OF 3 CODE FORMATS
- SOLID-STATE ILLUMINATION SOURCE*
- SIMPLE DESIGN • HIGH RELIABILITY
- CHOICE OF 10 RESOLUTIONS
- DTL AND TTL COMPATIBLE OUTPUTS
- 3 MOUNTING CONFIGURATIONS
- 2 SHAFT SIZES

APCIICAIIONS

- NC MACHINE TOOLS
- COMPUTING SC.ALES
- PROCESS CONTROL
- DIVIDER HEADS
- PLOTTERS • PRINTERS
- ANTENNAS
- TRANSLATION STAGES
- NAVIGATION SYSTEMS

GENERAL DESCRIPTION

MODEL 76 has been engineered to provide the potential user the maximum flexibility in selecting the physical and electrical characteristics dictated by the application. There is the choice of three mounting configurations with the input/output connector mounted on the end or side of the housing; two input shaft styles; three code formats to choose from - Gray Code, Natural Binary and 8421 Binary Coded Decimal - and 10 standard resolutions,

MODEL 76 uses solid-state illumination sources carrying Litton's 5 YEAR GUARANTEE against field failures; only a single 5 VDC power supply is required for operation and the outputs are fully buffered to provide direct DTL and TTL compatibility.

Appendix B

Ametek Strain Gage Transducer Data Sheet

BA SERIES Low Range, Low Price, High Efficiency

Specifications

RATED CAPACITIES (lbs.):
$5,10,25,50,75,100,150,200$
RATED OUTPUT: $3 \mathrm{mVN} \pm 10 \%$ ZERO BALANCE: $\pm 1 \%$ R.O.
MAXIMUM EXCITATION: 10 VDC NON-LINEARITY: $\pm 0.03 \%$ R.O.
HYSTERESIS: $\pm 0.02 \%$ R.O.
NON.REPEATABILITY: $\pm 0.01 \%$ R.O.
COMPENSATED TEMP. RANGE: 50 to $150^{\circ} \mathrm{F}\left(10\right.$ 10 $\left.66^{\circ} \mathrm{C}\right)$
SAFE OPERATING TEMP. RANGE: -65 to $200^{\circ} \mathrm{F}\left(-54\right.$ to $\left.93^{\circ} \mathrm{C}\right)$
TEMP. EFFECT ON ZERO BALANCE: $\frac{ \pm 0.5 \% \text { R.O. }}{100^{\circ} \mathrm{F}\left(55.6^{\circ} \mathrm{C}\right)}$
TEMP. EFFECT ON OUTPUT:
$\frac{ \pm 0.108 \% \text { R.O. }}{100^{\circ} \mathrm{F}\left(55.6^{\circ} \mathrm{C}\right)}$
CREEP:
$\frac{ \pm 0.03 \% \text { R.O. }}{20 \mathrm{Min}}$
TERMINAL RESISTANCE:
INPUT: $418 \pm 4 \mathrm{nhms}$
OUTPUT: 350 ohms ± 2 ohms INSULATION RESISTANCE: 2000 megohms (1) 100 VDC OVERLOAD RATINGS: Safe: 150% Rated Capacity Ulimate: 200\% Rated Capacity
R.O. - Rated Output

WIRINO OIAGRAM

MOTE:

1. POSITIVE OUTPUT IN THE OIRECTION OF TENSIOM
COADING

Features

- UNIVERSAL - TENSION \& COMPRESSION LOADS
- COMPACT
- LIGHTWEIGHT ALUMINUM
- EXCELLENT ACCURACY
- LOW FORCE RANGES

ORDERING INFORMATION

Series	Capacity
BA	

- Capacities 5-1b., 10-1b., 25-1b., 50-lb., 75-1b., 100-lb., 150-lb., 200-lb.
$=: \quad-=$

Appendix C

Calex V/F Converter Data Sheet

MODELS
 166 and 167
 BRIDGESENSORS

(2)

GENERAL DESCRIPTION

The Models 166 and 167 Bridgesensors are complete load cell signal conditioners in modular form. They consist of three basic sections-an adjustable regulated power supply to drive the load cell, a differential input instrumentation amplifier, and a voltage to frequency converter to provide a frequency output. Figure 1 shows a simplifled block diagram of the Bridgesensors. The Models 166 and 167 were designed with weighing applications in mind. When used with a counter and load cell they can form a complete system with minimum parts count. Provision Is made to offset the output which makes it possible to easlly subtract tare weight. The unit operates from a standard ± 15 volt power supply.

INSTRUMENT AMPLIFIER

The instrumentation amplifier section of the Models 166/167 is a true differential, high input impedance, low dritt amplifier. The design is optlmized to perform well with low impedance sources such as a load cell. The drift of the amplifier offset voltage is less than $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ which is the type of performance needed for a strain gage load cell amplifier. For example, with a bridge supply voltage of 10 volts, a $2 \mathrm{mV} /$ Volt load cell has an output of 20 mV full scale. Amplifier drift of $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ thus represents an error of $0.0025 \% /{ }^{\circ} \mathrm{C}$ of full scale.
Common mode range is ± 6 volts which Is adequate when using a 10 volt bridge supply. Amplifier output is brought out separately for use with or without the voltage to frequency converter. It is also possible to offset the amplifier output from an extemal low impedance source.

BRIDGE POWER SUPPLY

The bridge power supply is an adjustable regulated supply specitically designed to drive load cell bridges from 120 to 350 ohms. A curve of maximum output current versus output voltage is shown in Figure 6. The voltage is adjusted by means of an external potentiometer.
Voltage stability is excellent and is derived from a zener reference with a $0.002 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient. The power supply uses a series pass regulator together with a frequency stabilized op-amp to provide a ripple free and well regulated voltage source to drive the load cell.
Power supply sense llnes are provided on the module so that remote sensing may be used. They can be used to compensate for the voltage drop in long leads to the transducer or to add an external current booster without degrading regulation.

FIGURE 1. SIMPLIFIED BLOCK DIAGRAM
CALEX MFG. CO., INC., 3355 Vincent Road, Pleasant Hill, CA 94523
Telephone: (415) 932-3911 Telex: 338506

SPECIFICATIONS

ELECTRICAL
(Typlcal at $+25^{\circ} \mathrm{C}$ rated supply unless otherwlse noted).

MODEL	$168{ }^{167}$
INPUT_AMPLIFIER	
GAilN ${ }^{-}$	
Range. Ext. Adi. 10 to 1000	
Equation - ._. G=10+200kn/	
Equation Accuracy	
Nonlinearity, Max. . -. .-.. ± 0.01	
Temp. Coefficient	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
INPUT	
Input Impedance- Ditf,	
Input Impedance -CM --. .-.... --. .-. 500 M	
Input Voltage Range, Dilt. \& CM $=6$	
Common-Mode Rejection. DC to 60 Hz . $G=100$	
INPUT OFFSETS	
input Offset Voltage (RTI)	
@ $\mathrm{G}=1000$	
and $+25^{\circ} \mathrm{C}$ (Adj. to Zero).	$\pm 100 \mu \mathrm{~V}$

to Zaro) \qquad
 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Input Difference Current vs.
Temperature, Max OUTPUT
Rated Output-Voltage
Rated Current-Output
FREQUENCY RESPONSE
Bandwidth, -3 dB at $G=100$
REFERENCE OUTPUT
Nominal Value $\left(+V_{11}\right)$
Temperature Coelficient, max
BRIDGE SUPPLYi+V
Temperature Coefficient
Output Voltage Noise

Output Current (See Fig. 6)	0 to +100 mA
REGULATION	
Output Voltage vs. Supply $\left(د V_{H} / \Delta V_{s}\right)$	

$\left(\Delta V_{H} / \Delta V_{\mathrm{s}}\right)$
Regulation, No Load to Full Load
VIF CONVERT
Input Impedance
Output Frequency
Direct Output Transistor (Q_{1})

V_{1}...	
$V_{\text {b, ma }}$	5 Volts
$l_{\text {l }}$ - $\quad . \quad \cdots \cdots-\cdots$	
Isolated Output Transistor (Ca_{7})	
$V_{\text {IEA }}$	30 V
V.000	
Max. Power Dissipation 150 mW	
Pulse Width at Collector of O,	80HS typ 1
GENERAL SPECIFICATIONS	
Supply Voltage (Rated Specs) 15 V	
Supply Vollage Range $=1410 \pm 16 \mathrm{~V}$ Quiescent Current Drain	
TEMPERATURE RANGE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
SIZE (INCHES)	$2 \times 2 \times 0.6$
UNIT PRICE 1-9	\$138.00
Model MK166/7	\$48.00

MECHANICAL

Shaded pina not installed. Shown for position only
FIGURE 3. OUTLINE DIMENSIONS

FIGURE 4. MK 166/7 MOUNTING KIT SCHEMATIC

FIGURE 5. MK 166/7 MOUNTING KIT DIMENSIONS

ADJUSTMENT PROCEDURES

GAIN

Amplifier gain is set with one external resistor. The MK166/7 mounting kit provides two potentiometers in series for a fine and coarse gain adjustment. There is also a place on the P.C. card to install a single fixed resistor in place of the potentiometers. The gain equation is $\mathrm{G}=10+200 \mathrm{k} \Omega / \mathrm{Rg}$ where Rg is the external gain resistor. To illustrate, a gain of 500 would require an Rg of 408 ohms. The accuracy of the gain equation is $\pm 2 \%$. If it is necessary to set the gain very accurately, the best procedure would be to calibrate the amplifler against a known voltage standard.

BRIDGE POWER SUPPLY

The bridge power supply voltage is adjusted with a single 10K potentiometer. To reduce internal heating which could cause undesired amplifier drift, the load current should be kept within the limits indicated in Figure 6. The MK166/7 includes an adjustment potentiometer on the P.C. card. It is also possible to remotely adjust the bridge supply voltage by applying a positive reference voltage to pin 16 of the 166 or 167 mouules. The output voltage will follow the reference voltage, that is, +8 volts applied to pin 16 will produce a +8 volt bridge supply voltage.
The + and - sense lines can be used to provide load regulation at the load. If it is necessary to drive more than one or two load cells, the sense lines in combination with a separate power supply and transistor will allow the same regulation and stability but with more output. For example, consider a typical case where four 120 ohm load cells were to be operated in parallel. Current required is 334 mA at 10 volts. Figure 7 shows how to connect the Models 166/167 to solve this problem.

INPUT OFFSET

The external adjustment circuit shown in Figures 1 and 2 will allow the amplifier input offset to be changed over a range of approximately $\pm 2 \mathrm{mV}$ referred to the input. The primary purpose is to adjust the intemal amplifier offset to zero; it is not intended to compensate for an unbalanced load cell bridge. When the Model 166 or 167 is purchased on an MK166/7 mounting kit, the offset potentiometer is factory set for minimum offset. If it is necessary to adjust input offset, first short the two inputs to common (pins F, H and J) and then adjust the Input offset potentiometer until the amplifier output voltage is minimum (zero volts).
If it is necessary to use this adjustment to compensate for an unbalanced load cell bridge, it can be done, but it should be remembered that in so doing, the amplifier offset drift with temperature will be degraded.

OUTPUT OFFSET

The output of the instrumentation amplifier can be intentionally offset from zero by applying a voltage to pin 20 of the module. It should be noted that the offset introduced by this means is not amplified by the gain. while input offset is. The output can be offset to allow for tare weight compensation. For example, if the contalner weighs 50 pounds when using a load cell of 1000 pound range, the output of the amplifier may be offset to +0.5 volt. The weight of the container will then cause the amplifier output to go to zero volts and as load is added the amplifier output will increase in the negative directlon causing the V/F converter to operate. In order to minimize the effect of degrading the common mode rejection ratio, the voltage applied to pin 20 should come from a low impedance source such as the output of an operational amplifier.

FIGURE 6. BRIDGE OUTPUT CURRENT

V/F SCALE FACTOR ADJUST

To set the V/F scale factor, connect an extemal resistance from pin 1 of the module to common. The value of the resistance is approximately 3 K ohms. Calibration is performed by applying -10.000 volts to pin 31 and then adjusting the external resistor until the output frequency is 10.000 kHz or 100.00 kHz as appropriate. When the Model $166 / 7$ is purchased with a mounting kit, MK166/7, a multiturn potentiometer is provided for this purpose on the MK166/7. It is factory set for a scale factor of 1 kHz or 10 kHz per volt. The temperature coetficient of the mounting kit pot is $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. If better temperature stability is required, the scale factor pot should be replaced with a precision, temperature stable resistor.

Scaling adjustment is done by changing the amplifler gain or by the V/F scale factor adjustment. These two adjustments allow the user to treat the amplifier and the V/F converter independently if desired. In Figure 2, the amplifier gain would be set so that -10 volts output would represent full scale, 1000 pounds for example. The V/F scale factor would be set for full scale output of 10 kHz or 100 kHz . If a 0.1 second time base were selected for the Model 166 and 0.01 second for the Model 167 then a load of 999 pounds would be displayed as 999.

FIGURE 7. USING AN EXTERNAL CURRENT BOOSTER

VIF CONVERTER OUTPUT

Model 166 provides for auxiliary output or optically isolated output. The auxiliary output is taken between the collector of Q_{1} and common. Q_{1} can sink 50 mA . When used as a source, the auxiliary output can supply a 10 volt pulse into a 3 K load resistor.

FIGURE 8. MODEL 167 OUTPUT CIRCUIT

Maximum current through the LED portion of the optical coupler is 13 mA , which results in a minimum phototransistor current of 2 mA . If the phototransistor is used to switch 5 volts, then its collector resistor should be limited to approximately 1 K .

The Model 167 output circuit provides for sinking 50 mA , sourcing 2 mA into 5 K or for using a separate collector supply. For example, if TTL digital circuitry is to be driven by the Model 167, the external jumper between pin 3 and 5 can be left out. Then a separate 5 volt source can be connected to the collector of Q_{1} through pin 5 and a load resistor. Figure 8 shows a typical application.

AMPLIFIER FREQUENCY RESPONSE

The amplifier bandwidth is 10 KHZ at a gain of 100 . The rolloff response curve is 20 db per decade so the 3db down frequency can be predicted by knowing the gain setting. For example, at a gain setting of 1000 . $\mathrm{BW}=1 \mathrm{KHZ}$, and at $10, \mathrm{BW}=100 \mathrm{KHZ}$. It is sometimes desirable to intentionally limit the amplifier frequency response in order to minimize the effect of high frequency noise. The input stage of the V/F converter is an active integrator with a time constant of about 0.5 mS . (Model 166), it therefore does not require a bandwidth limit. However, if the amplifier output is also to be monitored by an external device such as a scope or recorder then the user may wish to use additional filtering. This can be done by connecting a simple RC network or an active filter between the monitoring device and the amplifier output. Capacitors should not be connected directly across the amplifier output since this may cause instability.

Appendix D
 Software Flow Diagram

Appendix E
Program Listing

```
IAS l.
10-10-a2
ASSEMRLY OF IH FERFORHANCE IHPROUER
```


Fisle 1.
OBGA 324A-30BA IHADORFS.SD

0151	324A-342B	FPUARS,R
${ }_{-0}^{-G}$		0030 IIdPRDI
$\overbrace{-G}^{02}$	AT LINE 0030	ASDB 99
$!0 C$	AT LINE ABDE	
${ }^{-6}$		A80B 9:
${ }_{-6}^{10 C}$	AT LINE ABDE	$0 \mathrm{C88} \times$
106	AT LINE DC88	
${ }^{-6}$		DBC6
${ }_{-6}^{106}$	AT LINF DBCO	AbA8 L
106	AT LINE AGAB	
${ }^{-G}$		A808 9;
${ }_{-6}^{10 C}$	At LINE ABDB	DC88 X
106 A	AT LINE DC88	
${ }_{1}^{-G}$		DBCJ
${ }_{\square}^{106}$	AT LINE DBCS	
- ${ }^{\circ} \mathrm{G}$	AT LIHE AbAB	16A8 L
${ }_{-}{ }_{\mathrm{G}}$	AT LIHE AOAQ	A 0089
$!O C A$	AT LINE. A8DB	
${ }^{9} \mathrm{G}$		DC88 X
106 A	AT LINE DC88	

OA73 324:A-3C.BD IHHAIH.SF
05月9 324A-37D3 IHHACRO.P
065E 3703-3F31 [HSEC.P
063B 37n3-3EOE THASEC.P

Thル Oct 14 18:3ó:16 1982

0242 370.3-3A15 IHifIIt.P

074E 37D3-3F21 JHFILE.P

0284 3703-3A87 IHHPHAT.P

0369 37D3-3B3C JHFFHAT.P

OB26 3703-42F9 โHNEHYAL.P

0761 37D3-3F34 IHFUEL,P

0286 37D3-3A89 [HOUTPUT.P

OB8E 37D3-4361 IHSHOH.S

0D34 37D.3-4.507 [HCL:KSUBS

03DJ 37D3-3BA8 IHCONSTANTS.D
EHD OF haE PASS!
0010 ;PUT 'IHASSE.MRI.E.
0020
0030
0040
$6050 \quad$ CT

0070
0080
0090
0100

```
-PR "ASSEKRL.Y OF IH PERFORKANC.E. IKFROUER'
- BA $0
.FI IHADDRES.SD*
```

$0000=$ 0002-0004-$0006-$

0007-
0009-0008000 II-

000E-000F-0010-0011-$0014-$ 0017001 A$001 \mathrm{~B}-$ 001C-
$0010-$
001 E -
0032-
004 6-
$0050-$
$005 \mathrm{~A}-$

OB6A 324A-3DB4 IHADORES.SD

mattesun：Denris K．Haitesunitareisd

1110	FPBASE	，DF	\＄0COO
1120	FFNORH		FPRASE＋\＄024
1130	FPADII		FPBASF．+ OC7
1140	FPSIJB	－DE	FFBASE＋50¢．0
11.50	FPMULT	，DF	FPRASFt\＄12F
1160	FFDIU	－DE	FPRASE．＋ 1 1䦽
1170	FPDUT	，DF	FPRASE＋\＄257
1180	FPDISP	－DE	FPRASE $+\$ 32.3$
1190	；PUT	DRES	S，SD＊
0110			
0120		－BA	300
0130		，F	$026{ }^{\text {¢ FPVARS }}$

OA73 324A－．3CBD IHAATM，SP
0010 ；PUT 「JHMAIH，SP•
0020
0030 HAJH

．	8b	O
003－20	1 A Co	0050
006－A9	50	0060
008－8D	78 Ab	0070
O08－ H 9	CO	0080
－8D	79 A6	0090
010－20	Cb C．	0100

JSR ACCESS
JSR
I．DA \＃1．INTERRUPT
STA JKTUEC
I．DA GH，INTERRUPT
STA IHTUE．C． 1
JSR SETIJPCI＿OCK

- aitesorl:Dentiv K K Kidとesurlilapeda

Thu Oct 14 18:37:20 1982
C013- 58
C014- 20
C017- 20
CO
/x/starf/matlescon/tanead

```
CLI
JSR OFFOUT
JSR SHOW
```

;THIS ROUTIHE IHITIALIZES THE. UAL.IJES
IHIT
I
TAX
*0; x

0120
0130
0140
0150
0150
0170
0180
0190
0200
0210
0220
0230
0240
0250
02.60
0.7
$1) ? 70$
0280
0290
0300
0310
0320
$\begin{array}{ll}\text { COJ4- CA 7A } & 03 J 0 \\ \text { COJJ- } 10 \text { F8 } & 0340\end{array}$
$\begin{array}{ll} \\ C 037-4900 & 0350 \\ & 0360\end{array}$
$\begin{array}{ll}C 039-A O ~ F F ~ & 0370 \\ 0380\end{array}$
$\begin{array}{ll}C 03 B-917 C & 039 \\ C 03 D-88\end{array}$
CO.3E- DO FE 041
$C 040-20$
$C 045$
$C O H$
$C O$
$\begin{array}{lll}C O 47-27 & 07 \\ C 049- & 00 & 02 \\ C 04 B-F F & 0 F \\ C O 4 D- & O A & 00 \\ C O 4 F-10 & \end{array}$
0470
0480
0490
0500
0520 ;

0580
0580
0590
0600
0610

\#\$F8
BHE INITI
INIT2
STA FPTEKP;X
INX
CPX *5F8
BNE TNIT2
LDX $\leqslant 8$
L.DA INITYAL. X
STA \&BATAENDIX
DEX
BFL $=-7$
LDA $\geqslant 0$
LDY \&FF
STA (OHTASTART),Y
BEY INE INI
JSR SETFORT
JSR STRTCNT
RTS
IHITVAL

- SE $\$ 727$
\$2\$LENGTH $+\$ 200$
INIT
IHIS
SE \$FFF
-SE SOA
- BY \$10
;
ITHIS ROUTIHE SERUICES THE C.L.OCK IKTEKRUPTS.
IIT CAI.I.S SANPI.E.g AUERAGE., AHD STORE AT THE
OPROPER TJKES
i
INTERRUPT

PHA TXA PHA TYA PHA		
JSR	READCI.OCK	PPUT KEH TIKE IN DAİ
JSR	GTDATA	;GET DATA FROH PORTS
JSR	STRTCHT	
JSR	CKLIMIT	;CHECK FOR DUER LIñTS
SED		
CLC		
I.DA	\$1.ASTSEC	
ADC	1	
CHP	\$ $\$ 60$	
CLD		
BC.C	SEC.SU	
LDA	10	
STA	(1.ASTSEC	
STP	- DAY +5	IHAS IT BEEH $1.5 E C$.
BEa	SEC	
I.DA	* DAY +5	
STA	- ASTSEC	
.JNP	ENDINT	
JSR	SECS	
LDA	* $\mathrm{DH}_{\text {cht }}$	
JSR	RINARY	
AitD	+303	

0
0
0
0
0
INITVAL

0530 ITHIS ROUTIHE SERUICES THE C.LOC.K INTEKRUPTS.
0 O.JO IIT CAI.L.S SANPI.E, AVERAGE., AHD STORE AT THE
O5GO :PROPER TJKES
0560
0570 I'HTERRUPT
INTERRUPT
iIS ALL. STORAGE 7.FFOET
iNO
\$2\$LENGTH $+\$ 200$
;PUT KEH TIKE IN DAII+...
;CHECK FOR DYER LIHITS
SECSUK

Qatitesun: Dennis K. Hatitesunitareaa
Thu Oct 14 18:38:10 1982
/x/stoff/mathesun/tarwda
Faye 1.7
1670
1680 ;DO A BCD TO BINARI CONUERSION
1590
1700
$C 10 F-48$
$C 110-4 A$
$C 111-4 A$
$C 112-4 A$
$C 113-4 A$
$C 114-A A$
$C 115-68$
$C 116-C A$
$C 117-10$
$C 119-60$
$C 11 A-38$
$C 11 B-E 906$
$C 110-80$
1710
17720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
0170
BINARY

0589 324A-37D. 3 IHHACRO.P

Mattusullidemins $\hat{\text { an }}$, Martesullitapeaa
Thu Oct 14 18:38:27 1982
/x/staff/mattesoll/taruda
Pase í. 8

065E 3703-3E31 IHSEC, P

matieson: Dennis K. Hailesomilispeda
Thu Oct 14 18:38:471982

C190-AE 0900
C193- AD OA 00
C196-20 21 C1
0590 KU4 (FPLSH FOFLSH)

0600
HUZN (SNPHTH)
C1A4- AE 0700
C1A7-AD 0800
C1AA- 2021 Cl
C1AR- 20 A5 DD 0610
C1BO- H2 03
C1B2- BD D8 00
C1BJ-9D 7801
C1KB- C.A
C1B9-10 F7
0630
MU4 (FFLSW FHGR)
C1BB-A2 03
C1BD- BD D8 00
$C 1 C 0-901001$
$C 1 C 3-C A$
$C 1 C 4-10 F 7$

0638 37D3-3EOF IH4SEC.P

$C 202-20$
$C 205$
$C 205-$
C

0040
0050
0060
0070
0080
0090
0100
0110
0110
0120
0130
TRANCHK
CHP2 (HLRPKTH SRPKTH)

BCC FLG3 ;AUERAGE TO HIGH
CHP2 (LLRPKTH SRPHTH)
C220- AD CA CD
C223-C5 07
C225- 00 05
$\begin{array}{lll}C 227-A D & C B \\ C 22 A-C D \\ C & 08\end{array}$

C248- AD CE CD
C24B-C5 OB


```
0242 37D3-3A15 IHNIN.P
```


$\begin{array}{llll}C 2 C 3-A C & 11 & 00 \\ C 2 C .6-A E & 12 & 00 \\ C 2 C 9-A D & 13 & 00 \\ C 2 C C-~ & 20 & 23 & C 1\end{array}$
0050 HV4 (FPLSH FOPLSW)
$\begin{array}{llll}C 2 C F-A 2 & 03 & \\ C 2 D 1- & B D & D 8 & 00 \\ C 2 D 4-9 D & F .0 & 00 \\ C 2 D 7-C A & \\ C 2 D 8-10 & F 7 & \end{array}$
0060
KU1N SCOUNT2
C2DA- AD 1 A 00
C2DD- 20 IF C1
C2EO- 20 AS DD 0070
0080
C2F.3- A2. 03
C2E5- BD D8 00
C2E日- 9D O4 OL
C2ER- CA
C2EC- 10 F7
0090 KV3N (MRPKEX)
C2EE- AC 1400
C2F1-AE 1500
C2F4-AD 1600
C2F7-20 23 C1
0100
HV4 (FPLSW FOPL.SW)
C2FA- A2 03
$\begin{array}{llll}C 2 F C-~ B N ~ D R ~ & 00 \\ \text { C2FF- } 9 D & F O & 00\end{array}$
C302- CA
C303-10 F7
0110 HV1N (COUNT2)
C305- AD 1A 00
C308-20 1F C1
C30B- 20 AS DD 0120
JSR FPDIV
0130
HYA (FPLSH FHRPME) ; STORE HUG, RPME

| $C 30 E-A 2$ | 03 | |
| :--- | :--- | :--- | :--- |
| $C 310-8 D$ | 08 | 00 |
| $C 313-9 D$ | 08 | 01 |
| $C 316-C A$ | | |
| $C 317-10$ | $F 7$ | |

 0140
 HU3H (KRACKX)
 C319- AC 1700
C31C- AE 1800
CJ1F- AD 1900
$C 31 F-A D 1900$
$C 322-2023 C 1$
0150
HU4 (FPLSN FOPLSN)
C325-A2 03
aaitescri: Dennis K. Hathesurlitaptad
The Oct 14 18:39:59 1982
/x/staff/widlesull/t.artid

```
C327- 80 18 00
```

C32A-9D EO 00
C32D- CA
C32E-10 F7

```
0160
HUIN (COUNT2)
```

C330- AD LA 00
C33J-20 1F C1
C336-20 A5 DD $\begin{array}{ll}0170 \\ 0180 & \text { JSR FPIIU } \\ & \text { HU (FPLSH FHRACK) ; STORF AYG, RACK }\end{array}$
C339- A2 03
C33R- BD D8 00
C3.JE- 9D OC O1
C341- C.A
C342- 10 F7

C344-60		$\begin{aligned} & 0190 \\ & 0200 \end{aligned}$	STOMIN	RTS	
C345- 20	EF C3	0210		JSR	ClRDATA
C348- 40	09	0220		LD\%	* 9
C34A- 89	1100	0230		LDA	MRPKTẊ, Y
C340-91	7 C	0240		STA	(DATASTART), Y
C34F-88		0250		DEY	
C350- 10	F8	0260		BPI.	STOMIN+5
C352-20	6C C3	0270		JSR	MOVE.DATA
C35J-60		0280 0290	IFUT	RTS	:
		0210		, FI	${ }^{\prime}$ IHFIL.E.P*

074E 3703-3F21 IHFILE.P

Thus Oct 14 18:40:19 1982
/x/stafr/maltesull/tartad
Pase i,i4

mattesun：Dennis K．Hattesullitapeasa

0284 37D．3－ЗАЯ7 THHPHAT．P
0010 ；FUT＇IHHPHAT．P＇
0020
0030 ；縵 THIS CALCUI＿ATES THE HP USJHG THE VALUES $\$$ \＄
0040 ；$\ddagger *$ FROM HIJUTE AVERAGES IN THE ZERO PAGE ADDRESSES＊＊＊
0050
HPHAT ；CALC．ULATE HORSEFOHER
0070 MV4（FNRPNE．FPLSH）
C403－A2 03
C405－BD 0801
C408－9D 0800
C40B－CA
C40C－ 10 F7
0080
HUA（C2N FOPLSN）

| $C 40 E-A 2$ | 03 | |
| :--- | :--- | :--- | :--- |
| $C 410-B D$ | 88 | $C D$ |
| $C 413-90$ | $F 0$ | 00 |
| $C 416-$ | $C N$ | 57 |
| $C 417-10$ | $F 7$ | |

C419－20 2F DD 0090
JSR FFHIILT
NVA（FPI．SH FPTF．HP）
C41C－A2 03
C41E－BD D8 00
C421－90 0001
C424－CA
C425－10 F7
0110
RU4（FHRACK FFLSH）

$C 427-A 2$	03		
$C 429-$	$R D$	$0 C$	01
$C 42 C-9 D$	08	00	
$C 42 F-C A$			
$C 430-10$	$F 7$		

0120
MU4（CJH FOPLSN）
C4．32－A2 03
C434－BD 8C CD
$C 437-90$ EO 00
$C 43 A-C . A$
C43B－10 F7
C43D－20 2F DD
0130
JSR FPHULT
Nリ4（FPTENP FDPLSW）
C440－A2 03
C442－BD 0001
C44J－90 EO OO
C448－CA
C417－10 F7
C4イB－ 20 C7 DC 0150

Thu Oct 14 18:40:51 1982
/x/starf/maticson/taread

0160
CA4E- A2 03
C4EO- BN 84 CD
C4J3-9DEO 00
C456- CA
C457-10 F7
C459-20 C7 DC 0170 0180

Hy4 (CIN FOPI.SH)

JSR FPADD
KY4 (FPLSH FPTEMP)
C4.JC- A2 03
C4JE- BD D8 00
C461-91 0001
C464-CA
C46J-10 F7
0190
MV4 (CAK FPLSN)
C467- A2 03
C469- RD 90 CD
C4KC- 9 D 0800
CASF- CA
C470-10 F7
0200
HVA (FHRPHE FOFLSH)
C472- A2 03
C474- BD 0801
C477-9D EO 00
C47A- CA
C47B-10 F7
C47日- $202 F$ DD 0210
0220
JSR FPKULT
HV4 (FMRPME FOPI.SW)
C480- A2 03
C482- BD 0801
C48J-90 F. 000
C4B8- CA
C4月9- 10 F7
C4BR- $202 F$ DD 0230 0240

JSR FPKULT
HVA (FPTEMP FOPLSW)
C48E- 1203
C490- BD 0001
C493-9D EO 00
C496- C.A
$C 497-10 ~ F 7$
C499-20 C7 DC 0250
0260
JSR FPADD
MVA (FPL.SH FPTEHP)
C49C- A2 03
C49E- BD D8 00
C4A1-90 0001
C444- CA
F7

0270
C4AT- A2 03
C4A9- BD 94 CD
C4AC- 90 D8 00
C4AF- CA
C4BO- 10 F7
0280
NU4 (FHRPKE FOFLSH)
CAB2- A2 03
$\begin{array}{llll}C 4 B 4- & B D & 08 & 01 \\ C 4 B 7-90 & 50 & 00\end{array}$
$C 4 B A-C A$
$C 4 B B-10$
F7
CABD-20 2F DD 0290

JSR FFHIIL.T
HYd (FHRAC.K FOPLSW)
mat.tesun:Denais K, Hiatitesollitapena
Thu Oct 14 18:41:03 1982
/x/slaff/maliesurा/hapeac
Faye 1.17

C4CO- A? 03
CAC.2- BD OC O1
C4C5- 90500
$C 4 C 8-C A$
$C 4 C 7-10 ~ F 7$

| $C A C E-A 2$ | 03 | |
| :--- | :--- | :--- | :--- |
| $C 4 D O-R D I$ | 0 | 01 |
| $C 4 D J-9 D$ | $E 0$ | 00 |
| $C 4 D 6-$ | $C A$ | |
| $C 4 D 7-10$ | $F 7$ | |

C4D9-20 C7 DC 033
0340
JSR FPADD
MリA (FPI.SW FKHP)
C4DC- A2 03
CADE- RN DR 00
C4E1-90 1801
CAEA- CA
C4ES-10 F7
C4E.7- 60

```
0350 RTS
0360 [FUT "IHHFHAT.P:
0230 ,FI' \HFFHAT,P*
```

0369 37D.3-383C IHFFHAT,P
0010 ;PUT 「IHFFHAT,P" 0020 0030 0040
0050 0060 0070 FFHAT 0080 HU4 (CYN FPL.SH)

C4F8- A2 03
C4EA- RD 9C CD
C4EN- 90 DB 00
C4FO- CA
C4FI-10 F7
0090 HV4 (FKRPHE FOPLSN)
C4F3-A2 03
$\begin{array}{llll}C 4 F 5-~ R A ~ & 08 & 01 \\ C 4 F B-90 ~ F .0 ~ & 00\end{array}$
C4FB- CA
C4FC- 10 F7
C4FE- 20 2F DD 0100
0110
JSR FPMIILT
HY4 (CgN FOPI.SH)
CJO1-A2 03
$C 503-$
$C J D$
$C 506-90$
FO 00
C509- CA
CJOA- 10 F7
C5OC- 20 C7 DC 0120
0130
JSR FPADD HYA (FPLSH FPTEMP)

| $C J O F-A 2$. | 03 | |
| :--- | :--- | :--- | :--- |
| $C 511-A D$ | 18 | 00 |
| $C J 14-90$ | 00 | 01 |
| $C 517-C A$ | | |
| $C 518-10$ | $F 7$ | |

－atiesun：Dennis K．Niallesunitaread

HV4（FKRACK FOFLSN）

$C 52 J-A 2$	03		
$C 527-$	$B D$	$0 C$	01
$C J 2 A-90$	$F 0$	00	
$C J 2 D-$	$C A$		
$C J 2 E-10$	$F 7$		

JSR FPHULT NリA（FPTEMP FDPLSH）

CJ3．3－A2 03
$\begin{array}{llll}C 535- & \text { RD } & 00 & 01 \\ C J 38-90 & E O & 00\end{array}$
CSTB－CA
CS3C－ 10 F7
CJIE－ 20 C7 DC 0180
JSR FPADD
NV4（FPLSW FPTEMP）
CJ11－A2 03
CJィ3－BD D8 00
CJ46－90 0001
C549－CA
F7
0200
KU4（FHRPHE FOFLSH）

0210
C557－A2 03
C559－BD 0801
CSJC－ 90 D8 00
CJJF－CA
C560－10 F7
C562－ 20 2F DD 0220
JSR FPAULT
Hリ4（CIIN FOPLSH）
CJB．J－A2 03
CJ67－BD A4 CD
CSBA－ 90 EO 00
C56n－CA
C56E－ 10 F7
C570－20 2F DD 0240
JSR FPHULT
NV4（FPTEMP FOPLSH）
CJ73－A2 03
CJ75－BD 0001
C578－90 EO 00
C57B－CA
CJフC－10 F7
CJ7E－ 20 C7 DC 0260 0270

JSR FPADD
HV4（FPLSH FPTEMP）
CJ81－A2 03
C583－BD D8 00
C586－9D 0001
C589－CA
CJ8A－ 10 F7

Thu net 14 18:41:2" 1982.

```
CJBC- A2 OJ
CJRE- BD OC O1
C591-9D D8 00
C594- CA F7
```

0290 HU4 (FHRACK FOFI.SH)
CJ97- A2 03
$\begin{array}{lll}C 599- & \text { BD OC O1 } \\ \text { C59C- } 90 \text { FO } 00\end{array}$
C59F- CA
AF7
C5A2- 20 2F DD 0300
0310
JSR FPAULT
HリA (C.12N FOPLSH)
JSR FFHIILT
HV4 (FPTENP FDPLSW)
CJBJ- A2 03
$\begin{array}{lll}\text { CSBJ- BD } 00 & 01 \\ \text { CSB8- } 9 D & \text { FO } 00 \\ \text { CSRB- CA }\end{array}$
C5RB- CA
CうBC- 10 F7
C5BF- $20 \mathrm{C7}$ DC
0350
JSR FPADD
NV4 (FPLSप FPTEMP)
CJC1- A2 03
C5C3- BD D8 00
C5C6-9D 0001
CJC9- CA
C5CA- 10 F7

HV4 (FHRPHE FPLSW)

CSCC- A2	03		
CSCE	BD	08	01
CJDI- $9 D$	D8	00	
CSDA- CA			
CJDJ-	10	57	

0370 KV4 (FKRACK FOFLSN)

C5FE.- 20 C7 DC $\begin{aligned} & 0420 \\ & 0430\end{aligned}$
JSR FPADD
HY4 (FPLSH FHFF)
-attesun:Dennis K. Haltesonitareáa
Thu Oct 14 18:41:37 1982
/x/slaff/mattuson/ieareiad


```
matitesun:Densis K. Haitesunitiareasa
Thu Oct 14 18:42:04 1982 /x/staff/mattusun/tareaia
MU4 (C16H FOPLSN)
C6DJ- A2 OJ
C6DJ- BD B8 CD
C608- 90 E0 00
C6DB- CA
C60C-10 F7
                                    0550
                                    HV4 (FPLSH FPTEHP)
C6E1- A2 OJ
C6F3- BD D8 00
C6E6-90 00 01
C6E9- CA
C6FA- 10 F7
                                    0560
                                    HV4 (FKRE. FPLSW)
CGEC- A2 O3
C6EE- RD 20 01
C6FI-9D D8 00
C6F4-CA
C6F5- 10 F7
```


0570
riv4 (C15H FDPL.SN)
C6F7- A2 03
C6F9- BD B4 CD
C6FC- 9D EO 00
C6FF- CA
F7
C702- 20 2F DD 0580
0590
C705- A2 03
C707- BD 0001
C7OA- 9D EO 00
C7OR- CA
CTOE- 10 F7
C710-20 C7 DC 0600
0620
C713- A2 03
C71.j- BD BO CD
C718-9D EO 00
C71R-CA
C71C-10F7
C71E- 20 C7 DC 0630
0640
C721-A2 03
C723- BD D8 00
C726-9D 0001
C729- CA
C72A-10 F7
0650
C72C- A2 03
C72E-BD 2001
C731-90 D8 00
C734- CA
C7.35- 10 F7

JSR FPADD
NYA (C14N FDPLSH)

JSR FPADD
MI 4 (FPLSW FPTEMP)

HV4 (FNRE FDFLSN)
JSR FPKULT
HV4 (FPTFAP FOPLSW)

HV4 (FKRE FFLSW)

C737- A2 03
C739- BD 2001
C73C-9D FO 00
C73F-CA
C740-10 F7

```
maitesuniDenris K. Hatiesunitapeac
Thu Oct 14 18:42:16 1982
C742-20 2F DD 0670
JSR FFHULT
MV4 (CITH FOPI.SH)
C745- A2 03
C7MT- RD RC CD
C74D- CA
C74E-10 F7
C750-20 2F nD 0690
0700
JSR FFKULT
NリH (FPTEMP FOPLSW)
C7J3- A? 0J
C755- BII 00 01
C75月-9D EO OO
C7:JR-CA
C7ゔC-10 F7
C7SE-20 C7 DC 0710
                                    0720
JSR FPGDD
Mリ4 (FPLSH FPTE.HP)
C761－A2 03
C763－BD D8 00
C766-90 00 01
C769-CA
C76A- 10 F7
0 7 3 0
NU4 (FMHP FPI.SH)
C7&C-A2 O3
C76E- RD 18 01
C771-9D 08 00
C774-CA
0740 HV4 (FHRE FOPLSH)
C777－A2 03
C779－BD 2001
C77C－9D F．O 00
C77F－CA
C780－10 F7
C782－ 20 2F DD \(\begin{aligned} & 0750 \\ & 0760\end{aligned}\)
JSR FPAULT
HYA（C18N FOPLSH）
C785－A2 03
\(C 787-\) BD CO CD
\(C 78 A-9 D E O ~ O D\)
C78D－CA
C790－ \(202 F \operatorname{DD} \begin{aligned} & 0770 \\ & 0780\end{aligned} ~\)
JSR FPKIILT
MVA（FPTF．MP FOPI．SH）
C793－A2 03
C795－BD 0001
C798－90 EO 00
C79B－CA
C79C－ 10 F7
C79F－20 C7 DC \(\begin{array}{r}0790 \\ 0800\end{array}\)
JSR FPADD NV4（FPLSH FNRAC）
C7A1－A2 03
C7AJ－BD D8 00
C7A6－90 2401
C7A9－CA
C7AA－ \(10 \mathrm{F7}\)
0810 HU4（FLRAC FOPLSH）
\(\begin{array}{llll}C 7 A C-A 2 & 03 & \\ C 7 A E- & B D & D 4 & C D \\ C 7 B 1-9 D & 80 & 00\end{array}\)
C7B4－CA
F7
```

naticesun：Derrris K．Hatiesumitaxeda

Thu Oct 1418	：25 1982		Faye 1．24．
C787－20 CO DC	0820	JSR FPSUB	
C7BA－AD DA 00	0830	LDA FPKSH	
C7RD－ 1001	0840	$B P L=+2$	
C7BF－60	0850	RTS	
	0860 0870	HU4（C9N FFLSH）	

C7CO－A2 03
$\begin{array}{lll}\text { C7C2－BD } & 9 C & C D \\ \text { C7CJ－} & \text { DD } & \text { D8 } \\ \text { OD }\end{array}$
C7CB－CA
C759－10 F7
0880
MUA（FHRE FOPLSH）
C7CB－A2 03
C7CD－RD 2001
C7DO－9D EO 00
C7D3－CA
C7D4－10 F7
C7D6－20 2F DD 0890
0900
JSR FFRULT
NVA（CBN FOPLSH）
C7D9－A2 03
C7DB－BD 98 CD
C7DE－9D EO OO
C7E1－CA
CフE2－10 F7

```
C7EA-2.0 C7 DC 0910
        0920
```

```
JSR FPADD
HリA (FPLSH FPTEHP)
```

C7E7－A2 03
C7E．9－BD 1800
C7EC－9D 0001

CTEF－CA
C7F0－ 10 F7
0921
KU4（FHRAC FOPLSH）
C7F2－A2 03
C7F4－BD 2401
CTF7－9D EO OO
CTFA－CA
C7FB－10 F7
0930
MV4（CJOH FPLSN）
C7FD－A2 03
CTFF－RD AO CD
C802－ 90 D8 00
C8OJ－CA
C806－ $10 \mathrm{F7}$
C808－20 2F DD $\begin{aligned} & 0950 \\ & 0960\end{aligned}$
JSR FPHULT
HリA（FPTFAP FOPLSW）
C808－A2 03
$\begin{array}{llll}C 80 D- & \text { BD } & 00 & 01 \\ C 810-90 & E O & 00\end{array}$
C813－CA
C814－10 F7
C816－20 C7 DC $\begin{aligned} & 0970 \\ & 0980\end{aligned}$
JSR FPADD
Hリ4（FPLSH FPTEHP）
C819－A2 03
C81R－RD D8 00
C81E－9D 0001
C821－CA
C822－10 F7
0990
MU4（FNRE FOPLSU）
mai.iesuri: nenris K. Kattesuri:tareda
Thu Ocl 14 18:42:38 1982
/x/staff/mitとuson/民aptad
Paye 1.2J
C82C- CA
C82D-10 F7

1000
C82F-A2 03
C831-RD 2001
C834-9D D8 00
C837- CA
C8.38- 10 F7
C83A- 20 2F DD 1010
1020
C83D-A2 03
C83F- RD A4 CD
C842-90 EO 00
C84.)- CA
C846-10 F7
C84R- 20 2F DD 1030
1040
C84B-A2 03
$\begin{array}{llll}C 8 A D-~ R D ~ & 00 & 01 \\ C 8 . j O-90 & \text { EO } & 00\end{array}$
C853- CA
C854-10 F7
C856-20 C7 DC 1050 1060

C8.59- A2 03
C8JB- RD 1800
C8.JE-9D 0001
C861- CA
C862-10 F7
1070
C864- A2 03
C866- BD 2401
C8h9-9D 1800
C86C- CA
C86D- 10 F7
1080
C86F- 1203
C871-BD 24 01
C874-90 FO 00
C877- CA
C878- 10 F7
C87A- 20 2F DD 1090 1100

C870- A2 03
C87F- BD A8 CD
C882-9D EO 00
C88:5- CA
C886- 10 F7
C888-20 2F DD 1110 1120

C898- A2 03
C88D- BD 0001
C890-90 EO 00
C893- CA
C894-10 F7
C896-20 C7 DC 1130
1140

JSR FPMULT
MYA (C12N FOPLSN)

JSR FPHULT
MV (FPTEMP FOPI.SU)

JSR FPADD
MV4 (FPL.SW FPTEMP)

```
mat.tesun:Denrims K. Fiaitesun:tareda
Thu Ocl 14 18:42:50 1982
/K/staff/mattesull/{.arwad
C8A1- CA
C8A2- 10 F7
```

1150
C8A4- A2 03
C8A6- BD 2001
C8AF-9D D8 00
C8AC- CA
C8AD-10 F7
1160
MV4 (FHRAC FDFLSSH)
CBAF- A2 03
C8B1-BD 2401
C884-9D EO 00
C8B7- CA
C8B8-10 F7
C8RA- 202 F DD 1170
1180
JSR FPHULT
HV4 (C13N FOPI.SH)
C8RD- A2 03
C8BF- BD AC CD
C8C2- 9D EO 00
C8CJ- CA
C8C6- 10 F7

```
C8C8-20 2F DD 1190
            1200
JSR FPMULT
Mリ& (FPTENP FOPLSW)
C8CB- A2 03
C8CD- BD 00 01
C8DO-9D EO OO
C8D3- C.A
C804- 10 F7
C8D6-20 C7 DC 1210
            1220
JSR FPADD
MV4 (FPLSW FNFF)
```

C8D9- A2 03
C8DR- BD D8 00
C8OF-90 2801
C8E1- CA
C8F2-10 F7

1230 SUUAL
1240 ;THIS ROUTJNE TAKES THE FP CALCULATER VALIIES
1250 अAND CONYERTS THEN TO BINARY HUNRERS AND
1260 ISTORÉS THE VALLIES IN A TARI.E STARTIKG AT BFF
1270
Mリ\& (FPLO FOPLSH)
C8E4- A2 03
C8E6- BD OO DO
C8F9-90 FO 00
C8EC- CA
C8ED-10 F7

1340
HV4 (FP100 FPLSN)

```
C907- A2 03
C909- BD C4 CD
C90C-90 D8 00
C9OF- CA
C910-10 F7
```


0761 37D3-3F34 IHFUEL.P

aticsun: Dennis K. Mattesollitiaredo
Thu Oct 14 18:43:7.4 1982
$/ x / s$ íaff/naticitesun/ídutede
F'aye i.?.8

| $C 99 A-A 2$ | 03 | |
| :--- | :--- | :--- | :--- |
| $C 99 C-B D$ | 14 | 01 |
| $C 99 F-9 D$ | $D 8$ | 00 |
| $C 9 A 2-C A$ | | |
| $C 9 A 3-10$ | $F 7$ | |

0460
C9A5-A2 03
C9A7- BD 00 DO
C9AA-9D EO 00
C9AD- C.A
C9AE- 10 FT

C9RO- 20	$2 F \mathrm{DD}$	0470	
C9B3-20	37 C 9	0430	
C9R6- A5	DA	0490	
C9B8-20	FE C9	0500	
C9BB- A6	1 D	0510	
C9BD-95	46	0520	
C9RF-38		0530	
C9CO- Ab	78	0540	
C9C.2- AS	DA	0550	
C9C4- FD	4201	0560	
C9C7- 20	FE C9	0570	
C9CA- A6	10	0580	
C9CC- 95	50	0590	
C9CE- D.J	46	0600	
C9DO- 10	18	0610	
C9D7- CD	गB CD	0620	
C905-90	16	0630	
C907- A9	80	0640	
C9D9- 05	74	0650	
C9DB- 8 J	74	0660	
C9DD- E6	74	0670	
C9DF- AJ	1 D	0680	
C9E1- OA		0690	
C9E2- AA		0700	
C9E3- A5	72	0710	
C9EJ- 95	$1 E$	0720	
C9E7- E8		0730	
C9E8- A.	73	0740	
C9EA- 95	1 F	0750	
C9EC-60		0760 0770	HOOUT
C9ED- A9	7F	0780	
C9EF- 25	74	0790	
C9F1-85	74	0800	
C9F3-60		0810	
C9F4- A9	00	0830	CLRHIHS
C9F6- A2	OE	0840	
		0850	C.LRHE
C9F8-9.5	OE	0860	
C9FA- CA		0870	
C9F8- 10	FB	0880	
C9FD- 60		0890 0900	BTOD
C9FE- 38		0910	
C9FF- A2	FF	0920	
CAO1- E8		0930	
CAO2- E9	64	0940	
CAOA- RO	FB	0950	
CAO6- 69	64	0960	
CAO8-48		0970	

STK *NGR
LDA GRTAB, X
I.DK \$DUTPNT

STA KDGR,
IDK *NGR
LDA RRE, X
BFQ NODUT
JSR BTOD
IDK 末DIJTPNT
STA \$ORPK,
MU4 (FMFF FPI.SH) ;GET LAST HINIJTE FIJEL. FI.OH

HV4 (FP10 FOFLSH)
;STDRE NEU GEAR RITIO
iRECORD OUTFIJT GR
;STRRE OIJTFUT RPH

Thu Oc゙l 14 18:44:08 1982
/s:/staff/matlesull/hareda
faye 3.30

OR8E 3703-4361 IHSHOH.S

Thı Oc゙t 14 18:44:311982
CAD4-20 20820740
CAD7- DO 1C. 0750 CAD9- AE 49 A6 0760

$C A D C-F O$	52	0770
CAOE- AD	$4 A$	$A G$
0780		

CAE4- DO 01 0810

CAE 7 - 60 AD $4 C$ AG 0830
CAEA - OA
CAEB- C9 OA 0850
$\begin{array}{lll}C A F D-30 & 02 & 0860 \\ C A E F-10 & 2 \mathrm{D} & 0870\end{array}$
CAF1- 4A 80880
$\begin{array}{ll}\text { CAF2- } 8583 & 0890 \\ \text { CAF4- } 60 & 0900\end{array}$
CAFJ-C9 3C 0910
$\begin{array}{lll}\text { CAFJ- C9 } & 3 C & 092 \\ \text { CAF } 7-\text { DO } & 07 & 093\end{array}$
$\begin{array}{ll}\text { CAFP- A6 } 84 & 0940 \\ \text { CAFB- FO } 02 & 0950\end{array}$
$\begin{array}{ll}\text { CAFD- C6 } 84 & 0960 \\ \text { CAFF } 60 & 0970\end{array}$
$\begin{array}{ll}\text { CAFF- } 60 & 097 \\ C B O N-C 9 & 3 E \\ C B O 2-60\end{array}$
$\begin{array}{ll}\text { CBO2- DO } & 03 \\ \text { CBOA- E. } 6 & 84 \\ C B O 6-E 99 \\ & 100\end{array}$
$\begin{array}{ll}C B 06-60 & 101 \\ C B O 7-C 9 & 4 D \\ C B O 9-C D & 102\end{array}$
$\begin{array}{ll}\text { CBO9- DO } 01 & 1030 \\ \text { CBOR- } 60 & 1040\end{array}$
CBOC-C9 521050
CBOE- DO 0511060
CB10- A9 $40 \quad 1070$
$\begin{array}{ll}\text { CB12- } 8587 & 1080 \\ \text { CB14- } 60 & 1090\end{array}$
$\begin{array}{lll}\text { CB15- C9 } & 47 & 1100 \\ \text { CB17- DO } & 05 & 1110\end{array}$
CB17- DO 05
CB1B- 8587
CB1
CB1年 60

CB1E- A2 05

$C B 20-$	$B 0$	$4 C$	$C B$
$C B 23-$	90	40	$A 6$
$C B 26-$	$C A$		
$C B 27-10$	$F 7$		
$C B 29-$	$A 9$	80	
$C B 2 B-85$	89		
$C B 20-4 C$	$B 6$	$C A$	

KEYZ
9920
930
0940
950
960
970
980
990
000
010
020
130
040
1050
060
070
1080
1090
1100
1110
1120
1130
1140
1150 ín
1170
1180 ERRHES
1180
1200
1210
1220
1230
1230
1240
1250
1270 GIMON
$C B 30-38$
$C B 31-68$
CB32-68
CB3.3- 68
02
1280
1290
1300
1310
CB36- 8D 59 A6
CB39-68
1320
1340
1340
CB3A- E9 00
1350
CB3C- 8D 5A A6
CB3F- 4 C 00 80
CB42- AO CB
$C B 44-52 C B$
$C B 46-F F$
$C B F$
CB48- 90 CR
CB4A- FF FF
CB4C- 795050
CBAF- 5C 50 00
/:\%/staff/mat.tuscon/tionPead
IGET PARAHETERS
;CR? KO,KEVI?
IGE.T NUNBER DF PARANETERS
IIF HO PAKAK THEH SOTO KDH

IIF KOT O SKIF RTS STATEKE.
;HULT $8 \% 2$
;OUT OF RANGE?
;SET ROUTIHE :
;BACK UP DKE. CHANKEL
;DOH'T DEC IF Z.ERRO

INEXT CHANHEL
;STOP CYCLIKG
©CYCLE ONL.Y ONE TYPE

BCYCLE OK EUERYTHING
attesun: Denciis K. Mattesull:lapeda This Oct 14 18:44:54 1982
/:/stitff/motlescir/laredd

0034 37D3-4507 IHCI.KSUBS

mattesuminemois K. Matiesonil:areaa
Thu Oct 14 18:45:40 1982

0106 37D3－3809 IHSETPORT
0010 ；SET INPUT PORTS FOR DATÁ COLLECTION 0020 SETPORT

CDOS－A9 BF	0030			\＃FBF
CDOF－ 8002 AB	0040			ylı？ 2
CDOT－ 8020 AC	0060		Sta	VIA3＋2
CDOF－A9 OO	0070		LDA	400
CD11－80 03 AB	0080		STA	リ1月2＋3
CII1－A9 FF	0085		LDA	185 F
CD16－ 8003 AC	0090		Sta	リTA3＋3
CD19－A9 20 AS	0140		LDA	如20
CDIB－8D OB AS	0150			VIAS ${ }^{\text {did }}$
CD21－ 0 D OB AO	0170		ORA	VIA $1+11$
CD24－ $\mathrm{CD27-80}$ OB AO	0180 0190		STA	VIAItil
	0200			
	0210	；PUT＇IH	Por	
	0300			IHSTA

OOBO 37D3－3883 IHSTARTCNT

- allesun: Denris K. Hallesullitapeaa

Thu Oct 14 18:46:23 1982
/x/siaff/mat.tescon/taruda
Paye 1.36
0310 .FI •THREADFORT'

O3DJ 3703-3BA8 IHCDNSTANTS.D

--- LABEL FILE: ---
(39C
BFF
BMFF $=0130$
BRE $=0152$
C1 $4 \mathrm{H}=\mathrm{CDBO}$
C17N =C.DBC
C2N - CD88
CAL.CG $=$ C17B
$\mathrm{CHF}=\mathrm{COD7}$
CLOCKDISPLAY =CBAO
CLRTF. =C9F8
CLRSA =C3F
COAP $=$ CD7
COUNT $3=0172$
DATAENII =007A
DAY $=006 E$
$=0083$
EFFHES -C.B20
ESIJH
FLG
$=C 286$
$=C 235$

AHEAD =CABF
BLKFF $=012$ C.
$B R A C=1162$
C1OH $\because C D A O$
C13N =C.DAC
C1N $=$ CD84
C4H $\because C D 90$
$\mathrm{CH}=\mathrm{CODA}$
CXHRX $=\mathrm{C} 256$
CLRDATA =C.3E.F
CLRSEC.SH \because C.2AG
CLR - OO
OATADISPI.AY $=$ C,BS2
DATERISP -CAB
DISBUF $\because A h 40$
EPRON2 - 0000
ERRTAB =CR4C
FLRAC. =CDD4

Ting Oct 14 18:47:07 1982
/x/staff/matitesun/íaread
fist 1.38

by

DENNIS K. MATTESON
B.S., Kansas State University, 1979

AN ABSTRACT OF A MASTERS THESIS
submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE

Department of Mechanical Engineering KANSAS STATE UNIVERSITY

Manhattan, Kansas

A gear selection aid for agricultural tractors can be implemented and provide a savings to the operator. The technology necessary to implement the optimization is readily available and the financial incentive is rising as the cost of fuel prices increase. The purpose of this work was to design the hardware and develop the software required to assist the operators of a Model 3588 International Harvestor tractor to operate the tractor at a more efficient engine speed and gear ratio.

The main criteria for development of the aid was l) the unit be able to withstand the harsh environment associated with field equipment, 2) the unit easily be understood by the operator, 3) the unit have the confidence of the operator, 4) and the unit record data for analysis of savings. The unit consisted of three boxes and implemented some of the existing electronics on the tractor. The box containing the recording equipment would not be needed for final implementation. The design criteria was met, and the results were encouraging enough that research in the area of variable speed transmissions is now being pursued.

Dennis K. Matteson Candidate for the Degree of MASTER OF SCIENCE

Thesis: A Gear Selection Aid For Agricultural Tractors

Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Abilene, Kansas, June 9, 1951, the son of Mr. and Mrs. Calvin C. Matteson.

Educational: Graduated from Longford Rural High School in May 1969. Received a Bachelor of Science degree in Mechanical Engineering from Kansas State University in December, 1979. Completed the requirements for the Master of Science degree in Mechanical Engineering at Kansas State University in May, 1986.

