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INTRODUCTION 

The purpose o f t h i s paper i s t o approximate the o p e r a t o r 

and l / f s . A n e c e s s a r y p r e l i m i n a r y t o the approximat ing pro-

cedures i s a study o f the l i n e a r adapt ive s e r v o . The l i n e a r 

a d a p t i v e s e r v o i s ana lyzed w i t h b o t h d e r i v a t i v e f e e d b a c k c o n -

t r o l and i n t e g r a l f e e d b a c k c o n t r o l . 

I f the t r a n s f e r f u n c t i o n f o r t h i s s e r v o has l a r g e f e e d b a c k 

g a i n , then the Newton and Lanczos approximat ions t o the f r a c -

t i o n a l d e r i v a t i v e and f r a c t i o n a l i n t e g r a l o p e r a t o r s may be simu-

l a t e d . I t i s then n a t u r a l t o c o n s i d e r t h e i r o p e r a t i o n a l ampl i -

f i e r c o u n t e r p a r t s . The o p e r a t i o n a l a m p l i f i e r s f o r per f o rming 

these s i m u l a t i o n s are e x h i b i t e d . A c l o s e t i e i s a l s o d e v e l o p e d 

w i th the o p e r a t i o n a l a m p l i f i e r s i m u l a t i o n s us ing the t h e o r y o f 

c h a r a c t e r i s t i c impedances t o a r r i v e at the approx imat ions t o 

the f r a c t i o n a l d e r i v a t i v e and the f r a c t i o n a l i n t e g r a l . 

S e v e r a l a p p l i c a t i o n s o f these f r a c t i o n a l o p e r a t o r s are d i s -

c u s s e d . Analog computer s i m u l a t i o n s o f these approximate f u n c -

t i o n s are made, and the use o f these f r a c t i o n a l o p e r a t o r s as 

s e r v o compensat ion means i s shown. 

THE LINEAR ADAPTIVE SERVO 

Work on an a d a p t i v e c o n t r o l system has been under way at 

C o r n e l l A e r o n a u t i c a l L a b o r a t o r i e s s i n c e 1955. The work was 

s t a r t e d by Campbell ( 1 ) and has been cont inued t o the p r e s e n t . 

The system d e v e l o p e d by C o r n e l l A e r o n a u t i c a l L a b o r a t o r i e s d i f f e r s 



g r e a t l y f rom most o f the adapt ive c o n t r o l systems s i n c e i t i s a 

l i n e a r system. The system d o e s n o t change any o f i t s parameters 

t o compensate from changes i n the system, but i n s t e a d m o d i f i e s 

the input t o the c o n t r o l element by s u b t r a c t i n g from the a c t u a l 

input the d e v i a t i o n o f the c o n t r o l element f rom the model . 

The b l o c k diagram o f the system used by G o r n a l l Aeronau-

t i c a l L a b o r a t o r i e s i s shown i n P i g . 1.1 The p a r t i c u l a r e lement 

which they sought t o c o n t r o l was an a i r c r a f t , but the c o n t r o l l e d 

element A in F i g . 1 c o u l d be any system t o which f e e d b a c k c o n -

t r o l i s a p p l i c a b l e . In order t o b e t t e r understand t h i s c o n t r o l 

system shown, i t i s f i r s t n e c e s s a r y t o apply some t o p o l o g i c a l 

r e d u c t i o n t o the b l o c k diagram. Through t h i s method the o v e r a l l 

t r a n s f e r f u n c t i o n o f the system may be e v a l u a t e d . F igure 2 shows 

another b l o c k diagram o f the reduced system. This shows that 

the system c o u l d be r egarded as a s imple f eedback system w i t h a 

pre filtering o f the input s i g n a l . The o v e r a l l t r a n s f e r f u n c t i o n 

o f the system i s 

output 
( 1 + MB) • ( 1 ) 

input 1 + AB 

As can be seen r e a d i l y f rom the t r a n s f e r f u n c t i o n , the output 

o f the system w i l l approach the output o f the model i f the 

g a i n s B and AB are made v e r y l a r g e . 

The model i t s e l f i s no th ing more than a h o l d i n g f i l t e r which 

has been approximated by a second order t r a n s f e r f u n c t i o n . The 

model used by C o r n e l l A e r o n a u t i c a l L a b o r a t o r i e s had a n a t u r a l 

1 A l l f i g u r e s f o r t h i s r e p o r t are in the Appendix. 



f r e q u e n c y o f 0 . 5 cps and a damping f a c t o r which was 0 . 7 o f the 

c r i t i c a l damping f a c t o r . These v a l u e s were found t o be the most 

d e s i r a b l e f rom p r e f e r e n c e s i n d i c a t e d by t e s t p i l o t s who had 

f l o w n v a r i a b l e s t a b i l i t y a i r c r a f t . 

The f e e d b a c k element used by C o r n e l l A e r o n a u t i c a l Labora-

t o r i e s had a t r a n s f e r f u n c t i o n of B^ ( 1 + T s ) . This g i v e s two 

v a r i a b l e s i n the f e e d b a c k l o o p which can be a d j u s t e d t o improve 

per f o rmance . The value o f the time cons tant in t h i s f e e d b a c k 

t r a n s f e r f u n c t i o n was 7~= 0 . 2 . 

Using the model and the f eedback element as used by C o r n e l l , 

and a l s o u s i n g the assumption that the element t o be c o n t r o l l e d 

can be r e p r e s e n t e d by a second order t r a n s f e r f u n c t i o n in t h e 

s h o r t p e r i o d f r e q u e n c y r a n g e , the system can be analyzed some-

what more p r e c i s e l y . In equat ion f o rm, the above assumptions 

are 

Ao 
A ( s ) = ( 2 ) 

1 O 1 + s + s^ 
"A 

B ( s ) = B ^ d + r s ) ( 3 ) 

Mo M(s} ( 4 ) 

1 + s + — ^ s'̂ ^ 
"M "M 

The t r a n s f e r f u n c t i o n again was 

output 1 + MB 
( 5 ) 

i n p u t 1 + AB 

S u b s t i t u t i n g the above v a l u e s f o r A, P, and M g i v e s the f o l l o w -

i n g e q u a t i o n . 



1 + 
MoBQCI + " f^s ) 

1 + 
2%M 3 + 

T ( S ) := 
0) 'M 

1 + 
A^BJI ̂  T-s) 2 ^ 

(6) 

2 
1 + A - ^ 2 

— S + 

1 + A ^ 2 - s + S*' 
0)/ a> 'A 

which i n turn c o n s o l i d a t e s t o 

1 
T ( s ) = 

1 + s + 

A o ( l + MqBO) 

1 + Ao^o 

1 + 

2 ^ M 

"M 
+ MoB^r 

\ 1 + MqBO 
s + 

( 1 + M O B O ) A ) M 2 

/2 5 
( 7 ) 

1 + 
(OA 

+ A O B O T -

1 + AqBQ 
s + 

( 1 + A O B O ) W A ^ 

I d e a l l y a l l c o e f f i c i e n t s excep t those o f M(s) o f the above 

e q u a t i o n should be one. This i s c a l l e d the i d e a l c o n d i t i o n and 

i t can be a c h i e v e d . In order t o make the t h i r d term o f the p r o -

duc t i n equat i on ( 7 ) equa l t o one , the c o e f f i c i e n t s o f the powers 

o f s must be e q u a l i n the numerator and the denominator . S ince 

the c o n s t a n t terms are e q u a l , a t t e n t i o n should be turned n e x t t o 

the c o e f f i c i e n t s o f the f i r s t power o f s . S e t t i n g these two 

c o e f f i c i e n t s e q u a l g i v e s 

M 2 ^ 
+ MQBO 

"A 
+ AqBQ 

1 + MqBO 1 + AqBO 
(8) 



S o l v i n g f o r BQ g i v e s 

i l . I s 

Bo = ( 9 ) 
3m 3 A ^ 

Ao ^o (^o ' Mq) 

The g a i n o f the f eedback element t h e r e f o r e can be r e l a t e d t o the 

ga in o f the c o n t r o l l e d e lement , the ga in o f the model , and the 

damping c o n s t a n t s o f the c o n t r o l l e d element and model . I f t h i s 

va lue o f f e e d b a c k g a i n i s s u b s t i t u t e d i n t o the equat ion ( 7 ) 

r e p r e s e n t i n g the t r a n s f e r f u n c t i o n o f the system, i t becomes 

&2 o - 1 + a i s + ^ s-^ 
Aq 0)M 2 WM 

T ( s ) » M . - J ! . ^ ( 10 ) 
^o ^A o 

- 1 + bj^s + 

"A 2 0)^2 

A l r e a d y , a^ = bj^ has been imposed. 

Proceed ing f u r t h e r , one has 

AQ ^ - MQ — - ITcao - Mq) 
1 a)« CO. 2 K 

a2 = « \ ( 1 1 ) 
1 + M o P o -̂ M -r r 

( ) ( A o - Mq) { ) 
COM 2 "M 2 

Ao - Mo (Ao - Mq) 
1 COM (OA 2 

^2 1 + A^Po -̂ A r , 
( - M^) 

coa 2 

K 

' a n : 
«A 2 

(12) 



One can conc lude from (11 ) and (12 ) that 

'T 
"A 2 

a2 « ^2 a2 « 
- r 

(13) 

Wm 2 

To make the l a s t term o f the product c o m p l e t e l y equal r e q u i r e s 

s t i l l one more s t e p , equat ing the c o e f f i c i e n t s o f the s^ terms . 

Again , the I d e n t i t i e s 

a2 

(Oa^K co/K 

ill ^^ ^ 

( 1 4 ) 

( 1 5 ) 

"M 2 "A 2 

(where the q u a n t i t y K i s found in ( 11 ) and ( 1 2 ) ) can be manipu-

l a t e d t o y i e l d 

2 . ^ (16) 

This then s p e c i f i e s the r e l a t i o n between the n a t u r a l f r e q u e n c i e s 

and damping c o n s t a n t s o f the model and c o n t r o l l e d e lement , and 

the time c o n s t a n t o f the f e e d b a c k element at the i d e a l c o n d i -

t i o n . I f , then , these c o n d i t i o n s are adhered t o , the o v e r a l l 

t r a n s f e r f u n c t i o n o f the system w i l l be 

"A p 1 
T ( s ) = . ( ^ ^ ) ( 1 7 ) 

"M 2 5 m 1 p 
1 + S + 5 

This t r a n s f e r f u n c t i o n at the i d e a l c o n d i t i o n i s the t r a n s f e r 

f u n c t i o n o f the model w i t h a ga in f a c t o r . The ga in f a c t o r i s 



dependent upon two o f the c o n t r o l l e d systems parameters , namely, 

Aq and T h e r e f o r e any changes in these parameters would 

cause a change i n the o v e r a l l ga in even though Bo and 'T were ad -

j u s t e d t o the proper va lues f o r the i d e a l c o n d i t i o n . 

A summary o f r e s u l t s i s now p o s s i b l e . Whereas the c o n -

t r o l l e d element by i t s e l f has t h r e e p o s s i b l e parameters , (AQ, 

which can v a r y , the l i n e a r adapt ive s e r v o at the i d e a l 

/«a\2 
c o n d i t i o n has three parameters (AQ — , cojj) i n which on ly 

"m/ 

one , namely, AQ(a)A/U|g)^, can vary . T h e r e f o r e a 67 per c e n t r e -

d u c t i o n i n number o f vary ing parameters has been a c h i e v e d . I t 

i s presupposed that and Wjj w i l l n o t be s u b j e c t e d t o any v a r i -

a t i o n and t h i s i s a c h i e v a b l e . The per formance o f the model i s 

s u b s t i t u t e d f o r the performance o f the c o n t r o l l e d element e x c e p t 

t h a t the o v e r a l l ga in i s a f u n c t i o n o f Aq and (o^ which can v a r y . 

This d e r i v a t i o n depends on the a b i l i t y t o change Bq and T 

as r e q u i r e d i f the v a r i a b l e s AQ, 0)^, J^^ should vary . I n the 

p a r t i c u l a r system proposed by C o r n e l l A e r o n a u t i c a l L a b o r a t o r i e s 

t h e r e i s no p r o v i s i o n t o change t h e s e parameters . In o rder t o 

check on the e f f e c t i v e n e s s o f the system t o adapt t o changes i n 

the c o n t r o l l e d e lement , i t becomes n e c e s s a r y t o determine what 

e f f e c t t h e s e changes w i l l have on the system i f d e v i a t i o n s f rom 

the i d e a l c o n d i t i o n o c c u r . The e f f e c t o f these changes can be 

determined by f i n d i n g the t r a n s f e r f u n c t i o n d i f f e r e n c e from the 

i d e a l c o n d i t i o n when AQ, (Hp^, and d e v i a t e from the v a l u e s used 

in c a l c u l a t i n g Bq and T a t the i d e a l c o n d i t i o n . The t r a n s f e r 

f u n c t i o n f rom the system w i t h Bq and 'T chosen a c c o r d i n g t o t h e i r 
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W A p 

T ( s ) = A o ( — ( 
"M 2 ^̂  

) = M(s) 

1 + M s + 
Mo ^M 

(18) 

(Ojj eojj^ 

The t r a n s f e r f u n c t i o n f o r the system, w i t h changes in A q , cô ,̂ 

and w i l l now be 

(Ao + A A o ) ( l + MqBO) 
T ' ( s ) = (M) 

2 % 

Mo 1 + (Ao + A Ao)Bo 

1 + 
"M 

+ M^Bq 

1 + MqBO 
s + 

( 1 + MoBo)a)M^ 
s ' 

1 + 
coĵ  + A (0^ 

( 19 ) 

1 + (Ao + A A J B 
s + 

o ' ^ o 

where 

and 

2 M 
( 2 0 ) 

CO/ 

Bo = 
M - M, 5 A - r 

(A^ - M,) 

(21) 

COM o^A 2 

F i r s t an a n a l y s i s w i l l be made t o determine what the d i f f e r -

ence i n the s t e a d y - s t a t e t r a n s f e r f u n c t i o n w i l l be . The d i f f e r -

ence between the two t r a n s f e r f u n c t i o n s in the s t e a d y - s t a t e c o n -

d i t i o n i s . 

T ' ( o ) - T ( o ) = Mo 

which r e d u c e s t o 

(Ao + A A O ) ( 1 + MoBo) c oa_ 
- - Ao ( — 

1 + (A« + ^ A „ ) B o ' o CO M 
(22) 



"A 
T ' ( o ) - T ( o ) = M q A A q 

"M 

1 -
CDu" - w. 

(0 'M 
A A, 

1 -

Ao - Mq 
( "M 2 . CO/ 

"M 

( 2 3 ) 

This shows t h a t the s t e a d y - s t a t e d i f f e r e n c e o f the t r a n s f e r 

f u n c t i o n s i s d i r e c t l y p r o p o r t i o n a l t o the change i n t h e c o n -

t r o l l e d system g a i n , A A q , and t o the r a t i o o f the natural f r e -

q u e n c i e s squared . In a f i r s t o rder a p p r o x i m a t i o n , the s t e a d y -
'̂ A 2 

s t a t e d i f f e r e n c e i s M q A A q ( — ) . S i n c e Wĵ  w i l l t y p i c a l l y be 

l a r g e r than ujj* t h e d i f f e r e n c e in t h e t r a n s f e r f u n c t i o n s at 

s t e a d y s t a t e w i l l be l a r g e r than the change i n g a i n A A q . 

T h e r e f o r e , a t s t e a d y - s t a t e c o n d i t i o n s , the l i n e a r a d a p t i v e s e r v o 

w i l l n o t be immune t o changes in the g a i n , A q , and the angular 

f r e q u e n c y , o f t h e c o n t r o l l e d e l ement . 

One o t h e r f a c t should be n o t e d b e f o r e l e a v i n g the s t e a d y -

s t a t e c o n d i t i o n s . This i s t h e e f f e c t t h a t the c h o i c e o f Mq has 

on t h e s t e a d y - s t a t e d i f f e r e n c e i n the t r a n s f e r f u n c t i o n s . Choose 

Mq i n the f o l l o w i n g manner. 
"A 

Mo = Ao ( — ) ( 2 4 ) 

Then by s u b s t i t u t i o n i n t o the e q u a t i o n f o r the s t e a d y - s t a t e 

d i f f e r e n c e o f the t r a n s f e r f u n c t i o n s ( 2 3 ) , t h e f o l l o w i n g i n t e r -

e s t i n g r e s u l t i s n o t e d . 
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(0/ 
T ' ( o ) - T ( o ) = M o A A o ( — ) 

(0M2 

Ao 
1 

A a , 
1 + 

0 ( 25 ) 

T h e r e f o r e wi th t h i s proper c h o i c e o f Mq, there i s no s t e a d y -

s t a t e d i f f e r e n c e r e g a r d l e s s o f what changes there might be in 

the parameters Aq , and This c h o i c e o f MQ a l s o e n t a i l s 

a change in B© s i n c e Bq depends on Mq and the equat ion o f the 

d i f f e r e n c e o f the t r a n s f e r function was d e r i v e d us ing Bq . 

Bo = (26) 

T h e r e f o r e f o r the above complete independence o f the s t e a d y -

s t a t e c o n d i t i o n with r e s p e c t t o the changing system parameters , 

the ga in o f the f eedback l o o p would have t o be i n f i n i t e . This 

c o u l d n o t be r e a l i z e d , o f c o u r s e , but at l e a s t the model g a i n , 

Mq, c o u l d be a d j u s t e d t o g i v e some maximum p r a c t i c a l va lue o f 

f e e d b a c k ga in and s t i l l keep the proper r e l a t i o n s h i p between the 

f e e d b a c k ga in and the o ther parameters so as t o g i v e an output 

w i th the m o d e l ' s c h a r a c t e r i s t i c s . 

The system w i l l now be analyzed t o determine the d i f f e r e n c e 

in the t r a n s f e r f u n c t i o n s at time equal t o z e r o . In o ther words , 

the t ime at which a command i s put i n t o the system. The d i f f e r -

ence between the two t r a n s f e r f u n c t i o n s at time equa l t o z e r o 

may be expressed as f o l l o w s . 
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T ' (OO) _ T(oO) 11m '̂ o'̂ M^ 

s ' 

( A q + A A O ) { 1 + MqBO) 

1 + (An + ^ A„ )B , 

1 + (Ao + A Ao)B, 

1 + MqBO 

COĵ  + A 

0) M 
- Ao ( — ) 

"M 
( 2 7 ) 

which may be c o n s o l i d a t e d t o 

M 

gO 

•t- A + A OiA)^ (28) 

Assuming t h a t the square o f A o ) ^ i s n e g l i g i b l e , the f o l l o w -

i n g i s o b t a i n e d : 

l im ^o^o T'(^) - T(c^) = — (2 A 0)^) 
s 

+ AAo(o )^2 + ( 2 9 ) 

Now i f A A q i s taken t o be some increment o f A q , and A ^ a 

some Increment o f t h i s then d e f i n e s oc. and by 

A A q = c<AO, ( 3 0 ) 

and e q u a t i o n ( 2 9 ) can be w r i t t e n as 

oC + 2 / 5 ( 1 + 0 ^ ) ( 3 1 ) 

One can now c o n c l u d e t h a t none o f the parameters o f e q u a -

t i o n ( 3 1 ) can be chosen t o a i d the l i m i t p r o c e s s i s z e r o i n g the 

r e s p o n s e at i n i t i a l t i m e . I t should be o b s e r v e d t h a t r e l a t i v e 

changes i n p r o d u c e s a g r e a t e r v a r i a t i o n i n C 5 C + 2 / 5 ( l + c x : ) 

than r e l a t i v e changes i n A. 
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THE LINEAR ADAPTIVE SERVO WITH INTEGRAL CONTROL 

Campbell ( 1 ) mentions that the adapt ive s e r v o might a l s o 

have some p o s s i b i l i t i e s wi th i n t e g r a l c o n t r o l in the f e e d b a c k 

l o o p , but he does n o t choose t o i n v e s t i g a t e t h i s c a s e . This i s 

done now. 

R e d e f i n e the f e e d b a c k so i t c o n t a i n s i n t e g r a l c o n t r o l i n -

s t e a d o f d e r i v a t i v e c o n t r o l . The t r a n s f e r f u n c t i o n o f the 

system i s s t i l l 

1 + MB 
T = . A ( 3 2 ) 

1 + AB 

where in A ( s ) = ( 3 3 ) 
2 "̂ A 1 o 

1 + s + — - s2 
"A ^A^ 

(Og 
B ( s ) = B ^ d + — ) ( 3 4 ) 

s 

Mo 
M(s) = ( 35 ) 

2 5-jj 1 
1 + s + — 2 

S u b s t i t u t i n g the v a l u e s o f A, B, and M i n t o the e q u a t i o n f o r the 

t r a n s f e r f u n c t i o n g i v e s the equat i on 

I+MqBQ 1 
1 + s + S*^ + 

MOBQCOB "mMOBO^B WM̂ MqBOCOB 
T ( s ) = M(s) • ( 3 6 ) 

1+AoBO 2 5A p 1 , 
1 + s + S*^ + 

AoBQWb WaAoBO'^B WA^AqBoWB 

S e v e r a l th ings can now be n o t e d . F i r s t , the s t e a d y - s t a t e 

t r a n s f e r f u n c t i o n i s the c o n s t a n t ga in Mq. S ince the parameters 
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o f the model can be made t o remain c o n s t a n t , the 3 t e a d y - s t a t e 

t r a n s f e r f xmct i on w i l l remain the same r e g a r d l e s s o f changes in 

the c o n t r o l l e d sys tem ' s parameters . Secondly , the t r a n s f e r 

f u n c t i o n at the i n i t i a l t ime, or the t ime t h a t a s i g n a l i s put 

i n t o the system, i s as f o l l o w s . 

l im 

T t ^ ) = W / 3 2 ( 3 7 ) 

This t r a n s f e r f u n c t i o n d i f f e r s from the t r a n s f e r f u n c t i o n o f 

the model at i n i t i a l time by a gain f a c t o r o f — As can be 

MqWm^ 

r e a d i l y seen , t h i s ga in i s a f f e c t e d by changes in the parameters 

Aq and L a s t l y , the o v e r a l l t r a n s f e r f x m c t i o n o f the system 

cannot be made equal t o the t r a n s f e r f u n c t i o n of the model by 

any c h o i c e o f f e edback parameters . The o v e r a l l system can ap-

proach the c h a r a c t e r i s t i c s of the model o n l y by choos ing BQ and 

a>g very h i g h . These can be chosen l a r g e enough in p r a c t i c e t o 

make the performance c l o s e t o the performance o f the model . 

I t i s n e c e s s a r y t o check the changes in performance o f t h i s 

system as parameters i n the c o n t r o l l e d element v a r y . The t r a n s -

f e r f u n c t i o n a f t e r changes in the c o n t r o l l e d element parameters 

would be as f o l l o w s . 

1 + m s + nos^ + n^s® T ' ( s ) = M ( s ) ^ (38 ) 
1 + dj^s + d2S^ + djs'^ 

wherein 

1 + MqBO 
n i « ^ ( 3 9 ) 

MoBQWb 
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n2 « ( 4 0 ) 

comMqBOWB 

1 n s = ( 4 1 ) 

1 + (Ao + 

(Aq + AAo)BOWb 
( 4 2 ) 

2( ^A + ^ ^ a ) 
d2 = ( 4 3 ) 

((OA + AO)a) (Ao + ^ AO)BO«B 

1 
d3 = 5 ( 4 4 ) 

(WA + AWA)'^ (Aq + .AAo)Boa)B 

The d i f f e r e n c e i n t h e t r a n s f e r f u n c t i o n s b e f o r e and a f t e r 

changes in c o n t r o l l e d element parameters can now be e v a l u a t e d . 

The d i f f e r e n c e in t h e s t e a d y - s t a t e t r a n s f e r f u n c t i o n s i s e x -

p r e s s e d b e l o w . 

T ' ( o ) - T ( o ) = Mq - Mo = 0 ( 4 5 ) 

T h e r e f o r e any change in the c o n t r o l l e d e l e m e n t ' s parameters w i l l 

n o t a f f e c t the s t e a d y - s t a t e e r r o r t r a n s f e r f u n c t i o n f r o m b e i n g 

z e r o . 

I t has been shown b e f o r e t h a t the t r a n s f e r f u n c t i o n at the 

i n i t i a l p o i n t o f an i n p u t s i g n a l , or t ime equa l t o z e r o , i s 

l i m A Wa^/s^ 

e q u a l t o ^ ° • The d i f f e r e n c e in t h i s t r a n s f e r f u n c -

t i o n b e f o r e and a f t e r changes i n t h e c o n t r o l l e d e lement param-

e t e r s may be e x p r e s s e d as f o l l o w s . 
l i m ^ 

T ' ( o ^ ) - T(oO) = g ^ ^ g2 
(Aq + ^ A o ) ( a ) ^ - AQO)/ 

( 4 6 ) 

This d i f f e r e n c e i n t r a n s f e r f u n c t i o n s can be seen t o be n e a r l y 

t h e same as the d i f f e r e n c e i n t r a n s f e r f u n c t i o n s f o r the 
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d e r i v a t i v e f e e d b a c k case under i n i t i a l c o n d i t i o n s . The o n l y 

d i f f e r e n c e in the two c a s e s i s the gain f a c t o r Mq. T h e r e f o r e 

i f the g a i n o f the model Mq were l a r g e r than one , the i n t e g r a l 

f e e d b a c k system would show some improvement over the d e r i v a t i v e 

f e e d b a c k system under i n i t i a l c o n d i t i o n s . I f the model g a i n , 

Mq, were e q u a l t o one , the two t y p e s o f systems would show the 

same e r r o r under i n i t i a l c o n d i t i o n s . 

NEWTON AND LANCZOS APPROXIMATIONS 
OP Ti" and l / f s " 

The t r a n s f e r f u n c t i o n o f the l i n e a r adapt ive s e r v o l e a d s 

t o an a p p l i c a t i o n o f i t s p a r t i c u l a r f eedback c i r c u i t — t h e ap -

prox imat i on o f the f r a c t i o n a l d e r i v a t i v e and f r a c t i o n a l i n t e g r a l 

t r a n s f e r f u n c t i o n . The t r a n s f e r f u n c t i o n s / s and l/f'a are 

s t u d i e d f i r s t . I t i s n o t d i f f i c u l t t o env i sage h igher m u l t i p l e s 

such as s ^ and s " ^ f o r any i n t e g e r n . 

The b l o c k diagram o f the adapt ive system i s r e p r o d u c e d i n 

P i g . 3 w i t h one modification — the r e l o c a t i o n o f the p o i n t f rom 

which the output i s taken . The t r a n s f e r f u n c t i o n o f the system 

as shown i s 

1 + MB 
T ( s ) = • A (47 ) 

1 + A^B 

The element which was f o r m e r l y c o n s i d e r e d t o be the model o f 

the output wanted w i l l now be the model o f the square o f the 

d e s i r e d o u t p u t . The f e e d b a c k element i s an i n t e g r a l c o n t r o l f o r 



16 

When s i m u l a t i n g l / f i ^ , use M(s) = l / s and B ( s ) = B q / s . Then A 

needs t o be d e t e r m i n e d . 

I f the f e e d b a c k ga in i s chosen v e r y l a r g e , the t r a n s f e r 

f u n c t i o n o f the system when s imula t ing f s would b e , 
A l im 
T ( s ) =t Bq-^c^T(s ) » s /A ( 4 8 ) 

L ikewise the t r a n s f e r f u n c t i o n f o r s i m u l a t i n g 1 / f ^ i s , 

T ( s ) = T ( s ) = 1 /As ( 4 9 ) 

In o r d e r t o have a t r a n s f e r f u n c t i o n o f 'fa, i t becomes n e c e s -

s a r y t o c h o o s e A t o be f a i n equat ion ( 4 8 ) . L i k e w i s e , f o r a 

t r a n s f e r function o f Xf-fa, A would have t o be \ / f a i n e q u a t i o n 

( 4 9 ) . These v a l u e s f o r A cannot be formed e x a c t l y , but v e r y 

c l o s e approx imat ions can be f ound . 

To f i n d the f a , the f o l l o w i n g e q u a t i o n needs t o be s o l v e d 

f o r a r o o t . 

f ( x ) = x2 - a ( 5 0 ) 

An approx imat i on may be made o f the s m a l l e s t r o o t by u s i n g the 

Newton a p p r o x i m a t i o n . The Newton approx imat ion i s d e r i v e d as 

f o l l o w s . G iven , a f u n c t i o n f ( x ) f rom which i t i s d e s i r e d t o 

determine a z e r o . I f a p o i n t i s chosen which i s n o t a z e r o o f 

f ( x ) , i t i s n e c e s s a r y t o f i n d an e s t i m a t e o f the d i s t a n c e h 

f rom t h a t p o i n t t o t h e z e r o . That i s , h must be f o u n d i n 

f ( x o + h ) = 0 ( 5 1 ) 

The T a y l o r ' s e x p a n s i o n of e q u a t i o n (51 ) i s , 
h2 h3 

0 « f ( x o ) + h f ' ( x o ) + — f " ( x o ) + — f " ' ( x - ) + . . . ( 5 2 ) 

2J 51 

The Newton approx imat ion u s e s the l i n e a r approx imat ion t o the 

s m a l l e s t r o o t . 
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0 « f ( x o ) + h f ' ( X q ) ( 5 3 ) 

The d i s t a n c e from the p o i n t chosen t o the ze ro would be approxi -

mate ly 

f ( x o ) 
( 5 4 ) 

f ' ( X o ) 

The f i r s t approx imat ion t o the r o o t a f t e r the i n i t i a l e s t i m a t e 

o f the r o o t Xq would then be 

f ( x o ) 
XI = Xq ( 5 5 ) 

f ' ( x o ) 

The second approximat ion would b e , 

f ( x i ) 
X2 = XI - ( 5 6 ) 

f ' ( x i ) 

The approx imat ions t o the r o o t w i l l e v e n t u a l l y converge t o the 

va lue o f the r o o t . 

Lanczos ( 3 ) mentions that the method can be made t o c o n -

verge more r a p i d l y i f t h e f i r s t three terms o f the T a y l o r e x -

pans ion are used . 

f ( x o ) 
(57 ) 

f ' ( X o ) + h / 2 f ' ' ( X o ) 

R e p l a c i n g the h in the denominator by the Newton approx imat ion 

o f h and then u s i n g the r e s u l t i n g va lue o f h t o s o l v e f o r the 

f i r s t approx imat ion t o the r o o t g i v e s 

2 f ' ( x o ) f ( x o ) 
Xl = Xq + n ^ 

f ( x o ) f " ( x o ) - 2 f ' ( x o ) 2 
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NEWTON APPROXIMATION OF fs 

The Newton method t o f i n d the f i r s t approximat ion t o the 

s m a l l e s t r o o t o f an equat ion can now be a p p l i e d t o e q u a t i o n 

( 50 ) which w i l l g i v e an approximat ion t o / s i f a i s chosen as s. 

XQ2 > a s 
x i = Xo - = i (XQ + — ) ( 5 9 ) 

2 Xq Xq 

The i n i t i a l e s t i m a t e Xq c o u l d be chosen t o be e i t h e r s ° or s^. 

E i t h e r c h o i c e w i l l g i v e the same value f o r the f i r s t a p p r o x i -

mat ion . 

XI " i ( s + 1) ( 60 ) 

I f t h i s approx imat ion t o fa i s now used f o r A in the t r a n s f e r 

f u n c t i o n ( e q u a t i o n 4 8 ) , a f i r s t o rder approximation can be made 

t o the t r a n s f e r f u n c t i o n -fa. 

A S T . ( s ) , ( 6 1 ) 

i ( 3 + 1) 

This t r a n s f e r f u n c t i o n can now be s imulated by the o p e r a t i o n a l 

a m p l i f i e r shown in P i g . 4 . In l i k e manner, a second o r d e r ap -

p r o x i m a t i o n can be made t o the s by s u b s t i t u t i n g the f i r s t 

approx imat ion Xq̂  f o r the i n i t i a l e s t i m a t e Xo« The t r a n s f e r 

f u n c t i o n f o r t h i s second order approximation would b e , 

A s s T 2 ( s ) « :r = ( 6 2 ) 
i [ i ( s + 1) + 2 s / s + i j 1 / 4 + s / 4 + s / s + 1 

This t r a n s f e r f u n c t i o n can be s imulated by the o p e r a t i o n a l am-

p l i f i e r o f P i g . 5 . 

Taking s t i l l another approx imat ion , the t r a n s f e r f u n c t i o n 
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by e q u a t i o n ( 63 ) and P ig . 6 . 

A. s 
T 3 ( s ) = ( 6 3 ) 

1 S 3 S 
— + — + + 

8 8 2 ( 1 + s ) s 23 
^ + - + 

2 1 + 3 

As can be seen , the f e e d b a c k impedance c o n t i n u e s t o become a 

more complex combinat ion o f s e r i e s and p a r a l l e l e l e m e n t s . 

F igure 7 shows the f r e q u e n c y r e s p o n s e o f the above t h r e e 

t r a n s f e r f u n c t i o n s i n the l o w - f r e q u e n c y range compared w i t h the 

f r e q u e n c y r e s p o n s e o f the t r a n s f e r f u n c t i o n / s . As can be seen , 

the f r e q u e n c y r e s p o n s e o f the f i r s t approximation i s a poor 

approx imat ion . The amplitude r i s e s l i n e a r l y , and then r a p i d l y 

approaches a c o n s t a n t value o f two. The second order a p p r o x i -

mation has a b e t t e r approximation t o the f r e q u e n c y r e s p o n s e o f 

i s . This f r e q u e n c y r e s p o n s e approaches a c o n s t a n t v a l u e o f 

f o u r . The t h i r d o r d e r approximation f r e q u e n c y response i s very 

c l o s e t o t h a t o f the "fa t r a n s f e r f u n c t i o n in the r e g i o n f o r 

which the f r e q u e n c y r esponse has been p l o t t e d . I t can be d e -

termined f rom the equat i on t h a t the amplitude approaches a c o n -

s t a n t va lue o f e i g h t i n s t e a d o f i n f i n i t y f o r h i g h f r e q u e n c i e s . 

From t h e s e o b s e r v a t i o n s , then , i t appears t h a t the t h i r d o rder 

Newton approx imat ion g i v e s a good approximat ion t o t h e t r a n s f e r 

f u n c t i o n y i f o r smal l f r e q u e n c i e s . 

I t n e x t becomes n e c e s s a r y t o examine the time response o f 

the system. The r e s p o n s e w i l l be determined wi th a u n i t s t e p 

input t o see how c l o s e the s i m u l a t i o n i s . The r e s p o n s e o f the 
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A 1 2 
Eo(s) = Ti(s) • - = (64) 

s s + 1 

In the time domain this becomes, 

eo(t) = 2 e-t (65) 

As can be seen, this is an exponential with an initial value of 

two. The second order approximation gives the following re-

sponse to a unit step input. 

A 1 4s + 1 
Eo(s) = T2(s) • - = (66) 

S 3 ^ + 6 3 + 1 

Transforming to the time domain gives the following expression 

for the response. 

eo(t) = 0.586 + 3.414 e'^'^^St 

This approximation gives an initial value of four and a response 

more nearly like that which is desired. The third order ap-

proximation gives a very close approximation to the response to 

a unit step expected from a transfer function fs. Its expres-

sion in the time domain is 

eo(t) = 0.259 + 6.569 e-25.275t 

+ 0.362 + o.815 e-2.240t (68) 

Other than the fact that it has an initial value of eight rather 

than infinity, as would be the case with the true transfer func-

tion "fs, the response is nearly identical to the response ex-

pected from the transfer function fs. 

Figure 8 shows these various time responses compared. The 

third order approximation cannot be detected from the time re-

sponse of the function 'fs for this scale. 
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NEWTON APPROXIMATION OP l/fs 

By changing the system to agree with the transfer function 

in equation (49), the function 1/1^ can also be approximated. 

In this case the value of A will need to be approximated by 

l/fs. The equation whose smallest root is to be found is 

f(x) = x2 - 1/s (69) 

Newton's first approximation gives, 

xj^ - 1/s 1 
xi = Xq - = i(xo + ) (70) 

2 XQ S XQ 
The initial estimate can be chosen to be either l/s° or 1/s. 
Either choice gives the same function for the first order 
approximation. 

xi = iil + 1/s) (71) 
Since this is the first order approximation to 1/1^, it can be 
used for the element A, thereby giving the first order approxi-
mation to the transfer function l/fs. 

1 T(s) = (72) 
i(s + 1) 

The simulating operational amplifier (Pig. 9) for this transfer 
funnction has the same feedback element as the first approxima-
tion to the transfer function •fa. The input admittance, however, 
changes from s to 1, as shown in Pig. 9. The second order ap-
proximation using the Newton method of approximation can now be 
made. The transfer function is shown in equation (73), and the 
circuit necessary to simulate this transfer function is shown 
in Pig. 10. 
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A 1 
T(s) = (73) 

1 s s _ + _ + 
4 4 s + 1 

The third approximation can be undertaken in the same manner to 
give a transfer fxinction, 

A 1 
T(s) = (74) 

1 s s s - + - + + 
8 8 2(1 + s) s 2 s 

i + - + 
2 1 + s 

The operational amplifier simulation of this transfer function 

is seen quite readily to be as shown in Pig. 11. All three of 

these approximations have a transfer function which is equal to 

the like approximation for fa except that it is divided by s. 

The frequency response of these three Newton approximations 

to 1/fs are shown in Pig. 12. The first approximation has a 

poor approximation to the frequency response. It has a value 

at zero frequency of two and does not closely approximate the 

frequency response of l/fs in the range of frequencies con-

sidered. The second approximation does a much better job of 

approximation. It likewise has a finite value at zero frequency 

which is four. The third approximation cannot be distinguished 

on the graph from the frequency response of l/fs. The only 

place it would differ markedly would be in the neighborhood of 

zero frequency. The third approximation has a value of eight 

at zero frequency as compared with infinite value associated 

with l/Ts. 

The impulsive response of these three approximations of 
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l/fs can be seen quite readily to be the same as the response 

of the Newton approximations of ĵ s to a unit step input. These 

impulsive responses are shown in Pig. 8 and are expressed in 

equation form in equations (65), (67), and (68). 

LANCZOS APPROXIMATION OP FS 

The method suggested by Lanczos (3) for the solution of a 
root of an equation can be applied to equation (50) which will 
give an approximation to when a is equal to s. Applying this 
approximation to equation (49) gives an approximation to the 
fractional derivative "fs which converges more rapidly than the 
Newton approximation. 

3 s + Xq^ 
xĵ  = Xo ( 5) (75) 

s + 3 Xo^ 

Again the initial estimate (x©) can be chosen to be either s° 

or s. Unlike the case using the Newton approximation, the two 

choices do not give identical approximations. The case where 

the initial estimate is equal to s° is investigated first. This 

means that the first approximation to fa will be, 

3 s + 1 
X, = (76) 

s + 3 

Using this value for A in the system's transfer function, the 

transfer function becomes 

T(s) = (77) 
3 3 + 1 
s + 3 
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The associated amplifier for simulation is shown in Pig. 15. 
The second order approximation gives a more complex transfer 
function. 

/\ s 
T(S) r: (78) 

3 s + 1 p 
3 S + ( 

s + 3 
s + 3 3 s + 1 

s( ) + 3( ) 
3 s + 1 s + 3 

The operational amplifier required for simulation (Pig- 14) is 
correspondingly complex. 

Figure 15 shows title frequency response curves of these two 
approximations as compared with the frequency response of the 
fractional derivative Ts. The second approximation cannot be 
distinguished from the function over the range of values plotted. 
Prom the transfer functions of the two approximations it can be 
seen that the frequency response does not level off at the higher 
frequencies as do the Newton approximations, but continues to 
increase as the response does for the fractional derivative 
function. 

The time response of these two approximations to the trans-
fer function i~s can be determined. The first order approximation 
gives the following output to a unit step input. 

1 s s + 3 
Eo(s) = - X = (79) 

s 3 s + l 3 s + l 

s + 3 
This gives equation (80) as the output expressed as a function 
of time. 
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This then gives equation (82) as the output expressed as a 

funct ion of time. 

These time responses are shown in Pig. 16 compared with the time 

response f o r a transfer funct ion of / s . Both have a de l ta f\anc-

t ion at zero which i s not shown on these p lo ts and which g ives 

the approximation o f the i n f i n i t e value at t = 0. The second 

approximation to the funct ion cannot be distinguished from the 

funct ion over the range of values shown. 

The same type of analysis can be fo l lowed f o r the approxi-

mation to Ts, using s as the i n i t i a l estimate. I t gives a f i r s t 

order approximation with a transfer funct ion as shown in equation 

(83) and a simulation operational ampli f ier as shown in Pig. 17. 
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This will immediately be recognized as being the same as the 
other approximation by Lanczos' method except for a different 
termination of the lattice network. The second approximation 
likewise is similar to the second approximation by Lanczos' 
method with an initial estimate of differing once again only 
by the termination. This transfer function and operational am-
plifier for simulation are shown in equation (84) and Pig. 18, 
respectively. 

A s 
T2(s) = 

« 3 + s „ 
3 s + s2( )2 

1 + 5 s 
1 -f 3 s 3 + s 
( ) + 3 g( ) 
s + 3 1 + 3 s 

9 + 84 s3 + 126 s2 + 36 s + 1 
= (84) 

s4 + 36 s^ + 126 s2 + 84 s + 9 
Figure 19 shows the frequency response for these two ap-

proximations compared with the frequency response of the frac-
tional derivative function. The second approximation cannot be 
distinguished from the function itself over the range of frequen-
cies used except in the region of w = 0. At to = 0, the response 
has a value of one-third for both approximations. Also, these 
two approximations level off to constant amplitudes of three in 
the first order approximation and nine in the second order ap-
proximation. 

The first order approximation gives a time response to a 
unit step which is shown compared with the actual function in 
Pig. 20. The equation for this time response is as shown below. 

g(t) = 1/3 + 8/3 e-3t (95) 
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The time response of the second approximation to a unit step 
input is indistinguishable from the time response of the func-
tion for the same input over the range of time shown in Fig. 20. 
The time response for the second approximation is 

g(t) = - + 0.866 + 7.375 
9 

+ 0.251 e-0-132t ^ o.377 e-0.V04t (86) 

As can be seen from the equations, neither of these approxima-

tions goes to zero at large values of time as does the function 
l/frrt. Neither do they start at infinity. 

LANCZOS APPROXIMATION OF l/fa 

The function l/fs can be approximated by using the Lanczos 
method of approximation, the smallest root of equation (69) 
giving, 

3 + s XQ^ 

1 + 3 s XQ'̂  
This approximation of l/fs can be used as A in the transfer 
function shown in equation (49), and the transfer function will 
be an approximation to the transfer function l/^^. The Initial 
estimate (XQ) can be chosen to be either l/s° or l/s. This will 
again give two possible simulations of the transfer function. 

If the initial estimate is chosen as l/s°, the first order 
approximation gives the transfer function. 
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A 1 
T(s) = (88) 

s + 3 
s( ) 

3 s + 1 
The operational amplifier needed to simulate this transfer func-
tion is shown in Pig. 21. The second order approximation with 
the same initial estimate gives a transfer function as shown in 
equation (89). 

A 1 
T(s) = (89) 

o ® ® 2 3 s + s2( 
3 s + 1 

3 s + 1 s + 3 
( 3( ) 

s + 3 3 s + 1 

The simulation circuit is shown in Pig. 22. 

The frequency response of these two approximations is shown 
compared with the frequency response for the fractional integral 
function in Pig. 23. Both start at infinity and decrease to 

zero as the f^lnction l/firt does. The frequency response of the 
second approximation cannot be distinguished from the frequency 
response of the function in Pig. 23. 

The transfer functions for these two approximations of l/fs 
will have an impulsive response which is the same as the re-
sponse to a unit step of the Lanczos approximation to the trans-
fer function fa with the initial estimate chosen as s. This 
can readily be seen by comparing the transfer functions. The 
impulsive responses then can be represented by equations (85) 
and (86), and are graphically shown in Pig. 20. 

If the initial estimate (xq) is chosen to be l/s, a slightly 
different transfer function results. The first order approxima-
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tion using this initial estimate is, 

A s + 3 
T(s) = (90) 

3 s + 1 
This transfer function can be simulated by an operational ampli-
fier as shown in Pig. 24. This is recognized as being the same 
operational amplifier as the circuit determined with an initial 
estimate of l/s° except that it has a different termination for 
the lattice network. The second order approximation using the 
initial estimate l/s gives a transfer function as expressed in 
equation (91), and requires the operational amplifier shown in 
Pig. 25 for simulation. 

A 1 
T(s) = (91) 

1 + 3 s 
3 s + ( )2 

s + 3 
s + 3 1 + 3 s 

s( ) + 3( ) 
1 + 3 s s + 3 

Figure 26 shows the frequency response of these two approx-
imations compared with the frequency response of the fractional 
integral function which they approximate. The frequency response 
of the second order approximation cannot be distinguished from 
the response of the function for the scale and range of values 
used. It therefore gives a good approximation to the transfer 
function of the fractional integral. 

These two approximations to l/fs differ by a factor of l/s 
from the transfer functions of the two Lanczos approximations 
to fs which were formed using an initial estimate of 3°. The 
impulsive response of the two approximations to the fractional 
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integral are therefore the same as those shown in Pig. 16. 
Also, the equations for the impulsive response are equation (80) 
for the first order approximation and equation (82) for the 
second order approximation. 

The three methods of approximation just shown can now be 
compared as to their relative merit. What will be said will, 
in general, apply to both approximations of the fractional de-
rivative operator and the fractional integral operator. This 
will be true when using the inputs which were considered for 
each one since the outputs were shown to be the same. The first 
thing that is noted is that it takes an approximation of one 
higher order for the Newton approximation scheme over the 
Lanczos approximation scheme in order to get comparable results. 
This is to be expected since the Lanczos method is designed to 
converge more rapidly. 

The amplitude of the response of the fractional derivative 
operator to a unit step function input, l/|/Trt, starts at in-
finity at initial time, then drops sharply down to small values, 
and after two seconds approaches zero asymptotically. The Newton 
approximation approximates the initial infinity with an initial 

amplitude which is where n is the order of the approxima-
tion. Prom equation (68) and Fig. 8, it can be seen that the 
approximate function will approach zero amplitude for large values 
of time at a rate comparable with function l/"/^ which is the 
desired response. The approximation using the method suggested 
by Lanczos with an initial estimate of sO for simulation of "fs 
and of l/s for simulation of l/ft approximates the initial 
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infinite amplitude with a delta function. The approximation 
also approaches zero at a rate comparable to the actual function, 
as can be verified with equation (82) and Pig. 16. If the ini-
tial estimate in the Lanczos approximation is s for simulation 
of f̂z and l/s° for simulation of l/fs, equation (86) describes 
the output and Pig. 20 graphically shows it. This approximation 
uses an initial amplitude of where n is the order of the 
approximation, to simulate the initial infinite amplitude of the 
theoretical function. It does not approach zero but will be 
left with a small error which is (l/3)^, where n is the order 
of the approximation. Prom the above observation it can be 
said that the Newton approximation and the Lanczos approximation 
with an initial estimate of s® for simulation of Ys and l/s for 
simulation of l/'j^ give the best results. The network for the 
Newton approximation is simpler, but in the next section it will 
be shown that the networks for both of the approximations can be 
reduced to nearly the same network. Figures 27 and 28 compare 
the three types of networks and their transfer functions for 
simulations of fs and l/fs", respectively. 

NETWORK THEORY IN APPROXIMATING 
and l//s" 

The appearance of the lattice networks in the above approx-

imations brings to mind another approach to the problem of sim-

ulating fractional derivatives and fractional Integrals. The 

characteristic admittance of a symmetrical lattice network is 

given by 
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Yc = P p Yq (92) 
The admittance Yp is the parallel arm admittance, and Yq is the 
crossarm admittance. If one of these admittances is chosen to 
be 1 and the other s, the characteristic admittance of the net-
work is If an infinite number of these networks could be 
used in the feedback loop of an operational amplifier, both the 
fractional derivative operator and the fractional integral 
operator could be synthesized by making the proper choice of the 
input admittance. Practically an infinite number of these net-
works is not feasible. An approximation therefore is made by 
truncating the number of networks cascaded. This will give an 
input admittance which will be only an approximation to the 
characteristic admittance. Of course, the greater the number 
of lattice networks cascaded, the better the approximation. 

The truncated group of lattice networks could be either 
short circuited or open circuited. These two types of termina-
tions would give different approximations to the characteristic 
admittance, but as the number of networks was increased they 
would approach the same approximation. The short-circuited 
termination can be reduced quite easily to be the feedback net-
works found by using the Newton approximation. It requires 
lattice networks in series to produce a feedback admittance that 
is the same as the one found by the nth order Newton approxima-
tion. The lattice networks will contain twice as many indi-
vidual components as the networks found by using the Newton 
approximation, but the components will all be of the same size. 
All the output equations calculated are the same, and the graphs 
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already plotted indicate the response using one, two, and four 
lattice networks. 

If the open-circuited lattice is used for the approximation. 
Pig. 29 shows the circuit for simulation of the second order 
approximation to the fractional derivative operator, and Fig. 30 
shows the simulation for a like fractional integral operator. 
The transfer functions for the circuits shown in Pigs. 29 and 
30 are given in equations (93) end (94), respectively. 

A s^ + 6 s + 1 
T(s) = (93) 

4 s + 4 
A s2 + 6 s + 1 
T(s) = (94) 

4 s2 + 4 s 
As can be seen, the response to a unit step of the approximation 
to the fractional derivative is the same as the impulsive re-
sponse of the approximation to the fractional integral. This 
is as it was before. The amplitude of the response to the above 
input functions is, 

eo(t) = 1/4 ̂ (t) + 1/4 + e-'t (95) 
By cascading two more networks, the feedback element would 

have the same number of elements as the lattice network with 
short-circuited termination which represents a third order New-
ton approximation. The transfer function for the fractional 
derivative approximation in this case is, 

A + 28 s3 + 70 s2 + 28 s 1 T(s) = (96) 
8 s^ + 56 s2 + 56 s + 8 

The response to a unit step input is. 



34 

1 
eo(t) = - S(t) + 0.125 + 0.5 e'^ 

8 

+ 1.707 e-5.828t + 0.293 e'^' (97) 
Figure 31 shows these two time responses compared with the time 
response of the fractional derivative function. The response 
for the network utilizing four lattices cannot be distinguished 
from the response of the function for the range of values used 
except in the very near region of zero time. As can be seen 
from the equations, this approximation makes use of a delta 
function to simulate the initial infinite output. Also it will 
be noticed that the output function of the approximation will 
never reach zero. This disadvantage makes it slightly inferior 
to the approximation given by the Newton case, or, in other 
words, the case using the lattice with short-circuit termination. 

Symmetric lattices repeatedly occur in the Lanczos approx-
imations. The first order approximation uses a single lattice 
terminated either by 1 or s, depending on whether the initial 
estimate is chosen to be or s, respectively, for the frac-
tional derivative, or l/s or l/s°, respectively, for the frac-
tional Integral. 

The second order Lanczos approximations generate a feedback 
lattice with lattice elements, the feedback lattice being termi-
nated in either 1 or s. It can be readily seen that the feed-
back lattice with lattice elements is equivalent to four lat-
tices in cascade. This equivalence can be demonstrated as 
follows. If three of the lattice networks are taken as a four-
terminal network, they can be reduced to a single lattice by 
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using Bartlett's bisection theorem. This bisection is shown in 
Pig. 32. 

The parallel arms of the equivalent lattice network derived 
by the bisection theorem have admittances which are equal to the 
input admittances of one-half section with the two terminals re-
sulting from the bisection of the parallel arms shorted, and 
the two terminals resulting from the bisection of the crossarms 
open circuited. This can be seen to be the network P in the 
parallel arms of the lattice network in the Lanczos approxima-
tions. 

The crossarm admittances of the equivalent lattice network 
are derived as above except that the terminals which were shorted 
are open circuited, and those which were open circuited are 
shorted. This can be seen to be the network Q in the crossarms 
of the lattice network as used in the Lanczos approximations. 
Three cascaded lattices then replace the single lattice with 
lattice elements in the feedback element of the operational am-
plifier. 

The termination of this complicated lattice network in each 
Lanczos case is another lattice network with the same elements 
as the three cascaded lattice networks, and with a termination 
admittance of either 1 or s. The total feedback network in the 
Lanczos approximation is the equivalent to four cascaded lattices 
terminated in an admittance of either 1 or s. This group of 
lattices is seen to be of the same type as for the Newton ap-
proximation from above, and of the same length for comparable 
degrees of approximation. As was seen when discussing the Lanczos 
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approximations, the networks which would give the lattices ter-

minated in an element of 1 gave a slightly better approximation 

since these give time responses in the input functions chosen 

which do attain an amplitude of zero at large values of time. 

The results of the above work with simulation of the oper-
ators and l/fi" can be extended to all fractional powers of s 
that are integral powers of 1/2. The operator can be ap-
proximated by substituting the lattice networks which have an 
approximate characteristic admittance of Ĵ̂  in the parallel arms 
of another lattice which has crossarm admittance of 1, as shown 
in Pig. 33 for a first approximation to of the Newton type. 
This total feedback network could then be applied as the paral-
lel arms of another lattice network and the whole thing used as 
a feedback element to simulate 

As can be seen, this 
rapidly develops into some very complex networks which are not 
easily reduced. 

APPLICATIONS OP FRACTIONAL OPERATORS 

The operator 'fs appears in several types of problems. One 
of these is the solution of an RC transmission line as was shown 
by Heaviside (2). The circuits considered could be used to 
simulate such a line. 

The equations of heat flow can be simulated by a series of 
RG networks, and the equation describing such flow therefore 
contains a fractional operator. In analog simulations of these 
heat flow problems, long series of RC networks have been used 
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(4). The use of the above operational amplifier and lattice 
network would greatly simplify the analog simulation of these 
problems, and would require less equipment. 

Another problem quite similar to the heat problem would be 
the diffusion of neutrons in a nuclear reactor. Any problem 
then that could be simulated with an RC line could possibly 
better be simulated by the operator and the simulation 
schemes shown. 

Another application of the transfer function 1/1^ occurs 
in the compensation of servos. The usual criterion of goodness 
of a servo's response to a unit step function is zero steady-
state error. The canonical form for this criterion is shown in 
Pig. 34. This canonical form will be referred to as canonical 
form I and has a response to a unit step input of 

g(t) = 1 - e-^^ (98) 

If the criterion of goodness of a servo's response to a 
unit step function is zero steady-state error and large initial 
slope, then the canonical form is shown in Pig. 35. This will 
be called canonical form II. The transfer function of the 
servo is 

k 
T(s) = (99) 

fs + k 
If a unit step is the input signal, the output is 

g(t) = 1 - e^^^ + e^^^ erf kft (100) 
The response is shown in Pig. 36 for both canonical form I and 
canonical form II with gains, K, of one and two. As can be seen 
from the response functions, the servo of canonical form II will 
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have zero steady-state error. It has a faster rise time than 
the servo of canonical form I; however, after the initial quick 
rise it approaches zero steady-state error at a slower rate 
than canonical form I. 

The frequency responses of these two canonical forms are 
shown for gains of one and ten in Pigs. 57 and 38, respectively. 
The response of canonical form II improves more with changes to 
higher gain than does canonical form I. Its low-frequency re-
sponse still is not as good, however, meaning that canonical 
form II will still take a longer time to read zero steady-state 
error. 

For a position servo which has high damping, the system 
compensated with the fractional derivative operator is as shown 
in Pig. 39. The transfer f\anction will be, 

K 
T(s) = (101) 

Js^/^ + Rs^ + K 
With a unit step input the time response could be solved from 
the following equation. 

g(t) = e-2At/3^.1 

R 

(s + A/3) - 1 

V 2A A2 2A3 + 27 ~ 
f s - ~ s3 - s - ( ) 
^ 3 L 3 27 

(102) 

where A = The equation is not readily solvable as a 
• 

function of time in closed form. The second term in the denomi-

nator has one real root and two complex conjugate roots if 
b2 a 

4~ 27 

3 26 a2 - 27 A2 
0, where b = ( ) and a = - — . It has three 

27 3 
b2 a3 

real roots for — + — The condition which separates the 
4 27 ~ 
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b2 a3 
complex roots from the real roots is — + — « 0. It is found 

4 27 
that two complex roots exist for all values of A except when 
A < -1.89. In a physical system A cannot be negative; therefore 
no values can be chosen for the parameters J, R, and K for which 
there are no complex conjugate terms. The actual time response 
of a system of this type will be shown in an analog computer 
simulation later. 

A position servo with low damping and fractional derivative 
compensation has approximately the form as shown in Pig. 40. 
The transfer function is, 

K T(s) 
s3/2 + K 

(103) 

The response to a unit step input can be expressed as. 

g(t) = 1 -
e oct e oCt 

erf f ^ -
2 e-^/2 t 

cos 

2 L Y^t 

sin (t - T ) + 

'o 
Sir 

d n- (104) 
2 6 

The last integral can be evaluated only by numerical methods. 
In lieu of this, an analog computer simulation of the approxima-
tion is shown in the next section. 

COMPUTER SIMULATIONS 

The lattices required to simulate the fractional operators 

were built and analog computer simulations were made of the 
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approximate fractional operators. The feedback element used 
consisted of five cascaded lattices. All four terminations 
which are indicated in the preceding material were tried. Figure 
41 shows the response of the approximate fractional derivative 
operator to a unit step input. Ho difference can be detected 
for any of the four different terminations over the time range 
used. The response is the same as the expected one, giving a 
very good approximation to the fractional derivative operator 
except at the Initial time. 

Figure 42 shows the response of the approximation to the 
fractional integral operator to a unit step input. Again the 
response is the same for all of the terminations, and over the 
range of time shown closely approximates to expected response 
of a fractional Integral. 

Analog computer simulations were also made for the servo 
compensation techniques indicated in the preceding section. 
Associated with each of the curves shown is a diagram of the 
servo simulated. Figures 43 and 44 show the response to a unit 
step input of servos of canonical form I and canonical form II, 
respectively. The curves are as predicted by the response equa-
tion, the plot of which is shown in Pig. 36. Figures 45 through 
47 show the response of a position servo without compensation. 
The three curves are for three different values of damping. 
The next three figures. Figs. 48 through 50, show these same 
servos with fractional derivative compensation. This compensa-
tion definitely does give a much quicker initial slope than the 
uncompensated servo. Also for the servos with less damping. 
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the Initial oscillations are all but eliminated. There is only 
one overshoot at the higher gains. The fractional derivative 
compensation does have a disadvantage, though, which is particu-
larly noticeable in the servos with higher damping. This dis-
advantage is that after the initial large slope, the servo ap-
proaches the steady-state value at a slow rate. 

The fact that the fractional derivative compensated servo 
and the servo with no compensation are each strong where the 
other one is weak suggests using a compensation technique which 
is an average of these two. A particular average transfer 
function which will give the greatest weight to the function 
with the largest value is, 

(1)2 + (fi)2 1 + i/s 
T(s) = 

1 + fs V / s + 1/s 
The forward loop transfer function of the servo is then, 

K 

(105) 

T(s) 
1 + 1/s ( ^ ) 

\/fk + 1/s 
1 + 1/s 

- 1 + fs _ 

s(Js + R) 
K 

(106) 
_Js + R, 

Figure 51 shows the response to a unit step input of the averag-
ing transfer function which has replaced the integral function. 
Also shown in Pig. 51 is the response of the integral function 
to a unit step input. It can be seen that there is an initial 

jump and that the rate after this jump is higher than the in-
tegral function. Figures 52 through 54 show the response to a 
unit step input of the same position servo considered previously, 
using this average transfer function for compensation. This 
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combination combines the good points of both compensation tech-
niques, giving a high initial slope, eliminating the oscillation, 
and still reaching steady-state conditions quickly. 

Figure 55 shows the analog simulation of the response of 
the approximate form of a position servo with low damping and 
fractional derivative compensation which was considered earlier. 
The servo has only one overshoot which is approximately the same 
amplitude for all values of gain. The response is therefore 
similar for all values of gain except for changes in initial 
rise time. The servo response for smaller values of damping is 
shown in Pigs. 56 and 57. As low values of damping are ap-
proached, high gains give an oscillatory behavior. With a damp-
ing factor of two, as shown in Fig. 56, the servo goes into 
oscillations which increase in magnitude with time if a gain of 
ten is used. This method of compensation of a position servo 
produces no beneficial results, but instead makes the servo 
unstable at high gains. 

Figure 58 shows the analog simulation of a velocity servo 
with fractional integral control. A ramp input was used to de-
termine if the servo would be able to follow with zero velocity 
lag. As can be seen from the curves, even at nine seconds the 
velocity lag of the servo was still increasing. Fractional in-
tegral compensation is not helpful, therefore, in eliminating 
velocity lag. The average transfer function between integral 
compensation and fractional integral compensation was also tried 
for the velocity servo. Figure 59 shows these results. As ex-
pected, the velocity lag is still there. The servo with self 
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average of 1 and fs comes to its final value of lag more quickly 
than the servo with fractional integral compensation. 

CONCLUSIONS 

Approximations to the fractional operators l/fs and fs are 
made by using the Newton and Lanczos approximation techniques. 
These approximations are readily applied to operational ampli-
fier circuits for simulation. The networks developed for the 
feedback loop of these operational amplifiers consist of cas-
caded lattice networks with resistors and capacitors. The char-
acteristic admittance of these lattices is 'fa. Therefore in the 
limiting case of infinite number of lattices in cascade, the 
functions Ys and l/fa would be simulated. Both approximate 
functions are simulated by truncating the number of lattices 
in cascade. 

The fractional operators can be used in several different 
applications. They can be used in the analog simulation of heat 
transfer problems and neutron diffusion problems. Also they may 
find an application as compensation for servos. In this appli-
cation, the fractional derivative compensation of a position 
servo gives a higher Initial slope than the uncompensated servo 
has, eliminates most of the oscillation in servos with a low 
damping factor, and has zero steady-state error, fractional 
derivative compensation has the disadvantage of giving a slower 
approach to the steady-state condition after its initial high 
slope, than does the uncompensated servo. A better result is 
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obtained by using a self average of the fractional derivative 
and the identity transfer functions. This average incorporated 
the good points of each. 

The fractional integral compensation of a velocity servo 
gives no help in the elimination of velocity lag. In fact, with 
fractional integral compensation the velocity lag is slow to 
even attain a steady-state value. The self average of integral 
compensation and fractional integral compensation also gives a 
steady-state velocity lag though it attains steady-state condi-
tions much quicker than the servo with fractional integral 
compensation only. 



45 

ACKNOWLEDGMENT 

The author wishes to express his appreciation to Dr. 
C. A. Halijak, his major instructor, for the ideas and 
helpful suggestions so generously given in the preparation 
of this paper. 



46 

REFERENCES 

1. Campbell, Graham. 
Use of an adaptive servo to obtain optimum airplane 
response. Cornell Aeronautical Laboratory Report 
C.A.L. 84. Buffalo, N.Y.: Cornell Aeronautical Labo-
ratory, Inc., 1957-

2. Heaviside, Oliver. 
Electromagnetic theory. New York: Dover Publications, 
Inc., 1950. 

3. Lanczos, Cornelius. 
Applied analysis. Englewood Cliffs, N.J.i Prentice-Hall, 
Inc., 1956. 

4. Wright, W. L. and C. A. Booker. 
How analog networks solve air-conditioning problems. 
Electronics, 32(52):34-37. December 25, 1959. 



47 

APPENDIX 



48 



49 

Fig. 3. Block diagram of linear adaptive servo 
modified for simulating fs transfer function. 

Fig. 4. Operational amplifier for first order 
Newton approximation of fE'. 
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The purpose of this paper is to approximate the operators 

f^ and l/fs. A necessary preliminary to the approximating pro-

cedure is a study of the linear adaptive servo. The linear 

adaptive servo is analyzed with both derivative feedback con-

trol and integral feedback control. If the transfer function 

for this servo has large feedback gain, then the Newton and 

Lanczos approximations to the fractional derivative and frac-

tional integral operators may be simulated. 

These approximations may be readily realized on opera-

tional amplifiers. The networks developed for the feedback loop 

of these operational amplifiers consist of cascaded lattice net-

works with resistors and capacitors. The characteristic admit-

tance of these lattices is ^s; therefore in the limiting case 

of infinite number of lattices in cascade, the functions "j/ŝ  and 

l / f s would be simulated. Both approximation functions are simu-

lated by truncating the number of lattices in cascade. 

The fractional operators can be used in several different 

applications. They can be used in the analog simulation of 

heat transfer problems and neutron diffusion problems. Appli-

cation of these operators to servo compensation is demonstrated. 

The fractional derivative compensation of a position servo gives 

a higher initial slope than the uncompensated servo has, elimi-

nates most of the oscillation in servos with a low damping 

factor, and has zero steady-state error. Fractional derivative 

compensation has the disadvantage of giving a slower approach 

to the steady-state condition after its initial high slope than 

does the uncompensated servo. A better result is obtained by 



using a self average of the fractional derivative and the 

identity transfer functions. This average incorporates the 

good points of each. 

The fractional integral compensation of a velocity servo 

gives no help in the elimination of velocity lag. In fact, with 

fractional integral compensation, the velocity lag is slow to 

even attain a steady-state value. The self average of integral 

compensation and fractional integral compensation also gives a 

steady-state velocity lag, though it attains steady-state condi-

tions quicker than the servo with fractional integral compen-

sation. 

Actual analog computer simulations of the transfer func-

tions yiT and l/fs, and the servo compensation techniques are 

included in the paper to substantiate the above observations. 
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