SIMULATION OF THE FRACTIONAL DERIVATIVE
OPERATOR /s AND THE FRACTIONAL
INTEGRAL OPERATOR 1/7/s

by

GORDON EUGENE CARLSON

B. S., Kansas State University
of Agricult re and Applied Science, 1959

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER O SCIENCE

Department of Electrical Engineering

KANSAS STATE UNIVERSITY

OF AGRICULTURE AND APPLIED SCIENCE

1960



TABLE OF CONTENTS

INTRODUCTION . . . ¢ « « « o « o o

THE LINEAR ADAPTIVE SERVO . . . . .

THE LINEAR ADAPTIVE SERVO WITH INTEGRAL CONTROL

NEWTON AND
NEWTON OF 7/8 « « ¢« « o &
NEWTON APPROXIMATION OF 1/7s .

LANCZOS APPROXIMATION OF ¥s . . . . .
LANCZOS APPROXIMATION OF 1/7%s . . . .
NETWORK THEORY IN APPROXIMATING 7s AND
APPLICATIONS O RACTIONAL OPERATORS .

COMPUTER SIMULATIONS . . . . . « .+ . .
CONCLUSIONS . ¢ ¢ ¢ ¢ « o o o o« o o« @
ACKNOWLEDGMENT . . . . . . . . .
REFERENCES . . . . ¢ « « o « o o o o« o
APPENDIX . . . . . . &

APPROXIMATIONS OF s AND 1//s

12
15
18
21
23
27
31
36
39
43
45
46

47

ii



INTRODUCTI ON

The of this paper is to approximate the operator
and 1/7s. A necessary preliminary to the approximating
is a study of the linear adaptive servo. The linear
adaptive servo is analyzed with both derivative feedback con-
trol and integral feedback control.

If the transfer function for this servo has large feedback
gain, then the Newton and Lanczos approximations to the frac-
tional derivative and fractional integral operators may be simu-
lated. It is then natural to consider their operational ampli-
fier counterparts. The operational amplifiers for performing
these simulations are exhibited. A close tie is also developed
with the operational amplifier simulations using the theory of
characteristic impedances to arrive at the approximations to
the fractional derivative and the fractional integral.

Several applications of these fractional operators are dis-
cussed. Analog computer simulations of these approximate func-
tions are made, and the use of these fractional operators as

servo compensation means is shown.

THE LINEAR ADAPTIVE SERVO

Work on an adaptive control system has been under way at
Cornell Aeronautical Laboratories since 1955. The work was
started by Campbell (1) and has been continued to the present.

The system developed by Cornell Aeronautical Laboratories differs



greatly from most of the adaptive control systems since it is a
linear system. The system does not change any of its parameters
to compensate from changes in the system, but instead modifies
the input to the control element by subtracting from the actual
input the deviation of the control element from the model.

The block diagram of the system used by Cornall Aeronau-
tical Laboratories is shown in Fig. 1. The particular element
which they sought to control was an aircraft, but the controlled
element A in Fig. 1 could be any system to which feedback con-
trol 1is applicable. In order to better understand this control
system shown, it is first necessary to apply some topological
reduction to the block diagram. Through this method the overall
transfer function of the system may be evaluated. Figure 2 shows
another block diagram of the reduced system. This shows that
the system could be regarded as a simple feedback system with a

of the input signal. The overall transfer function

of the system is

output
——— (1 + MB) *® ——— (1)
input 1l + AB

As can be seen readily from the transfer function, the output
of the system will approach the output of the model if the
gains B and AB are made very large.
The model itself is nothing more than a holding filter which
has been approximated by a second order transfer function. The

model used by Cornell Aeronautical Laboratories had a natural

All figures for this report are in the Appendix.



frequency of 0.5 cp and a damping factor which was 0.7 of the
critical damping factor. These values were f to be the most
desirable from preferences indicated by test pilots who had
flown variable stability aircraft.

The feedback element used by Cornell Aeronautical Labora-
tories had a transfer function of B, (1 + 7's). This gives two
variables in the feedback loop which can be adjusted to improve
performance. The value of the time constant in this feedback
transfer function was T = 0.2.

Using the model and the feedback element as used by Cornell,
and also using the assumption that the element to be controlled
can be represented by a second order transfer f ction in the
short period frequency range, the system can be analyzed some-

what more precisely. In equation form, the above assumptions

are
A
A(s) = 2 (2)
1
1 + S & —— s2
Wp
B(s) = B(1 + 7°s) (3)
M
M(s) = ° (4)
1 + 8 + — 8%

The transfer f ction again was
output l+ MB
—_— ——— (5)
input 1l + AB
Substituting the above values for A, F, and M gives the follow-

ing equation,



MgBo(1 + T s)

1 +
2%y
1+ 8 + ——
®
M
T(s) = ( ) =7 (6)
A B (1 +7Ts 1
1+ 22 1+ 2 S + — 2
2 A 1 (" mA
1l + s + — 8%
which in turn consolidates to
1 Ao(l + MOBO)
T(S) =
1+ A,B,
l+ S + —
29
M
+ MgBo 7T
oM
1+ s +
1 + MoBg (1 + MyB,)oy®
(7)
25
( + ABo T
wp
1l + s +

Ideally all coefficients except those of M(s) of the above
equation should be one. This is called the ideal condition and
it can be achieved. In order to make the third term of the pro-
duct in equation (7) equal to one, the coefficients of the powers
of s must be equal in the numerator and the denominator. Since
the constant terms are equal, attention should be turned next to
the coefficients of the first power of s. Setting these two
coefficients equal gives

2%

+ MyBo

+ AoBo
Wp

1+ MyB, 1+ A,B,

(8)




Solving for By gives
“a

“u

B. = (9)
M LYY T

Ag — = Mg — = — (A, - M)

The galn of the feedback element therefore can be related to the
galn of the controlled element, the gain of the model, and the
damping constants of the controlled element and model. If this
value of feedback gain is substituted into the equation (7)

representing the transfer function of the system, it becomes

1+ a8 + "2 82
—_— T b} ———2-
AO O)‘M 2 Q)M
T(s) =M« — P . (10)
M ’r Uz
oA T 1+ bys+ — °
Wy 2 wp
Already, a3 = b; has been 1mposed.
Proceeding further, one has
‘M
. Ag — - M, — - > (Ag - Mp) K
ag = = M = (11)
1+ MoFo wooT . M T
(""——-' - -)(AO - Mo) (-—-— = —)
O)M 2 O)M 2
Ay — = M, — =~ = (A, - M)
1 ® oy % wy 2
b
1+ AF, 50 T
(— = = M)
Q)A 2
K
= (12)
%



One can conclude from (11) and (12) that

/7/
WA 2

ag = by — — (13)
M 2

To make the last term of the product completely equal requires
still one more step, equating the coefficients of the 32 terms.

Again, the identities

az
—_— (14)
(")AZK (A)MzK
- (15)
( w7 ) 22 7
WM 2 wp 2

(where the quantity K is found in (11) and (12)) can be manipu-

lated to yield

2 - 5 (16)

This then specifies the relation between the nat ral frequencies
and damping constants of the model and controlled element, and
the time constant 7 of the feedback element at the ideal condi-
tion. If, then, these conditions are adhered to, the overall

transfer function of the system will be

w 1
T(g) = A-t—3” o ) (17)

Wy ZZM 1 o
1l + 8 + —py

This transfer function at the ideal condition is the transfer

f nction of the model with a gain factor. The gain factor is



dependent upon two of the controlled systems parameters, namely,
A, and wa. Therefore any changes in these parameters would
cause a change in the overall gain even though B and 7 were ad-
justed to the proper values for the deal condition.
A summary of results is now possible. Whereas the con-
trolled element by itself has three possible parsmeters, (A,,
which can vary, the linear adaptive servo at the ideal

fOJA
condition has three parameters (Ao{“ 2,;3M, wM) in which only
Wp

one, namely, Ao(mA/mM)z, can vary. Therefore a 67 per cent re-
duction in of varying parameters has been achieved. It
1s presupposed that %.. and wy will not be subjected to any vari-
ation and this is achlievable. The performance of the model is
substituted for the performance of the controlled element except
that the overall gain is a f nction of A, and wy which can vary.

This derivation depends on the ability to change B, and 7
as required if the variables A,, ®wp, %, should vary. In the
particular system proposed by Cornell Aeronautical Laboratories
there is no provision to change these parameters. In order to
check on the effectiveness of the system to adapt to changes in
the controlled element, it becomes necessary to determine what
effect these changes will have on the system if deviations from
the 1deal condition occur. The effect of these changes can be
determined by finding the transfer function difference from the
ideal condition when A,, Wy, and % deviate from the values used
in calculating By and 7 at the ideal condition. The transfer

function from the system with B, and 7 chosen according to their
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(A)A. [»]
T(s) = Ao(— ) =|M(s)( — — ' (18)
1 +

S + ——
<

oy wy
The transfer function for the system, with changes in A,, ®j,,

and %a.. will now be

(A + D AL)(1 + MBg)

T'(s) = (M) ,
Mo|1 + (Aq + D AG)Bg|
2%
—_— MOB0
Wy
l+ ————— 8 + 8¢
1 + MgB, (1 + MgB)wy®
(19)
wp + Dwy
1+ s +
1+ (80 + DALB,
| M
where 2 (20)
and
[V
B, = (21)
M % T
_— - M, — — (A, - M)
(.t)M (DA 2

First an analysis will be made to determine what the differ-
ence in the steady-state transfer function will be. The differ-

ence between the two transfer f ctions in the steady-state con-

dition 1is,
(Ao +AA0)(1 + MoBo) wa .
T'(o) - T(o) = Mg - Ay (— (22)
1+ (A, +2A,)B, oy |

which reduces to



T'(o) - T(o) = My AA, ——

WM
(A)M" - W,
1 -
(V]
M
(23}
DA oy - w
1 - (
Ay - M, Wy

This shows that the steady-state difference of the transfer
functions is directly proportional to the change in the con-
trolled system gain, A\ A,, and to the ratio of the na fre-
quencies squared. In a first order approximation, the steady-
state difference 1s M, 44, (fﬁ)2. Since wy will typically be
larger than wy, the difference in the transfer functions at
steady state will be larger than the change in gain AA,.
Therefore, at steady-state conditions, the linear adaptive servo
will not be immune to changes In the gain, A,, and the angular
frequency, w,, of the controlled element.

One other fact should be noted before leaving the steady-
state conditions. This is the effect that the cholce of My has
on the steady-state difference in the transfer functions. Choose
My in the following manner.

wp
Mo = Ag (—) (24)
Then by substitution into the equation for the steady-state
difference of the transfer functions (23), the following inter-

esting result is noted.
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AO
1 - —
@,
T'(0) - T(o) = Mg DAy(—) 0 (25)
0)M2 DA,
1+

Therefore with this proper choice of M,, there 1s no steady-
state difference regardless of what changes there might be in
the parameters A,, wp, and %.. This choice of My also entails
a change in By since By depends on Mg and the equation of the

difference of the transfer f was derived using B,.

Boy = (26)

Therefore for the above complete independence of the steady-
state condition with respect to the changing system parameters,
the gain of the feedback loop would have to be infinite. This
could not be realized, of course, but at least the model gain,
Mo, could be adjusted to give some maximum practical value of
feedback gain and still keep the proper relationship between the
feedback gain and the other parameters so as to give an output
with the model's characteristics.

The system will now be analyzed to determine the difference
in the transfer functions at time equal to zero. In other words,
the time at which a command is put into the system. The differ-
ence between the two transfer functions at time equal to zero

may be expressed as follows.
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|
|
|
8¢ H1+ (A, + O AL)B. (

1+ (Ap + DAAQ)B. | |wy + O
- Ao (—‘) (27)
1+ MB, oy oy |

which may be consolidated to
M \

i
‘ \
\

+ AA (0a + Am[,‘)2 (28)

86

that the square of A\ wp is negligible, the follow-
ing 1s obtained:

MoA
T'(e0) - T(eo) = 222 (2w A wp)
S
+ AAg(wp% + 204 Aw,) (29)

Now if Z)Ao 1s taken to be some increment of A,, and ZXwA
some increment of w.. this then defines o< and /7 by
AA, = XA, Awy = Lo, (30)

and equation (29) can be written as

o<+ 2 B+ oc)i (31)

One can now conclude that none of the parameters of equa-
tion (31) can be chosen to aid the limit process 1s zeroing the
response at initial time. It should be observed that relative
changes in w, produces a greater variation in lo(:b 2 /3(1 + c<)'

than relative changes in A.
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THE LINEAR ADAPTIVE SERVO WITH INTEGRAL CONTROL

Campbell (1) mentions that the adaptive servo might also
have some possibilities with integral control in the feedback
loop, but he does not choose to investigate this case. This is
done now.

Redefine the feedback so it contains integrsl control in-
stead of derivative control. The transfer f ction of the

system is still

1l + MB
T =« A (32)
1l + AB
wherein A(s) = (33)
ZA?A 1
1+ S + —_ se
(I)A (A)Az
©B
B(s) = By(1 + —) (34)
s
M,
M(s) = (35)
21y 1
1l + s + —

Substituting the values of A, B, and M into the equation for the

transfer function gives the equation

1+M B, 2%m 1
1+ ——— 8 4 e 8% 4 —
MoBow wpM,Bow Wy~MoBowg
T(s) = M(s) - 070’8 MooB (36)
1+AoB,o 2%, 1 =
1 4+ — — S 4 8% 4
AoBowB wpAoBowR wp®AoBowE

Several things can now be noted. First, the steady-state

transfer function is the constant gain M,. Since the parameters
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of the model can be made to remain constant, the steady-state
transfer function will remain the same regardless of changes in
the controlled system's parameters. Secondly, the transfer
function at the initial time, or the time that a signal is put
into the system, is as follows.

1im
T(O0) = | _  Agwp°/s? ' (37)

This transfer function differs from the transfer function of

the model at initial time by a gain factor of « As can be

Mowy
readily seen, this gain 1s affected by changes in the parameters
A, and @wa.. Lastly, the overall transfer function of the system
cannot be made equal to the transfer function of the model by
any choice of feedback parameters. The overall system can ap-
proach the characteristics of the model only by choosing By and
wg very high. These can be chosen large enough in practice to
make the performance close to the performance of the model.

It is necessary to check the changes in performance of this
system as parameters in the controlled element vary. The trans-
fer function after changes in the controlled element parameters
would be as follows.

l+ nis + nos2 + n333

T'(s) = M(s) : 3 (38)
1+ dys + dos® + dzs

wherein

1+ MB
ny = —°°2 (39)
MoBowg
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ng = ———— (40)
wyMoBowg
1
n5 I e ——— (41)
1+ (A, + (42)
42

(A + 8 A5)BgwR

2( gA + AgA)
dg = (43)
(wp + Owp)(Ag + 2 Ag)Bywp

1l
dz = (44)
(0p + D wp)? (Mg + A Ay)Bowp

The difference in the transfer f ctions before and after
changes in controlled element parsemeters can now be evaluated.
The difference in the steady-state transfer functions 1is ex-
pressed below.

T'(o) - T(o} = My - Mg = 0 (45)
Therefore any change in the controlled element's parameters will
not affect the steady-state error transfer function from being
zero.

It has been shown before that the transfer function at the

initial point of an input signal, or time equal to zero, 1is

2/.2
1;?,\A°wA /s . The difference in this transfer func-

equal to _
tion before and after changes in the controlled element param-

eters may be expressed as follows.

1im -];2— I(Ao +AA0)((|)A Towpy - AOO)A

8 —pcco 8

2}

T'(o2) - T(cQ) = (46)
This difference in transfer functions can be seen to be nearly

the same as the difference in transfer functions for the
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derivative feedback case initial conditions. The only
difference in the two cases 1s the gain factor M,. Therefore
if the gain of the model M, were larger than one, the integral
feedback system would show some improvement over the derivative
feedback system under initial conditions. If the model gain,
My, were equal to one, the two types of systems would show the

same error der initial conditions.

NEWTON AND LANCZOS APPROXIMATIONS
OF /s and 1/4s

The transfer function of the linear adaptive servo leads
to an application of its particular feedback circuit--the ap-
proximation of the fractional derivative and fractional integral
transfer function. The transfer functions 73 and 1/?3 are
studied first. It 1is not difficult to envisage higher multiples
such as s®® and s'%n for any integer n.
The block diagram of the adaptive system is reproduced in
Fig. 3 with one relocation of the point from
which the output 1s taken. The transfer function of the system
as shown is
1+ MB
(8) = ———— * A (47)
1 + A®B
The element which was formerly considered to be the model of

the output wanted will now be the model of the square of the

desired output. The feedback element is an integral control for
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When simulating 1/7s, use M(s) = 1/s and B(s) = Bo/s. Then A
needs to be determined.
If the feedback gain 1is chosen very large, the transfer
function of the system when simulating 7s would be,
%(s) = Bilﬂx>T(s) = g/A (48)
Likewlse the transfer function for simulating 1/75 is,
T(s) = BZ33- T(s) = 1/As (49)
In order to have a transfer f ction of 7fé, it becomes neces-
sary to choose A to be 7s in equation (48). Likewise, for a
transfer f of 1/4s, A would have to be 1/7s in equation
(49). These values for A cannot be formed exactly, but very
close approximations can be found.
To find the 7a, the following equation needs to be solved
for a root.
f(x) = x° - a (50)
An approximation may be made of the smallest root by using the
Newton approximation. The Newton approximation 1s derived as
follows. Given, a function f(x) from which it is desired to
determine a zero. If a point is chosen which 1s not a zero of
f(x), it is necessary to find an estimate of the distance h
from that point to the zero. That is, h must be found in
f(xo + h) =0 (51)

The Taylor's expansion of equation (51) is,

h? h3
0 = f(x,) + hf'(xg) + — £"(xo) + — £"'(x.) + ... (52)
2! 3!

The Newton approximation uses the linear approximation to the

smallest root,
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0 = f(xo) + h £'(xo) (53)
The distance from the point chosen to the zero would be approxi-
mately
fifﬂl_ (54)
£'(xo)
The first approximation to the root after the initial estimate

of the root X, would then be

£(xo)
X] = Xg - —— (55)
£'(xq)
The second approximation would be,
f(xl)
XQ = X] = ——— (56)
f'(xl)
The approximations to the root will eventually converge to the
value of the root.
Lanczos (3) mentions that the method can be made to con-
verge more rapidly if the first three terms of the Taylor ex-
pansion are used.

f(XQ)
£'(xo) + h/2 £"(x,)

(57)

Replacing the h in the denominator by the Newton approximation
of h and then using the resulting value of h to solve for the
first approximation to the root gives

2 £'(x0) f(xg)

1= +
B e T %) £ (xg) - 2 £'(xg) 2
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NEWTON APPROXIMATION OF 7s

The Newton method to find the first approximation to the
smallest root of an equation can now be applied to equation

(50) which will give an approximation to ¥s if a is chosen as s.

x02 - 8 S
2 Xxq Xo

The initial estimate xg could be chosen to be either s° or sl.

Either choice will give the same value for the first approxi-
mation.

x1 = 3(s + 1) (60)
If this approximation to Y8 is now used for A in the transfer
f ction (equation 48), a first arder approximation can be made
to the transfer function ¥s.

A s

T-(8) = —— (61)

(s + 1)

This transfer function can now be simulated by the operational
amplifier shown in Fig. 4. In like manner, a second order ap-
proximation can be made to the s by substituting the first
approximation x; for the initial estimate xo. The transfer
function for this second order approximation would be,
] ]

%[%(s + 1) + 2s8/s + 1] B 1/4 + s8/4 + s/s + 1

This transfer function can be simulated by the operational am-

/'i‘g(s) = (62)

plifier of Fig. 6.

Taking still another approximation, the transfer function
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by equation (63) and Fig. 6.

~ S
Tz(s) = (63)
1 8 s 8
-+ -+ +
8 8 2(1 + s) s 2s
3+ -+
2 l+ s

As can be seen, the feedback impedance continues to become a
more complex combination of series and parallel elements.

Figure 7 shows the frequency response of the above three
transfer f ctions in the low-frequency range compared with the
frequency response of the transfer function'Vs. As can be seen,
the frequency response of the first approximation is a poor
approximation. The amplitude rises linearly, and then rapidly
approaches a constant value of two. The second order approxi-
mation has a better approximation to the frequency response of
7%. This frequency response approaches a constant value of
four. The third order approximation frequency response is very
close to that of the 7s transfer f ction in the region for
which the frequency response has been plotted. It can be de-
termined from the equation that the amplitude approaches a con-
stant value of eight instead of infinity for high frequencies.

om these observations, then, it appears that the third order

Newton approximation gives a good approximation to the transfer
function }s for small frequencies.

It next becomes necessary to examine the time response of
the system. The response will be determined with a unit step

Input to see how close the simulation is. The response of the
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A 1 2
Eo(s) = Ty(s) * - = (64)
s s + 1
In the time domain this becomes,
eo(t) = 2 -t (65)

As can be seen, this is an exponential with an initial value of
two. The second order approximation gives the following re-
sponse to a nit step input.

1 4s + 1

Eo(s) = Tp(s) + — = (66)
s 82+ 68+ 1

Transforming to the time domain gives the following expression
for the response.
6o(t) = 0.586 e ¥ *'~v 4+ 3.414 o~ °0+828%
This approximation gives an initial value of four and a response
more nearly like that which is desired. The third order ap-
proximation gives a very close approximation to the response to
a unit step expected from a transfer function 7s. Its expres-
sion in the time domain 1is
eo(t) = 0.259 e™V*V=vv 4+ 6.569 ¢~25:275¢
+ 0.362 e~VerTiv 4 0,815 e~2-240% ()
Other than the fact that it has an iInitial value of eight rather
than infinity, as would be the case with the true transfer func-
tion 7s, the response is nearly identical to the response ex-
pected from the transfer function 7s.
Figure 8 shows these various time responses compared. The
third order approximation cannot be detected from the time re-

sponse of the function 7s for this scale.
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NEWTON APPROXIMATION OF 1/%s

By changing the system to agree with the transfer function
in equation (49), the function 1/1@ can also be approximated.
In this case the value of A will need to be approximated by

1/¥s. The equation whose smallest root is to be found is

f(x) = x2 - 1/s (69)
Newton's first approximation gives,
x°2 - 1/s 1
X) = Xg = o= h(xo + ) (70)
2 Xxo s Xo

The initial estimate can be chosen to be either 1/s° or 1/s.
Either cholice gives the same f nction for the first order
approximation.

xy = $(1 + 1/s) (71)
Since this is the first order approximation to 1/7s, it can be
used for the element A, thereby giving the first order approxi-
mation to the transfer f ction 1/7s.

1l
T(s) = ————— (72)
£(s + 1)

The simulating operational amplifier (Fig. 9) for this transfer
f nction has the same feedback element as the first approxima-
tion to the transfer function ¥s. The input admittance, however,
changes from s to 1, as shown in Fig. 9. The second order ap-
proximation using the Newton method of approximation can now be
made. The transfer function is shown in equation (73), and the

circult necessary to simulate this transfer function 1s shown

in Fig. 10.
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A 1

T(s) = (73)
1 s s
-+ - +
4 4 s + 1

The third approximation can be undertaken in the same manner to

give a transfer function,

A 1
T(s) = (74)
1 s s s
-+ — 4+ +
8 8 2(1 + s} s 2 s
4+ -+
2 l+ s

The operational amplifier simulation of this transfer function
1s seen quite readily to be as shown in Fig. 11. All three of
these approximations have a transfer function which is equal to
the like approximation for Vs except that it is divided by s.
The frequency response of these three Newton approximations
to 1/7s are sho in Fig. 12. The first approximation has a
poor approximation to the frequency response. It has a value
at zero frequency of two and does not closely approximate the
frequency response of 1/7s in the range of frequencies con-
sidered. The second approximation does a much better job of
approximation. It likewise has a finite value at zero frequency
which 1s four. The third approximation cannot be distinguished
on the graph from the frequency response of 1/Ys. The only
place it would differ markedly would be in the neighborhood of
zero frequency. The third approximation has a value of eight
at zero frequency as compared with iInfinite value associated
with 1/7s.

The impulsive response of these three approximations of
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1/7s can be seen quite readily to be the same as the response
of the Newton approximations of Vs to a nit step input. These
impulsive responses are shown in Fig. 8 and are expressed in

equation form in equations (65), (67}, and (68).
LANCZOS APPROXIMATION OF 7%

The method suggested by Lanczos (3) for the solution of a
root of an equation can be applied to equation (50) which will
glve an approximation to s when a 1s equal to s. Applying this
approximation to equation (49) gives an approximation to the
fractional derivative 7s which converges more rapidly than the
Newton approximation.

38 + x02
Xy = X5 (——p) (75)
s + 3 x4
Again the initial estimate (x,) can be chosen to be either s©
or 8. Unlike the case using the Newton approximation, the two
choices do not give identical approximations. The case where
the initial estimate is equal to s is investigated first. This
means that the first approximation to 7s will be,
38+ 1
— _ (76)
s+ 3
Using this value for A in the system's transfer function, the
transfer function becomes
T(s) = ——— (77)
383+ 1

s + 3
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The associated amplifier for simulation is shown in Fig. 13.
The second order approximation gives a more ¢ plex transfer
f ction.

A s

T(s) = (78)

3 s+ 1
38 + ( $?

s + 3

s + 3 3 s + 1
s(— ) + 3(——)
38+ 1 s + 3

The operational amplifier required for simulation (Fig. 14) is
correspondingly complex.

igure 15 shows the frequency response curves of these two
approximations as compared with the freguency response of the
fractional derivative 17s. The second approximation cannot be
distinguished from the f nction over the range of values plotted.
From the transfer functions of the two approximations it can be
seen that the frequency response does not level off at the higher
frequencies as do the Newton approximations,but continues to
increase as the response does for the fractional derivative
function.

The time response of these two approximations to the trans-
fer f ction‘VE can be determined. The first order approximation
gives the following output to a nit step input.

1 s s+ 3

s 3 s+ 1 3 s+ 1

s + 3
This gives equation (80) as the output expressed as a function
of time.
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This then glves equation (82) as the output expressed as a

function of time.

These time responses are shown in Fig. 16 compared with the time
response for a trensfer f ction of 7s. Both have a delta func-
tion at zero which is not shown on these plots and which gives
the approximation of the infinite value at t = 0. The second
approximation to the function cannot be distinguished from the
function over the range of values shown.

The same type of analysis can be followed for the approxi-
mation to }s, using s as the initial estimate. It gives a first
order approximation with a transfer function as shown in equation

(83) and a simulation operational amplifier as shown in Fig. 17.
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This will immediately be recognized as being the same as the
other approximation by Lanczos' method except for a different
termination of the lattice network. The second approximation
likewise 1s similar to the second approximation by Lanczos'
method with an Initial estimate of s%. differing once again only
by the termination. This transfer function and operational am-

plifier for simulation are shown in equation (84) and Fig. 18,

respectively.
A s
Ta(s) =
3+ s
38 + 82(——)%2
l+ 3 s
l+ 3 s 3+ s
(————) + 3 s(————)
s + 3 l+ 3 s

9 s* + 84 33 + 126 s2 + 36 s + 1

: (84)
s + 36 s+ 126 s + 84 s+ 9

Figure 19 shows the frequency response for these two ap-
proximations compared with the frequency response of the frac-
tional derivative f ction. The second approximation cannot be
distinguished from the f nction itself over the range of frequen-
cles used except in the region of w = 0. At w = O, the response
has a value of one-third for both approximations. Also, these
two approximations level off to constant amplitudes of three in
the first order approximation and nine in the second order ap-
proximation.

The first order approximation gives a time response to a
unit step which is shown compared with the actual function in
Fig. 20. The equation for this time response is as shown below.

g(t) = 1/3 + 8/3 -5t (85)
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The time response of the second approximation to a unit step
input is indistinguishable from the time response of the func-
tion for the same input over the range of time shown in Fig. 20.
The time response for the second approximation is

g(t) = - + 0.866 e™¥¥ + 7.375
9

+ 0.251 o70:132t 4 o g7y ¢=0.704%
As can be seen from the equations, neither of these approxima-
tions goes to zero at large values of time as does the function

1/7wt. Neither do they start at infinity.

L CZOS APPROXIMATION OF 1/7s

The function 1/7¥s can be approximated by using the Lanczos
method of approximation, the smallest root of equation (69)
giving,

3+ s 102

1+ 38 x5°
This approximation of 1/7s can be used as A in the transfer
function shown in equation (49), and the transfer will
be an approximation to the transfer function 1/751 The initial
estimate (Xy) can be chosen to be either 1/s® or 1/s. This will
again give two possible simulations of the transfer f tion.
If the initial estimate is chosen as 1/s8°, the first order

approximation gives the transfer function,
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A 1
T(s) = ———— (88)
s + 3
s(———)
3s+ 1
The operational amplifier needed to simulate this transfer f -
tion is shown in Fig. 21. The second order approximation with
the same initial estimate gives a transfer f ction as shown in
equation (89).

A 1
T(s) = (89)
s + 3 2

38 + 8% (-
38+ 1

38+ 1 s + 3
s + 3 38+ 1
The simulation circuit is shown in Fig. 22.

The frequency response of these two approximations is shown

compared with the frequency response for the fractional integral

nction in Fig. 23. Both start at infinity and decrease to
zero as the function 1/7wt does. The frequency response of the
second approximation cannot be distinguished from the frequency
response of the function in Fig. 23.

The transfer f nctions for these two approximations of 1/7%
will have an impulsive response which is the same as the re-
sponse to a unit step of the Lanczos approximation to the trans-
fer function 7s with the initial estimate chosen as s. This
can readily be seen by comparing the transfer functions. The
impulsive responses then can be represented by equations (85)
and (86), and are graphically shown in Fig. 20.

If the initial estimate (xy) 1s chosen to be 1/s, a slightly

different transfer function results. The first order approxima-
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t on using this initial estimate 1is,
A s + 3
T(8) = —ouo (90)
38+ 1
This trensfer f ction can be simulated by an operational ampli-
fier as shown in Fig. 24. This is recognized as being the same
operational amplifier as the circult determined with an initial
estimate of 1/s° except that it has a different termination for
the lattice network. The second order approximation using the
initial estimate 1/s gives a transfer function as expressed in
equation (91), and requires the operational amplifier shown in
Fig. 25 for simulation.
A 1
T(s) = (91)
l1+3s

38 + (— )%
s + 3

s + 3 1+ 3 s
8 (———) + 3(——)
1+ 3 s s + 3
Figure 26 shows the frequency response of these two approx-
imations compared with the frequency response of the fractional
integral f nction which they approximate. The frequency response
of the second order approximation cannot be distinguished from
the response of the function for the scale and range of values
used. It therefore gives a good approximation to the transfer
function of the fractional integral.
These two approximations to 1/7s differ by a factor of 1/s
from the transfer functions of the two Lanczos approximations

to /s which were formed using an initial estimate of s®. The

impulsive response of the two approximations to the fractional
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integral are therefore the same as those showr in Fig. 18.

Also, the equations for the impulsive response are equation (80)
for the first order approximation and equation (82) for the
second order approximation.

The three methods of approximation just shown can now be
compared as to their relative merit. What will be said will,
in general, apply to both approximations of the fractional de-
rivative operator and the fractional integral operator. This
will be true when using the inputs which were considered for
each one since the outputs were shown to be the same. The first
thing that i1s noted is that it takes an approximation of one
higher order for the Newton approximation scheme over the
Lanczos approximation scheme in order to get comparable results.
This is to be expected since the Lanczos method is designed to
converge more rapidly.

The amplitude of the response of the fractional derivative
operator to a unit step function input, 1/y/wt, starts at in-
finity at initial time, then drops sharply down to small values,
and after two seconds approaches zero asymptotically. The Newton
approximation approximates the initial infinity with an initial

amplitude s z~. where m is the order of the approxima-
tion. From equation (68) and Fig. 8, it can be seen that the
approximate function will approach zero amplitude for large values
of time at a rate comparable with function 1/74rt which is the
desired response. The approximation using the method suggested
by Lanczos with an initial estimate of s© for simulation of‘Vs

and of 1/s for simulation of 1//s approximates the initial
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infinite amplitude with a delta function. The approximation
also approaches zero at a rate comparable to the actual function,
as can be verified with equation (82) and Fig. 16. If the ini-
tial estimate in the Lanczos approximation is s for simulation
of s and 1/s° for simulation of 1//s, equation (86) describes
the output and Fig. 20 graphically shows it. This approximation
uses an initial amplitude of 3*. where n is the order of the
approximation, to simulate the initial infinite amplitude of the
theoretical function. It does not approasch zero but will be
left with a small error which is (1/3)®, where n is the order

of the approximation. From the above observation it can be

said that the Newton approximation and the Lanczos approximation
with an initial estimate of s® for simulation of %/s and 1/s for
simulation of 1/fs give the best results. The network for the
Newton approximation is simpler, but in the next section it will
be shown that the networks for both of the approximations can be
reduced to nearly the same network. Figures 27 and 28 compare
the three types of networks and their transfer functions for

simulations of ¥s and 1/7s, respectively.

NETWORK THEORY IN APPROXIMATING
and 1/7s

The appearance of the lattice networks in the above approx-
imations brings to mind another approach to the problem of sim-
ulating fractional derivatives and fractional integrals. The
characteristic admittance of a symmetrical lattice network is

given by
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Y, = v&;*ig (92)
The admittance Yp is the parallel arm admittance, and Yq is the
crossarm admittance. If one of these admittances is chosen to
be 1 and the other s, the characteristic admittance of the net-
work is 7s. If an infinite n ber of these networks could be
used in the feedback loop of an operational amplifier, both the
fractional derivative operator and the fractional integral
operator could be synthesized by making the proper choice of the
input admittance. Practically an infinite number of these net-
works is not feasible. An approximation therefore is made by
truncating the n mber of networks cascaded. This w give an
input admittance which will be only an approximation to the
characteristic admittance. Of course, the greater the n ber
of lattice networks cascaded, the better the approximation.

The truncated group of lattice networks could be either
short circuited or open circuited. These two types of termina-
tions would give different approximations to the characteristic
admittance, but as the number of networks was increased they
would approach the same approximation. The short-circuited
termination can be reduced quite easily to be the feedback net-
works found by using the Newton approximation. It requires
lattice networks in series to produce a feedback admittance that
is the same as the one found by the n order Newton approxima-
tion. The lattice networks will contain twice as many indi-
vidual components as the networks found by using the Newton
approximation, but the components will all be of the same size.

All the output equations calculated are the same, and the graphs
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already plotted indicate the response using one, two, and fo
lattice networks.

If the open-circulted lattice is used for the approximation,
Fig. 29 shows the circuit for simulation of the second order
approximation to the fractional derivative operator, and Fig. 30
shows the simulation for a like fractional integral operator.
The transfer functions for the circuits shown in Figs. 29 and
30 are given in equations (93) end (94), respectively.
s +6 s+ 1

N
T(s) (93)

4 s + 4

A s2 + 68+ 1
T(s)

(94)

4 % + 4 8
As can be seen, the response to a unit step of the approximation
to the fractional derivative is the same as the impulsive re-
sponse of the approximation to the fractional integral. This
is as i1t was before. The amplitude of the response to the above
input is,
eo(t) = 1/4 3(t) + 1/4 + e~t (95)

By cascading two more networks, the feedback element would
have the same number of elements as the lattice network with
short-circuited termination which represents a third order New-
ton approximation. The transfer function for the fractional
derivative approximation in this case 1is,

s* + 28 s3+ 70 s+ 2838 +1

N
T(s) = (96)
8 s4 + 56 s2 + 56 s + 8

The response to a unit step input is,
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1
eo(t) = - S(t) + 0.125 + 0.5 e-t
8

+ 1.707 ¢-5-828t 4 0,293 ¢-0. 1rwe (97)
Figure 31 shows these two time responses compared with the time
response of the fractional derivative function. The response
for the network utilizing four lattices cannot be distinguished
from the response of the function for the range of values used
except in the very near region of zero time. As can be seen
from the equations, this approximation mekes use of a delta
function to simulate the initial infinite output. Also it will
be noticed that the output function of the approximation will
never reach zero. This disadvantage makes it slightly inferior
to the approximation given by the Newton case, or, in other
words, the case using the lattice with short-circuit termination.

Symmetric lattices repeatedly occur in the Lanczos approx-
imations. The first order approximation uses a single lattice
terminated either by 1 or s, depending on whether the initial
estimate is chosen to be s~ or s, respectively, for the frac-
tional derivative, or 1/s or 1/s°, respectively, for the frac-
tional integral.

The second order Lanczos approximations generate a feedback
lattice with lattice elements, the feedback lattice being termi-
nated in either 1 or s. It can be readily seen that the feed-
back lattice with lattice elements is equivalent to four lat-
tices in cascade. This equivalence can be demonstrated as
follows. If three of the lattice networks are taken as a -

terminal network, they can be reduced to a single lattice by
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using Bartlett's bisection theorem. This bisection is shown in
Fig. 32.

The parallel arms of the equivalent lattice network derived
by the bisection theorem have admittances which are equal to the
input admittances of one-half section with the two terminals re-
sulting from the bisection of the parallel arms shorted, and
the two terminals resulting from the bisection of the crossarms
open circuited. This can be seen to be the network P in the
parallel arms of the lattice network in the Lanczos approxima-
tions.

The crossarm admittances of the equivalent lattice network
are derived as above except that the terminals which were shorted
are open circuited, and those which were open circulted are
shorted. This can be seen to be the network Q in the crossarms
of the lattice network as used in the Lanczos approximations.
Three cascaded lattices then replace the single lattice with
lattice elements in the feedback element of the operational am-
plifier.

The termination of this complicated lattice network in each
Lanczos case is another lattice network with the same elements
as the three cascaded lattice networks, and with a termination
admittance of either 1 or s. The total feedback network in the
Lanczos approximation is the equivalent to four cascaded lattices
terminated in an admittance of either 1 or s. This group of
lattices is seen to be of the same type as for the Newton ap-
proximation from above, and of the same length for comparable

degrees of approximation. As was seen when discussing the Lanczos
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approximations, the networks which would give the lattices ter-
minated in an element of 1 gave a slightly better approximation
since these give time responses in the input functions chosen
which do attain an amplitude of zero at large values of time.
The results of the above work with simulation of the oper-
ators -¥s and 1/4/8 can be extended to all fractional powers of s
that are integral powers of 1/2. The 4-s operator can be ap-
proximated by substituting the lattice networks which have an
approximate characteristic admittance of 7s in the parallel arms
of another lattice which has crossarm admittance of 1, as shown
in Fig. 33 for a first approximation to -i.’s of the Newton type.
This total feedback network could then be applied as the paral-
lel arms of another lattice network and the whole thing used as
a feedback element to simulate As can be seen, thils
rapidly develops into some very complex networks which are not

easily reduced.

APPLICATIONS OF FRACTIONAL OPERATORS

The operator Is appears in several types of problems. One
of these 1s the solution of an RC transmission line as was shown
by Heaviside (2}. The circuits considered could be used to
simulate such a line.

The equations of heat flow can be simulated by a series of
RC networks, and the equation describing such flow therefore
contains a fractional operator. In analog simulations of these

heat flow problems, long series of RC networks have been used
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(4). The use of the above operational amplifier and lattice
network would greatly simplify the analog simulation of these
problems, and would requlire less equipment.

Another problem qulte simllar to the heat problem would be
the diffusion of neutrons in a nuclear reactor. Any problem
then that could be simulated with an RC 1line could possibly
better be simulated by the operator /s and the simulation
schemes shown.

Another application of the transfer function 1//s occ s
in the compensation of servos. The usual criterion of goodness
of a servo's response to a unit step functlion 1is zero steady-
state error. The canonical form for this criterion is shown in
Fig. 34. This canonical form will be referred to as canonical
form I and has a response to a unlit step input of

g{t) = 1 - o-kt (98)

If the criterion of goodness of a servo's response to a
unit step function i1s zero steady-state error and large initial
slope, then the canonicsal form is shown in Fig. 35. This will
be called canonical form II. The transfer function of the
servo 1is

k
T(8) = e (99)
Ys + k
If a unit step 1is the input signal, the output 1is
g(t) =1 - ekzt + ekzt erf k7t (100)
The response is shown in Fig. 36 for both canonical form 1 and
canonical form II with gains, K, of one and two. As can be seen

from the response functions, the servo of canonical form II will



38

have zero steady-state error. It has a faster rise time than
the servo of canonical form I; however, after the initial quick
rise it approaches zero steady-state error at a slower rate
than canonical form I.

The frequency responses of these two canonical forms are
shown for gains of one and ten in Figs. 37 and 38, respectively.
The response of canonical form II improves more with changes to
higher gain than does cenonical form I. Its low-frequency re-
sponse still is not as good, however, meaning that canonical
form II will still take a longer time to read zero steady-state
error.

For a position servo which has high damping, the system
compensated with the fractional derivative operator is as shown
in Fig. 39. The transfer function will be,

K

T(s} = (101)

7s%/2 + Rs® + K
With a unit step input the time response could be solved from

the following equation.

(s + A/3) -1
g(t) = o72At/3 £-1 ~ (102)
2A AR 2A3 + 27
- — 8% - 8- (—— )
3 3 27
R
where A = . The equation is not readily solvable as a

function of time in closed form. The second term in the denomi-

nator has one real root and two complex conjugate roots if

b2 a3 26 A° - 27 A2
-+ — 0, where b = (———) and a = - —. It has three
4 27 27 3
1'% a%
real roots for — + — < 0. The condition which separates the

4 27 =
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1 ad
complex roots from the real roots i1s .. + — = 0. It is found
4 27

that two complex roots exist for all values of A except when
A < -1.89. In a physical system A cannot be negative; therefore
no values can be chosen for the parameters J, R, and K for which
there are no complex conjugate terms. The actual time response
of a system of this type will be shown in an analog computer
simulation later.

A position servo with low damping and fractional derivative
compensation has approximately the form as shown in Fig. 40.

The transfer function is,

K

T(s) ——— (103}

s3/2 + x

The response to a unit step input can be expressed as,
eOCt eOCt 2 e"oc/z t
g{t) = 1 - erf ot = ————— cos
2 /o 7wt

5w

sin (t -T) + aT (104)
2 6

The last integral can be evaluated only by n merical methods.
In lieu of this, an analog computer simulation of the approxima-

tion is shown In the next section.

COMPUTER SIMULATIONS

The lattices required to simulate the fractional operators

were built and analog computer simulations were made of the
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approximate fractional operators. The feedback element used
consisted of five cascaded lattices. All four terminations
which are indicated in the preceding material were tried. Figure
41 shows the response of the approximate fractional derivative
operator to a unit step input. No difference can be detected

for any of the f different terminations over the time range
used. The response is the same as the expected one, giving a
very good approximation to the fractional derivative operator
except at the initial time.

Figure 42 shows the response of the approximation to the
fractional integral operator to a unit step input. Again the
response 1s the same for all of the terminations, and over the
range of time shown closely approximates to expected response
of a fractional integral.

Analog computer simulations were also made for the servo
compensation techniques indicated in the preceding section.
Associated with each of the ¢ ves shown is a diagram of the
servo simulated. Figures 43 and 44 show the response to a nit
step input of servos of canonical form I and canonical form II,
respectively. The curves are as predicted by the response equa-
tion, the plot of which is shown in Fig. 36. Figures 45 through
47 show the response of a position servo without compensation.
The three curves are for three different values of damping.

The next three f , Figs. 48 through 50, show these same
servos with fractional derivative compensation. This compensa-
tion definitely does give a much quicker initial slope than the

uncompensated servo. Also for the servos with less damping,
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the initial oscillations are all but eliminated. There is only
one overshoot at the higher gains. The fractional derivative
compensation does have a disadvantage, though, which is particu-
larly noticeable in the servos with higher damping. This dis-
advantage 1s that after the initial large slope, the servo ap-
proaches the steady-state value at a slow rate.

The fact that the fractional derivative compensated servo
and the servo with no compensation are each strong where the
other one 1s weak suggests using a compensation technique which
is an average of these two. A particular average transfer
function which will give the greatest weight to the f ction
with the largest value is,

(1)2 + (7s)? 1+ 1/s
T(s) = (105)
1+ Vs 1/7s + 1/s

The forward loop transfer function of the servo 1s then,

1+ 1/s K
T(s) ( )
1/7s + 1/s | s(Js + R)
1+ 1/s K

(106)

1+ Vs | |Js + R_

51 shows the response to a it step input of the averag-
ing transfer function which has replaced the integral function.
Also shown 1n Fig. 51 1s the response of the integral function
to a unit step input. It can be seen that there is an initisal

and that the rate after this is higher than the in-
tegral function. PFigures 52 through 54 show the response to a
unit step input of the same position servo considered previously,

using this average transfer function for compensation. This
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combines the good points of both compensation tech-
niques, giving a high initial slope, eliminating the oscillation,
and still reaching steady-state conditions quickly.

Figure 55 shows the &nalog simulation of the response of
the approximate form of a position servo with low damping and
fractional derivative compensation which was considered earlier.
The servo has only one overshoot which is approximately the same
amplitude for all values of gain. The response is therefore
similar for all values of gain except for changes in initial
rise time. The servo response for smaller values of damping is
shown in Figs. 56 and 57. As low values of damping are ap-
proached, high gains give an oscillatory behavior. With a damp-
ing factor of two, as shown in Fig. 56, the servo goes into
oscillations which increase in magnitude with time if a gain of
ten is used. This method of compensation of a position servo
produces no beneficial results, but instead makes the servo
unstable at high gains.

Figure 58 shows the analog simulation of a velocity servo
with fractional integral control. A ramp input was used to de-
termine if the servo would be able to follow with zero velocity
lag. As can be seen from the curves, even at nine seconds the
velocity lag of the servo was still increasing. Fractional in-
tegral compensation is not helpful, therefore, in eliminating
velocity lag. The average transfer function between integral
compensation and fractional integral compensation was also tried
for the velocity servo. i 59 shows these results. As ex-

pected, the velocity lag is still there. The servo with self
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average of 1 and 7s comes to its final value of lag more quickly

than the servo with fractional integral compensation.

CONCLUSIONS

Approximations to the fractional operators 1/7s and Vs are
made by using the Newton and Lanczos approximation techniques.
These approximations are readily applied to operational ampli-
fier circuits for simulation. The networks developed for the
feedback loop of these operational amplifiers consist of cas-
caded lattice networks with resistors and capacitors. The char-
acteristic admittance of these lattices is 7s. Therefore in the
limiting case of infinite n mber of lattices in cascade, the
functions 7% and 1/7s would be simulated. Both approximate
functions are simulated by truncating the number of lattices
in cascade.

The fractional operators csn be used in several different
applications. They can be used in the analog simulation of heat
transfer problems and neutron diffusion problems. Also they may
find an application as compensation for servos. In this appli-
cation, the fractional derivatlive compensation of a position
servo gives a higher initial slope than the uncompensated servo
has, eliminates most of the oscillation in servos with a low
damping factor, aend has zero steady-state error. Fractional
derivative compensation has the disadvantage of giving a slower
approach to the steady-state condition after its initial high

slope, than does the uncompensated servo. A better result is
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obtailned by using a self average of the fractional derivative
and the identity transfer functions. This average Incorporated
the good points of each.

The fractional integral compensation of a veloclty servo
gives no help in the elimination of velocity lag. In fact, with
fractional integral compensatlion the velocity lag is slow to
even attain a steady-state value. The self average of integral
compensation and fractlional integral compensation also gives a
steady-state velocity lag though 1t attains steady-state condi-
tions much quicker than the servo with fractional integral

compensation only.
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Fig. 3. Block diagram of linear adaptive servo
modified for simulating s transfer function.

Fig. 4. Operational amplifier for first order
Newton approximation of 7.
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The p rpose of this paper 1s to approximate the operators
Vg and 1/75. A necessary preliminary to the approximating pro-
cedure 1s a study of the linear adaptive servo. The linear
adaptive servo is analyzed with both derivative feedback con-
trol and integral feedback control. If the transfer f nction
for this servo has large feedback gain, then the Newton and
Lanczos approximations to the fractional derivative and frac-
tional Integral operators may be simulated.

These approximations may be readily realized on opera-
tional amplifiers. The networks developed for the feedback loop
of these operational amplifiers consist of cascaded lattice net-
works with resistors and capacitors. The characteristic admit-
tance of these lattices 1is W@; therefore in the limiting case
of infinite number of lattices in cascade, the functions‘Vs'and
l/ﬂb would be simulated. Both approximation functions are simu-
lated by truncating the number of lattices in cascade.

The fractional operators can be used in several different
applications. They can be used in the analog simulation of
heat transfer problems and neutron diffusion problems. Appli-
cation of these operators to servo compensation is demonstrated.
The fractional derivative compensation of a position servo gives
a higher initial slope than the uncompensated servo has, elimi-
nates most of the oscillation in servos with a low damping
factor, and has zero steady-state error. Fractional derivative
compensation has the disadvantage of giving a slower approach
to the steady-state condition after i1ts initial high slope than

does the uncompensated servo. A better result is obtained by



using a self average of the fractional derivative and the
identity transfer functions. This average 1lncorporates the

good points of each.

The fractional integral compensation of a veloclity servo
gives no help in the elimination of velocity lag. In fact, with
fractional integral compensation, the velocity lag is slow to
even attaln a steady-state value. The self average of integral
compensation and fractional integral compensation also gives a
steady-state velocity lag, though it attains steady-state condi-
tions quicker than the servo with fractional integral compen-
sation.

Actual analog computer simulations of the transfer func-
tions 7s and 1//s, and the servo compensation techniques are

included in the paper to substantiate the above observations.
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