742

AN IMPLEMENTATION OF A SUBSET
OF PSL/PSA

by
FRANCIS B. HAJEK
B.A., Peru State College, 1961

M.S., Oklahoma State University, 1966
Ed.D., Oklahoma State University, 1970

A MASTER'S REPORT
submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE
Department of Computer Science

Kansas State University
Manhattan, Kansas

1984

Approved by:

{é/)_,cﬁa@/ 7 A?ﬁ %Jﬂ;
ajor FNOfessor

~d

© Al11202 LDD&9S
5 |

-
1 g,éf
f:f?’
H
&, = ACKNOWL EDGEMENT

I wish to express my sincere appreciation to Dr, David
Gustafson for his advice and encouragewent in regard to this
project and during my program of graduate study here at
Kansas State University. I also wish to thank Tim btoore of
the computing center staff for his help with IDMS in CMS., A
very special acknowledgement is due to my wife Gretchen and
daughter Angela for their Iove and patience during this
project.,

TABLE OF CONTENTS

Table Of CONLENtS esessevcssssvansesnsesansssnssasssnsensns Ll
List Of Illustrations .l.'...lll.‘..I..lll..'...'.l.l..l.liii

Chapter l Intromction.......l..'..!.ll.l"...l.....'.’.'

1.] OVervieWesesevovsrassrorovansascncacasescanncns
.2 BACKOTOUN: o ¢ isnitionesd rissiiiiies o v oiibiomne s nne
.21 Software Life CYCle .teevecssscessscssncnsnsnns
.22 MethodologiesS veesseecesssceacsnsssvessnnancss
.3 PSL/PSA A 9 P P9I EEP PO TERRR DRSPS
.4

YOO L B PO

General ReqUIrEmENtS seseecascessssssrnsncasnss
5 Organization seesseescsscesaassssscccsnsscsssss 10U
Chapter 2 Systerﬂ Design..ll...Il.l....l"l'l."l.l...ll!' 11
Chapter 3 Restrictions and LimitationS.eesesssesssesesces 16
Chapter 4 System Implementation seeeecesssessesssvesssses 22
I Iobrodietion ceseess i s evinneeis s prownees s wieey &3
2 Ims SChema 2P 0P PR ERROPOR AR PSR TERPENE NP RN 25
3 Program for PSL ENtrY cececocscssasssosesnsnnss 20
5
1

1
4
&
il
1
b

Chapter Conclusions and Enhancements eeesssesssscsssses 33
Bel ConglUusions suswiemens s s smmwmnn s oo svommmos s snscbn D0
5.2 ENhanCements cscesssssssarvisssssesvonsssssosnns 32

Selected Bibliography secscssssssvvosvvssssssssssssssscase 37

Appendix A: User's Manual

Appendix B: EXECs and Procedures

Appendix C: Sample Session

Appendix D: Source Code Listings

ii

LIST OF ILLUSTRATIONS

Table of PSL objects and Relationships 17
JUNELIoN RECORES sininssiniaiBinidbsihikiBniaing 20
IDHSE Schemd SEPUCEUPE cuvwmsunvs s sm s wnweweeswy 24
System Menu .isssessnassisnsas e T ST T A3

iii

Page 1

AN IMPLEMENTATION OF A SUBSET OF PSL/PSA
by
Frank Hajek

Chapter One

INTRODUCT ION

1.1 OVERVIEW

This project implements some of the capabilities of
PSL/PSA and makes use of the IDMS data base management
system in the implementation, PSL/PSA is a software tool
used for collection and analysis of data about information
processing systems. The data is stored in a data base and
can be analyzed and organized by PSA to define requirements
specifications, The project is an experiment to determine
if a workable subset of PSL/PSA could be implemented on the
National Advanced Systems computer at [Kansas State
University and if the power of a large data base management
system (IDMS) could be utilized to facilitate the
implementation. A previous experiment implementing PSL with
the relational data base Query-by-Example (QBE) provides a
precedent for this type of project, The QBE experiment,
described in a paper by Perriens(9), was successful in
showing that a general-purpose relational data base system
could provide the analytical support functions of PSA and
thus could be used for implementation of PSL/PSA. The
current project will attempt to employ the data base
management system IDMS similar to the way in which QBE was

used in the previous experiment, IDMS is based on a network

Page 2
model and PSL, because it is modeled in terms of objects and
relations among the objects, has a relational orientation
and so the advantage of the theoretical similarities
contributing to the success of the previous experiment will

not be present in this project.

1,2 BACKGROUND

1,21 SOFTWARE LIFE CYCLE

It is generally agreed that software passes through
several stages from its inception to its use in a production
enviromment, (16) These stages are collectively called the
sof tware life cycle,

The first stage, called the reguirements analysis
stage, defines the requirements for an acceptable solution
to a problem, All aspects of the new system including
resources, limitations, necessary (features, and optional
features must be considered at this stage so that the best
choices between conflicting constraints can be made.

The second stage is called the specification stage. In
this stage inputs, outputs, and general algorithms are
determined, It is here that PSL/PSA can be used to
identify, record, and analyze the relationships between the
many elements of the system. PSA reports can help
coordinate the efforts of the various teams involved in the
project.

In the next stage, called the design stage, specific
algorithms are developed and modules are defined, A

stepwise decomposition is used to subivide the modules so

Page 3

that they could be developed by individuals or small teams,

The fourth stage is called the coding stage. The

algorithms are implemented in a computer language in this

stage. If the previous steps were done well, this stage is
reasonably easy and leads to more correct results.,

In the fifth stage, called the testing stage, the
performance of the computer code is compared with some known
results, The test values for this stage should have been
specified in the design stage. For best results modules
should first be tested independently, then small groups of
components should be tested together and finally the
complete system should be tested.

The sixth and last stage 1is the operation and
maintenance stage. In this stage errors found by users of
the system are corrected and changes requested by the users
are made. More than 60% of the total effort expended on a
sof tware project is often represented in this last stage.

It is important that all stages of the software life
cycle receive careful consideration., Problems at one stage
may not be detected until a later stage. For example, the
design may reveal flaws in the specifications and weakness
in the design may be revealed in the coding, testing, or
operations stages, The earlier that the problems are found
and corrected, the less costly and disruptive will be their
solution, Thus any methodology to improve the quality of
the early stages of software development can prove to be

very beneficial,

Page 4

1,22 METHODOLOGIES

One of the attempts to utilize a computer in the design
and development of 1large software systems was the ISDOS
Project, The ISDOS Project was developed by the Department
of Industrial Engineering at the University of Michigan
during the 1960's(4). The ISDOS project identified several
problems associated with the building of large software
systems. Some of these problems are:

-There are inconsistent levels of detail on different
parts of the system because of different abilities of
communication of the personnel involved with the project.

~There are incomplete specifications because of
confusion about who actually writes specifications for some
parts of the system,

-There is inconsistency in the naming of variables and
even in the meanings associated with some of the words
used,

-There is inefficient data storage becauge of different
views of the relationships between the data,

-There is often a communication problem between

designers and future users of the system.

A major result of the ISDOS project in response to
these problems was the development of PSL/PSA. PSL/PSA, a
subset of which is to be implemented in the current project,
is discussed in section 1.3.

Several other methodologies have been developed, some

automated and some manual, to aid in the regquirements

Page 5
specification stage. Among these are Software Engineering
Requirements Methodologies (SREM) (1), Higher Order
Software (HOS) (5), Structured Analysis (SA) (12), and the

methods used on the A-7 project (6) .

1.3 PSL/PSA

Problem Statement Language-Problem Statement Analyzer
(PSL/PSA)is a software tool that can be used to analyze
systems and develop specifications. PSL is a language
designed primarily for use during the requirements
specifications phase of the system life cycle. PSA is the
tool designed to analyze and interpret the PSL language.

The PSL language consists of statements which describe
a software system in terms of system objects and how these
objects are related to one another, These statements allow
high-level design specifications but they must employ
specific constructs and obey certain laws of syntax.
Besides thes formal statements, there is also some provision
for brief narrative descriptions.

PSA is a software package which accepts the language
statements, processes them, and stores them in a data base.
Information from the data base can then be used by PSA to
provide diagnostic support in terms of error and consistency
checks and also to promote design analysis by extensive
report generation.

There are definite advantages to gained by the use of

PSL/PSA. PSL/PSA promotes better commmunication between all

Page 6
groups involved with the development of the new software
system, Consistency is enhanced because of the ablility to
check the documentation from the early stages by everyone
involved in the project. Checks for completeness can also be
provided by PSL/PSA at any point in the project, These
advantages are realized largely because the system is
automated but there are also other advantages inherent in
PSL/PSA. The unambiquous syntax provides for a better
definition of the problem and allows for consistent
documentation of the requirements by different teams. PSA
outputs such as the Formatted Problem Statement report give
a clear presentation of the overall requiremennts
specification. (9) The PSL language is designed to state the
requirements and not the procedures to solve the problem and
gso is less constricting on the designers. Although there
would be an expected time and cost savings because of
automation of clerical tasks, the major benefit claimed for
PSL/PSA is that the quality of the documentation is improved
and thus the cost of design, implementation, and maintenance
is reduced,

The PSL/PSA system is characterized by the following
capabilities.
(a) A special language used to describe software
systems. (b) A translator for putting the formal
language statements in a internally processable form,
(c) A data base for storing the information £from
step(b). (dy A report generator for retrieval,
analysis, and formatting of information from the data

base., (e) An update facility for maintaining

Page 7
consistent, and accurate information in the data base,
The PSL language specifies objects, properties of the
objects, and relationships among the objects. The objects
may be physical or conceptual things in the proposed
software system such as inputs, outputs, processes,
conditions, events, or logical collections of data such as
sets, entities, or groups. Each object must have a name and
be classified by type. There are approximately 30 different
object types in PSL.

Relationsips describe the connections and interrelations
between objects, such as PROCESS—-object RECEIVES
INFUT-cbject or PROCESS-cbject GENERATES CUTPUT-object.
Relationships may be used to describe the interaction
between a system and its environment, to indicate the size
and behavior of the system, to describe the data flow of the
system, to define logical collections of data, to indicate
subdivisions of system objects, and to allow for presenting
many characteristics of system objects, There are
approximately 75 different relationships available in PSL.

Properties of PSL objects are special relationships that
allow for more complete descriptions and presentation of the
of the characteristics of objects. While most relationships
represent the connection between two different object types,
properties are used to represent associations between
objects of the same type. Examples of Properties
relationships are SUBPARTS ARE, and ATTRIBUTES ARE.

PSL/PSA can be used for writing better requirements
specifications. The PSL language allows description of

proposed software systems., PSA provides analysis and

Page 8
documentation support. PSL/PSA, if applied carefully in the
specification stage can result in reduced costs for later
stages of the software life cycle.

1.4 General Requirements.

Kansas State University students of computer Science do
not have access to a PSL/PSA system and so this project is
intended to provide a software system which will simulate
some of the capabilities of PSL/PSA for use by students
studying software engineering., The PSL/PSA system contains
many more objects and relationships than can be effectively
utilized by the novice user of the system, A small but
workable subset of PSL/PSA-like capabilities will allow the
user to gain some familarity and competence with PSL/PSA and
gain experience, in at least a limited way, with an
automated requirements specification system.

In order to provide a worthwhile implementation of a
subset of PSL/PSA, the following goals were deemed
important, These goals define general reguirements for the
system and each goal leads to several specific decisions on
how best the goal can be achieved, The goals are described
in the remainder of this section while the choices and
considerations for achieving these goals are discussed in
the next chapter.

The first goal is that of a non-trivial
implementation, The system should include enough PSL objects
and relationships to allow implementation of simple but
non-trivial examples, Some basis for determining how many
objects and relationships to implement is given in 'A PSL

Primer', by Eldon Wig(15), The paper is a beginner's manual

Page 9
for PSL/PSA, Its purpose is to provide the novice user of
PSL/PSA with a basic familiarity and understanding of the
system without having to struggle through the considerable
documentation usually required. It explains the use of a
subset of PSL/PSA in describing a simple payroll processing
system, The current project should attempt to implement
most of the PSL/PSA capability discussed in this PSL/PSA

primer.

The second goal is that of user-friendliness, The
system should be user friendly to the extent that learning
the mechanics of the system can be accomplished quickly. The
user should not have to memorize a large set of new terms to
use the system, He/She should not have to be concerned with
syntax such as using commas,semi-colons, and other marks of
puncuation, The user should be reminded of his options or
be prompted for particular information each time he/she is
required to enter data for the computer.

The third goal is that of being educational. The system
should aid the student in learning about PSL/PSA by guiding
him/her to make valid choices about PSL objects and the
relationships between these objects. The student should be
able to use the system even with a very meager knowledge of
PSL/PSA. When the user selects the option of entering a PSL
object in the data base he should be reminded of the
different objects types available in this system. When he
intends to insert relationships between pairs of these
objects he should be reminded of the possible relationships

available in this system and the paticular object types that

Page 10
may be associated with each relationship., Of course to be an
aid to learning PSL/PSA the information presented must
represent valid PSL/PSA constructs and be repeated each time
the user attempts to enter objects or relationships.

The fourth goal is that of convenient access.

A student should be able to access the system with a
minimum of JCL and commands, The student should not have to
keep track of details such as opening and closing files and
saving updated files of information. 1Ideally the user
should be able, after logging on the computer, to issue a
single command and have the software become available for
use, A single command from within the system should allow
the user to exit the system with all the changes saved.

Thus a nor-trivial implementation, user friendliness,
instructiveness ,and convenient access are the four goals
identified for this project. The design and implementation
of the project was conducted with these goals in mind.

1.5 Report Organization,

The rest of this report is organized as follows,
Chapter two presents some of the design considerations and
tradeoff possibilities. The third chapter gives more
specific restrictions and limitations of the project.
Programs and procedures to be implemented are discussed in
chapter four, and a summary of the project and future

enhancements are presented in chapter five,

Page 11
Chapter 2

System Design

In an attempt to accomplish goal number one, eight (8)
PSL objects and 24 relationships between these objects were
included. This includes the objects (except for SET,
INTERFACE, INTERVAL, KEYWORD, and SYSTEM-PARAMETER)
mentioned in the PSL Primer(15).

The eight objects are INPUT, CQUTPUT, PROCES, ENTITY,
GRQUP, ELEMENT, EVENT, and CONDITION, PSL/PSA is to be used
to model a software system and thus the above named objects
have the following meanings. INFUT - data that enters the
software system from outside the system. QUTRUT -
information generated within the system and delivered to the
external world. PROCESS - the part of the system that
converts input to output. ENTITY - a compound data item
internmal to the system, ELEMENT - analogous to a field of
data. GROUP - a collection of fields within a record of
data. EVENT - a discrete occurrence in time, CONDITION -~ a
status or state.

These eight objects allow for approximately
29(excluding inverse relationships) relationships and twenty
four of these relationships were implewmented, Several
different relationships may exist between objects of the
same type and since there may be several instances of each
object, these eight objects and twenty four relationships
provide an opportunity to exercise many of the capabilities
of PSL/PSA, ‘Thus the user should be able to generate a

non-trivial requirements specification.

Page 12

In order to achieve the second goal, to make the system
as user friendly as possible it was decided to have the
system in an interactive rather than a batch mode, Although
batch mode might might involve less computer cost, the ease
of data entry and immediate response of interactive mode was
considered to be more important., PSA has an associated data
base to store the PSL information, To provide this
function, this project uses an existing data base and
associated data base management system, IDMS, available on
the AS 5 computer., IDMS provides the usual advantages of a
data base management system such as sharability,
nonredundency of data, ease of | use, flexibility and
integrity. For this project, the capabilities of IDMS to
locate and retrieve data quickly will be utilized, Also the
structure of the system will be used to help to correctly
crganize and maintain the PSL data., Further, the use of
IDMS will provide some information about the advantages and
disadvantages of a network data base model being used to
implement PSL/PSA.

There are many ways to map the PSL objects and
relations to the structures in IDMS, The least restrictive
mapping is to map information into the data base in a
strictly textual format. That is, let each record consist of
only one large field which would contain the cbject name,
object type, a description of the object, and a statement
about relationships in which the object participates. This
would allow the user the freedom to include all of the PSL
objects and relationships, The user would also have less

restrictions on how the information should be organized,

Page 13
however this lack of specific organization would make
reports similar to that of PSL/PSA wery difficult if not
impossible to generate, There would be no key on which to
sort and no way to pick out particular pieces of information
because the information would not necessarily be in the same
position in each record. Alse it would not be using the
power of IDMS to enforce the PSL/PSA rules. The user could
inmadvertantly insert incorrect object types or establish
relationships that would not be wvalid in PSL/PSA. Another
approach might be to have one record for each object with a
field for the object type, a field for the object name, a
field for a description of the object, and one or more
fields for listing relationships in which the object
participates, This would allow for sorting on various keys
or fields of the records but still the power of IDMS would
not be utilized, A& simple file with these fields could
perhaps serve as well as the data base.

Because of the limitations of these approaches, a more
structured approach to mapping of PSL information into the
data base was employed,

By letting the objects of PSL/PSA be associated with
the records of IDMS and letting the relationships of PSL/PSA
be associated with sets of IDMS ,a more restrictive mapping
of PSL/PSA into JIDMS was obtained. This maping imposes a
certain organizational structure on the information entered,
and is therefore much more restrictive than if only textual
information were used, However, making use of the network
structure of the data base greatly enhances navigation

through the data base for searching and report generation,

Page 14
Letting the PSL objects be represented by records in the
data base encourages more accurate and consistent use of
names and terminology. Thus, the structure and capabilities
of IDMS could be used to advantage in enforcing the rules of
PSL/PSA.

In order to achieve the third goal of being
educational, it was considered appropriate to write the
application program for the IDMS data base in such a way
that 'the user would not need to deal with the complexities
of IDMS, but to simply respond to prompts from the program,
The user is therefore presented menus from which he/she may
choose items, He/She is then prompted for appropriate names
and data needed to ensure correct processing of the selected
item, This kind of organization and presentation thus helps
to fulfill goal number three, The user has the opportunity
to learn PSL/PSA by using a subset of it and is guided in
making wvalid choices regarding PSL. objects and
relationships.

In an effort to achieve the fourth goal, to make the
system convenient to access, an EXEC file is used to carry
out the many commands and JCL required to run an IDMS
application in CMS, the interactive system on the computer.
The necessary commands are quite extensive and would present
a formidable obstacle if not contained in an EXEC, The
commands and EXEC are documented in the appendix.

In this chapter methods of achieving the four goals of
a nomtrivial implementation, user friendliness, being
educatiomal, and <convenience of access, have been

considered, The plan to achieve these goals includes

Page 15
mapping PSL. data into the IDMS data base by letting PSL
objects be IDMS records and PSL relationships be IDMS sets,
letting the IDMS data base management system perform the
function normally provided by PSA, and the use of the IDMS
system in an interactive mode by a menu-driven application

program initiated by an EXEC,

Page 16
Chapter 3

Restrictions and Limitations,

In this chapter some restrictions and limitations of
the project are discussed. ‘These restrictions and
limitations involve the separate sections of code required
to manipulate each object and relationship, implementation
of inverse relationships, implementation of the ATTRIBUTES
ARE relationship, implementation of relationships of an
object to objects of the same type, and implementation of
many to many relationships.

Table I indicates the objects and relationships to
which this project is restricted. Each unique relationship
requires a separate section of code because when the
application program is compiled the IDMS schema(actually
subschema) is checked and the actual IDMS record type (PSL
object type) and IDMS set type(PSL relationship) is expected
by the compiler., This prevents using a general procedure
which could be called many times to insert the different
relationships and so the application program is difficult to

modularize,

Table I is symmetric in the sense that if a relationship
exists between object A and object B, then an inverse
relationship exists between object B and object A, For
example with objects PROCESS and INFUT, the relationship
PROCESS USES INFUT has an inverse relationship INPUT is USED
BY PROCESS.

IDMS allows for owner pointers,that is, pointers from

17

PSL OBJECTS

INPUT

OUTPUT PROCESS ENTITY GROUP ELEMENT EVENT CONDITION ATTRIUBTE
_nummqm OF mmn.m w«mu CONSISTS | CONSISTS ATTRIBUTES
OF (Ds) OF (DS) ARE (P)
INPUT SUBP. mm BY
ARE (S5 __EU _w
_.umm S OF mmz...”mw ED CONSISTS | CONSISTS ATTRIBUTES
OF (DSs) OF (Ds) ARE (P)
OUTPUT SUBPART DER] VE
ARE gmmm BY ?U
USES (DD TES ILIZES | USES (Db) | USES [bD) | USES (DD} [INCEPTION- ATTRIBUTES
(pD) | ggpgaTES | L1y e (bo) | UsES (Do) | USES [00) INGEETIoN;
ECE [VES DATES PDATES DATES ARE (P)
PROCESS _wm.q M.mz VES SUBP D .xn.u_ TERMINAT I
ua el R{VES ER]VES RIVES m._._mmm mw
¥EB) B0 | 768} V)
~wm..w BY COMSISTS | CONSISTS ATTRIBUTES
ENTITY UPDATE OF (Ds) OF (DS) ARE (P)
mmx*ﬁ
BY (DD
CONTAINED | CONTAINED wmm BY CONTAINED | CONSISTS | CONSISTS ATTRIBUTES
GROUP IN (DS) IN (DS) mmm mmM IN (DS) OF (DS) OF (DSs) ARE (P)
BY (DD
CONTAIMED | CONTAINED %MM BY CONTAINED | CONTAINED ATTRIBUTES
T IN (DS) IN (DS) m*.u <m iN {DS) IN {DS) ARE |P)
nm<m T._u
ON - INCEP -
Tion m-m: WHEN ATTRIBUTES
EVENT TGN SO B SSNDITION | ARE (P)
E S T OR
Tak= BecoiiEy |
BECOM I NG ATTRIBUTES
CONDITION TORF ARE [P)
(sD)
SF SYSTEM FLOW DD DATA DERIVATION
SS SYSTEM STRUCTURE SD SYSTEM DYNAMICS
DS DATA STRUCTURE P PROPERTIES

TABLE 1

Page 18
each member in a set directly back to the owner of the set.
The use of these pointers would allow for the inverse
relationships to be printed out in reports even though they
were not actually entered as such, This corresponds to the
"double entry bookkeeping” of PSL/PSA. (In PSL/PSA when a
relationship is entered, its inverse is automatically
entered,) For example, to simulate INPUT USED BY PROCESS,
which is the inverse of PROCESS USES INRUT, locate the
INFUT-OWNER and traverse the INPUT-OWNER SUBPARTS ARE INFUT
set, For each member record of this set use the owner
pointer of the set PROCESS USES INPUT to find and print each
PROCESS so that this particular INFUT. is USED BY PROCESS
relationship is displayed.

Although the owner pointers are implemented in the
schema, the implementation of the inverse relationships in
this way would require another 24 sections of code in the
application program, In order to allow timely completion of
the project the inverse relationships were omitted.

Fach PSL object can be characterized by one or more
attributes Some of these attributes could actually be
represented by ATTRIBUTE-VALUE relationships. Bowever this
would involve implementing many more records and sets in
IMS and so to keep the project manageable it was decided
not to implement this relationship but rather to allow for a
field in the IDMS record to 1list the particular attributes
and descriptions of each object.

PSL/PSA allows certain objects to be related to
themselves, for example PROCESS UTILIZES PROCESS, but IDMS

does not allow for sets where the owner object type is the

Page 19
same as the member object type and so these types of
relationships could not be implemented.

IDMS does not directly allow for many to many
relationships, Only one to n relationships are allowed.
That is, one owner record to n (n greater than or eqgual to
one) member records (relationships) for each set. However,
one record type can be a member of more than one set type in
IDMS., If an owner record of a first set type is related to
many members and each of these members is related to an
owner of a second set type, the owner record of the first
set type will be related to many records of the second set
type. Since this situation can also be reversed, a many to
many relationship is possible. These records which are
members of two or more set types are called "junction"
records. (10) In this project the junction records are
duplicates of the (object name)_owner record and related to
the (object name)_owner record by the relationship SUBPARTS
ARE, For example to allow for a Process to be associated
with several inputs and an input to be associated with
several processes the INFUT record type is used as a
junction record. When an input is entered it is actually
stored as an INFUT OWNER record type. Then when the set
PROCESS_USES_INPUT is entered a copy of the INFUT OWNER
record is made and stored as an INPUT record type. This
record is then linked to the correct PROCESS record to
complete the PROCESS USES_INPUT set and also linked to the
INFUT_OWNER record type of which it is a copy so that it is
a member record of the INPUT_OWNER_SUBPARTS_ ARE_INPUT set.

This same procedure is carried out for the sets that involve

INPUT INPUT

OWNER a PROCESS
TWO ONE OWNER
/INPUT 1NPUT
| Two oNE |

FIGURE 1

The "junction" records INPUT-ONE and INPUT-TWO allow PROCESS-ONE

to be associated with two INPUTs, and INPUT-ONE to be associated with -

two PROCESSes. Junction records are necessary since the relationship
represented by the dashed 1ine is not allowed in IDMS.

Page 21
Process and Entity, Process and Group, Process and Element,
and Process and Output. The use of the SUBPARTS ARE
relationship is not used in exactly the way it would be used
in PSL/PSA and is not available as such for the user of the
system, It is used here only to facilitate implementation
of the possible many to many relationships between PROCESS
objects and several of the other object types in the system,

Only a minimum amount of the report generating
capabilities of PSL/PSA was provided. The PSL objects that
have been entered are printed, followed by any relationships
between these objects, as defined by the user., This
information printed is not actually given as it would be in
any of the several PSA reports , but it most closely
resembles that of the PSA report called the Formatted
Problem Statement. Other reports could be generated by
selective searches of the data base but the report generated
by this project gives a complete picture of the PSL/PSA
information that has been entered, The procedures used to
generate this report demonstrate the basic procedures for
searching the data base.

The program consists of several "case” statements,
(implemented by the PL/I Select statement) one for each
menu, Each "case" statement is followed by a series of
"procedures", (not actually a PL/I procedure, but a separate
code section accessed by GOTO statements), one for each
option of the case statement, to perform the operations
selected, There are for instance, 24 such "procedures" to
enter the 24 relationships implemented in this project, and

24 "procedures" to delete the relationships. Although the

Page 22
codes for these "procedures" are very similar they must each
have the specific IDMS names and so cannot be replaced by a
single module.

Thus several special considerations were made and
techniques employed to facilitate the completion of this
project. The project is limited to the implementation of
only objects and relationships listed in Table 1. Not all
of these possible relationships were implemented. Some
relationships, for example UTILIZES, were not implemented
because of the restrictions of IDMS and others , for example
the inverse relationships and the ATTRIBUTES-ARE
relationships, because they would greatly increase the scope
of the project., Several (object name)-OWNER records had to
be created to allow the many to many relationships of
PSL/PSA to be represented in IDMS. The report generating
facility was limited to printing the contents of the data
base in a form similar to that of the PSA Formatted Problem
Statement. The implementation of the system under these

constraints is discussed in the next chapter.

Page 23

Chapter Four

System Implementation.

4,1 Introduction.

In this chapter some of the details of the
implementation for this project are given, The
implementation includes a schema and an application program.
The schema is written using DDL(Data Description Language)
with the host language being COBOL., The application program
is written using DML (Data Manipulation Language) with the
host langquage being PL/I, The programs were implemented on
the National Advanced Systems computer at Kansas State
University. Some of the JCL. is given and described in the

appendix.

The first step in the implementation was to design and
code an IDMS schema to represent the PSA data base. The
schema is a complete description of the data base and must
include the names of all data items, records, sets, and
areas in the data base. A data structure diagram given by
Figure 2 was used to represent the PSL objects and
relationships of Table 1. The schema for this project is
discussed further in section 4.2.

The second step of the project was to design and code
an application program that would allow entry of PSL-1like
information into the IDMS data base., The application program

is a PL/I program that allows for entry of the PSL objects

24

IPUT-OUTER ~EUENT CONDITTON T0TPUT-OHNER
100 [CALC 70| CALC ev-men-co 800 | CALC 300 [CALC
m_é._gg [DL EVENT-NO [DL | “AsT PO o ooNDITION-hOT DL,
PSL-PSA PSL-PSA PSL-PSA T
|5
ROCESS-ORER Bl
o i [CALC 3
e TRIESS D0 DL oE
o, o8 PSL-PSA X
& K m.m
< PR-RECEIVES—IN _Umcﬁmmm «u_ﬂl.u.mmimlﬂ.;_hnl._w.m._.mlm“ﬁl}lluw. mc.z._:
WL CALC |, “Pe-uses—an - [A1 [CALE | rrebemioes—oy |31] GALC
INPUT-NO JDL | =PST nRGon PROCESS-NADL . [LPST NPOon T UTAUT-NO DL
PSL-PSA_], _PSL-PSA PSL-PSA
?....—Ac @ m M Hm
> @Y@/Q mmrlwim.!mm JM._...._.
TTTY-OHER N o o —— N
M [CALC GROOP ELEHENT
STCEZEN I Y/ /s @] CALT | S0 _| CALC
PoL-POR \s% : GROUP-NO L [—eR~conststs—er __ STRIFANT-N [OL
% PSL-PSA . PSL-PSA
“ap m £
~El . 3%
5121250 ke GROUP-OANER ELEPENT-DAR
= m%e[400 | CALT 500 [CALC
ETIY-NO JOL| FLETEYT-ORER-00] DL
PSL-PSA PSL-PSA PSL-PSA

FIGURE 2

Page 25
and relationships, The use of DML commands then allows
storage of these objects and relationships in the IDMS data
base., This program is designed to aid the novice user of
PSL/PSA by suggesting only legitimate choices for IDMS set
relationships. The application program for this project is
discussed in section 4.3.

The third step of the project was to design and code a
program to generate reports on the contents of the data
base, This program must allow for navigation through the
entire data base so that the information pertinent to a
particular report could be retrieved, The information must
then be compiled and printed in the desired report format.
The report generation for this project is acomplished by the
application program and is discussed further in section

4.4.

4.2 IDMS Schema

The schema for the PSL/PSA data base defines all record
types, set types,areas, and files used in the data base.
Figure 2 is a graphical representation of the complete data
base, For this project a record type was defined for each
of eight PSL objects, INFUT,CUTPUT, PROCESS, ENTITY, ELEMENT,
EVENT, and CONDITION. Other reord types were defined, those
with the suffix OWNER, to facilitate location of records and
navigation through the data base. For example, for records
of type PROCESS a record PROCESS OWNER was defined and used
as the owner of the set PROCESS_OWNER SUBPARTS ARE PROCESS.

This facilates location of PROCESS records because once this

Page 26
owner record is located by an IDMS command, one can traverse
the set by use of the IDMS 1links between members of a set.
An IDMS set type was defined for each of twenty four (24)
PSL relationships to be represented, plus six (6) sets to
help facilitate location and retrieval of records from the
data base, There may be more than one relationship, thus
IDMS set, between two record types. For instance if
'Customer-Orders' and 'Pay-Amounts' are INPUT objects and
Order-Process' and Bill-Process are PROCESS objects, some of
the relationships that may exist are: Order—-Process USES
Customer-Crders; Bill-Process USES Pay-Amounts; and
Bill-Process USES Customer—Orders. The schema gives the
basic structure for the PSL/PSA data base. The record types
and set types which are defined, such as PROCESS USES INFUT,
indicate which relationships are possible, but the actual
entry of specific instances of these records and sets is
accomplished by an application program.

The schema code is comprised of five main
subdivisions: the schema description statements, the file
description statements, area description statements, record
description statements, and set description statements., The
complete code for the IDMS Schema program is given in the
appendix but a brief description is as follows.

The schema description statements consist of the schema
name and version number, date, installation information,
and a section entitled remarks for further documentation.
Only the schema name is mandatory.

The file description statements indicate the number and

location of the data base files, There may be several files

Page 27
used with the data base. A usual convention is to have each
data base Area be stored on a separate file, It is also
necessary to have one file, called the Journal file, for
keeping track of data base transactions for purposes of
backup., Since just one Area was defined for this project,
only one data base file, besides the Journal file, is used.

The Area description indicates that the data base be
divided into Areas and Pages within these Areas, The
subdivision of a data base into different Areas allows for
situations where certain portions of the data base are not
made available to some of the users. This provides for some
security and a means of oontrol of access to the data.
Since these concerns are not relevant to this project only
one Area, named PSL-PSA, was used for this schema,

The record description statements give the name and
field descriptions of each of the record types used in the
data base, Fach record type had a four character field for a
record number, a sixteen character field for a record name,
and an eighty character field to be used to indicate
attributes or a description of the PSL object represented by

the record,

Set description statements consist of Name, Order,
Owner, and Member sentences for each set in the data base.
The set names are made up of the first two characters of the
owner record name concatenated with the name of the PSL
relationship connecting the two PSL objects, concatenated
with the first two characters of the member record name.

The ORDER sentence for each of the sets in the schema

Page 28
indicates the order in which new records will be positioned
in the set, This has been arbitrarily specified as LAST for
each of the sets, The MODE sentence specifies NEXT and
PRIOR linkage so that the set can be traversed either
forward or backward., The OWNER sentence gives the owner name
and specifies the position of the sets NEXT and PRICR
pointers in the record prefix., The MEMBER sentence gives
the member recrd name and specifies the position of the
NEXT, PRIOR, and OWNER pointers in the record prefix., The
disconnect option of the MEMBER sentence was set to OPTIONAL
MANUAL so that records could be disconnected(or connected
to) from a set without affecting the other sets in which the

record participates.

4.3 Program for PSL entry.

The application program is the vehicle which allows
entry, deletion, or modification of data, in this case the
PSL objects and relationships, into the data base and the
manipulation and retrieval of the data. For this project
the application program first requires the entry of each PSL
object name that is to be a record instance in the IDMS
data base. To enter a PSL object, the name and description
of the object must be entered and assigned to the proper
fields of the IDMS record. The count for that object type

is incremented and assigned to the count field of the record
and then the record is stored in the data base with the IDMS
STORE command, If the object is of type PROCESS it is then

connected to the PROCESS OWNER record that is set up when

Page 29
the program begins, If the object is of type INPUT it is
stored as an INPUT OWNER record. OBJECTS of type CUTPUT,
ENTITY, GRUP, and ELEMENT are also stored as
(object_name) OWNER, If the object is of type EVENT or
CONDITION it is simply stored as such.

To modify a PSL object, the record must first be
located, the new information must then be entered in the
record, and the record stored again in the data base with
the IDMS command MODIFY,

To delete a PSI. object from the data base, first the
record must be located ,then disconnected from any PSL
relationships it may have participated in, if any, and then
ERASED., The count for that object type must be decremented
and the count field in each succeeding record of that type
must also be adjusted accordingly,

Once the proper PSL objects have been entered in the
data base then relationships between these objects can be
defined. In a PSL relationship such as INPUT CONSISTS of
ELEMENT, INFUT is considered the owner and ELEMENT is
considered a member for purposes of inserting the
relationship into an IDMS set. First the owner cobject which
would be of type INFUT OWNER in the above relationship, must
be located, Then if no copy of INPUT OWNER exists, a copy
is made and STORED as an INPUT record. This sets up the
pointers for the IDMS set. The member object,which would be
ELEMENT_OWNER in the above relationship, is then located and
a copy is made and STORED as an object of type ELEMENT, The
two objects are then entered in the IDMS set relationship by

a CONMECT command., If the owner object is of type PROCESS

Page 30
then no copy of it is made since PROCESS is not a junction
record as is INPUT for instance.

To delete relationships the location process is
followed as above, of course no new records are created, and
a DISCONNECT comand is issued instead of the CONNECT
command,

when entry of all instances of records and sets has
been made the data base has the data necessary to generate
some of the information to be included in PSL/PSA reports, A
separate procedure may then be used to locate certain
records and sets in the data base, to retrieve the reguired
data, and compile the information to be included in the
printed report, The procedure to print a report on the
contents of the data base operates as follows. First each
object named for each of the eight objects types is located
by the IDMS CALC command and the name and attribute
information for the object 1is printed, Then each
relationship is taken in turn beginning with the
relationship PROCESS RECEIVES INFUT. The owner_object type
is searched and when an owner of the relationship is found
all member names are printed, A similar process is followed
for each of the 24 relationships implemented in this project
s0 that every instance of each of the relationships is
printed,

Since the application program is written in PL/I but
uses IDMS, the PL/I compiler must recognize the IDMS DML
commands and names, This is achieved by the use of several
IDMS EXECs, The Exec SUBSCHEMA DESCRIFTION relieves the user

from having to declare all the variables of the subschema

Page 31
again in the PL/I application program. This Exec, along
with the Exec SUBSCHEMA _BINDS generate the communications
block, IDMS names, and IDMS records, and the necessary BIND
functions for the application program. The Exec IDMS_STATUS
is used to check for error conditions and should be called
after each DML command. In this program, however, many
times the IDMS-STATUS is not called after DML commands so
that conditions 1like end-of-set and end-of-area could be
used to terminate loops in the program,

The naming conventions of IDMS allow only sixteen
characters for a name so that set names such as
PROCESS_USES_INPUT and INPUT _OWNER SUBPARTS_ARE INFUT would
be too long. As indicated in section 4,2 the set name will
consist of the first two characters of the owner record type
name, an underscore, the the PSL relationship name, an
underscore,and the first two characters of the member record
type name. An exception to this 1is that record type names
with the suffix OWNER are written as the first two
characters of the record type followed by an O. Thus
PRCCESS _USES_INPUT is written as PR USES_IN and
INPUT_OWNER_SUBPARTS_ARE_INPUT is written as
INO SUBPARTS_IN.

Incorporation of the above procedures, Execs and naming
conventions provides an application program which allows
interactive storage, modification, and retrieval of PSL-like
information from the IDMS data base without the user having
to be concerned about the details of IDMS., In fact the user
may assume that he/she is working in a strictly PSL/PSA type

system and need not be aware that IDMS is even involved,

Page 32
This is made possible by the menu-driven nature of the PL/I
application program., The user only makes choices from menus
or responds tc prompts from the program., A user manual is
provided which gives more complete details on use of the

program.,

Page 33

CHAPTER 5

5.1 Conclusions.

The goals of the project, as listed in Chapter Two were
all achieved., 1In fact, many of the capabilities included in
the PSL Primer by Wig(l5) are contained in this project.
The system is convenient to access, user friendly, and
allows for some learning about PSL/PSA.

The eight PSL objects and twenty four PSL relationships
allow for simple but non-trivial examples to be
implemented, The number of different instances of each of
these eight objects, and therefore the number of
relationships connecting pairs of objects, is limited only
by the size of the memory allocated for the data base {which
can be increased by minor changes in the schema). More PSL
objects and relationships can be incorporated into the
system as will be discussed in the enhancements section of
this chapter. Thus, the potential for realization of the
first goal is congiderable,

The second goal, the system must be user friendly, was
also realized, The student will bave an EXEC to run the
program so that the many details of JCL and preparation of
the data base will be transparent to the user. Once the
program has begun the user is presented with some choices in
a menu format., Eventually the user is required to enter
names and properties of PSL objects, but then is returned to
a menu, Each mena regquires only the entry of a single

letter or digit, The use of menus eliminates the need to

Page 34
remember large sets of commands, and thus one should be
competent in use of the system within a few minutes of use.

Use of the project will help a student become familiar
with some of the terms and concepts of PSL/PSA. A student
is guided to make correct choices for relationships between
PSL objects by the options available in the menu. An
incorrect relationship such as QUTPUT DERIVES INFUT is not
possible since that choice is not available in the menu,
The object types are included in the list of relationships
available and the student need only supply the names of the
objects to be included in the particular relationship. In
this way goal three, the system should aid the student learn
about PSL/PSA, is achieved,

The fourth goal, the system should be comwvenient, is
realized since it was possible to incorporate the entire
system in a module to run under CMS. The system can be run
from any terminal and, as was stated previously, only the
name of an EXEC must be typed in to dget the system started.
A printed report of the results of a session can be cbtained
by running the system at a hard-copy terminal or by having
the history of a session sent to a file at the users virtual
reader and later retrieved at a hard-copy device.

Thus it can be concluded that at least some of the
capabilities of PSL/PSL can be implemented using IDMS in an
interactive mode with a menu -driven application program,
For the PSL objects and relationships that are implemented
the system works well and allows insertions, deletions, and
modifications., Additional information about each object can

be included in the description field of each object record.

Page 35
This information is available in a data base and need only
be retrieved in various combinations and formats to resemble
the reports generated by PSA, 'This project is perhaps too
limited in scope to make any further claims of its
applicability or wvalue but if the suggestions for
enhancements in the next section are carried out there will

be an improved basis for comparisons and evaluations.

5.2 Enhancements.

There are many possible enhancements to be made that
might improve or enlarge this system. Some of these would
require changes in only the application program and others
would require changes in the schema and perhaps the DMCL as
well as in the application program., The report generation
capabilities could be accomplished by modifications to the
application program, The report generated by this project
most closely resembles the report called the Formatted
Problem Statement of PSL/PSA, but other reports could be
obtained by retrieving and organizing the information stored
in the data base in suitable ways.

Completeness checks could be included as possible
outputs from the system, This would involve checking to see
if all INPUTS consist of GROUPS and ELEMENTS and that all
GROUPS are reducible to ELEMENTS. These kinds of checks
could be accomplished by modifications in the application
program,

Enhancements that would involve changes in the schema

for the data base include increasing the number and/or size

Page 36
of fields in the records of the data base and incorporating
more of the PSL objects and relationships into the schema,
INTERFACE, which might represent a department which
interacts with some part of a software system, and SET,
which might correspond to a file(such as a master payroll
file) are two objects which could be incorporated into the
system, These two objects would make possible several mcre
relationships and thus increase the generallity and
applicability of the system,

The organization of the system could perhaps be
patterned after that of PSL/PSA. The PSL objects are
grouped in classes based on the aspect of the target system
which they describe, Those classes are System Flow, System
Structure, Data Structure, Data Derivation, System Size and
Volume, System Dynamics, System Properties, and Project
Management, Each of the above classes of objects could
perhaps be stored in a different AREA of the data base to
provide a greater degree of autonomy.

Other enhancements might be to include the
complementary relationships in such a way that the user need
not be concerned about entering both relationships. For
example if the relationship PROCESS RECEIVES INHUT is
entered then the relationship INPUT IS RECEIVED BY PROCESS
is automatically entered, A scheme for doing this was

discussed in chapter 3.

Page 37

Bibliography

1, Bell, Thomas E., Bixler, David C., Dyer, Margaret E., "An
Extendable Approach to Computer-Aided Software
Requirements Engineering", IEEE Transactions on Software

Engineering, Veol. SE-3, No. 1, January 1977

2. Computing Center, "User's Guide to IDMS in (MS",

Kansas State University, July 1, 1983

3. Conrow, Kenneth, The CMS Cookbok, Computing Center,

Kansas State University, February 1980

Deveaux, D., "Users Guide to PSL-PSA", ISDOS Working Paper
No. 52, Department of Industrial Engineering, ‘The

University of Michigan, November 1971

5. Hamilton, Margaret, Z2ellin, Saydean, "Higher Order
Software — A Methodology for Defining Software", IEEE

Transactions on Software Engineering, March 1976

6. Heninger, Kathryn L., "Specifying Software Requirements
for Complex Systems: New Techniques and Their
Application", IEEE Transactions on Software Engineering,

Vol., SE-6, No, 1, January 1980

7. ISDOS Project, "Problem Statement Language (PSL)

Introduction And Users Manuel, Department of Industrial

Page 38
And Operations Engineering, University of Michigan, May

1977

8, Lamie, Edwards L. PL/1 Programing, Wadsworth Publishing

Company, Belmont, California, 1982

9. Perrins, Matt, "Software System Description and Analysis

10.

11.

lz.

13,

l4|

With QBE - an Experiment Based on PSL/PSA, Software

Engineering Exchange, Vol., 2, No, 3, April 1980

Perron, Bob, et al, "Concepts and Facilities", Cullinane

Corporation, Wellesby, Mass, 1977

Ross, Douglas T. and Schoman, FKenneth C. Jr.,
"Structured Analysis for Requirements Definition"", IEEE
Transactions on Sofrware Engineering, Vol. SE-3, No, 1,

January 1977

Ross, Douglas T., “"Structured Analysis (SA): A Language
for Communicating Ideas, IEEE Transactions on Software

Engireering, Vol, SE-3, No., 1, January 1977

Tiechrow, Daniel, and Sayani, Hasan, "Automation of

System Building", Datamation, August 15, 1971

Tiechroew, Daniel, and Hershey, Ernest A, III, "PSL/PSA:
A Computer-Aided Technique for Structured Documentation
And Analysis of Information Processing Systems", IEEE

Transactions on Software Engineering, Vol. SE-3, No. 1,

Page 39

January 1977

15, wig, Eldon D., "PSL/PSA Primer", Department of

Computational Science, University of Saskatchewan,

November 1978

16, Zelkowitz, Marvin V,, ‘Perspectives on Software

Engineering", Computing Surveys, Vol. 10, No, 2, June
1978

APPENDIX A

User's Manual

APPENDIX A

User Manual

Before the program is used the first time the data base
files must be initialyzed using the EXEC PSLSTART. If the
program "crashes" during execution the EXEC PSLSTART can be
used to reinitialize the data base files and start over,

To restart the program type PSLPSA. An EXEC readies the
environnent for use by the system and starts the program.
This process requires some time and several messages are
printed which should be ighored. See the sample session in
Appendix C. The program bhegins with a welcome message and
then a menu is presented as shown in figure 3. Choices
1,2,and 3 lead to sub-menus. Each sub-menu has an option to
return to the main menu. Choice number 4 prints a report on
the contents of the data base and then returns to the main
menu, Cholce number 5 terminates the program. The usual
sequence for use of the program would thus be:

1. Make a choice from the main menu.

2. Make a choice from the sub=-menu.

3. Enter the required information.

Y4, Repeat steps 2 and 3 as necessary.

5. Return to the main menu.

6. Hepeat steps 1 through 4 as necessary.

7. Print the report.

8. Exit the program.

A1l

All choices and responses typed in by the user must be

followed by pressing the RETURN(or ENTER) key.

A2

£ JHNDId

180dJd LNIHd

NNIW NIYW Ol NHNL3Y
g40

3AS00HD OL HDOIHM wWOod4d

SJdIHSNOI LVYTI3d 4O 1511

SAdIHSNOITLY 13y
313730 d0 ¥3LIN3

NNIN NIYW Ol NHNL3YH
HO

ISO0HD Ol HDIHM WOXA

S1O3rgo 40 1SI17

5133080

1Sd A4100W ¥0 313730

ANTW NIVYW Ol NuN1l3Y
HO

3S00HD Ol HOITHM WOoHd

S4103rao J0 1517

S123080 1S4 d31iN3

WILSAS 3HL LIX3

Sd1HSNOI 1Y13d 1Sd 343730 HO H31N3 T E
SL33Arg0 MSd A4100Ww HO 3137134 "z

S123rao 11sd dH3ilN3 !

ANIW NIVW

S1HOd3IY INI1Hd a4

ur

AN

3

A3

In the user's first session with the system, the first
step would be to enter some PSL objects, choice number 1.
Otherwise the first step should be to print the contents of
the data base. This is necessary to set the counters for the
data base but also lets the user know what objects and
relationships are present,

The "Enter PSL Objects" menu allows the entry of each
of the eight types of PSL objects into the data base. To
enter an object, say eof type INPUT, choose number 1. You
are then prompted to enter the name of the INPUT object.
After the name is entered, you will be prompted to enter a
description of or attributes of the INPUT object. This must
be done with 72 characters or less., When finished, you are
given the option of entering another object of the same type
or returning to the "Enter PSL Objects" menu by typing NONE
when prompted for the name of an INPUT, From this menu you
may choose to enter objects of other types using the sanme
procedure as above or you may return to the main menu by
entering a "gh,

The "Delete or Modify PSL Objects™ menu allows for
corrections of mistakes and/or changing object names and
descriptions. You are asked to select the type and then
enter the name of the object to be modified or deleted. The
next choice is D to delete the object or M to modify the
object., If the object is to be modified you are required to
enter the new name and description of the object. The new

name can of course be the old name if only the description

Al

needs to be changed, but it must nevertheless be typed in
again., You are then returned to the "Delete or Modify PSL
Objects" menu. When all modifications have been made you
can return to the main menu by entering a "9",

The "Enter or Delete Relationships" menu allows for
entry or deletion of PSL relationships. You are presented
with a menu of 24 possible relationships. Suppose you
choose number 1, PROCESS RECEIVES INPUT, After entering
your choice you are asked if you wish to I insert or D
delete the relationship. You are then prompted for the name
of the PROCESS and for the name of the INPUT. Upon entry of
the input name you are returned to the menu to choose
another relationship or you may choose to return to the main
menu by typing a m"25",

Once you have entered all objects and relationships you
may choose number Y4, Print Report, a report of the data or

number 5, Exit the Program,

A5

APPENDIX B

EXECs and Procedures

EXECs and Procedures

The compilation steps and initialization of the data dictionary
and data base files is accomplished by following the directions
given in the User's Guide to IDMS in CMS (2). The processes reguire
much virtwval memory and A DISK space and this can be acquired by
the following log on.

LOGON VMxxx 800K NOIPL#DEF T3350 191 15#IPL VMSTART

The next step is to access the IDMS EXECs on the I DISK by the

conmand LINKIDMS.

The data dictionary is initialized by using the command

IDMSINIT DDICT.

The schema program SCHEMA1 SCHMA is compiled by the EXEC

IDMSCHMA.

The DMCL program SAMPBASE DMCL is compiled by the EXEC

IDMSDMCL.

The subschema SSCHEMA SUBSC is compiled by the EXEC IDMSUBSC.

The above steps each require only a few minutes each to be
completed, however the next step of compiling the PL/I application
program APLIPROG DMLP requires about one and one half hour amnd is

accomplished by the EXEC IDMSDMLP.

The data base file DATABASE FILE1l1 is created and initialized
by the EXEC IDMSINIT DBASE. There are three questions for which

B1

answers are required before this step can be completed. The first
gquestion requires the name of the DMCL. For this proiject the answer
is SAMPBASE. The second question asks for the number of database
files in use. For this project the ansvwer is 1. The third question
requires the size of the data base file in pages. For this project

the answer is 50,

The system is then started with the EXEC IDMSRUN. Several
preliminary messages are printed which may be ignored. No filedefs
need to be entered and in fact no response is required of the user

until he/she is asked to make a choice from the first menu.

There is a demonstration IDMS package given by the User's Guide
to IDMS in CMS(2). Studying the various steps given by this demo
package along with the source programs for this project should allow

one to replicate or expand upon this project.

The EXEC PSLPSA allows a student to use this system for a
PSL/PSA exanple provided that the following files exist on the
students A DISK.

DICTDB DB - The data dictionary created by the EXEC IDMSINIT DDICT
DMSGDB DB - 1A file created by the EXEC IDMSINIT DDICT
DLODDB DB - 1A file created by the EXEC IDMSINIT DDICT
SSCHEMA TEXT - Compiled version of SSCHEMA SUBSC
SAMPBASE TEXT - Compiled version of SAMPBASE DNCL
DATABASE FILE1 - The data base file created by the
IDMSINIT DBASE step.

PSLPSA EXEC

B2

The files with filetype DB are expanded and compressed by the
EXEC PSLPSA but if the other files are stored in compressed form
they nust first be expanded. Type PSLPSA and the system begins.
Several messages are printed and some time elapses, as indicated
by the sample session in Apendix C, before the user must respond by

making a choice from the first menu.

The EXEC PSLSTART does all that the PSLPSA EXEC does plus
initialize the file DATABASE FILEl for new starts or restarts. It
should only be used for starting the system for a new example or
restarting an old example from the beginning. The code for these

EXECs follows.

B3

EXEC LINKIDMS

EXPAND * DB

&ESTACK SAMPBASE
&STACK 1

&STACK 50

EXEC IDMSINIT DBASE
&GSTACK

EXEC IDMSRUN APLIPROG
COMPRESS * DB

&EEXIT

PSLSTART EXEC

B4

EXEC LINKIDMS

EXPAND * DB

ESTACK

EXEC IDMSRUN APLIPROG
COMPRESS * DB

SEXIT

PSLPSA EXEC

B5

APPENDIX C

Sample Session

SAMPLE SESSION

PSLPSA
EXEC LINKIDMS
I (29B) R/O

EXPAND * DB
$
$
$
$
$
5
$
$
$

EXEC IDMSRUN APLIPROG

ENTER FILEDEFS TFOR APPLICATION PROGRAM
EXECUTION BEGINS...

THE FOLLOWING NAMES ARE UNDEFINED:

IDMSCLCX IDMSTRAC IDMSJLRX

THE FOLLOWING NAMES ARE UNDEFINED:

IDMSJINL 2 IDMSIOXT IDMSJLRX

WELCOME T¢ THE KSU IMPLEMENTATION OF PSL/PSA.
YOU HAVE THE FOLLOWING OPTIONS

1 ENTER PSL OBJECTS

2 DELETE OR MODIFY PSL OBJECTS

c1

3 ENTER OR DELETE PSL RELATIONSHIPS
4 PRINT REPORT ON THE CONTENTS OF THE PSL/PSA DATA BASE

5 EXIT THIS PROGRAN

I¥ YOU ARE BEGINNING YOUR SECOND OR SUBSEQUENT SESSION
YOO MUST CHOOSE NO. &, PRINT REPORT, TO SET THE COUNTERS

FOR THE DATA BASE

ENTER THE NUMBER FOR YOUR CHOICE
4

PSL/PSA OBJECTS AND RELATIONSHIPS REPORT

OBJECTS OF TYPE PROCESS
1 PAYROLL_PROCESSI

A PAYROLL PROCESSING SYSTEM EXAMPLE
2 MASTER_UPDATE

RECEIVES EMPLOYEE INFORMATION AND UPDATES MASTER FILE
3 CHEQUE_WRITER

RECEIVES TIME CARDS AND GENERATES A CHEQUE

OBJECTS OF TYPE INPUT
1 EMPLOYEE_INFO

EMPLOYEE INFORMATION TO BE USED BY PROCESS MASTER_UPDATE
2 TIME_CARDS

CONTAIRS EMPLOYEE NUMBE AND HOURSWOERKED

OBJECTS OF TYPE OUTPUT

1 CHEQUE

c2

THE EMPLOYEES PAYCHECK

OBJECTS OF TYPE ENTITY
1 MASTER_FILE

RECORD OF THE MASTER FILE

OBJECTS OF TYPE GROUP

OBJECTS OF TYPE ELEMENT
1 OPERATION_CODE
VALUES ARE 1 THRU 3
2 HOURLY_WAGE
VALUES ARE 5 THRU 20
3 ENPLOYEE_NUMBER
EMPLOYEES IDENTIFICATION NUMBER
4 LAST_ NAME
EMPLOYEES LAST NAME
5 INITIALS
EMPLOYEES FIRST AND MIDDLE INITIALS

6 TAX_CODE

7 REG GLAR_HOURS
HOURS LESS THAN OR EQUAL TO 40
8 OVERTIME_HOURS

HOUR OVER 40

9 GROSS_PAY
10 INCOME_TAX
1 INSURANCE

C3

UNEMPLOY MENT INSURANCE

12 CANADA_PENSION
13 UNION_DUES

14 NET_PAY

15 RECORD_KEY

16 PROVINCE

OBJECTS OF TIPE EVENT

OBJECTS QF TYPE CONDITION
RELATIONSHIP (S) PROCESS RECEIVES INPUT
MASTER_UPDATE RECEIVES EMPLOYEE_ZINFO
RELATIONSHIP(S) PROCESS RECEIVES INPUT
CHEQUE_WRITER RECEIVES TIME_CARDS
RELATIONSHIP(S) PROCESS GENERATES OUTPUT
CHEQUE_WRITER GENERATES CHEQUE

PRESS 'ENTER' TO CONTINUE

YOO HAVE THE FOLLOWING OPTIONS

1 ENTER PSL OBJECTS

2 DELETE OR MODIFY PSL OBJECTS

3 ENTER OR DELETE PSI1 RELATIONSHIPS

4 PRINT REPORT CON THE CONTENTS OF THE PSL/PSA DATA BASE

Cch

5 EXIT THIS PROGRAM

IF YOU ARE BEGINNING YOUR SECOND OR SUBSEQUENT SESSION
YOU MUST CHCOSE NO., 4, PRINT REPORT, TO SET THE COUNTERS

FOR THE DATA BASE

ENTER THE NUMBER FOR YOUR CHOICE

3

THE FOLLOWING RELATIONSHIPS MAY BE DEFINED
1-PROCESS_RECEIVES_INPUT 2-PROCESS_USES_INPUT

3-INPUT_CONSISTS_OF_ELEMENT 4-INPUT_CONSISTS_OF GROUF

5-PROCESS_GENERATES_OUTPUT €~PROCESS_DERIVES_OUTPUT
7-PROCESS_USES_ELEMENT 8-PROCESS_UPDATES_ELEMENT
9-PROCESS_DERIVES_ELEMENT 10-PROCESS_DERIVES_GROUP
11-PROCESS_UPDATES_GROUP 12-PROCESS_USES_GROUP
13-PROCESS_DERIVES_ENTITY 14—PROCESS_UPDATES_ENTITY

15-PROCESS_USES_ENTITY 16-PROCESS_INCEPTION_CAUSES_EVENT
17-PROCESS_TERMINATION_CAUSES_EVENT

18-PROCESS_TRIGGERED BY_EVENT
19-EVENT _WHEN_CONDITION 20-ENTITY_CONSISTS_ OF_GROUP
21-GROUP_CONSISTS_OF_FELEMENT 22-ENTITY CONSISTS_OF_ELEMENT
23-0UTPUT_CONSISTS_OF_ELEMENT 24-0UTPUT_CONSISTS_OF_GROUP
ENTER THE NUMBER CORRESPONDING TO THE DESIRED
RELATIONSHIP OR 25 TO RETURN TO MENTU
3
YOU HAVE CHOSEN THE RELATIONSHIP
INPUT_CONSISTS OF_ELEMENT.
ENTER THE INPUT NAME

£5

employee_info
ENTER THE ELEMENT HNAME
operation_code
DO YOU WISH TO (I) INSERT,
OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE
OF I, D
i
RELATIONSHIP EMPLOYEE_INFO CONSISTS OPERATION_CODE HAS BEEN INSERTED
THE FOLLOWING RELATIONSHIPS MAY BE DEFINED
1-PROCESS_RECEIVES_INPUT 2-PROCESS_USES_INPUT
3-INPUT_CONSISTS_OF_ELEMENT 4-INPUT_CONSISTS_OF_GROUP

5-PROCESS_GENERATES_OUTPUT €—-PROCESS_DERIVES _OUTPUT

7-PROCESS_USES_ELEMENT 8-PROCESS_UPDATES_ELEMENT
9-PROCESS_DERIVES_ELEMENT 10-PROCESS_DERIVES_GROUP
11-PROCESS_UPDATES_GROUP 12-PROCESS_USES_GROUP
13-PROCESS_DERIVES_ENTITY 14-PROCESS_UPDATES_ENTITY

15-PROCESS_USES_ENTITY 16-PROCESS_INCEPTION_CAUSES_EVENT

17-PROCESS_TERMINATION_CAUSES_EVENT
18-PROCESS_TRIGGERED BY_ EVENT

19-EVENT_WHEN_CONDITION 20~ENTITY_CONSISTS_OF_GROUP

21-GROUP_CONSISTS_OF_ELEMENT 22-ENTITY_CONSISTS_OF ELEMENT

23-0UTPUT_CONSISTS_OF_ELEMENT 24-OUTPUT_CONSISTS OF_ GROUP

ENTER THE NUMBER CORRESPONDING TCO THE DESIRED

RELATIONSHIP OR 25 TO RETURN TO MENU

4

YOU HAVE CHOSEN THE RELATIONSHIP

INPUT_CONSISTS_OF_GROUP.

Ccé

ENTER THE INPUT NAME
employee_info
ENTER THE GROUP NANME
required_info
DO YOU WISH TO (I) INSERT,
OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE
OF 1, D
i
THE FOLLOWING RELATIONSHIPS MAY BE DEFINED
1-PROCESS_RECEIVES_INPUT 2-PROCESS_USES_INPUT

J-INPUT_CONSISTS_OF_ELEMENT 4~-INPUT_CONSISTS_OF_GROUP

5-PROCESS_GENERATES_OUTPUT €-PROCESS_DERIVES_OUTPUT
7-PROCESS_USES_ELBHENT 8-PROCESS_UPDATES_ELEMENT
9-PROCESS_DERIVES_ELEMENT 10-PROCESS_DERIVES_GROUP
11-PROCESS_UP DATES_GROUP 12-PROCESS_USES_GROUP
13-PROCESS_DERIVES_ENTITY 14~PROCESS_UPDATES_ENTITY

15-PROCESS_USES_ENTITY 16-PROCESS_INCEPTION_CAUSES_EVENT

17-PROCESS_TERMINATION_CAUSES_EVENT
18-PROCESS_TRIGGEKED_BY_ EVENT

19- EVENT_WHEN_CONDITION 20-ENTITY_CONSISTS_OF_GROUP

21-GROUP_CONSISTS_OF ELEMENT 22-ENTITY_CONSISTS_OF_ELEMENT

23-0UTPUT_CONSISTS_OF_ELEMENT 24-0UTPUT_CONSISTS_OF_GROUP

ENTER THE NUMBER CORRESPONDING TO THE DESIRED

RELATIONSHIP OR 25 TO RETURN TO MENU

25

YOU HAVE THE FOLLOWING OPTIONS

t ENTER PSL OBJECTS

Cc7

2 DELETE OE MODIFY PSL OBJECTS
3 ENTER OR DELETE PSL RELATIONSHIPS
4 PRINT REPORT ON THE CONTENTS OF THE PSL/PSA DATA BASE

5 EXIT THIS PROGRAM

IF YOU ARE BEGINNING YOUR SECOHD OR SUBSEQUENT SESSION
YOO MUST CHCOSE NO. 4, PRINT REPCRT, TO SET THE COUNTERS

FOR THE DATA BASE

ENTERE THE NUMBER FOR YOUR CHOICE
1

THE FOLLOWING PSL OBJECTS MAY BE ENTERED

1 INPUT 2 PROCESS

3 QUTPUT 4 ENTITY

5 GROUP & ELEMENT

7 EVENT 8 CONDITION

ENTER THE NUMBER FOR YOUR CHOICE

OR A 9 TO RETURN TO THE MAIN MENU

5

ENTER THE NAME FOR AN GROUP OR '*NONE' IF THERE ARE
NC (OR NO MORE) OBJECTS GF TYPE GROUP
required_info

STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION

CR ANY ATTRIBUTES OF REQUIRED_INWFO

GROUP REQUIRED_INFO HAS BEEN ENTERED
ENTER THE NAME FOR AN GROUP OR 'NONE' IF THERE ARE

¥O (OR NO MORE) OBJECTS OF TYPE GROUP

c8

a_time_card
STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION

OR ANY ATTRIBUTES OF A_TIME_ CARD
consists of employee_name, regular hours and overtime hours
GROUP A_TIME_CARD HAS BEEW ENTERED
ENTER THE NAME FOR AN GROUP OR 'NONE' IF THERE ARE
NO (OR NO MORE) OBJECTS OF TYPE GROUP
enployee_nane

STATE IN 72 CHARACTERS OR LESS, A DESCRIPFTICH

OR ANY ATTRIBUTES OF EMPLOYEE NAME
consists of last name and initials

GROUP EMPLOYEE_NAME HAS BEEN ENTERED
ENTER THE NAME FOR AN GROUP OR '"NONE!' IF THERE ARE
NO (OR NO MOREY OBJECTS OF TYPE GROQUP
deduction_stub
STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION

OR ANY ATTRIBUTES OF DEDUCTION_STUB
identified by record key

GROUP DEDUCTION_STUB HAS BEEN ENTERED

ENTER THE ¥AME FOR AN GRCOUP OR '"NONE' IF¥ THERE ARE
NO {OR NO MORE) OBJECTS OF TYPE GROUP

none

THE FOLLOWING PSL OBJECTS MAY BE ENTERED

1 IRPOT 2 PROCESS

3 OoUTPUT 4 ENTITY

5 GROUP € ELEMENT

7 EVENT 8 CONDITION

c8

ENTER THE NUMBER FOR YOUR CHOICE
OR 2 9 TO RETURN TO THE MAIN MENU
9

YOU HAVE THE FOLLOWING OPTIONS

1 ENTER PSL OBJECTS

8]

DELETE OR MODIFY PSI OBJECTS

(7%}

ENTER OR DELETE PSL RELATIONSHIPS
4 PRINT REPORT ON THE CONTENTS OF THE PSL/PSA DATA BASE

5 EXIT THIS PROGRAM

3
IF YOU ARE BEGINNING YOUR SECOND OR SUBSEQUENT SESSION
YOU MUST CHOOSE NO. 4, PRINT REPORT, TO SET THE COUNTERS

FOR THE DATA BASE

ENTER THE NUMBER FOR YOUR CHOICE
THE FOLLOWINRG RELATIONSHIPS MAY BE DEFINED
1-PROCESS_RECEIVES_INPUT 2-PROCESS_USES_INPUT

3-INPOT_CONSISTS_OF_ELEMENT 4-INPOT_CONSISTS_OF_ GROUP

5-PROCESS_GENERATES_OUTPUT 6-PROCESS_DERIVES_OUTPUT
7-PROCESS_USES_ELEMENT 8-PROCESS_UPDATES_ELEMENT
9-PROCESS_DERIVES_ELEMENT 10-PROCESS_DERIVES_GRODP
11-PROCESS_UPDATES_GROUP 12-PROCESS_USES_GROUP
13-PROCESS_DERIVES_ENTITY 14-PROCESS_UPDATES_ENTITY

15-PROCESS_USES_ENTITY 16-PROCESS_INCEPTION_CAUSES_EVENT

17-PROCESS_TERMINATION_CAUSES_EVENT
18-PROCESS_TRIGGERED_BY_EVENT

19-EVENT_ WHEN_CONDITION 20-ENTITY_CONSISTS_OF_GROUP

c10

21-GROUP_CONSISTS_OF_ELEMENT 22-ENTITY_CONSISTS_OF_ELEMENT
23-0UTPUT_CONSISTS_OF_ELEMENT 24—-OUTFPUT_CONSISTS_OF_GROUP
ENTER THE NUMBER CORRESPONDIXNG TO THE DESIRED
RELATIONSHIP OR 25 TO RETURN TO MENU
4
YOU HAVE CHOSEN THE RELATIONSHIP
INPUT_CONSISTS_OF_GROUP.
ENTER THE INPUT NAME
employee_info
ENTER THE GROUP NAME
required_info
DO YOU WISH TC (I) INSERT,
OR (D) DELETE THIS RELATIONSHIP? ERTER YOUR CHOICE
Or 1, D
i
RELATIONSHIP EMPLOYEE INFO CONSISTS REQUIRED INFO HAS BEENW INSERTED
THE FOLLOWING RELATIONSHIPS MAY BE DEFINED
1-PROCESS_RECEIVES_INPUT 2-PROCESS_USES_INPUT

3~-INPUT_CONSISTS_OF_ELEMENT H4-INPUT_CONSISTS_OF_ GROUP

5-PROCESS_GENERATES_OUTPUT €-PROCESS_DERIVES_OUTPUT
7-PROCESS_USES_ELEMENT 8-PROCESS_UPDATES _ELEMENT
9-PROCESS_DERIVES_ELEMEHNT 10-PROCESS_DERIVES_GROUDP

1 1-PROCESS_UPDATES_GROUP 12-PROCESS_USES_GROUP
13-PROCESS_DERIVES_ERTITY 14—-PROCESS_UPDATES_ENTITY

15~-PROCESS_USES_ENTITY 1€-PROCESS_INCEPTION_CAUSES_EVENT
17-PROCESS_TERMINATION_CAUSES_EVENT

i

c11

18-PROCESS_TRIGGERED_BY EVENT
19—-EVENT_WHEN_CONDITION 20-ENTITY_CONSISTS_OF_GROUP
21-GROUOP_CONSISTS_OF_ELEMENT 22-ENTITY_CONSISTS_OF_ELEMENT
23-0UTPUT_CONSISTS_OF_ELEMENT 24~-OCUTPUT_CONSISTS_OF_GROUP
ENTER THE NUMBER CORRESPONDING TO THE DESIRED
RELATIONSHIP OR 25 TO RETURN TO MENU
YOU HAVE CHOSEFEN THE RELATIONSHIP
INPUT_CONSISTS_OF_GROUP.
ENTER THE INPUT NAME
time_cards
ENTER THE GROUP NAME
a_time_card
DO YOU WISH TO (I) INSERT,
OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE
OF I, D
i
RELATIONSHIP TIME_CARDS CONSISTS A_TIME _CARD HAS BEEN INSERTED
THE FOLLOWING RELATIONSHIPS MAY BE DEFINED
1-PROCESS_RECEIVES_INPUT 2-PROCESS_USES_INPUT

3-INPUT_CONSISTS_OF_ELEMENT R-INPUOT_CORSISTS_OF_GROUP

5-PROCESS_GENERATES_OUTPUT 6-PROCESS_DERIVES_OUTPUT
7-PROCESS_US ES_ELEMENT 8-PROCESS_UPDATES_ELEMENT
9-PROCESS_DERIVES_ELEMENT 10-PROCESS_DERIVES _GROUP
11-PROCESS_UPDATES_GROUP 12-PROCESS_USES_GROUP

13- PROCESS_DERIVES_ENTITY 14~-PROCESS_UPDATES_ENTITY

15-PROCESS_USES_ENTITY 16—PROCESS_INCEPTION_CAUSES_EVENT
17-PROCESS_TERMINATION_CAUSES_EVENT

c12

18-PROCESS_TRIGGERED_BY_EVENT
19-EVENT_WHEN_CONDITION 20-ENTITY_CORSISTS_OF_GROUP
21-GROUP_CONSISTS_OF_ELEMENT 22-ENTITY_CONSISTS_OF_ELEMENT
23-0UTPUT_CONSISTS_OF_ELEMENT 24-OUTPUT_CONSISTS_OF_GROUP
ENTER THE NUMEER CORRESPONDING TO THE DESIRED
RELATIONSHIP OR 25 TO RETURN TO MENU
25
YOU HAVE THE FOLLOWING OPTIONS
1 ENTER PSL OBJECTS
2 DELETE OR MODIFY PSL OBJECTS
3 ENTER OR DELETE PS1 RELATIONSHIPS
4 PRINT REPORT ON THE CONTENTS OF THE PSI/PSA DATA BASE

5 EXIT THIS PROGRAM

IF YOU ARE BEGINNING YOUR SECOND OR SUBSEQUENT SESSION
YOO MUST CHOOSE NO. 4, PRINT REPORT, TO SET THE COUNTERS

FOR THE DATA BASE

ENTER THE NUMBER FOR YCUR CHOICE
2
THE FOLLOWING OBJECT TYPES MAY BE MODIFIED
CR DELETED.
WARNING!!!
DO NOT ATTEMPT TO DELETE AN OBJECT IF YOU HAVE ALREADY
ENTERED A RELATIONSHIP USING THIS OBJECT ONLESS YOU
FIRST DELETE THE RELATIONSHIP
1 INPUT 2 PROCESS
3 ouUTPOT 4 FNTITY

Cci3

5 GROUP 6 ELEMENT

7 EVENT 8 CONDITION

ENTER THE NOUMBER FOR YOUR CHOICE OR '9' TO GET BACK
TC MAIN MENU

2

ENTER THE NAME OF THE PROCESS TO MODIFIED

OR DELETED

PAYROLY_PROCESSI

DO YOU WISH TO DELETE(D) OR MODIFY (M) THIS OBJECT?

M

ENTER THE (NEW)NAME FOR THE PROCESS

PAYROLL PROCESS

STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION OR

ANY ATTIRIBUTES OF PAYROLL_PROCESS

THIS IS THE MATN PROCESS FOR A PAYROLL PROCESSING SYSTEHM
PROCESS PAYROLL_PROCESS HAS BEEN MODIFIED

THE FOLLOWING OBJECT TYPES MAY BE MODIFIED

OR DELETED.
WARNING!!!

DO NOT ATTEMPT TO DELETE AN OBJECT IF YOU HAVE ALREADY

ENTERED A RELATIONSHIP USING THIS OBJECT UNLESS YOU

FIRST DELETE THE RELATIONSHIP

1 INPUT 2 PROCESS

3 OUTPUT 4 ENTITY

5 GROUP ¢ ELEMENT

7 EVENT 8 CONDITION

cly

ENTER THE WUMBER FOR YOUR CHOICE OR '9' TO GET BACK

TC MAIN MEKNO

9

YOU HAVE THE FOLLOWING OPTIONS

1 ENTER PSL OBJECTS

2 DELETE OR MODIFY PSL OBJECTS

3 ENTER OR DELETE PSL RELATIONSHIPS

4 PRINT REPORT ON THE CONTENTS OF THE PSL/PSA DATA BASE

5 EXIT THIS PROGRAM

IF YOU ARE BEGINNING YOUR SECOND OR SUBSEQUENT SESSION
YOU MUST CHOOSE NO. 4, PRINT REPORT, TO SET THE COUNTERS

FOR THE DATA BASE

ENTER THE NUMBER FOR YOUR CHOICE

3

THE FOLLOWING RELATIONSHIPS MAY BE DEFINED
1-PROCESS_RECEIVES_ INPUT 2-PROCESS_USES _INPUT

3-INPUT_CONSISTS_OF_ELEMENT 4-INPUT_CONSISTS_OF_GROUP

S-PROCESS_GENERATES_QUTPUT 6-PROCESS_DERIVES_OUTPUT
7-PROCESS_USES_ELEMENT 8-PROCESS_UPDATES_ELEMENT
9-PROCESS_DERIVES_ELEMENT 10-PROCESS_DFERIVES_GROUP

1 1-PROCESS_UPDATES_GROUP 12-PROCESS_USES_GROUP
13-PROCESS_DERIVES_ENTITY 14~PROCESS_UPDATES_ENTITY

15-PROCESS_USES_ENTITY 16-PROCESS_INCEPTION CAUSES_EVENT
17-PROCESS_TERMINATION_CAUSES_EVENT

18-PROCESS_TRIGGERED BY_EVENT
19-EVENT_WHEN_CONDITION 20-ENTITY_COKSISTS_OF_GROUP

Cc15

21-GROUP_CONSISTS_OF_ELEMENT 22-ENTITY_CONSISTS_OF_ELEMENT
23-0UTPUT_CONSISTS_OF_ELEMENT 24-OUTPUT_CONSISTS_OF_GROUP
ENTER THE NUMBER CORRESPONDING TO THE DESIRED
RELATIONSHIP OR 25 TO RETURN TO MENU
22
YOU HAVE CHOSEN THE RELATIONSHIP
ENTITY_CONSISTS_OF_ELEMENT.
ENTER THE ENTITY NAME
MASTER _FILE
ENTER THE ELEMENT NAME
RECORD_KEY
DO YOU WISH TO (I) INSERT,
OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE
OF I, D
D
RELATIONSHIP MASTER_FILE CONSISTS RECORD_KEY HAS BEEN DELETED
THE FOLLOWING RELATIONSHIPS MAY BE DEFINED
1-PROCESS_RECEIVES_INPUT 2-PROCESS_USES_INPUT
3-INPUT_CONSISTS_OF ELEMENT U4-INPUT_CONSISTS_OF_GROUP

5-PROCESS_GENERATES_OUTPUT 6—-PROCESS_DERIVES_OUTPUT

7-PROCESS_USES_ELEMENT 8-PROCESS_UPDATES_FELEMENT
9-PROCESS_DERIVES_ELEKENT 10~PROCESS_DFRIVES_GROUP
11-PROCESS_UPDATES_GROUP 12-PROCESS_USES_GROUP
13-PROCESS_DERIVES_ENTITY 14-PROCESS_UPDATES_ENTITY

15-PROCESS_USES_ENTITY 1€~PROCESS_INCEPTION_CAUSES_EVENT
17-PROCESS_TERMINATION_CAUSES_EVENT
18-PROCESS_TRIGGERED_BY_EVENT

Cc16

19-EVENT_WHEN_CONDITION 20-ENTITY_CONSISTS_OF_GROUP
21-GROUP_CONSISTS_OF_ELEMENT 22-ENTITY_CONSISTS_OF_ELEMENT
23-0UTPUT_CONSISTS_OF ELEMENT 24-QUTPUT_CONSISTS_OF_GROUP
ENTER THE NUMBER CORRESPONDING TO THE DESIRED

RELATIONSHIP OR 25 TO RETURK TO MENU

25

YOU HAVE THE FOLLOWING OPTIONS

1 ENTER PSL OBJECTS

2 DELETE OR MODIFY PSL OBJECTS

3 ENTER OR DELETE PSL RELATIONSHIPS

4 PRINT REPORT ON THE CONTENTS OF THE PSL/PSA DATA BASE

5 EXIT THIS PROGRAM

IF YOU ARE BEGINNING YQUR SECOND OR SUBSEQUENT SESSION
YOU MUST CHOOSE NO. 4, PRINT REPORT, TO SET THE COUNTERS

FOR THE DATA BASE

ENTER THE NUMBER FOR YOUR CHOICE
2
THE FOLLOWING OBJECT TYPES MAY BE MODIFIED
OR DELETED.
WARNING!!
DO NOT ATTEMPT TO DELETE AN OBJECT IF ¥YOU HAVE ALREADY
ENTERED A RELATIONSHIP USING THIS OBJECT URLESS YOU

PIRST DELETE THE RELATIONSHIP

1 INPUT 2 PROCESS
3 OUTPUT 4 ENTITY
5 GROUP 6 ELEMENT

c17

7 EVENT 8 CONDITION
ENTER THE NUMBER FOR YOUR CHOICE OR '9' TO GET BACK
TO MAIN MENO
6
ENTER THE NAME OF THE ELEMENT TO BE MODIFIED
OR DELETED
RECORD_KEY
DO YOU WISH TC DELETE(D) OR MODIFY (M)
THIS OBJECT
D
ELEMENT RECORD_KEY HAS BEEN DELETED
THE FOLLOWING OBJECT TYPES MAY BE MODIFIED
OR DELETED.
WARNING!!!
DO ¥NOT ATTEMPT TC DELETE AN OBJECT IF YOU HAVE ALREADY
ENTERED A RELATIONSHIP USING THIS OBJECT UNLESS YOU

FIRST DELETE THE RELATIONSHIP

1 INPUT 2 PROCESS

3 oyTpUT 4 ENTITY

5 GROUP & ELEMNENT

7 EVENT 8 CONDITION

ENTER THE NUMBER FOR YOUR CHOICE OR '9' TO GET BACK
TO MAIN MENU

9

YOU HAVE THE FOLLOWING OPTIONS

1 ENTER PSL OBJECTS

2 DELETE OR MODIFY PSL OBJECTS

c18

3 ENTER OR DELETE PSL RELATIONSHIPS
4 PRINT REPORT ON THE CONTENTS OF THE PSL/PSA DATA BASE

5 EXIT THIS PROGRAM

IF YOU ARE BEGINNING YOUR SECOND OR SUBSEQUENT SESSION
YOU MUST CHOOSE WO. 4, PRINT REPORT, TO SET THE CQOUNTERS

FOR THE DATA BASE

ENTER THE NUMBER FOR YOUR CHOICE
4

PSL/PSA OBJECTS AND RELATIONSHIPS REPORT

OBJECTS OF TYPE PROCESS
1 PAYROLL_PROCESS
THIS IS THE MAIN PROCESS FOR A PAYROLL PROCESSING SYSTEN
2 MASTER_UPDATE
RECEIVES EMPLOYEE INFORMATION AND UPDATES MASTER FILE
3 CHEQUE_WRITER

RECEIVES TIME CARDS AND GENERATES A CHEQUE

OBJECTS OF TYPE INPUT
1 EMPLOYEE_INFO

EMPLOYEE INFORMATION TO BE USED BY PROCESS MASTER_UPDATE
2 TIME_CARDS

CONTAINS EMPLOYEE NUMBE AND HOURSWORKED

OBJECTS OF TYPE OUTPOT

1 CHEQUE

c19

THE EMPLOYEES PAYCHECK

OBJECTS QF TYPE ENTITY
1 MASTER_FILE

RECORD OF THE MASTER FILE

OBJECTS OF TYPE GROUP

1 REQUIRED_INFO

2 A_TIME_CARD

CONSISTS OF EMPLOYEE_NAME, REGULAR HOURS AND OVERTIME HOURS
3 EMPIOYEE WNAME

CONSISTS OF LAST NAME AND INITIALS
4 DEDUCTION_STUB

IDENTIFIED BY RECORD KEY

OBJECTS OF TYPE ELEMENT
1 OPERATION_CODE
VALUES ARE | THRU 3
2 HOURLY_WAGE
VALUES ARE 5 THRU 20
3 EMPLOYEE_NUMBER
EMPLOYEES IDENTIFICATION NUMBER
4 LAST_NAME
EMPLOYEES LAST NAME
5 INITIALS
EMPLOYEES FIRST AND MIDDLE INITIALS

6 TAX_CODE

C20

7 REGULAR_HOURS
HOURS LESS THAN OR EQURL TO 40
8 OVERTIME_HOURS

HOUR OVER 40

8 GROSS_PAY
10 INCOME_TAX
11 INSURANCE

UNENPLOYMENT INSURANCE

12 CANADA_PENSION
13 UNION_DUES

14 NET_PAY

15 PROVINCE

OBJECTS OF TYPE EVENT

OBJECTS OF TYPE CONDITION
RELATIONSHIP (S) PROCESS RECEIVES INPUT
MASTER_UPDATE RECEIVES EMPLOYEE_INFO
RELATIONSHIP(S) PROCESS RECEIVES INPUT
CHEQUE_WRITER RECEIVES TIME_CARDS
RELATIONSHIP(S) PROCESS GENERATES OUTPUT
CHEQUY_WRITER GENERATES CHEQUE
RELATIONSHIP (S) INPUT CONSISTS OF ELEMENT

EMPLOYEE__IXNFO CONSISTS OF OPERATION CODE

cz1

RELATIONSHIP(S)
EMPLOYEE_INFO
RELATIONSHIP (S)
TIME_CARDS
RELATION SHIP (S)
CHEQUE
RELATIONSHIP (S)
A_TIME_CARD
A_TIME_CARD
A_TIME_CARD
RELATIONSHIP (S)
EMPLOYEE_NAME
EMPLOYEE_NAME
RELATION SHIP (S)
DEDUCTION_STUB
DEDUCTION_STUB
DEDUCTION_STUB
DEDUCTION_STUB
DEDUCTION_STUB
DEDUCTION_STUB
RELATIONSHIP (S)
MASTER_FILE
MASTER_FILE
MASTER_FILE
RELATIONSHIP (S)
MASTER_FILE

RELATIONSHIP (S)

INPUT CONSISTS OF GROUP
CONSISTS OF REQUIRED_INFO
INPUT CONSISTS OF GROUP
CONSISTS OF A_TIME_CARD
OUTPUT CONSISTS OF ELEMENT
CONSISTS OF NET _PAY

GROUP CONSISTS OF ELEMENT
CONSISTS OF EMPLOYEE_NUMBER
CONSISTS OF REGULAR_HOURS
CONSISTS OF OVERTIME_HOURS
GROUP CONSISTS OF ELEMENT
CONSISTS OF LAST_NAME
CONSISTS OF INITIALS

GROUP CONSISTS OF ELEMENT
CONSISTS OF GROSS_PAY
CONSISTS OF INCOME_TAX
CONSISTS OF INSURANCE
CONSISTS OF CANADA_ PENSION
CONSISTS OF UNION_DUES
CONSISTS OF NET_PAY

ENTITY CONSISTS OF ELEMENT
CONSISTS OF EMPLOYEE_NUMBER
CONSISTS OF HOURLY_WAGE
CONSISTS OF TAX_CODE
ENTITY CONSISTS OF GROUP
CONSISTS OF EMPLOYEE_NAME
OUTPUT CONSISTS OF GROUP

c22

CHEQUE CONSISTS OF EMPLOYEYE _NAKE
CHEQUE CONSISTS OF DEDUCTION_STURB

PRESS 'ENTER' TO CONTINUE

YOU HAVE THE FOLLOWING OPTIOKRS

1 ENTER PSL OBJECTS

2 DELETE OR MODIFY PSL OBJECTS

3 ENTER OR DELETE PSIL RELATIONSHIPS

4 PRINT REPORT ON THE CONTENTS OF THE PSL/PSA DATA BASE

5 EXIT THIS PROGRAM

IF YOU ARE BEGINNING YOUR SECOND CR SUBSEQUENT SESSION
YOU XUST CHOOSE NO. 4, PRINT REPORT, TO SET THE COUNTERS

FOR THE LATA BASE

ENTER THE NUMBER FOR YOUR CHOICE
5
END OF PROGRAM

COMPRESS * DB

B B B B o\ W =\ W

c23

v B B . W

c24

APPENDIX D

Source Code Listings

SCHEMA1 SCHMA

e oo 3k ok sheskode e s et e ofede ok ok e s sl s ek o e ok s ool sk sk e sk sk ek ek 3 koot ok ok lkak ok ok e ok ok R R R Rk ok

* * SCHEMA DESCRIPTION STATEMENTS *
* et o e ek o el o e o sk s e e s e e o e e sl e e o 3 el ool o 3ok sk e o e Sk ook sl oo g ok s oK %k

*

SCHEMA DESCRIPTION.

SCHEMA NAME I5 SCHEMAI1.

DATE. 10/06/82.

INSTALLATION, CULLINANE CORPCRATION
3250 WEST MARKET STREET

AKRON, OHEIO 44313

REMARKS.THIS IS THE IDMS SCHEMA FOR PSL-PSA SIMULATED IN IDNS.

* sfesfeale e e e ook e ol e e e ol skeale ek e e ok e sk o s ok sk feste e o o adeade o Sl kol e e s ke ol e ok ek ek
* * FILE DESCRIPTION STATEMENTS *
* e fesic e e de e steole steak e e e ol e abe el S e etk o e s seofeste s e o deokdeok okl ke ok ke ek ok ok ook Rk

FILE DESCRIPTION.

FILE NAME IS IDHS-FILE1 ASSIGN TO SYS010

DEVICE TYPE IS 3330.
FIiLE NAME IS5 JOURNAL ASSIGN TO SYS009

D1

DEVICE TYPE IS 2400.

*

%* e s ok ofe e s sk sk veafe e e sk e e s s e ok s s e e dfesie e ofe 3 N sheoke sl e e e e sk e e s sie e e s sl afe o dje dje e e ok ok ok
* * AREA DESCRIPTION STATEMENTS *
% e 3k e ek e e e 3 Ak ek e e e 3 e e e e e Ak ke ek A e o ook e ok el ek Ak ook ok ek ke ok ok ki ok

*

AREA DESCRIPTION.

AREA NAME IS5 PSL—-PSA
RANGE IS 1002 THRU 1051

WITHIN FILE IDMS-FILEt FROM 1 THRU 50.

*
3 e 3 A ek e e e ke sk e s Sjeske ole sk ik e sk sk sfeofe e e e e koo sk ke dkekeok e kR ok kR kok ok ekdok ok k
* * RECORD DESCRIPTION STATEMENTS *
* 33 e e e e e d e e e e ke e sfe ek e e e ke ke ok e e ok o e desfe ek 3 e ke Aok e sl e ak ok e sk sk ok ke ol sk ol ok ke e
*

RECORD DESCRIPTION.

RECORD NAME INPUT-OWNER .
RECORD ID 100 .
LOCATION MODE CALC USING INPUT-OWNER-NO DUPLICATES LAST.

WITHIN PSL—-PSA AREA.

05 INPUT-OWNER-NO PIC X {4).
05 INPUT-OWNER-NAME PIC X(16).

05 INO~ATTRIBUTES PIC X{72).

D2

RECORD NAME INPUT -
RECORD ID 101.

LOCATION MODE CALC USING INPUT-NO DUPLICATES LAST.

WITHIN PSL-PSA AREA.
05 INPUT-NO PIC X (4).
05 INPUT-NAME PIC X {(16).
05 IN-ATTRIBUTES PIC X(72).

RECORD NAME PROCESS-CHNER %
RECORD ID 200,

LOCATION MODE CALC USING PROCESS—OWNER-NO DUPLICATES LAST.

WITHIK PSI—PSA AREA.
05 PROCESS-OWNER-NO PIC X(4).
05 PROCESSOHWNER-NAME PIC X(16).
05 PRO-ATTRIBUTES PIC X(72).
RECORD NAME PROCESS -
RECORD ID 201 -

LOCATION MODE CALC USING PROCESS-NO DUPLICATES LAST.

WITHIN PS1—-PSA AREA .

05 PROCESS-NO PIC X(4).

D3

05 PROCESS—-NAME PIC X{(16).

05 PR—ATTRIBUTES PIC X(72) .

RECORD HNAME OUTPUT-OWNER -
RECORD ID 300 .

LOCATION MODE CALC USING OUTPUT-OWNER-NO DUPLICATES LAST.

WITHIN PSL-PSA AREA .

05 OUTPUT-OWNER-NO PIC X(4).
05 OUTPUTOWNER-NAME PIC X(16).

05 OUO-ATTRIBUTES PIC X(72).

RECCORD NAME OUTPUT .
RECORD 1ID 301.

LOCATION MODE CALC USING OUTPUT-NO DUPLICATES LAST.

WITHIN PSL-PSA ARER -

05 oUTPUT-XNO PIC X(4).
05 OUTPUT-NAME PIC X(16).

05 OU-ATTRIBUTES PIC X{72).

RECORD NAME GROUP-OWNER .
RECORD ID 400 -

LOCATION MODE CALC USING GROUP—-OWNER-NO DUPLICATES LAST.

WITHIN PS5L-PSA AREA -

D4

05 GROUDP-OWNER-NO PIC X(4).

05 GROUP-QWNER-NAME PIC X(16).

05 GRO-ATTRIBUTES PIC X(72).
RECORD NANE GROUP .
RECORD ID 401 -

LOCATION MODE IS CALC USING GROUP—-NO DUPLICATES LAST.

WITHIN PSIL-P5A AREA .

05 GROUP-Y¥O PIC X(4).
05 GROUP-NANME PIC X{1€).
05 GERE-ATTRIBUTES PIC X(72).

RECORD NAME ELEMENT -
RECORD ip 501 .
LOCATION MODE CALC USING ELEMENT-NO DUPLICATES LAST.

WITHIN PSL-P3A AREA .,

05 ELEMENT-NO PIC X({4).

05 ELEMENT-NAME PIC X(16).

05 EL-ATTRIBUTES PIC X(72).
RECORD NAME ENTITY .
RECORD ID 601 -

LOCATION MODE IS CALC USING ENTITY-NO DOUOPLICATES LAST.

WITHIN P3SL-PSA AREA -

D5

05 ENTITY-NO PIC X(4).
05 ENTITY-NAME PIC X(1¢) .

05 EN-ATTRIBUTES PIC X(72).

RECORD NANE EVENT .
RECORD ID 700 -

LOCATION MODE CALC USING EVENT-NC DUPLICATES LAST.

WITHIN PSL—-PSA AREA -
05 EVENT-¥O PIC X (4} .
05 EVENT-NAMNE PIC X(1¢€).
05 EV-ATTRIBUTES PIC X{72).

RECORD NAME CONDITION -
RECORD iD 800 -

LOCATION MODE CALC USING CONDITION-NO DUPLICATES LAST.

WITHIN PS1-PSA AREA -

05 CONDITION-NO PIC X(4).
05 CONDITION-NAME PIC X(16).

05 CO-ATTRIBUTES PIC X{72).

RECORD NAME ENTITY-OWNER.

RECORD ID ¢€00.

D6

LOCATION MODE IS CALC USING ENTITY-OWNER-NO DUPLICATES LAST.

WITHIN PSL-PSA AREA.

05 ENTITY-OWNER-NO PIC X(4}).
05 ENTITY-OWNER-NAME PIC X(1¢).
05 ENO-ATTRIBUTES PIC X(72).

RECORD NAME ELEMENT-OWNERK.
RECORD ID 500.

LOCATION MODE CALC USING ELEMENT-OWNER-NO DUPLICATES LAST.

WITHIN PSL-PSA AREA.

05 ELEMENT-OWNER-NO PIC X(4).
05 ELEMERT~OWNER-NAME PIC X(1¢).
05 ELO-ATTRIBUTES PIC X{(72).

e s e ek e e el o sk ek eofe ok ool ok sk ok o ke sl e ook alcak e sk ok o ok ke ok aboke ok ok ok ksl ok ok ok

* SET DESCRIPTION STATEMENTS *

e s o A e sje i I ek sk e s Ak Ak e oo ek sk 3k e e e e e ek e e A e e Aesle ke s e 3k 3 3k sk el e 3 e sl A e dleoe ok

SET DESCRIPTION.

SET NAME INO-SUBPARTS-IN .

ORDER LAST.

D7

MODE CHAIN LINKED TO PRIOR.
OWNER INPUT-OWNER NEXT POSITION 1
PRICR POSITICN 2,
MEMBER INPOT NEXT PCSITION 7
PRIOR POSITION 8
LINKED TO QOWNER
OWNER POSITION 9

OPTIONAL MANUAL.

SET NAME PR-RECEIVES-IN .

ORDER 1AST.

MO DE CHAIN LINKED TO PRIOR.
OWNER PROCESS NEXT POSITION 28 PRIOR POSITION 29.
MEMBER INPUT NEXT POSITION 1 PRICR POSITION 2

LINKED TO OWNER
OWNER POSITION 3

OPTIONAL MANUAL.

SET NAME IS PR-USES—IN.

ORDER IS LAST.

MODE IS CHAIN LINKED TO PRIOR.
OWNER IS PROCESS NEXT POSITION IS 2¢

D8

PRICR POSITION IS 27.
MEMBER IS INPUT NEXT POSITION IS 4
PRIOR POSITION IS 5
LINKED TO OEKNER
OWNER POSITION IS €

OPTIONAL MANUAL.

SET NAME IS IN-CONSISTS-EL.

ORDER IS LAST.

MODE IS5 CHAIN LINKED TO PRIOR.

OWNER IS INPUT NEXT POSITION IS 10
PRIOR POSITION IS 11.

MEMBER IS ELEMENT NEXT POSITION IS 13
PRIOE POSITION IS5 14
LIRKED TO OWNER
OWNER POSITION IS 15

OPTIONAL MANUAL.

SET YAME IS IN-CONSISTS-GR.

ORDER IS LAST.

D9

MODE IS CHAIN

OWNER IS5 INPUT

MEMBER IS5 GROUP

LINKED TO PRIOR.

NEXT POSITION IS 12
PRIOR POSITION IS 13.
NEXT POSITION IS 19
PRIOR POSITION IS 20
LINKED TO OWNER
OFNER POSITION IS 21

OPTIONAL MANUAL.

SET NAME IS PRO-SUBPARTS-PR.

ORDER IS LAST.
MODE IS CHAIN

OWNER IS PROCESS—-OWNER

MEMBER IS5 PROCESS

LINKED TO PRIOR.
NEXT POSITION IS 1
PRIOR POSITION IS 2.
NEXT POSITION IS 1
PRIOR POSITION IS 2
LINKED TO OWNER
OWNER POSITION IS 3

OPTIONAL MANUAL,

SET NAME IS PR—-GENERATES-CU.

ORDER IS LAST.

MODE IS CHAIN LINKED TO PRIOR.

OWNER IS5 PROCESS NEXT POSITION IS 4
PRIOR POSITION IS 5.

MEMBER I5 OUTPUT NEXT POSITION Is 7
PRIOR POSITION IS 8
LINKED TO OWNER
OWNER POSITION IS 9

OPTIONAL MANUAL.

SET NAME IS PR-DERIVES-0U.

ORDER IS LAST.

MODE IS CHAIN LINKED TO0 PRIOR.

OWNER IS PROCESS NEXT POSITION IS €
PRIOR POSITION IS 7.

MEMBER IS OQUTPUT NEXT POSITION IS 4
PRIOR POSITION IS 5
LINKED T0 OWHNER
OWNER POSITION IS 6

OPTIONAL MANUAL.

D11

SET NAME IS PR-USES-EL.

ORDER IS LAST.

MODE IS CHAIN LINKED TO PRIOR.

OWNER IS PROCESS NEXT POSITION IS 8
PRIOR POSITION IS 9.

MEMBER I5 ELEHENT NEXT POSITION IS 22
PRIOR POSITION IS 23
LINKED TO OWNER
OWNER POSITION IS 24

OPTIONAL MANUAL.

SET NAME IS5 PR-UPDATES-EL.

ORDER IS LAST.

MODE IS CHAIN LINKED TO PRIOCR.

OWNER IS PROCESS NEXT POSITION IS 10
PRIOR POSITION IS 11.

MEMBER IS ELEMERT NEXT POSITION IS 19
PRIOR POSITION I5 20
LINKED TO OWNER

OWNER POSITION 1Is 21

D12

SET NAME IS PR-DERIVES-EL.
DRDER IS LAST.
MODE IS CHAIN

OWNER I5 PROCESS

MEMBER IS ELEMENT

SET NAME IS PR-DERIVES-GH.
ORDER IS LAST.
MODE IS CHAIN

OWNER IS PROCESS

MEMBER I5 GROUP

OPTIONAL MANUAL.

LINKED TO PRIOR.

NEXT POSITION IS 12
PRIOE POSITION IS 13.
NEXT POSITION IS I1&
PRICR POSITIOR IS 17
LINKED TO OWNER
OWNER POSITION IS 18

OPTIONAL MANUAL.

LINKED TO PRIOR.

NEXT POSITION IS 14
PRIOR POSITION IS 15.
NEXT POSITION IS 7

PRIOR POSITION IS 8

D13

LINKED TO OWNER
OWNER POSITIOR IS5 9

OPTIONAL MANUAL.

SET NAME IS PR-UPDATES-GR.

ORDER IS LAST.
MODE IS5 CHAIR

OWNER IS PROCESS

MEMBER IS GROUP

SET NAME IS PR-USES-GR.
ORDER IS LAST.
MODE IS5 CHAIN

OWKNER IS PROCESS

LINKED TO PRIOR.

REXT POSITION IS 16
PRIOR POSITION IS 17.
NEXT POSITION IS 4
PRIOR POSITION IS 5
LINKED TC OWNER
OWNER POSITION I5 6

OPTIONAL MANUAL.

LINKED TC PRIOR.
NEXT POSITION IS 18
PRIOR POSITION IS 19.

D14

MEMBER IS GROUP NEXT POSITION IS !
PRICR POSITION IS 2
LINEKEP TO OWNER
OWNHER POSITION IS 3

OPTIONAL MANUAL.

SET NAME IS5 PR—-DERIVES-EN.

ORDER IS LAST.

MODE IS CHAINW LINKED TO PRIOR.

OWNER IS PRCGCESS NEXT POSITION IS 20
PRIOR POSITION IS 21.

MEMBER IS ENTITY NEXT POSITION IS 7
PRIOR POSITION IS 8
LINKED TO CWNER
OWNER POSITION IS 9

OPTIONAL MANUAL.

SET NAME IS PR-UPDATES-ER.
ORDER IS LAST.
MODE IS CHAIN LINKED TO PRIOR.

D15

OWNER IS PROCESS

MEMBER XI5 ENTITY

SET NAME IS PR-USES-EN.
ORDER IS LAST.
MODE IS CHAIN

OWNER IS5 PROCESS

MNEMBER IS ENTITY

NEXT POSITICN IS 22
PRIOR POSITION IS 23.
NEXT POSITION IS 4
PRIOR POSITION IS 5
LINKED TO OWNER
OWNER POSITION IS ¢

OPTIONAL MANUAL.

LINKED TO PRIOR.

NEXT PCSITION IS 24
PRIOR POSITION IS 25,
NEXT POSITION IS 1
PRIOR POSITION IS 2
LINKED TO OWNER
OWNER POSITION IS 3

OPTIONAL MANUAL.

SET NAME IS PR-INCEPTION-EV.

D16

ORDER IS5 LAST.

MODE IS CHAIN LINKED TO PRIOR.

OWNER IS PROCESS NEXT POSITION IS 30
PRIOR POSITION IS 31.

MEMBER IS EVENT NEXT POSITION IS5 7
PRIOR POSITION 1S 8
LINKED TO OWNER
OWNER POSITIOXN IS 9

OPTIONAL MANUAL.

SET NAME IS PR—TERMINATE-EV.

ORDER IS LAST.

MODE IS CHAIN LINKED TO PRIOR.

OWNER IS PROCESS NEXT POSITION IS 32
PRIOR POSITION IS 33.

MEMBER IS EVENT NEXT POSITION IS 4
PRIOR POSITION IS 5
LINKED TO OWNER
OWNER POSITION IS €

OPTION AL MANUAL.

D17

SET NAME IS PR-TRIGGERED-EV.

ORDER IS LAST.
MODE IS CHAIN

OWNER IS PRCCESS

MEMBER IS EVENT

SET NAME IS EV-WHEK-CO.
CREDER IS LAST.
MODE IS CHAIN

DWNER IS EVENT

MEWBER IS5 CONDITION

LINKED TO PRIOR.

NEXT POSITION IS 34
PRIOR POSITION IS 35.
NEXT POSITION IS t
PRIOR POSITION IS 2
LINKED TO OWNER
OWNER POSITION IS 3

ODPTIONAL MANUAL.

LINKED TO PRIOR.

¥EXT POSITION IS 10
PRIOR POSITION IS 11
NEXT POSITION IS 1
PRIOR POSITION IS 2
LINKED TO COHWNER
OWNER POSITION IS 3

OPTIONAYL MARUAL.

D18

SET NAME IS OUO-SUBPARTS-OU,

ORDER IS LAST.
MODE IS CHAIX

GWNER IS OUTPUOT-OWNEK

MEMBER IS OUTPUT

LINKED TO PRIOR.
NEXT POSITION IS 1
PRIOR POSITIONW IS 2.
WEXT POSITION IS 1
PRIOR POSITION IS 2
LINKED TO OHWNER
OWNER POSITION IS 3

OPTIONAL MANUAL.

SET NAME IS GRO-SUBPARTS-GR.

ORDER IS LAST.

MODE IS CHATN

OWNER IS GROUP-QOWNER

MEMBER IS GROUP

LINEKED TO PRIOR.
NEXT POSITICN IS 1
PRIOR POSITION IS 2.
NEXT POSITION IS 13
PRIOQR POSITION IS 14

LINKED TO OWNER

D19

OWNER POSITION IS 15

OPTIONAL MANUAL.

SET NAME IS EN-CONSISTS-GR.

ORDER 15 LAST.
MODE IS5 CHAIN

DWHNER IS5 ENTITY

M EMBER IS GROUP

LINKED 70 PRIOR.

NEXT POSITION IS 13
PRIOR POSITION IS 14.
NEXT POSITION IS 1&

PRIOR POSITION IS 17

LINKED TO CWNER

OWNER POSITION IS 18

OPTIONAL MANUAL.

SET WAME IS GR-CONSISTS-EL.

ORDER I5 LAST.
MODE IS CHAIN

OWNER IS GROUDP

MEMBER IS ELEMENT

LINKED TO PRIOH.

NEXT POSITION IS 22
PRIOR POSITION IS 23.
NEXT POSITION IS 10

D20

PRIOR POSITION IS 11
LINKED TO OWNER
OWNER POSITION IS 12

OPTIONAL MANUAL.

SET HAME IS5 EN-CONSISTS-EL.

ORDER IS LAST.

MODE IS CHAINW LINKED TO PRIOR.

OWNER IS ENTITY NEXT POSITION IS 15
PRIOR POSITION IS 1¢.

MEMBER IS ELEMENT NEXT POSITION IS 7
PRIOR POSITION IS 8
LINKED TO ORNER
OWNER POSITION IS 9

OPTIONAL MANDUAL.

SET NAME IS QU-CONSISTS-EL.

ORDER IS lLAST.

MODE IS CHAIN LIWKED TO PRIOR.
OWNER IS OUTPUT NEXT PCOSITICON IS 10

D21

PRIOR POSITION IS 11.
MEMBER IS ELEMENT NEXT POSITION IS 1
PRIOR POSITION IS 2
LINKED TO OWNER
OWNER POSITION IS 3

OPTIONAL MANUAL,

SET NAME IS OU~CONSISTS-GR.

ORDER IS LAST.

MODE IS CHAIN LINKED T0 PRIOR.

OWNER IS OUTPUT WEXT POSITION IS 12
PRIOR POSITION IS 13.

MEMBER IS GROUP NEXT POSITION IS 10
PRIOR POSITION IS 11
LINKED TO OWNER
OWNER POSITION IS 12

OPTICONAL MANUAIL.

SET NAME IS ENO-SUBPARTS-EN.
ORDER IS LAST.

D22

MODE IS CHAIN LINKEED TO PRIOR.

OWNER IS ENTITY-OWNER NEXT POSITION IS 1
PRIOR POSITION IS 2.

MEMBER IS ENTITY NEXT PCOSITION IS 10
PRIOR POSITION IS 11
LINKED TO OWHER
OWNER POSITION IS 12

OPTIONAL MARUAL.

SET NAME IS ELO-SUBPARTS-EL.

ORDER IS LAST.

MODE IS CHAIN LINXED TO PRIOR.

OWNER IS ELEMENT-OWNER NEXT POSITION IS 1
PRIOR POSITION IS 2.

MEMBER IS ELEMENT NEXT POSITION IS 4
PRICR POSITION IS5 5
LINKED TO OWNER
OWNER POSITION IS €

OPTIONAL MANUAL.

D23

b2y

SSCHEMA SUBSC

ADD SUBSCHEMA NAME IS SSCHEMA
OF SCHEMA NAME IS SCHEMA1
DMCL NAME IS SAMPEASE
OF SCHEMA NAME IS5 SCHEMA1 VERSION LOW.
ADD AREA PSL-PSR.
ADD RECORD INPUT-DWNER.
ADD RECORD INPUT.
ADD RECORD PROCESS—-OWHER.
ADD RECORD PROCESS.
ADD RECORD QUTPUT-OWNER.
ADD RECORD OUTPUT.
ADD RECORD GROUP-OWNRER.
ADD RECORD GROUP.
ADD RECORD ELEMENT.
ADD RECORD ENTITY.
ADD RECORD EVENT.
ADD RECORDP CONDITION.
ADD BRECORD ENTITY-OWNER.
ADD RECORD ELEMENT-OWNER.
ADD SET INO-SUBPARTS-IN.
ADD SET PR-RECEIVES-1IN.
ADD SET PR-USES-IN.
ADD SET IN-CONSISTS-EL.

ADD SET IN-CONSISTS-GH.

D25

ADD SET PRO-SUBPARTS-PR.
ADD SET PR-GENERATES-0U.
ADD SET PR-DERIVES-0U.
ADD SET PR-USES-EL.

ADD SET PR-UPDATES-EL.
ADD SET PR-DERIVES-EL.
ADD SET PR-DERIVES-GR.
ADD SET PR-UPDATES-GR.
ADD SET PR-USES-GR.

ADD SET PR-~DERIVES—-EN.
ADD SET PR-UPDATES-EN.
ADD SET PR-USES-EN.

ADD SET PR-INCEPTION-EV.
ADD SET PR-TERMINATE-EV.
ADD SET PR-TRIGGERED-EV.
ADD SET EV-WHEN-CO.

ADD SET OUO-SUBPARTS-0U.
ADD SET OU-CONSISTS-EL.
ADD SET OQU-CONSISTS-GR.
ADD SET GRO-SUBPARTS—-GR.
ADD SET EN-CONSISTS-GR.
ADD SET GR-CONSISTS-EL.
ADD SET EN~CONSISTS—FL.
ADD SET ENO-SUBPARTS-EN.
ADD SET ELO-SUBPARTS-EL.
GENERATE.

D2¢

SAMPBASE DMCL

DEVICE-MEDIA DESCRIPTION.

DEVICE-MEDIA WNAME IS SAMPBASE OF SCHEMA NAME SCHEMAI1.

AUTHOR. FRANK HAJEK

DATE. 10,/08/82

INSTALLATION. KANSAS STATE UNIVERSITY
REMARKS. THIS5 IS THE DNMCL FOR THE

PSL—-PSA SCHENA.

BOFFER SECTION.
BUFFER NAME IS IDMS-BUFFER
PAGE CONTAINS U49€ CHARACTERS

BUFFER CONTAINS 50 PAGES.

AREA SECTION.
COPY PSI-PSA AREA

PAGE-RESERVE CONTAINS 100 CHARACTERS.

D27

APLIPROG DHMLIP

/% AN IMPLEMENTATION OF PSL/PSA */
PSLPROG: PROC OPTIONS (MAIN);
DCL REC_NUM CHAR(4) VAR,
REC_NAME CHAR(16) VAR,
REC_TYPE CHAR (16) VAR,
(I,J) FIXED DECIMAL,
{COCNT ,PRCNT ,OUCNT, ENCNT , ELCNT, GRCNT, EVCNT ,INCNT) FIXED DECIMAL,
ATTRIBUTES CHAR(72) VAR,
CHOICE CHAR(2) VAR,
OWNER_NAME CHAR(16) VAR,
SET_NAME CHAR(16) VAR,
MEMBER_NAME CHAR(16) VAR,
END_OF_SET CHAR(4) INIT('0307Y),
END_OF_AREA CHAR(4) INIT('0307'),
OK CHAR(4) INIT('0000") ;
DCL (IDMS,ABORT) OPTIONS (INTER,ASM) ENTRY;
DCL (SSCHEMA SUBSCHEMA, SCHEMA1 SCHEMA VERSION 1)
MODE (BATCH) ;
INCLUDE IDMS (SUBSCHEMA_DESCRIPTION) ;
INCLUDE IDMS (SUBSCHEMA_BINDS) ;
INCLUDE IDMS (IDMS_STATUS) ;
READY EXCLUSIVE UPDATE;
CALL IDMS_STATUS;

COCNT = 0;

D28

PRCNT = 0;

QUCNT = 0;
ENCNT = 03
GRCHNT = 0;
ELCNT = 0O;
EVCNT = 0;
INCNT = 0;
PROCESS_OWNER_NO =" 1

PROCESSOWNER_NAME = YPROCESS_OWNER';
PRO_ATTRIBUTES ='THIS IS A& DUMMY RECORD WHICH OWNS ALL PROCESSES';
STORE RECORD(PROCESS_OWNER) ;
CALL IDMS_STATOS;
DISPLAY('"WELCOME TO THE KSU IMPLEMENTATION OF PSL/PSA."') ;
MEND: DISPLAY (*YOU HAVE THE FOLLOWING OPTIONS');
DISPLAY('? ENTER PSL OBJECTS ') ;
DISPLAY('2 DELETE OR MODIFY PSL OBJECTS!') ;
DISPLAY('3 ENTER OR DELETE PSL RELATIONSHIPS');
DISPLAY{'4 PRINT REPORT ON THE CONTENTS OF THE PSL/PSA DATA BASE');
DISPLAY('5 EXIT THIS PROGRAM');
DISPLAY{(" '} ;
DISPLAY('IF YOU ARE BEGINNING YOUR SECOND OR SUBSEQUENT SESSION ');
DISPLAY('I0O0 MUOST CHOOSE NO. 4, PRINT REPORT, TO SET THE COUNTERS');
DISPLAY(' FOR THE DATA BASE');
DISPLAY{('" '),
DISPLAY('"ENTER THE NUMBER FOR YOUR CHOICE')REPLY {CHOICE) ;
SELECT;
WHEN {(CHOICE= '1' } GO TO ENTER_ERECORDS;

D29

WHEN (CHOICE= '2') GO TO DELETE_RECORDS;

WHEE (CHOICE= *3') GO TO ENTER_SETS;

WHEN (CHOICE= "4') GO TO FIND_RECORDS;

WHEN (CHOICE= '5') GO TO EXIT_PROGRAMN;

OTHERWISE DISPLAY ('"INVAILID CHOICE, TRY RGAIN') ;
END; /% OF SELECT #*/

GO TO MENU;

ENTER_RECORDS:DISPLAY (' THE FOLLOWING PSI. OBJECTS MAY BE ENTERED');

DISPLAY ("1 INPUT 2 PROCESS ') :
DISPLAY ('3 OUTPUT 4 ENTITY V)3
DISPLAY('5 GROUP € ELEMENT '});
DISPLAY({'7 EVENT 8 CONDITION') ;

DISPLAY{' ENTER THE NUMBER FOR YOUR CHOICE"Y) ;

DISPLAY(' OR A2 9§ TO RETURN TO THE MAIN MENU')REPLY (CHOICE) ;

SELECT;
WHEN (CHOICE = '1') GO TO ENTER_INPUT;
WHEN (CHOICE = '2') GO TO ENTER_PROCESS;

WHEN (CHOICE = '3' } GO TO ENTER_OUTPUT;
WHEN (CHOICE = '4') GO TO ENTER_ENTITY;
WHEN (CHOICE = '5') GO TO ENTER_GROUP;
WHEN (CHOICE = '6') GO TO ENTER_ELEMENT;
WHEN {CHOICE = '7¢) GO TO ENTER_EVENT;
WHEN (CHOICE = *8') GO TO ENTER_CONDITION;
OTHERWISE GO TO MENU;
END; /% OF SELECT */
ENTER_INPUT :
DISPLAY ("ENTER THE NAME FOR AN INPUT OR ''NONE'' IF THERE ARE'):

D30

DISPLAY(' NO (OR NO MORE) OBJECTS OF TYPE INPUT')REPLY(REC_NAME);
IF (REC_NAME = 'NONE') THEN GO TO ENTER_RECORDS;
INCNT = INCNT + 1;
PUT STRING (INPUT_OWNER_NO) EDIT(INCNT) (F(4));
INPUT_OWNER_NAME = REC_NAME;
DISPLAY (*STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION ')
DISPLAY (*OR ANY ATTRIBUTES OF ' || REC_NAME) REPLY (ATTRIBUTES) ;
INO_ATTRIBUTES = ATTRIBUTES;
STORE RECORD (INPUT_CWNER) ;
CALL IDMS_STATUS;
DISPLAY(' INPUT * |§ REC_NAME |] ' HAS BEEN ENTERED'):
GO0 TO ENTER_INPUT;
ENTER_PROCESS:
DISPLAY(*ENTER THE NAME FOR A PROCESS OR ''NONE'' IF THERE ARE'):
DISPLAY(' NO (OR NO MORE) OBJECTS OF TYPE PROCESS') REPLY (REC_NAME);
IF (REC_NAME = 'NONE'} THEN GO TO ENTER_RECORDS;
PRCNT = PRCNT + 1;
PUT STRING(PROCESS_NO) EDIT{(PRCNT) (F(4));
PROCESS_NAME = REC_NAME;
DISPIAY (*STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION ');
DISPLAY ("OR ANY ATTRIBUTES OF ' || REC_NAME) REPLY (ATTRIBUTES) ;
PR_ATTRIBUTES = ATTRIBUTES;
STORE RECORD (PROCESS) ;
CALL IDMS_STATUS;
CONNECT RECORD (PROCESS) SET (PRO_SUBPARTS_PR);
CALL IDMS_STATUS;
DISPLAY (* PROCESS ' || REC_NAME || ' HAS BEEN ENTERED');

D31

G0 TO ENTER_PROCESS;
ENTER_OUTPUT :
DISPLAY('ENTER THE NAME FOR AN OUTPUT OR '!NONE'' IF THERE ARE');
DISPLAY(' NO (OR NO MORE) OBJECTS OF TYPE OUTPUT')REPLY (REC_NAME) ;
IF {(REC_NAME = 'NONE') THEN GO TO ENTER_RECORDS;
OUCNT = OUCNT + 1;
PUT STRING (OUTPUT_OWNER_NO) EDIT(OGCNT) (F(4));
OUTPUTOWNER_NAME = REC_NAME;
DISPLAY (*STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION ');:
DISPLAY ('OR ANY ATTRIBUTES OF ' |] REC_NAME)REPLY (ATTRIBUTES) ;
OUO_ATTRIBUTES = ATTRIBUTES;
STORE RECORD (OUTPUT_OWNER) ;
CALL IDMS_STATUS;
DISPLAY (* OUTPUT ' |{ REC_NAME |] ' HAS BEEN ENTERED');
GO TO ENTER_OUTPUT;
ENTER_ENTITY :
DISPLAY('ENTER THE NAME FOR AN ENTITY OR ''NONE'' IF THERE ARE');
DISPLAY(' ¥O (OR NO MORE) OBJECTS OF TYPE ENTITY')REPLY (REC_NAME) ;
IF (REC_NAME = 'NONE') THEN GO TO ENTER_RECORDS;
ENCNT = ENCNT + 1;
PUT STRING({ENTITY_ OWNER_KO) EDIT(ENCNT) (F(4));
ENTITY_ CWNER_NAME = REC_NAMNE;
DISPLAY (*STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION ');
DISPLAY (OR ANY ATTRIBUTES OF ' || REC_NAME)REPLY (ATTRIBUTES) ;
ENO_ATTRIBUTES = ATTRIBUTES;
STORE RECORD (ENTITY_ OWNER) ;
CALL IDMS_STATUS;

D32

DISPLAY({' ENTITY !

GO TO ENTER_ZENTITY;

ENTEK_GROUP :

DISPLAY('ENTER THE NAME FOR AN GROUP OR

}| REC_NAME ([!

HAS BEEN ENTERED'};

YY'RONE'' IF THERE ARE');

DISPLAY{(' NO (OR NC MORE) OBJECTIS OF TYPE GROUP')REPLY(REC_NAME};
IF (REC_NAME = 'NONE') THEN GO TO ENTER_RECORDS;
GRCNT = GRCNT + 1;

PUT STRING (GROUP_OWNER_NO)

GROUP_OWNER_NAME = REC_NAME;

DISPLAY ("STATE IN 72 CHARACTERS OK LESS, A DESCRIPTION

DISPLAY (*OR ANY ATTRIBUTES OF
GRO_ATTRIBUTES = ATTRIBUTES;
STORE KECORD (GROUP_OWNER) ;
CALL IDMS_STATUS;

DISPLAY {* GROUP °

GO TO ENTER_GROUP;

ENTEE_ELEMENT :

DISPLAY('ENTER THE NAME FOR AN ELEMENT OR

DISPLAY(!

IF

(REC_NAME =
ELCNT = ELCNT + 1;
PUT STRING (ELEMENT_OWNER_NO)

ELEMENT_OWNER_NAME = REC_NAMNE;

DISPLAY (*STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION

DISPLAY ("OR ANY ATTRIBUTES OF
ELO_ATTRIBUTES = ATTRIBUTES;
STORE RECORD (ELEMENT_OWYER) ;

D33

EDIT (GRCNT)

|1 REC_NAME ||

EDIT (ELCNT)

(F(H);

£} &

REC_NWAME) REPLY (ATTRIBUTES) ;

' HAS BEEN ENTERED');

'*NONE'' IF THERE ARE") ;

NO (OR NO MORE) OBJECTS OF TYPE ELEMENT') REPLY (REC_NAME};

'TNONE') THEN GO TO ENTER_RECORDS;

(F(4)):

");

I{ REC_NAME) REPLY (ATTRIBUTES) ;

CALL IDMS_STATUS;
DISPLAY {* ELEMENT ' {| REC_NAME |[{ ' HAS BEEN ENTERED');
60 TO ENTER_ELEMENT;
ENTER_EVENT 3
DISPLAY('ENTER THE NAME FOR AN EVENT OR *'NONE'' IF THERE ARE');
DISPLAY (' NO (OR NO MORE) OBJECTS OF TYPE EVENT')REPLY (REC_NAME);
IF (REC_NAME = 'NONE')} THEN GO TO ENTER_RECORDS;
EVCNT = EVCNT + 13
PUT STRING (EVENT_NO) EDIT(EVCNT) (F(4)) ;
EVENT_NAME = REC_NAME;
DISPIAY (*STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION ');
DISPLAY (*OR ANY ATTRIBUTES OF ' || REC_NAME) REPLY (ATTRIBUTES)
EV_ATTRIBUTES = ATTRIBUTES:
STORE RECORD (EVENT) ;
CALL IDMS_STATUS;
DISPLAY (* EVENT * j| REC_NAME j| ' HAS BEEN ENTERED');
GO TO ENTER_EVENT;
ENTER_CONDITION :
DISPLAY{'ENTER THE NAME FOR AN CONDITION OR ''NONE'' IF THERE ARE'};
DISPLAY(*NO (OR KD MORE) OBJECTS OF TYPE CONDITION') REPLY (REC_NAME);
IF (REC_NAME = 'NONE') THEN GO TO ENTER_RECORDS;
COCNT = COCNT + 1;
PUT STRING(CONDITION_NO) EDIT(COCNT) (F(#)):
CONDITION_NAME = REC_NAME;
DISPLAY (*STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION ');
DISPLAY (*OR ANY ATTRIBUTES OF ' || REC_NAME) REPLY (ATTRIBUTES) ;
CO_ATTRIBUTES = ATTRIBUTES;

D34

STORE RECORD

CALL IDMS_STATUS;

DISPLAY ('

GO TO ENTER_CONDITION;

CONDITION

(CONDITION);

|| REC_NAME (]| °

DELETE_RECORDS:DISPLAY ('THE FOLLOWING OBJECT

DISPLAY

DISPLAY

DISPLAY('DO NOT ATTEMPT TO DELETE AW OBJECT IF YOU HAVE ALREADY

DISPLAY (*ENTERED A RELATIONSHIP USING THIS OBJECT UNLESS YOoU');

(* MODIFIED OR DELETED.') ;

(* WARNING!!!!

)

DISPLAY('FIRST DELETE THE RELATIONSHIP');

DISPLAY ("1 INPUT

DISPLAY(*3 CUTPUT

DISPLAY{'5 GROUP

DISPLAY|{'7 EVENT

HAS BEEN ENTERED');

TYPES MAY BE ');

2 PROCESS');

4 RENTITY

)

€ ELEMENT') ;

8 CONDITION');

DISPLAY ('ENTER THE NUMBER FOR YOUR CHOICE OR

DISPLAY('TO MAIN MENU') REPLY (CHOICE);

SELECT;
WHEN
WHEN
WHEN
WHEN
WHER
WHEN
WHEN

WHEN

(CHOICE
(CHOICE
[CHOICE
{CHOICE
(CHOICE
(CHOICE
(CHOICE

(CHOICE

OTHERWISE GO

END; /*

= 111)
= 121)
= 131)
= ty)
= 151)
= 161)
= 17v)

= 1381)

GO

GO

GO

GO

GO

GO

GO

GO

TO MENU;

OF SELECT */

TO

TO

T0

TO

TO

TO

TO

TO

DELETE_INPUT;
DELETE_PROCESS;
DELETE_OUTPUT;
DELETE_ENTITY;
DELETE_GROUP;
DELETE_ELEMENT;
DELETE_EVENT;

DELETE_CONDITION;

1191t

TOC GET BACK

')

')

¥

DELETE_PROCFSS: DISPLAY ('ENTER THE NAME OF THE PROCESS TO MODIFIED');
DISPLAY('OR DELETED ')REPLY (REC_NAME);
PROCESS_OWNER_NO = ' 1';
OBTAIN CALC RECORD {(PROCESS_OWNER) ;
CALL IDMS_STATUS;
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR) ;
DO WHILE (ERROR_STATUS = OK) ;
IF (PROCESS_NAME = REC_NAME) THEN DO;
DISPLAY ('DO YOU WISH TO DELETE(D) OR MODIFY (M) THIS OBJECT?');
DISPLAY (* ') REPLY (CHOICE) ;
IF (CHOICE = 'D') THEN DO;
DISCONNECT RECORD (PROCESS) SET(PRO_SUBPARTS_PE) ;
ERASE RECORD (PROCESS) ;
DISPLAY (* PROCESS ' || REC_NAME |] ' HAS BEEN DELETED') ;
/¥ RESET RECORD COUNT IN REMAINING RECORDS */
OBTAIN NEXT RECORD(PROCESS) SET(PRO_SUBPARTS_PR) ;
DO WHILE (ERROR_STATUS = OK);
REC_NUM = PROCESS_NO;
CALL DEC {REC_NUN);
PROCESS_NO = REC_NUHM;
MODIFY RECORD {PROCESS) ;
CALL IDMS_STATUS;
OBTAIN NEXT RECORD{PROCESS) SET (PRO_SUBPARTS_PR):
END; /* OF WHILE %/
PRCNT = PRCNT -1;
END; /* OF IF CHOICE */
ELSE DO;

D36&

DISPIAY ("ENTER THE (NEW)NAME FOR THE PROCESS') REPLY (REC_NAME) ;
PROCESS_NAME = REC_NAME;
DISPLAY (*STATE IN 72 CHARACTERS OR LESS, 2 DESCRIPTION OR ') ;
DISPLAY (*ANY ATTRIBUTES OF ' || REC_NAME) REPLY (ATTRIBUTES) ;
PR_ATTRIBUTES = ATTRIBUTES;
MODIFY RECORD (PROCESS);
CALL IDMS_STATUS;
DISPLAY (' PROCESS ']| REC_NAME |) ' HAS BEEN MODIFIED*®);
ERROR_STATUS = END_OF_SET;
END; /* OF ELSE */
END; /% OF IF PROCESS_NAME */
ELSE DO;
OBTAIN NEXT RECORD(PROCESS) SET(PRO_SUBPARTS_PR);
END; /* OF ELSE */

END; /* OF WHILE */

GO TO DELETE_RECORDS;

DELETE _INPUT: INPOUT_COWNER_NO = ' 173

DISPLAY('ENTER THE NAME OF THE INPUT TO BE MODIFIED ') ;
DISPLAY('OR DELETED ') REPLY(REC_NAME) ;

J = 1;

OBTAIN CALC RECORD (INPUT_OWNER) ;

DO WHILE (J<= INCNT);

IF (REC_NAME = INPUT_OWNER_NAME) THEN DO;

DISPLAY('DC YOU WISH TO DELETE(D) OR MODIFY(M) ") ;
DISPLAY('*THIS OBJECT ') REPLY{CHOICE);

IF¥ (CHOICE = 'D') THEN DO;

D37

OBTAIN FIRST RECORD (INPUT) SET(INO_SUBPARTS_IN);
DO WHILE (ERROR_STATUS = OK);
ERASE RECORD (INPUT) ;
OBTAIN NEXT RECORD (INPUT) SET (INO_SUBPARTS_IN);
END;
ERASE RECORD (INPUT_OWNER) ;
DISPLAY (* INPUT ' }J] REC_NAME |{ ' HAS BEEN DELETED');
Jd=J + 1;
DO WHILE (J<= INCNT);
PUT STRING(INPUT_OWNER_NO) EDIT(J) (F(4));
OBTAIN CALC RECORD(INPUT_OWNER) ;
CALL IDMS_STATUS;
Jd=J + 1;
REC_NUM=INPUT_OWNER_NO;
CALL DEC (REC_NUH) ;
INPUT_OWNER_NC = REC_NUM;
MODIFY RECORD (INPUT_OWNER) ;
CALL IDMS_STATUS;
END; /% OF WHILE */
INCNT = INCNT -1;
END; /* OF THEN */
ELSE DO;
DISPLAY ('ENTER THE NAME FOR THE (NEW) INPUT ')REPLY(REC_WNAME);
INPUT_OWNER_NAME = REC_NAME;
DISPLAY('STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION');
DISPLAY(' OR ANY ATTRIBUTES OF ' || REC_NAME) REPLY (ATTRIBUTES) ;
INO_ATTRIBUTES = ATTRIBUTES;

D38

MODIFY RECORD (INPUT_OWNER) ;
CALL IDMS_STATUS;
DISPLAY (" INPUT * j] REC_NAME }| * HAS BEEN MODIFIED?');

J = INCNT + 1;
END; /* OF ELSE */
END; /% OF IF INPUT =*/
ELSE DO;

J=J+ 1;

PUT STRING (INPUT_OWNER_NQ) EDIT(J) (F(4));

CBTAIN CALC RECORD(INPUT_OVWXNER) ;
END; /% OF ELSE */
END; /* OF WHILE */
GO TO DELETE_RECORDS;
DELETE OUTPUT: OUTPUT_OWNER_NO = ¢ 17;
DISPLAY('ENTER THE NAME OF THE OUTPUT TO BE MODIFIED ');
DISPLAY{"OR DELETED ')REPLY (REC_NANE) ;
Jd = 1;
OBTAIN CALC RECORD (OUTPUT_OWNER) ;
DO WHILE (J<= QUCNT);
I¥ (REC_NAMF = OUTPUTOWNER_NAME) THEN DOQ;
DISPLAY('DO YOU WISH TC DELETE(D) OR MODIFY(M) ') ;
DISPLAY('THIS OBJECT ") REPLY (CHOICE);
I¥ (CHOICE = 'D') THEXN DO;

OBTAIN FIRST RECORD(OUTPUT) SET(OCUO_SUBPARTS_OU);

DO WHILE (ERROR_STATUS = 0K);

ERASE RECORD (OUTPUT) ;
OBTAIN NEXT RECORD(OUTPUT) SET{OUQ_SUBPARTS_OU);

D39

END;
ERASE RECORD(OUTPUT_OWNER) ;
DISPLAY (* OUTPIIT ' || REC_NAME)} ' HAS BEEN DELETED'):
J=J + 1;
DO WHILE (J<= QUCNT) ;
POT STRING(OUTPUT_OWNER_NO} EDIT(J) (¥ {u4));
OBTAIN CALC RECORD (OUTPUT_OWNER);
CALL IDMS_STATUS;
REC_NUM = OUTPUT_OWNER_NO;
CALL DEC(REC_NUM) ;
OUTPUT_OWNER_NC = REC_NUM;
MODIFY RECORD (QUTPUT_OWNER) ;
CALL IDMS_STATUS;
J=J+ 1;
END; /% OF WHILE */
QUCNT = OUCHNT -1;
END; /¥ OF THEN %/
ELSE DOQ;
DISPLAY{'ENTER THE NAME FOR THE (NEW) OUTPUT ') REPLY (REC_NAMNE};
OUTPUTOWNER NAME = REC_NAME;
DISPLAY('"STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION?'} ;
DISPLAY('" OR ANY ATTRIBUTES OF ' |j REEC_WAME) REPLY (ATTRIBUTES) ;
OUO_ATTRIBUTES = ATTRIBUTES;
MODIFY RECORD (OUTPUT_CUWNER) ;
CALL IDMS_STATUS;
DISPLAY (" OUTPUT ' || REC_NAME]| ' HAS BEEN MODIFIED'):
Jd = OUCNT + 1;

D40

END; /% OF ELSE */
END; /% QOF IF GQUTPUT %/
ELSE DO;
J=J + {1
PUT STRING (OUTPUT_OWNER_NO) EDIT(J) (F(®));
OBTAIN CALC RECCRD (OUTPUT_OWNER) ;
ERD; /% OF ELSE */
END; /% OF WHILE */
GO TC DELETE_RECORDS;
DELETE_GROUP: GROUP_OWNER_NO = ' 17;
DISPLAY (*ENTER THE NAME OF THE GROUP TO BE MODIFIED ');
DISPLAY('"OR DELETED ')REPLY{(REC_NANME);
Jd = 1;
OBTAIN CALC RFECORD (GROUGP_OWNER) ;
DO WHILE (J<= GRCNT) ;
I¥ (REC_VNAMF = GROUP_OWNER_NAME) THEN DO;
DISPLAY{'DOC YOU WISH TO DELETE({D) OR MODIFY{(M)") ;
DISPLAY(*THIS OBJECT ') REPLY(CHOICE);
IF (CHOICE = 'D') THEN DO;
OBTAIN FIRST RECORD (GROUP) SET(GRO_SUBPARTS_GR) ;
DO WHILE (ERROR_STATUS = O0K);
ERASE RECORD(GROUP) ;
OBTAIN NEXT RECGRD{GROUP) SET(GRCO_SUBPARTS_GR) ;
END;
ERASE RECORD{GROUP_OWNER) ;
DISPIAY {* GROUP ' |] REC_NAME || * HAS BEEN DELETED'):
J =J + 1;

D41

DO WHILE {J<= GRCHNT);
PUT STRING(GROUP_OWNER_NO) EDIT(J) (F(H):
OBTAIN CALC RECORD(GROUP_OWNER) ;
CALL IDMS_STATUS;
REC_NUM = GROUP_OWNER_NO;
CALL DEC(REC_NUM) ;
GROUP_OWNER_NO = REC_NUM;
MODIFY RECORD (GROUP_OWNER) ;
CALL IDMS_STATUS;
J=J + 1;
END; /* OF WHILE */
GRCNT = GRCNT -1;
END; /* OF THEN */
ELSE DO;
DISPLAY('ENTER THE NAME FOR THE (NEW) GROUP ')REPLY (REC_NAME);
GROUP_OWNER_NAME = REC_NAME;
DISPLAY{*STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION') ;
DISPLAY{' OR ANY ATTRIBUTES OF ' || REC_NAME)REPLY (ATTRIBUTES) ;
GRO_ATTRIBUTES = ATTRIBUTES;
MODIFY RECORD {(GROUP_OWNER) ;
CALL IDMS_STATUS;
DISPLAY (* GROUP ' || REC_¥NAME |{ ' HAS BEEN MODIFIED');
J = GRCNT + 1;
END; /* OF ELSE */
END: /#* OF IF GROUP */
ELSE DO;
Jd=J+ 1;

D42

PUT STRING (GROUP_OWNER_NO} EDIT (J)
OBTAIN CALC RECORD(GEQOUP_OWNER) ;

END; /* OF ELSE */

END; /% OF WHILE */

GO TO DELETE_RECORDS;

DELETE _ENTITY: ENTITY OWNER_NO

DISPLAY('ENTER THE NAME OF THE ENTITY TO BE MODIFIED

DISPLAY('OR DELETED ')REPLY(REC_NANMI) ;

J 1;

OBTAIN CALC RECORD (ENTITY_ OWNER) ;

DO WHILE (J<= ENCNT);:

IF (REC_NAME = ENTITY_OWNER_NAME)

DISPLAY('DO YOU WISH TO DELETE(D)

DISPLAY('YTHIS OBJECT ') REPLY (CHOICE) ;

IF¥ (CHOICE 'D'Y THEN DO;

(F(l4));

1%

-

THEN DO;

OR MODIFY(M)'):

OBTAIN FIRST RECORD (ENTITY) SET(ENO_SUBPARTS_EN);

DO WHILE (ERROR_STATUS = OK);

ERASE RECORD (ENTITY);

OBTATN NEXT RECORD{ENTITY) SET(ENO_SUBPARTS_EN);

END;
ERASE RECORD(ENTITY_OWNER) ;

DISPLAY (" ENTITY ']}

J =

Jd +

[H

DO WHILE (J<= ENCNT);

POT STRING {ENTITY_OWNER_NO} EDIT(J)

OBTAIN CALC RECORD (ENTITY_ OWNER);
CALL IDNS_STATUS;

D43

REC_NAME] °

HAS BEEN DELETED'};

(F{4))

REC_¥NUM = ENTITY_OWNER_NO;
CALL DEC{REC_NKUN) ;
ENTITY_OWNER_NO = REC_NUM;
MODIFY RECORD(ENTITY_OWNER);
CALL IDMS_STATUS;
J=J + 1;
END; /% OF WHILE */
ENCNT = ENCNT -1;
ENXD; /* OF THEN */
ELSE DO;
DISPLAY('ENTER THE NAME FOR THE (NEW) ENTITY ') REPLY (REC_NAME);
ENTITY_ OWNER_NAME = REC_NAME;
DISPLAY{'STATE IN 72 CHARACTERS OR LESS, 2 DESCRIPTION");
DISPLAY({(' OR ANY ATTRIBUTES OF ' || REC_NAME) REPLY {ATTRIBUTES) ;
ENO_ATTRIBUTES = ATTRIBUTES;
MODIF¥Y RECORD (ENTITY_OWNER) ;
CALL IDMS STATUS:
DISPLAY {* ENTITY ' {{ REC_NAME || ' HAS BEEN MODIFIED');
J = ENCNT + 1;
END; /% OF ELSE */
END; /* OF IF ENTITY */
ELSE DO;
J=J+ 1;
PUT STRING (ENTITY OWNER_NO) EDIT(J) (F{H)) ;
OBTAIN CALC RECORD (ENTITY_ OWNER) ;
END; /* QF ELSE */
END; /% OF WHILE */

D44

GO TO DELETE_RECORDS;
DELETE_ELEMENT: ELEMENT_OWNER_NO = UV 10,
DISPLAY('ENTER THE NAME OF THE ELEMENT TO BE MODIFIED %);
DISPLAY{'OR DELETED '")REPLY (REC_NANE) ;
J = 1;
OBTAIN CALC RECORD (ELEMENT_OWNER) ;
DO WHILE (J<= ELCNT);
IF (REC_NAME = ELEMENT OWNER_NAME) THEN DO;
DISPLAY('DO YOO WISH TO DELETE(D} OR MODIFY(M)'):
DISPLAY(YTHIS OBJECT ') REPLY (CHOICE);
IF (CHOICE = *'D') THEN DO;
ERASE RECORD{ELEMENT_OWNER) ;
DISPLAY (* ELEMENT * |] REC_NAME |{ ' HAS BEEN DELETED'};
Jd=J+ 1;
DC WHILE (J<= ELCNT);
PUT STRING(ELEMENT_ OWNER_NO} EDIT(J) (F{4)):
OBTAIN CALC RECORD(ELEMENT_OWNER) ;
CALL IDMS_STATUS;
REC_NUM = ELEMENT_OWNER_NO;

CALL DEC{REC_NUNM)

-a

ELEMENT_OWNER_NO REC_NUM;
MODIFY RECORD{ELEMENT_OWNER) ;
CALL IDMS_STATUS;

J=J + 1
END; /% OF WHILE */
ELCNT = ELCNT -1;
END; /* OF THEN */

D45

ELSE DoO;

DISPLAY('ENTER THE NAME FOR THE (NEW) FELEMENT ')REPLY(REC_MNAME);

ELEMENT_OWNER_NAME = REC_NAME;
DISPLAY('STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION');
DISPLAY(" OR ANY ATTRIBUTES OF ' || REC_NAME)REPLY (ATTRIBUTES) ;
ELC_ATTRIBUTES = ATTRIBUTES;
MODIFY RECORD (ELEMENT_ OWUWNER) ;
CALL IDMS_STATUS;
DISPLAY (* ELEMENT * || REC_NAME |} ' HAS BEEN MODIFIED');

J = ELCHNT + 1;
END; /* OF ELSE */
END; /* OF IF ELEMENT */
ELSE BO;

J=J + 1;

PUT STRING (ELEMENT_OWNER_NO) EDIT(J) (F({#)):

OBTAIN CALC RECORD{FLEMENT_OWNER) ;
END; /* OF ELSE %/
END; /* OF WHILE */
GO TO DELETE_RECORDS;
DELETE EVENT: EVENT_NO = ° 11;
DISPLAY('ENTER THE NAME OF THE EVENT TO BE MODIF¥IED ');
DISPLAY('OR DELETED ')REPLY (REC_NAME) ;
J = 1;
OBTATHR CALC RECORD (EVENT) ;
DO WHILE ({Jd<= EVCNT);
IF (REC_NAME = EVENT NAME) THEN DO;
DISPLAY{'D0O YOU WISH TO DELETE(D) OR MODIFY{M)');

D46

DISPLAY('THIS OBJECT ') REPLY (CHCGICE);
I¥ (CHOICE = 'D') THEN DO;
ERASE RECORD[EVENT) ;
DISPLAY (* EVENT ']ji REC_NAME |} ' HAS BEEN DELETED');
J=J+ 1
DO WHILE {J<= EVCNT);
PUT STRING (EVENT_NO) EDIT(J) (F(i4));
OBTAIN CALC RECORD(EVENT) ;
CALL IDMS_STATUS;
REC_NUM = EVENT_NO;
CALL DEC (REC_NUNM) ;
EVENT_YNO = REC_NUM;
MODIFY RECORD (EVENT) ;
CALL IDMS_STATUS;
Jd=J + 1
END; /% OF WHILE %/
EVCNT = EVCNT —-1;
END; /* OF THEN */
ELSE DO;
DISPLAY{"ENTER THE NAME TFOR THE (NEUW) EVENT ')REPLY{(REC_NAME);
EVENT NAME = REC_NAME;
DISPLAY('STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION'};
DISPLAY({' OR ANY ATTRIBUTES OF ' || REC_NAME) REPLY (ATTRIBUTES) ;
EV_ATTRIBUTES = ATTRIBUTES;
MODIFY RECORED (EVENT) ;
CALL IDMS_STATUS;
DISPLAY{" EVENT ' |j REC_NAME |] ' HAS BEEN MODIFIED');:

D47

J = EVCNT + 1;
END; /* OF ELSE */
ENXD; /* OF IF EVENT =%/
ELSE DO;
J =43+ 1;
PUT STRING (EVENT_NO) EDIT(J) (F(4));
OBTAIN CALC RECORD (EVENT) ;
END; /* OT ELSE */
ERD; /% OF WHILE */
GO TO DELETE_RECORDS;
DELETE CONDITION: CONDITIOR_NO = ! 1
DISPLAY('ENTER THE NAME OF THE CONDITION TO BE MODIFIED ');
DISPLAY('OR DELETED *)REPLY (REC_NANE) ;
J = t;
OBTAIN CALC RECORD(CONDITION) ;
DO WHILE (J<= COCNT);
IF (REC_NAMNE = CONDITION_NAME} THER DO;
DISPLAY('DGC YOU WISH TOC DELETE(D) OR MODIFY(M)'}:
DISPLAY({'THIS OBJECT ') REPLY (CHOICE) ;
IF (CHOICE = 'D') THEN DO;
ERASYE RECORD(CONDITION) ;
DISPLAY (* CONDITION ' }|{ REC _NAME | ' HAS BEEN DELETED!');
Jd=J + 13
PO WHILE ({J<= COCNKT);
PUOT STRING (CONDITION_NO) EDIT(J) (F{u4));:
OBTAIN CALC RECORD(CONDITION) ;
CALL IDMS_STATUS;

Dusg

REC_NUM = CONDITION_NO;
CALL DEC {REC_NUM) ;
CONDITION_NO = REC_NON;
HMODIFY RECORD (CONDITION) ;
CALL IDMS_STATUS;
Jd=J + 1;
END; /* OF WHILE */
COCNT = COCNT -1;
END; /% OF THEN */
ELSE DO;
DISPLAY('ENTER THE NAME FOR THE (NEW) CONDITION ') REPLY(REC_NAME);
CONDITION_NAME = REC_NAME;
DISPLAY('STATE IN 72 CHARACTERS OR LESS, A DESCRIPTION!);
DISPLAY(' OR ANY ATTRIBUTES OF ' || REC_NAME) REPLY (ATTRIBUTES) ;
CO_ATTRIBUTES = ATTRIBUTES;
MODIFY RECORD (CONDITION) ;
CALL IDMS_STATUS;
DPISPLAY{' CONDITION ' |] REC_NAME |] ' HAS BEEN MCDIFIED");
J = COCNT + 1;
END; /* OF ELSE */
END; /% OF IF CONDITION */
ELSE DO;
J=J+ 1;
PUT STRING (CONDITION_NO) EDIT(J} (F(4)}:
OBTAIN CALC RECORD (CONDITION) ;
END; /* OF ELSE */
END; /* OF WHILE */

D49

GO TO DELETE_RECORDS;

ENTER_SETS: DISPLAY ('THE FOLLOWING RELATIONSHIPS MAY BE DEFINEDY) ;
DISPLAY(' 1-PROCESS_RECEIVES_INPUT 2-PROCESS_USES_INPOT') ;
DISPLAY (' 3-INPUT_CONSISTS_OF_ELEMENT 4-INPUT_CONSISTS_OF_GROUP') ;
DISPLAY({' 5-PROCESS_GENERATES_OUTPUT 6€-PROCESS_DERIVES_OUTPUT!') ;
DISPLAY(* 7-PROCESS_USES_ELEMENT 8~PROCESS_UPDATES_ELEMENT') ;
DISPLAY("' 9-PROCESS_DERIVES_ELEMENT 10-PROCESS_DERIVES_GROUP!');
DISPLAY({' ! 1-PROCESS_UPDATES_GROUP 12-PROCESS_USES_GROUP') ;
DISPLAY('13-PROCESS_DERIVES_ENTITY 14—PROCESS_UPDATES_ENTITY!):
DISPLAY{'15-PROCESS_USES_ENTITY 16-PROCESS_INCEPTION_CAUSES_EVENT') ;
DISPLAY (' 17-PROCESS_TERMINATION_CAUSES_EVENT ');

DISPLAY (' 18—PROCESS_TRIGGERED_BY_ EVENT'):
DISPLAY{'19-EVENT_WHEN_CONDITION 20-ENTITY_CONSISTS_OF_GROUP') ;
DISPLAY (*21-GROUP_CONSISTS_OF_ELEMENT 22-ENTITY_ CONSISTS_ELEMENT!);
DISPLAY('23-0UTPUT_CONSISTS_OF_ELEMENT 24-OUTPUT_CONSISTS_GROUP') ;
DISPLAY('ENTER THE NUMBER CORBESPONDING TO THE DESIRED ');

DISPLAY (*RELATIONSHIP OR 25 TO RETURN TO MENU') REPLY(CHOICE) ;
SELECT;

WHEN { CHOICE='1') GO TO PR_REC_IN;

WHEN (CHOICE='2') GO TO PR_USE_IN;

WHEN (CHOICE='3') GO TO IN_CON_EL;

WHEN { CHOICE='4') GO TO IN_CON_GR;

WHEN (CHOICE='5') GO TO PR_GEN_OU;

WHEN (CHOICE='&*') GO TO PR_DER_OU;

WHEN { CHOICE='7') GO TO PR_USE_FEL:

WHEN (CHOICE='8') GO TO PR_UPD_EL;

WHEN (CHOICE='9') GO TO PR_DER_EL;

D50

WHEN { CHOICE='10') GO TO PR_DER_GR;

WHEN { CHOICE='11') GO TO PR_UPD_GR;

WHEN (CHOICE='"12') GO TO PR_USE_GR;

WHEN (CHOICE=*13') GO TO PR_DER_EN;

WHEN (CHOICE='14') GO TO PR_UPD_EN;

WHEN (CHOICE='15') GO TO PR_USE_EN;

WHEN { CHOICE='16') GO TO PR_INC_EV;

WHEN (CHOICE='"17') GO TO PR_TER_EV;

WHER (CHOICE='"18") GO TO PR_TRI_EV;

WHEN { CHOICE='19') GO TO EV_WHE_CO;

WHEN {(CHOICE='20') GO TO EN_CON_GR;

WHEN (CHOICE='21') GO TO GR_CON_EL;

WHEN { CHOICE='22'") GO TO EN_CON_EL;

WHEN (CHOICE='23') GO TO OU_CON_EL;

WHEN (CHOICE='24') GO TO OU_CON_GR;

OTHERWISE GO TO MENU;

END;

PR_REC_IN 2 DISPLAY{'YOU HAVYE CHOSEN THE RELATIONSHIP ?) ;
DISPLAY({'PROCESS_RECEIVES_INPUT."):

DISPLAY('ENTER THE PROCESS NAME ') REPLY (OWNER _NAME);
DISPLAY{'RENTER THE INPUT NAME '} REPLY(MEMBER_NAME) ;
DISPLAY('DO YOQOU WISH TO (I) INSERT, ');

DISPLAY({' OR (D) DELETE THiS RELATIONSHIP? ENTER YOUR CHOICE ')
DISPLAY(' OF I, DV)REPLY{CHOICE) ;

IF CHOICE = ‘I' THEN GO TO INSERT_PR_REC_IN;

IF CHOICE = 'D'" THEN GO TO DELETE_PR_REC_IN;
DISPLAY{'INVALID CHOICE, TRY AGAIN');

D51

GO TO PR_REC_IN;

INSERT_PR_REC_IN

PROCESS_OWNER_NO = 13
J = 1;

OBTAIN CALC RECORD{PROCESS_OWNER) ;

OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR);

DO WHILE (J <= PRCNT);
IF (PROCESS_NAME = OWNER_NAME) THEN DO;
INPUT OWNER_NO = ' 1';
I=1;
OBTAIN CALC RECORD (INPUT_OWNER);

DO WHILE (I <= INCNT);

IF INPUT_OWNER_NAME = MEMBER_NAME THEN DO;

INPUT_NAME = INPUT_OWNER_NAME;
INPUT_NO = INPUT_OWNER_NO;
IN_ATTRIBUTES = INO_ATTRIBUTES;:
STORE RECORD (INPUT) ;

CALL IDMS_STATUS;

CONNECT RECORD{INPUT) SET(INO_SUBPARTS_IN);

CALL IDMS_STATOUS;

CONNECT RECORD (INPUT) SET{PR_RECEIVES IN);

CALL IDMS_STATOS;
DISPLAY (*RELATIONSHIP * || OWNER_NAME
MEMBER_NAME |§ ' HAS BEEN INSERTED ') ;

I

it

INCNT +1;

J PRCNT + 1;
END; /% OF 1IF */

D52

il

RECEIVES !

ELSE DO;
FIND CURRENT RECORD(INPUT_OWNER);
PUT STRING (INPUT_OWNER_NC) EDIT(I+1) (F(4));
OBTAIN CALC RECORD{INPUT_OWNER) ;
END; /* ELSE */
I =1+ 1;
END; /% OF WHILE */
END; /* OF THEN */
ELSE DO;
OBTAIN NEXT RECORD(PROCESS} SET (PRO_SUBPARTS_PR):
END; /* OF ELSE */
J=3J + 1;

END; /% OF WHILE */

GO TO ENTER_SETS;
DELETE_PR_REC_IN: PROCESS_OWNER_NO =! 1;
Jd = 1;
OBTAIN CALC RECORD (PROCESS_OWNER) 3
OBTAIN FIRST RECORD {PROCESS) SET(PRO_SUBPARTS_PR);
DC WHILE (J<=PRCNT);
IF (OWNER_NAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD(IXPUT} SET(PR_RECEIVES_IN);
DO WHILE (ERROR_STATUS = OK);
IF (INPUT_NAME = MEMBER_NAME) THER DO;
DISCONNECT RECORD(INPUT) SET(PR_RECEIVES_IN);
CALL IDMS_STATUS;

DISPLAY (' RELATIONSHIYIP ' || OWNER_NAME |] ' RECEIVES ' }{|

b53

MEMBER_NAME || * HAS BEEN DELETED °*) ;

J = PRCNT + 1

ERROR_STATUS = END_OF_SET;
END; /* OF THEN */
ELSE DO;
OBTAIN NEXT RECORD {INPUT) SET({PR_RECEIVES_IN) ;
END; /* OF ELSE */
END; /¥ OF WHILE ERROR_STATUS */
END; /* OF IF */
ELSE DO;
OBTAIN NEXT RECORD{PROCESS) SET({PRO_SUBPARTS_PR) ;
END; /* OF ELSE */
Jd=J+ 1;

END; /* OF WHILE */

GO TO ENTER_SETS:

PR_USE_IN : DISPLAY('YOU HAVE CHOSEN THE RELATIONSHIP ');
DISPLAY('PROCESS_USES_INPUT.');

DISPLAY{?ENTER THE PROCESS NAME ') REPLY (OWNER_NAME);
DISPLAY('ENTER THE INPUT NAKE ') REPLY (MEMBER_NAME) ;

DISPLAY('DO YOU WISH TO (I) INSERT, ');

DISPLAY(' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE '};
DISPLAY(' OF I, D'} REPLY (CHOICE) ;

IF CHOICE

'I' THEN GO TO INSERT_PR_USE_TIN;

IF CHOICE

*D' THEN GC TO DELETE_PR_USE_IN;
DISPLAY{'INVALID CHOICE, TRY AGRINY);

GO TO PR_USE_IN;

D54

INSERT_PR_USE_IN

PROCESS_OWNER_NO 1%
Jd= 1;
OBTAIN CALC RECORD {PROCFESS_OWRER) ;
OBTAIN FIRST RECORD (PROCESS) SET{PRO_SUBPARTS_PR);
DO WHILE (J <= PRCHNT);
IF (PROCESS_NAME = OWNER_NAME) THEN DO;
INPUT_OWNER_NO = ! i';
I= 1;
OBTAIN CALC RECORD (INPUT_OWUWNER) ;
DO WHILE (I <= INCNT);
IF¥ INPUT_OWNER_NAME = MEMBER_NAME THEN DO;
INPUT_NAME = INPUT_OWNER_NAME;
INPUT_NO = INPUT_OWNER_NO;
IN _ATTRIBUTES = INO_ATTRIBUTES;

STORE RECORD (INPUT);

CALL IDMS_STATUS;

CONNECT RECORD (INPUT) SET(INO_SUBPARTS_IN) ;

CONNECT RECORD (INPUT) SET{PE_USES_IN);

CALL IDMS_STATUS;

DISPLAY (*RELATIONSHIP ' |{ OWNER_NAME ||
MEMBER_NAME |] ' HAS BEEN INSERTED ');

I = INCHNT +1;

J = PRCNT + 1;

E¥D; /* OF IF */
ELSE DO;
FIND CURRENT RECORD({INPUT_OWNER) ;

D55

USES

PUT STRING (INPUT_OWNER_NO) EDIT (I+1) (F({4));
OBTAIN CALC RECORD (INPUT_OWNER) ;
END; /* ELSE */
I=1I+1;
END; /* OF WHILE */
END; /% OF IF =%/
ELSE DO;
OBTAIN NEXT RECGED{(PROCESS) SET (PRO_SUBPARTS_PR);
END; /% OF ELSE %/
J=J + 1;

END; s* OF WHILE #/

GO TO ENTER_SETS;
DELETE_PR_USE_IN: PROCESS_OWNER_¥O =! 1v;
J=1;
OBTAIN CALC RECORD {PROCESS_OWNER} ;
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR);
DO WHILE (J<=PRCNT);
IF¥ (OWNER_NAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD (INPUT) SET(PR_USES_IN) ;
DO WHILE (ERROER_STATUS = OK};
IF (INPUT_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD {INPUT} SET(PR_USES_IN}:
CALL IDMS_STATUS;
DISPLAY {*"RELATIONSHIP * || OWNER_NAME || ° OSES '
MEMBER_WRME || ' HAS BEEN DELETED %),

J = PRCNT + 1

D56

ERROE_STATUS = END_OF_SET;
END; /* OF THEN */
ELSE DO;
OBTAIN NEXT RECORD(INPUT) SRET (PR_USES_IN);
END; /* OF ELSE ¥/
END; /* OF WHILE ERROR_STATUS */
END; /% OF IF */
ELSE DO;
OBTAIN NEXT RECORD{PROCESS) SET(PRO_SUBPARTS_PR);
END; /¥ OF ELSE */
J=J+ 1;

ERD; /* OF WHILE */

GO TC ENTER_SETS;

PR_GEN 0U : DISPLAY ('YOU HAVE CHOSEN THE RELATIONSHIP ');
DISPLAY{('PROCESS_GENERATES_OUTPUT.");

DISPLAY('ENTER THE PROCESS NAME ') REPLY (OWNER_NAME) ;
DISPLAY('ENTER THE OUTPUT NAME ') REPLY (MEMBER_NAME) ;

DISPLAY{'DO YOU WISH TO (I) INSERT, ');

DISPLAY(' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE ') ;
DISPLAY(' OF I, D')REPLY(CHOICE);

I¥ CHOICE

'I' THEN GO TO INSERT_PR_GEN_OU;
IF CHOICE = *D' THEN GO TO DELETE_PR_GEN_OU;
DISPLAY{'INVALID CHOICE, TRY AGAIN');

GO TO PR_GEN_0U;

INSERT _PR_GEN_OU

E 1]

PROCESS_OWNER_NO = 1 1%;

D57

J = 1;

OBTAIN CALC RECORD{PROCESS_OWNER);

OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR);

DO WHILE (J <= PRCHNT);

IF (PROCESS_NAME = OWNER_NAME} THEN DO;

OUTPUT_OWNER_NO = ¢ 13
I= 1;
CBTAIN CALC RECORD {OUTPUT_OWNER} ;

DO WHILE (I <= OUCHNT);

IF OUTPUTOWNER_NAME = MEMBER_NAME THEN DO;

OOTPUOT_NAME = OUTPUTOWNER_NAME;
QUTPUT_NO = QUTPUT_OWNER_NO;
QU_ATTRIBUTES = OUO_ATTRIBUTES;
STORE RECORD {(OUTPUT) ;

CALL IDMS_STATUS;

CONRECT RECORD(OUTPUT) SET{CUC_SUBPARTS_QU)}:

CONNECT RECORD{OUTPUT) SET(PE_GENEREATES_O0U);

CALL IDMS STATUS;

DISPLAY ("RELATIONSHIP * || OWNER_NAME || ' GENERATES
{| MEMBER_NAME] ' HAS BEEN INSEETED ') ;

I = OUCHNT +1;

J = PRCNT + 1;

END; /* OF IF */

ELSE DO;
FIND CURRENT RECORD(OUTPUT_OWNER);
PUT STRING (CUTPUT_OWNER_NO) EDIT(I+1)
OBTAIN CALC RECORD (OUTPUT_OWNER);

D58

(F(H)} 3

END; /* ELSE */
I=1I4+ 1;
END; /* OF WHILE */
END; /% OF THER */
ELSE DO;
OBTAIN NEXT RECORD{PROCESS) SET(PRO_SUBPARTS_PR);
END; /* OF ELSE */
Jd=J+ 13

END; /% OF WHILE */

GO TC ENTER_SETS;
DELETE_PR_GEN_OU: PROCESS_OWNER_NO =' 13
J = 1;
OBTAIN CALC RECORD(FROCESS_OWNER) ;
OBTAIN FIRST RECORD(PROCESS) SET(PRO_SUBPARTS_PR);
DO WHILE (J<=PRCNT) ;
IF (OWNER_NAME = PROCESS_NAME) THEN DO;
OBTAXN FIRST RECGRD(OUTPOT) SET(PR_GENERATES_ O0U);
DO WHILE (ERROR_STATUS = OK);
IF (OUTPUT_NAME = MEMBER_NANE) THEN DO;
DISCONNECT RECORD (OUTPUT) SET (PR_GENERATES_OU) ;
CALL IDNMS_STATUS;
DISPLAY {"RELATIONSHIP ' || OWNER_NAHE |J] ' GENERATES !
{] MEMBER_NAME {| ' HAS BEEN DELETED ') ;

J = PRCNT + 1;

H

ERROR_STATUS = END_OF_SET;

END; /* OF THEN */

D59

ELSE DO;
OBTAIN NEXT RECORD (OUTPUT) SET (PR_GENERATES_OU) ;
END; /* OF ELSE */
END; /% OF WHILE ERROR_STATUS */
END; /% OF IF */
ELSE DO;
OBTAIN NEXT RECORD (PROCESS) SET(PRO_SUBPARTS_PR) ;
END; /* OF ELSE */
J=J + 1;

END; /* OF WHILE */

GO TO ENTER_SETS;

PR_DER_0U : DISPLAY (YYOU HAVE CHOSEN THE RELATIONSHIP ');
DISPLAY{'PROCESS_DERIVES_OUPUT."} ;

DISPLAY('ENTER THE PROCESS NAME ') REPLY {OWNER_NAME);
DISPLAY(*ENTER THE OUTPUT NAME ') REPLY (MEMBER_NANME);

DISPLAY{'DO YOU WISH TO (I} INSERT, *);

DISPLAY{(' COR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE 1) ;
DISPLAY(" OF I, D')REPLY(CHOICE) ;

IF CHOICE

i

'I' THEN GO TO INSERT_PR_DER_O0U;

it

I¥ CHOICE 'D' THEN GO TO DELETE_PRE_DER_OU;
DISPLAY("INVALID CHOICE, TRY AGAIN');

GO TO PR_DER_OU;

INSERT _PR_DER_OU
PROCESS_OWNER_NO = ! 1;
J = 1;

OBTAIN CALC RECORD (PROCESS_OWNER) ;

D60

OBTAIN FIRST RECORD(PROCESSY SET (PRO_SUBPARTS_PR);
DO WHILE {J <= PRCNT);
IF (PROCESS_NAME = OWNER_NAME) THEN DO;
CUTPUT_OWNER_KO = ! 1%;
I= 1;
OBTAIN CALC RECORD (OUTPUT_OWNER) ;
DO WHILE (I <= CUCNT) ;
IF CUTPUTOWNER_NAME = MEMBER_NAME THEN DO;
OUTPUY NAME = OUTPUTOWNER_NAME;
OUTPUT_NO = OUTPUT_OWNER_NO;
OU_ATTRIBUTES = QUO_ATTRIBUTES;
STORE RECORD (OUTPUT) ;
CALL IDMS_STATUS;
CONNECT RECORD(OUTPUT) SET(OUO_SUBPARTS_OU};
CONWECT RECORD {QUTPUT) SET (PR_DERIVES_OU);
CALL IDNS_STATUS;
DISPLAY{(' RELATIONSHIP ' || OWNER_NAME || ' DERIVES * ||
MEMBER_NAME |] ' HAS BFEEN INSERTED Y);

I = OUCNT +1;

J PRCHT + 1;
END; /* OF IF */
ELSE DO;
FIND CURRENT RECORD(CUTPUGT_ OWNER) ;
PUT STRING (OUDTPUT_OWNER_NO) EDIT(I+1) (F{4)):
OBTAIN CALC RECORD (OUTPUT_OWNER);
END; /* ELSE */
I=1I+ 1;
D61

ERD; /% OF WHILE */
END; /* OF THEN */
ELSE DO;
OBTAIN NEXT RECORD(PROCESS) SET{(PRO_SUBPARTS_PR);
END; /* OF ELSE */
Jg=J ¢+ 1;

END; /% OF WHILE */

GO TO ENTER_SETS;
DELETE PR_DER_OU: PROCESS_OWNER_NO =! 10;
J = 1;
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD {PROCESS) SET(PRO_SUBPARTS_PR);
DO WHILE (J<=PRCNT) ;
IF (OWNER_NAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD (OUTPUT) SET (PR_DERIVES_OU);
DO WHILE (ERROR_STATUS = OK);
IF (OUTPUT_NAMNFE = MEMBER_NAME) THEN DO;
DISCONNECT RECORD (OQUTPUT) SET (PR_DERIVES_0OU);
CALL IDMNS_STATUS;
DISPLAY (' RELATIONSHIP ' || OWNER_NAME]| ' DERIVES ' }|
MEMBER_NAME }} ' HAS BEEN DELETED '};
J = PRCNT + 1;
ERROR_STATUS = END_OF_SET;
END; /% OF THER */

ELSE DO;

OBTAIN REXT RECORD(CUTIPUT) SET(PR_DERIVES_OU) ;

Dée2

END; /* OF ELSE */
END; /* OF WHILE ERROR_STATUOS */
END; /* OF I1IF */
ELSE DO;
OBTAIN NEXT RECORD (PROCESS) SET(PRO_SUBPARTS_PR);
END; /% OF ELSE */
Jd=J + 1;

END; /% OF WHILE */

G0 TO ENTER_SETS;

PR_USE FL : DISPLAY (*YOU HAVE CHOSEN THE RELATIONSHIP ');
DISPLAY('PROCESS_USES_ELEMENT.');

DISPLAY{*ENTER THE PROCESS NAME '} REPLY (OWNER_NAHME) ;
DISPLAY{'ENTER THE ELEMENT NAME ') REPLY (MEMBER_NAME) ;
DISPLAY('DO YOU WISH TO (I) INSERT, '):

DISPLAY(® OR (D) DELETE THIS RELATICNSHIP? ENTER YODR CHOICE ');
DISPLAY(' OF I, D'")REPLY(CHOICE) ;

IF CHOICE = 'I' THEN GO TO INSERT_PR_USE_EL;

it

IF CHOICE = 'D' THEN GO TO DELETE_PR_USE_EL;
DISPLAY('INVALID CHOICE, TRY AGAIN'):
GO TO PR_USE_EL;

INSERT_PR_USE_EL

PROCESS_OWNER_NO = ¢ 1

J=1;

OBTAIN CALC RECORD{(PROCESS_OWNER} ;

OBTAIN FIRST RECORD (PROCESS) SET({PRO_SUBPARTS_PR);

DC WHILE (J <= PRCNT) ;

D63

IF (PROCESS_NAME = OWNER_NAME) THEN DO;
ELEMENT_OWNER_NWNO = ! 19;
I=1;
OBTAIN CALC RECORD (ELEMENT_OWNER);
DO WHILE (I <= ELCHNT);
IF ELEMENT_OWNER_NAME = MEMBER_NAME THEN DO;
ELEMENT_NAME = ELEMENT_OWNER_NAME;
ELEMENT_NO = ELEMENT_ORNER_¥NO;
EL_ATTRIBUTES = ELO_ATTRIBUTES;
STORE RECORD (ELEMENT) ;
CALL IDMS_STATUS;
CONNECT RECORD({ELEMENT) SET(ELO_SUBPARTS_EL):
CONNECT RECORD (ELEMENT) SET(PR_USES EL):
CALL IDMS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME | °? USES L B
MEMBER_NAME || ' HAS BEEN INSERTED ') ;
I = ELCHNT +1;

J PRCHNT + 1;

END; /¥ OF IF */

ELSE DO;
FIND CURRENT RECORD{ELEMENT_OWNER) ;
PUT STRING (ELEMENT_OWNER_NO) EDIT(I+1) (F(4));
OBTAIN CALC RECCORD (ELEMENT_OWNER);
END: /* ELSE */
I=I+ 1;

END; /¥ OF WHILE */

END; /% OF THENW */

DEY

ELSE DO;

OBTAIN NEXT RECORD(PROCESS) SET(PRO_SUBPRARTS_PR);
END; /* OF ELSE %/
J=J + 13

END; /* OF WHILE */

GO TO ENTER_SETS:
DELETE_PR_USE_EL: PROCESS_OWNER_NO =! 1
Jd= 1;
OBTAIN CALC RECORD (PRCCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR);
DO WHILE (J<=PRCNT) ;
iF (OWNER_¥YAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD(ELEMENT) SET(PR_USES_EL):
DO WHILE (ERROR_STATUS = OK};
IF¥ (ELEMENT_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD (ELEMENT) SET(PR_USES_EL);
CALL IDMS_STATUS;
DISPLAY ("RELATIONSHIP ' || OWNER_NAME {| ? USES
MEMBER _NAME |]] " HAS BEEN DELETED ');
J = PRCNT + 1;
ERROR_STATUS = END_OF_SET;
END; /% OF THEN */
ELSE DO;
OBTAIN NEXT RECORD (ELEMENT) SET(PR_USES_EL);
END; /* OF ELSE */

END; /* OF WHILE ERROR_STATUS */

D65

END; /* OF IF */
ELSE DO;
OBTAIN NEXT RECORD{PROCESS) SET ({PRO_SUBPARTS_PR);
END; /* OF ELSE */
J=J + 1;

END; /* OF WHILE */

GC TO ENTER_SETS;

PR_UDPD EL : DISPLAY {'YOU HAVE CHOSEN THE RELATIONSHIP !) ;
DISPLAY('PROCESS_UPDATES ELEMENT.');

DISPLAY(*ENTER THE PROCESS NAME ') REPLY (OWNER_NAME) ;
DISPLAY('ENTER THE ELEMENT NAME ') REPLY (MEMBER_NAME) ;

DISPLAY ('DC YOU WISH TO (I) INSERT, ');

DISPLAY(' OR (D) DELETE THIS RELATIONSHIP? FENTER YOUR CHOICE

DISPLAY(' OF I, D')REPLY(CHOICE):

IF CHOICE = 'I' THEN GO TO INSERT_PR_UPD_EL;
IF CHOICE = 'D' THEN GO TO DELETE_PR_UPD_EFL;
DISPLAY('INVALID CHOICE, TRY AGAIN');

GO TO PR_UPD_FL;

INSERT_PR_UPD_EL

PROCESS_OWNER_NO 1%%
J=1;
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD {PROCES3) SET(PRO_SUBFPARTS_ PR);
DO WHILE (J <= PRCNT) ;
IF {PROCESS_NAME = OWNER_NAME) THEN DO;

ELEMENT_OWNER_¥O = ! 1';

DE€

*)

*

I=1;

OBTAIN CALC RECORD (ELEMENT_OWXNER);

DO WHILE (I <= ELCNT);

IF ELEMENT_OWNER_NAME = MEMBER_NAME THEK DO;
ELEMENT_ NAME = ELEMENT_OWNER_NAME;
ELEMENT_NC = ELEMENT_OWNER_NOG;
EL_ATTRIBUTES = ELO_ATTRIBUTES;
STORE RECORD (ELEMENT) ;
CALL IDMS_STATUS;
CONNECT RECORD(ELEMENT) SET{(ELO_SUBPARTS_EL);
CONNECT RECORD(ELEMENT) SET(PR_UPDATES_EL) ;
CALL IDNS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME || ¥ UPDATES ' ||
MEMBER_NAME |] " HAS BEEN INSERTED ') ;

I

ELCHNT +1;

J

PRCNT + 1;
END; /% OF IF */
ELSE DO;
FIND CUBRRENT RECORD({ELEMENT_OWNER) ;
PUT STRING (ELEMENT_OWNER NO) EDIT(I+1) (F(4));
OBTAIN CALC RECORD{ELEMENT_OWNER);
END; /* ELSE */
I =1+ 1;
END; /% OF WHILE */
END; /¥ OF THEN */
ELSE DoO;
OBTAIN NEXT RECORD(PROCESS) SET (PRO_SUBPARTS_PR) ;

De7

END; /* OF ELSE */
J=J+ 1;

END; /* OF WHILE */

GO TO ENTER_SETS;
DELETE_PR_UPD_EL: PROCESS_OWNER_NO =' 1vs
J=1;
OBTAIN CALC RECORD {PROCESS_OWYXER} ;
OBTAIN FIRST RECORD (PROCESS) SET{PRO_SUBPARIS_ PR);
DO WHILE (J<=PRCNT) ;
IF {OWNWER_NAME = PROCESS_MNAME) THEN DO;
OBTAIN FIRST RECORD (ELEMENT) SET(PR_UPDATES_EL) ;
DO WHILE (ERROR_STATUS = 0K);
IF (ELEMENT_ NAME = MEMBER_NAME) THER DO;
DISCONNECT RECORD(ELEMENT) SET(PR_UPDATES_EL);
CALL IDMS_STATUS:
DISPLAY (YRELATIONSHIP * || OWNER_NAME || ' UPDATES ' ||
MEMBER_NAME]| ' HAS BEEN DELETED ');
J = PECNT + 1;
ERROR_STATUS = END_OF_SET;
END; /* OF THEN */

ELSE DO;
OBTAIN NEXT RECORD (ELEMENT)} SET(PR_UPDATES_EL) ;

END; /* OF ELSE */
END; /* OF WHILE ERROR_STATUS */
END; /% OF IF */

ELSE DO;

D68

OBTAIN NEXT RECORD({(PROCESS) SET (PROC_SUBPARTS_ PR);
END; /% OF ELSE */
Jd=J+ 1

END; /* OF WHILE %/

GO TO ENTER_SETS;

PR_DER_EL : DISPLAY ("YOU HAVE CHOSER THE RELATIONSHIP ')
DISPLAY (' PROCESS_DERIVES_ELEMENT.');

DISPLAY('"ENTER THE PROCESS NAME ') REPLY (OWNER_NAME) ;
DISPLAY('ENTER THE ELEMENT NAME ') REPLY (MEMBER_NAME) ;
DISPLAY('DC YOU WISH TO (I) INSERT, ');

DISPLAY{(' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE
DISPLAY(' OF I, D')REPLY(CHOICE) ;

IF CHOICE = *I' THEN GO TO INSERT_PR_DER_EIL;

IF CHOICE = 'D' THEN GO TO DELETE_PR_DER_EL;
DISPLAY('INVALID CHOICE, TRY AGAIN');
GO TO PR_DER_EL;

INSERT_PR_DER_EL

PROCESS_OWNER_NO = 1 i

J = 13

OBTAIN CALC RECORD (PROCESS_OWNER} ;

OBTAIN FIRST RECORD {(PROCESS) SET (PRO_SUBPARTS_PR);

DO WHILE (J <= PRCKT):

IF (PROCESS_NAME = OWNER_NAME) THEN DO;

ELEMENT_OUNER_NO = ! 1%;
I= 1;

OBTAIN CALC RECORD (ELEMENT_OWNEE} ;

DE9

")

DO WHILE (I <= ELCNT);

IF (ELEMENT_OWNER_NAME = MEMBER_NAME) THEN DO;
ELEMENT_NAME = ELEMENT_OWNER_NAME;
ELEMENT_NO = ELEMENT_OWNER_NO;
EL_ATTRIBUTES = ELO_ATTRIBUTES;
STORE RECORD (ELEMENT) ;
CALL IDMS_STATUS;
CONNECT RECORD(ELEMENT) SET(ELO_SUBPARTS_EL);
CONNECT RECORD(ELEMENT) SET(PR_DERIVES_EL) ;

CALL IDMS STATUS;

DISPLAY (*RELATIONSHIP * || OWNER_NAME]| ' DERIVES ' ||
MEMBER_NAME || ' HAS BEEN INSERTED ') ;

I = ELCNT +1;

J = PRCNT + 1;

END; /% OF IF */
ELSE DO;
FIND CURRENT RECCRD(ELEMENT_OWNER) ;
PUT STRING (ELEMENT_OWWER_NO)} EDIT (I+1) (F(4));
OBTAIN CALC RECORD (ELEMENT_OWWNER);
END; /* ELSE %/
I =1I=+ 1;
END; /* QF WHILE */
END; /% OF THEN */
ELSE DO;
OBTAIN NEXT RECORD{PROCESS) SET{PRO_SUBPARTS_PR);
END; /% OF ELSE */
Jd=J + 1;

D70

END; /* OF WHILE */

GO TO ENTER_SETS;:
DELETE PR_DER_EL: PROCESS_OWNER_NO =! 14;
J= 13
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR);
DO WHILE {J<=PRCHT) ;
I¥ (OWNER_NAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD (ELEMENT) SET(PR_DERIVES_ EL);
DO WHILE (ERROR_STATUS = OQK);
IF (ELEMENT_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD (ELEMENT) SET(PR_DERIVES_EL);
CALL IDMS_STATUS;
DISPLAY(*RELATIONSHIP * || OWNER_NAME | ' DERIVES ' |}
MEMBER_NAME || ' HAS BEEN DELETED ');
J = PRCHNT + 1;
ERROR_STATUS = END_OF_SET;
END; /% OF THEN */

ELSE DO;
OBTAIN NEXT RECORD(ELEMENT)} SET(PR_DERIVES_EL) ;

END; /* OF ELSE */
END; /% OF WHILE ERROR_STATUS */
END; /* OF 1IF #*/

ELSE DO;
OBTAIN NEXT RECORD (PROCESS) SET{PRO_SUBPARTS_PR) ;

END; /* OF ELSE */

D71

Jd=J+ 1;

END; /% OF WHILE */

GC TO ENTER_SETS;

PR_DER _GR : DISPLAY ("YOU HAVE CHOSEN THE RELATIONSHIP *);
DISPLAY(*PROCESS_DERIVES_GROUP.') ;

DISPLAY('ENTER THE PROCESS NAME ') REPLY (OWNER_NAMEF) ;
DISPLAY('ENTER THE GROUP HAME ') REPLY (MEMBER_NAME) ;
DISPLAY('DO YOU WISH TO (I) INSERT, '};

DISPLAY{(' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE

DISPLAY(' OF I, D')REPLY(CHOICE);

IF CHOICE = 'I' THEN GO TO INSERT_PR_DER_GR;
IF CHOICE = 'D' THEN GO TO DELETE_PR_DER_GR;
DISPLAY('INVALID CHOICE, TRY AGAIN');

GO TO PR_DER_GR;

INSERT _PR_DER_GR

PROCESS_OWNER_NO = * 1*;
J=1;
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR)
DO WHILE (J <= PRCANT);
IF (PROCESS_NAME = OWNER_NAME) THEN DO;
GROUP_OWNER_NO = ! 143
I= 1;
OBTAIN CALC RECORD {GROUP_OWNER) ;
DO WHILE (I <= GRCNT);

IF GROUP_OWNER_NAME = MEMBER_NAME THEN DO;

D72

')

GROUP_NWAME = GROUP_OWNER_NAME;
GROUP_NO = GROUP_OWNER_NO;

GR_ATTRIBUTES = GRO_ATTRIBUTES;

STCRE RECORD (GEOUP) ;

CALL IDMS_STATUS;

CONNECT RECORD{GROUP) SET(GRO_SUBPARTS_GR) ;
CONNECT RECORD(GROUP) SET(PR_DERIVES_GR) ;

CALL IDMS_STATUS;

DISPLAY{'"RELATIONSHIP * || OWNER_WAME |} ' DERIVES ' {|
MEMNBER_NAME || ' HAS BEEN INSERTED ')
I = GRCNT +1;

J = PRCNT + 1;
END; /¥ OF IF */
ELSE DO;
FIND CURKRENT RECORD (GROUP_OWNER);
PUT STEING (GROUP_OWNER_NQ) EDIT{I+1) (¥ (W4)):
OBTAIN CALC RECORD(GROUP_CWNER) ;
END; /* ELSE */
I =1I+ 1;
END; /% OF WHILE */
END; /% OF THEN */
ELSE DO
OBTAIN NEXT RECORD(PROCESS) SET {PRO_SUBPARTS_PR);
END; /* OF ELSE */
J =J + 1;

END; /% OF WHILE */

D73

GO TO ENTER_SETS;

DELETE_PR_DER_GR: PROCESS_OWNER_NO =' 1%;

OBTAIN CALC RECOHRD (PROCESS_QOWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR);
DO WHILE {J<=PRCHNT);
IF (OWNER_NANE = PROCESS_NAME)THEN DO;
OBTAIN FIRST RECORD(GROUP) SET(PR_DERIVES_GR);
DO WHILE (ERROR_STATUS = OK);
IF (GROUP_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD (GROUP) SET{PR_DERIVES_GR);
CALL IDMS_STATUS;
DISPLAY ("RELATIONSHIP ' || OWNER_NAME |] ' DERIVES ' ||
MEMBER_NAME {} ' HAS BEEN DELETED V') ;
J = PRCHNT + 1;
ERROR_STATUS = END_OF_SET;
END; /* OF THEN */
ELSE DO;
OBTAIN NEXT RECORD (GROUP) SET (PR_DFERIVES_GR);
END; /% OF ELSE */
ERD; /* OF WHILE ERROR_STATUS */
END; /% OF IF */
ELSE DO;
CBTAIN NEXT RECORD(PROCESS) SET(PRBO_SUBPARTS_PR) ;
END; /% OF ELSE */
J = J + i3
END; /% OF WHILE */

D74

GO TO ENTER_SETS;
PR_UPD_GR : DISPLAY (*YOU HAVE CHOSEN THE RELATIONSHIP ') ;
DISPLAY('PROCESS_UPDATES_GROUP.) ;

DISPLAY('ENTER THE PROCESS NAME ') REPLY (OWNER_NAME) ;
DISPLAY('ENTER THE GROUP NAME ') REPLY (MEMBER_NAME) ;

DISPLAY{'DC YOU WISH TG {I) INSERT, ')

DISPLAY(' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE ')

DISPLAY(® OF I, D')REPLY (CHOICE) ;

IF CHOICE *I' THEN GO TO INSERT_PR_UPD_GR;

IF CHOICE = 'D' THEN GO TO DELETE_PR_UPD_GR;
DISPLAY (*INVALID CHOICE, TRY AGAIN');
GO TO PR_UPD_GR;

INSERT_PR_UPD_GR

[2]

PROCESS_OWNER_KO = ¢ 1v;
J = 1;
OBTAIN CALC RECORD(PROCESS_OWNER);
OBTRIN FIRST RECORD {PROCESS) SET(PRO_SUBPARTS_PE);
DO WHILE ({J <= PRCHNT);
IF (PROCESS_NAME = OWNER_NAME) THEN DO;
GROUP OWNER_NO = 1 10
I1= 1;
OBTAIN CALC RECORD (GROUP_QWNER);
DO WHILE (X <= GRCHT):
IF GROUP_OWNER_NAME = MEMBER_NAME THEN DO;
GROQUP_NAME = GROUDP_OWNER_NAME;
GROUP_NO = GROUP_OWNER_NO;

D75

GR_ATTRIBUTES = GRO_ATTRIBUTES;
STORE RECORD (GROUP) ;

CALL IDMS_STATUS;

CONNECT RECORD (GROUP) SET(GRO_SUBPARTS_GR) ;
CONNECT RECORD(GROUP) SET(PR_UPDATES_GR) ;

CALI IDMS_STATUS;

DISPLAY {'RELATIONSHIP ' || OWNER_NAME }| ' UPDATES ' ||
MEMBER_NAME {| ' HAS BEEN INSERTED ') ;

I = GRCNT +1;

J = PRCHNT + 1;

END; /% OF IF */
ELSE DO;
FIND CURRENT RECORD(GROUP_OWNER):
POT STRING (GROUP_OWNER_NO) EDIT(I+1} (F(4));
OBTAIN CALC RECORD (GROUP_OWNER) ;
END; /* ELSE */
I=1I+ 1;
END; /% OF WHILE */
END; /* OF THEN */
ELSE DO,
OBTAIN NEXT RECORD(PROCESS) SET (PRO_SUBPARTS_PR);
END; /% OF ELSE */
Jd=4d + 1;

END; /* OF WHILE */

GO TO ENTER_SETS;

DELETE_PR_UPD_GR: PROCESS_OWNER_NO =* 1v;

D7¢

Jd = 1;
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR);
DO WHILE (J<=PRCNT);
IF (OWNER_NAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD (GROUP) SET(PR_UPDATES_GR) ;
DO WHILE (ERROR_STATUS = OK);
IF (GROUP_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD (GROUP) SET(PR_UPDATES_GR});
CALL IDMS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME [] ' UPDATES
MENBER_NAME i * HAS BEEHW DELETED 7) ;
Jd = PRCNT + 1;
ERROR_STATUS = END_OF_5SET;
END; /* OF THEN */
ELSE DO;
OBTAIN NEXT RECORD (GROUP) SET {PR_UPDATES_GR):;
ERD; /* OF ELSE */
END; /* OF WHILE ERROR_STATOS */
END; /% QF IF */
ELSE DO;
OBTAIN NEXT RECORD(PROCESS) SET(PRO_SUBPARTS_PR) ;
END; /¥ OF ELSE */
J=J+ 1;

E¥D; /* OF WHILE */

GO TO ENTER_SETS;

D77

i

PR_USE_GR =z DISPLAY ('YOU HAVE CHOSEN THE RELATIONSHIP ') ;

DISPLAY{ 'PROCESS_USES_GROUP.');

DISPLAY{'ENTER T
DISPLAY("ENTER T
DISPLAY('DO YOU
DISPLAY("' OR (D)
DISPLAY(' OF I,
IF¥ CHOICE = 'IV
IF CHOICE = 'D¢
DISPLAY('INVALID
GO TO PR_USE_GR;
INSERT_PR_USE_GR
PROCESS_GWNER_NO
Jd = 1;

OBTAIN CALC RECQ
OBTAIN FIRST REC
DO WHILE {(J <= P

IF (PROCESS_NA

HE PROCESS NAME ') REPLY (OWNER_NAME) :

HE GROUP NAME ') REPLY (MEMBER_NAME) ;

WISH TO (I) INSERT, *);

DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE
D') REPLY (CHOICE) ;

THEN GO TO INSERT_PR_USE_GR;

THEN GO TO DELETE_PR_USE_GR;

CHOICE, TRY AGAIN');

RD (PROCESS_OWNER) ;
ORD (PROCESS) SET(PRO_SUBPARTS_PR) ;
RCNT) ;

ME = OWNER_NAME) THEN DO;

GROUP_OWNER_NO = ¢ 1t

I= 1;

OBTAIN CALC RECORD {(GROUP_OWNER);

DG WHILE (I

<= GRCNT) ;

IF GROUP_OWNER NAME = MEMBER_NAME THEN DO;

GROUP

_NAME = GROUP_OWNER_NAME;

GROUP_NO = GROUP_OWNER_NO;

GR_AT

TRIBUTES = GRO_ATTRIBUTES;

STORE RECORD {(GROUP) ;

D78

')

CALL IDMS_STATUS;

CONNECT RECORD (GROUP) SET(GRO_SUBPARTS_GR) ;
CONNECT RECORD(GROUP) SET(PR_USES_GR} ;
CALL IDMS_STATOS;

DISPLAY (*RELATIONSHIP ' || OWNER_NAME] ' US ES

MEMBER_HNAME || ' HAS BEER INSERTED ');

I = GRCHYNT +1;

J

PRCNT + 1;

END; /* QF ITF */

ELSE DO:

FIND CURRENT RECORD(GROUP_OWNER);

PUT STRING (GROUP_OWNER_NO) EDIT(I+1) (F(4));
OBTAIN CALC RECORD(GROUP_OWNER) ;

END; /* ELSE */

I =1+ 1;

END; /* OF WHILE */

END; /* OF THEN */

ELSE DO;

OBTAIN NEXT RECORD(PROCESS) SET (PRO_SUBPARTS_PR);

END;

/¥ OF ELSE */

Jd=J + 1;

END; /* OF WHILE */

GO TO ENTER_SETS;

DELETE PR_USE_GR: PROCESS_OWNER_NO =!' 145

J =13

OBTAIN CALC RECORD (PROCESS_OWNER) ;

D79

L1

OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR) ;
DO WHILE (J<=PRCYNT);
IF (OWNER_NAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD (GROUP) SET(PR_USES_GR) ;
DO WHILE (ERROR_STATUS = OK);
IF (GROUP_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD (GROUP) SET{PR_USES_GR) ;
CALL IDMS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME || ° USES ' ||
MEMBER_NAME || ' HAS BEEN DELETED !);
J = PRCNT + 1;
ERROR_STATUS = END_OF_SET;
END; /% OF THEN */
ELSE DO;
OBTAIN NEXT RECORD (GROUP) SET (PR_USES_GR);
END; /% OF ELSE */
END; /* OF WHILE ERROR_STATUS */
END; /% OF IF %/
ELSE DO;
OBTAIN NEXT RECORD (PROCESS) SET (PRO_SUBPARTS_PR);
END; /¥ OF ELSE */
J=Jd+ 1;

END; /% OF WHILE */

G0 TO ENTER_SETS;
PR_DER_EN : DISPLAY (*YOU HAVE CHOSEN THE RELATIONSHIP '};

DISPLAY(*PROCESS_DERIVES_ENTITY.');

D8O

DISPLAY('ENTER THE PROCESS NAME ') REPLY (OWNER_NANME) ;
DISPLAY('ENTER THE ENTITY NAME ') REPLY (MEMBER_NAME) ;

DISPLAY('DO YOU WISH TO (I) INSERT, '):

DISPLAY(* OR (D} DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE

DISPLAY(' OF I, D')REPLY (CHOICE) ;

IF¥ CHOICE tIv THEN GO TC INSERT_PR_DER_EN;

IF CHOICE

'D* THEN GO TO DELETE_PR_DER_EN;
DISPLAY("INVALID CHOICE, TRY AGAIN');
GO TO PR_DER_EN;

INSERT_PR_DER_EN

PROCESS_OWNER_NGC = (-
J = 1;
OBTATN CALC RECORD {PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR);
DO WHILE (J <= PRCNT) ;
IF (PROCESS_NAME = OWNEE_NAME) THEN DO;
ENTITY OWNER_NO = ! 1°;
I=1;
OBTAIN CALC RECORD (ENTITY OWNER);
DO WHILE (I <= ENCHT);
IF ENTITY_ _OWNER_NAME = MEMBER_NAME THEN DO;
ENTITY_NAME = ENTITY OWNER_NAME;
ENTITY_NO = ENTITY_ OWNER_NO;
EN_ATTRIBUTES = ENO_ATTRIBUTES;
STORE RECORD {ENTITY) ;
CALL IDMNS STATUS;
CONNECT RECORD{ENTITY) SET(ENOC_SUBPARTS_EN);

D81

"ii

CONNECT RECORD(ENTITY) SET(PR_DERIVES_EN);

CALIL IDMS_STATUS;

DISPLAY ("RELATIONSHIP ' || OWNER_NAME || ' DERIVES ¢

MEMBER_NAME || ' HAS BEEN INSERTED ');

I ENCNT +1;

H

J PRCNT + 1;
END; /% OF IF */
ELSE DO;
FIND CUORRENT RECORD(ENTITY_ OWNER);
PUT STRING (ENTITY_ONNER NO) EDIT{(I+1)
OBTAIN CALC RECORD (ENTITY_OWNER);
END; /% ELSE */
I =1+ 1;
END; /% OF WHILE */
END; /* OF THEN */

ELSE DO;

(E(4));

OBTAIN WEXT RECORD(PROCESS) SET(PRO_SUBPARTS_PR};

END; /* OF ELSE */
J=J+ 1;

END; /% OF WHILE */

GO TO ENTER_SETS;
DELETE_PR_DER_EN: PROCESS_OWNER_NO =' 10 ;
Jd =13

OBTAIN CALC RECORD {PROCCESS_OWNER};

OBTAIN FIRST ERECORD (PROCESS) SET(PRO_SUBPARTS_PR) ;

DC WHILE ({J<=PRCNT);

D82

IF (OWNER_NAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD (ENTITY) SET(PR_DERIVES_EN);
DO WHILE (ERROB_STATUS = OQOK}):
IP (ENTITY_NAME = MEMBER_NANME) THEN DOD;
DISCONNECT RECORD (ENTITY) SET (PR_DERIVES_EN);
CALL IDNMS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME || ' DERIVES ' ||
MEMBER_NAME |] ' HAS BEEN DELETED ');
J = PRCNT + 1;
ERROR_STATUS = END_OF_SET;
END; /* OF THEN */
ELSE DO;
OBTAIN NEXT RECORD (ENTITY) SET{PR_DERIVES_EN};
END; /% OF ELSE */
END; /* OF WHILE ERROR_STATUS */
ERD; /% OF IF */
ELSE DO;
OBTAIN NEXT RECORD {(PROCESS) SET(PRO_SUBPARTS_PR) ;
END; /% OF ELSE */
J=JdJ+ 1;

END; /* OF WHILE */

GO TO ENTER_SETS;

PR_UPD_EN : DISPLAY (*YOU HAVE CHOSEN THE RELATIONSHIP ');
DISPLAY('PROCESS_UPDATES_ENTITY.');

DISPLAY{'ENTER THE PROCESS NAME ') REPLY (OWNER_NAME);

DISPLAY('ENTER THE ENTITY NAME ') REPLY(MEMBER_NAME);

D83

DISPLAY('DO YOU WISH T0O (I) INSERT, '):

DISPLAY("'" OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE Y');

DISPLAY(® OF I, D'} REPLY(CHOICE);

'I' THEN GO TO INSERT_PR_UPD_EN;

H

IF CHOICE

"

IF CHOICE DY THEN GO TO DELETE_PR_UPD_EWN;
DISPLAY("INVALID CHOICE, TRY AGAIN');
GO T0O PR_UPD_EN;

INSERT PR_UPD_EN

(L)

PROCESS_OWNER_NO = ' 1;
J = 1;
OBTAIN CALC RECORD(PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR);
DO WHILE (J <= PRCNT);
I¥ (PROCESS_NAME = OWNEBR_NAME) THEN DO;
ENTITY OWNER_NO = 1 1
I= 1;
OBTAIN CALC RECORD (ENTITY_OWNER);
DO WHILE (I <= ENCHNT);
IF ENTITY_OWNER_NAME = MEMBER_NAME THEN DO;
ENTITY_NAME = ENTITY_OWNER_NAME;
ENTITY _NO = ENTITY OWNER_NO;
EN_ATTRIBUTES = ENO_ATTRIBUTES;
STORE RECORD (ENTITY) ;
CALL ITDMS5_STATUS;
CONNECT RECORD{ENTITY) SET (ENO_SUBPARTS_EN);
CONNECT RECORD (ENTITY) SET(PR_UPDATES_EN) ;

CALL IDMS_STATUS;

D8y

DISPLAY ("RELATITONSHIP ' || OWNER_NWAME] ¥ UPDATES ']|

MEMBEK_NAME }] ' HAS BEEN INSERTED ');

I ENCHT +1;

J PRCNT + 1;
END; /% OF IF */
ELSE DO;
FIND CURRENT RECORD(ENTITY_OWNER) ;
PUT STRING (ENTITY_OWNER_NO) EDIT{I+1) (F{4)):;
OBTAIN CALC RECORD (ENTITY_OWNER);
END; /% ELSE */
I =1+ 1;
END; /* OF WHILE */
END; /* OF THEN %/
ELSE DO;
OBTAIN NEXT RECORD(PROCESS) SET{PRO_SUBPARTS_PR);
END; /% OF ELSE */
Jd=J+ 13

END; /* OF WHILE */

GO TO ERTER_SETS;
DELETE_PR_UPD_EN: PROCESS_OWNER_NO ="' 13
Jd = 1;
OBTAIN CALC RECORD (PROCESS_OWNER) ;
CBTAIN FIRST RECORD (PROCESS) SET({PRO_SUBPARTS_ PR} ;
DO WHILE {(J<=PRCNT) ;
IF (OWNER_NAME = PROCESS_NAME) THEN DO;

OBTAIN FIRST RECORD(ENTITY) SET(PR_UPDATES_EN);

Dpas

DO WHILE (ERROB_STATUS = OK);
IF (ENTITY_ NANE = MEMBER_NAME)THEW 5DO;
DISCONNECT RECORD(ENTITY) SET (PR_UPDATES_EN);
CALL IDMS_STATUS;
DISPLAY ('RELATIONSHIP ' J| OWNER_NAME |] ' UPDATES * ||
MEMBER_NAME |{ ' HAS BEEN DELETED '};

J = PRCNT + 1;

ERROR_STATOS = END_OF_SET;
END; /* OF THEN */
ELSE DO;
OBTATN NEXT RECORD(ENTITY) SET(PR_UPDATES_EN);
END; /* OF ELSE */
END; /% OF WHILE ERROR_STATUS */
END; /* QOF IF */
ELSE DO;
OBTAIN REXT RECORD(PROCESS) SET(PRO_SUBPARTS_PR);
END; /* OF ELSE %/
Jd = Jd+ 1;

END; /* OF WHILE */

GO TO ENTER_SETS;

PR_USE_EN : DISPLAY (*YOU FAVE CHOSEN THE RELATIONSHIP ');
DISPLAY{'PROCESS_USES_ENTITY.'});

DISPLAY('ENTER THE PROCESS ¥AME ') REPLY(OWNER_NAHE) ;
DISPLAY('ENTER THE ENTITY NAME ') REPLY{(MEMBER_NAME);
DISPLAY{'DO YOU WISH TO (I) INSERT, ');

DISPLAY(' OR (D) DELETE THIS RELATIONSHIP? ENTER YCUR CHOICE ') ;

D8é

DISPLAY{('" OF I, D')REPLY(CHOICE) ;

IF CHOICE *I* THEY GO TO INSERT_PR_USE_EN;

IF CHOICE

'"DY THEN GO TO DELETE_PR_USE_EN;
DISFLAY{'INVALID CHOICE, TRY AGAIN'}):
GO TC PR_USE_EN;

INSERT PR_USE_EN

PROCESS_OWNER_NO = ! 1*;
J = 1;
OBTAIN CALC RECORD{PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR);
DO WHILE (J <= PRCNT) ;
IF (PROCESS_NAME = OWNER_NANE) THEN DO;
ENTITY OWNER_NO = 1v;
I1= 1;
OBTAIN CALC RECORD (ENTITY_OWNER) ;
DO WHILE (I <= ENCHNT);
IF ENTITY_OWNER_NAME = MEMBER_NAME THEN DO;
ENTITY NAME = ENTITY_OWNER_NAME;
ENTITY_NO = ENTITY_ OWNER KO;
EN_ATTRIBUTES = ENO_ATTRIBUTES;
STORE RECORD (ENTITY) ;
CALL IDMS_STATUS;
CONNECT RECORD (ENTITY) SET{ENO_SUBPARTS_EN);
CONKECT RECORD(ERTITY) SET (PR USES_EN);
CALL IDMS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME || * OSES L
MEMBER_NAME [] * HAS BEEN INSERTED '};

D87

I

ENCNT +1;
J = PRCNT + 1;
END; /% OF IF */
ELSE DO;
FIND CURRENT RECORD(ENTITY_OWNER)} ;
PUT STRING (ENTITY_OWNER_NO) EDIT(I+1) (F(4)):
OBTAIN CALC BECORD (ENTITY OWNER);:
END; /* ELSE */
I=1I=+ 1;
END; /* OF WHILE */
END; /% OF THEN */
ELSE DO;
OBTAIN NEXT RECORD{PROCESS) SET(PRO_SUBPARTS_PR);
END; /* OF ELSE */
J=J+ 1;

E¥D; /* OF WHILE */

GO TO ENTER_SETS;
DELETE_PR_USE_EN:z PROCESS_OWNER_NO =! 1°;
J = 1;
OBTAIN CALC RECORD(PROCESS_OWNER}) ;
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PRE);
DO WHILE (J<=PRCNT);
IF {OVWNER_NAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD {(ENTITY) SET(PE_USES_EN);
DO WHILE {ERROR_STATUS = OK);

IF (ENTITY_ NAME = MEMBER_NAME) THEN DO;

D88

DISCONNECT RECORD(ENTITY) SET (PR_USES_EN):
CA1L IDMS_STATDS;
DISPLAY ("RELATIONSHIP ' || OWNER KAME | ' USES Vv j}
MEMBER_NAME |} ' HAS BEEW DELETED ');
J = PRCHNT + 1;
ERROR_STATUS = END_OF_SET;
END; /% OF THEN */
ELSE DOy
OBTAIN NEXT RECORD (ENTITY) SET(PE_USES_EN) ;
END; /* OF ELSE */
END; /% OF WHILE ERROR_STATUS */
END; /% OF IF */
ELSE DO;
OBTAIN NEXT RECORD (PROCESS) SET(PRC_SUBPARTS_PR) ;
END; /* CF ELSE */
Jd=J+ 1;

END; /* OF WHILE */

GO TO ENTER_SETS;

IN_CON_EL: DISPLAY ('YOU HAVE CHOSEN THE RELATIONSHIP *);

DISPLAY ('INPUT CONSISTS_OF_ELEMENT.") ;

DISPLAY('ENTER THE INPUT NAME ') REPLY (OWNER_NAME);

DISPLAY('ENTER THE ELEMENT NAME ') REPLY (MEMBER_NAME) ;

DISPLAY('DO YOU WISH TO (I) INSERT, ') ;

DISPLAY(' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUGR CHOICE ') ;
DISPLAY(' OF I, D')REPLY(CHOICE);

IF CHOICE = *I' THEN GO TO INSERT_IN_CON_EL;

D89

IF CHOICE = '"D' THEN GO TO DELETE_IN_COXN_EL;
DISPLAY{'INVALID CHOICE, TRY AGAIN');
GO TO IN_CON_EL;
INSERT_IN_CON_EL:
INPUT_OWNER_NO = ! 1';
Jd = 1;
OBTAIN CALC RECORD (INPUT_OWNER) ;
DO WHILE (J <= INCNT);
I¥ (INPUT_OWNEBR_NAME = OWNER_NAME) THEN DO;
ELEMENT OWNER_NO = * 1%
I= 1;
OBTAIN CALC RECORD(ELEMENT_ OWXER);
DO WHILE (I <= ELCNT);

IF (ELEMENT_OWNER_NAME = MEMBER_NAME)THEN DO;
ELEMENT_NO =ELEMENT_OWNER_NO;
ELEMENT_NAME = ELEMENT OUNER_NAME;
EL_ATTRIBUTES = ELO_ATTRIBUTES;

STORE RECORD (ELEMENT) ;
CALL IDMS_STATUS;
CONNECT RECORD (ELBEMENT) SET(ELO_SUBPARTS_EL);
CALL IDMS_STATUS;
IF SET {INO_SUBPARTS_IN) EMPTY THEN DO;
INPUT_NAME = INPUT_OWNER_NAME;
INPUT _NO = INPUT_OWNER_NO;
IN_ATTRIBUTES = INO_ATTRIBUTES;
STORE RECORD (INPUT) ;
CALL IDMS_STATUS;

D390

CONNECT RECORD(INPUT) SET(INO_SUBPARTS_IN);
CALL IDMS_STATUS;

END; /* OF IF EMPTY */

ELSE DO;
FIND FIRST RECORD({INPUT) SET(INO_SUBPARTS_IY);

END; /* OF ELSE DO *®/
CONNECT RECORD(ELEMENT) SET(IN_CONSISTS_EL);

CALL IDMS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME || ' CONSISTS ' ||

MEMBER_WAME |} ' HAS BEEN INSERTED ');

ELCEWT + 1;

il

I
INCNT + 13

J
END; /% QF I1IF *x/

ELSE DO;
FIND CURRENT RECORD{ELEMENT_OWRER) ;
PUT STRING (ELEMENT_OWNEE_NO) EDIT(I+1) (F(#));
OBTAIN CALC RECORD{ELEMERT OWNER)}:
END; /% OF ELSE */
I=14+ 1;
END; /% OF WHILE */
ERD; /* OF IF-THEN */

ELSE DO;
PUT STRING{INPUT_OWNER_NO) EDIT(J+1) (F(4)):

OBTAIN CALC RECORD(INPUT_OWNER) ;
END; /* OF ELSE */
J=J + 1;

END; /* OF WHILE */
D81

GO TO ENTER_SETS;
DELETE IN_CON_EL:
INPUT_OWNER_NO = 1! 1°;
I-=1;
OBTAIN CALC RECORD (INPUT_OWNER)} ;
DO WHILE (I<=INCNT);
IF (INPUT_OWNER_NAME = OWNER_NAME) THEN DO;
OBTAIN FIRST RECORD{INPUT) SET(INO_SUBPARTS_IN) ;
CALL IDMS_STATUS;
DO WHILE {ERROR_STATUS = OK};
IF NOT SET(IN_CONSISTS_EL) EMPTY THEN DO;
OBTAIN FIRST RECORD{ELEMENT) SET(IN_CONSISTS_EL):
DO WHILE (ERROR_STATUS = OK);
IF (ELEMENT_NAME = MEMBER_NAME)} THEN DO;
DISCONNECT RECORD(ELEMENT) SET{IN_CONSISTS_ EL);
CALL IDMS_STATUS;
ERASE RECORD{(ELEMENT) ;
CALL IDMS_STATUS;
DISPLAY {*"RELATIONSHIP ' || OWNER_NAME || ' CONSISTS ' ||
MEMBER_NAME |]j ' HAS BEEN DELETED) ;
I = INCNT + 13
FRROR_STATUS = END_OF_SET;
END; /* OF IF */
ELSE DO;
OBTAIN NEXT RECORD(ELEMENT) SET(IN_CONSISTS_EL);
END; /% OF ELSE */
END; /* OF WHILE */

DS2

END; /* OF IF */
ELSE DO;
OBTAIN NEXT RECORD(INPUT) SET(INC_SUBPARTS_IN);
END; /% OF ELSE */
END; /% OF WHILE */
END; /* OF IF *NAMNE = *NAME %/
ELSE DO;
PUT STRING {(INPUT_OWNEER_NO) EDIT(I+1) {(F(4)):
OBTAIN CALC RECORD (INPUT_OWNER) ;
END; /¥ OF ELSE */
I=1I+ 1;
EuND; /% OF WHILE */
GO TO ENTER_SETS;
IN_CON_GR: DISPLAY('YOU HAVE CHOSEN THE RELATIONSHIP ')
DISPLAY("INPUT_CONSISTS_OF_ GROUP.');
DISPLAY{'YENTER THE INPUT NAME ') REPLY (OWNER_NAME) ;
DISPLAY{'"ENTER THE GROUP NAME ') REPLY (MEMBER_NAME) ;
DISPLAY('DO YOO WISH TG (I) INSERT, ')
DISPLAY{' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR

DISPLAY(®' OF I, D')REPLY(CHOICE) ;

n

IF CHOICE = 'I' THEN GO TG INSERT_IN_CON_GR;

IF CHOICE = *D' THEN GO TO DELETE_IN_CON_GR;
DISPLAY('INVALID CHOICE, TRY AGAIN');

GO TO IN_CON_GR;

INSERT_IN_CON_GR:

INPUT_OWNER_NO = ! 13

Jd = 1;

D93

*

CHOICE

)i

OBTAIN CALC RECORD (INPUT OWNER) ;
DO WHILE (J <= INCNT);
iF (INPUT_OWNER“NAﬁﬁ = OWNER_NAME) THEN DO;
GROUP_OWNER_NO = ¢ 19
I=1;
OBTAIN CALC RECORD (GROUP_OWNER) ;
DO WHILE (I <= GRCHNT);
IF (GROUP_OWNER_NAME = MEMBER_NAME)THEN DO;
GROUP_NO =GROUP_OWNER_NO;
GROUP_NAME = GROUP_OWNER_NAME;
GR_ATTRIBUTES = GRO_ATTRIBUTES;
STORE RFECORD (GROUP) ;
CALL IDMS_STATUS;
CONNECT RECORD(GROUP) SET (GRO_SUBPARTS_GR) :
CALL IDMS_STATUOS;
IF¥ SET(INO_SUBPARTS_IN)} EMNPTY THEN DO;
INPUT_NAME = INPUT_OWNER_NAME;
INPUT_NO = INPUT_OWNER_NO;
IN ATTRIBOTES = INO_ATTRIBUTES;
STORE RECORD {INPUT) ;
CALL IDMS_STATUS;
CONNECT RECORD(INPUT) SET(INO_SUBPARTS_IN) ;
CALL IDMS_STATUS;
END; /% OF IF ENPTY */
ELSE DO;
FIND FIRST RECORD{(INPUT) SET({INO_SUBPARTS_IN);
END; /* OQOF ELSE DO */

D94y

CONNECT RECORD(GROUP) SET{IN_CONSISTS_GR);

CALL YDMS_STATUS;

DISPLAY {"RELATIONSHIP ' |{ OWNER_NAME ||

MEMBER_NAME || " HAS BEEN INSERTED ');

I

GRCHNT + 1;
J = INCNT + 1;
END; /% OF IF */

ELSE DO;

FIND CURRERT RECORD(GROUP_OWNER);

PUT STRING (GROUP_OWNER_NO) EDIT (I+1)

OBTAIN CALC RECORD (GROUP_OVNER) ;

E¥D; /* ELSE %/
I=I+ 1;
END; /* OF WHILE */
END; /% OF IF-THEN */
ELSE DO;
POT STRING(INPUT_OWNER_NO) EDIT (J+1)
OBTAIN CAILC RECORD{INPUT OWNER) ;
END; /* OF ELSE DO */
J=J+ 1;
END; /% OF WHILE */
GO TO ENTER SFETS;
DELETE_IWN_CON_GR:
INPUT_OWNER_NO = ¢ 1%;
I=1;
OBTAIN CALC RECORD (INPUT OWNER) ;
DO WHILE (I<=INCNT) ;

D95

(F{4)):

CONSISTS ¢

(F(4));

IF (INPUT_COWNER_NAME = OWNER_NAME) THEN DO;
OBTAIN FIRST RECORD(INPUT) SET{INO_SUBPARTS_IN) ;
DO WHILE (ERROR_STATUS = OK);
IF NOT SET(IN_CONSISTS_GR) EMPTY THEN DO;

OBTAIN FIRST RECORD(GROUP) SET(IN_CONSISTS_GR)

DO WHILE (ERROR_STATUS = OK) ;
IF (GROUP_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD{GROUP) SET (IN_CONSISTS_GR) ;
CALL IDMS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME || * CONSISTS ' ||
MEMBER_NAME {| ' HAS BEEN DELETED %) ;
I = INCNT + 1;
ERROR_STATUS = END_OF_SET;
END; /% OF 1IF #/
ELSE DO;
OBTAIN NEXT RECORD (GROUP) SET (IN_CONSISTS_GR);
END; /% OF ELSE */
END; /* OF WHILE */
END; /* OF IF */
ELSE DO;
OBTAIN NEXT RECORD (INPUT) SET (INO_SUBPARTS_IN);
END; /* OF ELSE */
END; /* OF WHILE */
END; /% OF IF *NAME = *NANE */
ELSE DO;
PUT STRING (INPUT_OWNER_NO) EDIT (I+1) (F(4));:
OBTAIN CALC RECORD (TNPUT_OWNER) ;

D96

END; /* OF ELSE */

I=1I+ 1;
E¥D; /¥ OF WHILE */

GO TO ENTER_SETS;

GR_CON_FL: DISPLAY('YCU HAVE CHCSEN THE RELATIONSHIP '};
DISPLAY("GROUP_CONSISTS_OF_ELEMENT. '} ;

DISPLAY{'ENTER THE GREOUP NAME ') REPLY (OWNER_NAME) ;
DISPLAY('ENTER THE ELEMENT NAME ') REPLY (MEMBEE_NAME) ;
DISPLAY{*DO YOU WISH TO (I) INSERT, ?*);

DISPLAY{' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE ')

DISPLAY(' OF I, D')REPLY(CHOICE);

IF CHOICE 11" THEN GO TO INSERT_GR_CON_EL;

I

IF CHOICE = 'DY THEN GO TO DELETE_GR_CON_EIL;
DISPLAY({'INVALID CHOICE, TRY AGAIN'");
GO TO GR_CON_EL;
INSERT GR_CO¥_EL:
GEOUP_OWNER_NO = ! 1
J = 1
OBTAIR CALC RECORD (GROUP_OWNER) ;
DO V¥WHILE (J <= GRCNT);
IF (GROUP_OWNER_NAME = OWNER_NAME) THEN DO;
ELEMENT_OWNER_NO = ! 14,
I=1;
OBTAIN CALC RECORD (ELEMENT_OWNER);
DO WHILE (I <= ELCNT)
IF (ELEMENT_OWNER_NAME = MEMBER_NAME) THEN DO;
ELEMENT_HO =ELEMENT_OWNER_NO;

D97

ELEMENT _NAME = ELEMENT_ OWNER_NAME;
EL_ATTRIBUTES = ELO_ATTRIBUTES;
STORE RECORD (ELEMENT) ;
CALL IDMS_STATUS;
CONNECT RECORD(FELEMENT) SET (ELO_SUBPARTS_EL) ;
CALL IDMS_STATUS;
IF SET (GRO_SUBPARTS_GR) EMPTY THEN DO;
GROUP_NAME = GROUP_OWNER_NAME;
GROUP_NO = GROUP_OWNER_NO;
GR_ATTRIBUTES = GRO_ATTRIBUTES;
STORE RECORD (GROUP) ;
CALL IDMS_STATUS;
CONNECT RECORD(GROUP) SET(GRO_SUBPARTS_GR) ;
CALL IDMS_STATUS;
END; /% OF IF EMPTY */
ELSE DO;
FIND FIRST RECORD(GROUP) SET(GRO_SUBPARTS_GR) ;
END; /% OF ELSE DO %/
CONNECT RECORD {ELEMENT) SET(GR_CONSISTS_EL);

CALL IDMS_STATUS;

DISPLAY (*RELATIONSHIP ' || OWNER_NAME || ' CONSISTS
MEMBER_NAME || ' HAS BEEN INSERTED '};

I = ELCNT + 1;

J = GRCHNT + 1;

END; /* OF IF */
ELSE DO;
FIND CUORRENT RECORD(GROUP_OWNER);

D98

il

PUT STRING(ELEMENT_OWNER NO) EDIT (I+1) (F(4));
OBTAIN CALC RECORD({ELEMENT_OWNESR) ;
END; /% ELSE */
I =1I+ 1;
END; /* OF WHILE */
END; /* OF IF-THEN */
ELSE DO;
PUT STRING (GROUP_OWNER_NO) EDIT{J+1) (F(4));
OBTAIN CALC RECORD{GROUP_OWNER);
END; /* OF ELSE DO */
J=Jd + 1;
END; /% OF WHILE */
GO TO ENTER_SETS;
DELETE GR_CON_EL:
GROUP_OWNER_NO = ! 1
I=1;
OBTAIN CALC RECORD (GROUP_OWNER) ;
DO WHILE (I<=GRCNT);
IF (GROUP_OWNER_NAME = OWNER_NAME) THEN DO;
OBTAIN FIRST RECORD (GROUP} SET(GRO_SUBPARTS_GR) ;
DO WHILE (ERROR_STATUS = OK);
IF NOT SET(GR_CONSISTS_EL) EMPTY THEN DO;
OBTAIN FIRST RECORD(ELEMENT) SET(GR_CONSISTS_EL);
DO WHILE (ERROR_STATUS = OK);
IF {ELEMENT_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD(ELEMENT) SET(GR_CONSISTS_EL});
CALL IDMS_STATUS;

D99

ERASE RECORD (ELEMENT) ;
CALL IDMS_STATUS;
DISPLAY("RELATIONSHIP ' || OWNER_NAME || ' CONSISTS ' {|
MEMBER_NAME || ' HAS BEER DELETED ');
I = GRCHET + 1;
ERROR_STATUS = END_OF _SET;
END; /* OF IF */
ELSE DO;
OBTAIN NEXT RECORD(ELEMENT) SET(GR_CONSISTS_EL):
END; /* OF ELSE */
END; /% OF WHILE */
END; /* OF IF */
ELSE DO;
OBTAIN NEXT RECORD{GROUP} SET{GRO_SUBPARTS_GR) ;
END; /% OF ELSE */
END; /* OF WHILE */
END; /% OF IF *NAME = *NAME */
ELSE DO;
PUT STRING (GROUP_OWNER_NGC) EDIT(I+1) (F(4)):
OBTAIN CALC RECORD (GROUP_OWNER) ;
END; /* OF ELSE */
I =1I+ 1;
END; /% OF WHILE */
GO TD ENTER_SETS;
EN_CON_EL: DISPLAY ('YOU HAVE CHOSEN THE RELATIONSHIP ')
DISPLAY('ENTITY_CONSISTS_OF_ELEMENT.') ;

DISPLAY('ENTER THE ENTITY RAME ') REPLY (OWNER_NAME) ;

D100

DISPLAY('ENTER THE ELEMENT NAME ') REPLY (MEMBER_NAME) ;
DISPLAY({'DO YOU WISH TO (I) INSERT, ');

DISPLAY('* OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE
DISPLAY(' OF I, D')REPLY (CHOICE);

'I' THEN GO TO INSERT_EN_CON_EFL;

it

IF CHOICE

'D' THEN GO TO DELETE_EN_CON_EL;

]

IF CHOICE
DISPLAY('INVALID CHOICE, TRY AGAIN');
GO TO EN_CON_EL;
INSERT EN_CON_EL:
ENTITY OWNER_¥O = ! 19;
Jd = 1;
OBTAIN CALC RECORD (ENTITY_OWNER) ;
DO WHILE (J <= ERCNT);
IF (ENTITY_OWNER_NAME = OWNER_NAME) THEN DO;
ELEMENT_OWNER_NO = 1! 1¢;
Ii=1;
OBTAIN CALC RECORD(ELEMENT_OWNER) ;
DO WHILE (I <= ELCNT);
IF (FLEMENT_OWNER_NAME = MEMBER_NAME)THEN DO;
ELEMENT_NO =ELEMENT_OWNER_NO;
ELEMENT_NAME = ELEMENT_OWKRER_NAHME;
EL_ATTRIBUTES = ELO_ATTRIBUTES;
STORE RECORD (ELEMENT) ;
CALl. IDMS_STATUS;
CONNECT RECORD(ELEMENT) SET(ELO_SUBPARTS_EL) ;
CALL IDMS_STATUS;
IF SET (ENO_SUBPARTS_EN) EMPTY THER DOj;

D101

)

-

ENTITY_NAME = ENTITY OWNER_NAME;
ENTITY_NO = ENTITY_OWNER_NO;
EN_ATTRIBUTES = ENO_ATTRIBUTES;
STORE RECORD (ENTITY);
CALL IDMS_STATUS;
CONNECT RECORD (ENTITY) SET (ENO_SUBPARTS_EN);
CALL IDMS_STATUS;
END; /* OF IF EMPTY */
ELSE DO;
FIND FIRST RECORD(ENTITY) SET(ENO_SUBPARTS_EN) ;
END; /* OF ELSE DO */
CONNECT RECORD(ELEMENT) SET (EN_CONSISTS_EL);
CALL IDMS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME || ' CONSISTS * ||
MEMBER_NAME || ' HAS BEEN INSERTED ');
I = ELCNT + 1;
J = ENCNT + 1
END; /* OF IF */
ELSE DO;
FIND CURRENT RECORD{ENTITY_OWNER);
PUT STRING (ELEMENT_OWNER_NO) EDIT(I+1) (F(4)};
OBTAIN CALC RECORD(ELEMENT_ OWNER) ;
END; /* ELSE %/
I=1+ 1;
END; /* OF WHILE %/
END; /* OF IF-THEN %/
ELSE DO;

D102

PUT STRING (ENTITY_OWNER_NO) EDIT(I+1) (F(4)):
OBTAIN CALC RECORD(ENTITY_OWNER);
END; /* OF ELSE DO */
J=J + 1;
END; /* OF WHILE */
GO TO ENTER_SETS;
DELETE_EN_CON_EL:
ENTITY OWNER_NWO = ' 143
I=1;
OBTAIN CALC RECORD (ENTITY_ OWNER) ;
DO WHILE (I<=ENCNT);
IF (ENTITY_OWNER_NAME = OWNER_NAME) THER DO;
OBTAIN FIRST RECORD(ENTITY) SET{(ENO_SUBPARTS_ENW);
DO WHILE (ERROR_STRATUS = OK);
IF NOT SET(EN_CONSISTS_EL) EMPTY THEXN DO;
OBTAIN FIRST RECORD(ELEMENT) SET(EN_CONSISTS_EL) ;
DO WHILE {ERROR_STATUS = OK);
IF(ELEMENT_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD(ELEMENT)} SET(EN_CONSISTS_EL);
CALL IDMS_ STATUS;
ERASE RECORD({ELEMENT) ;
CALL IDMS_STATUS;
DISPLAY (' RELATIONSHIP ' || OWNER_NAME || ' CONSISTS ']
MEMBER_NAME §| * HAS BEEN DELETED V) ;
I = ENCHT + 1;
ERROR_STATUS = END_OF_SET;
END; /% OF IF %/

D103

ELSE DO;

OBTAIN NEXT RECORD (ELEMENT) SET{(EN_CONSISTS_EL);

END; /* OF ELSE */
END; /* OF WHILE */
END; /% OF IF */
ELSE DO;
OBTAIN NEXT RECORD(ENTITY) SET (ENO_SUBPARTS_EN);
END; /% OF ELSE */
END; /% OF WHILE */
END; /% OF IF *NAME = *NAME */
ELSE DO;
PUT STRING (ENTITY_OWNER_NO) EDIT(I+1) (F(4));
OBTAIN CALC RECORD (ENTITY_OWNER) ;
END; /* OF ELSE */
I =1+ 1;
EXD; /% OF WHILE 3*/
GO TO ENTER_SETS;
OU_CO¥N_EL: DISPLAY('YOU HAVE CHOSEN THE RELATIONSHIP ');
DISPLAY ({'OUTPUT_CONSISTS_OF_ELEMENT.'});
DISPLAY ("ENTER THE OUTPUT NAME ') REPLY(OWNER_NAME) ;
DISPLAY('ENTER THE ELEMENT NAME ') REPLY (MEMBER_NAME) ;
DISPLAY('DO YOU WISH TO (I) INSERT, ');
DISPLAY(' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE
DISPLAY{"' OP I, D')REPLY{(CHCICE} ;
IF CHOICE = 'I' THEN 60 TO INSERT_OU_CON_EL;
IF CHOICE = 'D' THEN GO TO DELETE_OU_CON_EL;
DISPLAY{'INVALID CHOICE, TRY AGAIN');

D104

“)

GO TO OU_CON_FEL;
INSERT_OU_CON_EL:
OUTPUT_OWNER_ND = 1 L LY
J = 1;
OBTAIN CALC RECORD{OUTPUT_OWNER);
DO WHILE (J <= OUCNT);
IF (OUTIPUTOWNER_NAME = OWNER_NAME) THEN DO;
ELEMENT_OWNER_NO = ! 1% g
I=1;
OBTATN CALC RECORD(ELEMENT_OWNER);
DO WHILE (I <= ELCNT):
IF (ELEMENT_ OWNER_NAME = MEMBER_NAME)THEN DO;
ELEMENT_NO =ELEMENT_OWNER_HNOQ;
ELEMENT_NAME = ELEMENT OWNER_NAME;
EL_ATTRIBUTES = ELO_ATTRIBUTES;
STORE RECORD (ELEMENT):
CALL IDMS_STATUS;
CONNECT RECORD(ELEMENT) SET (ELO_SUBPARTS_EL);
CALL IDMS_STATUS;
IF SET {OUC_SUBPARTS_OU) EMPTY THEN DO;
OUTPUT_NAME = OUTPUTONNER_NANE;
OUTPUT_NG = OUTPUT_OWNER_NO;
OO_ATTRIBUTES = OUO_ATTRIBUTES;
STORE RECORD (QUTPUT) ;
CALL IDMS_STATUS;
CONNECT RECORD({DUTPOT) SET(CUO_SUBPARTS_OQU};
CAL], IDMS_STATUS;

D105

END; /* OF IF EMPTY */
ELSE DO;
FIND FIRST RECORD{OUTPUT) SET(OUO_SUBPARTS_OU) ;
END; /* OF ELSE DO */
CONNECT RECORD{ELEMENT) SET{(OU_CONSISTS_EL) ;
CALL IDMS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME || ' CONSISTS ' |}

MEMBER_NAME || ' HAS BEEN INSERTED ') ;

I ELCNT + 1;

It

J OUCNT + 1;
END; /* OF IF */
ELSE DO;
FIND CURRENT RECORD(OQUTPUT_OWNER,) ;
PUT STRING (ELEMENT OWNER_NO) EDIT (I+1) (F(4));
OBTAIN CALC RECORD (ELEMENT_OWNER) ;
END; /¥ ELSE */
I =1+ 1;
END; /* OF WHILE */
END; /% OF IF-THEN */
ELSE DO;
PUT STRING (OUTPUT_OWNER_NO) EDIT(J+1) (F(4)):
OBTAIN CALC RECORD (OUTPUT_OWNER) ;
END; /% OF ELSE DO */
Jd=J+ 1;
END: /* OP WHILE */
GO TO ENTER_SETS;

DELETE_OU_CON_EL:
D10€

OUTPUT_OWNER_NO = ! 19;
I=1;
OBTAIN CALC RECORD (CUTPUT_OWNER) ;
DO WHILE (I<=OUCHT) ;
I (DUTPUTOWNER_NAME = OWNER_NAME) THEN DO;
OBTAIN FIRST RECORD (QUTPUT) SET (OUO_SUBPARTS_QU);
DO WHILE (ERBOR_STATUS = OK);
IF NOT SET{(OU_CONSISTS_EL) EMPTY THEN DO;
OBTAIN FIRST RECORD(ELEMENT)} SET{(OU_CONSISTS EL);
DO WHILE (ERROR_STATUS = OK) ;
IF (ELEMENT NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD{ELEMENT) SET(OU_CONSISTS_EL);
CALL IDMS_STATUS;
ERASE RECORD (ELEMENT) ;
CALL IDMS_STATUS;
DISPLAY (*RELATIONSHIP ' || OWNER_NAME || ' CONSISTS * ||
MEMBEE_NAME || ' HAS BEEW DELETED ');:
I = QUCNT + 1;
ERROR_STATUS = END_OF_SET;
END; /* OF IF */
ELSE DO;
OBTAIR NEXT RECORD(ELEMENT) SET(OU_CONSISTS_FL);
END; /% OF ELSE */
E¥D; /% OF WHILE */
END; /¥ OF IF */
ELSE DO;
OBTAIR NEXT RECORD{CGUTPUT) SET(OUO_SUBPARTS_OU) ;

D107

END; /* OF ELSE */
E¥D; /% OF WHILE */
END; /* QF IF *NAME = *NAME %/
ELSE DO;
PUT STRING (OUTPUT_CWNER_NO) EDIT(I+1) (F{4));
CBTATN¥ CALC RECORD (OUTPUT_OWNER) ;
END; /* OF ELSE */
I =1I+ 1;
END; /¥ OF WHILE */
GO TO ENTER_SETS;
EN_CON_GR: DISPLAY{'YOU HAVE CHOSEN THE RELATIONSHIP '}
DISPLAY (*ENTITY CONSISTS_OF_GROUP.');
DISPLAY({'ENTER THE ENTITY NAME ') REPLY (OWNER_NAME) ;
DISPLAY{'ENTER THE GROUP NAME ') REPLY (MEMBER_NAME) ;
DISPLAY{'DO YOU WISH TG (I) INSERT, ');
DISPLAY (' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE %};
DISPLAY(* OF I, D')REPLY(CHOICE);
IF CHOICE = 'J¢ THEN GO TO INSERT_EN_CON_GR;
1F CHOICE = ‘Dt THEW GO TO DELETE_EN_CON_GR;
DISPLAY('INVALID CHOICE, TRY AGAIN');
GO TO EN_CON_GR;
INSERT_EN_CON_GR:
ENTITY OWNNER_NO = ¢ 13
Jd = 1;
OBTAIN CALC RECORD (ERTITY_OUWNER) ;

DO WHILE {(J <= ENCNT)

IF (ENTITY_OWNER_NAME OWNER_NAME) THEN DO;

nD1os

GROUP_OWNER_NO = ¢ 13
I=1;
OBTAIN CALC RECORD{GROUP_OWNER) ;
DO WHILE (I <= GRCNT) ;
IF (GRGUP_OWNER_WAME = MEMBER_NAME)THEN DO;
GROUP_NO =GROUP_OWNER_NO;
GROUP_NAME = GROUP_OWNER_NAME;
GR_ATTRIBUTES = GRO_ATTRIBUTES;
STORE RECCRD ({GROUP) ;
CALL IDMS_STATUS;
CONNECT RECORD(GROUP) SET(GRCO_SUBPARTS_GR):
CALL IDMS_STATUS;
IF SET (ENO_SUBPARTS_EN) EMPTY THEN DO;

ENTITY_NAME = ENTITY_OWNER_NANME;

ENTITY _NO = ENTITY_ OWNRER_NG;

EN_ATTRIBUTES = ENC_ATTRIBUTES;

STORE RFECORD {ENTITY) ;

CALL IDMS_STATUS;

CONNECT RECORD(ENTITY) SET(ENO_SUBPARTS_EN);

CALL IDMS5_STATUS;
END; /% OF IF EMPTY */
ELSE DO;

FPIND FIRST RECORD (ENTITY) SET(FNO_SUBPARTS_EN) ;
END; /* OF ELSE DO */

CONNECT RECORD(GROUPYy SET(EN_CONSISTS_GR);

CALL IDMS_STATUS;

DISPLAY (*RELATIONSHIP ' || OWHER_NAME | ' CONSISTS ' ||

D109

MEMBER_NAME |] ' HAS BEEN INSERTED ');
I = GRCHNT + 1;
J = ENCNT + 1;
END; /* OF IF */
ELSE DO;
FIND CURRENT RECORD(ENTITY_ OWNER) ;
PUOT STRING (GROUP_OWNER_NO) EDIT(I+1f) (F(4)):
OBTAIN CALC RECORD{GROUP_OWNER);
END; /* ELSE */
Ii=I+1;
END; /% OF WHILE */
END; /% OF IF-THEN %/
ELSE DO;
PUT STRING (ENTITY_OWNER_NO) EDIT({J+1) (F{4});
OBTAIN CALC RECORD{ERTITY_OWNER) ;
END; /* OF ELSE DO */
J=4J + 1
END; /% OF WHILE */
GO TO ENTER_SETS;
DELETE_EN_CON_GR3:
ENTITY OWNER_NO = ! 1Y;
I=1;
OBTAIN CALC RECORD (ENTITY_OWNER) ;
DO WHILE (I<=ENCNT) ;
IF {(ENTITY_OWNER_NAME = OWNER_NAME) THEN DO;
OBTAIN FIRST RECORD{(ENTITY) SET{(ENO_SUBPARTS_EN};
DO WHILE (ERROR_STATUS = O0OK},;

D110

IF NOT SET(EN_CONSISTS_GR) EMPTY THEN DO;
OBTAIN FIRST RECORD(GROUP) SET(EN_CONSISTS_GR);
DO WHILE (ERROR_STATUS = 0K);
IF (GROUP_NANE = MEMBER_NAME) THEN DO;
DISCONNECT RECORD(GROUP)} SET{EN_CONSISTS_GR);
CALL IDNS_STATUS;
DISPLAY (*RELATIONSHIP *]| OWNER_NAME || ' CONSISTS
MEMBER_NAME {{ ' HAS BEEN DELETED ') ;
I = ENCNT + 1;
FRROR_STATUS = END_OF_SET;
END; /* OF IF */
ELSE DO;
OBTAIN NEXT RECORD(GROUP) SET (EN_CONSISTS _GR);
END; /¥ OF ELSE */
END; /* OQF WHILE */
END; /% OF IF */
FLSE DO;
OBTAIN NEXT RECORD (ENTITY) SET({ENO_SUBPARTS_EN);
END; /* QOF ELSE */
END; /% OF WHILE */
END; /% OF IF *NAME = *NAME */
ELSE DO;
PUT STRING (ENTITY_OWNER_NO) EDIT(I+1) (F(4)) ;
OBTAIN CALC RECORD (ENTITY_OWNER) ;
END; /* OF ELSE */
I=1I+ 1;
END; /% OF WHILE ==/

D111

11

GO TO ENTER_SFETS;

OU_CON_GR: DISPLAY ('YOU HAVE CHOSEN THE RELATIONSHIP ')
DISPLAY ('OUTPUT_CONSISTS_OF_GROUP.');

DISPLAY('ENTER THE OUTPUT NAME ') REPLY (ORNER_NAME) ;
DISPLAY (' ENTER THE GROUP NAME ') REPLY (MEMBER_NAME) ;

DISPLAY('DO YOU WISH TO (I) INSERT, ');

DISPLAY(®* OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE

DISPLAY(' OF I, D')REPLY (CHOICE) ;

IF CHOICE *I' THEN GO TO INSERT_OQU_CON_GR;

IF CHOICE = 'D' THEN GO TO DELETE_OU_CON_GR;
DISPLAY{('INVALID CHOICE, TRY AGAINT');
GO TO OU_CON_GR;
INSERT _OU_CON_GR:
OUTPUT_CWNER_NO = ¢ 1%
J = 1;
OBTAIN CALC RECORD{OUTPUT_OWNER) ;
DO WHILE (J <= OUCHNT):
IF (OUTPUTOWNER_NAME = OWNER_NAME) THEN DO;
GROUP_OWNER_NO = ¢ 19;
I=1;
OBTAIN CALC RECORD (GROUP_OWNER) ;
DO WHILE (I <= GRCHNT);
IF (GREOUP_OWNER_NAME = MEMBER_NAME) THEN DO;
GROUP_NO =GROUP_OWNER_NO;
GROUP_NAME = GROUP_OWNER_NAME;
GR_ATTRIBUTES = GRC_ATTRIBUTES;
STORE RECORD (GROUP) ;

D112

Y

CALL IDMS_STATUS;
CONNECT RECORD(GROUP) SET(GRO_SUBPARTS_GR) :
CALL IDMS_STATUS;:
IF SET (OUO_SUBPARTS_OU) EMPTY THEN DO;
OUTPUT_NAME = OUTPUTOWNER_NAME;
OUTPUT_NO = OUTPUT OWNER_NO;
OU_ATTRIBUTES = OUO_ATTRIBUTES;
STORE RECORD (OUTPUT) ;
CALL IDMS_STATUS;
CONNECT RECORD {OUTPUT) SET(OUC_SUBPARTS_OU) ;
CALL IDMS_STATUS;
END; /% OF IF EMPTY */
ELSE DO;
FIND FIRST RECORD(OUTPUT) SET (OUO_SUBPARTS_OU) ;
END; /* OF ELSE DO */
CONNECT RECORD(GROUP) SET(OU_CONSISTS_GR) ;

CALL IDMS_STATUS;

DISPLAY (*RELATIONSHIP ' || OWNER_NAME || ' CONSISTS
HEMBER_NAME |} ' HAS BEEN INSERTED ') ;
I = GRCHNT + 1;

J = QUCNT + 1;
END; /% OF IF */
ELSE DO;
FIND CURRENT RECORD(OUTPUT_OWNER) ;
PUT STRING (GROUP_OWNER_NO) EDIT(I+1) (F(4));
OBTAIN CALC RECORD (GROUP_OWNER) ;
END; /* BLSE %/

D113

1

I =1+ 1;
EXD; /* OF WHILE */
END; /% OF IF-THER */
ELSE DO;
PUT STRING (OUTPUT_OWNER_NG) EDIT(J+1)
OBTAIN CALC RECORD (OUTPUT_OWNER) ;
END; /* OF FLSE DO */
J=J + 1;
END; /% OF WHILE */
GO TO ENTER_SETS;
DELETE_GU_CON_GR:
CUTPUT_OWNER_NO = ' 173
I-=1;
OBTAIN CALC RECORD (CUTPUT_OWNER) ;

DO WHILE (I<=O0UCKNT};

(F(4));

IF (OUTPUTOWNER_NAME = OWNER_NAME) THEN DD;

OBTAIN FIRST RECORD {OUTPUT) SET(OUO_SUBPARTS_0U};

DO WHILE (ERROR_STATUS = OK);

IF NOT SET{OU_CONSISTS_GR)EMPTY THEN DO;

OBTAIN FIRST RECORD(GROUP) SET(OU_CONSISTS_GR);

DO WHILE (ERROR_STATUOS = 0K);

IF (GROUP_NAME = MEMBER_NAME) THEN DO;

DISCONNECT RECORD(GROUP) SET(OU_CONSISTS_GR);

CALL IDMS_STATUS;:

DISPLAY ("RELATIONSHIP ' || OWNER_NAME ||

MEMBER_NAME || ' HAS BEEN DELETED ');
I = OUCHNT + 1;

DI14

CONSISTS

il

ERROR_STATUS = END_OF_SET;
END; /* OF IF */
ELSE DO;
OBTAIN NEXT RECORD (GROUP) SET(OU_CONSISTS_GR):
END; /% OF ELSE */
END; /* OF WHILE */
END; /* OF IF */
ELSE DO;
OBTAIN NEXT RECORD (OUTPUT) SET (OUO_SUBPARTS_OU) ;
END; /* OF ELSE */
END; /% OF WHILE */
END; /% OF IP *NAWE = *NAME %/
ELSE DO;
PUT STRING (OUTPUT_OWNER_NO) EDIT(I+1) (P(4));
OBTAIN CALC RECORD (OUTPUT_OWNER) ;
END; /* OF ELSE %/
I=1I+ 1;
END; /% OF WHILE */
GO TO ENTER_SETS;
PR_INC_EV: DISPLAY ('YOU HAVE CHOSEN THE RELATIONSHIP ') ;
DISPLAY{*PROCESS_INCEPTION_CAUSES_EVENT. ') ;
DISPLAY('ENTER THE PROCESS NAME ') REPLY (OWNER_NAME);
DISPLAY('ENTER THE EVENT NAME ') REPLY {MEMBER_NAME) ;
DISPLAY('DO YOU WISH TO (I} INSERT, ');
DISPLAY(' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE ') ;
DISPLAY(' OF I, D')REPLY(CHOICE);
IF CHOICE = 'I' THEN GO TO INSERT_PR_INC_EV;

D115

IF CHOICE = "D THEN GO TO DELETE_PR_INC_EV;
DISPLAY('INVALID CHOICE, TRY AGAIN'):
GO TO PR_INC_EV;
INSERT_PR_INC_EV :
PROCESS_OWNER_NO = ¢ 13
J=1;
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS} SET(PRO_SUBPARTS_PR);
DO WHILE (J <= PRCNT) ;
IF (PROCESS_NAME = OWNER_NAME) THEN DO
EVENT _NO = ! 13
I= 1;
OBTAIN CALC RECORD(EVENT) ;
DO WHILE (I <= EVCHNT);
IF EVENT_NAME = MEMBER_NAME THEN DO;
CONNECT RECOED(EVENT) SET(PR_INCEPTICN_EV);
CALL IDMS_STATUS;
DISPLAY ('*RELATIONSHIP ' || OWNEE_NAME || ' INCEPTION
i] MEMBER_NAME]| ' HAS BEEN INSERTED %) ;

I = EVCHNT +1;

H

J PRCNT + 1;
END; /* OF IF */
ELSE DO;
FIND CURRENT RECORD(EVENT) ;
PUT STRING (EVENT_NO} EDIT(I+1) (F(4)):
OBTAIN CALC RECORD(EVENT):
END; /% ELSE */

D11e

I=1I4+ 1;
END; /% OF WHILE */
END; /* OF THEN */
ELSE Do;
OBTAIN NEXT RECORD(PROCESS) SET (PRO_SUBPARTS_PR});
END; /* OF ELSE */
J=J + 1;

END; /% OF WHILE */

GO TO ENTER_SETS;
DELETE_PR_INC _EV: PROCESS_OWYER_NO =t 1
Jd= 1;
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET{PRO_SUBPARTS_PR);
DO WHILE ({J<=PRCNT) ;
IF (OWNER_NAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD({EVENT) SET(PR_INCEPTION_EV);
DO WHILE (ERROR_STATUS = OK);
IF (EVENT_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD (EVENT) SET(PRE_INCEPTION_EV);
CALL IDMS_STATUS;
DISPLAY (" RELATIONSHIP * || OWNER_NAME |] ' INCEPTION '
il MEMBER_NAME || ' HAS BEEN DELETED '} ;

J = PRCHNT + 1;

ERROR_STATUOS END_OF_SET;
END; /* OF THEN */

ELSE DO;

D117

OBTAIN NEXT RECORD(EVENT) SET {PR_INCEPTIOK_EV);
END; /% OF ELSE */
END; /% OF WHILE ERROR_STATUS */
END; /#% OF THEN #*/

ELSE DO;

OBTATN NEXT RECORD{PROCESS) SET(PRO_SUBPARTS_PR);

END; /¥ OF ELSE */
d =J+ 1;

END; /* OF WHILE */

GO TO ENTER_SETS;

PR_TER_EV: DISPLAY('YOU HAVE CHOSEN THE RELATIONSHIP ');
DISPLAY("PROCESS_TERMINATION CAUSES_EVENT.'):

DISPLAY ('ENTER THE PROCESS NAME ') REPLY (CWNER_NAME) ;
DISPLAY('ENTER THE EVENT NAME ') REPLY (MEMBER_NAME) ;

DISPLAY(*DO YOU WISH TO (I) INSERT, ');

DISPLAY(' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOICE ');
DISPLAY(' OF I, D')REPLY(CHOICE);

I7 CHOICE

*I' THEN GO TO INSERT_PR_TER_EV;

IF CHOICE DY THEN GO TO DELETE_PR_TER_EV;
DISPLAY('INVALID CHOICE, TRY AGAIN');

GO TO PR_TER_EV;

INSERT_PR_TER_EV:

PROCESS_OWNER_NO = ! 1';

J = 1;

OBTAIN CALC RECORD (PROCESS_OWNER) ;

OBTAIN FIRST RECORD (PROCESS) SET{PRO_SUBPARTS_PR);

D118

DO WHILE (J <= PRCHNT);

IF (PROCESS_NAME = OWNER_NAME) THEN DO;

EVENT_NO = ¢ 1Y;

I=1;

OBTAIN CALC RECORD (EVENT) ;

DO WHILE (I <= EVCNT};

IF EVENT_NAME = MEMBER _NAME THEN DO;
CONNECT RECORD(EVENT) SET(PR_TERMINATE_EV) ;
DISPLAY (' RELATIONSHIP ' |] OWNER_NAME]| ' TERMINATE ' {|

MEMBER_NAME]| ' HAS BEEN INSERTED ');

CALL IDMS_STATUS;

I = EVCNT +1;
J = PRCNT + 1;
END; /* OF IF */
ELSE DO;
FIND CURRENT RECORD(EVENT) ;
PUT STRING (EVENT_NO) EDIT({I+1) (F(u));
OBTAIN CALC RECORD (EVENT);
END; /% ELSE */
I =3I+ 1;
END; /% OF WHILE */
END; /* OF THEN */
ELSE DO;
OBTAIN NEXT RECORD(PROCESS) SET{PRO_SUBPARTS_PR);
END; /* OF ELSE */
Jd=3J + 1;
END; /* OF WHILE */

D119

GO TO ENTER_SETS;
DELETE_PR_TER_EV: PROCESS_OWNER_NO =' 1%;
Jd = 1;
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR);
DO WHILE ([J<=PLRCHNT) ;
I (OWNER_NAME = PROCESS_NAME) THEN DO;
OBTAIN FIRST RECORD(EVENT) SET(PE_TERMINATE EV) :
DO WHILE (ERROR_STATUS = OK});
IF (EVENT_NAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD (EVENT) SET(PR_TERMINATE_EV) :
CALL IDMS_STATUS;
DISPLAY (' RELATIONSHIP ' |{ OWNER_NAME |{ ' TERMINATE " {|
MEMBER_NAME }]| ' HAS BEEW DELETED '},

J = PRCNT + 1;

il

ERROR_STATUS = END_OF_SET;
END; /* OF THEN x*/
ELSE DO;
OBTAIN NEXT RECORD(EVENT) SET(PR_TERMINATE_EV);
END; /* OF ELSE %/
END; /* OF WHILE ERBOR_STATUS */
END; /* OF THEN */
ELSE DO;
OBTAIN YEXT RECORD (PROCESS) SET(PRO_SUBPARTS_PFR) ;
END; /% OF ELSE */
J=J+ 1;
D120

END; /* OF WHILE %/

GO TO ENTER_SETS;

PR_TRI_EV: DISPLAY (*YOU HAVE CHOSEN THE RELATIONSHIP ');
DISPLAY('PROCESS_TRIGGERED _BY_ EVENT.'):

DISPLAY{'"ENTER THE PROCESS NAMWE '} REPLY (OWNER_NAME) ;
DISPLAY('ERTER THE EVENT NAME ') REPLY (MEMBER_NAME) ;
DISPLAY('DO YOU WISH TO (I) INSERT, '};

DISPLAY{' OR (D) DELETE THIS RELATIONSHIP? ENTER YOUOR CHOICE
DISPLAY{"' OF I, D')REPLY(CHOICE} ;

IF CHOICE = '"I' THEN GO TO INSERT_PR_TRI_EV;

il

IF CHOICE *DY THEN GO TO DELETE_PR_TRI_EV;
DISPLAY({"INVALID CHOICE, TRY AGAIN');
GO TC PR_TRI_EV;
INSERT PR_TRI_EV:
PROCESS_OWNER_NO = ¢ 1*;
J= 13
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTATIN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR);
DO WHILE (J <= PRCNT);
IF (PROCESS_NAME = OWNER_NAME) THEN DO;
EVENT_NO =7 1%
I= 1;
OBTAIN CALC RECORD (EVENT) ;
DO WHILE (I <= EVCHNT);
IF EVENT_NAME = MEMBER_NAME THEN DO;

CONNECT RECORD(EVENT) SET(PR_TRIGGERED EV} ;

D121

")

CALL IDMS_STATUS;

DISPLAY (' RELATIONSHIP ' || OWNER_NAME {] ' TRIGGERED ' }|

MEMBER_NAME |] ' HAS BEEN INSERTED '}
I = EVCNT +1:
J = PRCNT + f1;

END; /* OF IF */
ELSE DO;
FIND CURRERT RECORD{EVENT);
PUT STRING(EVENT_NO)} EDIT(I+1) (F(4}) ;
DBRTAIN CALC RECORD{EVENT)} ;
END; /* ELSE #*/
I =1+ 1;
END; /* OF WHILE */
END; /* OF THEN */
ELSE DO;
OBTAIN REXT RBRECORD{PROCESS) SET (PRO_SUBPARTS_PR);
END; /* OF ELSE */
J=J + I;

END; /* OF WHILE */

GO TO ENTER_SETS;

DELETE PR_TRI_EV: PROCESS_OWNER_NO =1 1%;

J = 1;

OBTAIN CALC RECORD (PRCCESS_OWNER) ;

OBTAIN FIRST RECORD (PRCCESS) SET {PRO_SUBPARTS_PR);
DO WHILE (J<=PRCNT) ;

IF (OWNER_NAME = PROCESS_NAME) THEN DO;

D122

OBTAIN FIRST RECORD{EVENT) SET(PR_TRIGGERED_EV) ;
DO WHILE (ERROR_STATUS = OK);
IF (EVENT_MNAME = MEMBER_NAME) THEN DO;
DISCONNECT RECORD{EVENT) SET(PE_TRIGGERED_EV) ;
CALL IDMS5_ STATUS;
DISPLAY{' RELATIONSHIP ' || OWNER_NAME] ' TRIGGERED ' }{
MEMBER_NAME [| ' HAS BEENR DELETED 1Y) ;

J = PRCNT + 1;

ERROR_STATUS = END_OF_SET;
END; /% OF THEN */
ELSE DO;
OBTAIN NEXT RECORD (EVENT) SET (PR_TRIGGERED_EV) ;
END; /% OF ELSE */
END; /% OF WHILE ERROR_STATUS */
END; /% OF THEN */
ELSE DO;
OBTAIN NEXT RECORD(PROCESS) SET(PRO_SUBPARTS_PR);
END; /* OF ELSE %/
d=J+ 1;

END; /% OF WHILE */

GO TO ENTER_SETS;

EV_WHE_CO: DISPLAY('YOU HAVE CHOSEN THE REIATIONSHIP *');
DISPLAY('EVENT_WHEN_CONDITION.');

DISPLAY('ENTER THE EVERT NAME ') REPLY (OWNER_NAME) ;
DISPLAY{*ENTER THE CONDITICN NAME ')REPLY (MEMBER_NAME) ;

DISPLAY{'DO YOU WISH TO (I) INSERT, ');

D123

DISPLAY{(" OR (D) DELETE THIS RELATIONSHIP? ENTER YOUR CHOQICE '};
DISPLAY{(®' OF I, D')REPLY (CHOICE) ;

IF CHOICE = 'I' THEN GO TO INSERT_EV_WHE_CO;

IF CHOICE = *D' THEN GO TO DELETE_EV_VWHE_CO;
DISPLAY('INVALID CHOICE, TRY AGAIN');
GO TO EV_WHE_CO;
INSERT_EV_WHE_COs:
EVENT_NO = ! 173
J = 1;
OBTAIN CALC RECORD(EVENT) ;
DO WHILE (J <= REVCNT);
IF (EVENT_NAME = OWNER_NANE) THEN DO;
CONDITION_HO = * '3
I=1;
OBTAIN CALC RECORD (CONDITION) ;
DO WHILE (I <= COCNT);
IF (CONDITION_NAHE = MEMBER_NAME) THEN DO;
CONNECT RECORD (CONDITION) SET (EV_WHEN_CO);
CALL IDMS_STATUS;
DISPLAY(* RELATIONSHIP ' || OWNER_NAME {] ' WHEN ' ||
MEMBER_NAME || ' HAS BEEN INSERTED ');
I = COCNT + 1;

J

H

EYCNT + 1;
END; /* OF IF */
ELSE DO;
FIND CURRENT RECCORD(CONDITION):
PUT STRING (CONDITION_NO) EDIT (I+1) (F(4));

D124

OBTAIN CALC RECORD (CONWNDITION) ;
END; /% ELSE */
I =1+ 1;
END; /* OF WHILE */
END; /% OF IF-THEN */
ELSE DO;
PUT STRING (EVENT_NO) EDIT (J+1) (F{4)):
OBTAIN CALC RECORD{(EVENT);
ERD; /* OF ELSE DO #*/
Jd=J + 1;
END; /% OF WHILE */
GO TO ENTER_SETS;
DELETE_EV_WHE_CO:; CONDITION_NO =" 1v;
I = 1;
OBTAIN CALC RECORD(CONDITION) ;
DC WHILE (I<=COCNT);
IF (CONDITION_NAME = MEMBER_NAME) THEN DO;
DO WHILE (ERROE_STATUS = OK);
IF¥ NOT SET(EV_WHEN_CO) MEMBER THEN DO;
IF(ERROR_STATUS == '1601') THEN CALL IDMS_STATUS;
OBTAIN NEXT RECORD(CONDITION) SET(EV_WHEN_CQ);:
END; /* OF THENWN */
ELSE DO; /% FOUND MEMBER RECORD */
DISCONNECT RECORD (CONDITION) SET{EV_WHEN_CQO);
CALL IDMS_STATUS;
ERASE RECORD (COWDITION) ;
CALL IDMS_STATHUS;

D125

DISPLAY (' RELATIONSHIP ' || OWNER_NAME §{ °

MEMBER_NAME || ' HAS BEEN DELETED ') ;
I = COCNT + 1;
ERROR_STATUS = END_OF_SET;
END; /% OF ELSE */

END; /* OF WHILE */

END; /% OF IF *NAME = *NAME ¥/

ELSE DO;

PUT STRING (CONDITION_NQ) EDIT(I+1) (F(4));
OBTAIN CALC RECCRD (CONDITION) ;

END; /* OF ELSE %/

I=1I+ 1;

END; /* OF WHILE */
GO TO ENTER_SETS;

FIND_RECORDS:

DISPLAY (" PSL/PSA OBJECTS AND RELATIONSHIPS
DISPLAY(®' ') ;

PROCESS_OWNER_NO = 1! LY

I=0;

OBTAIN CALC RECORD(PROCESS_OWNER) ;
DISPLAY{' *);
DISPLAY{' OBJECTS OF TYPE PROCESS ');

CaLll IDMS_STATUS;

REPORT') ;

OBTAIN FIRST RECORD {PROCESS) SET(PRO_SUBPARTS_PR) ;

DO WHILE (ERROR_STATUS = OK);

I=1I+1;

D12&

WHERN

PUT STRING(REC_NUM) EDIT({I) (F{4)):
DISPLAY(REC_NUM] ! ' || PROCESS_NAMNE) ;
DISPLAY(PR_ATTRIBUTES) ;
OBTAIN NEXT RECORD (PROCESS) SET(PRO_SUBPARTS_PR) ;
END; /* OF WHILE */
IF(ERROR_STATUS —= END_OF_SET)THEN CALL IDMS_STATUS;
PRCNT = I;
INPUT_OWNER_NO = ' 1Y
I=1;
PUT STRING (INPUT_OWNER_NO) EDIT(XI) (F(4)):
OBTAIN CALC RECORD (INPUT_OWNER) ;
DISPLAY(* %) ;
DISPLAY(" OBJECTS OF TYPE IRPOT ?);
DG WHILE (ERROR_STATUS = OK) ;
DISPLAY (INPUT_OWNER_NO || " * || INPUT_OWNER_WAME);
DISPLAY (INC_ATTRIBUTES) ;
i=1I+ t;
PUT STRING (INPUT_OCWNER_NO) EDIT(I) (F{4));
OBTAIN CALC RECORD (INPUT_OWNER) ;
END; /* OF WHILE */
IF(ERROR_STATUS == '0326"') THEN CALL IDMS_STATUS:;
INCRT = I-1;
OUTPUT _OWNER_NO = ! 1*;
I=1;
PUT STRING{OUTPUT_OWNER_NO) EDIT({I) (F{(4));:
OBTAIN CALC RECORD (OUTPUT_OWNER) ;
DISPLAY({(" ')

D127

DISPLAY(' OBJECTS OF TYPE OUTPUT)3

DO WHILE (ERROR_STATUS = OK);
DISPLAY (OUTPUT_OWNER_NO)] ! '
DISPLAY (CUC_ATTRIBUTES);
I=1I+1;
PUT STRING (OUTPUT_OWNER_WO) EDIT (I}
OBTAIN CALC RECORD (OUTPUT_OWNER) ;
END;

/¥ OF WHILE */

|| OUTPUTOWNER_NAME) ;

(F(4));

IFT(BERROR_STATUS =-= '0326')Y THEN CALL IDMS_STATUS;

QUCHNT = I-1;

ENTITY_OWNER_NO = ¢ 1¢;
I=1;
PUT STRING({ENTITY_OWXNER_NO) EDIT(I)

OBTAIN CALC RECORD (ENTITY OWNER) ;

DISPLAY(* ') ;
DISPLAY(' OBJECTS OF TYPE ENTITY ');
DO WHILE (ERROR_STATUS = OK);

DISPLAY (ENTITY_OWNER_KNOC || °® '

DISPLAY(ENO_ATTRIBUTES) ;

I=1I+1;

PUT STRING {(ENTITY COWNER_NO) EDIT (I)

OBTAIN CALC RECORD (ENTITY_OWNER) ;
END;

/¥ OF WHILE */

(F(H);

I1 ENTITY_OWNER_NAME};

(F()) 3

IF(ERROE_STATUS -»= '0326') THEN CALL IDMS_STATUS;

ENCHT = I-1;

GROUP_OWNER_NO = ¢ 1v;
I =1;

D128

PUT STRING{GROUP_OWNER_NO) EDIT(I)

OBTAIN CALC RECORD (GROUP_OWNER) ;

DISPLAY (" ') ;
DISPLAY(' OBJECTS OF TYPE GROUP '};
DO WHILE (ERROR_STATUS = OK) ;

DISPLAY {(GROUP_OWNER_NO || ! '

DISPLAY (GRO_ATTRIBUTES) ;
I=1I+1;

PUT STRING (GROUP_OWNER_NO) EDIT (I)
OBTAIN CALC RECORD(GROUP_OWNKER) ;
END; /% OF WHILE */
IF(ERROR_STATUS ~=
GRCNT = I-1;

ELEMENT OWNER_NO = ' 17
I=1;

POT STRING{ELEMENT_OWNER_NO) EDIT (I)
OBTAIN CALC RECORD{ELEMENT_OWNER} ;
DISPLAY(' '};

DISPLAY ("
DO WHILE (ERROR_STATOS = OK} ;
DISPLAY{ELEMENT_ OWNER_NO {] °
DISPLAY(ELO_ATTRIBUTES) ;

I =1+ 1;

PUT STRING (ELEMENT_COWNER NO)}) EDIT(I)

OBTAIN CRLC RECORD(ELEMENT_OWNER);

END; /* OF WHILE */

OBJECTS OF TYPE ELEMENT ')

(F(4));

|{ GROUP_OWNER_NAME) ;

(F (%)) 3

'032€') THEN CALL IDNMS_STATUS;

(F ()3

' || ELEMENT_OWNER_NAME) ;

(F(3));

IF (FRROR_STATUS ~= '032€¢') THEN CALL IDMS_STATUS;

D129

ELCHNT = I-1;
EVENT_NO = ° 193
I= 1;
POT STRING{EVENT_NO)Y EDIT(I) (F{4)):
OBTAIN CALC RECCRD{EVENT) ;
DISPLAY{' *);

DISPLAY(' OBJECTS OF TYPE EVENT *');

DO WHILE (ERROR_STATUS OK) &
DISPLAY(EVENT_NO || ° " J] EVENT_ NANE) ;
DISPLAY (EV_ATTRIBUTES) ;
I =1I+1;
PUT STRING (EVEWNT_NO) EDIT(I) (F(4));:
OBTAIN CALC RECORD{EVENT);
END; /¥ OF WHILE */
IF(ERROR_STATUS -~= '032¢€') THEW CALL IDMS_STATUS;
EVCHNT = I-1;
CONDITION_¥O = ? 193
I=1;
PUT STRING (CONDITION_NO) EDIT(I) (F(Z));
OBTAIN CALC RECORD (CONDITION) ;
DISPLAY{' '} :
DISPLAY{' OBJECTS OF TYPE CONDITION ');
DO WHILE {ERROR_STATUS = OK);
DISPLAY (CONDITION _¥XO | ° * || CONDITION_NAME);
DISPLAY {CO_ATTRIBUTES) ;
I=1I+1;
PUT STRING {CONDITION_NG) EDIT(I) (F(4)):

D130

OBTAIN CALC RECORD (CONDITION) ;
END; /* OF WHILE */
IF(ERROR_STATUS ~= '0326') THEN CALL IDMS_STATUS;
COCNT = I-1;
FIND_SETS: /* FIRST FIND SETS WHOSE OWNERS ARE PROCESS */
PROCESS_OWNER_NC = ' 17;
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR) ;
DO WHILE (ERROR_STATUS = OK) ;
IF NOT SET (PR_RECEIVES_IN) EMPTY THEN DO;
DISPLAY ("RELATIONSHIP(S) PROCESS RECEIVES INPUTY);
OBTAIN FIRST RECORD (INPUT) SET(PR_RECEIVES_IN) ;
DO WHILE (ERROR_STATUS = OK);
DISPLAY (PROCESS_NAME || ' RECEIVES ' || INPOUT_NAME);
OBTAIN NEXT RECORD(INPUT) SET(PR_RECEIVES_IN);

END; /% OF WHILE %/

END; /% OF IF THEN */
OBTAIN NEXT RECORD (PROCESS) SET(PRO_SUBPARTS_PR]);

E®D; /% OF WHILE %/

PROCESS_OWNER_NO = ! 1v:
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS} SET (PRO_SUBPARTS_PR);
DO WHILE (ERROBR_STATUS = OFK);
IF NOT SET (PR_USES_IN) EMPTY THEN DO;
DISPLAY ("RELATIONSHIP(S) PROCESS USES INPUTY'):
OBTAIN FIRST RECORD(INPUT) SET(PR_USES_IN) ;

D131

DO WHILE (ERROR_STATUS = OK) ;
DISPLAY (PROCESS_NAME || ' USES * || INPUT_NAME) ;
OBTAIN NEXT RECORD(INPUT) SET(PR_USES_IN);

END; /* OF WHILE */

END; /% OF 1IF THEN */
OBTAIN NEXT RECCRD(PROCESS)} SET (PRO_SUBPARTS_PR);

END; /¥ OF WHILE */

PROCESS_OWNER_NO = ! 10;
OBTAIN CALC RECORD {PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET (PRO_SUBDPARTS_PR) ;
DO WHILE (ERROR_STATUS = OK) ;
IF NOT SET (PE_GENERATES_OU) EMPTY THEN DO;
DISPLAY ("RELATIONSHIP(S) PROCESS GENERATES OUTPUT!) ;
OBTAIN FIRST RECORD (CUTPUT) SET (PR_GENERATES_OU);
DO WHILE (ERROR_STATUS = OK);
DISPLAY (PROCESS_NAME |{ ' GENERATES ' {| OUTPUT_NAME);
OBTAIN NEXT RECORD (OUTPUT) SET(PR_GENERATES_O0U) ;

END; /% OF WHILE */

END; /* OF IF THEN ¥/
OBTAIN NEXT RECORD (PROCESS) SET (PRO_SUBPARTS_PR) ;

END; /% OF WHILE x/

PROCESS_OWNER_NO = ' 1%;

OBTAIN CALC RECORD (PROCESS_OWNER) ;

OBTAIN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR);
DO WHILE (ERROR_STATUS = OK) ;

D132

IF KOT SET (PE_DERIVES_QUY EMPTY THRER DO;
DISPLAY (*RELATIONSHIP(S) PROCESS DERIVES CUTPUT');
OBTAIN FIRST RECORD{OUTPUT) SET (PR _DERIVES_OU);
PO WHILE {ERROR_STATUS = OQK);
DISPLAY (PROCESS_NAME | ' DERIVES ' || OUTPUT_NAME) ;
OBTAIN NEXT RECORD (OQUTPUT) SET(PR_DERIVES_OU) ;

END; /% OF WHILE =*/

END; /* OF IF THEN */
OBTAIN NEXT RECORD(PROCES5) SET (PRO_SUBPARTS_PR);

END; /%¥ OF RWHILE */

PROCESS_OWNER_NO = ! 1's
OBTAIN CALC RECORD {PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR):
DO WHILE (ERROR_STATUS = OK) ;
IF NOT SET {PR_USES_EL) EMPTY THEN DO;
DISPLAY {"RELATIONSHIP(S) PROCESS USES ELEMENT');
OBTAIN FIRST RECORD(ELEMENT) SET(PR_USES_EL) ;
DO WHILE (ERROR_STATUS = OQOK):
DISPLAY {(PROCESS_NAME || * USES ' || ELEMENT_NAME);
OBTAIN REXT RECORD{ELEMENT) SET(PR_USES_EL) ;

END; /* OF WHILE */

END; /* OF IF¥ THEN */
OBTAIN WEXT RECORD{PROCESS) SET(PRO_SUBFARTS_PR) ;

END; /¥ OF WHILE */

PROCESS_OWNER_XNO = ¢ '3

D133

OBTAIN CALC RECORD (PROCESS_OWNER);
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR) ;
DO WHILE (ERROR_STATUS = OK) ;

IF NOT SET (PR_UPDATES_EL) EMPTY THEN DO;
DISPLAY (" RELATIONSHIP(S) PROCESS UPDATES ELEMENT') ;
OBTAIN FIRST RECORD (ELEMENT) SET{PR_UPDATES_EL) ;

DO WHILE (ERROR_STATUS = OK);
DISPLAY (PROCESS_NAME || ' UPDATES ' || ELEMENT_NAME);
OBTAIN NEXT RECORD(ELEMENT) SET (PR_UPDATES_EL);

FND; /* OF WHILE */

END; /% OF IF THEN */
OBTAIN NEXT RECORD({PROCESS) SET (PRO_SUBPARTS_PR):

END; /¥ OF WHILE */

PROCESS_OWNER_NO = ' 113
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR);
DO WHILE (ERROR_STATUS = OK) ;
IF NOT SET (PR_DERIVES_EL) EMPTY THEN DO;
DISPLAY (*RELATIONSHIP(S) PROCESS DERIVES ELEMENT');
OBTAIN FIRST RECORD{ELEMENT) SET (PR_DERIVES_EL) ;
DO WHILE {(ERROR_STATUS = OK) ;
DISPLAY {PROCESS_NAME {]| ' DERIVES ' || ELEMENT_NAME);
OBTAIN NEXT RECORD(ELEMENT) SET (PR_DERIVES_EL);

END; /¥ OF WHILE */

END; /% OF 1IF THEN */

D13y

CETAIN NEXT RECORD(PROCESS) SET(PRO_SUBPARTS_PR);

END; /% OF WHILE #*/

PROCESS_OWNER_NO = ' 17
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTATN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR);
DO WHILE (ERROR_STATUS = OK) ;
IF NOT SET (PR_DERIVES_GR) EMPTY THEN DO;
DISPLAY ("RELATIONSHIP(S) PROCESS DERIVES GROUP');
OBTAIN FIRST RECORD (GROUP) SET{PR_DERIVES_GR);
DO WHILE (ERROR_STATUS = OK) ;
DISPLAY (PROCESS_NAME || * DERIVES ' || GROUP_NAME);
OBTAIN NEXT RECORD (GROUP) SET{PR_DERIVES_GR) ;

END; /% OF WHILE */

EXD; /% OF IF THEN */

CBTAIN NEXT RECORD(PROCESS) SET (PRO_SUBPARTS_PR);

END; /% OF WHILE #/

PROCESS_OWNER_NO = ! 105

OBTAIN CALC RECORD(PROCESS_OWNER) ;

OBTAIN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR) ;

DO WHILE (ERROR_STATUS = OK) ;

IF NOT SET {PR_USES_GR) EMPTY THEN DO;

DISPLAY (*RELATIONSHIP(S) PROCESS USES GROUP');
OBTAIN FIRST RECORD(GROUP) SET(PR_USES_GR) ;
DO WHILE (ERROR_STATES = OK):

DISPLAY (PROCESS_NAME || * USES ' || GEOUP_NAME)};

D135

OBTAIN NEXT RECORD{GROUP) SET(PR_USES_GR) ;

END; /% OF WHILE */

END; /* OF IF THEN */
GBTAIN NEXT RECORD(PROCESS) SET{PRO_SUEBPARTS_PR)

END; /% OF WHILE */

PROCESS_OWNER_NO = ! i LIS
OBTAIN CALC RECORD (PROCESS_OWRNER) ;
OBTAIN FIRST RECORD(PROCESS) SET(PRO_SUBPARIS_PR);
DO WHILE (ERROR_STATUS = OK);
IF WNOT SET (PR_UPDATES_GR) EMPTY THEN DO;
DISPLAY (*"RELATIONSHIP({S) PROCESS UPDATES GROUP');
OBTAIN FIRST RECORD(GROUP) SET(PR_UPDATES_GR):
DO WHILE (ERROR_STATUS = OK) ;
DISPLAY (PROCESS_NWAME j| ' UPDATES ' |} GROUP_NAME};
OBTAIN NEXT RECORD (GROUP) SET(PR_UPDATES_GR) ;

END; /* OF WHILE */

END; /* OF IF THEN */
OBTAIN NEXT RECORD(PROCESS) SET (PRO_SUBPARTS_PR);

END; /7% OF WHILE */

PROCESS_OWNER_NO = ¢ 11;
OBTAIN CALC RECORD (PROCESS_OWNEE) ;
OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR) ;
DO WHILE (ERROR_STATUS = OK) ;
IF NOT SET (PR_DERIVES_EN) EMPTY THEN DO;
DISPLAY (' RELATIONSHIP(S) PROCESS DERIVES ENTITY');

D13€

OBTAIN FIRST RECORD (ENTITY) SET(PR_DERIVES_EN);

DD WHILE (ERROR_STATUS = OK) ;
DISPLAY (PROCESS_NAME §§{ * DERIVES ' || ENTITY_NAME);
OBTAIN NEXT RECORD(ENTITY) SET (PR_DERIVES_EN) ;

END; /* OF WHILE */

END; /* OF IF THEN */
OBTAIN NEXT RECORD(PROCESS) SET{(PRO_SUBPARTS_PR);

END; /¥ OF WHILE */

PROCESS_OWNER_¥O = ° 143
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET{PRO_SUBPARTS_PR);
DO WHILE (ERROR_STATUS = OK);
IF NOT SET (PR_UPDATES_EN) EMPTY THEN DO:
DISPLAY {*RELATIONSHIP(S) PROCESS UPDATES ENTITY');
OBTAIN FIRST RECORD (ENTITY) SET(PR_UPDATES_EN) ;
DO WHILE (ERROR_STATUS = OK) ;
DISPLAY (PROCESS_NAME |{ ' UPDATES ' {| ENTITY_NAME);
OBTAIN NEXT RECORD (ENTITY) SET(PR_UPDATES_EN);

END; /% OF WHILE %/

END; /* OF IF THEN */
OBTAIN NEXT RECORD (PROCESS) SET (PRO_SUBPARTS_PR):

END; /% OF WHILE */

PROCESS_OWNER_NO = ! 173
OBTAIN CALC RECORD (PROCESS_OWNER);
OBTAIN ¥IRST RECORD{PROCESS) SET (PRO_SUBPABRTS_PRY;

D137

DO WHILE (ERROR_STATUS = OK};
IF NDT SET (PR_USES_EN) EMPTY THEN DO;
DISPIAY {(*RELATIONSHIP(S) PROCESS USES ENTITY');
OBTAIN FIRST RECORD (ENTITY) SET(PR_USES_EN);
DO WHILE (ERROR_STATUS = OK) ;
DISPLAY (PROCESS_NAME J| ' USES ' || ENTITY_ HNAME);
OBTAIN NEXT RECORD(ENTITY) SET(PE_USES_EN);

END; /* OF WHILE */

END; /* OF IP THEN */

OBTAIN NEXT RECORD(PROCESS) SET (PRO_SUBPARTS_FR);

END; /¥ OF WHILE */

PROCESS_OWNER_NO = * L

OBTAIN CALC RECORD{PROCESS_OWNER) ;

OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS PR} ;

DO WHILE (ERROR_STATUS = OK);

IF NOT SET (PR_INCEPTION_EV) EMPTY THEN DO;

DISPLAY ("RELATIONSHIP (S} PROCESS INCEPTION CAUSES EVENT') :
CBTAIN FIRST RECORD (EVENT) SET(PR_INCEPTION_EV) ;
DO WHILE (ERROR_STATUS = OK);
DISPLAY (PROCESS_NAME || ' INCEPTION CAUSES ' || EVENT_WAME) ;
OBTAIN NEXT RECORD({EVENT) SET(PR_INCEPTION_EV) ;

END; /* OF WHILE */

END; /% OF IF THEN */

OBTAIN NEXT RECORD({PROCESS) SET(PRO_SUBPARTS_PR) ;

END; /* OF WHILE */

D138

PROCESS_OWNER_NO = ¢ 1Y;

OBTAIN CALC RECORD{PROCESS_OWNER) ;

OBTAIN FIRST RECORD (PROCESS) SET(PRO_SUBPARTS_PR) ;

DO WHILE (ERROR_STATUS = OK);

IF NOT SET (PE_TERMINATE_EV) EMPTY THEN ID;

DISPLAY (*RELATIONSHIP(S) PROCESS TERMINATION CAUSES EVENTY);
OBTAIN FIRST RECORD(EVENT) SET(PR_TERMINATE EV);
DO WHILE (ERROR_STATUS = OK):
DISPLAY(PROCESS_NAME |{ 'TERMINATION CAUSES' || EVENT_NAME);
OBTAIN NEXT RECORD(EVENT) SET(PR_TERMINATE_EV) ;

END; /% OF WHILE =*/

END; /* OF IF THEN */
OBTAIN NEXT RECORD (PROCESS) SET{PRO_SUBPARTS_PR);

END; /% OF WHILE */

PROCESS_OWNER_NO = 1 17;
OBTAIN CALC RECORD (PROCESS_OWNER) ;
OBTAIN FIRST RECORD (PROCESS) SET (PRO_SUBPARTS_PR};
DO WHILE (ERROR_STATUS = OK) ;
IF NOT SET (PR_TRIGGERED_EV) EMPTY THEN DO;
DISPLAY (*RELATIONSHIP(S) PROCESS TRIGGERED BY EVENT');
OBTAIN FIRST RECORD(EVENT) SET(PR_TRIGGERED_EV) ;
DO WHILE (ERROR_STATUS = OK) ;
DISPLAY {PROCESS_HNAME || ' TRIGGERED BY ' || EVENT_NAME):
OBTAIN NEXT RECORD{EVENT) SET(PR_TRIGGERED_EV)

END; /* OF WHILE */

D139

END; /% OF IF THEN %/
OBTAIN NEXT RECORD(PROCESS) SET (PRO_SUBPARTS_PR);

END; /*¥ OF WHILE */

I=1;
PUT STRING(INPUT OWNER_NO) EDIT(I) (F(4)}:
OBTAIN CALC RECORD {(INPUT_OWNER) ;
DO WHILE (ERROR_STATUS = OK) ;
OBTAIN FIRST RECORD(INPUT) SET(INO_SUBPARTS_IN};
DO WHILE (ERROR_STATUS = CK):
IF NOT SET({IN_CONSISTS_EL) EMPTY THEN DO;
DISPLAY ("RELATIONSHIP({S) INPUT CONSISTS OF ELEMENT');
OBTAIN FIRST RECORD(ELEMENT) SET{IN_CONSISTS_EL):
DO WHILE (ERROR_STATUS = 0OK) ;
DISPLAY (INPUT_NAME || 'CONSISTS OF ' || ELEMENT_NAME) :
OBTAIN NEXT RECORD{ELEMERT) SET{(IN_CONSISTS_FL) :

END; /¥ OF WHILE */

END; /% OF IF THEN */
OBTAIN NEXT RECORD(INPUT) SET(INO_SUBPARTS_IN):;

END; /¥ OF WHILE */

PUT STRING (INPUT_OKNER_NO) EDIT (I} (F(4));
CBTAIN CALC RECORD (INPUT OWNER) ;
END; ¥ OF QOUTER WHILE */
IF (ERROK_STATUS -~= '0326"') THEN CALL IDMS_STATUS;
I= 1;
D140

PUT STRING (INPUT_OWNER_NO) EDIT(I) (F(4));
OBTAIN CALC RECORD (INPUT_OWNER);
DO WHILE (ERROR_STATUS = OK);
OBTAIN FIRST RECORD (INPUT) SET(INC_SUBPARTS_IN);
DO WHILE (ERROR_STATUS = OK);
IF NOT SET (IN_CONSISTS_GR) EMPTY THEN DO;
DISPLAY (*RELATIONSHIP(S) INPUT CONSISTS OF GROUP') ;
GBTAIN FIRST RECORD(GROUP) SET(IN_CONSISTS_GR);
DO WHILE (ERROR_STATUS = OK) ;
DISPLAY (INPUT_NAME || 'CONSISTS OF ' {| GROUP_WNAME);
OBTAIN NEXT RECORD(GROUP} SET(IN_CONSISTS_GR)3:

END; /* OF WHILE */

END; /% OF IF THEN */
OBTAIN NEXT RECORD(INPUT) SET (INC_SUEBPARTS_IN};

END; /% OF WHILE */

I=1I4+1;
PUT STRING (INPUT_OWNER_NC) EDIT(I) (F(4));
OBTAIN CALC RECORD (INPUT_OWNER) ;
END; % OF OUTER WHILE */
I=1;
PUT STRING (OUTPUT_OWNER_NO) EDIT(I) (F(4));
OBTAIN CALC RECORD (CUTPUT_OWNER) ;
DO WHILE (ERROR_STATUS = OK};
OBTAIN FIRST RECORD (QUTPUT) SET (OUO_SUBPARTS_OU) ;
DO WHILE (ERROR_STATUS = OK);
IF NOT SET (OU_CONSISTS_EL) EMPTY THEN DO;

D141

DI SPLAY {*RELATIONSHIP (S) OUTPUT CONSISTS OF ELEMENT');
OBTAIN FIRST RECORD(ELEMENT) SET(0U_CONSISTS_EL);
DO WHILE (ERROR_STATUS = OK) ;
DISPLAY (OUTPUT_NAME || 'CONSISTS OF ' }| ELEMENT_NAHE);
OBTAIN NEXT RECORD(ELEMENT) SET {(OU_CONSISTS_EL);

END; /% OF WHILE */

END; /* OF IF THEN */
OBTAIN NEXT RECORD(OUTPUT) SET(OUO_SUBPARTS_OU) ;

END; /% OF WHILE */

I=1+ 1;
PUT STRING (OUTPUT_OWNER_NO) EDIT(I) (F(4)):
OBTAIW CALC RECORD {OUTPUT OWNER) ;
END; /% OF OUTER WHILE */
I=1:
PUT STRING (GROUP_OWNER_NO) EDIT(I) (F(#));
OBTAIN CALC RECORD(GROUP_OWNER);
PO WHILE (ERROR_STATUS = OK};
OBTAIN FIRST RECORD (GROUP) SET(GRO_SUBPARTS_GR) ;
DO WHILE (ERROR_STATUS = QK);
IF NOT SET (GR_CONSISTS_EL) EKXPTY THEN DO;
DISPIAY ("RELATIONSHIP(S) GROUP CONSISTS CF ELEMENT'});
OBTAIN FIRST RECORD (ELEMENT) SET(GR_CONSISTS_EL);
DO WHILE (ERROR_STATUS = OK} ;
DISPLAY (GROUP_NAME || 'CONSISTS OF ' {| ELEMENT_NAME);
OBTAIN HEXT RECORD(ELEMENT) SET({GR_COWNSISTS_EL};
END; /¥ OF WHILE =/

D142

END; /* OF I1IF THEN %/
OBTAIN NEXT RECORD(GROUP) SET(GRO_SUBPARTS_GR) ;

END; /% OF WHILE =*/

I=I+ 1;
PUT STRING (GROOP_OWNER_NQ) EDIT{I) (F(4));
OBTAIN CALC RECORD {GROUP_OWNER) ;
END; /% OF OUTER WHILE */
I=1;
PUT STRING(ENTITY_ OWNER_NO) EDIT(I) (F{u));
OBTAIN CALC RECORD (ENTITY_ONNER) ;
DO WHILE (ERROR_STATUS = OK) ;
OBTAIN FIRST RECORD (ENTITY) SET (ENO_SUBPARTS_EN) ;
DC WHILE (ERROR_STATUS = OK);
IFP NROT SET (EN_CONSISTS_EL) EMPTY THEW DO;
DISPLAY {("RELATIONSHIP(S) ENTITY CONSISTS OF ELEMENT®);
OBTAIN FIRST RECORD(ELEMENT) SET (EN_CONSISTS_EL);
DO WHILE (ERROR_STATUOS = OK) ;
DISPLAY (ENTITY_ NAME || 'CONSISTS OF ' || ELEMENT_NAME);
OBTAIN NEXT RECORD{ELEMENT) SET (EN_CONSISTS_EL);

END; /* OF WHILE */

END; /% OF IF THEN */
OBTAIN NEXT RECORD(ENTITY) SET(ENO_SUBPARTS_ERN) :

END; /¥ OF WHILE */

D43

POT STRING (ENTITY OWNER_NO) EDIT(I) (TF(4)):
OBTAIN CALC RECORD (ENTITY_OWNER);

ERD; /¥ OF OUTER WHILE */

I=1;

POT STEING(ENTITY_ OWNER_NO) EDIT (I) (F(u)):
OBTAIN CALC RECORD(ENTITY_OWNER) ;

DO WHILE (ERROR_STATUS = OK) ;

OBTAIN FIBRST RECORD(ENTITY) SET (ENO_SUBPARTS_EN):
DO WHILE (ERROR_STATUS = OK);

IF NOT SET (EN_CONSISTS_GR) EMPTY THEN DO;
DISPLAY (' RELATIONSHIP({S) ENTITY CONSISTS OF GROUP!);
OBTAIN FIRST RECORD {GROUP) SET(EN_CONSISTS_GR);

DO WHILE (ERROR_STATUS = OK) ;
DISPLAY (ENTITY NAME }J| "CONSISTS OF ' }| GROUP_NAME):;
OBTATN NEXT RECORD(GROUP) SET(EN_CONSISTS_GR);

END; /* OF WHILE 3*/

E¥D; /* QF IF THEN */
OBTAIN NEXT RECORD(ENTITY) SET(ENO_SUBPARTS_EN) ;

END; /¥ OF WHILE =*/

I =1+ 1;

PUT STRING (ENTITY_OWNER_NO) EDIT({I) (F(4)) ;

OBTAIN CALC RECORD (ENTITY OWNER);

END; /* OF QUTER WHILE */

I¥ (ERROR_STATUS -~= '0326') THEN CALL IDMS_STATUS;
I=1;

POT STRING (OUTPUT_ORNER_HNO) EDIT(I) (F{u4));:

D145

OBTAIN CALC RECORD (OUTPUT_OWNER) ;
DO WHILE (ERROR_STATUS = OK) ;
OBTAIN FIRST RECORD (OUTPUT) SET(OUO_SUBPARTS_OU) ;
DO WHILE (ERROR_STATUS = OK) ;
IF NOT SET (OU_CONSISTS_GR) EMPTY THEN DO;
DISPLAY {*RELATIONSHIP(S) OUTPUT CONSISTS OF GROUP'};
OBTAIN FIRST RECORD(GROUP) SET (OU_CONSISTS_GR):
D0 WHILE (ERROR_STATUS = OK) ;
DISPLAY (OUTPUT_NAME]| 'CONSISTS OF ' || GROUP_VAME);
OBTAIN NEXT RECORD (GROUP) SET (OU_CONSISTS_GR);

END; /* OF WHILE */

END; /% OF IF THEN */
OBTAIN NEXT RECORD(OUTIPUT) SET(OUO_SUBPARTS_OU) ;

END; /* OF WHILE =*/

I=1I+ 1;

POT STRING (OUTPUT_OWNER_NO) EDIT(I) (F(4));

OBTAIN CALC RECORD {OUGTPUT_OHWRER) ;

END; /* OF OUTER WHILE */

IF (ERROR_STATUS —-= '(032€') THEN CALL IDMS_STATUS;

I= 1;

PUT STRING (EVENT_NO} EDIT(I) (F(4));

OBTAIN CALC RECORD(EVENT) ;

DO WHILE (ERROR_STATUS = OK);

IF WOT SET (EV_WHEN_CO) ENPTY THEN DO;

DISPLAY ("RELATIONSHIP(S) EVENT WHEN CONDITION');
OBTAIN FIRST RECORD{CONDITION) SET(EV_WHEN_CO) ;

D145

DO WHILE (ERROR_STATUS = OK) ;
DISPLAY (EVENT_NAME || ' WHEW ' || CONDITION_NAME);
OBTAIN NEXT RECORD(CONDITION) SET(EV_WHEN_CO);

END; /* OF WHILE */

END; /% OF IF THEN */
ELSE DO;
I=1I+ 1;
PUT STRING (EVENT_NO) EDIT(I) (F(4));
OBTAIN CALC RECORD (EVENT);
END; /* OF ELSE */
END; /% OF WHILE %/
IF (ERROR_STATUS —~= '0326' & ERROR_STATUS -= END_OF_AREA)
THEN CALL IDMS_STATUS;
DISPLAY(' PRESS ''ENTER'' TO CONTINUE') REPLY (CHOICE) ;
DISPLAY(' ') ;
DISPLAY(' ');
GO TO MENU;
EXIT_PROGRAM: FINISH;
CALL IDMS_STATUS;
DISPLAY(®END OF PROGRAM');
DEC:PROCEDURE (REC_COUNT) ;
DCL REC_COUNT CHAR(4) VAR,
Y FIXED DECIMAL ;
GET STRING (REC_COUNT) EDIT(Y) (F(#));
Y=Y~ 1;

PUT STRING (REC_COUNT) EDIT(Y) (F(4));

D146

END DEC;

END PSLPROG;

D147

AN IMPLEMENTATION OF A SUBSET
OF PSL/PSA

by

FRANCIS B. HAJEK

B.A., Peru State College, 1961
M.S., Oklahoma State University 1966
Ed.D., Oklahoma State University, 1970

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Department of Computer Science

Kansas State University
Manhattan, Kansas

1984

ABSTRACT

This report describes an implementation of some of the
capabilities of PSL/PSA using the IDMS data base management
system. The project was implemented on the HNational
Advanced Systems AS-5 computer at Kansas State University.

Problem Statement [Language ~ Problem Statement
Analyzer,PSL/PSA , is a software tool for automated systems
analysis and documentation, PSL is a computer-processable
language designed primarily to describe a sof tware system in
the requirements specification phase of the software life
cycle., PSA is a software package that processes PSL
statements and provides several reports constructed from the
PSL information in the PSA data base,

The purpose of this implementation project was to
provide a subset of PSL/PSA for use by the Software
Engineering classes at Kansas State University.. Students
using the system should learn something about the concepts
of PSL/PSA and about writing requirements specifications
while using an automated system,

The implementation was acomplished by mapping PSL
objects to IDMS record types and PSL relationships to IDMS
sets. This seems to be a natural mapping since PSL consists
of objects and relationships between these objects and IDMS
sets are named relationships between record types.

The project required an IDMS schema to be developed to
incorporate the PSL information and an application program
to interactively store, manipulate, and retrieve the
information from the IDMS data base. The application
program is menu driven and provides the above capabilities
without the user having to deal with the complexities of
ImMs.

The project could be expanded to include more of the
objects and relationships of PSL and more of the report
generating capabilities of PSA. However, there are some
limitations of IDMS, particularly that of not being able to
make a record type be related to itself in a set, which nake
a full implementation of PSL/PSA questionable. For the
subset of PSL/PSA implemented in this project the program
works well and provides a usable automated system for
requirements specification.,

