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Abstract 

Rice (Oryza sativa L.) production worldwide is constrained by rice blast disease caused 

by the ascomycetous fungus Magnaporthe oryzae. Rice blast has become a model system for the 

study of fungal plant diseases based on its global relevance to agriculture and on our ability to 

apply molecular genetic and genomic analyses to both the pathogen and the plant. We have 

applied molecular and cellular analyses to understand critical processes in the M. oryzae disease 

cycle. The dark melanin pigment produced by the fungus is critical for the function of its 

specialized appressorial cell, which punches the leaf surface by generating the highest pressure 

known in any biological system, estimated at 80 times the atmospheric pressure. Without 

melanin, the fungus can neither generate this pressure nor puncture the plant surface and disease 

does not occur. M. oryzae genome sequencing identified a cluster of melanin biosynthesis genes 

that included an attractive candidate for the transcription factor that regulates melanin 

biosynthesis in appressoria. We report the structural and functional characterization of this 

putative transcription factor, although its role remains elusive. Host cellular responses after 

appressorial penetration are equally important in determining if disease will occur. We have 

characterized the cellular response of one rice variety to a compatible fungal strain (causes 

disease), an incompatible strain (fails to cause disease due to specific triggering of rice defenses) 

and a non-host strain (causes disease in barley but not in rice). Distinctive fungal and rice 

cellular responses correlated with the outcome of each particular pathogen-strain rice interaction. 

We report contrasting responses in two rice leaf sheath assays that are amenable to live cell 

microscopy, as well as a novel cellular response of crystalline aggregations deposited inside the 

host cell under appressoria on the leaf surface. Our studies have important implications for future 

analyses of pathogenicity and host specificity in rice blast disease. 
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putative transcription factor, although its role remains elusive. Host cellular responses after 

appressorial penetration are equally important in determining if disease will occur. We have 

characterized the cellular response of one rice variety to a compatible fungal strain (causes 

disease), an incompatible strain (fails to cause disease due to specific triggering of rice defenses) 

and a non-host strain (causes disease in barley but not in rice). Distinctive fungal and rice 

cellular responses correlated with the outcome of each particular pathogen-strain rice interaction. 

We report contrasting responses in two rice leaf sheath assays that are amenable to live cell 

microscopy, as well as a novel cellular response of crystalline aggregations deposited inside the 
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CHAPTER 1 - Magnaporthe oryzae: The rice blast pathogen 

 

INTRODUCTION 

Magnaporthe oryzae (anamorph Pyricularia oryzae) 

 

Couch and Kohn (2002) demonstrated, based on molecular characters and host 

association, that there are two Magnaporthe species associated with blast and gray leaf spot 

disease in many species of the family Poaceae. One of these species, M. grisea, is limited to 

infection of Digitaria species (such as crabgrass, Digitaria sanguinalis) and the other one, M. 

oryzae, is associated with serious diseases of rice (Oryza sativa), wheat (Triticum aestivum), 

barley (Hordeum vulgare), finger millet (Eleusine coracana), rye grass (Lolium spp.), and other 

cultivated grasses. Individual isolates of the fungus have a limited host range, infecting one or a 

few grass species. 

 

The first description of the sexual or perfect stage (teleomorph) of Pyricularia from rice 

or other grasses was done from a teleomorph, called Ceratosphaeria grisea, originated from a 

cross between fungal isolates from crabgrass (D. sanguinalis) (Hebert, 1971). Afterward, in 

1976, 1978, and 1982, it was reported that teleomorphs produced in crosses of isolates from 

other grasses (Oryza sativa x O. sativa, Eleusine indica x E. indica, E. coracana x E. coracana, 

O. sativa x E. indica, and O. sativa x E. coracana) were not morphologically different from C. 

grisea (Couch and Kohn, 2002). Yaegashi and Udagawa (1978), produced a teleomorph 

originated from a cross between Pyricularia isolates obtained from E. indica. The morphology of 

this teleomorph was identical to the authentic sample of C. grisea, and its comparison with the 

type species of Magnaporthe, led them to transfer C. grisea to Magnaporthe. 
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Magnaporthe oryzae is a haploid and heterothallic Pyrenomycete associated with rice 

blast, one of the most important fungal diseases of this crop (Kang et al, 1994). M. oryzae 

fruiting bodies (perithecia) are dark brown to black, globular, and occur singly or in groups 

(Hebert, 1971). They are partially or completely embedded in the substrate and two or more of 

them may fuse to form a large cavity. The necks are also sometimes fused (Hebert, 1971). The 

asci are cylindrical to subclavate and unitunicate. The tip of an ascus has a pore surrounded by a 

refractive ring. Each ascus usually contains eight ascospores, which are hyaline, three-septate, 

fusiform, lightly to moderately curved, and without gelatinous sheath or appendages (Hebert, 

1971). 

The anamorph Pyricularia oryzae produces simple and gray conidiophores that bear 

three-celled pyriform conidia with a single nucleus per cell.  Because all nuclei in a conidium are 

derived through mitotic divisions from a single nucleus, isolation of single spore cultures purifies 

individual nuclei. Mature conidia have a basal appendage at the point of attachment to the 

conidiophore (Howard and Valent, 1996), and even though it was reported that conidia are 

colorless (Kawamura, 1997), they are light brown when observed under a compound 

microscope, and gray when observed under a stereoscope. 

 

Disease cycle 

 

The fungal side 

Inoculation, penetration and colonization stages of the M. oryzae disease cycle have been 

genetically and cytologically well characterized in planta, by working with rice and other grass 

leaves (Koga and Kobayashi, 1980; 1982a-b; Koga and Horino, 1984a-b; Peng, 1988, 1989; 

Heath et al, 1990a-b, 1992; Kankanala et al, 2007), and under artificial surfaces using different 

mylar films composed of poly-(ethylene terephthalate), cellophane squares, hydrophobic plastic 

membranes, glass, etc (Hamer et al, 1988,1989; Bourett and Howard, 1990; de Jong et al, 1997; 

Howard et al, 1991; Lu, 2005). The symptoms of the disease are reproducible and completely 

resemble those caused by the fungus in its natural environment (Heath et al, 1990a; Valent, 

1991; Berruyer et al, 2006).  
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M. oryzae was considered as an above ground pathogen. However, in order to obtain a 

better understanding about the factors involved in the ability of a pathogen to infect different 

plant organs, it was demonstrated that the fungus is able to infect the root system of wheat, 

barley, and rice under in vitro conditions (Dufresne and Osbourn, 2001; Sesma, 2004). Root 

infection occurs in a process where the appressorium is not required for penetration, and that is 

typical of root-infecting pathogens.  

M. oryzae overseasons as mycelium and conidia on rice straw and seeds (Agrios, 1997). 

The asexual disease cycle on aerial plant organs begins (Figure 1-1) when the conidia land on 

either leaf or stem surfaces that are extremely hydrophobic due to the presence of cuticle and 

cuticular waxes. Once the conidia are hydrated, a drop of mucilage containing proteins, 

carbohydrates, and lipids is released from the apical cell so they are able to attach strongly to the 

waxy host surface (Howard and Valent, 1996; Talbot, 2003). After a couple of hours, conidia 

germinate from one or both terminal cells and appressorium formation begins. Hard and 

hydrophobic surfaces as well as the absence of nutrients represent a combination of signals that 

trigger the differentiation of the germ tube apex into the appressorium (Talbot, 2003). During the 

initial stages of appressorium development, the germ tube tip swells and becomes flattened 

against the host surface (Bourett and Howard, 1990). At this host-fungus contact point, the 

appressorium surface will become the appressorium pore (Figure 1-4), an area where the 

appressorium cell does not have cell wall; therefore the fungal plasma membrane is in direct 

contact with the cuticle of the epidermal plant cell. A melanin layer is synthesized between the 

cell membrane and the cell wall of the appressorium, except at the appressorial pore region 

(Howard and Valent, 1996). Mature appressoria are cells with a rigid melanized cell wall. As we 

will mention below, the presence of melanin limits wall permeability allowing appressoria to 

develop a high turgor pressure (Howard et al, 1991; de Jong et al., 1997). At this developmental 

stage, a specialized hypha (penetration peg) emerges and uses the physical pressure (80 times 

atmospheric pressure) generated by the appressorium to enter the plant epidermal cell. Like other 

plant fungal pathogens, M. oryzae secretes enzymes (β-1,4-D-xylanases) that might be involved 

in a chemical penetration component (Howard and Valent, 1996). 

 

Once inside the cell lumen, the penetration peg enlarges to form a filamentous primary 

hypha that subsequently differentiates into a thicker and bulbous invasive hypha that grows for 8 
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to 12 hours more inside this first-invaded cell. At this time, the invasive hypha partially or 

completely fills the host plant cell and starts moving to the adjacent ones, apparently via 

plasmodesmata (Kankanala et al, 2007). In the subsequently invaded cells, the fungus grows for 

2 to 3 hours to move into the neighboring cells. 

Rice blast fungal morphology and behavior have been very well characterized by Heath 

et al (1990a) and more recently by Kankanala et al, (2007). The former group reported an 

infection hypha that is much thinner than the secondary one that develops from it. The widening 

of the infection hypha, now referred to as invasive hypha, is correlated with successful infection 

because in those cases where the primary hypha did not differentiate, the invaded plant cell died 

rapidly and the fungus did not grow inside the epidermal cells. These thin hyphae sometimes 

grew straight through the epidermal cell and into mesophyll cells below.  

It has been reported that M. oryzae synthesizes phytotoxic compounds, for example, 

tenuazonic acid, pyricularin, and pyrichalasin, during tissue colonization, but roles for these 

toxins during colonization are not yet defined (Valent, 1997; Talbot, 2003).  

The fungus uses a biotrophic invasion strategy and, in about 7 to 8 days, forms typical 

eyespot-shaped lesions that reduce photosynthetic area. Sporulation begins in the first invaded 

cells days after they were filled with the invasive hypha (Talbot, 2003; Kankanala et al, 2007).  

 

The plant cell side 

Plant cytological studies of the early pathogenesis events between Magnaporthe oryzae 

and leaves (blades and sheaths) of compatible and incompatible rice hosts have been described 

since early eighties in order to determine whether host cytological responses are correlated with 

the expression of genes associated with race specific resistance (Heath et al, 1990a; Koga and 

Kobayashi, 1982a; Koga and Horino, 1984 a-b; Koga et al, 2004; Peng and Shishiyama, 1988, 

1989; Tomita and Yamanaka, 1983a-b). 

 

In a macroscopic examination of a highly compatible interaction between M201 rice 

plants spray inoculated with strain 0-42, Heath et al (1990a) reported that small chlorotic flecks 

were detected on young leaves at 72 hours, and that by 3 days later these lesions had grown and 
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coalesced, therefore most of the inoculated part of the leaf was straw colored and desiccated. The 

symptoms on the older leaf developed slower and by 6 days, many of them were smaller, darker, 

and more isolated than those on the younger leaf. Forty eight hours after inoculation, penetrated 

epidermal cells did not show any response associated with defense, like papilla formation, 

browning or wall autofluorescence, and granular cytoplasm. At the chlorotic fleck symptom (72 

hours), some mesophyll cells were browning and autofluorescent; once the plant tissue was full 

of hyphae, all mesophyll were autofluorescent and showed minor to moderate browning. 

 

Melanin biosynthetic pathway 

 

Melanins are dark brown or black pigments formed by oxidative polymerization of many 

types of phenolic or indolic compounds. These pigments are usually associated with proteins and 

carbohydrates, and have stable free radicals, which is a very important criterion to define a 

polymer as melanin (Butler and Day, 1998; Calvo et al, 2002; Henson et al, 1999). 

 

Plants, animals and many microorganisms synthesize melanin (Butler and Day, 1998; 

Calvo et al, 2002; Henson et al, 1999). In terms of biosynthesis, melanin is classified into at least 

four groups depending on its immediate precursor: (1) 3,4-dihydroxyphenylalanine (DOPA) 

melanins, (2) γ-glutaminyl-3-4-dihydroxybenzene (GDHB) melanins, (3) catechol melanins, and 

(4) 1,8-dihydroxynaphthalene (DHN) melanins (Bell and Wheeler, 1986; Butler and Day, 1998; 

Henson et al, 1999). We will focus on the last group because M. oryzae and many other species 

of ascomycetes and related deuteromycetes use DHN as the monomeric melanin precursor. 

Because DHN melanin is synthesized by joining five ketide subunits obtained from five acetate 

molecules, the polyketide pathway is also known as the pentaketide melanin synthesis pathway 

(Henson et al, 1999).  

 

The DHN melanin pathway was discovered in Verticillium dahliae (a plant pathogen) and 

Wangiella dermatitidis (an animal pathogen) through genetic and biochemical characterizations 

of melanin-deficient fungal strains generated by mutations or enzyme inhibitors (Bell and 

Wheeler, 1986; Butler and Day, 1998; Kimura and Tsuge, 1993; Langfelder et al, 2003). In M. 
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oryzae as in other fungi, acetate units are assembled by a polyketide synthase (PKS) to produce 

1,3,6,8-tetrahydroxynaphthalene (4HN), the first detectable intermediate in the pathway (Figure 

1-2). The 4HN is reduced to scytalone by the 1,3,6,8-tetrahydroxynaphthalene reductase 

(4HNR). Scytalone is then dehydrated by scytalone dehydratase (SD) to 1,3,8-

trihydroxynaphthalene (3HN), which is reduced by a second reductase, the 1,3,8-

trihydroxynaphthalene reductase (3HNR) to vermelone. A further dehydration step, done by SD, 

leads to the formation of DHN. 

 

So far, the oxidase involved in the oxidative polymerization of DHN to melanin has not 

been characterized for any of the DHN-melanized fungi including M. oryzae; however, several 

studies suggest that the enzyme is a wall-bound laccase (Butler and Day, 1998; Langfelder et al, 

2003). It has been observed that cooper deficiency blocks melanin synthesis, indicating that a 

copper-containing laccase (p-diphenol: oxygen oxidoreductase) or a tyrosinase (o-diphenol: 

oxygen oxidoreductase) is involved in melanization. Tyrosinase has not been detected in some 

heavily melanized species of deuteromycetes, whereas laccases has been specifically associated 

with pigmented cells within the same fungal colony (Bell and Wheeler, 1986). A purified 

extracellular laccase from Gaeumannomyces graminis var. tritici polymerized DHN into 

melanin; however, a mutant lacking that enzyme still produced the polymer. Many fungi, 

including G. graminis have several laccase genes, so disruption of one gene will not eliminate all 

laccase activity and will make difficult to identify the function of individual laccases (Henson et 

al, 1999). In Cochliobolus heterostrophus polymerization of DHN is catalyzed by an 

unidentified p-diphenol oxidase (Eliahu et al, 2007). 

  

Melanins are usually present in cell walls of yeast cells, hyphae, conidia, 

chlamydospores, reproductive bodies, and specialized infection structures such as appressoria 

and hyphopodia. They also are present as extracellular polymers formed in the medium around 

fungal cells. The pigment is located in the cell wall, either within the structure of the wall, as its 

outermost layer, or between the cell membrane and the cell wall (Bell and Wheeler, 1986; Butler 

and Day, 1998; Howard and Valent, 1996; Mendgen et al, 1996). 

  



 7 

Melanin has not been found in fungal cytoplasm; for example, in Gaeumannomyces 

graminis, melanin precursors are expected to be synthesized in the cytoplasm and then 

assembled covalently in appressorial, hyphopodial, or hyphal cell walls by wall-associated 

oxidases.  So far, exocytosis has not been observed to occur near hyphal cell walls undergoing 

melanogenesis, which could suggest that melanin precursors and/or melanin are not transported 

to the wall in vesicles. However, the pattern of melanin granules in Verticillium dahliae and V. 

nigrescens walls implies that melanin precursors might be synthesized in a type of cytoplasmic 

organelle (vacuoles or melanosome-like bodies) and secreted from the cytoplasm to the cell wall 

where they are oxidized to melanin (Bell and Wheeler, 1986; Butler and Day, 1998; Henson et 

al, 1999). 

 

Extracellular melanins, those synthesized completely apart from the fungal cell walls, 

seem to be derived either by secretion of phenol oxidases or phenols into the external 

environment. Phenol oxidases will oxidize phenolic compounds of various origins, whereas 

phenols will be autoxidized or oxidized by enzymes later released from the fungus (often during 

autolysis). It has been documented that adding hydroquinone, p-phenylenediamine, 1-naphthol, 

or syringalazine to culture media allows detection of extracellular laccases or peroxidases; 

however, secretion of peroxidase as well as hydrogen peroxide do not occur often in fungi.  

Rhizoctonia and many wood-rotting species of basidiomycetes secrete laccases that polymerize 

phenols in plant tissues degraded by these fungi (Bell and Wheeler, 1986). 

 

Melanin can account for a major fraction of the dry weight of a fungal cell, as much as 

30% for the spores of Agaricus bisporus, for example; which represents a significant portion of 

material and energy resources (Butler and Day, 1998). Why would fungi invest so much energy 

in melanin synthesis? Because melanin is of survival value; fungi need to grow, reproduce, and 

protect themselves, either as parasites or saprophytes.  

 

Melanins have been strongly associated with protection and antagonistic functions due to 

their stability, insolubility and resistance properties. Some fungi synthesize melanin in response 

to environmental stresses, such as exposure to toxic metals, desiccation, hyperosmotic 

conditions, high temperature, antagonistic microbes, limited nutrients, pH shock, UV or ionizing 
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radiation, and host defense responses (Butler and Day, 1998; Henson et al, 1999; Langfelder et 

al, 2003). Likewise, many studies with melanin inhibitors as well as melanin-deficient mutants 

have shown that M. oryzae, Colletotrichum lagenarium, and C. lindemuthianum require 

melanized appressoria in order to infect rice, cucumber, and bean, respectively. Melanin plays a 

very important role as a pathogenicity factor since it mediates the buildup of a high hydrostatic 

pressure in the appressorium that provides the essential driving force for a mechanical 

penetration component. In contrast, Alternaria alternata melanin-deficient mutants and the wild 

type were pathogenic on susceptible pear leaves inoculated under laboratory conditions, 

indicating that the ability to produce melanin is not affecting pathogenicity of this fungus 

(Kimura and Tsuge, 1993; Kawamura et al, 1997). 

 

Mycelia and conidia of A. alternata are melanized, while appressoria are colorless. M. 

oryzae, like Alternaria, produces melanized mycelia and spores, but its appressoria are heavily 

melanized. Conidial melanization in Alternaria is considered to play an important role in 

longevity and survival of conidia in nature, whereas appressorial melanization in M. oryzae is 

essential for penetration of its host plant. Both genera synthesize melanin; however, the 

melanization sites and the function of melanin are different (Kawamura et al, 1997). 

 

Melanin biosynthetic gene cluster 

 

Fungal gene clusters are defined as the close linkage of two or more genes involved in the 

same metabolic pathway. Gene clusters are widespread in prokaryotic organisms, but not in 

eukaryotic ones. About 8 years ago, genetic evidence suggested that some metabolic pathways 

genes were closely linked in filamentous fungi; specifically, fungal genes involved in synthesis 

of secondary metabolites, such as pigments, antibiotics, and toxins, generally occur in clusters 

(Keller and Hohn, 1997; Yu and Keller, 2005). Unlike primary metabolism genes, secondary 

metabolism pathways are not essential for growth, and they are often induced by specific growth 

conditions. Secondary metabolism pathways are often expressed under non-optimal growth 

conditions to enhance fungal survival in response to nutrient deprivation or competing 

organisms. Like antibiotics and mycotoxins, melanins are secondary metabolites that result from 
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natural product pathways that involve a considerable investment of fungal genetic resources; a 

single natural product pathway can consist of 25 different genes and reside in up to 60 Kb of 

DNA (Keller, 1997). Characterized clusters include genes encoding biosynthetic enzymes, 

transcription factors, and transporters (Keller, 1997; Yu and Keller, 2005). 

 

As we will see, the genes involved in melanin biosynthesis are clustered in some fungi 

and not in other ones. Genetic studies of the melanin synthesis pathway have been carried out not 

only in M. oryzae, but also in other pathogenic fungi such as Alternaria alternata, 

Colletotrichum lagenarium, Cochliobolus miyabeanus, and C. heterostrophus. Even though 

these fungi synthesize DHN melanin through the pentaketide pathway, the linkage relationships 

and arrangement of the involved genes are quite different (Kubo et al, 1991).  

 

In Magnaporthe oryzae the melanin biosynthetic gene cluster consists of 5 genes located 

on the chromosome I supercontig 195 (Figure 1-3) (Broad Institute Database, version 4 

(www.broad.mit.edu/annotation/genome/magnaporthe_grisea/). From these 5 genes, only PIG1, 

4HNR, and ALB1 are known to be involved in melanin biosynthesis. The remaining 

characterized genes, RSY1 and BUF1, are located on chromosomes III and II, respectively and 

will be described in the next section. 

 

The first gene in the contig is PIG1 (pigment of Magnaporthe), a 3148 bp regulatory 

gene. The gene encodes a 973 amino-acid protein (Pig1p) that shares 68% identity with the 

Cmr1p protein encoded by the CMR1 gene (Colletotrichum melanin regulation), a putative 

transcription factor present in the plant pathogenic fungus Colletotrichum lagenarium; and 70% 

similarity with the Cmr1 protein of Cochliobolus heterostrophus. Like the C. lagenarium and C. 

heterostrophus Cmr1 proteins, Pig1p has two adjacent putative DNA-binding motifs in its N-

terminal region; one is a Zn (II) 2Cys6 binuclear cluster, and the other one is a Cys2his2 zinc 

finger motif (Tsuji, 2000). The Pig1 protein has been associated with regulation of mycelial 

melanization. On the other hand, analysis of pig1p mutants suggested that the expression of 

melanin genes during appressorium development is independent of Pig1p. 

 



 10 

The second gene, 4HNR, encodes the 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR), 

also called second naphthol reductase, that catalyzes the reduction of 1,3,6,8-

tetrahydroxynaphthalene to scytalone (Figure 1.1). Even though this enzyme prefers scytalone as 

substrate, it is capable of catalyzing the reduction of 3HN to vermelone; however its activity is 

not enough to support this reaction in the absence of BUF1 (Thompson et al, 2000). 

 

The third gene in the contig is ALB1. This gene encodes a polyketide synthase (PKS), 

which is the first enzyme acting in the melanin synthesis pathway by converting acetate units to 

1,3,6,8-tetrahydroxynaphthalene (Langfelder et al, 2003). The ALB1 gene was defined on the 

basis of a genetic analysis of three M. oryzae mutants with altered pigmentation (buf-, rsy-, and 

alb-). The mutants were isolated from diverse parental strains, including rice and other grasses 

pathogens (Chumley and Valent, 1990). We will refer to the other two mutants later in this 

chapter. The alb- pigment mutants include seven that appeared spontaneously and 15 that were 

isolated after UV mutagenesis or diepoxyoctane treatment. Alb- mutants form white colonies, 

secrete a yellow pigment into oatmeal agar medium, and are not pathogenic when inoculated on 

undamaged host plants (Chumley and Valent, 1990). 

 

Homologues of ALB1 have been identified in several other fungi, including the pksP gene 

of Alternaria fumigatus (Langfelder et al, 1998; Tsai et al, 1997,1998), wA gene of Aspergillus 

nidulans (Mayorga and Timberlake, 1992), ALM of Alternaria alternata (Kimura and Tsuge, 

1993), PKS1 of Colletotrichum lagenarium (Takano et al, 1995), WdPKS1 of Wangiella 

dermatitidis (Feng et al, 2001), PKS18 of Cochliobolus heterostrophus (Eliahu et al, 2007), and 

alm-1 of Cochliobolus miyabeanus (Kubo, 1989). 

 

The last two genes in the contig are the loci MGG_07217.5, and MGG_07218.5. So far, 

these genes do not have any known function. However, MGG-07218.5 codes for a putative 

transcription factor that belongs to the fungal Zn(2)-Cys(6) binuclear cluster domain family. Due 

to the location of this regulatory gene in the melanin biosynthesis contig, it was predicted to be a 

potential regulator of melanin synthesis during appressorium development (Ebbole and Valent, 

unpublished data). 
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In Alternaria alternata, C. heterostrophus, and C. miyabeanus the melanin biosynthesis 

genes are also clustered. An A. alternata clone (pMBR1) restored melanin synthesis in albino 

(Alm-), light brown (Brm1-), and brown (Brm2-) mutants. The genes that complemented each one 

of these mutants were designated ALM, BRM1, and BRM2, respectively. They are located in a 30 

Kb region in the chromosome and code for the enzymes that catalyze the respective steps in the 

DHN melanin biosynthetic pathway [ALM (Polyketide synthase), BRM1 (Scytalone 

dehydratase), BRM2 (1,3,8-trihydroxynaphthalene reductase)] (Kimura and Tsuge, 1993). In C. 

heterostrophus BRN1, CMR1, and PKS18 are located on a 30 kb chromosomal fragment (Eliahu 

et al, 2007). According to genetic analysis of melanin mutants of C. miyabeanus, the causal 

agent of the rice brown spot, it was indicated that alm-1, alm-2, and brm were linked and that scy 

segregates independently of these 3 loci (Kubo et al, 1989). 

 

Colletotrichum lagenarium represents one example where the melanin biosynthetic genes 

are not clustered. Kubo’s research group cloned the genes that encode the three major enzymes 

in the melanin pathway: PKS1 (Kubo et al, 1991), THR1 (Perpetua et al, 1996), and SCD1 (Kubo 

et al, 1996). Subsequently, the genes were analyzed in a temporal transcription pattern using 

conidia incubated under artificial conditions. It was shown that the corresponding transcripts 

accumulated and diminished in similar time courses during appressorium differentiation, 

suggesting that common mechanisms regulated their transcription. However, it was assumed that 

factors regulating their transcription were not identical because PKS1, SCD1, and THR1 

transcripts did not appear synchronously during appressorial differentiation. The order of 

expression of the 3 genes (THR1, PKS1, and SCD1) was not consistent with their order of 

function in the melanin synthesis pathway (PKS1, SCD1, and THR1). It was presumed that 

posttranscriptional regulation of the melanin genes determines the time when the melanin 

enzymes should work and that the order of expression of the three genes should not necessarily 

correlate with the order of the pathway (Takano et al, 1997). 

 

RSY1 and BUF1: the other melanin synthesis genes 
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Above we briefly described the genes located in the melanin biosynthesis gene cluster of 

M. oryzae. One of them, PIG1, is so far a regulatory gene whose encoded protein (Pig1p) might 

regulate the transcription of ALB1. The other two genes, ALB1 and HNR, encode the structural 

proteins PKS and 4HNR, respectively, which are responsible for the first two reactions in the 

melanin synthesis pathway (Figure 1-2).  

 

Subsequent steps in melanin biosynthesis consist of two dehydrations and one reduction 

reaction. The dehydrations of scytalone to 3HN, and vermelone to 1,8-DHN are carried out by 

the scytalone dehydratase (SD), which is encoded by RSY1. The reduction of 3HN to vermelone 

is catalyzed by the 3HNR, encoded by BUF1 (Figure 1-2) (Chumley and Valent, 1990; 

Langfelder et al, 2003; Thompson et al, 2000; Tsuji, 2000). 

The RSY1 gene (MGG_05059.5) is located on the chromosome III supercontig 175 

(www.broad.mit.edu/annotation/genome/magnaporthe_grisea/GeneDetails.html). As mentioned 

above, the gene encodes SD, which is structurally related to the Nuclear Transport Factor 2 

(NTF2) domain family (www.ebi.ac.uk/ego/DisplayGoTerm). The enzyme catalyzes the 

conversion of scytalone to 3HN. Homologues of the gene have been identified in Colletotrichum 

lagenarium (SCD1), Cochliobolus miyabeanus (scy), Alternaria alternata (BRM1), C. 

heterostrophus (SCD1), and Verticillium (Eliahu et al, 2007; Bell and Wheeler, 1986; Kubo et 

al, 1989, 1996). Mutation of RSY1 gives a rosy pigmentation phenotype in colonies that grow on 

oatmeal agar. Previously wounded host plants are infected by rsy- mutants (Chumley and Valent, 

1990). 

 

The last gene in the melanin pathway, BUF1 (MGG_02252.5), is located on the 

chromosome II supercontig 186. Like ALB1 and RSY1, the BUF1 gene was associated with 

mutants isolated from rice pathogens and pathogens of other grasses. The buf- mutants lacked 

activity for 3HNR, produced a buff-colored (reddish-tan) pigmentation in the growth medium, 

and lost pathogenecity when inoculated on unwounded Oryza sativa (rice), Eragrostis curvula 

(weeping lovegrass) or Eleusine indica (goosegrass) host plants (Chumley and Valent, 1990; 

Thompson, 2000; www.broad.mit.edu/annotation/genome/). Trihydroxynaphthalene reductase is 

the biochemical target of three commercial fungicides tricyclazole, pyroquilon, and phthalide 

used to control rice blast disease.  
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There is not a linkage relationship among ALB1, RSY1 and BUF1 genes; however the 

genes that seem to have the same function as them are linked in Alternaria alternata (ALM, 

BRM1 and BRM2, respectively). In C. miyabeanus the albino gene (alm-1) and the 1,3,8-

trihydroxynaphthalene reductase (brm) gene are closely linked, while the scytalone dehydratase 

gene (scy) is independent of the other two ones. In C. heterostrophus PKS18, CMR1 and BRN1 

are clustered. Finally the corresponding genes in Colletotrichum lagenarium do not seem to be 

linked. This information demonstrates that even though the DHN melanin biosynthesis pathway 

is almost identical among these fungi, the linkage relationships and arrangement of the melanin 

genes can be different (Kimura and Tsuge, 1993). 

 

Rice blast control: inhibitors of the DHN melanin pathway 

 

This section will be focused on those fungicides that inhibit specific structural genes in 

the melanin biosynthesis pathway [melanin biosynthesis inhibitors (MBI) also called 

antipenetrant fungicides]. These compounds prevent plant infection by interfering with melanin 

synthesis in appressorium formation, and some of them kill or have another toxic effect on the 

fungus (Butler and Day, 1998; Shigyo et al, 2004). 

 

Studies involving the action of some of the major inhibitors in the melanin biosynthesis 

pathway have shown that reduction and dehydration are the principal reactions in melanin 

synthesis; therefore it has been considered that the reductases and dehydratases are critical target 

enzymes for developing new melanin biosynthesis inhibitors (Kurahashi, 2001). In fact, the 

actual melanin inhibitors are classified into 2 groups based on their target genes: reductase 

inhibitors and dehydratase inhibitors.  

 

Reductase inhibitors have a planar structure of fused bicyclic or tricyclic rings that 

interfere with the binding of planar bicyclic substrates (Kurahashi, 2001). One of the more used 

reductase inhibitors in this group is the systemic fungicide Tricyclazole, which, when applied in 

culture media, makes it turn red-brown as a result of the accumulation of auto-oxidation products 

of the pathway intermediates (Figure 1-2) (Butler and Day, 1998). This fungicide inhibits 
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melanin synthesis not only in M. oryzae but also in C. lindemuthianum and C. lagenarium (Bell 

and Wheeler, 1986). Other inhibitors that appear to affect the same reduction reactions are 

Clobenthiazone, Pyroquilon (PRQ), Fthalide (FTL), 2,3,4,5,6-Pentachlorobenzyl alcohol 

(PCBA) (Butler and Day, 1998; Kurahashi, 2001). 

 

It has been reported that for Pyricularia oryzae, Tricyclazole reduces disease incidence 

because it induces the formation of fungitoxic active oxygen species by the plant. On other hand, 

Tricyclazole treatment of Botrytis cinerea made them more susceptible to attack by fungal 

hyperparasites. Sclerotia of Sclerotinia spp. are dormant, but once they are treated with 

Tricyclazole they lose dormancy and germinate (Butler and Day, 1998). These reports indicate 

that Tricyclazole may enhance pathogenicity by working through different mechanisms in 

addition to being an antipenetrant. 

 

Dehydratase inhibitors block scytalone dehydratase in the melanin pathway, which 

results in scytalone accumulation. These inhibitors were discovered after the reductase ones. 

Carpropamid; like Tricyclazole, Fthalide and Pyroquilon, is a principal fungicide currently used 

for rice blast control. Strains resistant to these inhibitors have not emerged so far; however, in 

2001 insufficient efficacy of Carpropamid was reported in Japan due to a single point mutation 

in the coding sequence of scytalone dehydratase. This amino-acid change (valine to methionine) 

reduced binding activity of Carpropamid to the enzyme (Butler and Day, 1998; Kurahashi, 2001; 

Shigyo et al, 2004). 

 

It has also been reported that Carpropamid enhances the activity of some enzymes related 

to defense reactions in rice. Under practical conditions in Japan, residues of this inhibitor in rice 

are lower than the level required for enhancing rice defense responses; however, it was 

mentioned that in those countries where it is sprayed at higher concentration, the enhancement of 

defense responses may contribute to control efficacy in the field (Shigyo et al, 2004). 

 

Cerulenin, a specific inhibitor of fatty acid synthetase produced by Cephalosporium 

caerulens, blocked melanin synthesis in Pyricularia spp. and C. lagenarium appressoria. Since 

synthesis of fatty acids involves condensation of acetate molecules, as occurs in the synthesis of 
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1,3,6,8-4HN, it was suggested that PKS1 and the  fatty acid synthetase could be related and 

inhibited by Cerulenin (Butler and Day, 1998). 

 

Appressorial melanization: Life or death issue 

 

 The Magnaporthe oryzae appressorium is a dome-shaped cell with a chitin cell wall that 

contains an about 100 nm thick layer of melanin on its inner side. Melanin imparts a dark 

pigmentation to the appressorium when observed with a bright-field light microscope. The layer 

is limited to the appressorium wall, and also covers the septum that separates the appressorium 

and the germ tube, but is absent from the region in contact with the substratum. The zone lacking 

melanin, the appressorium pore, is a specialized area distinguished earlier in development by 

lack of cell wall. A ring material, the pore ring, can be observed under light microscope at the 

plane of contact with the substrate, surrounding the perimeter of the appressorium pore. Howard 

and Ferrari (1989) have suggested that such rings might serve in tightly sealing the pore to the 

surface of the substrate. The pore probably exists as the only surface area through which 

molecules larger than water can pass from the fungus to the underlying substrate (Howard and 

Valent, 1996). 

 

The presence of melanin plays a very important role in the life of this fungus because it 

provides an impermeable layer to prevent outflow of glycerol, which is responsible for high 

turgor pressure applied as a physical force to break the host cuticle (Howard et al, 1991; de Jong 

et al, 1997; Talbot, 2003). It has been shown genetically that non-melanized appressoria fail to 

generate turgor and lose pathogenicity. Appressoria from non-melanized strains carrying single 

gene mutations in the ALB1 or RSY1 genes have much lower levels of intracellular glycerol. A 

similar reduction in glycerol accumulation was found after treatment of M. oryzae with 

tricyclazole. Thus, melanin biosynthesis is essential for efficient accumulation of glycerol. 

 

Non-melanized appressoria collapsed in hyperosmotic solutions of glycerol but after 

some seconds they recovered and became plasmolyzed. This indicated that the non-melanized 

wall is permeable to glycerol which diffused through the cell wall and induced plasmolysis of the 
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appressorium protoplast. On the other hand, melanized appressoria showed limited recovery 

from cytorrhysis even after 48 h incubation in hyperosmotic glycerol. Maintenance of the 

enormous glycerol concentrations within appressoria is likely to be a consequence of the reduced 

permeability of melanized cell walls to glycerol preventing rapid outflow of the solute (de Jong 

et al, 1997). 

 

Like M. oryzae, Colletotrichum will not penetrate host plant cells if its appressoria are not 

melanized, either because of the use of DHN melanin synthesis inhibitors or because they are 

albino mutants. It was showed that less than 10% of albino mutants of C. lagenarium were able 

to penetrate nitrocellulose membranes, compared with more than 70 % of albino mutants that 

were melanized by treatment with L-DOPA (Butler and Day, 1998). 

 

There are several factors that affect the establishment of disease in plants. For a plant 

disease to occur, the plant and the pathogen must be in contact and interact. If at the time of the 

contact the disease does not occur, is because the pathogen may be unable to attack or because 

the plant may be able to defend itself.  There are several factors than account for this lack of 

disease. They may be because the plant phenotype, the pathogen phenotype, environmental 

conditions, and/or because the interaction among all of them (The disease triangle) (Agrios, 

1997). 

 

In the next chapters we will present only one out of the several variables that affect 

pathogenicity in Magnaporthe oryzae: melanization of appressoria. We do not know the 

regulatory genes involved in this important metabolic pathway for the blast rice pathogen. On the 

plant side, we will present some preliminary data about the plant and fungal cellular responses 

expressed in susceptible, incompatible, and in non-host systems with the objective to determine 

if the plant cytological responses are correlated with the expression of specific resistance or non-

host resistance.  
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Figure 1-1. Magnaporthe oryzae disease cycle.  

The inoculation stage of the cycle starts when spores (s) land on either leaf or stem surfaces. The 
spores adhere strongly to the cuticle by secreting sticky mucilage, and germinate under favorable 
humidity conditions. The germ tube (gt) extends and its tip differentiates into an appressorium, 
which melanizes as it matures. Melanized appressoria (ma) generate a high turgor pressure, so 
the penetration peg penetrates the plant epidermal cell wall (green squares). Invasive hyphae (IH) 
differentiate into bulbous invasive hypha (BIH) that fill the first infected cells and probably 
move to neighboring ones through plasmodesmata (dashed green lines).  
 

 
 



 18 

Acetate

OH

HO

OH

OH

1,3,6,8-4HN

OOH

HO OH

Scytalone

OH

HO

OH

1,3,8-3HN

O

HO

Vermelone

OHOH OH

1,8-DHN

Melanin

PKS

4HNR SD

3HNR

SD?

Cerulenin 
inhibition

Tricyclazole 
inhibition

Carpropamid
inhibition

Flaviolin

2HJ

Acetate

OH

HO

OH

OH

1,3,6,8-4HN

OH

HO

OH

OH

1,3,6,8-4HN

OOH

HO OH

Scytalone

OOH

HO OH

Scytalone

OH

HO

OH

1,3,8-3HN

OH

HO

OH

1,3,8-3HN

O

HO

Vermelone

OHO

HO

Vermelone

OHOH OH

1,8-DHN

OH OH

1,8-DHN

Melanin

PKS

4HNR SD

3HNR

SD?

Cerulenin 
inhibition

Tricyclazole 
inhibition

Carpropamid
inhibition

Flaviolin

2HJ

 

 

 

Figure 1-2. DHN melanin biosynthetic pathway. 

A polyketide synthase (PKS) joins acetate units to make 1,3,6,8-tetrahydroxynaphthalene (4HN) 
which is converted to 1,8-dihydroxynaphthalene (DHN) through two reduction and two 
dehydration reactions. 4HN and 1,3,8-trihydroxynaphthalene (3HN) are reduced to scytalone and 
vermelone by 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR) and 1,3,8 
trihydroxynaphthalene (3HNR) reductase, respectively. Both dehydration reactions are catalyzed 
by scytalone dehydratase (SD). Specific inhibitors in the pathway are indicated by blue squares. 
Flaviolin and 2-hydroxyjuglone (2HJ) are the oxidation products of 4HN and 3HN, respectively. 
These and similar compounds account for the rosy or buff colors of strains with a reductase-
deficient or Tricyclazole-inhibited pathway (Butler and Day, 1998; Chumley and Valent, 1990; 
Thompson et al, 2000).  
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Figure 1-3. The melanin biosynthetic gene cluster of Magnaporthe oryzae.  

The gene cluster (as depicted in the Broad Genome Database, genome assembly 5) consists of 5 
genes (blue arrows) located on chromosome I supercontig 195, nucleotides 1565920-1592010. 
PIG1 (first arrow on the left corner), 4HNR (second arrow), and ALB1 (the last arrow, the entire 
gene is not represented) are involved in the melanin synthesis. The hypothetical transcription 
factor MG07218.5 might be involved in regulating expression of the melanin structural genes 
during appressorium formation. The orange arrows represent EST sequences; the upper green 
arrows represent the regions of similarity between biological sequences; the pink arrows 
represent domain location; light blue arrows represent genes and structures predicted using the 
FGENESH program; the gray arrows also represent gene structure predicted using a GENEID 
program run with the Neurospora crassa parameter file; and the light green arrows (lower ones) 
represent the best local alignment with a protein assuming that introns start at GT and end at AG. 
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Figure 1-4. Magnaporthe oryzae appressorium.  

(A) Scanning electron micrograph showing the characteristic dome-shape appressorium (Ap) 
with the germ tube (Gt) and conidium (Co). (B) Transmission electron micrograph showing the 
“entire wild-type appressorium cut perpendicular to the substrate“. A layer of melanin is shown 
by arrows and the appressorial pore by the line between arrow heads. (C) Scanning electron 
microphotography of the remnant formed by sonication of an appressorium on a Mylar surface. 
Arrow shows the hole produced by the penetration peg. The pore ring (asterisks) observed at the 
plane of contact with the substrate surrounds the appressorial pore (lacking cell wall). [(A) and 
(B) Reprinted from Howard and Valent, 1996. ( C ) from Howard et al, 1991)]. 
 

B

C

A

Ap

*

*

*

*

B

C

A

ApAp

*

*

*

*

*

*

*

*



 21 

CHAPTER 2 - Regulation of melanin biosynthetic gene 

expression in Magnaporthe oryzae 

 

ABSTRACT 

 

Magnaporthe oryzae, the causal agent of the rice blast disease, is very well known for its 

characteristic melanized dome-shaped appressorium. The appressorial melanin layer acts as a 

semipermeable barrier to solute movement; water can diffuse across it, but ions and other small 

molecules cannot move into or out of the cell. Glycerol is the major solute in the appressorial 

cell, reaching a concentration of about 3M. To maintain such a concentration, a significant 

amount of water is required, which can move into the appressorium through the melanin layer. 

However, because glycerol cannot move out, a very high turgor pressure (80 times atmospheric 

pressure) is generated when water is available. This turgor pressure drives the penetration peg 

through the plant cuticle and epidermal cell wall. Thus, the appressorial cell wall must be 

melanized to build up this considerable pressure and initiate infection. Melanin is derived from 

the 1,8-dihydroxynaphthalene (DHN) melanin pathway, in which at least four structural genes 

are involved. However, there is no information about the transcription factor(s) that regulate 

expression of these genes in appressoria. So far, only one putative factor involved in vegetative 

melanin biosynthesis has been characterized. The gene product, Pigment of Magnaporthe - 

PIG1, carries two types of putative DNA binding motifs and probably activates the expression of 

ALB1 during vegetative growth. A pigment mutant of Magnaporthe (pig1-) produces melanized 

appressoria and albino mycelia. Another hypothetical transcription factor [Zn(II)2Cys6] gene 

(HTFG) in the melanin biosynthetic gene cluster represented a good candidate for the regulatory 

gene in appressorial melanization. We report expression analysis, structural analysis and 

functional analysis of the HTFG. The HTF coding sequence is 1353 bp in length and lacks 

introns. Although it is expressed constitutively, the gene appears up-regulated in appressoria. 

Our functional analysis failed to identify a phenotype associated with the HFTG. Further work is 

required to investigate the possible presence of a copy of this gene. 
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INTRODUCTION 

 

As mentioned in the previous chapter, melanins are very important secondary metabolites 

for fungal survival. Scientists are very interested in these metabolites for many reasons; first, the 

DHN melanin synthesis pathway is unique in Ascomycetes and Basidiomycetes; second, as 

reviewed in the previous chapter, there are fungicides currently on the market that prevent direct 

penetration of plant tissue by inhibiting melanin biosynthesis in appressorial cells; and third, 

phytotoxins may result from shunt products of melanin synthesis (Bell and Wheeler, 1986; 

Butler and Day, 1998; Henson et al, 1993; Langfelder et al, 2003; Plonka and Grabacka, 2006). 

Therefore, melanins are, at least for some plant fungal pathogens, an important target for disease 

control.  

 

Molecular genetic and biochemical studies have been conducted extensively in order to 

understand the function of the melanin biosynthetic genes; however, very few transcription 

factors involved in regulating their expression, or the expression of other genes important for 

virulence, have been identified to date (Langfelder, 2003). Transcription control is a very 

important mechanism for regulating gene expression; under this mechanism only the proper 

genes will be expressed in the proper cells during the proper development stage and 

environmental conditions (Lodish, et al, 2000). 

 

Transcription factors, also known as regulatory genes, regulate the expression of other 

genes. Using precise gene regulation in different cell types (vegetative mycelia, conidia, fruiting 

bodies, and infection-specific cell types), in different developmental stages, or in response to 

specific external conditions, cells save energy and prevent the products of different genes from 

interfering with each other (Snyder and Champness, 2003). Synthesis of mRNA takes place in 

the nucleus and requires that RNA polymerase II initiates transcription, polymerizes 

ribonucleoside triphosphates complementary to the DNA coding strand, and terminates 

transcription. The initial RNA transcript is processed into a functional one by adding a poly (A) 

tail and removing introns; then it is transported to the cytoplasm to be translated into a protein. 
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The HTFG is expressed in mycelium, spore, and appressorium samples at levels that can 

be resolved in agarose gels (this study). However, its expression is not detectable at 24 hours 

after the fungus has penetrated the rice host cells (data not shown), which should indicate, in case 

the gene has a regulatory role, that the expression of the melanin biosynthetic pathway genes is 

also down regulated because the fungus does not need to be melanized to continue invading the 

host cells. This assumption is supported by a 36 hour post inoculated rice-Magnaporthe 

expression profile showing that the HTF, 4HNR, ALB1, RSY1, and BUF1 genes are down 

regulated (Appendix Table A.3) (Mosquera et al,  submitted). 

 

We have reviewed the role of structural genes in the melanin biosynthesis pathway of at 

least four different fungal species, including M. oryzae. However, there is not much information 

about the transcription factors that regulate their transcription. So far, only one putative 

transcription factor involved in vegetative melanin biosynthesis of Colletotrichum lagenarium, 

Cochliobolus heterostrophus, and Magnaporthe oryzae has been sequenced. The genes, 

Colletotrichum melanin regulation (CMR1), C. heterostrophus (CMR1) and Pigment of 

Magnaporthe (PIG1), encode for 984, 1,014, and 973 amino-acid proteins, respectively, and 

contain two types of putative DNA binding motifs, a Cys2His2 zinc finger motif and a 

Zn(II)2Cys6 binuclear cluster motif. The Cmr1 protein of C. heterostrophus shares 69% and 

70% similarity with Cmr1p of C. lagenarium and Pig1p of M. oryzae, respectively (Eliahu et al, 

2007). 

 

Based on cmr1- mutant analyses, it was demonstrated that the Cmr1p protein regulates 

the expression of SCD1, THR1, and PKS1 in the vegetative hyphal growth stage. Expression of 

SCD1, BRN1, and BRN2 was non-detectable in C. heterostrophus cmr1- mutants (orange-pink 

colored mycelial phenotype), while the expression of a polyketide synthase (PKS18) was 

moderately reduced. The target genes of Pig1p are unknown, but it was presumed that it activates 

the expression of ALB1 only during vegetative growth (Eliahu et al, 2007; Tsuji, 2000).  

 

Where might a second gene involved in regulation of melanin biosynthesis regulation in 

M. oryzae appressoria be located? There is a hypothetical gene (MGG_07218.5 – GenBank 

accession number XM_367293.2) in the melanin gene cluster whose function has not been 
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determined yet (Figure 1.2). It is common that fungal genes involved in the same secondary 

metabolism pathway are clustered; since a gene, named the hypothetical transcription factor 

gene (HTFG), is clustered with PIG1, 4HNR and ALB1, there is a high probability that it could 

be regulating the expression of the melanin structural genes during appressorium formation. The 

HTFG has three exons (1343, 43, and 84 bp length) and two introns (408 and 57 bp length) that 

were predicted by automatic annotation (Figure 2-1). It is not common to find introns of 408 bp 

length. Fungal introns are small; for example, Neurospora introns average 134 bases, Sordaria 

macrospora 106, and Cryptococcus neoformans 67 bases (Spieth and Lawson, 2006). 

  

The presence of three ESTs (GenBank accession numbers AI069001.1, AI069000.1 and 

BG810360.1) within the first predicted exon of the HTFG confirmed that the gene was expressed 

(Figure 2.1). These ESTs were obtained from the appressorium formation-specific cDNA library 

constructed from strain 70-15 conidia germinated for 5-8 hours on appressorium-inductive 

surfaces. The identification of those ESTs from the developing appressorium library is also 

consistent with a predicted role for HTFG in regulation of appressorial melanization. 

 

The HTFG encodes a 486 amino acid protein whose N-terminal region contains a Cys-

rich motif involved in zinc-dependent binding of DNA (Pfam accession number PF00172) 

(Figure 2-1). The region forms a binuclear zinc cluster in which six conserved cysteines bind two 

zinc atoms. The spacing of the cysteines is C-x(2)-C-x(6)-C-x(5-12)-C-x(2)-C-x(6 to 8)-C. There 

are also other conserved residues in the loop regions between the cysteines that can be used to 

define a specific pattern for this domain. The Zn(II)2Cys6 binuclear cluster DNA-binding domain 

is generally located at the N-terminal region of the protein, but in the UME6 protein of 

Saccharomyces cerevisiae it is found at the C-terminal region (www.expasy.org/cgi-bin). Many 

fungal transcriptional activator proteins contain this domain; for example, Saccharomyces 

cerevisiae has 65 including the well-studied Gal4p, involved in the regulation of galactose 

metabolism, Neurospora crassa has 107, Aspergillus fumigatus 195, and Magnaporthe grisea 

strain 70-15 has 71 (www.broad. mit.edu/annotation/genome/). 

 

The HTFG represented a good candidate as a potential regulator of appressorial 

melanization for many reasons: first of all, this gene is a transcription factor located in the 
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melanin biosynthetic gene cluster of Magnaporthe together with the other key melanin genes 

(PIG1, 4HNR, and ALB1); second, M. oryzae and C. lagenarium have pig1- and cmr1- mutants, 

respectively, that produce melanin in appressoria but not in vegetative mycelia. These 

observations suggest that Pig1p and Cmr1p are not the only transcription factors that regulate the 

expression of the melanin structural genes. Third, three out of four EST sequences for the HTFG 

in the genome database were from a library constructed from developing appressoria; and fourth, 

the HTFG is down-regulated along with all the structural melanin biosynthetic genes after 

penetration has occurred and the fungus has colonized rice cells at 36 hours after inoculation. 

Based on the information presented above, we proposed to confirm the structure of the HTFG, to 

determine if the HTFG is specifically expressed during appressorium development, and to 

determine whether or not the HTF protein regulates transcription of the melanin biosynthetic 

genes. 

 

RESULTS 

 

Hypothetical transcription factor gene (HTFG) structure 

 

At the time we initiated this project, the HTFG was predicted by automated annotation to 

consist of 1343-, 34- and 84- bp exons separated by two introns of 408 and 57 bp (Figure 2-1). 

To confirm its structure, we isolated DNA from mycelia of the sequenced laboratory strain 70-

15, and the pathogen field isolates O-137 and Guy11 all grown in 3-3-3 liquid medium. PCR 

products obtained by using a set of primers covering 741 bp bases of the annotated sequence 

(Appendix A, Table A.1) were purified, cloned into pGEM®-T vector, and sequenced. Sequences 

were compared using the multiple sequence alignment program ClustalW (version 1.8) 

(www.ebi.ac.uk/clustalw/). Alignment results showed that the strain 70-15 genomic annotated 

sequence is 100, 99, and 97% similar to the O-137, the 70-15, and the Guy11 sequences, 

respectively (Figure 2-2). The only differences among the sequences were numbers of residues in 

3 thymine nucleotide repeat regions. Therefore, the sequence of the HTFG is relatively well 

conserved in different strains of the blast fungus. 
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To verify the structure of the HTFG transcript, reverse transcription-polymerase chain 

reaction (RT-PCR) products from Guy11 and KV1 mycelia were purified from an agarose gel, 

cloned into the pGEM®-T vector, and sequenced. Reverse transcription -PCR products obtained 

from two additional independent Guy11 cDNAs were also cloned and sequenced. One of the 

three Guy11 cDNA sequences, the KV1 cDNA, and the sequence from the genomic database 

were compared with ClustalW version 1.83. The alignment evaluation between the amplified 

cDNAs and the genomic sequence indicated that the first predicted intron was not spliced out. 

The second intron was spliced in these cDNAs and the splice sites matched with the consensus 5’ 

GT(G/G/G/T) and 3’ (C)AG splicing signals conserved in eukaryotes including M. oryzae. 

However, the sliced intron was 66 bp long instead of the predicted 57-bp (Figure 2-3 A). With 

these sequences it was not possible to determine the size of the last exon since the first round of 

Guy11 and KV1 RT-PCR products were obtained using a 24-bp reverse primer (Appendix A, 

Table A-1) whose first base was located at 23 bases before the stop codon (A of TAG as 1). 

However, the reverse sequence of a second independent Guy11 cDNA points it out that the last 

exon is a fragment of 75 bp length, at least in Guy 11 samples (Figure 2-3B). 

 

To support the lack of the first predicted intron, the 3’ end of HTFG transcript was 

determined by Rapid Amplification of the cDNA Ends (3’-RACE PCR). Mycelium from the 

Guy11 strain was grown in 3-3-3 medium under constant rotation at 26°C, filtered, dried, and 

frozen in liquid nitrogen for RNA isolation. First strand cDNA synthesis and amplification of the 

3’cDNA ends were done following the CLONTECH protocol. Complementary DNA synthesis 

was done with a 10 µM 3’-RACE CDS primer A (Appendix A, Table A-1) and amplified using a 

specific gene primer with a 69.7°C Tm and a GC content of 75%. Reverse transcribed products 

were analyzed on an agarose gel, purified, and cloned into the pGEM®-T vector. Sequence 

analyses from the 3’-RACE PCR products confirm that the predicted first intron was not spliced 

out (Figure 2-4). However, the poly-A sequence in the cDNA suggested that the transcript ended 

before the second predicted intron, which we showed to be spliced out in our separate cDNA 

analyses. 

 

In conclusion, both the RT-PCR, and the 3’-RACE PCR analyses showed that the first 

intron predicted by genome annotation is not real. However, if this intron is not spliced from the 
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mRNA, a stop codon occurs at position 1351 relative to the translation start site (A of ATG = 

+1), which was recognized by using the ExPASy proteomics server 

www.ca.expaxy.org/tools/dna.html). The 3’-RACE PCR showed that the coding sequence ends 

at position 1351, relative to the start site; and the RT-PCR analyses showed a spliced mRNA 

sequence with a 66-bp intron beginning at nucleotide 433 beyond the end of the mRNA 

predicted by RACE-PCR. Our results suggest that HTFG is expressed as an mRNA with a 1353 

bp coding sequence, and that this gene may be subject to alternative splicing.  

 

Hypothetical transcription factor gene (HTFG) expression 

 

Three out of four EST sequences available for the HTFG in the public databases (Figure 

2-1) were obtained from fungal cultures developing appressoria. We performed RT-PCR using 

RNAs purified from spores, mycelium, and germ tubes forming appressoria in order to determine 

the expression pattern of HTFG in these different fungal cell types. Unlike RNA isolation from 

spores and mycelium, RNA isolation from germlings differentiating appressoria was non-trivial 

because appressorium development only occurs when the germlings are attached to the natural 

plant cuticle or certain artificial surfaces that mimic the host surface. We first assessed efficiency 

of appressorium formation on artificial surfaces used in other studies (Bourett and Howard, 

1990; de Jong et al, 1997; Hamer et al, 1988, 1989; Howard et al, 1991; Kankanala et al, 2007). 

However, in our laboratory, appressorium formation on green glass lacked reproducibility and 

synchrony reported previously, and recovery of RNA from cultures developing on cover slips 

was problematic. We therefore developed the following procedure for recovering appressorial 

RNA from infected leaf sheaths. Leaf sheath segments of rice variety YT16 were inoculated with 

a conidial suspension at 1x105 spores/mL and maintained inside a humid chamber at room 

temperature. Appressorial development was verified by dissecting the epidermal leaf sheaths for 

microscopic observation at 4, 6, 8, and 10 hours post inoculation (hpi). Leaf sheath sections with 

developing appressoria were frozen in liquid nitrogen for RNA isolation. RNA samples were 

tested for fungal RNA content by RT-PCR with actin primers (Appendix A, Table A-1). 

Although most of the RNA in these infected leaf sheath samples was derived from host plant 
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cells, we reproducibly detected fungal actin mRNA expression (the actin primers spanned an 

intron differentiating the genomic and mRNA fragments) in these samples (Figure 2-5 C). 

 

The RT- PCR results showed that the HTFG was expressed in spores (data not shown), 

mycelium and in appressoria. However, the relative intensities of the amplification products for 

actin and the HTFG suggested that the HTFG was expressed at higher levels in appressoria than 

in mycelia (Figure 2-5 A-B). The relative intensities of the actin fragment amplified from 

appressoria (Figure 2-5 C) and mycelia (Figure 2-5 D) were consistent with the relative purity of 

the fungal RNA in each sample. That is, the mycelial sample was prepared from pure fungal 

RNA and the appressorial sample was prepared from infected tissue RNA mixtures of low levels 

of appressorial RNA and abundant plant RNA. In spite of this major difference in fungal RNA 

content, the HTFG was much easier to detect in the appressorial samples than in the mycelial 

samples using the same number of RT-PCR cycles for each. These data suggested that the HTFG 

is up-regulated in developing appressoria, which was consistent with our hypothesis that the 

HTFG is involved in regulation of appressorial melanization. 

 

Hypothetical transcription factor gene (HTFG) replacement  

 

In order to know whether the second HTFG encodes a protein required for the expression 

of the enzymes involved in melanin biosynthesis during appressorium development, a gene 

replacement experiment was done by using protoplast transformation. Transformation of the 

Guy11 (0-391) strain was performed with a vector carrying a selectable marker, the hygromycin 

B resistance gene, flanked by 1.2 kb of the 5’ and 3‘ flanking regions of the target gene coding 

sequence. The target sequence for replacement was within the first exon of the gene covering a 

size of 900 bp length from the start codon (Figure 2-6). Sixty-four independent transformants 

were obtained after a second selection on hygromycin-TB3 agar plates. After 4 to 6 days, 

transformants were transferred onto oatmeal agar plates and grown until sporulation. Single 

spore cultures were isolated from each transformant to ensure that each one was generated from 

a single nucleus. 
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PCR, RT-PCR, and Southern hybridization analyzes were done to determine if the HTF 

coding sequence had been replaced by the hygromycin resistance gene (double homologous 

recombination between the HTFG and the vector carrying the hygromycin B marker-hyg) 

(Figure 2-7). PCR results suggested that 18 out of a total of 64 independent transformants had 

double homologous recombination with the engineering construct. In other words, recombination 

took place since the upstream (5’) and downstream (3’) flanking DNA sequences were identical 

between the target gene and the engineering construct (Figures 2-7 and 2-8 A). The fact the HTF 

primers did not amplify the expected band (957 bp) in samples 6-17, 21, 27-36, and 40-43 

suggested the HTF coding region was not present in those samples and that it could have been 

replaced by the hygromycin resistance gene. To support this assumption, DNAs from the same 

transformants were amplified using the hygromycin primers, resulting in an about 1377 bp band. 

So far, PCR analysis using the hygromycin primers demonstrated that the coding region of the 

HFTG was replaced by hygromycin in samples 6-13, 15-17, 21, 27-31, 36, and 40-43 (Figure 2-8 

B). Even though the other 46 transformants conserved the HTF coding region, all of them 

integrated the hygromycin gene (Figure 2-8 and data not shown). For example, transformants 

loaded in lines 3-5 show both the HTFG and the hygromycin band. However, the hygromycin 

marker was integrated into a different region by non-homologous recombination (ectopic 

recombination); the 5’ and 3’ flanking regions of the engineering construct were not 

complementary to the site where the recombination occurred.  

 

Total RNA from four of the putative gene replacement mutants was isolated and reverse 

transcribed to prove they do not transcribe the HTF mRNA. Previously, the RNA samples were 

amplified by actin primers, to ensure the mRNA was not degraded. In all the samples the actin 

primers (the same ones used for PCR) amplified the expected ~258 bp band (Figure 2-9 A). 

Subsequently, we demonstrated that the HTF mRNA was synthesized only by the wild type and 

the ectopic transformant. In both samples, the primers amplified an approximately 957 bp 

fragment (Figure 2-9 B). 

 

To conclude whether or not the coding sequence of the HTFG had been replaced by the 

hygromycin resistance gene, transformants KV43, KV46, KV50, and KV53 were tested by 

Southern hybridization analyzes. Hybridization with the HTF coding region probe (Figure 2-10 
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A) resulted in a 1.5 Kb band in the wild type Guy11 and in the ectopic transformants. As 

expected, the band was not present in the knock out transformants, which means the coding 

region of the target gene was not present in their genomic DNA. Hybridization of the 

hygromycin probe in the ectopic, KV43, KV46, KV50, and KV53 transformants (Figure 2-10 B) 

resulted in an about 2.4 Kb band which indicated that the coding region of the HTFG was 

replaced by the hygromycin gene. In all the evaluated htf::hyg transformants, there is an about 

2.3 Kb band that corresponded to the hybridization between the HTF probe and an about 400 bp 

fragment still present in the genomic DNA digested with the enzyme PpuMI (Figures 2-6 and 2-

10). The presence of an approximately 8.0 Kb band in all the samples, including the ectopic and 

wild type, suggests that the Guy 11 strain has an additional sequence with homology to the 

HTFG probe (Figure 2.10 A).  

 

With our approach for gene replacement, the possibility to have multiple ectopic 

integrations, ectopic integration at different positions, and/or gene truncation is much higher by 

protoplast mediated transformation than by Agrobacterium tumefaciens mediated transformation 

(ATMT). In Southern hybridization blots, it was apparent, after taking into account the intensity 

and the number of the bands, that in the KV43 and KV46 htf::hyg mutants the hygromycin gene 

was integrated several times. However, these events deleted the HTFG coding sequence from the 

genome. 

 

HTFG mutants showed no evident differences in appressorial melanization 

 

The pig1- mutant Bc1317 produces melanin in appressoria but not in vegetative mycelia, 

suggesting that the second HTFG could regulate the expression of the structural melanin genes. 

To investigate this hypothesis, appressoria from 8 htf::hyg knockout mutants (KV38, KV39, 

KV41, KV42, KV43, KV46, KV50, and KV53), one ectopic transformant and the wild type 

strain were induced on YT16 rice leaf sheaths and on glass cover slides. Samples were evaluated 

at 5, 12, 16, and 24 hpi under a compound microscope. No differences were observed in the 

timing of appressorial melanization; all appressoria were completely melanized after 12, 16, and 

24 hpi (Figure 2-11). 
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HTFG knockout mutation showed wild type levels of pathogenicity 

 

Three independent replicas of a whole plant rice blast assay were done to see whether the 

knockout mutation affected pathogenicity of Guy 11. Each htf::hyg knockout mutant (KV43, 

KV46, KV50, KV53), the ectopic transformant, and the wild type strain were inoculated onto 

separate susceptible YT16 rice plants. Under the evaluated conditions, all the mutants caused 

blast disease, inducing the typical eyespot lesions characterized by tan centers surrounded by 

brown margins (Figure 2-12 A-B and 2-13 A-B). Similar results were observed in the ectopic 

and wild type combinations. Mock inoculated plants showed no symptoms. In each interaction 

and even in the same leaf we observed symptoms that ranged from lesion type 1 to type 5, which 

corresponds to avirulent and virulent interactions, respectively (Valent et al, 1991).  

 

DISCUSSION 

 

The disease cycle in Magnaporthe oryzae absolutely depends on appressorial 

melanization; once these structures are melanized, the penetration peg has the physical power to 

penetrate the host surface layers and enter the epidermal cells to establish the infection. After 

this, the fungus does not need to synthesize melanin anymore. Strains with mutations at any of 

the melanin structural genes develop non-melanized appressoria, so they are not able to penetrate 

host plants. However, if the plant surface is artificially wounded, the mutant fungus produces an 

invasive hypha, colonizes the first invaded cell, and moves into the neighboring ones like a wild 

type strain (Chumley and Valent, 1990; Kankanala et al 2007). These observations are very well 

supported by a microarray analysis showing that three out of five melanin structural genes 

(4THNR, BUF1, and RSY1), as well as our target gene, the HTF, were down regulated at 36 

hours after YT16 leaf sheaths were inoculated with KV1 strain (Mosquera et al, submitted). 

When the fungus had completely colonized the first cell, its 4HNR gene was repressed 28-fold 

compared with mycelium growing in liquid medium, and ALB1 was repressed eight-fold. PIG1 

was expressed at similar levels in both conditions (Appendix A, Table A-3). On the other hand, 

the expression of the HTFG was repressed five-fold in rice cells relative to the fungus growing in 
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liquid culture. The p-values for both transcription factors point out that the variability observed 

in the three biological and four technical replicas was much higher for PIG1 (0.85) than for the 

HTF (1.39E-12) (Mosquera et al, submitted).  

 

PIG1 could be regulating the expression of ALB1, at least to synthesize PKS as the first 

enzyme involved in the DHN-melanin biosynthesis pathway during vegetative growth (Tsuji et 

al, 2000). However, we do not know which gene encodes the transcription factor that regulates 

the expression of the melanin genes during appressorial development. In this study we 

hypothesized that the transcription factor gene locus MGG07218.5, the HTFG, might be 

involved in this metabolic pathway because it encodes a regulatory protein belonging to the 

Zn(II)2Cys6 binuclear cluster domain family. The HTFG is located in the melanin biosynthetic 

gene cluster together with PIG1, the tetrahydroxynaphthalene reductase, and the albino gene. 

The PIG1p has been associated with the regulation of melanin biosynthesis during vegetative 

growth because a pig1- mutant produces albino mycelia and melanized appressoria (Tsuji et al, 

2000). The HTFG appeared highly expressed in appressoria and more repressed than the PIG1 

gene when the fungus invaded the first epidermal plant cell.  

 

To address our hypothesis, we investigated the structure of the HTFG, its expression in 

appressorial samples, and its role in the regulation of melanin synthesis during development of 

appressoria. We demonstrated that the most likely structure for the HTF is a 1353 bp length ORF 

(open reading frame) that lacks introns. The translated nucleotide sequence shows a 451 amino 

acid protein that has a Zn(II)2Cys6 binuclear cluster DNA-binding domain in its N-terminal 

region (SCDGCFLAKVKCSKARPICSSRCLACGIECRY). Interestingly, this result agrees with 

a 1215-bp gene present at 2716 bp downstream from the PKS1 stop codon of the fungus Glarea 

lozoyensis. That gene lacked introns and encoded a putative protein (GenePept accession version 

AAN59954.1) of 405 amino acids with a high degree of similarity with the Zn(II)2Cys6 

binuclear cluster DNA-binding protein, and is 34% identical to our target HTFp (Zhang et al, 

2003). The protein blast alignment also showed that the HTFp is 53% identical to a 

Colletotrichum lagenarium transcription factor (GenePept accession version BAE98094.1). 

Additionally, this transcription factor has recently been shown to function in melanin 

biosynthesis. Mutants in the C. lagenarium gene show decreased appressorial melanization and 
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fail to infect cucumber plants (Yasuyuki Kubo, Kyoto Prefectural University, personal 

communication). Even though these results were observed in a different system, they support our 

original hypothesis that the HTFG may still play some role in melanin biosynthesis. 

 

Questions remain about the structure of the HTF transcript, specifically relating to 

potential alternative splicing of this gene. All of our experiments suggest that the very large 

intron predicted in the original automated annotation of this gene in the genome database is not 

real. If this intron is not removed from the transcript, the stop codon after 1351 nucleotides limits 

the resulting predicted protein to 450 amino acids. Consistent with this, the 3’-RACE PCR 

experiments produced mRNA clones that end with a polyA sequence before the second intron 

predicted in the genome database. However, our RT-PCR experiments with two independent 

strains of the fungus identified transcripts with the second predicted intron spliced out.  To see if 

this second predicted intron was due to a sequencing error in the genome database, we re-

sequenced the HTFG in the sequenced strain 70-15 and we also sequenced the gene in the rice 

pathogen field isolates Guy 11 and O-137.  This gene contained the putative second intron in all 

three genomes, suggesting that this intron was indeed spliced in transcripts obtained in our RT-

PCR experiments. Therefore, these data suggest that some HTFG transcripts contain an intron 

that occurs at 432 bp downstream from an in-frame stop codon. Further studies are needed to 

explain these results and to determine if the HTFG undergoes alternative splicing.  

 

According to RT-PCR results obtained with Guy11 mycelium, spore, and appressorium 

samples, we demonstrated that the HTFG is expressed constitutively. However, relative to the 

expression of the fungal actin gene, the HTF transcript was much easier to detect in appressorial 

samples than in mycelial ones. This was true in spite of the fact that our infected sheath 

appressorial RNAs contained mostly rice RNA. This result suggested that the expression of the 

HFTG was upregulated in developing appressoria, which was consistent with our hypothesis that 

the second HTFG is actively regulating the appressorial expression of ALB1, 4THNR, BUF1 and 

RSY1 structural melanin biosynthesis genes.  

 

In order to determine the role of the HTFG in melanin biosynthesis during appressorial 

development, we did protoplast mediated fungal transformation with a vector carrying the 
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hygromycin resistance gene flanked by fungal genomic sequences surrounding the HTFG coding 

sequence. PCR, RT-PCR and Southern blot analysis indicated that the coding sequence of the 

target gene was replaced by the hygromycin gene through a double homologous recombination 

event. However, the gene replacement did not affect melanin synthesis either in appressoria or 

vegetative mycelia. All the appressoria were melanized under the experimental conditions 

evaluated.  

 

Since no visible differences were observed among the wild type, the ectopic 

transformant, and the htf- mutants, we maintained inoculated leaf sheaths under humid conditions 

to evaluate whether or not the gene replacement had affected other aspects of pathogenicity.  

Results revealed that the ectopic and 2 htf- mutants were able to infect and invade the rice cells in 

the same manner that the wild type was. Based on these results, we did whole plant rice blast 

assays to confirm pathogenicity in these mutants and additional ones.  Even though the blast 

symptoms were not totally reproducible in each replica, the plants developed the typical 

symptoms of the disease, ranging from lesion type 1 to type 5. We did not detect differences in 

lesion numbers in the mutants, as would be expected from a defect in penetration. 

 

Is the HTFG really involved in appressorial melanization? The appressorium phenotypes 

of the ectopic transformant and the htf- mutants indicate that the gene is not involved; however, 

Southern hybridization blots (Figure 2-10) showed a homologous 8.0 Kb band in the wild type 

strain Guy11 and all transformants. These data raise the possibility that there is an extra copy of 

the HTFG that hybridized with the HFT probe. This copy is not present in the genomic database 

sequence of M. oryzae strain 70-15. Nor was this putative second copy detected by the PCR and 

RT-PCR screens for gene replacement transformants (Figures 2-8 and 2-9). This putative second 

copy of the target gene could explain why the htf- mutants produce melanized appressoria. As 

mentioned, biosynthesis of melanin has a critical role in the life cycle of M. oryzae; therefore, it 

makes sense to suggest that the rice blast fungus has the mechanisms that assure its pathogenicity 

(copies of transcription factors involved in melanin biosynthesis). The HTFG may still play some 

role in melanin biosynthesis, but there may be functional redundancy that makes this hard to 

prove. As a result, the homologous sequence seen in our Southern analysis needs further 

investigation. 
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MATERIAL AND METHODS 

 

Gene structure and expression 

 

Fungal strains and growth media 

 

Four strains of Magnaporthe oryzae were used in this study: Guy11 (0-391), O-137, 

KV1, and 70-15. Guy 11 is a hermaphroditic isolate [bears both functional male and female 

fruiting bodies – perithecia (Agrios, 1997)] pathogenic to rice (Oryza sativa) and barley 

(Hordeum vulgare) (Yaegashi, 1988) obtained from rice plants in French Guiana (Valent et al, 

1991). 0-137 is also a field isolate collected from rice plants in China (Sweigard et al, 1995). 

Strain KV1 was obtained by transformation of 0-137 with a constitutively expressed enhanced 

yellow fluorescent protein (eYFP) for easy microscopic visualization in infected rice tissue 

(Kankanala et al, 2007). 70-15 is a laboratory strain that was used for genomic sequencing (Dean 

et al, 2005). All fungal strains were stored in desiccated, frozen filter papers according to Valent 

et al. (1991). Sections from the stored filter papers were removed from frozen storage and the 

fungus was grown on oatmeal agar plates at 24°C under continuous illumination in a Percival 

Scientific incubator Model CU-36L4.  

 

For DNA or RNA isolation from mycelium, an ~6 cm2 section (by 2-3 mm deep) was cut 

from mycelium grown for ~ 2 weeks on an oatmeal agar plate and blended in 50 mL of 3-3-3 

medium (3.0 g of yeast extract, casamino acids, and glucose dissolved in 1000 mL of water). The 

fragmented mycelium was transferred into a 1.0 L flask with 200 mL of the same medium and 

cultured under constant rotation (150 rpm) at 26°C. After 24 hours, the mycelium was filtered 

and blended with 50 mL of 3-3-3 medium. The sample was transferred to a 1.0 L flask with 200 

– 250 ml of the medium and cultured for 5 hours under the conditions described above. Finally, 

the mycelium was harvested by filtration through a Whatman No.1 filter paper and blotted dry 

with paper towels. The mycelium was then frozen in liquid nitrogen and stored at -80°C.  
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Genomic DNA isolation 

 

Mycelium samples were ground in liquid nitrogen, transferred into 1.5 mL eppendorf 

tubes, and suspended in 700 µL of CTAB buffer. Samples were mixed by inverting the tubes and 

incubated at 65°C for 1 hour. Then, 700 µL of chloroform: isoamyl alcohol (24:1 vol/vol) were 

added; the samples were mixed and incubated at room temperature for 1 hour in constant 

movement. Samples were centrifuged at 13,200 rpm for 10 minutes and the upper phases (~0.5 

mL) were transferred into 1.5 mL eppendorf tubes. DNA was precipitated by adding 500 µL of 

isopropanol; each sample was centrifuged for 5 min at 13,200 rpm and the aqueous phase was 

removed. The DNA pellets were washed twice with 50 µL of 70% ethanol and dried at room 

temperature. After 20 min, DNA pellets were re-suspended in 100 µL of an RNase A containing 

buffer (10 mM Tris-Cl pH 8.5). DNA was quantified with a nanoDrop spectrophotometer 

version 3.1.2 (NanoDrop Technologies, Inc. Wilmington, DE. USA) and the working 

concentration was adjusted to 50 ng/µL. 

 

Total RNA isolation 

 

RNA isolation was done following the TRIzol® reagent protocol (Invitrogen™, catalog 

number 15596-018). Fungal samples (mycelia grown in liquid culture, spores from mycelia 

grown on oatmeal agar, and appressoria grown on rice leaf sheaths) were ground in liquid 

nitrogen and the powder transferred into 1.5 mL eppendorf tubes. One mL aliquots of cold trizol 

were added to the samples, which were then incubated at room temperature. After 5 minutes, 200 

µL of chloroform were added; samples were shaken by hand for 15 seconds, incubated at room 

temperature for 3 minutes and centrifuged at 11,000 rpm for 15 minutes at cold temperature 

(~4.0°C). The aqueous phase was transferred into fresh 1.5 mL eppendorf tubes; 250 µL of 

sodium acetate and 250 µL of isopropyl alcohol were added. Samples were mixed by inverting 

the tubes, incubated at room temperature for 10 minutes, and centrifuged at 11,000 rpm for 10 

minutes at ~4.0°C. The supernatants were removed and the RNA pellets were washed twice by 
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adding 1000 µL of 75% ethanol, mixed by hand and centrifuged at 6,500 rpm for 5 minutes at 

~4.0°C. RNA pellets were dried at room temperature for 20 minutes, dissolved with 20 µL of 

DEPC water, and stored at -80ºC. Total RNA was quantified with a nanoDrop spectrophotometer 

(version 3.1.2. NanoDrop Technologies, Inc. Wilmington, DE. USA). 

 

Complementary DNA synthesis 

 

Complementary DNA (cDNA) synthesis was done according to the Invitrogen™ protocol 

(catalog number 11904-018). For RNA/primer mixture preparation, each RNA sample was 

mixed with the dNTP mix and the random hexamers in a total volume of 10 µL. Samples were 

incubated at 65°C for 5 minutes and chilled on ice for at least 1 minute. Nine micro-liters of a 

reaction mix composed of RT buffer, MgCl2, DTT, and RNaseOUT recombinant ribonuclease 

inhibitor were added to each RNA/primer mixture. Samples were mixed, centrifuged, and 

incubated at 25°C for 2 minutes. One micro-liter of the SuperScript™ II reverse transcriptase was 

added to each tube except the negative controls. Samples were incubated at 25°C and after 10 

minutes, they were incubated at 42°C for 50 minutes, chilled on ice, and centrifuged. One micro-

liter of RNase H was added to each sample. Finally, they were incubated at 37°C for 20 minutes 

and stored at -20°C for later amplification. 

 

Polymerase Chain Reaction (PCR) and Reverse Transcription-PCR 

 

PCR primers were designed to amplify specific regions of the HTFG (Appendix A, Table 

A-1). PC / RT-PC reactions were performed in a 25 µL reaction mixture with DNA Taq 

polymerase (Promega) and genomic DNA or cDNA from the fungus. The reaction mixture 

consisted of 0.5 µL of DNA Taq polymerase, 2.0 µL of 10x buffer, 1.5 µL of 25 mM MgCl2, 1.0 

µL of 10 mM dNTP, 0.5 µL of each 10 mM primer, and 2µL of the template in a total volume of 

25 µL. 
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The PCR program consisted of an initial denaturation of 1 min at 94 (95)°C followed by 

35 (25) cycles of 30 seconds of denaturation at 94 (95)°C, 30 (45) seconds of annealing at 55°C, 

and 45 seconds of extension at 72°C, with a final elongation step at 72°C for 1 minute. The 

amplified products were electrophoresed on a 0.8% agarose gel. DNA bands were staining by 

immersing the gel in 150 mL of double distilled water containing 15 µL of ethidium bromide. 

After 20 minutes, the gel was distaining in double distilled water for 10-15 minutes.  DNA bands 

were visualized with a UV transiluminator. 

 

Rapid Amplification of 3’cDNA End (3’- RACE PCR) 

 

The 3’ end of the HTFG was identified according to the manufacturer’s protocol using 

total RNA isolated from mycelium grown in liquid culture (BD SMART™  RACE cDNA 

amplification kit from Clontech Takara BIOCompany - catalogue number 634914). The 3’-

RACE cDNA was synthesized by mixing (in separate 0.5 mL tubes) 1.0 µg of total RNA from 

Guy11 or KV1 mycelium and the oligo dT primer (Appendix A, Table A-1) in a final volume of 

5 µL for each reaction. The samples were mixed, spun briefly and incubated at 70°C for 2 

minutes. After cooling on ice and spinning them, a 5 µL mix containing 5x first-strand buffer, 20 

mM DTT, 10 mM dNTP mix and reverse transcriptase was added to each tube. The samples 

were mixed by pipetting, spun briefly, and incubated at 42°C. After 1.5 hours, the reaction 

products were diluted with Tricine-EDTA buffer, heated at 72°C for 7 minutes and stored at -

20°C. Amplification of the 3’-RACE cDNA was done by preparing a PCR master mix for all of 

the PCR reactions. For each 50 µL of reaction, PCR-grade water, advantage 2 PCR buffer, 

dNTPs, and the advantage 2 polymerase were mixed. The 3’-RACE cDNA, UPM (universal 

primer mix), GSP (gene specific primer- Appendix A, Table A-1) and the master mix were 

mixed in a final volume of 50 µL. The cDNA was amplified using the following program: 

 

5 cycles:     94°C – 30 seconds 

                   72°C – 3 minutes 

5 cycles:     94°C – 30 seconds 

                   70 °C – 30 seconds 
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                   72°C – 3 minutes 

25 cycles:   94°C – 30 seconds 

                   68°C – 30 seconds 

                   72°C – 3 minutes 

 

The amplified products were electrophoresed on a 0.8% agarose gel at 50 volts. DNA 

bands were visualized with a UV transiluminator. 

 

Gene replacement 

Guy 11 strain protoplast preparation 

 

Protoplasts were produced by blending 6.0 to 8.0 cm2 sections of an 18–20 day mycelium 

culture with 50 mL of complete medium. The macerated mycelium was transferred to a 1.0 L 

flask with 250 mL of complete medium and cultured for 48 hours at 26°C and 100 rpm. One 

more blender maceration was done after 24 hours of growth. The resulting mycelium was 

filtered, washed with 5-10 mL of a Na3C6H5O7-2H20/EGTA/NaCl (7M NaCl) buffer, and 

weighed. For digestion, 1 mL of Novozym 234 solution was added per 1.0 g of mycelia. The 

digestion mixture was incubated for 2.5 hours at 100 rpm and 30°C. Protoplasts were filtered 

through cheesecloth, washed with Na3C6H5O7-2H20/EGTA/NaCl (7M NaCl) buffer, and filtered 

again through nitex (Sefar Nitex Inc., catalog number 3A03-0025-102-14. NY, United States. 

The protoplast suspension was centrifuged at 2173 RCF (4500 rpm) for 8 minutes at 24°C. The 

protoplasts were washed with STC [20% (w/v) sucrose, 50mM Tris-HCl Ph8.0, 50 mM CaCl2] 

and centrifuged twice under the conditions mentioned above. The pellet was resuspended in STC 

and the largest protoplasts were counted using a hemacytometer. Aliquots of 6.4x105 

protoplast/mL were frozen by placing them directly in a -80°C freezer. 

 

Knockout vector construction by fusion PCR 
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The fusion PCR method involves the selection of primers that amplify each of the 5’ and 

3’ flanking regions of the target gene (HTF) as well as the hygromycin selection marker 

fragment. 

In the first PCR round, the 5’, 3’ flanking regions and the hygromycin cassette from the 

pCNS43 plasmid were amplified by using three set of primers (Appendix A, Table A-1). First 

fusion PCR products (5’ flanking-1.2 Kb, HYG-1.4 Kb, and 3’flanking-1.2 Kb) were 

electrophoresed on a 1% agarose gel at 100 volts, purified by following the QIAGEN PCR 

purification protocol, and used as templates for the second PCR. In this PCR round, the three 

products from the first PCR were mixed in a 1:1:2 (5’flanking:3’flanking:HYG) ratio, ligated 

and partially amplified by using  a PCR parameter of 94°C for 2 minutes followed by 10 cycles 

of 94°C for 30 seconds, 56°C for 20 minutes, and 72°C for 5 minutes. The PCR was finished 

with a single cycle of 10 minutes at 72°C. 

 

Finally, the knockout fragment was obtained by a third fusion PCR round. The second 

PCR product was amplified using nested primers located near the edge of the flanking fragments 

[Nested 5’F (Appendix A, Table A-1) and Nested 3’R (Appendix A, Table A-1)] in a PCR 

program of 1 cycle of 2 minutes at 94°C; 30 cycles of 94°C for 30 seconds, 65°C for 1 minute, 

and 72°C for 3 minutes, and 1 cycle of 10 minutes at 72°C. Because the expected band (3.8 Kb) 

was obtained along with other non-specific ones, the PCR fragments were separated by 

electrophoresis on a 10 cm long 0.8% agarose gel run at 35 volts for 5.5 hours. The expected 

DNA fragment was purified from the gel following the QIAGEN gel extraction protocol. The 

knockout DNA fragment was stored at -20°C to be used in the protoplast transformation. 

 

Chemical protoplast transformation 

 

One protoplast suspension tube was placed on ice until the cells thawed. A 200 µL 

aliquot was placed into a 1.5 mL micro-centrifuge tube and mixed with 2.5 µg of the fusion PCR 

DNA fragment. The tube was incubated at room temperature for 15 minutes and then 1 mL of 

PTC solution (40% Polyethylene glycol 8000 in STC) was added. After 20 minutes of incubation 

at room temperature, the protoplast-DNA mixture was transferred into a 15 mL falcon tube, 
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mixed with 5.0 mL of TB3 liquid medium, and incubated at 26°C and 100 rpm for 19 hours. The 

tube was centrifuged at 4100 rpm for 10 minutes and the supernatant discarded. The protoplast 

pellet was resuspended in 100 µL of STC and mixed well. Protoplasts were poured onto TB3 

agar plates containing 100 µg hygromycin/mL and incubated at 24°C for 5-7 days. After a 

second selection in TB3-Hyg agar plates, the transformants were transferred onto oatmeal agar 

plates for sporulation. Single conidium cultures from each transformant were isolated to ensure 

that each new strain had originated from a single nucleus. 

 

Transformant confirmation 

PCR and RT-PCR Experiments 

See protocol above. 

Southern blot hybridization 

 

Genomic DNAs from Guy11 wild type, one ectopic transformant, and 4 htf::hyg 

transformants (KV43, KV46, KV50, and KV53) were digested with the restriction enzyme 

PpuMI (Figure 2-6) overnight at 37°C. Digested DNA was electrophoresed in 0.8% agarose gels 

at 35 volts in 0.5x TAE buffer. Nucleic acids were transferred into a positively charged nylon 

membrane according to the manufacturer recommendations (Hybond™-N+; Amersham 

Biosciences Corp, USA). Following electrophoresis, DNA samples were observed on a UV 

transiluminator and photographed.  

 

HTF and hygromycin labeled probes were prepared according to the GE Healthcare 

Amershan AlkPhos protocol. Previously, Guy11 mycelial DNA and the hygromycin cassette 

from the plasmid pCNS43 were amplified with the HTF specific primers and the hygromycin 

primers, respectively (Appendix A, Table A-1). PCR products were electrophoresed in a 0.8% 

agarose gel at 50 volts, purified, and quantified with a nanoDrop spectrophotometer. Ten nano-

grams of the HTF and hygromycin DNA were denatured by heating for 5 minutes in a vigorously 

boiling water bath. Samples were cooled on ice for 5 minutes and centrifuged briefly. The 

reaction buffer, the labeling reagent, and a cross-linker working solution were added to the 
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cooled DNA samples, which were then incubated for 30 minutes at 37°C and maintained on ice 

while the hybridization conditions were set up. The HTF and hygromycin blots were pre-

hybridized in a hybridization oven at 58°C for 15 minutes. To avoid placing the probe directly on 

the blot, the hybridization buffer was mixed with the corresponding probe. Later, the buffer-

probe mix was added to the blot. Hybridization was carried out at 60°C for 14.5 hours. 

 

Gene function 

 

Rice plant variety 

 

The rice cultivar used in this study (YT16) is a double haploid line derived from a cross 

between Yashiro-mochi and Tsuyuake (Jia et al, 2000). The cultivar is susceptible to strains 0-

137 and Guy 11 (Berruyer et al, 2006). Five YT16 seeds per pot were sown in Sungro Metromix 

200 potting soil and incubated in a Conviron BDW120 growth chamber programmed to water 

the plants with a 0.14% (wt/vol) solution of Jack’s fertilizer 20-10-20. Plants were grown at 80% 

relative humidity under a daily cycle of 12 hours light (Appendix A, Table A-2). 

 

Appressorium induction (leaf sheath and cover slide assays) 

 

Appressoria from Guy11 strain, 1 ectopic transformant, and 8 htf::hyg knockout mutants 

(KV38, KV39, KV41, KV42, KV43, KV46, KV50, and KV53) were induced on 28 - 30 day old 

YT16 leaf sheaths and on glass cover slides (Fisher Finest-Premium cover glass 22 x 22-1, 

Fisher Scientific). 

 

For appressorium induction on leaf sheaths, each strain was inoculated by injection onto 

separated leaf sheath segments (three replications of each strain were done). Leaf sheaths were 

removed from the plants and cut into about 5.0 cm segments; four to five segments were placed 

horizontally into plastic Petri dishes with wet filter paper and inoculated with ~ 5.0 mL of a 
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1x105 spore/mL suspension prepared in 0.25% gelatin. Petri dishes were maintained under 

laboratory conditions. At 5, 12, 16 and 24 hours after inoculation, leaf sheaths were dissected to 

obtain the adaxial epidermis with 3 or 4 underlying mesophyll cell layers. Appressorium growth 

and melanization were observed with a Carl Zeiss Axioplan 2 microscope. Images were acquired 

using an Axiocam HRc camera. Dissected samples at the evaluated point times were frozen in 

liquid nitrogen and stored at -80°C for RNA isolation. 

 

For appressorium induction on artificial surfaces, three glass cover slides were placed on 

one precleaned microscope slide and inoculated with a 40 µL drop of a 1x105 spore/mL 

suspension in double distilled water. For each strain three microscope slides were placed into a 

sterile 150 x 15mm plate. Paper towels moistened with sterile water were placed into each plate 

to maintain high humidity. The fungal samples were grown under laboratory conditions and 

evaluated at the same time that inoculated leaf sheaths were done. The experiment was repeated 

three times for each strain. 

 

Rice blast assay 

 

Each htf::hyg knockout mutant (KV43, KV46, KV50, and KV53), one ectopic 

transformant and the wild type strain was inoculated onto separate three week-old YT16 plants. 

One rice pot was placed inside a plastic bag and the youngest, most susceptible leaf (about half 

emerged) of each plant was marked with a permanent marker. Four 1.0 mL disposable plastic 

pipettes were driven into the soil in each pot in order to hold the bag off of the plants. Plants 

were placed in a particle containment hood (Microvoid model 5300 tabletop laminar flow 

workstation from Air Control, Inc. NC, Unated States.) and inoculated with 5.0 mL of a 1x105 

spore suspension in sterile 0.25% gelatin solution by using an artist’s air brush (Paasche H No. 1) 

connected to compressed air at 20 psi. As a control, one rice pot was also sprayed with 5 mL of a 

sterile 0.25% gelatin solution.  

 

After inoculation, the bags were sealed in order to maintain the humidity required for 

spore germination and penetration. The plants were kept in low light laboratory conditions for 24 
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hours and then removed from the bags and returned to the growth chamber. Finally, the marked 

youngest leaves were scored 7 days after inoculation according to a scale of 5 lesion types 

established by Valent et al (1991). The experiment was repeated three times for mutants KV43 

and KV53, and 4 times for mutants KV46 and KV50. 

 

 

 

 

 

 

 

Figure 2-1. Feature map (Broad genome database) of the hypothetical transcription factor 
gene locus MGGO7218.5. 
The gene MGGO7218.5 (upper blue arrow) is located in supercontig 195 together with three of 
the five melanin structural genes. According to the automated annotation, this gene has three 
exons (*) separated by two introns (�). Orange arrows represent ESTs obtained from the M. 
oryzae strain 70-15. The presence of a Zn(II)2Cys6 binding domain is indicated by the pink 
arrow. The light blue arrow represents genes and structures predicted using the FGENESH 
program. Recently, the gene annotation program GENEID predicted that the gene ends without 
the introns (gray arrow). 

* * *�
�* * *�
�
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Figure 2-2. Alignment of the strain 70-15 HTF genomic sequence (from the BROAD 
genome database) with its homologue in strains O-137 and Guy11, and with the sequence 
we determined experimentally from strain 70-15 (E70-15).  
The HTF genomic sequences were aligned against the automatically annotated sequence of 70-
15 (AA70-15) using the default parameters of ClustalW (starting from the last 123 bp of the first 
predicted exon). Exons and introns are shaded green and yellow, respectively. The AA70-15 
sequence is 100, 99, and 99% similar to the O-137, experimental 70-15, and Guy11 FHT 
sequences respectively. The differences observed among the sequences are explained by a 
variable amount of thymine in 3 thymine nucleotide repeated regions (indicated by red arrows). 
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Figure 2-3. Alignment of the HTFG with reverse transcribed sequences of Guy11 and KV1.  
(A) The HTF genomic sequence of the 70-15 strain was aligned against reverse transcribed DNA 
sequences of Guy11 (top line) and KV1 (bottom line) strains. Predicted exons and introns are 
shaded green and yellow, respectively. The predicted first intron is not spliced out, since 
identical nucleotides (*) are present in the cDNA clones. We confirmed the presence of a stop 
codon (underlined), suggesting that the HTFG lacks introns. (B) The 70-15 genomic annotated 
sequence (top line) aligned against a Guy11 cDNA (bottom line). Both sequences are 100% 
similar and Guy11 cDNA indicates another 75-bp exon. 
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Figure 2-4. ClustalW alignment of the strain 70-15 genomic HTF sequence with its 
homologous cDNA sequence obtained from a 3’-RACE PCR from strain Guy11.  
Exons and introns are shaded green and yellow, respectively. Identical nucleotides are showed 
by asterisks. Identical nucleotides are shared in the first predicted intron. These results support 
our previous data indicating the first predicted intron is not spliced out, and that the HTF is a 
gene that lacks introns.  
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Figure 2-5. RT-PCR results from the HTFG expression in appressorial and mycelial 
samples of Guy11.  
The same amounts of appressorium (A) and mycelium (B) RNAs were reverse transcribed in the 
same experiment under identical conditions; therefore, the band intensities indicate that the 
expression level of the gene is higher in appressoria. Wells 1, 2, 3, 4, and 5 (between the 
standards) were loaded with appressoria induced at 4, 5, 8, 8, and 10 hours post inoculation, 
respectively. Actin was amplified in appressoria (C) and in mycelia (D) samples. Mycelial RNA 
was obtained from mycelia grown in liquid culture for 24-29 hours. Actin primers amplified 
weak bands in appressoria induced at 8 and 10 hpi (C), while all the mycelia samples (D) 
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transcribed the actin gene. Wells 6, 7, 8, 9, and 10 in the 4 panels represent the negative controls 
of samples 1, 2, 3, 4, and 5, respectively. For these, complementary DNA in these samples was 
synthesized without adding the reverse transcriptase, so the absence of bands in these wells 
indicated that those bands in panels A to D were amplified only from cDNA. 
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Figure 2-6. Graphic representation of the Magnaporthe oryzae MGG_07218.5 locus based 
on the automated gene sequence.  
Green and white boxes represent exons and introns, respectively. Numbers indicate the genomic 
position of the PpuMI restriction sites relative to the translation start codon (A of ATG as +1). 
Yellow arrows indicate the position of the primers used to amplify the HTF probe. 
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Figure 2-7. Homologous recombination for replacing the HTFG.  
(A) The coding sequence is represented by the dark blue box flanked by the 5’ and 3’ flanking 
DNA sequences. (B) represents the engineered construct used to replace the HTFG. The 
selectable marker, violet box, is flanked by DNA sequences identical to those ones flanking the 
HTFG. Guy11 protoplasts, transformed with the engineered construct, grew on oat meal agar; 
during cellular division the engineered construct and the HTFG recombined at the regions that 
have identical sequences (Homologous recombination-arrows). The final result is a new 
fragment of DNA (hygromycin) inserted in place of the target gene (D). The original engineering 
construct took the coding sequence of the HTFG (E); however it is not able to replicate, so it is 
lost in dividing Guy11 cells. 
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Figure 2-8. PCR screening of the htf::hyg mutants. 
(A) The HTF primers did not amplify the target gene in samples loaded in lines 6-17, 21, 27-36, 
and 40-43; so this should indicate the target gene was replaced by the hygromycin resistance 
gene. A second PCR analysis using hygromycin specific primers (B) demonstrated that the 
hygromycin gene replaced the HTF coding region in samples 6-13, 15-17, 21, 27-31, 36, and 40-
43. Lines 1 and 24 in panel A correspond to wild type DNA. Lines 1-2 and 24-25 in panel B 
correspond to positive (pCNS43 plasmid with hygromycin cassette) and negative (wild type) 
control DNA samples, respectively. 
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Figure 2-9. RT-PCR screening of htf::hyg mutants. 

Total RNA from Guy11 wild type, one ectopic transformant as well as the KV46 and KV50 
mutants was reverse transcribed to prove they do not synthesize the HTFG mRNA. These 
samples were amplified with actin primers (panel A) in order to verify that RNA was not 
degraded. As expected, the actin primers amplified an approximately 258 bp band in all the 
samples, except in the negative control ones. Samples in panel B show an approximately 1.0 Kb 
band amplified by the HTF primers in the Guy11 and ectopic samples. The ectopic transformant 
transcribed the target gene because it is still in the chromosome. However, because KV46 and 
KV50 had lost the HTFG, there was not a template to be amplified by the corresponding primers. 
The presence of a band in the wild type sample well (negative control) indicate that this RNA 
had some genomic DNA contamination. 
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Figure 2-10. Southern hybridization analysis.  
Genomic DNA from the wild type strain (lane 1), ectopic (lane 2), KV43 (lane 3), KV46 (lane 
4), KV50 (lane 5), and KV53 (lane 6) was isolated and digested with PpuMI. Digested DNAs 
were electrophoresed on 0.8% agarose gels and transferred onto a nylon membrane.  The blot 
membrane in panel A was probed with a 0.9 Kb genomic fragment of the HTF coding region. A 
duplicate blot membrane in panel B was probed with a 1.4 Kb fragment containing the 
hygromycin resistance gene. 
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Figure 2-11. Induction of appressoria on artificial surfaces 
To determine whether the HTFG regulates the expression of the melanin synthesis genes, 
appressoria from 8 knockout mutants as well as the wild type and the ectopic strains were 
induced on glass cover slides and on rice cultivar YT16 leaf sheaths (data not shown). 
Appressorial melanization started between 5 and 7 hai; however, appressoria were completely 
melanized after 12 hai. CP-280 is a 4091-5-8 alb1 mutant that produces non-melanized 
appressoria. 
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Figure 2-12 A-B. Rice blast infection assay.  
Inoculation was done using a 1x105 spore/mL suspension. HTFG replacement does not reduce 
pathogenicity on YT16 plants. Induced lesions are the typical ones that have been documented in 
the Magnaporthe oryzae–Oryza sativa interaction. Panels A and B show YT16 plants inoculated 
with KV46, KV50, Guy11 strain and an ectopic transformant in two independent assays. 
 

 

 

 

 

 

 

 

 

 

KV50KV46EctopicGuy11
Mock 

inoculated

B

Guy11 KV46 KV50 Ectopic
Mock

inoculated

A

KV50KV46EctopicGuy11
Mock 

inoculated

B

Guy11 KV46 KV50 Ectopic
Mock

inoculated

A

KV50KV46EctopicGuy11
Mock 

inoculated

B

Guy11 KV46 KV50 Ectopic
Mock

inoculated

A



 57 

 

 

 

 

Figure 2-13.  Rice blast infection assay.  
Inoculation was done by using a 1x105 spore/mL suspension. Panels A and B show YT16 plants 
inoculated with KV43, KV53, Guy11 and ectopic strains in two independent assays. Induced 
lesions are the typical ones that have been documented in the M. grisea-Oryza sativa interaction. 
The htf::hyg knockout mutants are pathogenic to rice and neither showed any detectable 
differences between them and the wild type or ectopic strains. 
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CHAPTER 3 - Magnaporthe oryzae strain 4091-5-8 and the 

Oryza sativa cultivar Yashiro-mochi: a non-host system? 

 

ABSTRACT 

 

Even though non-host resistance is highly effective and durable, and should be exploited 

to improve rice breeding programs, its molecular bases are not completely understood. The first 

data to understand pathogenicity of Magnaporthe spp. and the mechanisms of race-specific 

resistance were generated by detailed cytological analyses. However, these studies involved 

fungal development on artificial surfaces and plant cellular responses from fixed or clarified 

infected tissue, which are not the best experimental conditions to investigate fungal growth and 

the physiological reactions of host cells. Currently, the objective is to utilize conditions allowing 

in planta artificial infections of living tissues under conditions similar to those occurring under 

natural environments. 

 

We proposed to study the relationship between fungal penetration and cytological 

responses of living leaf sheath epidermal cells by comparing responses in a susceptible, a 

resistant, and a non-host interaction. All three interactions were compared in excised and in 

intact sheath tissue. We report here that the cytological basis for the non-host interaction differs 

from those mediated by the Pi-ta resistance gene. Results from the excised method suggested 

that the occurrence of aggregations around the appressoria (AA), not reported previously, 

correlated with the expression of non-host resistance. However, data from intact leaf sheaths 

indicated that mixed reactions, including some occurrences of AA, account for the non-host 

resistance. Further studies are needed to understand and define the cytological responses 

associated with non-host interactions in rice-Magnaporthe interactions.  
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We also showed that excision of leaf sheath segments from the intact plant alters the 

cytological responses of the host to pathogen invasion, especially in the resistant and non-host 

interactions. These results have major implications for future studies using live cell imaging of 

sheath tissue to investigate race-specific and non-host resistance mechanisms. 

 

INTRODUCTION 

 

All plant species, including those with agricultural value, establish symbiotic associations 

with microbes; these associations have coevolved in a diverse and complicated exchange of 

signals and responses that can result in a “friendly” acceptance of the microbe (mutualism – 

mycorrhizal relationship); in slow recognition and moderately effective defenses against the 

microbe (compatible association); or in strong and rapid defense responses that block further 

infection (incompatible association) (Bent, 1996). Interestingly, a compatible association 

(disease) is the exception rather than the rule since plants are exposed to a diverse group of 

potential pathogens, but only a few of them will cause disease (Huitema, 2003).  

 

Mechanisms of plant defense  

The first line of defense against a pathogen is the plant surface, which must be penetrated 

by the pathogen to cause the infection. However, plants have preformed physical (amount and 

quality of wax and cuticle that cover the epidermal cells; the structure of epidermal cell walls; 

the size, location, and shape of stomata and lenticels; and the presence of tissue with thick-

walled cells), and/or chemical barriers (fungi-toxic exudates; antifungal compounds such as 

phenolic, tannins or some fatty acid-like compounds) that block successful infection to 

specialized pathogens (Agrios, 1997; Dangl and Jones, 2001; Nürnberger et al, 2004).  

 

In addition to this preformed or passive defense mechanism, plants also have 

sophisticated induced responses that restrict pathogen invasion (Hammond-Kosack and Jones, 

1996). Unlike mammals, plants do not have mobile defender cells or a somatic adaptive immune 

system; instead, their immune system depends on the innate immunity of each cell and on 

systemic signals coming from the infection sites. Plant immunity occurs through transmembrane 
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pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns 

(PAMPs), or protein products encoded by resistance genes (Jones and Dangl, 2006). 

 

PAMPS (Pathogen-associated molecular patterns) 

The pathogen-associated molecular patterns are elicitors of diverse chemical composition 

and from different plant pathogenic microbes (exogenous elicitors) (Nürnberger et al, 2004). The 

first exogenous elicitors characterized were oligosaccharides, but there are also glycoproteins, 

lipids, and many polypeptides of viral, bacterial or fungal origin that are able to trigger initiation 

of plant defense responses against pathogens. A well known example is flg22, a highly 

conserved N-terminal fragment of flagellin and the main building block of eubacterial flagellae, 

which triggers defense-associated reactions in plants as diverse as Arabidopsis and tomato. The 

ability to recognize PAMPs varies considerably between monocotyledonous and dicotyledonous 

plants; for instance, rice cells appear to possess the capacity to recognize bacterial flagellins, but 

the structural properties of the defense-eliciting “epitope” is presumably different from flg22 

(Jones and Dangl, 2006). In another example, a partial enzymatic hydrolysis from the cell walls 

of Magnaporthe oryzae triggered phytoalexin biosynthesis in suspension-cultures of rice cells, 

but not in soybean cotyledon cells, suggesting differences in the recognition of gluco-

oligosaccharide elicitor signals in these plants (Yamaguchi, 2000). Products released during 

plant cell wall degradation by microbe-associated hydrolytic enzymes are also recognized by 

PRRs and trigger defense responses (endogenous elicitors) (Nürnberger et al, 2004). 

Race or cultivar-specific resistance 

In genetic terms, plant cultivar-specific disease resistance is determined by specific 

interactions between pathogen avirulence (AVR) gene loci and alleles of the corresponding plant 

disease resistance (R) locus (Bent, 1996; Hammond-Kosack, 1996; Nürnberger et al, 2004). 

According to the gene-for-gene hypothesis proposed by Flor (1971), when the corresponding 

dominant plant R gene and the dominant AVR gene are present in both host and pathogen, the 

resulting interaction will be incompatible, in other words, the plants will be resistant to the 

pathogen. The biochemical model that accounts for this genetic interaction establishes that the R 

products (receptors) recognize AVR-dependent signals (elicitors) and trigger a chain of signal-



 61 

transduction events that result in the activation of defense mechanisms that block pathogen 

growth (Bent, 1996; Dangl and Jones, 2006; Laugé et al, 2000). 

 

It has been considered that a typical response of most gene-for-gene interactions is the 

activation of a hypersensitive response (HR) that includes apoptotic cell death within a few hours 

of pathogen contact. Other features of specific resistance include the production of reactive 

oxygen species (ROS), cell wall fortification (papilla formation and cell wall thickness), 

accumulation of benzoic acid (BA) and salicylic acid (SA), defense-related proteins (PR 

proteins) and phytoalexins (low molecular weight anti-microbial compounds), among others 

(Agrios, 1997; Bent, 1996; Hammond-Kosack and Jones, 1996). 

 

There are some incompatible plant-microbe interactions whose resistance, conferred by 

the classic gene-for-gene relationship, has been well characterized at the cytological and 

molecular levels (Hammond-Kosack and Jones, 1996). One example is the interaction between 

the fungus Cladosporium fulvum, the causal agent of leaf mold, and tomato plants. The genes 

isolated from the plant include the Cf-2, Cf-4, Cf-5, and Cf- 9 resistance genes (membrane 

proteins with extracellular leucine-rich repeats-LRRs), which confer resistance to the races 2, 4, 

5, and 9 carrying the avirulence genes Avr2, Avr4, Avr5, and Avr9, respectively. Cladosporium 

fulvum grows and secretes the AVR proteins in the apoplast of the host leaves and, since the 

resistance proteins are assembled within the plant plasma membrane, the AVR-R interaction 

occurs in the apoplast. Consequently fungal growth is blocked either within the substomatal 

cavity or in the mesophyll tissue (Agrios, 1997; Hammond-Kosack and Jones, 1996). The 

activation of defense responses has been studied under artificial conditions by working with 

intact leaf and cotyledon tissues and with cell suspension cultures. In an in vivo cotyledon assay, 

Cf-2 and Cf-9 tomato seedlings were infiltrated with AVR2 and AVR9 gene products, 

respectively. After 2, 4, and 6 hours, both plant-pathogen interactions activated very similar host 

responses, including cell death. On the other hand, Cf-5 expressing cell cultures treated with 

AVR5 protein activated a much faster defense response (10 minutes) relative to the Cf-2/AVR2 

and Cf-9/AVR9 interactions, and cell death was not induced (Hammond-Kosack and Jones, 

1996).  In general, it is noticed that many of the tomato defense responses are similar, but the 

time of the expression is different. A successful R-Avr gene-mediated resistance response 
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involves a rapid pathogen perception resulting in the coordinate induction of a diverse array of 

defense mechanisms within the initially infected cell as well as in the surrounding cells.  

 

Plant nuclear migration has been observed in susceptible (Heath et al, 1997; Pappelis et 

al, 1974), gene-for-gene resistance (Heath et al, 1997), non-host systems (See below) (Huitema 

et al, 2003), and in plant cellular activity such as the formation of infection threads during root 

nodule development (Heath et al, 1997). Earlier studies have reported that one of the first signs 

of cell death in cowpea epidermal cells infected with the rust fungus is a modification in the 

appearance of the plant nucleus. Heath et al (1997) observed that in resistant and susceptible 

cowpea epidermal cells, the plant nucleus migrated to penetration sites during plant wall 

penetration. Later, the nucleus migrated away from successful infection sites when the fungal 

penetration peg established contact with the host plant plasma membrane. However, in the 

susceptible cowpea cells the nucleus migrated back to the fungus when it started hyphal tip 

growth. It was hypothesized that the return of the plant nucleus to its normal position after the 

fungus established contact with the plant plasma membrane raises the possibility that the fungus 

blocks penetration-related signals that would trigger a variety of plant defense responses, 

including callose deposition.  

 

Non-host resistance 

Non-host resistance, also named species-specific resistance, is a type of interaction in 

which the entire plant species is resistant to all strains of a pathogen that is able to infect other 

plants (Heath, 2001; Thordal-Christensen, 2003). This plant-microbe interaction system, where 

the plant is a non-host plant and the microbe is a non-host pathogen, is the most common and 

durable form of plant resistance to disease; however it is still not well understood (Mellersh and 

Heath, 2003; Neu et al, 2003; van Wees and Glazebrook, 2003).  

 

Non-host resistance is believed to occur through diverse mechanisms. Holub and Cooper 

(2004), classified non-host resistance mechanisms into two groups: non-specific defenses and 

inaccessible defenses. The non-specific defense mechanism is constitutive or passive and applies 

when the pathogen lacks the necessary pathogenicity factors. The second type of non-host 
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resistance applies when the pathogen cannot overcome either preformed antimicrobial 

compounds or active defenses (Zellerhoff et al, 2006). Mysore and Ryu (2004), proposed a Type 

I non-host resistance, which does not result in a visible cell death, and a Type II, which renders a 

hypersensitive response characterized by cell death at the penetration site (Oh et al, 2006). 

There are data suggesting non-host resistance includes constitutive physical and/or 

chemical plant barriers that block fungal growth; however, these barriers rarely can completely 

account for the lack of successful pathogen infection. Inducible defense responses are also 

involved; these responses are probably elicited nonspecifically similar to recognition of PAMPs. 

Current models suggest that a complex integration between specific resistance, based on gene-

for-gene interactions, and nonspecific defense responses can contribute to non-host resistance. 

Heath et al (2002), showed that nonspecific wall-associated defense responses were associated 

with the failure of Uromyces vignae to penetrate into cowpea plants. Other studies suggest that 

single pathogen proteins can induce defenses in a gene-for-gene manner. Genetic analyses of the 

powdery mildew-wheat interaction have led to the identification of major genes conditioning the 

resistance of wheat to the Erysiphe graminis f. sp. agropyri (causes powdery mildew on 

Agropyron spp.) pathogen based on the gene-for-gene interaction (Neu et al, 2003). Therefore, 

lack of disease in a non-host system could be explained by a non-host plant having several 

resistance proteins that match the proteins encoded by avirulence genes in the non-host pathogen 

and/or by a basic lack of pathogen compatibility due to the absence of appropriate signals from 

the plant.  The importance of one or the other resistance mechanisms in a non-host interaction 

may differ from one pathosystem to the next and will probably depend on the history of 

coevolution of the particular plant and pathogen (Ayliffe and Lagudah, 2004; Heath, 2001; 

Huitema et al, 2003; Mellersh and Heath,  2003; Neu et al, 2003). 

 

Even though the advances in molecular biology and biochemistry have provided several 

tools to investigate non-host resistance, its molecular mechanisms and signal components are 

poorly understood. Some studies compared host and non-host resistance in order to know 

whether or not defense-related genes are expressed only in non-host interactions. A microarray 

experiment was used to compare a host pathogen (Pseudomonas syringae pv. tomato-AvrRpt2 - 

Pst) and a non-host pathogen (P. syringae pv. phaseolicola NPS3121 - Psp) in Arabidopsis 

carrying the resistance gene RPS2 (Tao et al, 2003). Interestingly, the microarray data did not 
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indicate a significant difference between the genes expressed during host and non-host 

resistance. The transcription profile of Psp-infected plants at 6 hours was similar to those of Pst-

infected plants at 3 and 6 hours; however, gene expression was delayed following infection by 

the non-host pathogen relative to the host resistance response (Tao et al, 2003). In contrast, Oh et 

al (2006) reported that defense-related gene expression in tobacco plants (Nicotiana tabacum) 

inoculated with the Tobacco mosaic virus-TMV (R-Avr gene interaction) was delayed compared 

to tobacco plants challenged with the non-host bacterial pathogens P. syringae pv. syringae 61 

(Pss61), P. syringae pv. phaseolicola NPS3121 (PspNP3121), and Xanthomonas axonopodis pv. 

glycines 8ra (Xag8ra). Expression of most defense-related genes induced during R-gene mediated 

resistance was activated at 48 hai with TMV; the same genes were upregulated as early as 9 hai 

with Pss61, PspNP3121, and Xag8ra. In this study, Oh and co-workers also characterized Type I 

(no visible cell death) and Type II ( hypersensitive response) non-host resistances by determining 

expression profiles of previously reported pathogenesis-related protein genes (PR protein-1a, 

acidic β-1,3-glucanase, acidic chitinase, PR protein-4b or hevein like protein, Osmotin-like 

protein and SAR8.2) and nonhost-related or cell death-related genes [N. glutinosa-cell death 

marker1 (Ng-CDM1), N. tabacum-harpin induced 1 (Nt-hin1), and N. tabacum-hypersensitive 

response related 203J (Nt-hsr203J)]. According to an earlier hypothesis, incompatible pathogens 

must induce a hypersensitive response (HR) in a non-host plant; however, it has been shown that 

some non-pathogenic bacteria fail to induce such a response in a non-host plant. Inoculation of 

tobacco with PspNPS3121 and Pss61 induced strong HR at 24 hai; in contrast, Xag8ra induced 

no visible response at all. Both PspNPS3121 and Pss61, as well as Xag8ra induced the 

expression of defense related genes. There was a high degree of similarity in expression of PR 

protein-1a and acidic chitinase between tissues inoculated with PspNPS3121 and Xag8ra, 

suggesting that the plants inoculated with Xag8ra are responding to the pathogens without 

producing HR. It was proposed that Type I non-host resistance is an evolutionarily older defense 

mechanism than Type II non-host resistance, or gene-for-gene resistance.  

 

Plants expressing the Type II non-host resistance (hypersensitive response) require a 

more coordinated group of proteins for recognition of specific bacterial effectors; once the 

pathogen has been recognized, the plant initiates several downstream signaling pathways that 

result in a HR phenotype. The expression of Nt-hsr203J and Nt-hin1 might be considered as 
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indicators for differentiating between host and non-host resistance. These genes were highly 

induced from 48 to 72 hai with TMV. In contrast, inoculation with Pss61, PspNPS3121, or 

Xag8ra induced their expression at 3 to 6 hai. On the other hand, Nt-hsr203J expression was 

reduced by 12 hai in Pss61 and Kag8ra-inoculated plants, but remained at high levels with 

PspNPS3121 (24-48 hai). The expression pattern of Ng-CDM1 was originally identified as an 

important indicator of HR-induced cell death, because only the Type II non-host resistance 

pathogens (Pss61 and PspNPS3121) induced its expression.  

 

So far, we presented two non-host interaction examples where bacteria are the 

microorganisms involved; obviously, if we do an extensive literature review we will find several 

other examples. What about fungi? How much do we know about non-host interactions with 

these microorganisms, specifically with biotrophic ones? Since biotrophic fungal pathogens keep 

plant cells alive and minimize tissue damage in susceptible hosts (compatible interaction), they 

are considered good microbes for studying non-host resistance (Mellersh and Heath, 2003). Non-

host resistance to biotrophic fungal pathogens that penetrate the host cells directly is expressed as 

a penetration failure (Mellersh et al, 2002). The uredial stage of many rust fungi is established by 

penetrating the epidermal tissue through stomata; therefore, it has been suggested that 

compatibility with the host species requires the ability to avoid prehaustorial defenses within the 

substomatal cavity, breach the mesophyll cell walls to form the first haustorium, and establish a 

biotrophic relationship with the living plant cells to obtain nutrition and maintain growth (Heath, 

1981 in Mellersh et al, 2002). Certainly, studies comparing host and non-host resistance to rust 

fungi showed that non-host resistance is expressed before the formation of the first haustorium. 

This resistance may involve a poor ability to locate and recognize stomata; but if the fungus 

reached the substomatal cavity, its growth is invariably restricted. In this case, fungal growth 

may be inhibited before the formation of a haustorial mother cell, or the haustorial mother cell 

may fail to penetrate the host cell. As in a gene-for-gene interaction, the common response of a 

non-host plant after the fungus formed the first haustorium is a hypersensitive reaction (HR) of 

the invaded cell, as was observed in tobacco and tomato plants inoculated with Uromyces vignae.  
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Magnaporthe oryzae and its non-host plants 

 

Isolates of the Magnaporthe grisea sp. complex include pathogens of rice (Oryza sativa), 

barley (Hordeum vulgare), wheat (Triticum aestivum), maize (Zea mays), ryegrass (Lolium spp.), 

finger millet (Eleusine coracana), goosegrass (Eleusine indica), weeping lovegrass (Eragrostis 

curvula) and some non-typical hosts such as Commelina spp (Heath et al, 1990a, 1992; Jarosch 

et al, 1999; Zellerhoff et al, 2006). Like in many other plant-microbe systems, only some of 

these Magnaporthe-host interactions will result in disease; however, when disease occurs it 

becomes a serious problem to world agriculture. Like wheat and maize, rice is one of the most 

important food crops of the world; therefore rice blast disease has been the subject of extensive 

studies in order to identify novel strategies to achieve durable resistance. Significant advances 

have been made in order to understand the molecular bases of disease resistance in rice and in 

many other cereals. The majority of these studies have focused on single dominant genes with 

easily determined resistance phenotypes due to the relative simplicity in doing experiments, 

although there are still many questions that need to be answered. On the other hand, the 

molecular bases of non-host resistance remain unknown. Non-host resistance is highly effective 

and durable; therefore, genes involved in this phenomenon should be exploited to improve rice 

breeding programs (Heath, 2001; Neu et al, 2003; Thordal-Christensen, 2003; Zellerhoff et al, 

2006). 

 

Fungal invasion of resistant or susceptible rice plants is commonly associated with 

different growth patterns and plant responses that can be detected at the cytological level. In fact, 

cytological studies have been done since the 1930s in order to observe and understand the plant-

fungus interface as well as to determine whether host cytological responses are correlated with 

the expression of genes associated with race-specific resistance. These cytological studies have 

been carried out by inoculating leaf blades (Koga and Kobayashi, 1980; Koga and Kobayashi, 

1982 a-b; Peng and Shishiyama, 1988, 1989; Heath, et al, 1990) and leaf sheaths (Tomita and 

Yamanaka, 1983; Koga and Horino, 1984 a-b; Koga et al, 1994) of highly resistant, resistant, 

moderately resistant and susceptible rice plants (Table 3.1). Many of the cytological evaluations 

focused on identifying correlations between the expression of race-specific resistance and both 

the inhibition of specific stages of fungal development and plant cellular reactions at infection 
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sites, such as fine cytoplasmic granulation, coarse cytoplasmic granulation, and cell necrosis 

(Koga and Kobayashi, 1982 a-b; Tomita and Yamanaka, 1983). Cytological analysis results 

obtained from leaf blade and leaf sheath samples from susceptible and resistant rice plants 

indicated that the plant cell may have no reaction at all, or it may express cell wall discoloration 

(deep or light browning), granulation of cytoplasm (fine and coarse granulation), and/or necrosis. 

However, the cellular reactions that were most frequently correlated with race-specific resistance 

were fine cytoplasmic granulation or light brown cytoplasm together with callose deposition in 

the cell walls (Koga and Kobayashi, 1982 a-b; Koga, 1994; Tomita and Yamanaka, 1983). 

 

As mentioned above, the first data to understand pathogenicity of Magnaporthe spp. and 

the basis of race-specific resistance were generated by detailed cytological analyses. However, 

these studies involved fungal development on artificial surfaces and plant cellular responses from 

fixed or clarified infected tissue, which are not the best experimental conditions to investigate 

fungal growth and the physiological reactions of host cells. Nowadays, the objective is to utilize 

conditions allowing in planta artificial infections of living tissues under conditions similar to 

those occurring under natural environments. One method to observe and study the infection 

process of Magnaporthe spp. in un-fixed tissues is inoculating the rice leaf sheaths. This method, 

which was first reported in 1949 (Sakamoto, 1949 in Koga et al, 2004), uses excised leaf sheaths 

and allows observing restriction of the invading hyphae by hypersensitive cell death in a blast 

resistant rice plant. This reaction corresponded to the symptoms induced on leaf blades 

inoculated with the fungus. However, it was observed that in an excised susceptible rice leaf 

sheath the invading hyphae develop rapidly and the host shows little reaction. This highly 

susceptible plant response did not correspond to symptoms observed in leaf blades, suggesting 

than an artificial effect is occurring in excised leaf sheaths of a susceptible plant. Moreover, 

excised leaf sheaths become yellowish by 3 days preventing the observation of the slow 

developing host cell reactions (Koga et al, 2004). Tomita and Yamanaka (1983a) reported a 

sliced-sheath inoculation method for continuous observation of 4 M. oryzae isolates (Ken 62-89, 

Ken 60-19, Ken 54-04, and F 67-54) inoculated individually on 3 rice cultivars (Shimokita, 

Kusabue, and Fukuyuki). The sliced-sheath inoculation method, unlike the leaf sheath one, uses 

the inner epidermal (adaxial epidermis) tissue of the leaf sheaths. Lysigenous aerenchyma and 

vascular bundles are completely removed from the sheath, and the fungal suspension is 
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inoculated directly on the “naked” epidermal layer. However, fungal growth in all the rice-

fungus combinations was slower and less biomass accumulated relative to the non-sliced leaf 

sheaths; and no plant cellular responses were reported. It was suggested the fungal growth 

pattern observed in this experiment could be due to physiological changes in sheath cells 

resulting from their dissection from the plant. Recently, Koga and co-workers (2004) published a 

novel inoculation method of M. oryzae that utilizes sheaths of leaves that have been removed 

intact from the rice plants (Intact Method). By using this method, both the fungal growth and 

epidermal cell responses were successfully observed in susceptible and resistant rice plants over 

a period of 5 days. 

 

To this point, we have presented data associated with resistance responses expressed in 

an incompatible interaction where the rice plant is the host for the rice blast pathogen. However, 

there are not many cytological studies about the defense mechanisms involved in non-host 

interactions between rice and a non-host microbe. So far, Heath et al (1990a) reported a 

microscopical analysis of a non-host interaction between rice (cultivar M201) and the M. grisea 

strain 4091-5-8, which, in contrast, establishes a highly compatible interaction with weeping 

lovegrass and a low to moderately compatible interaction with goosegrass. According to this 

study, the fungus never spread from the initially penetrated leaf epidermal cells, and as reported 

previously in the major gene resistance interactions, the epidermal cells also responded rapidly 

by developing a granular cytoplasm, and discoloration or autofluorescence of cell walls. This 

response reported by Heath et al, (1990a) resembles a classical gene-for-gene type of HR 

response. The strain 4091-5-8 appears to carry the major avirulence gene AVR1-M201, which 

determines specific avirulence on the rice cultivar M201 (Valent et al, 1991). If this statement is 

correct, the data by Heath and co-workers did not explain whether the incompatibility of 4091-5-

8 on rice M201 is due to the action of a gene-for-gene interaction, the action of minor 

pathogenicity genes, or to the combination of both mechanisms.  

 

Previous studies in our laboratory focused on the excised leaf sheath assay for cellular 

and molecular analyses of fully susceptible biotrophic interactions (Kankanala et al, 2007; 

Mosquera et al, submitted). For this chapter, we proposed to study the relationship between 

fungal penetration and cytological responses of living leaf sheath epidermal cells by comparing 
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responses in a susceptible, a resistant, and a non-host interaction (Table 3.2). All three 

interactions were compared in excised and in intact sheath tissue. For the non-host interaction, 

we focused on M. oryzae strain 4091-5-8 on rice cultivar Yashiro-mochi (Ya-mo), which showed 

a unique cytological response in invaded rice cells from excised sheaths in our preliminary 

experiments. Yashiro-mochi has the dominant Pi-ta resistance gene, and 4091-5-8 does not have 

its corresponding avirulence gene (AVR-Pita). For susceptible and resistant interactions, we 

chose rice pathogen strains KV11 (avr-pita-) and KV1 (AVR-Pita), respectively. We report here 

that the cytological basis for the non-host interaction differs from the cytological basis for the 

resistance response mediated by the Pi-ta resistance gene. We also showed that excision of leaf 

sheath segments from the intact plant alters the cytological responses of the host to pathogen 

invasion, especially in the resistant and non-host interactions. These results have major 

implications for future studies using live cell imaging of sheath tissue to investigate race-specific 

and non-host resistance mechanisms. 

 

RESULTS 

 

Magnaporthe oryzae laboratory strain 4091-5-8 infects weeping lovegrass, goosegrass, 

and barley, but not rice (Valent et al. 1991). Our objective was to identify the host cellular 

responses that could be correlated with host species specificity in the 4091-5-8 strain. In order to 

facilitate observation of fungal growth in living rice epidermal cells, we transformed the 4091-5-

8 strain with enhanced yellow fluorescent protein (eYFP), which was expressed constitutively in 

the fungal cytoplasm. Subsequently, we spray-inoculated barley plants in order to corroborate 

pathogenicity of the transformed 4091-5-8 strain, which will be referred to from now on as 

KV33. Barley plants were inoculated independently as described by Valent et al (1991) by using 

a 1x105 spore/mL suspension. Ya-mo plants were also inoculated individually with spore 

suspensions containing 1x105, 1x104, and 5x103 spores/mL. As expected, strain KV33 infected 

barley, but not Yashiro-mochi plants (Figure 3-1). Barley leaf blades showed small eye-spot 

lesions with gray centers surrounded by dark margins, resembling lesions types 3 and 4 

according to the scale established by Valent et al, (1991). Thus, our transformed strain 

maintained the expected host specificity. 



 70 

 

In a preliminary assay, we independently inoculated excised Yashiro-mochi leaf sheaths 

with KV1, KV11, and KV33 strains to evaluate percentage of spore germination and percentage 

of appressorial formation. According to the conditions under which the assay was carried out, the 

highest percentage of spore germination occurred at 6 hai (Figure 3-2); at this time some of the 

germ tubes had developed melanized appressoria as well, but the highest percentage of 

appressorium formation was observed between 12 and 14 hai (Figure 3-2). 

 

Excised leaf sheath inoculation  

Fungal development 

 

At 24-27 hai (Figure 3-3A), strain KV11 (compatible interaction) had developed 

appressoria (A) at 20% of the infection sites, primary hyphae (PH) at 20% of infection sites, and 

bulbous invasive hyphae (BIH) at 59% of infection sites. Strain KV1 (incompatible interaction) 

had developed appressoria (A) at 1% of the infection sites, primary hyphae (PH) at 6% of 

infection sites, and filamentous invasive hyphae (FIH) at 92% of infection sites. Strain KV33 

(non-host interaction) had developed appressoria (A) at 65% of the infection sites, primary 

hyphae (PH) at 32% of infection sites, and filamentous invasive hyphae (FIH) at 3% of infection 

sites. Already, a major difference was apparent between the compatible and the incompatible 

interactions.  KV11 had formed the beaded bulbous invasive hyphae that characterize the fully 

susceptible interaction, but KV1 was growing poorly as thin filamentous hyphae that never 

differentiated into BIH. Major differences also had occurred between the incompatible and non-

host interactions. Whereas KV33 grew at the filamentous invasive stage in 3% of the host cells, 

KV1 did in 92% of the infection sites. 

 

At 37 to 38 hai (Figure 3-3B), 87% of the first-invaded cells from leaf sheaths inoculated 

with compatible KV11 contained bulbous invasive hyphae that had begun moving into 

neighboring cells. On the other hand, in 85% of the cells, the incompatible KV1 thin filamentous 

hyphae had developed a few branches that moved into a second cell. At 39 hai, non-host KV33 

fungal growth had practically stopped; the fungus still appeared as appressoria in 48% of the 
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infection sites, and as primary hyphae in 52% of the invaded cells (Figure 3-3B). Clearly, KV33 

growth was blocked at an earlier stage than KV1, which could grow as FIH before stopping. 

 

Leaf sheath epidermal cell reactions 

 

As reported previously in other studies (Peng and Shishiyama, 1988; Heath et al, 1990), 

some invaded epidermal cells did not show any visible response at 24 hai, which correlates with 

our data. We observed that at 24 hai the highest percentage of non-visible responses was shown 

in leaf sheaths inoculated with KV11 (compatible interaction) (Figure 3-5A). On the other hand, 

epidermal cells from leaf sheaths inoculated with KV1 (incompatible interaction) or KV33 (non-

host interaction), responded with cytoplasmic disorganization and aggregations around the 

appressoria, which were maintained at a high percentage, even during late infection periods 

(Figure 3-5B). These data agree with results obtained from microscopical studies of compatible 

and incompatible interactions in rice leaf blades (Peng and Shishiyama, 1988; Heath et al, 1990), 

rice leaf sheaths (Koga and Kobayashi, 1982 a-b; Koga, 1994), and sliced leaf sheaths (Tomita 

and Yamanaka, 1983) challenged with Magnaporthe spp. 

 

The cytoplasmic disorganization response was divided into three groups (Figure 3-4): the 

first one (CR1) was characterized by the presence of fine and irregular granular material; the 

second (CR2) by coarse cytoplasmic granulation and the presence of spherical or globular brown 

bodies (globules) suggesting a polyphenolic composition; and the last one (CR3) by 

disorganization and/or fragmentation of the plant plasma membrane. In order to facilitate 

quantification of these responses, we referred to them as CR alone.  

 

At 24 and 36 hai (Figure 3-5A-B), the CR response was observed in 63 and 93% of the 

epidermal cells inoculated with KV1, respectively. In contrast, the CR response was delayed for 

about 12-14 hours in the compatible (KV11) and non-host interactions, which agrees with studies 

done with leaf blades and leaf sheaths of susceptible and resistant interactions (Koga and 

Kobayashi, 1982 a-b; Tomita and Yamanaka, 1983; Peng and Shishiyama, 1988).  
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Aggregations around appressoria are, so far, structures of unknown chemical composition 

that look like fine spherical or irregular granules, or like needle-shaped crystals (Figures 3-4 and 

3-6). Such an impressive cell response has not been reported previously and appeared to 

completely block fungal growth (Figure 3-8). At 24 and 36 hai, the percentage of cells showing 

AA was much higher in leaf sheaths inoculated with KV33 relative to those inoculated with 

KV11 or KV1 (Figure 3-5A-B). Initially we speculated that the aggregations were formed by the 

plant plasma membrane; so, to investigate this assumption we plasmolyzed previously infected 

epidermal tissue using a 0.75 M sucrose solution. If the plasma membrane was involved in the 

AA organization, we would not expect to see AA after challenging the cells with the sucrose 

solution; however, after plasmolysis some appressoria were enclosed by those aggregates and the 

protoplast moved away from the plant cell wall (Figure 3-6).  

 

Relationship between fungal growth and type of epidermal cell reaction  

 

At 24 hai, 84% of the epidermal leaf sheath cells invaded with KV11 did not show any 

visible response, which allowed KV11 to grow as bulbous invasive hypha (BIH) in 59% of the 

infected cells (Figures 3-3A and 3-5A). In the incompatible interaction (KV1), 37% of the 

epidermal cells remained without any visible reaction, but 63% of them showed the CR response. 

KV1 was growing inside more than 90% of the invaded epidermal cells; however its growth was 

reduced to thin filamentous invasive hypha (FIH), which might be correlated with the high 

frequency of cytoplasmic reactions. As mentioned, KV33 appressoria co-localized with plant-

cell aggregations at 65% of the infection sites, which probably explains why appressoria failed to 

maintain further growth. 

 

At 36 hai, KV11 was growing as bulbous invasive hyphae that moved to neighboring 

epidermal cells at 87% of the invaded sites. (Figures 3-3B and 3-5B). KV11 could clearly 

continue growing and invading neighboring cells even though the first infected cells had 

responded with CR. The KV1 strain continued to grow as FIH and to move to neighbor cells, 

even in those ones that had previously showed the CR response.  
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The maximum stage of development reached by KV1 was filamentous invasive hyphae 

that moved to the neighboring cells (85%). The percentage of epidermal cells that showed the 

CR type reaction was similar between the compatible (KV11) and incompatible (KV1) 

interactions; however, the response occurred at least 12 hours earlier in the incompatible 

interaction, so KV1 failed to thrive.  

 

At 24 hai, KV33 (non-host interaction) had developed appressoria at 65% of the infection 

sites and primary hypha at 32% of these sites (Figure 3-3A). This fungus-leaf sheath interaction 

resulted in the induction of aggregations of unknown composition around the appressoria. This 

response was maintained for about 12 hours more together with the CR (Figure 3-5 A-B), which 

was probably associated with the poor growth of KV33, which was practically blocked at the 

appressorial and primary hyphal stages. 

 

Intact leaf sheath inoculation  

Fungal development 

 

At 24 hai, KV11 (compatible interaction), KV1 (incompatible interaction), and KV33 

(non-host interaction) grew to the appressorial stage in 84, 44, and 68% of the epidermal cells, 

respectively (Figure 3-7A). In all the plant-fungus interactions, none of the epidermal cells 

showed much fungal growth beyond the appressorial stage. Strains KV11, KV1, and KV33 had 

developed primary hyphae at 15, 18 and 31% of the infection sites, respectively; and only KV1 

had grown to the filamentous invasive hyphal stage at 37% of the sites. 

 

At 36 hai, the highest percentage of epidermal cells with fungal growth still at the 

appressorial stage was observed in leaf sheaths inoculated with KV33 (Figure 3-7B). Only 22% 

of the cells showed appressoria with a short primary hypha and 10% showed filamentous 

invasive hypha. At this stage of development, fungal growth appeared completely stopped; the 

fungus did not move into the next cell and did not differentiate into a bulbous invasive hypha. In 

contrast, in 70% of the epidermal cells infected with KV11, the fungus grew bulbously, filled the 

cells, and began moving into the neighboring ones.  
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Leaf sheath epidermal cell reactions 

 

In this experiment, the plant cellular responses observed more frequently were 

cytoplasmic responses (CR) and mixed reactions (MR). The MR response was characterized by 

the expression, in the same cell, of cell wall and/or cytoplasmic discoloration with cytoplasmic 

reactions and/or aggregations around the appressoria (Figure 3-4) 

 

At 24 hai (Figure 3-8A), 97, 69, and 78% of the cells inoculated individually with KV11 

(compatible interaction), KV1 (incompatible interaction), or KV33 (non-host interaction) had not 

developed any visible response. However, the CR was the highest response induced in leaf 

sheaths challenged with KV1 and KV33.  

 

At 36 hai (Figure 3-8B), 71% of the leaf sheath cells inoculated with KV1 responded 

with the CR reaction; in contrast, only 2.5 % of the cells did in plants inoculated with KV11 (Pr 

>0.05), and 15% in plants inoculated with KV33 (Pr >0.05). A high percentage of epidermal 

cells (60%) from plants inoculated with KV33 showed the MR reaction. In contrast, CR response 

was significantly different in plants challenged with KV1 (17%) (Pr >0.05) and completely 

blocked in plants inoculated with KV11 (0%) (Pr >0.05).   

 

Aggregations around the appressoria (AA) were observed in 2% of the cells in intact leaf 

sheaths inoculated with KV1 and in 1% in those inoculated with KV33. This rare occurrence of 

the AA response in the intact leaf sheaths inoculated with KV33 contrasts with the results in 

excised sheaths, in which more than 60 % of the invaded cells showed AA (Figure 3-5A-B). 

 

 

 

Relationship between fungal growth and type of epidermal cell reaction  
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At 24 hai (Figures 3-7A and 3-8A), 97% of the epidermal leaf sheath cells inoculated 

with KV11 did not show any visible response, and in about 84% of the cells KV11 had 

developed to the appressorial stage. However, the fungus grew slowly compared to the other two 

interactions: only 15% of the cells had developed to the primary invasive hyphal stage.  At 36 

hai, most invaded cells still showed no visible defense mechanisms, but still the fungus grew 

slowly. Even though the fungus had developed bulbous invasive hyphae in 70% of the epidermal 

cells, only a few cells displayed bulbous invasive hyphae that had moved to the neighboring 

cells. These data showed a high delay in KV11 fungal growth in intact leaf sheaths compared to 

the excised ones. 

 

Between 24 and 36 hai (Figures 3-7A-B and 3-8A-B), KV1 (incompatible interaction) 

had grown slowly. The fungus displayed a continuous array of developmental stages with the 

exception of the bulbous invasive hypha, which is associated with the highly susceptible 

interaction. At 36 hai, no more than 40% of the cells displayed the filamentous invasive hyphal 

stage, and only in 15% had KV1 started invading new cells. This could be partially correlated 

with the CR response that was expressed at 24 hai in 29% of the cells and increased until 71% at 

36 hai. 

 

At 24 hai (Figures 3-7A-B and 3-8A-B), KV33 (non-host system) reached the 

appressorial stage in more than 60% of the epidermal cells, and it reached the filamentous 

invasive hyphal stage in only 31% of them. At 36 hai, no further growth was observed; the 

fungus stopped growing practically at the appressorial stage. We assume that this earlier 

blockage in the fungal growth was partially associated with the CR response and with the 

presence of mixed responses that were expressed in 60% of the plant cells.  

 

Together, these data indicate that the KV11 (compatible interaction) and KV1 

(incompatible interaction) grew more slowly and less extensively compared to fungal behavior in 

the leaf sheaths inoculated by the excised leaf sheath method. The visible plant cellular reactions 

associated with non-host resistance were quite different in the intact and excised sheath assays. 

 



 76 

Other epidermal cell responses  

 

Additional plant cell responses observed in this study were the induction of crystal-like 

bodies within the plant cytoplasm, nuclear migration toward penetration sites, papilla formation, 

browning of the plant cell wall, and cytoplasmic discoloration (Figures 3-4 and 3-6).  

 

Occurrence of the crystal-like bodies was an infrequently induced response in all the 

interactions evaluated, but was more commonly observed in leaf sheaths inoculated with KV1. 

We did not quantify the proportion of cells expressing this reaction, so we do not have statistical 

data to support that its induction was much higher in the rice-KV1 resistant interaction.  

 

Nuclear migration toward penetration sites and papilla formation were other types of 

responses observed in this study. At 24 hai, nuclear migration toward penetration sites was not 

noticed either in epidermal cells from leaf sheaths inoculated with KV11 (compatible interaction) 

or in those inoculated with KV33 (non-host interaction). At 36 hai, only 1.5, 1.7, and 2% of the 

epidermal cells from plants inoculated with KV11, KV1, and KV33, respectively, had a visible 

nucleus associated with the penetration site (Figure 3-6). To further investigate if the nucleus 

was associated with appressoria, dissected epidermal leaf sheaths were stained with coomassie 

brilliant blue. Nuclei stained blue; however, because coomassie blue is not a specific dye for 

DNA, we partially confirmed that plant nuclei moved toward penetration sites.  

 

As mentioned before, formation of papilla is a defense response associated with the 

reinforcement of plant cell walls once the pathogen and the host epidermal cell have been in 

contact (Agrios, 1997; Hückelhoven, 2007). In our study, we rarely observed this reaction in leaf 

sheaths inoculated with KV33 (Figure 3-9), which agrees with data reported by Heath et al (1990 

a) where papilla formation was induced at a low frequency in rice plants inoculated with the 

4091-5-8 strain (non-host interaction). 

 

Plant cell walls from compatible interactions (weeping lovegrass + 4091-5-8 and rice + 0-

42) did not form papillae. These data did not agree with the Koga (1994) study which showed 

papilla formation in living cells of susceptible interactions.  
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Browning of the plant cell wall and cytoplasmic discolorations are epidermal cell 

responses that have been commonly observed in rice-Magnaporthe interactions. In this study we 

observed that at 24 hai (Figure 3-5A-B), browning of the epidermal cell walls occurred in 15% 

of the leaf sheath cells from excised tissue inoculated with KV11 (compatible interaction), at 1% 

in those inoculated with KV1 (incompatible interaction) and at 5% in leaf sheaths inoculated 

with KV33 (non-host interaction). Twelve hours later (Figure 3-7A), only 7% of the epidermal 

cells challenged with KV1 displayed the browning cell wall response. On the other hand, at 24 

hai, only 4% of the epidermal cells inoculated with KV33 by the intact leaf sheath method 

showed the browning cell wall response. Additionally, at 36 hai, 6% of the epidermal cells 

challenged with KV11 and 4% challenged with KV33 showed a light brown cytoplasmic 

response. 

 

DISCUSSION 

 

The present study was set up to provide data regarding the cytological relationship 

between fungal penetration and cellular reactions of epidermal leaf sheaths by comparing 

responses in susceptible (Ya-mo+KV11), resistant (Ya-mo+KV1), and non-host (Ya-mo+KV33) 

interactions. Additionally, we looked for any correlation between plant cell responses and 

species specific resistance. 

 

Spore germination and development of appressoria 

 

Plant epidermal tissue is the first surface that the pathogen has to confront to initiate the 

disease cycle; therefore preformed structural and/or chemical defenses play an important role in 

protecting the plant from pathogen infection. In this study we observed that the percentage of 

spore germination in the compatible strain KV11 was lower than in the other two interactions 

(incompatible KV1 and non-host KV33). We did not observe any visible response during this 

stage of the fungal development that could account for this difference. 
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With respect to appressorium formation, we did not observe any significant difference 

among the interactions evaluated. Based on these data, we infer that the recognition phase 

involved in the differentiation of the germ tube tip into an appressorium occurred under optimal 

conditions. We also speculate that at this time of the disease cycle it is improbable that the 

expression of any defense mechanism can inhibit the pre-penetration development of M. oryzae. 

This result agrees with data reported by Peng and Shishiyama (Peng, 1988) studying 

appressorium formation in highly resistant, resistant, and susceptible interactions. 

 

Penetration 

 

Penetration pegs were not observed in this study due to the resolution of the light 

microscope; but in an electron microscopic study, Koga (1994), inoculating leaf sheaths of 

compatible and incompatible lines of rice, reported that microfibrils of the compatible host cell 

wall around penetration pegs were disorganized and electron dense compared to the regular 

pattern observed in non-penetrated ones. Host cell cytoplasm did not show any change while the 

penetration pegs were passing through the cuticle, but when they reached the cell wall, 

appositions or papillae were formed between the host cell wall and the plasma membrane. In 

contrast, epidermal cells from inoculated resistant plants did not show papilla formation at the 

penetration site. These results differed with data reported by Heath et al, (1990a), where they did 

not observe papilla formation in highly susceptible rice leaf blades inoculated with the strain O-

42, but did in the non-host interaction between rice (M201) and the strain 4091-5-8. Our data did 

not allow us to establish any conclusion about the induction of papilla in the interactions 

evaluated. We observed spherical structures associated with the epidermal cell wall, but we did 

not see any sign of the fungus at these locations. In addition, some times it was not possible to 

distinguish the papilla from the plant cell nucleus, even though the samples were stained with 

coomassie blue.  

 

Comparison of epidermal plant cell responses and fungal development between excised 

and intact rice leaf sheaths inoculated with KV11 strain (compatible interaction) 
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At 24 hai, a high ratio of epidermal cells from excised leaf sheaths inoculated with the 

compatible strain KV11 (compatible interaction) showed bulbous invasive hyphae as the most 

advanced stage of the fungal development. Since at this time 80% of the host epidermal cells did 

not show any visible defense response, it appeared that KV11 had time enough to grow well and 

begin invade the neighboring epidermal cells, which was confirmed in leaf sheaths evaluated at 

36 hai. At this time and even though 90% of the cells responded with the cytoplasmic reaction, 

more than 80% showed healthy bulbous invasive hyphae moving to the neighboring cells. 

Cytoplasmic reactions were delayed for at least 12 hours; so the presence of granular material 

did not have any effect in KV11 fungal development. These observations are in agreement with 

previous studies in our laboratory, which focused on the excised leaf sheath assay for cellular 

and molecular analyses of fully susceptible biotrophic interactions (Kankanala et al, 2007; 

Mosquera et al, submitted).  

 

Epidermal cells from the intact leaf sheath assay showed all the spectrum of fungal 

development stages as well as some of the plant cell responses described in the excised leaf 

sheath assay. However, fungal growth was slower in the epidermal cells from intact leaf sheath 

assay than in those from the excised leaf sheath experiment; and a much higher percentage of 

cells from the intact leaf sheath experiment showed no-visible responses compared to the cells 

from the excised leaf sheath assay.  

 

Excised leaf sheaths were subject to double damage. The first one was generated 

mechanically by cutting the leaf sheaths into about 6.5 cm fragments, and the second one by 

inoculating the pathogenic KV11 fungal strain. On the other hand, intact leaf sheaths were 

apparently subject to a single mechanical damage that was generated during its dissection from 

the rice plant. We assume the mechanical damage caused in the excised leaf sheaths pre-induced 

plant cell defense mechanisms that were highly magnified by the presence of the biotic stress, the 

KV11 fungus. It is important to point it out that the defense responses induced by the fungus 

were not observed in epidermal leaf sheath cells mock inoculated by the excised or the intact 

method. 
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Comparison of epidermal plant cell responses and fungal development between excised 

and intact rice leaf sheaths inoculated with KV1 strain (incompatible interaction) 

 

We did not have enough data to establish a statistical analysis in KV1 growth and plant 

cell responses between the excised and the intact leaf sheath methodologies; however, 

remarkable differences were observed, principally at the filamentous invasive hyphal stage. At 

24 hai, the incompatible strain KV1 stopped at the appressorial stage in 44% of the cells 

inoculated using the intact method, but it did so in only 1% of the cells inoculated using the 

excised one. These results differ from data reported by Koga et al (2004). In this study Koga and 

co-workers observed no significant differences at the appressorial stage in an incompatible 

interaction evaluated with intact and excised leaf sheath assays. At this same time, KV1 showed 

the filamentous invasive hypha as the more advanced stage of development in about 90% of the 

epidermal cells from excised leaf sheath assays. In contrast, the fungus reached the same stage in 

only 37% of the cells from intact leaf sheaths.  

 

At 36 hai, KV1 grew in excised leaf sheath epidermal cells as thin filamentous invasive 

hyphae that never differentiated into a bulbous stage; instead, the hyphae branched rarely and 

moved into the next cells. The fungus grew faster and invaded several cells, but its hyphae did 

not appear healthy and were not able differentiate into the bulbous invasive hypha that 

characterize the highly susceptible interaction. These observations correlate with Heath et al, 

(1990 a), where it was observed that lack of invasive hypha differentiation into a bulbous one is 

inversely correlated with successful infection. On the other hand, in intact leaf sheath cells, KV1 

started moving to neighboring epidermal cells as thin filamentous hyphae in 28% of host cells, 

and it formed apparently healthy bulbous invasive hyphae that moved to neighboring cells in 

18% of host cells. 

 

The low level of differentiation into a healthy bulbous invasive hypha might be 

associated to the extensive CR reaction exhibited by the invaded epidermal cells. As mentioned, 

the CR reaction observed in this study was characterized by the presence of fine and/or coarse 

granular material, globular particles that resemble tannins, and fragmentation or disorganization 

of the plant cytoplasm. This cytoplasmic granulation has been considered a typical response that 
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precedes the hypersensitive reaction (HR) in incompatible rice-Magnaporthe interactions. In 

cells showing the HR, the host plasma membrane is broken, the host nucleus is degraded, and 

cell organelles collapse. Debris and vesicles derived from these responses appear as granular 

material under light microscopy (Koga, 1994). In a highly resistant interaction (based on the 

major gene-for-gene model) between rice and M. oryzae, it was reported that fine particles were 

rapidly observed after penetration of the epidermal leaf sheath cells. The infection hyphae did 

not grow further and the finely granulated cells became pale yellow or slightly brown throughout 

the cell. Generally these cells did not become deeply brown. It was suggested that the appearance 

of cytoplasmic granulation was associated with suppression of fungal growth and the infection 

hyphae extended very slowly into the surrounding cells (Tomita, 1983b). 

 

According to our microscopic observations, the CR response induced in the interactions 

evaluated resembled the cytoplasmic granulations reported by Koga and Kobayashi (1982a-b), 

Tomita and Yamanaka (1983a-b), and Koga (1994). The CR response occurred at a high 

percentage of the infection sites at 24 hai, so at 36 hai the host cells had displayed a much more 

severe reaction.  

 

Kankanala et al, (2007) reported that the bulbous invasive hyphae of KV1 infecting 

epidermal cells of YT16 leaf sheaths (compatible interaction) are enclosed by a plant membrane 

[extra-invasive hyphal membrane (EIHM)], which could be required to obtain the nutrients from 

the plant. If the granular material observed in our study resulted from plant and nucleus 

membrane disruption, and the EIHM has its origin in a plant membrane, we assume that the 

absence of the EIHM could account for the thin invasive hyphal growth. We did not observe 

clearly whether or not the invasive hypha grew to the mesophyll cells, but Heath et al, (1990a) 

observed that when the primary hypha grew without differentiating into a bulbous one, the 

invaded cell died rapidly and the hypha moved to the mesophyll rather than to the other 

epidermal cells. 

 

In another study, Koga and Kobayashi (1982a-b), suggested that cytoplasmic granulation 

of plant epidermal cells correlates with the expression of specific resistance resulting in the 

inhibition of fungal penetration and growth of the infection hypha. In contrast, Peng and 
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Shishiyama (1988) inferred that the expression of race specific resistance of rice plants is 

associated with light browning and callose deposition in the epidermal cell wall that blocked 

infection hyphal development. Our data did not correlate with this assumption because the 

browning cell response was observed in a very low percentage of the epidermal cells at 24 and 

36 hai. Our results correlate with those reported by Tomita and Yamanaka (1983); cell browning 

was observed in few cells and late in the disease cycle.  Based on these data, we suggest that Ya-

mo resistance might be explained by the presence of AVR-Pita in KV1 and the presence of Pi-ta 

resistance gene in the rice plant. Possibly this gene-for-gene interaction, together with other 

unknown defense mechanisms, and/or the expression of a basic immunity accelerate the 

cytoplasmic granulation response that result in inhibition of fungal growth.  

 

Summarizing, the incompatible strain KV1 grew faster but appeared unhealthy in excised 

leaf sheaths. In contrast, it grew slowly and appeared healthier in intact leaf sheaths. These 

results do not agree at all with those reported by Koga et al (2004). They observed that in an 

incompatible interaction (rice Pi-zt + Kita 1) the hyphal growth after 24 hours was restricted to 

invaded cells. In their study, cells that displayed the hypersensitive response increased from 70-

76% at 24 hai to 86-90% in infections sites at 36 hai, regardless of the excision treatment. The 

rest of the infection sites had no hyphae, hyphal index 0 and no-host reactions. The differences 

between our study and theirs might be explained by the different R genes involved (Pi-ta versus 

Pi-zt) or by differences in the physiological state of the plant tissue and the assay conditions. 

 

Comparison of epidermal plant cell responses and fungal development between excised 

and intact rice leaf sheaths inoculated with KV33 strain (non-host interaction) 

 

At 24 hai, the non-host strain KV33 differentiated into appressoria at about 60% of the 

excised and intact inoculated epidermal cells, and in about 30% of those treated with both 

inoculation methods, the fungus reached the primary hyphal stage. At 36 hai, KV33 had not 

shown further differentiation. In 48 and 52% of the excised inoculated cells, the fungus had 

stopped growing at the appressorium and primary hypha stages, respectively. In contrast, 67% of 

the intact leaf sheath cells displayed appressorial growth, 22% primary hyphae, and 10% 

filamentous invasive hyphae. 
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As mentioned previously, KV33 induced a remarkable response in the excised epidermal 

leaf sheath cells. This response was described as aggregations around the appressorium (AA) 

and, so far, it had not been described in previous cytological studies with the rice-Magnaporthe 

spp. system. We observed the AA reaction in 65 and 66% of the epidermal cells at 24 and 36 hai, 

respectively.  In contrast, it was practically zero in cells inoculated by the intact method. Under 

the intact leaf sheath inoculation method, 60% of the cells responded with a mixed reaction at 

36hai. This mixed reaction was characterized by the presence of granular material and/or 

fragmentation of the cytoplasm and plant membrane, together with the presence of aggregations 

around the appressoria.  

 

Taking into account that the AA response was induced in more than 60% of the cells 

from excised leaf sheaths inoculated with the non-host pathogen KV33, we hypothesize that this 

response might be associated with non-host resistance. The KV33 strain has the AVR1-YAMO 

avirulence gene and the cultivar Ya-mo has the Pi-ta resistance gene. It is not known whether 

these two genes correspond to each other or whether AVR1-YAMO corresponds to another 

resistance gene in Ya-mo. If AVR1-YAMO interacts with Pi-ta and the interaction results in an 

AA response extensively displayed in the incompatible interaction (KV1) compared to the 

compatible one, we could assume that AA correlates with the expression of specific resistance in 

the KV33 + Ya-mo interaction. However, AA is not the classical HR response induced in a gene-

for-gene interaction; in addition, we did not observe AA induction in the incompatible 

interaction between KV1 and Ya-mo; instead, the interaction between AVR-Pita and Pi-ta gene 

resulted in a rapid and extensive cytoplasmic granulation response that appeared to be more 

characteristic of the gene-for-gene interaction.  

 

If we compared defense mechanisms induced in compatible (KV11) and incompatible 

(KV1) interactions, we could assume that independently of the inoculation method, the CR 

reactions are correlated with specific resistance because its expression was observed in both 

excised and intact leaf sheath cells inoculated with KV1 and KV11. Timing and extent of this 

defense response could account for the difference observed between the 2 interactions. CR was 

delayed and less extensive in the compatible interaction relative to the incompatible one. It is 
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important to point it out that we did not observe CR or AA responses in mock excised or intact 

inoculated leaf sheaths.  

 

Based on our studies, we do not recommend the excised sheath inoculation procedure to 

compare the cytological and/or molecular bases of compatible, incompatible, and non-host 

interactions in the rice-Magnaporthe system. The intact leaf sheath inoculated method offers 

better conditions to study fungal growth in living host cells. In addition, the intact method 

maintains the leaf sheath tissue alive for longer periods, which allows studying reactions induced 

by the fungal pathogen and not by those induced by mechanical damage. 

 

At this point, we observed major differences between the excised and the intact leaf 

sheath cells when inoculated with the non-host strain KV33. The excised method results suggest 

that the occurrence of AA could correlate with the expression of non-host resistance. However, 

data from intact leaf sheaths indicated that mixed reactions, including the presence of AA, 

account for the non-host resistance observed in 60% of the epidermal cells. Further studies are 

needed to understand and define the cytological responses associated with non-host interactions 

in rice-Magnaporthe interactions.  

 

Future work 

 

Rice is one of the most important crops together with maize and wheat, so any abiotic or 

biotic factor that affects their production deserves special attention. The rice blast system has 

been the subject of intense study, not only because of its importance as a serious disease at the 

world level, but also because rice and Magnaporthe oryzae are amenable to advanced 

experimental approaches including genetic analysis and genomics (Ebbole, 2007). 

 

Knowledge of the genes that are responsible for the non-host resistance would improve 

the opportunities to breed resistant plants, and provide a better understanding about the cell 

biology and biochemical responses that are occurring at the rice cell-fungus interface. The 
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preliminary data presented in this study open many questions that must be addressed in future 

work.  

KV33 is a non-host pathogen of rice that expresses the eYFP constitutively. The strain 

has the AVR-M201, AVR-CO39 and the AVR1-YAMO genes; therefore, we might continue using 

this strain. However, we need to be sure the non-host rice lacks any corresponding resistance 

genes. A good candidate could be the YT16 cultivar, which has been recognized so far as the 

universal susceptible for all M. oryzae isolates (B. Valent, personal communication). 

In future studies, we would focus on the intact assay and evaluate the epidermal tissue at 

least 12 hours earlier and at 48 hai. Next steps include use of highly specific fluorescent dyes for 

DNA (DAPI for instance) and plasma membrane localization. Results obtained from these 

analyses would allow understanding the origin of the aggregations around the appressoria as well 

as the role of the plant cell nucleus and plant plasma membrane at the infection sites. Another 

option would be to construct transgenic rice plants that express a reporter gene fused with a 

protein constitutively expressed in nuclei (histones) and plant plasma membranes (integrines). 

Microarray analysis of infected tissue from susceptible, resistant and non-host interactions would 

correlate phenotype with gene expression. 

 

MATERIAL AND METHODS 

 

Bacterial strain, fungal strains, and cultivar plants 

 

The Agrobacterium tumefaciens strain (stored as pBV64) used in this experiment 

contains the binary vector SK1022 that carries the enhanced yellow fluorescent protein (eYFP) 

expressed with the Cochliobolus heterostrophus glyceraldehyde-3-phosphate dehydrogenase 

gene promoter. The hygromycin B resistance gene was used for fungal selection. 
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Magnaporthe grisea 4091-5-8 is a fertile laboratory strain obtained from a cross between 

a Japanese field isolated that infects weeping lovegrass [K76-79 (Mat1-2)] and a Japanese field 

isolate that infects finger millet and goosegrass [WGG-FA40 (Mat1-1)] (Valent et al, 1991). 

Strain 4091-5-8 is a pathogen of weeping lovegrass and goosegrass, but it does not produce 

visible symptoms on rice; it carries putative AVR-M201, AVR-CO39 and AVR1-YAMO genes. 

KV1 was obtained by protoplast transformation of the M. oryzae field isolate 0-137 obtained 

from rice in China. The strain expresses the eYFP as well as the avirulence AVR-Pita gene 

(Kankanala et al, 2007). KV11 is also a laboratory strain obtained by Agrobacterium 

tumefaciens-mediated transformation of the M. oryzae field isolate Guy11 (0-391) obtained from 

rice in French Guiana (Mihwa Yi and B. Valent, unpublished). 

 

Yashiro-mochi (Ya-mo) is a Japonica cultivar that carries the Pi-ta resistance gene. Seeds 

of the barley cultivar Garnet were obtained from The U. S. National Plant Germplasm System–

NPGS (USDA, ARS National Small Grains Research Facility. National Small Grains Collection 

1691 S 2700. W. Aberdeen, Idaho, United States, 83210).  

 

Agrobacterium tumefaciens-mediated transformation of strain 4091-5-8 

 

A. tumefaciens was cultured on LB-kanamycin (50 µg/mL) medium at 28°C for 2 days. 

INDUCTION: A single colony obtained from the culture was transferred into 5 mL of minimal 

medium containing kanamycin and cultured at 28°C in darkness with shaking (200 rpm) for 3 

days. A 1 mL aliquot of the minimal medium culture was spun and resuspended in 1 mL of 

induction medium supplemented with kanamycin (50 µg/mL) and acetosyringone (100 mM). 

Then, the resuspended pellet was transferred into a 1.5 mL eppendorf tube with 4 mL of 

induction medium. The cells were cultured for 6.5 hours at 28°C under dark with shaking at 200 

rpm. CO-CULTIVATION: The strain 4091-5-8 was grown on oatmeal agar plates at 24°C under 

continuous illumination in a Percival Scientific incubator Model CU-36L4. Conidia were 

harvested from 17 day old cultures using double distilled water. The concentration of the bacteria 

grown in induction medium was adjusted to 0.1 at OD600 and 1000 µL were mixed with an equal 

volume of a spore suspension of the strain 4091-5-8 (1x106 spores/mL). The bacteria-fungus mix 
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(200 and 100 µL) was plated on nitrocellulose membranes (Whatman® sterile membrane filters; 

47 mm diameter and pore size 0.45 µm) on the co-cultivation medium with kanamycin (50 

mg/mL) and acetosyringone (100 mM). Plates were incubated under dark conditions for 38 hours 

at 28°C. SELECTION: The nitrocellulose membranes were transferred onto TB3 agar medium 

(recipe) with hygromycin B (50 mg/mL) as the antibiotic for selecting fungal transformants, and 

with cefotaxime (200 mg/mL) as the agent to eliminate the A. tumefaciens bacterial cells. Plates 

were incubated under dark conditions at 24°C. After 6 days, the membranes were removed and 

the plates were incubated at 24°C for 2 days. Single colonies from the first selection were 

transferred onto TB3 medium containing hygromycin B and cefotaxime for a second selection. 

Plates were incubated under dark conditions at 24°C for 5 days. 

 

Individual transformants were transferred into 24-well plates (COSTAR® Corning, 

Incorporated, Corning, NY) containing oatmeal agar and incubated at 24°C until conidiation. 

Single conidia from each transformant were isolated in order to ensure that the new strain was 

obtained from a single nucleus. 

 

Intact leaf sheath inoculation method 

 

The intact leaf sheath inoculation method was established according to Koga et al, (2004) 

with some modifications (Appendix A, Figure A-1.1). Briefly, 4 leaf sheaths from the sixth leaf 

of 28 to 30 day old Ya-mo rice plants were removed with the leaf blades and roots intact. Then, 

the leaf sheaths were laid horizontally in a 6.3 L plastic serving tray. To avoid movement of the 

leaf sheaths, they were held in place with 2 plastic ties placed at about 2 cm from the roots and 

blades. Each leaf sheath was individually inoculated from side to side by injecting ~5 mL of a 

1x104 spore/mL suspension of the KV1, KV11, or KV33 strains. The last complete leaf sheath 

was mock inoculated with double distilled water (control). Finally, the roots were covered with 

wet paper towels and the tray covered with clear plastic wrap to maintain high humidity. Leaf 

sheaths were incubated at room temperature.  
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For quantitative analysis of fungal development and plant cell responses, the samples 

were observed by DIC and fluorescent microscopy (see below) at 2 point times (24 and 36 hai). 

The experiment was performed three times. For each experiment one intact leaf sheath per 

treatment and time point was examined until at a minimum of 50 penetration sites (sites at which 

the fungus had developed appressoria) were found. 

 

Each stage of fungal development (Appendix A, Figure A-1.2) [appressorium (A), 

penetration hypha (PH), filamentous invasive hypha (FIH), filamentous invasive hypha moving 

to next cells (FIH-M), bulbous invasive hypha (BIH), and bulbous invasive hypha moving to 

next cells (BIH-M)] and each type of epidermal leaf sheath cell response [no-visible reaction 

(NVR), brown cell wall (BCW), light brown cytoplasm (LBC), cytoplasmic reactions (CR), 

aggregation around the appressoria (AA), mixed reactions (MR), and nuclear migration toward 

penetration sites (NM)], was expressed as the percentage of the total number of infection sites 

having any fungal development stage and any of the plant cell reactions. Treatments were 

compared by using the Restricted Maximum Likelihood (REML) method in SAS. Data were 

normalized with an Arc-sine transformation. 

 

Excised leaf sheath inoculation method 

 

The sixth leaf sheaths from 28 to 30 day-old rice and barley plants were dissected into 6 

to 7 cm length segments. Four segments from each species were laid horizontally over plastic 

ties adapted to hold them in Petri dishes containing wet paper towels to maintain high humidity 

(Appendix A, Figure A-1.1.). Leaf sheath segments were individually inoculated with each strain 

and incubated as described for the intact method. Quantitative analysis of fungal development 

and plant cell responses, were also analyzed by DIC and fluorescence microscopy at 24 and 36 

hai. The experiment was performed only once. Four leaf sheaths segments per treatment and time 

point were examined at a minimum of 50 penetration sites. 

 

Microscopy 
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Epidermal leaf sheath samples inoculated with Magnaporthe oryzae were dissected at 24 

and 36 hours after inoculation (hai). Samples were mounted in double distilled water and 

examined by DIC imaging with an Axioplan 2 imaging microscope (Carl Zeiss, Germany). Cells 

were observed with an EC plan neofluar 20x objective and with a 63x C-Apochromat water-

immersion objective. Images were acquired using a Zeiss AxioCam HRc camera and analyzed 

with Zeiss Axiovision digital image-processing software versions 3.1 and 4.6. Fluorescence of 

the EYFP protein was observed using a fluoArc lighting system and an YFP-specific filter 

(excitation 500 ± 20 nm, emission 535 ± 30 nm, filter set 46).  

 

To assess the origin of the crystal-like bodies, the epidermal tissue from the infected leaf 

sheaths was dissected and plasmolyzed in a 0.75 M sucrose solution for 25-30 minutes. Later, the 

samples were mounted in the same sucrose solution and observed under the microscope. For 

identification of nuclei the epidermal tissue was dissected and stained with a 0.25% Coomassie 

brilliant blue R250 solution in 90 ml of a methanol: water (1:1 v/v) mix with 10 ml of glacial 

acetic acid. After 30-35 minutes, the samples were rinsed with a mix of methanol: water (1:1 v/v) 

and mounted in water for microscopy. 
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Figure 3-1. Barley and rice leaf blades inoculated with M. oryzae transformant KV33. 
Ya-mo leaf blades were spray inoculated individually with spore suspensions at (A) 1x105, (B) 
1x104, and (C) 5x103 spores/mL. Ya-mo plants were inoculated with 0.25% gelatin solution as a 
control (D). Barley plants (E) were inoculated with a spore suspension at 1x105 spore/mL. 
Symptoms resembled lesion types 3 and 4 according to the scale proposed by Valent et al 
(1991). 
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Figure 3-2. Spore germination (SG) and appressorial formation (AF) induced on Yashiro-
mochi excised leaf sheaths.  
Panel A shows the percentage of SG and AF on leaf sheaths inoculated with KV11, KV1, and 
KV33. The highest percentage of germination was observed at 6 hai together with differentiation 
of some appressoria (Panel B left). The highest percentage of melanized appressoria was 
quantified at 12 hai (Panel B right). a, appressoria; ma, melanized appressoria; gt, germ tube; sp, 
spore. 
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Figure 3-3. Percentage of epidermal cells showing fungal development in Yashiro-mochi 
excised leaf sheaths.  
Panel A, 24-27 hai; Panel B, 36-39 hai. A, appressorium; PH, primary hypha; FIH, filamentous 
invasive hypha; FIH-M, filamentous invasive hypha moving to next cell; BIH, bulbous invasive 
hypha; BIH-M, bulbous invasive hypha moving to next cell. 
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Figure 3-4. Epidermal cell responses in Yashiro-mochi leaf sheaths inoculated with KV11, 
KV1, and KV33 fungal strains. 
The most common plant cell response observed in this study was cytoplasmic disorganization.  
Aggregations around the appressoria (AA) were highly induced in the non-host system treated 
with excised leaf sheath inoculation method. Cytoplasmic disorganization was divided into three 
groups: CR1, characterized by fine and irregular granular material in the cytoplasm; CR2, 
characterized by coarse cytoplasmic granulation and brown spherical globules (*); and CR3, 
characterized by fragmentation of the plasma membrane. 
 

 

 

 

 

Cellular reaction 1 (CR1) Cellular reaction 2 (CR2)

*
* *

*

Aggregations around appressoria (AA)

AA

Cellular reaction 3 (CR3)

Cellular reaction 1 (CR1)Cellular reaction 1 (CR1) Cellular reaction 2 (CR2)

*
* *

*

Cellular reaction 2 (CR2)

*
* *

*

Aggregations around appressoria (AA)

AA

Aggregations around appressoria (AA)

AA

Cellular reaction 3 (CR3)Cellular reaction 3 (CR3)



 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5. Percentage of epidermal cell responses in Yashiro-mochi excised leaf sheaths 
inoculated with KV11, KV1, and KV33 fungal strains.  
Panel A, 24-27 hai; Panel B 36-39 hai. NVR, non-visible response; BCW, brown cell wall; LBC, 
light brown cytoplasm; CR, cytoplasmic reactions; AA, aggregations around appressorium; MR, 
mixed reactions; and NM, nucleus migration toward penetration site. 
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Figure 3-6. Epidermal cell responses in Yashiro-mochi sheaths inoculated with KV11, KV1, 
and KV33 fungal strains.  
Additional responses observed in epidermal leaf sheath cells were the induction of crystal-like 
bodies (A), nuclear migration toward penetration sites (B), papilla formation (C), browning cell 
wall (D), and cytoplasmic discoloration (E). Mock inoculated leaf sheaths were sprayed with 
distilled water (F). BCW, brown cell wall; Cry, crystal-like bodies; Pp, papilla; Yc, yellowish 
cytoplasm 
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Figure 3-7. Percentage of epidermal cells showing fungal development in Yashiro-mochi 
intact leaf sheaths. 
24-27 hai (Panel A) and 36-39 hai (Panel B). A, appressorium; PP, penetration peg; PH, primary 
hypha; FIH, filamentous invasive hypha; FIH-M, filamentous invasive hypha moving to next 
cell; BIH, bulbous invasive hypha; BIH-M, bulbous invasive hypha moving to next cell. 
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Figure 3-8. Percentage of epidermal cell responses in Yashiro-mochi intact leaf sheaths 
inoculated with KV11, KV1, and KV33 fungal strains.  
Panel A, 24-27 hai; Panel B, 36-39 hai. NBR, non-visible response; BCW, brown cell wall; 
LBC, light brown cytoplasm; CR, cytoplasmic reactions; AA, aggregations around 
appressorium; MR, mixed reactions; and NM, nucleus migration toward penetration site.  
* values in the same cell response with the same letter are not significantly different (Pr>0.05). 
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Table 3.1 Rice leaf epidermal cell reactions at the early stage of Magnaporthe oryzae disease 

cycle in compatible (susceptible) and incompatible (resistant) interactions. 

 

Leaf  blades 

Koga and Kobayashi 

(1982 a-b)a 

Leaf blades 

Peng and 

Shishiyama (1988, 

1989)b 

Leaf blades 

Heath M. C. et al, 

(1990a)b 

Sliced leaf sheaths 

Tomita and 

Yamanaka (1983)b 

Leaf sheaths 

Koga H. (1994)c 

No penetration without 

any host reaction 

No visible changes Papilla formation Fine and coarse 

cytoplasmic 

granulation 

Cytoplasmic streaming 

around nucleus 

No penetration with 

cytoplasmic granules 

Light brown and 

aniline blue staining of 

cell walls 

Browning and/or 

autofluorescence of 

cell walls 

 Fine cytoplasmic 

granulation 

Poorly-developed 

invasive hypha with 

cytoplasmic granules 

Fine cytoplasmic 

granulation 

Cytoplasmic 

granulation 

 Separation of plasma 

membrane from cell 

wall 

Well-developed 

invasive hypha without 

cytoplasmic granules 

Cell necrosis Cell necrosis  Fragmentation of 

plasma membrane and 

cell organelles collapse 

Well-developed 

invasive hypha with 

cytoplasmic granules 

Coarse cytoplasmic 

granulation 

  Papilla formation 

Deep browning of host 

cell 

    

 
a Reactions at 72 hours after inoculation (hai) 
b Reactions at 24 to 48 hai 
c Reactions at 17 to 25 hai 
All plant responses were observed in both compatible and incompatible interactions. The 
difference between them depended on time and frequency of the cell response. 
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Table 3.2  Magnaporthe oryzae strain 4091-5-8 and the Oryza sativa cultivar Yashiro-mochi: 

a non- host system 

 

 KV11  

[Guy11 (0-391)] 

avr1-co39, avr-pita 

KV1 

(O-137) 

AVR-Pita, AVR-Pita2 

KV33 

(4091-5-8) 

AVR-M201, AVR-CO39, 

AVR1-YAMO* 

Yashiro-mochi 

Pi-ta 

Susceptible Resistant Non-host 

YT16 

pi-ta 

Susceptible Susceptible Resistant 

 

* These uncharacterized genes were identified by genetic studies. It has not been shown whether 
AVR1-YAMO corresponds to Pi-ta or to another resistance gene in Yashiro-mochi. 
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Table A-1. Primers used in this study 

 

 Forward 
primer 
name 

Sequence Tm 
°C 

Reverse 
primer 
name 

 

Sequence Tm  
°C 

HTF: PCR 
RT-PCR 
probe 

HTF-F CGGCAAACGACA 
TTTCGGGTCTTT 

60.3 HTF-R TCCCATCCTCGGC 
GTTTACTTGAT 

60.2 

Target coding 
region: RT-
PCR 

Exon 1F TTGAGCTTGAAA 
TATTGGCGCG 

60.3 Exon 1R CGCAATCCTTGCCA 
ATAGCGACAT 

60.1 

cDNA 
synthesis for 
3’RACE-PCR 

3’-CDS 
primer A 

aagcagtggtatcaacgcaga 
gtac(t)30gc 

63.6    

3’RACE-PCR Gene 
specific 
primer 
(GSP) 

CGCCTCGTCGCCG 
TCATCCCCACC 

    

First fusion 
PCR  
5’flanking 
region 

Eco5’-F acggaattcTCCTCGT 
CTCGCGAGCAAGT 

66 HYG5’-R ttgacctccactagctccagccaa 
gccGTTGGTGATGTC 
TTGGCAGG 

72.1 

First fusion 
PCR  
3’flanking 
region 

HYG3’-F gaatagagtagatgccgacc 
CACACGGCTGCAA 
TGCTCAT 

68.3 Xba3’-R agctctagaCAGCGTCCC 
TTTCACAACCAG 

64.3 

First fusion 
PCR  
Hygromycin 

HYG-F ggcttggctggagctagtgga 
gg 

63.8 HYG-2R aacccgcggtcggcatctactcta 63.6 

Third fusion 
PCR 

Nested 
Kpn5’-F 

ggggtaccGCAGCACC
AGGGT 
TGCCTACC 

70.5 Nested 
Xba3’-R 

agctctagaCGGGTTGCG 
GCAGGACAGAAC 

67.5 

Actin: 
PCR 
RT-PCR 

MgActin 
328-F 

tcccatgtcaccactttcaa  MgActin3
28-R 

Ttcgagatccacatctgctg  

Hygromycin 
Probe 

HYG 
probe-F2 

tgtttatcggcactttgcatcggc 60.4 HYG 
probe-F2 

agctgcatcatcgaaattgccgtc 60.4 

       

 

Capital letters represent sequences with homology to the HTF DNA template. 
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Table A-2. Growing conditions for YT16 and Yashiro-mochi rice plants 

 

Time Temperature 
(°C) 

Humidity Incandescent 
Light 

Halogen 
light 

Automatic 
watering 
(seconds) 

00 24 80 0 0 0 

6:30 24 80 1 1 120 

7:00 26 80 2 2 0 

7:30 28 80 3 3 0 

11:30 28 80 3 3 180 

16:30 28 80 3 3 180 

18:30 28 80 2 2 0 

19:00 26 80 1 1 0 

19:30 24 80 0 0 0 

22:00 24 80 0 0 60 

23:59 24 80 0 0 0 
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Table A-3 Expression profile of Magnaporthe oryzae at 36 hours after inoculation of YT16 

rice plants. 

Expression profile of the Magnaporthe oryzae melanin biosynthetic gene cluster comparing 

YT16 leaf sheaths inoculated with 0.25% gelatin, KV1 mycelia grown in liquid culture, and 36 

hour infected leaf sheaths (Mosquera et al, submitted). 

 

Melanin gene GeneBank 
accession 
number 

MGOS* 
name 

Encoded protein Fold change p-value 

PIG1 AF230811.1 AMGO1941 Pig1p - 1.03 0.85109 

4HNR AF290182.2 AMGO1944 1,3,6,8-

Tetrahydroxynaphthalene 

reductase 

 

-28.10 

 

0.0 

HTFG XM_367293.2 AMGO1948 Hypothetical 

transcription factor 

-4.96 1.39E-12 

ALB1 XM_367294.2 AMGO1949 Polyketide synthase -8.30 1.18E-17 

RSY1 AB004741.1 

XM_359718.1 

AMGO6064 Scytalone dehydratase -24.63 

 

1.39E-37 

BUF1 AY846878.1 AMGO2948 1,3,8-

Trihydroxynaphthalene 

reductase 

-24.90 1.19E-21 

 

* Magnaporthe Grisea Oryza Sativa Interaction Database 
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Figure A-1. 1. Inoculation methods. 
Intact method (A-C). A, Leaf sheaths were removed with the leaf blades and roots intact. B, 
Leaf sheaths were laid horizontally in a plastic tray and inoculated by injecting the spore 
suspension. C, Roots were covered with wet paper towels and the try covered with clear plastic 
wrap to maintain humidity. Excised method (D). Leaf sheaths were dissected into 6 to 7 cm 
length segments. Four to five segments were laid horizontally over plastic or metallic spiral-
shaped supports to hold them in Petri dishes containing wet paper towels for humidity. E, 
Diagrammatic representation of dissected-sheath tissues for microscopic analysis of fungal 
growth and plant cell responses. 
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Figure A-1. 2. Fungal development. 
Fungal development on Yashiro-mochi leaf sheath epidermal cells. Epidermal samples were 
dissected at 24 and 36 hours after inoculation and examined by DIC and fluorescent microscopy. 
Images were acquired using a Zeiss AxioCam HRc camera and analyzed with Zeiss Axiovision 
digital software. 
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