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Abstract 

Structural elements made of fibrous composites are increasingly used in aerospace, 

automotive, civil and marine structures due to their high stiffness/strength-to-weight ratio and 

corrosion resistance properties.  Most of the composite structural elements are thin-walled and 

their design is often controlled by stability considerations mainly due to slenderness effects. Hence, 

for thin-walled slender composite beams, lateral torsional buckling (LTB) is the dominant failure 

mode regardless of the fiber orientations.  

In this study, closed form analytical solutions for generally anisotropic (arbitrary layup) 

thin-walled rectangular-section cantilever and I-shape beams under pure bending are presented. 

Corresponding differential equations are formulated using the kinematics, constitutive and 

equilibrium equations for the beams and solved using infinite series approach. Restrained warping 

is also considered in the formulation for I-section beam. A parametric study is performed to 

investigate the effects of beam length to depth ratio (l/h) and flange and web thickness effects on 

the critical buckling load. Good agreement between analytical solution and finite element results 

was obtained for both section types. The solution is also validated against Timoshenko’s classical 

buckling solution for isotropic beam for both rectangular and I-sections and a perfect match was 

observed. Analytical solutions could be adapted for rectangular or I-section beams subjected to 

various loading and boundary conditions. The solution is equally applicable for hybrid thin-walled 

laminated beams for the given sections. Some experiments on basic orthotropic beams are also 

conducted. 
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Abstract 

 Structural elements made of fibrous composites are increasingly used in aerospace, 

automotive, civil and marine structures due to their high stiffness/strength-to-weight ratio and 

corrosion resistance properties.  Most of the composite structural elements are thin-walled and 

their design is often controlled by stability considerations mainly due to slenderness effects. Hence, 

for thin-walled slender composite beams, lateral torsional buckling (LTB) is the dominant failure 

mode regardless of the fiber orientations.  

In this study, closed form analytical solutions for generally anisotropic (arbitrary layup) 

thin-walled rectangular section cantilever and I-shape beams under pure bending are presented. 

Corresponding differential equations are formulated using the kinematics, constitutive and 

equilibrium equations for the beams and solved using infinite series approach. Restrained warping 

is also considered in the formulation for I-section beam. A parametric study is performed to 

investigate the effects of beam length to depth ratio (l/h) and flange and web thickness effects on 

the critical buckling load. Good agreement between analytical solution and finite element results 

was obtained for both section types. The solution is also validated against Timoshenko’s classical 

buckling solution for isotropic beam for both rectangular and I-sections and a perfect match was 

observed. Analytical solutions could be adapted for rectangular or I-section beams subjected to 

various loading and boundary conditions. The solution is equally applicable for hybrid thin-walled 

laminated beams for the given sections. Some experiments on basic orthotropic beams are also 

conducted. 
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Chapter 1 - Introduction 

1.1 Overview 

Structural materials can be classified into four basic groups: composites, polymers, 

ceramic, and metals. Composites are made of two or more materials combined in a macroscopic 

structural unit. This implies that metal alloys are not considered composites as the structural unit 

is formed at the microscopic level. Composites are very useful in the sense that required properties 

could be achieved by combining the properties of each constituent material separately.  

Composite fibers are well known and widely used in a variety of applications. However, it 

is unclear when and where exactly humans have first used fibrous composite. Evidence of using 

straw-reinforced bricks in Mesopotamia in Iraq 5,500 years ago indicates that fibrous composites 

have long been used by humans for structural applications [1]. Likewise, native residents of 

Central and South America seemingly used plant fibers in their pottery possibly to protect clay 

against cracking [2].  

Surprisingly most materials are stronger when in fiber form than in bulk form. In the early 

twentieth century, Griffith [3] measured the tensile strength of glass rods and glass fibers. He 

observed that the tensile strength of the rod was inversely proportional to the rod diameter. In other 

words, thinner rods had higher tensile strength compared to rods with larger diameter simply 

because failure inducing surface cracks are less likely to form in thinner rods during fabrication or 

handling. This is similar to the concept of size effect in solid mechanics, which is known as the 

effect of the characteristic size on the nominal strength of an element when geometrically identical 

elements are compared [4]. 

Fibrous composite is the most common type which consists of reinforcing fibers embedded 

in resin or matrix. Resin is only responsible to hold fibers together and maintain their alignment. 
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Fibers serve as the main load carrying element in the layup. Components of different shapes i.e., 

circular, hollow square or rectangular, and I-section are fabricated using different processes. 

Fabrication process for composites depends on the type of matrix and of fiber reinforcement used. 

Common fabrication processes for polymer matrix are: pultrusion, autoclave, filament winding, 

and thermoplastic molding. 

Structural elements made of fibrous composites are now extensively used in aerospace, 

automotive and marine structures due to their high stiffness/strength-to-weight ratio and 

corrosion/fatigue resistance properties.  Most of the composite structural elements are thin-walled. 

A significant advantage of using composite materials in thin-walled section beams e.g., I-beams 

is that the mechanical properties can be optimized for a specific application [5]. For instance, in I-

beam section, web shall contain laminates with +/-45 degree to increase shear resistance while 

flanges are made of unidirectional layups to maximize bending stiffness [6]. In addition, composite 

construction leads to smooth surfaces compared to metals where typically rivets or bolts are needed 

at the connections. This has special importance in aerospace applications as it reduces drag force. 

Boeing 757 and 767 were among the first commercial airliners making extensive use of 

composites. Approximately 30 percent of Boeing 767 exterior surface is made of composite [2] 

and nearly half of Boeing 787 are made of Carbon fiber composites [7]. 

In civil engineering, fiber reinforced composite are mostly used for strengthening 

applications in the form of sheets attached to the member of interest using epoxy. Typical pultruded 

structural shapes are used in lightweight industrial buildings due to their lightweight, corrosion 

resistance, low thermal and electrical conductivity [8]. Similarly, all composite, fiber reinforced 

polymer honeycomb sandwich panels are becoming increasingly popular to use as full-depth 

bridge decks [9].  
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As discussed above, fiber reinforced composites are becoming more prevalent material 

with the advancement in fabrication process and new applications. However, due to their complex 

behavior mainly due to coupling terms i.e., extension-shear, extension-twist, bending-shear, 

bending-twist which depends on the fiber orientation in the layup, design guidelines developed for 

conventional homogeneous or homogenized isotropic materials such as steel or concrete could not 

be applied directly [10].  

Unlike metallic beams where shear deformations are ignored, the ratio of elastic modulus 

and shear modulus (E/G) is about four times larger for composite beams meaning that shear 

deformations shall be considered especially for short span beams [6]. Factors affecting shear 

deformation depend on the length to height ratio, shape of beam section, and material properties. 

Unfortunately, introducing shear deformations into the corresponding equations makes the 

formulation even more complex and non-intuitive. Another complexity arise from the restrained 

warping effects that hasn’t been investigated yet for composite beams with arbitrary layups. To 

the best of author’s knowledge, there is no formulation relating warping effects to shear, bending 

or twisting moments for composite beams having arbitrary layups.  

Design of thin-walled members is often controlled by stability consideration mainly due to 

slenderness effects. Hence, for thin-walled slender composite beams, lateral torsional buckling is 

the dominant failure mode regardless of the fiber orientation. Most of the work in the literature 

corresponds to orthotropic or balanced layups where axial load or bending do not cause twisting. 

This leads to simplified engineering equations that are relatively easy to solve. However, not every 

layup used in practice is orthotropic or balanced.  
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This research is devoted to obtain closed form analytical solutions to the lateral torsional 

buckling problem of rectangular and I-beams with arbitrary layups and takes into account all 

possible couplings between in-plane and out-of-plane loads and deformations.  

 

1.2 Objectives 

The main objectives of this research are: 

 Obtain closed form analytical solutions to the lateral-torsional buckling problem of 

thin-walled rectangular and I-shape beams with arbitrary layups.  

 Validate the solution against experimental and finite element results. 

 Investigate warping and out of plane shear effects on the lateral torsional buckling 

of thin-walled composite section. 

 Develop simplified experimental technique(s) to measure twisting rotation of the 

section as well as vertical and lateral deflection for a load controlled case 

1.3 Scope 

This dissertation includes six chapters describing the step-by-step derivation of required 

equations, solutions, constraints, assumptions and finite element modeling using ABAQUS. 

Chapter two is devoted to the literature review and briefly discusses the contribution by different 

researchers to the buckling problem of thin walled composite beams in general. Chapter three 

presents experimental vs. numerical buckling / post buckling response of cantilever orthotropic 

web beams under tip force. In chapter four, closed form analytical solution for the lateral torsional 

buckling problem of thin walled rectangular beam with arbitrary layups is presented. The solution 

is then validated against experimental and numerical results for a cantilever beam. Chapter five 

deals with lateral torsional buckling of thin-walled I-beams with arbitrary layups under pure 
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bending considering warping and out of plane shear effects. Chapter six concludes research 

findings and provide recommendations for future work. Furthermore, a step-by-step procedure to 

model composite beams in ABAQUS is provided in Appendix.  



1 

Chapter 2 - Literature Review 

Fiber Reinforced Polymer (FRP) composites are widely used in many engineering 

applications especially aerospace industry due to high-strength, lightweight, thermally and 

electrically non-conductive (Glass only, Carbon is conductive), and corrosion resistance 

properties. For example, in fighter aircrafts, vertical and horizontal stabilizers, wing skins, and 

flaps are made of advanced composites causing weight saving of as much as 20 percent [2]. In 

civil engineering, fiber reinforced composite are mostly used for strengthening applications in the 

form of sheets attached to a member of interest using epoxy. Typical pultruded structural shapes 

are also used in lightweight industrial buildings [8]. Similarly, all composite, fiber reinforced 

polymer honeycomb sandwich panels are becoming increasingly popular to use as full-depth 

bridge decks [9]. Composites are also commonly used in sport equipment such as tennis rackets, 

golf clubs, commercial boats, etc. because of high stiffness and lightweight.  

In the construction industry, application of carbon and glass FRP elements for 

strengthening and replacing some typical steel and aluminum elements are becoming increasingly 

popular. Plates, bars and different thin-walled open and closed section structural shapes made of 

carbon or glass FRP are produced by various manufacturers.  

Design of thin-walled open or closed isotropic or anisotropic section is often controlled by 

stability considerations due to slenderness effects. Thin-walled open section beam elements tend 

to experience flexural-torsional buckling prior to material failure when loaded about strong axis. 

Timoshenko’s solution for lateral torsional buckling of isotropic beam and beam-column serves as 

a basis for most of the available solutions in the literature. Vlasov [11] presented the theory of 

open or closed section thin-walled isotropic beams. Based on kinematic assumptions consistent 

with Timoshenko beam theory Barbero et al. [12] presented an approach to study structural 
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response of orthotropic composite beams subjected to bending and axial load. Turvey [13] studied 

the effect of load position on the lateral buckling response of pultruded Glass Reinforced Polymer 

(GRP) cantilever beams. It was concluded that the effect of pre-buckling deformations and any 

geometric nonlinearity should be considered for appropriate correlation between analytical and 

experimental results.  

He and Gao [14] studied the effects of fiber content on the flexural properties of 

unidirectional laminated composite beams. It was observed that fiber volume fraction of 70% leads 

to the largest fracture force while any fiber volume fraction higher than or equal to 80% yield poor 

flexural properties. 

J. N. Reddy [15] presented a generalized non-linear theory for plates using consistent 

strain, and third order displacement field. Murthy [16] presented an improved shear deformation 

theory for anisotropic plates under bending without need for arbitrary shear correction factor.  

J. N. Reddy [17] presented a higher-order shear deformation theory that accounts for 

parabolic distribution of transverse shear strain through the thickness of plate. It is more accurate 

than the first-order shear deformation theory in terms of predicting deflection and stress in 

composite plates. 

Most beam design theories are based on the assumption that plane sections remain plane 

before and after deformation. However, this assumption may not always hold true particularly for 

generally anisotropic composite sections. Kollar and Pluzsik [18] presented a theory where 

corresponding properties can be determined from accurate beam equations using limit transitions 

considering in-plane and torsional warping shear deformations.  

Unlike isotropic materials, carbon FRP composites are linearly elastic until failure along 

fiber direction, which makes the calculations simpler. However, the existence of extension-shear, 
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bending-twist, extension-twist and bending-shear couplings make the calculations a lot more 

complicated. To avoid complexities in calculations, most often researchers and designers consider 

layups to be orthotropic, symmetric, balanced or a combination of them. Orthotropic means that 

normal forces and bending moments applied along the two mutually perpendicular directions in 

the plane of the laminate do not cause shear or twist. In a symmetric layup, there is no in-plane-

out-of-plane coupling which means that in-plane forces do not cause out-of-plane deformations 

(curvatures) and moments do not cause in-plane deformations. For a balanced laminate, there is 

no extension-shear coupling. 

 

2.1 Buckling of Thin-Walled Rectangular Beams 

 Ahmadi and Rasheed [19] presented a semi-analytical approach to determine critical load 

for a simply supported thin-walled composite beam with lateral torsional buckling as dominant 

failure mode. Good agreement between the proposed solution and finite element results is reported 

by the authors. Symmetric and anti-symmetric balanced angle-ply laminate of 20 degree seems to 

have the highest buckling load in its category. Vo and Lee [20] developed a model to analyze 

flexural, torsional and flexural torsional buckling of thin-walled composite box beams under axial 

load. Their model is based on classical laminated plate theory which takes into account flexural 

torsional coupling for any arbitrary layup and different boundary conditions. 

 

2.2 Buckling of Thin-Walled I-Beams 

Davalos and Qiao [10] studied flexural-torsional and lateral-distortional buckling response 

of wide flange balanced-symmetric pultruded beams. Using the principles of energy, an equation 

was derived for the total potential energy for flexural torsional buckling using nonlinear elastic 
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theory. Lee and Kim [21] presented a generalized analytical model which is applicable to flexural, 

torsional or flexural-torsional buckling of composite I-sections with arbitrary layups under axial 

load. Kabir and Sherbourne [22] have studied the interactive buckling of fibrous composite I-

section beams. It was concluded that when local buckling and overall lateral buckling are viewed 

as separate entities, they result in stable post critical behavior respectively. However, when 

combined, leads to more degradative effect on the failure load capacity of thin-walled beams. 

Cardoso and Vieira [23] presented explicit equations to estimate local buckling critical 

stress of thin walled composite beam under compression or pure bending. In addition to 

considering interaction between flange and web and different orthotropy ratios, the procedure 

allows for a range of flange and web thicknesses and flange to web ratios. 

Zeinali, Nazari, and Showkati [24] performed experimental-numerical study on lateral 

torsional buckling of pultruded FRP I-section beams having different span to height ratios under 

pure bending. Using Eurocode 3 provisions, reasonable agreement between experimental and 

numerical results has been reported. 

Pandey, Kabir, and Sherbourne [25] have studied the optimal fiber orientation to enhance 

lateral buckling strength of thin-walled open section composite beams. They concluded that for I-

section beams with unidirectional flange layups, the web fiber angle has significant influence on 

lateral buckling of long span beams. Additionally, for length to height ratio (l/h ) of 12 or higher, 

optimal fiber orientation for the flanges and web are 0° and +/-45° respectively. Barbero and 

Raftoyiannis [26] studied the elastic buckling modes of pultruded I-beams for different loading 

conditions. It was concluded that coupling of local and lateral buckling modes always occurs due 

to lower material stiffness in the transverse direction. Moreover, lateral buckling was found to be 

the dominant failure mode for I-beams with high depth to width ratios while coupled local and 
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distortional buckling for lower depth to width ratios contributed to the reduction in the critical load 

compared to pure local or pure lateral buckling loads. 

2.3 Buckling of Beams with Generalized Sections  

Mottram [27] found that the classical one-dimensional isotropic theories for lateral 

torsional buckling of beam could be adapted for orthotropic composite beams with proper 

substitution of moduli parameters. Kollar and Pluzsik [28] derived stiffness matrix for thin-walled 

composite open and closed section beams with arbitrary layup ignoring the effects of shear 

deformations and restrained warping. Pluzsik and Kollar [29] developed simple expressions to 

determine the effect of shear deformations for thin-walled beams having symmetrical, 

unsymmetrical, orthotropic or anisotropic layups. They demonstrated that warping stiffness 

derived for orthotropic beams could be equally applied to open section anisotropic beams with 

balanced layups. Likewise, Pluzsik and Kollar [30] presented a theory for torsion of closed section 

thin-walled orthotropic beams considering shear deformation due to restrained warping induced 

torque. 

Shan and Qiao [31] performed a combined analytical and experimental study to determine 

flexural torsional buckling of pultruded C-shape beam taking into account shear effects and 

bending-twist coupling. Comparison between experimental and finite element loads show that the 

latter gives higher buckling loads for nearly all of the cases considered.  

Massa and Barbero [32] presented a simple approach for analysis of thin-walled composite 

beams subjected to torque, bending, axial, and shear forces. Instead of geometric properties of the 

cross section used in the classical beam theory i.e., area, first moment of area, center of gravity, 

they used equivalent mechanical properties such as axial stiffness, mechanical first moment of 

area, and mechanical center of gravity in their formulation.  
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Kollar [33] studied the stability of open section thin-walled orthotropic axially loaded 

columns using modified Vlasov’s theory in which the transverse shear and restrained warping 

induced shear deformations were considered. The solution clearly gives the effect of shear 

deformation on the buckling load.  
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Chapter 3 - Experimental vs. Numerical Buckling/Post-Buckling 

Response of Cantilever Orthotropic Web Beams Under Tip Force 

3.1 Abstract 

A combined numerical and experimental study of lateral torsional buckling of orthotropic 

rectangular section beam is presented. Pre and post-buckling response of beams is studied using 

ABAQUS Riks analysis and compared with experimental results. Timoshenko’s solution with 

replacement stiffnesses is adopted to calculate the lateral torsional buckling load of six orthotropic 

beams. Four beams with 0° layups and two beams with 90° layups are prepared in lab. Beams had 

different length to height (l/h) ratios ranging from 6.67 to 20 to study its effect on the critical load. 

All beams are assumed cantilever and tested under a concentrated load at the free end. Two laser 

pointers mounted horizontally at the free end are used to measure twisting rotation of beam section 

(β) for every load increment. Load vs. β plots are generated and compared with numerical and 

analytical results. The proposed experimental technique could be adopted to study lateral-torsional 

buckling response of beams with arbitrary fiber orientations (generally anisotropic) under different 

load and support conditions. The technique also helps to generate load vs. lateral and vertical 

deflection simultaneously while measuring the section twisting rotation angle (β). 
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3.2 Introduction 

Fiber Reinforced Polymer (FRP) composites are widely used in many engineering applications 

especially aerospace industry due to their high-strength, lightweight and corrosion resistance 

properties. In the construction industry, application of carbon and glass FRP elements for 

strengthening and replacing some typical steel and aluminum elements is rapidly increasing. 

Plates, bars and different thin-walled open and closed section structural shapes made of carbon or 

glass FRP are now produced by various manufacturers. Design of thin-walled open or closed 

isotropic or anisotropic section is often controlled by stability considerations due to slenderness 

effects. Specifically, beam elements with thin-walled open section tend to experience flexural-

torsional buckling prior to material failure. Timoshenko and Gere [34] theory for lateral torsional 

buckling behavior of isotropic beam and beam-column elements serves as basis for nearly all 

solutions available in the literature. Vlasov [11] presented the theory of thin-walled isotropic 

beams with open and closed section. Based on kinematic assumptions consistent with 

Timoshenko’s beam theory, Barbero et al. [12] presented an approach to study structural response 

of orthotropic composite beams subjected to bending and axial load. Turvey [13] studied the effect 

of load position on the lateral buckling response of pultruded Glass Reinforced Polymer (GRP) 

cantilever beams. It was concluded that the effect of pre-buckling deformations and any geometric 

nonlinearity should be considered for proper correlation between analytical and experimental 

results.  

Davalos and Qiao [10] studied flexural-torsional and lateral-distortional buckling response of 

wide flange balanced-symmetric pultruded beams. Energy principles were applied to derive total 

potential energy equations for flexural torsional buckling using nonlinear elastic theory. Mottram 

[27] found that the classical one-dimensional isotropic theories for lateral torsional buckling of 
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beam can be adapted for orthotropic composite beams with proper substitution of moduli 

parameters. Kollar and Pluzsik [28] derived stiffness matrix for thin-walled composite open and 

closed section beams with arbitrary layup ignoring the effects of shear deformation and restrained 

warping. Shan and Qiao [31] performed a combined analytical and experimental study to 

determine flexural torsional buckling of pultruded C-shape beam considering shear effect and 

bending-twist coupling. Comparison between experimental and finite element loads show that the 

latter gives higher buckling loads for nearly all cases considered.   

Lee and Kim [21] presented a general analytical model applicable to flexural, torsional or 

flexural-torsional buckling of composite I-beam with arbitrary layups under axial load Ahmadi 

and Rasheed [17] presented a semi-analytical approach to determine critical load for a simply 

supported thin-walled composite beam with lateral torsional buckling as dominant failure mode.  

Good agreement between the semi-analytical solution and finite element prediction is reported by 

the authors.  

Analytical solutions in the literature for buckling analysis of composite beams of different 

cross sections are often verified against finite element results. In this research, a combined 

experimental and numerical study is conducted to determine lateral-torsional buckling load for a 

rectangular section of orthotropic layup. Additionally, Timoshenko’s solution for lateral torsional 

buckling of cantilever beam was adapted by substituting for the lateral bending stiffness and 

torsional constant terms. 

3.3 Composite Beam Fabrication Process 

Wet layup/hand layup method was used to prepare six rectangular beam samples. All beams 

consisted of four laminas of V-Wrap C100 with the properties given in Table 3.1. A two 

component epoxy resin V-Wrap 770 was mixed and applied to the fabric. Properties of V-Wrap 
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770 are presented in Table 3.2. Fabric sheets were cut 50 mm longer on each side than the exact 

dimensions in Table 3.4. A fiber volume fraction (vf) of 0.237 was calculated for all beams. Four 

beams consisted of 0° layups and two beams of 90° layups. Mechanical properties of cured 

laminates are listed in Table 3.3. After 7-days of curing in lab under room temperature, beams 

were cut1 to the exact dimensions. Properties not given in the manufacturer’s technical data sheets 

were calculated using micro/macro-mechanics approach. 

 

Table 3.1: V-Wrap C100 [11] fiber properties (dry) 

Primary fiber direction 0° (unidirectional) 

Weight per square yard 300 g/m2  

Tensile strength 4,480 MPa 

Tensile modulus 234,400 MPa  

Shear modulus 83,722 MPa 

Thickness 0.1651 mm  

Elongation 1.9% 

Poisson’s ratio 0.4 

 

Table 3.2: V-Wrap 770 Epoxy adhesive properties 

Flexural modulus 2,620 MPa  

Shear modulus 1,270 MPa  

Poisson’s ratio 0.0315 

                                                 

1 Beams were cut 70 mm longer than the exact dimensions for embedment at the fixed end. 
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Table 3.3: Cured laminate properties 

Tensile strength 965 MPa  

Young’s modulus at fiber direction, E1 57,488 MPa  

Young’s modulus at transverse  direction, E2 4,198 MPa 

Poisson’s ratio, ʋ12 0.119 

Poisson’s ratio, ʋ21 0.00869 

Shear modulus, G12 2,026 MPa  

Shear modulus, G13 2,026 MPa  

Shear modulus, G23 2,035 MPa  

 

 

Table 3.4: Exact beam dimensions and weight 

Beam Designation Width, 

mm  

Thickness, 

mm  

Length, mm  Weight, N  

C100-500x75 [0]4 74.15  2.4  502  1.27  

C100-500x50 [0]4 49.05  2.62  502  0.91 

C100-500x25 [0]4 23.37 2.79  502  0.45 

C100-400x50 [0]4 49.32  2.67  401  0.74 

C100-500x25 [90]4 25.11 2.34  505  0.44 

C100-400x50 [90]4 48.85  2.37  402  0.69 

Steel beam 316 25  0.609  250  0.35 
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Figure 3.1: Rectangular beams prepared using hand layup method 

before cutting into exact dimensions 
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Figure 3.2: Cutting beam into exact dimensions 

 

3.4 Experimental Setup 

All six beams were tested in cantilever configuration. The clamped end of the beams was 

achieved using a vise. A 3 mm diameter hole was drilled along the longitudinal centerline close to 

the free end of the beam. Beam length was measured from the center of the hole to the clamped 

end. For loading beams at the free end, an annular steel bush of 4 mm diameter was inserted into 

the hole to avoid beam damage due to stress concentration and provide a nearly frictionless surface 

at the contact area of the 550 mm nylon string passing through the hole and connecting the 300 

mm steel rod with eye-bolt on two ends. Two mini laser dot diode module head WL red 650 nm, 

6mm long, 5V, 5mW were attached horizontally using super glue at the top and bottom along 

section length direction at the free end of the beam, Figure 3.3. Mini laser heads were connected 

using MWS 134-AWP wires and powered using 6V Rayovac battery. Bubble level was used to 

make sure the beam is placed horizontally prior to loading.  
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Because the numerical load causing lateral torsional buckling in the beam varied from 2.48 N 

to 51.58 N it was critical to apply load in small increments. Hence, lead shots were used for a 

controlled loading process. A small size plastic bucket weighing 0.12 N was used for putting lead 

shots to load beams with lower capacity. A metal bucket weighing 1.97 N measuring 100x135x135 

mm was used for beams with higher capacity. A PVC frame 510x760x1300 mm with a plexiglass 

measuring 400x760 mm attached vertically to the longer side of the frame was used to mark 

location of the laser dots as it moves during loading. A gridline sheet was attached to the plexiglass 

as shown in Figure 3.5.  

First, location of the two laser dots was marked on the sheet and connected with a straight line 

to serve as reference line for later readings. This was repeated for each load increment and several 

lines with varying orientations were obtained, Figure 3.4. The change in orientation gave the 

corresponding angle of twisting rotation (β) for beam cross-section which was measured using 

protractor. Thus, load vs β plots were generated for each beam. Using the same sheet, horizontal 

and vertical displacement of beam tip can be measured accurately. 
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Figure 3.3: Carbon fiber reinforced plastic (CFRP) beams with mini lasers mounted 

horizontally on the section top and bottom 

 

Figure 3.4: Lines showing change in the twisting rotation angle (β) of the beam section at the 

free end 
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3.5 Numerical Analysis 

Numerical analysis was performed in two steps using ABAQUS. First, find load corresponding 

to the first Eigen mode. Second, use the same load to execute Riks analysis. In the following, each 

step is briefly described. 

3.5.1 Eigen Value Analysis 

Conventional shell with S8R element type and 5 mm element size was used for modeling 

beams in ABAQUS. Mechanical properties of cured laminates (Table 3.3) were either obtained 

from technical data sheets [35] or calculated using micro/macro-mechanics approach [8]. The 

Eigen Value analysis is that performed on Finite Element mesh implemented in the ABAQUS 

software. A unit load was applied at the shear center of beam at the free end. Since ABAQUS 

gives the critical load in terms of Eigen Values, buckling load was calculated by multiplying the 

first Eigen Value by the unit load. Grid Convergence Index analysis according to [36] was 

performed to investigate the effect of mesh refinement on the critical load (Table 3.5). A reduced 

mesh size was observed to have no effect on the buckling load; hence, a 5 mm element size was 

followed throughout this work. To know the response of a similar isotropic beam and verify the 

experimental setup, a steel beam was cut from 316-steel plate to the given dimensions (Table 3.4) 

and solved using Timoshenko’s equation for cantilever beam. 

Table 3.5: C100-500x50 [0]4 Grid Convergence Index (GCI) Analysis 

Mesh Element 

Size 

(mm) 

Critical 

Buckling 

Load, 

Pcr, (N) 

f3-f2 f2-f1 p fh=0 GCI12 GCI23 GCI23/rpGCI12 

1 5 29.519 0.26 0.01 5.68 29.52 0.00042 0.02159 1.00 

2 10 29.524        

3 20 29.780        
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Figure 3.5: CFRP cantilever beam during loading phase 
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Table 3.6: Comparison of results from Eigen value and replacement stiffness 

Beam Designation Buckling load / 

Eigen value, N  

Buckling load / 

replacement 

stiffness, N 

(EigVal-

repl.stiff)/EigVal*100 

(%) 

C100-500x75 [0]4 37.71  29.59  21.53 

C100-500x50 [0]4 29.51  25.47 13.69 

C100-500x25 [0]4 15.13  14.62  3.37 

C100-400x50 [0]4 51.53  42.63  17.27 

C100-500x25 [90]4 2.48  2.51  -1.21 

C100-400x50 [90]4 8.25  7.94  3.75 

Steel beam 316 7.85 N/A N/A 

 

 

3.5.2 Riks Analysis 

Subsequent to step 1, a nonlinear post-buckling analysis was performed using Riks analysis. 

To account for the imperfections, notion loads were applied at the top and bottom node of the free 

end of the section as a couple during step 2. Direction of the notion load was based on the first 

mode shape of the beam and the magnitude varied from 1-2% of the corresponding buckling load. 

The maximum number of increments was assumed 200 and the initial, minimum and maximum 

arc length increment were 0.0005, 1e-35, and 1 respectively. Load vs β plots were generated by 

multiplying load proportionality factor (LPF) by the buckling load (Eigen value) and average 

twisting rotation of the section at the free end was calculated using lateral displacement of the top, 

middle and bottom nodes and section height.  
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3.6 Results and Discussion 

In addition to the Eigen value and Riks analysis, the critical load causing lateral torsional 

buckling is calculated using replacement stiffness approach which adapts Timoshenko’s solution 

with modified stiffness. It is valid for orthotropic beams only.  

 

 𝑃𝑐𝑟 =
4.013

𝑙2
√𝐸𝐼𝜂𝐶 Eq. (3.1) 

 

 𝐸𝐼𝜂 =
𝑏

𝛿11
 Eq. (3.2) 

 

 𝐶 = 𝐺𝐼𝑡 = 4(
𝑏

𝛿66
) Eq. (3.3) 

 

Where b is the height of section in mm, 𝒍 is beam length in mm, δ11 and δ66 are elements of the 

compliance matrix relating curvatures Kx and Kxy to bending moment Mx, and torsional moment 

Mxy, respectively [32, 35].  

Buckling load from replacement stiffness method (Table 3.6 ) is in good agreement with first 

Eigen value for C100-500x25 [0]4, C100-500x25 [90]4 and C100-400x50 [90]4. They tend to be 

the same for l/h ratio greater than or equal to 20. However, there is a significant difference between 

the two buckling loads for shorter span beams (smaller l/h ratios) of 0° layups (Figure 3.5, 3.6, 

3.7). In general, replacement stiffness method gives conservative results for shorter-span 
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orthotropic beams. One reason might be that such beams are affected by lateral-distortional 

instability as concluded in [31] which is not taken into account in the replacement stiffness method.  

Experimental results match well with Riks analysis for all beams except C100-400x50 [90]4 

where post-buckling stiffening happens at a higher rate when β is greater than 6 degrees.  This 

could be due to the smaller load increments resulting in insignificant change in the angle β that is 

difficult to accurately measure using a regular protractor. Likewise, in Figure 3.6 to Figure 3.9 the 

angle β is assumed unchanged for the few initial readings as β was measured using regular 

protractor and small changes in angle were not captured. 

A notion load equivalent to 0.5-2% of the first Eigen value was used in the Riks analysis to 

account for the imperfections and was applied at the top and bottom node of the free end as a 

couple. However, because C100-500x25 [90]4 had extremely high imperfections, notion load was 

increased to 20%. Graphs from Riks analysis with 1% and 20% notion loads are presented in 

Figure 3.10.  

Maximum longitudinal stress and shear stress from the nonlinear Riks analysis in the 90° 

layups at the onset of buckling was checked to see how close they are to the failure as such layups 

have very low transverse tensile and shear strengths. These were found to be σ11,max=4.34 MPa, 

σ12,max=18.7 MPa for C100-500x25 [90]4 and σ11,max=4.08 MPa, σ12,max=12.4 MPa for C100-

400x50 [90]4 which are much lower than the strength in transverse tension (41 MPa) and in-plane 

shear (80 MPa) depicted for typical carbon FRP with 60% fiber volume fraction [8]. These figures 

are not expected to change drastically when the fiber volume fraction is lower. Also, in-plane shear 

is known to behave in a nonlinear fashion which affects the deformation more than the stresses. It 

would be advisable to include nonlinear in-plane shear in future work. 
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To capture post-buckling response, all beams were loaded beyond their first Eigen value 

despite significant deformations were observed at the corresponding load. Unlike a simple 

bifurcation problem, it is difficult to find the exact buckling load from Figure 3.6– Figure 3.11 

because of the stiffening effects taking place during post-buckling response as well as 

imperfections in the beams. 

  For further investigation, a 316-steel beam 250x25x0.609 mm was tested under the same 

boundary and loading conditions to compare the first Eigen value and Timoshenko’s solution with 

experimental results, Figure 3.12. Classical solution for lateral torsional buckling of isotropic 

cantilever beam is given by Timoshenko and Gere [34]. As shown in the figure, experimental curve 

flattens out when reaching Timoshenko’s solution although not capturing the full response due to 

higher load increment after the last point on the curve causing the beam to yield and snap laterally.  

Overall, experimental results are consistent with ABAQUS predictions and the setup successfully 

served its purpose. 
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Figure 3.6: Buckling load vs β for C100-500x75 [0]4 

 

Figure 3.7: Buckling load vs β for C100-500x50 [0]4 
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Figure 3.8: Buckling load vs β for C100-500x25 [0]4 

 

Figure 3.9: Buckling load vs β for C100-400x50 [0]4 
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Figure 3.10: Buckling load vs β for C100-500x25 [90]4 with significant imperfection 

 

 

Figure 3.11: Buckling load vs β for C100-400x50 [90]4 
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Figure 3.12: Buckling load vs β for rectangular steel beam 250x25x0.609 mm 
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3.7 Conclusion 

There seems to be a fundamental difference in the buckling-post buckling response of 0° and 

90° layups. While the 90° layups exercise some plateau curve prior to undergoing post-buckling, 

the 0° layups seem to switch to post-buckling response quickly without undergoing any plateau. 

This may be attributed to the fact that 90° beams behave like isotropic materials where the angle 

of twist mainly remains straight due to the fibers running in the transverse direction. On the other 

hand, 0° beams are very flexible transversely making them more prone to distortion or curvature 

change in the angle of twist at a specific section. On the other hand, the classical solution still 

assumes them to have a constant angle of twist per section. 
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Chapter 4 - Lateral Torsional Buckling Analysis of Thin-Walled 

Cantilever Composite Beams with Arbitrary Layups 

4.1 Abstract 

In this chapter, lateral torsional buckling of a rectangular cantilever beam with arbitrary 

layups under a single transverse load at the tip is investigated. Analytical solution is derived using 

classical laminated plate theory and verified both experimentally and numerically using ABAQUS. 

A differential equation for the lateral torsional buckling with variable coefficients is formulated 

using the kinematics, constitutive and equilibrium equations. The differential equation is then 

solved using the infinite series approach yielding closed-form solutions that favorably compares 

to the numerical and experimental results confirming their accuracy. The analytical solution can 

be easily adapted for generally anisotropic (arbitrary layup) thin-walled rectangular beams with 

different load and boundary conditions. As part of the experimental work, four beams with 0-

degree layups and two beams with 90-degree layups each having four layers are prepared in the 

lab. The length to depth ratio (l/h) varied from 6.67 to 20 for the beams. Lateral and vertical 

displacements as well as the twisting rotation of beam section (β) is measured accurately using 

laser pointers for every load increment. Load vs. β plots are generated and compared with nonlinear 

Riks analysis results using ABAQUS. A parametric study is also conducted to investigate the effect 

of various parameters on the buckling response. 

  



28 

 

4.2 Introduction 

Structural elements made of Fiber Reinforced Polymer (FRP) composites are now 

extensively used in aerospace, automotive and marine structures due to their high stiffness-to-

weight ratio and corrosive resistance properties. In civil engineering structures, FRP composite 

elements are increasingly used due to their cost and structural efficiency.  Most of the composite 

structural elements are thin-walled and one of the most significant advantage they offer is that 

mechanical properties can be optimized for specific applications [5]. For instance, in I-beam 

section, web shall contain laminates with +/-45 degree to increase shear resistance while flanges 

are made of unidirectional layups to maximize bending stiffness.  

In civil engineering structures, fiber reinforced composite are mostly used for 

strengthening applications in the form of sheets attached to a member using epoxy. Similarly, 

typical pultruded structural shapes are used in lightweight industrial buildings due to their 

lightweight, corrosion resistance, low thermal and electrical conductivities [8]. Another 

application would be the All-Composite Fiber Reinforced Polymer Honeycomb Sandwich Panels 

which are increasingly used as full-depth bridge decks [9].  

As discussed above, fiber reinforced composites are becoming more prevalent material 

with the advancement in fabrication process and new applications. However, their behavior is more 

complex because in-plane forces could cause out-of-plane deformations and bending moments 

could cause in-plane deformations depending on the orientation of fibers in a particular layup. As 

a result, design guidelines developed for conventional isotropic materials such as steel or concrete 

could not be applied directly [10]. Another complexity arise because of the prominent shear 

deformations unlike most metallic beam elements where shear deformations are significantly 
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small. The reason for having such large shear deformations is the ratio of elastic and shear moduli 

(E/G) which is about four times larger than most metallic elements. Research show that shear 

deformations shall be considered especially for short span beams [6]. Factors affecting shear 

deformation depend on the length to height ratio, shape of beam section, and material properties. 

As with thin-walled open section metallic elements, shear deformations due to restrained 

warping is another source of complication in calculations. To the best knowledge of the author, 

there is no formulation relating warping effects to shear, bending or twisting moments for 

composite beams with arbitrary layups. A considerable portion of the published work in the 

literature assume layups to be orthotropic; meaning that normal forces and bending moments 

applied along the two mutually perpendicular directions in the laminate plane do not cause shear 

or twisting. This assumption leads to more simplified engineering equations that are easier to solve. 

Likewise, some of the formulations in the literature assume layups to be either symmetrical or 

balanced; both leading to simplified equations. For symmetrical layups, there is no in-plane-out-

of-plane coupling, which means that in-plane forces do not cause out-of-plane deformations 

(curvatures) and moments do not cause in-plane deformations. While for balanced laminates, there 

is no extension shear coupling. 

Design of thin-walled composite members either open or closed section is often controlled 

by stability consideration mainly due to slenderness effects. Hence, for thin-walled slender 

composite beams, lateral torsional buckling is the dominant failure mode regardless of fiber 

orientation.  

Ahmadi and Rasheed [17] presented a semi-analytical approach to determine critical load 

for a simply supported thin-walled composite beam with lateral torsional buckling as dominant 

failure mode. Good agreement between the semi-analytical solution and finite element results is 
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reported by the authors. Symmetric and anti-symmetric balanced angle-ply laminate of 20 degree 

was found to have the highest buckling load in its category. Vo and Lee [20] Developed a model 

to analyze flexural, torsional and flexural torsional buckling of thin-walled composite box beams 

under axial load. Their model is based on classical laminate plate theory which takes into account 

flexural torsional coupling for any arbitrary layups and different boundary conditions. This 

research is devoted to determine critical load of thin-walled rectangular beam with arbitrary layups 

also called generally anisotropic beams. The critical load here refers to the load causing lateral 

torsional buckling in the beam.  

4.3 Problem Statement 

Obtain a closed form analytical solution for lateral torsional buckling problem of thin-

walled rectangular section cantilever beam with arbitrary layups. 

 

4.4 Formulation 

A model similar to H. Ahmadi and H. A. Rasheed [19] is adopted with the distinction that 

in-plane shear deformations are also taken into account. Out-of-plane shear deformations are 

ignored due to small thickness to height ratio of the beam. A differential equation for lateral 

torsional buckling with variable coefficients is formulated using the kinematics, constitutive and 

equilibrium equations. The equation is then solved using the infinite series approach yielding 

closed-form solutions that favorably compare to the numerical and experimental results confirming 

their accuracy. The solution can be easily adapted for generally anisotropic (arbitrary layup) thin-

walled rectangular beams with different load and boundary conditions. The following sign 

convention is followed for forces, bending and twist moments. 
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Figure 4.1: Direction of positive moment, shear and axial forces 

 

 

 
Figure 4.2: Rectangular section cantilever beam with tip force 
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Figure 4.3: Counterclockwise lateral torsional buckling of cantilever beam 

 

 
Figure 4.4: Internal moment components about original and deformed axes 
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Using classical laminate plate theory, the stiffness matrix for a composite laminate is: 

 

{
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𝛾𝑥𝑦
𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦}

 
 

 
 

 Eq. (4.1) 

The coefficients 𝐴𝑖𝑗 , 𝐵𝑖𝑗 and 𝐷𝑖𝑗 are functions of the thickness, stacking sequence, fiber orientation 

and materials properties of the layers. 𝐴𝑖𝑗 relates in-plane strains to in plane forces, 𝐵𝑖𝑗 relates in-

plane strains and curvatures to moments and in-plane forces respectively, and  𝐷𝑖𝑗  relates 

curvatures to bending moments. [𝐵] is called bending-extension coupling matrix while [𝐷] is 

called bending stiffness matrix. 

For a cantilever beam with the load applied at the tip the force displacement relationship becomes    

 

{
  
 

  
 

𝑁𝑥 = 0
𝑁𝑦 = 0

𝑁𝑥𝑦 =
𝑃

ℎ
∗ ℎ

𝑀𝑥 ∗ ℎ
𝑀𝑦 = 0
𝑀𝑥𝑦 ∗ ℎ }

  
 

  
 

= ℎ

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

     
𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

 

 
𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

     
𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

  
]
 
 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦}

 
 

 
 

   

Eq. (4.2) 

 

Where ℎ is beam depth or section height and 𝑃 is the applied load along negative y-axis. 

For the zero terms on the left hand side of Eq. (4.2), one can write 
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 [
𝐴11 𝐴12 𝐵12
𝐴12 𝐴22 𝐵22
𝐵12 𝐵22 𝐷22

] {

𝜀𝑥
𝜀𝑦
𝐾𝑦
} + [

𝐴16 𝐵11 𝐵16
𝐴26 𝐵12 𝐵26
𝐵26 𝐷12 𝐷26

] {

𝛾𝑥𝑦
𝐾𝑥
𝐾𝑦

} = {
0
0
0
} Eq. (4.3) 

 

Assuming [
𝐴11 𝐴12 𝐵12
𝐴12 𝐴22 𝐵22
𝐵12 𝐵22 𝐷22

] = [𝑄]    and    [
𝐴16 𝐵11 𝐵16
𝐴26 𝐵12 𝐵26
𝐵26 𝐷12 𝐷26

] = [𝑅] 

 [𝑄] {

𝜀𝑥
𝜀𝑦
𝐾𝑦
} + [𝑅] {

𝛾𝑥𝑦
𝐾𝑥
𝐾𝑥𝑦

} = {
0
0
0
} Eq. (4.4) 

{

𝜀𝑥
𝜀𝑦
𝐾𝑦
} in terms of {

𝛾𝑥𝑦
𝐾𝑥
𝐾𝑥𝑦

} equals 

 

{

𝜀𝑥
𝜀𝑦
𝐾𝑦
} = − [

𝐴11 𝐴12 𝐵12
𝐴12 𝐴22 𝐵22
𝐵12 𝐵22 𝐷22

]

−1

[
𝐴16 𝐵11 𝐵16
𝐴26 𝐵12 𝐵26
𝐵26 𝐷12 𝐷26

] {

𝛾𝑥𝑦
𝐾𝑥
𝐾𝑥𝑦

} 

or 

{

𝜀𝑥
𝜀𝑦
𝐾𝑦
} = −[𝑄]−1[𝑅] {

𝛾𝑥𝑦
𝐾𝑥
𝐾𝑥𝑦

} 

Eq. (4.5) 

 

For the nonzero terms of Eq. (4.2) and substituting Eq. (4.5) 

 

{
𝑃

𝑀𝑥 ∗ ℎ
𝑀𝑥𝑦 ∗ ℎ

} = ℎ [
𝐴66 𝐵26 𝐵66
𝐵16 𝐷11 𝐷16
𝐵66 𝐷16 𝐷66

] {

𝛾𝑥𝑦
𝐾𝑥
𝐾𝑥𝑦

}

− ℎ [
𝐴16 𝐴26 𝐵26
𝐵11 𝐵12 𝐷12
𝐵16 𝐵26 𝐷26

] [𝑄]−1[𝑅] {

𝛾𝑥𝑦
𝐾𝑥
𝐾𝑥𝑦

}  

Eq. (4.6) 

 

Assuming [
𝐴66 𝐵26 𝐵66
𝐵16 𝐷11 𝐷16
𝐵66 𝐷16 𝐷66

] = [𝑆] and [
𝐴16 𝐴26 𝐵26
𝐵11 𝐵12 𝐷12
𝐵16 𝐵26 𝐷26

] = [𝑅]𝑇 Eq. (4.6) can be 

written as 
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 {
𝑃

𝑀𝑥 ∗ ℎ
𝑀𝑥𝑦 ∗ ℎ

} = ℎ [𝑆 − 𝑅𝑇𝑄−1𝑅] {

𝛾𝑥𝑦
𝐾𝑥
𝐾𝑥𝑦

}           Eq. (4.7) 

 

2Replacing [𝑆 − 𝑅𝑇𝑄−1𝑅] in the above equation by [

𝐽𝑠 𝐽𝐷𝑠𝑦 𝐽𝐷𝑠𝑡
𝐽𝐷𝑠𝑦 𝐷𝑦 𝐷𝑦𝑡
𝐽𝐷𝑠𝑡 𝐷𝑦𝑡 𝐷𝑡

]  

 {
𝑃

𝑀𝑥 ∗ ℎ
𝑀𝑥𝑦 ∗ ℎ

} = ℎ [

𝐽𝑠 𝐽𝐷𝑠𝑦 𝐽𝐷𝑠𝑡
𝐽𝐷𝑠𝑦 𝐷𝑦 𝐷𝑦𝑡
𝐽𝐷𝑠𝑡 𝐷𝑦𝑡 𝐷𝑡

] {

𝛾𝑥𝑦
𝐾𝑥
𝐾𝑥𝑦

} Eq. (4.8) 

Writing the above equation in structural coordinate system3 

 {
−𝑃
𝑀𝑦′
−𝑀𝑇

} = ℎ [

𝐽𝑠 𝐽𝐷𝑠𝑦 2𝐽𝐷𝑠𝑡
𝐽𝐷𝑠𝑦 𝐷𝑦 2𝐷𝑦𝑡
2𝐽𝐷𝑠𝑡 2𝐷𝑦𝑡 4𝐷𝑡

]{

𝛾𝑥𝑦

−
𝑑2𝑤

𝑑𝑥2

−𝛽′

} Eq. (4.9) 

Note that 𝑀𝑦′ = 𝑀𝑥 ∗ ℎ and 𝑀𝑇 = −2𝑀𝑥𝑦 ∗ ℎ. 

 
−𝑃

ℎ
= (𝐽𝑠𝛾𝑥𝑦 − 𝐽𝐷𝑠𝑦

𝑑2𝑤

𝑑𝑥2
− 2𝛽′𝐽𝐷𝑠𝑡) Eq. (4.10) 

 

 𝛾𝑥𝑦 =

−𝑃
ℎ⁄ + 𝐽𝐷𝑠𝑦

𝑑2𝑤
𝑑𝑥2

+ 2𝛽′𝐽𝐷𝑠𝑡

𝐽𝑠
 

Eq. (4.11) 

 

                                                 

2 Notation for [

𝐽𝑠 𝐽𝐷𝑠𝑦 𝐽𝐷𝑠𝑡
𝐽𝐷𝑠𝑦 𝐷𝑦 𝐷𝑦𝑡
𝐽𝐷𝑠𝑡 𝐷𝑦𝑡 𝐷𝑡

] is followed from [17] with no changes. Note that 𝐽𝑠 for example is one 

term not a multiplication of J and s, same is true for all other elements.  The matrix represents stiffnesses associated 

with:  𝐽𝑠 (shear), 𝐽𝐷𝑠𝑦 (shear-bending), 𝐽𝐷𝑠𝑡 (shear-torsion), 𝐷𝑦 (bending), 𝐷𝑦𝑡 (bending-torsion), 𝐷𝑡 (torsion). 

3  Everything before Eq. (4.8) is based composite coordinate system and notation 
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𝑀𝑦′

ℎ
= 𝐽𝐷𝑠𝑦 (

−𝑃
ℎ⁄ + 𝐽𝐷𝑠𝑦

𝑑2𝑤
𝑑𝑥2

+ 2𝛽′𝐽𝐷𝑠𝑡

𝐽𝑠
)− 𝐷𝑦

𝑑2𝑤

𝑑𝑥2
− 2𝛽′𝐷𝑦𝑡 Eq. (4.12) 

 

Figure 4.4 shows internal moments about original and deformed axes. The direction of the moment 

in the figure is based on the right hand rule. However, in the derivation, the decision whether a 

moment is positive or negative is based on its curvature not the arrow in the figure. For example: 

at a point (𝐿 − 𝑥) from the free end, the correct equation for the twisting moment is 𝑀𝑇 =

−𝑑𝑤/𝑑𝑥 𝑃(𝐿 − 𝑥) + 𝑃(𝑤1 − 𝑤). However, it should have been 𝑀𝑇 =
𝑑𝑤

𝑑𝑥
𝑃(𝐿 − 𝑥) − 𝑃(𝑤1 −

𝑤)  if it was to follow the sign in the figure because the arrow for the first term is directed along 

positive x-axis and negative x-axis for the second term which leads to incorrect twisting moment 

relation. 

 𝑀𝑦′ = −𝑃(𝐿 − 𝑥)𝛽 Eq. (4.13) 

 Substitute 𝑀𝑦′ into Eq. (4.12) 

 

−𝑃(𝐿 − 𝑥)𝛽

ℎ
+
𝐽𝐷𝑠𝑦

𝐽𝑠

𝑃

ℎ
+ 2 (𝐷𝑦𝑡 −

𝐽𝐷𝑠𝑦𝐽𝐷𝑠𝑡

𝐽𝑠
) 𝛽′

= (
𝐽𝐷𝑠𝑦

2

𝐽𝑠
− 𝐷𝑦)

𝑑2𝑤

𝑑𝑥2
 

Eq. (4.14) 

 

 

−
𝑀𝑇

ℎ
= 2𝐽𝐷𝑠𝑡 (

−𝑃
ℎ⁄ + 𝐽𝐷𝑠𝑦

𝑑2𝑤
𝑑𝑥2

+ 2𝛽′𝐽𝐷𝑠𝑡

𝐽𝑠
)− 2𝐷𝑦𝑡

𝑑2𝑤

𝑑𝑥2

− 4𝐷𝑡𝛽
′ 

Eq. (4.15) 

The twisting moment from Figure 4.4 is equal to 
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 𝑀𝑇 = −
𝑑𝑤

𝑑𝑥
𝑃(𝐿 − 𝑥) + 𝑃(𝑤1 − 𝑤) Eq. (4.16) 

Substituting 𝑀𝑇 into Eq. (4.17) and reorganizing the equation becomes 

  𝑑𝑤

𝑑𝑥

𝑃(𝐿 − 𝑥)

ℎ
−
𝑃(𝑤1 − 𝑤)

ℎ
+
2𝐽𝐷𝑠𝑡
𝐽𝑠

𝑃

ℎ
+ 4(𝐷𝑡 −

𝐽𝐷𝑠𝑡
2

𝐽𝑠
)𝛽′

= 2 (
𝐽𝐷𝑠𝑦𝐽𝐷𝑠𝑡

𝐽𝑠
− 𝐷𝑦𝑡)

𝑑2𝑤

𝑑𝑥2
 

Eq. (4.18) 

Equating Eq. (4.19) and (4.17) 

 

−𝑃(𝐿 − 𝑥)𝛽

𝐴ℎ
+
𝐽𝐷𝑠𝑦

𝐽𝑠

𝑃

𝐴ℎ
−
𝐵

𝐴
𝛽′

=
𝑑𝑤

𝑑𝑥

 𝑃(𝐿 − 𝑥)

𝐵ℎ
−
𝑃(𝑤1 − 𝑤)

𝐵ℎ
+ 2

𝐽𝐷𝑠𝑡
𝐽𝑠

𝑃

𝐵ℎ
−
𝐶

𝐵
𝛽′ 

Eq. (4.20) 

 

Where 𝐴 = (
𝐽𝐷𝑠𝑦

2

𝐽𝑠
− 𝐷𝑦),    𝐵 = 2(

𝐽𝐷𝑠𝑦𝐽𝐷𝑠𝑡

𝐽𝑠
− 𝐷𝑦𝑡)     and         𝐶 = 4 (

𝐽𝐷𝑠𝑡
2

𝐽𝑠
− 𝐷𝑡) 

Differentiating Eq. (4.18) with respect to x 

 −
𝑃(𝐿 − 𝑥)𝛽′

𝐴ℎ
+
𝑃𝛽

𝐴ℎ
−
𝐵

𝐴
𝛽′′ =

𝑑2𝑤

𝑑𝑥2
𝑃(𝐿 − 𝑥)

𝐵ℎ
−
𝐶

𝐵
𝛽′′ Eq. (4.21) 

Solving the above equation for 
𝑑2𝑤

𝑑𝑥2
 

𝑑2𝑤

𝑑𝑥2
= − 

𝐵𝛽′

𝐴
+

𝐵𝛽

𝐴(𝐿 − 𝑥)
−

𝐵2ℎ𝛽′′

𝐴𝑃(𝐿 − 𝑥)
+

𝐶ℎ𝛽′′

𝑃(𝐿 − 𝑥)
     

Equating Eq. (4.14) and (4.21) and reorganizing the resulting equation 

 𝛽′′ (𝐶ℎ −
𝐵2ℎ

𝐴
) + 𝛽 (

𝐵

𝐴
𝑃 +

𝑃2(𝐿 − 𝑥)2

𝐴ℎ
) −

𝐽𝐷𝑠𝑦

𝐽𝑠
 
𝑃2(𝐿 − 𝑥)

𝐴ℎ
= 0 Eq. (4.22) 

Multiplying Eq. (4.22) by 𝐴ℎ yields 

𝛽′′(𝐴𝐶 − 𝐵2)ℎ2 + 𝛽[ℎ𝐵𝑃 + 𝑃2(𝐿 − 𝑥)2] −
𝐽𝐷𝑠𝑦

𝐽𝑠
𝑃2(𝐿 − 𝑥) = 0 
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Note that the coefficient 
𝐽𝐷𝑠𝑦

𝐽𝑠
𝑃2of the last term is extremely small for all possible combination of 

fiber orientations and various range of l/h ratios, therefore it is neglected. Assuming 𝐸 = (𝐴𝐶 −

𝐵2), the final differential equation with non-constant coefficients become 

 𝛽′′ + 𝛽 (
|𝐵|

𝐸ℎ
𝑃 +

𝑃2(𝐿 − 𝑥)2

𝐸ℎ2
) = 0 Eq. (4.23) 

To make the equation work for both clockwise and counterclockwise buckling, absolute value of 

𝐵 shall be considered. This is due to the fact that both configurations lead to exactly the same 

equation except the sign of the first term in the bracket which is positive for counterclockwise 

buckling and negative otherwise.    

4.5 Solution of the Lateral Torsional Buckling Equation 

The final differential equation with non-constant coefficients (Eq. (4.23) is solved using infinite 

series approach.  

Assuming  

𝑉 =
|𝐵|

𝐸ℎ
𝑃 , 𝑊 =

𝑃2

𝐸ℎ2
    ,      (𝐿 − 𝑥) = 𝑋 

The equation becomes 

 𝛽′′ + 𝛽(𝑉 +𝑊𝑋2) = 0 Eq. (4.24) 

The solution is assumed to be of the form 

𝛽 = ∑𝑎𝑛𝑋
𝑛

𝛼

𝑛=0

 

Hence,   

𝛽′ = ∑𝑛𝑎𝑛𝑋
𝑛−1

𝛼

𝑛=1
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𝛽′′ = ∑𝑛(𝑛 − 1)𝑎𝑛𝑋
𝑛−2

𝛼

𝑛=2

 

 ∑𝑛(𝑛 − 1)𝑎𝑛𝑋
𝑛−2 + ∑𝑎𝑛𝑋

𝑛

𝛼

𝑛=0

(𝑉 +𝑊𝑋2) = 0                 

𝛼

𝑛=2

 Eq. (4.25) 

 

∑𝑛(𝑛 − 1)𝑎𝑛𝑋
𝑛−2 + 𝑉∑𝑎𝑛𝑋

𝑛

𝛼

𝑛=0

+𝑊 ∑𝑎𝑛𝑋
𝑛+2

𝛼

𝑛=0

= 0                 

𝛼

𝑛=2

 

Replace 𝑛 → 𝑛 + 2 and  𝑛 → 𝑛 − 2 in the first and last terms of the above equation respectively 

∑ (𝑛 + 2)(𝑛 + 2 − 1)𝑎𝑛+2𝑋
𝑛+2−2 + 𝑉∑𝑎𝑛𝑋

𝑛

𝛼

𝑛=0

+𝑊 ∑ 𝑎𝑛−2𝑋
𝑛−2+2

𝛼

𝑛−2=0

= 0                 

𝛼

𝑛+2=2

 

∑(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑋
𝑛 + 𝑉∑𝑎𝑛𝑋

𝑛

𝛼

𝑛=0

+𝑊 ∑𝑎𝑛−2𝑋
𝑛

𝛼

𝑛=2

= 0                 

𝛼

𝑛=0

 

For 𝑛 = 0 and 𝑛 = 1 for the first and second term in the latter equation 

First term of the series:   𝑎0 =  2𝑎2        𝑎1 =  6𝑎3𝑋             

Second term of the series:   𝑎0 =  𝑉𝑎0        𝑎1 =  𝑉𝑎1𝑋   

 

 

2𝑎2 + 6𝑎3𝑋 + 𝑉𝑎0 + 𝑉𝑎1𝑋

+∑[(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 +𝑊𝑎𝑛−2 + 𝑉𝑎𝑛]𝑋
𝑛

𝛼

𝑛=2

= 0     

Eq. (4.26) 

 

2𝑎2 + 𝑉𝑎0 ≡ 0 ;           → 𝑎2 = −
𝑉𝑎0
2

 

(6𝑎3 + 𝑉𝑎1)𝑋 ≡ 0 ;            → 𝑎3 = −
𝑉𝑎1
6
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(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 + 𝑉𝑎𝑛 +𝑊𝑎𝑛−2 ≡ 0  ;   → 𝑎𝑛+2 = −
𝑊𝑎𝑛−2 + 𝑉𝑎𝑛
(𝑛 + 2)(𝑛 + 1)

 

 

 

 

𝛽(𝑋) = ∑𝑎𝑛𝑋
𝑛

𝛼

𝑛=0

= 𝑎0 + 𝑎1𝑋 + 𝑎2𝑋
2 + 𝑎3𝑋

3 + 𝑎4𝑋
4

+ 𝑎5𝑋
5+ .  .  . 𝑎𝑛𝑋

𝑛 

Eq. (4.27) 

 

 𝛽′(𝑋) = 𝑎1 + 2𝑎2𝑋 + 3𝑎3𝑋
2 + 4𝑎4𝑋

3 + 5𝑎5𝑋
4+ .  .  . 𝑛 𝑎𝑛𝑋

𝑛−1 Eq. (4.28) 

Applying the boundary condition  

𝛽′(𝑋 = 0) = 0     →  𝑎1 = 0 

Because 𝑎3 is a function of 𝑎1; hence 𝑎3 = 0 

𝑛 =  2 𝑎4 = −
𝑊𝑎0 + 𝑉𝑎2

3 ∗ 4
  

𝑛 =  3 𝑎5 = −
𝑊𝑎1 + 𝑉𝑎3

5 ∗ 4
= 0  

𝑛 =  4 𝑎6 = −
𝑊𝑎2 + 𝑉𝑎4

6 ∗ 5
  

𝑛 =  5 𝑎7 = −
𝑊𝑎3 + 𝑉𝑎5

7 ∗ 6
= 0  

𝑛 =  6 𝑎8 = −
𝑊𝑎4 + 𝑉𝑎6

8 ∗ 7
  

. 

. 

. 

. 

. 

. 
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𝑛 =  32 𝑎34 = −
𝑊𝑎28 + 𝑉𝑎30
32 ∗ 31

  

 

 𝛽(𝑋 = 𝐿) = 0 = 𝑎0 + 𝑎2𝐿
2 + 𝑎4𝐿

4 + 𝑎6𝐿
6+ .  .  .  𝑎32𝐿

32 Eq. (4.29) 

 

The series tend to converge at the 16th term i.e., 𝑎32𝐿
32. To confirm this finding, the series was 

further extended to 𝑎50𝐿
50 and the contribution of the terms between 𝑎32𝐿

32 𝑎𝑛𝑑 𝑎50𝐿
50 became 

practically zero regardless of the layup stacking sequence and properties. The series is thus 

considered fully converged at the 16th term and the solution is called as closed form solution based 

on the current finding. However, further verification of the accumulative contribution of higher 

order terms beyond the 16th term is deferred to future work. 

The coefficients of Eq. (4.29) are all functions of 𝑎0; therefore, it can be taken as a common factor. 

Knowing that 𝑊  and 𝑉  are function of 𝑃, Eq. (4.29) could be solved using Excel Goal Seek 

function for the critical load causing lateral torsional buckling in the beam. 

 

4.6 Finite Element Modeling 

Finite Element Analysis was performed in ABAQUS. Conventional shell type planar 

element is used and the buckling load is calculated from linear perturbation. A unit load is applied 

at the shear center of the free end and the corresponding first Eigen value gives the critical lateral 

torsional buckling for the beam. S8R element has been used which is recommended for doubly 

curved thick shell elements. Grid Convergence Index (GCI) analysis according to [36] is 

performed to investigate mesh refinement effect on the critical load (Table 4.1).  An element size 

of 5 mm was selected for the beams considered. A step-by-step procedure to model rectangular 
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and I-section beam is provided in Appendix A. Analytical and ABAQUS results are reported in 

the subsequent section for Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced 

Polymer (GFRP). 

 

Table 4.1: Rectangular CFRP Beam4 500x50mm (30/-40/50/-60) Grid Convergence Index 

(GCI) Analysis 

Mesh Element 

Size 

(mm) 

Critical 

Buckling 

Load, Pcr, 

(N) 

f3-f2 f2-f1 p fh=0 GCI12 GCI23 GCI23 

/rpGCI12 

1 2.5 0.13182 1.3E-4 3E-5 2.12 0.13 0.00853 0.036982 1.00 

2 5 0.13185        

3 10 0.13198        

 

Table 4.2: Properties of CFRP laminates prepared in lab  

Young Modulus at fiber direction, EL 57488 MPa 

Young Modulus at Transverse direction, ET 4198 MPa 

Poisson's ratio, vLT 0.119   

Poisson's ratio, vTL 0.00869   

Shear Modulus, G12 2026 MPa 

Shear Modulus, G13 2026 MPa 

Shear Modulus, G23 2035 MPa 

 

                                                 

4 Thickness of 0.1mm has been assumed for each layup making the total thickness 0.4mm for each laminate. 

Beam properties are reported in Table 4.3. 
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Table 4.3: Properties of CFRP laminates with arbitrary layups 

Young Modulus at fiber direction, EL 142730 MPa 

Young Modulus at Tranverse direction, ET 13790 MPa 

Poisson's ratio, vLT 0.3   

Poisson's ratio, vTL 0.028985   

Shear Modulus, G12 4640 MPa 

Shear Modulus, G13 4640 MPa 

Shear Modulus, G23 3030 MPa 

 

Table 4.4: Properties of GFRP laminates with arbitrary layups 

Young Modulus at fiber direction, EL 45000 MPa 

Young Modulus at Tranverse direction, ET 12000 MPa 

Poisson's ratio, vLT 0.28   

Poisson's ratio, vTL 0.074667   

Shear Modulus, G12 5500 MPa 

Shear Modulus, G13 5500 MPa 

Shear Modulus, G23 4950 MPa 
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Figure 4.5: Deformed shape of C100-400x50 mm [0]4 with the Eigen Value of 51.533 N  

 

Figure 4.6: Deformed shape of C100-400x50 mm [90]4 with the Eigen Value of 8.249 N  
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Figure 4.7: Deformed shape of C100-500x25 mm [0]4 with the Eigen Value of 15.130 N  

 

Figure 4.8: Deformed shape of C100-500x25 mm [90]4 with the Eigen Value of 2.486 N  
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Figure 4.9: Deformed shape of C100-500x50 mm [0]4 with the Eigen Value of 29.519 N  

 

 

Figure 4.10: Deformed shape of C100-500x75 mm [0]4 with the Eigen Value of 37.709 N  
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4.7 Results and Discussion 

Analytical and finite element results for Carbon Fiber Reinforced Polymer (CFRP) and 

Glass Fiber Reinforced Polymer (GFRP) laminates with arbitrary layups for a cantilever beam are 

presented in Figure 4.11. The section was rectangular with a length to depth ration (l/h) of 10, i.e., 

height=50 mm, length=500 mm. No warping stresses were considered.  

In addition to the laminates with arbitrary layups, buckling load using Eq. (4.29) was 

calculated for the six CFRP beams manufactured in laboratory with 0֯ and 90֯ fiber orientations and 

explained in Chapter 3.  Experimental results along with pre-post buckling responses have been 

presented in Figure 3.6-Figure 3.11. A comparison between finite element results and that of Eq. 

(4.29) is given in the following table. 

 

Table 4.5: ABAQUS / Numerical and theoretical buckling load using Eq. (4.29)  

Beam Designation5 ABAQUS buckling load/  

Eigen value, N  

Buckling load from   

Eq. (4.29), N 

C100-500x75 [0]4 37.71  29.59  

C100-500x50 [0]4 29.51  25.46  

C100-500x25 [0]4 15.13  14.59  

C100-400x50 [0]4 51.53  42.59  

C100-500x25 [90]4 2.48  2.48  

C100-400x50 [90]4 8.25   7.92 

 

                                                 

5 See Table 4.2 for laminate properties 
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As can be seen, Eq. (4.29) is on the conservative side however the difference for 0֯ 

laminates is greater especially when the l/h ratio is higher. One main reason for this difference 

might be that the twist angle or the angle of section rotation  (𝛽) is assumed constant in the 

formulation as is assumed by Timoshenko. However, it was observed both experimentally and 

from the nodal displacements of the free end that (𝛽) is not constant along the section height. In 

fact, the difference for nearly all other layups investigated is considerably small and the change 

in (𝛽) along the height was negligible. In Table 4.6 buckling load from Eq. (4.29) is compared 

with ABAQUS and Timoshenko’s classical solutions. 

Table 4.6: Buckling load comparison for rectangular section cantilever beam  

Material 
Height 

(mm) 

Length 

(mm) 

Buckling 

load using 

Eq. (4.29) 

(N) 

ABAQUS 

buckling 

load/Eigen 

Value (N) 

Timoshenko’s 

Solution 

(N) 

Steel 

(t=2.62mm) 

49.05 500 292.69 302.35 292.78 

 

Table 4.7: ABAQUS / Numerical and theoretical buckling load using Eq. (4.29) for CFRP 

laminates with arbitrary layups 

Layup6 
Height 

(mm) 

Length 

(mm) 

Analytical/Buckling 

load using Eq. 

(4.29) 

(N) 

ABAQUS 

buckling 

load/Eigen 

Value (N) 

Error7  

(%) 

0/0/0/0 50 500 0.220 0.262 -19.09 

90/90/90/90 50 500 0.069 0.072 -4.35 

                                                 

6 Thickness of 0.1mm has been assumed for each layup making the total thickness 0.4mm for each laminate. Beam 

properties are reported in Table 4.3. 

7 𝐸𝑟𝑟𝑜𝑟(%) = (𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢)/(𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) ∗ 100 
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30/-30/30/-30 50 500 0.290 0.306 -5.52 

45/-45/45/-45 50 500 0.198 0.206 -4.04 

60/-60/60/-60 50 500 0.151 0.155 -2.65 

60/-60/45/-45 50 500 0.138 0.148 -7.25 

30/-30/45/-45 50 500 0.191 0.203 -6.28 

30/-30/60/-60 50 500 0.136 0.144 -5.88 

30/-30/0/0 50 500 0.168 0.186 -10.71 

30/-30/0/90 50 500 0.116 0.124 -6.90 

30/30/30/30 50 500 0.077 0.084 -9.09 

30/-30/-30/30 50 500 0.160 0.171 -6.88 

0/90/90/0 50 500 0.208 0.245 -17.79 

30/-60/-60/30 50 500 0.091 0.101 -10.99 

0/90/0/90 50 500 0.153 0.172 -12.42 

-45/30/-30/45 50 500 0.200 0.21 -5.00 

0/0/90/90 50 500 0.114 0.125 -9.65 

90/0/0/90 50 500 0.101 0.109 -7.92 

15/0/-15/30 50 500 0.129 0.142 -10.08 

30/-40/50/-60 50 500 0.122 0.132 -8.20 

15/30/-45/15 50 500 0.120 0.136 -13.33 
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Table 4.8: ABAQUS / Numerical and theoretical buckling load using Eq. (4.29) for GFRP 

laminates with arbitrary layups 

Layup8 
Height 

(mm) 

Length 

(mm) 

Analytical/Buckling 

load using Eq. 

(4.29) 

(N) 

ABAQUS 

buckling 

load/Eigen 

Value (N) 

Error 

(%) 

0/0/0/0 50 500 0.135 0.147 -8.89 

90/90/90/90 50 500 0.070 0.073 -4.29 

30/-30/30/-30 50 500 0.139 0.147 -5.76 

45/-45/45/-45 50 500 0.119 0.124 -4.20 

60/-60/60/-60 50 500 0.098 0.102 -4.08 

60/-60/45/-45 50 500 0.099 0.104 -5.05 

30/-30/45/-45 50 500 0.121 0.126 -4.13 

30/-30/60/-60 50 500 0.100 0.105 -5.00 

30/-30/0/0 50 500 0.115 0.123 -6.96 

30/-30/0/90 50 500 0.090 0.094 -4.44 

30/30/30/30 50 500 0.079 0.084 -6.33 

30/-30/-30/30 50 500 0.100 0.105 -5.00 

0/90/90/0 50 500 0.129 0.140 -8.53 

30/-60/-60/30 50 500 0.086 0.091 -5.81 

0/90/0/90 50 500 0.104 0.111 -6.73 

-45/30/-30/45 50 500 0.122 0.127 -4.10 

0/0/90/90 50 500 0.093 0.099 -6.45 

                                                 

8 Thickness of 0.1mm has been assumed for each layup making the total thickness 0.4mm for each laminate. 

Beam properties are reported in Table 4.4. 
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90/0/0/90 50 500 0.081 0.085 -4.94 

15/0/-15/30 50 500 0.099 0.106 -7.07 

30/-40/50/-60 50 500 0.099 0.104 -5.05 

15/30/-45/15 50 500 0.100 0.107 -7.00 
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4.8 Conclusion 

In this study a generalized analytical solution based on classical laminated plate theory is 

presented to determine lateral torsional buckling of a rectangular composite beams with arbitrary 

layups.  The solution can be adapted for rectangular section beam beams with various loading and 

support conditions by using proper boundary conditions. The solution favorably compares with 

finite element results for beams with arbitrary layup where lateral torsional buckling is the 

dominant buckling mode. Finite element results tend to be on the higher side especially for 

laminates with 0-degrees. This might be due to the variation in twisting angle (𝛽) along beam 

height similar to distortional buckling, which is not accounted for in the formulation. The model 

is equally applicable to generally anisotropic beams with symmetrical or unsymmetrical layups.  
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Chapter 5 - Lateral Torsional Buckling Analysis of Thin-Walled 

Anisotropic Simple I-Beams under Pure Bending 

5.1 Abstract 

In this chapter, lateral torsional buckling of I-beams with arbitrary layups under pure 

bending is investigated. Thin-walled I-beams can buckle with various modes depending on the 

geometry of the cross-section, material properties, loading and support conditions. Common 

buckling modes are: i.e., lateral, local or a combination of local and lateral which is called 

distortional buckling. This study assumes that no local or distortional buckling occurs prior to 

lateral torsional buckling. In other words, beams have high depth to width ratios and are not 

extremely thin. 

Analytical solution is derived using classical laminated plate theory and verified 

numerically using ABAQUS. The solution is also validated against Timoshenko’s classical 

solution for isotropic I-beam. Differential equation for the lateral torsional buckling with constant 

coefficients is formulated using the kinematics, constitutive and equilibrium equations. The 

differential equation is then solved using the infinite series approach yielding closed-form 

solutions that favorably compares to the finite element results confirming their accuracy. The 

analytical solution could be adapted for thin-walled composite beams with symmetrical layups 

under different load and boundary conditions. However, this is beyond the scope of this study.  

A parametric study is also performed to investigate length to depth (l/h) and flange and 

web thickness effects on the critical load. 
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5.2 Introduction 

Thin-walled Carbon Fiber Reinforced Polymer (CFRP) structural shapes are increasingly 

used in aerospace, automotive, civil and marine structures due to their high stiffness/strength-to-

weight ratio, excellent energy absorption, durability, and corrosion resistance characteristics. 

One of the commonly used shapes is CFRP I-shape, which is widely known for its efficient 

load transfer. However, as for many other thin-walled CFRP slender shapes, lateral torsional 

buckling is the common failure modes for I-sections along with local or distortional buckling 

which are beyond the scope of this study. In this chapter, CFRP I-beam under pure bending with 

arbitrary layups known as generally anisotropic are studied considering out-of-plane shear and 

warping effects. 

Davalos and Qiao [10] studied flexural-torsional and lateral-distortional buckling response 

of wide flange balanced-symmetric pultruded beams. Using the principles of energy, an equation 

was derived for the total potential energy for flexural torsional buckling using nonlinear elastic 

theory. Lee and Kim [21] presented a generalized analytical model which is applicable to flexural, 

torsional or flexural-torsional buckling of composite I-sections with arbitrary layups under axial 

load. Kabir and Sherbourne [22] have studied the interactive buckling of fibrous composite I-

section beams. It was concluded that when local buckling and overall lateral buckling are viewed 

as separate entities, they result in stable post critical behavior respectively. However, when 

combined, leads to more degradative effect on the failure load capacity of thin-walled beams. 

 Cardoso and Vieira [23] presented explicit equations to estimate local buckling critical 

stress of thin walled composite beam under compression or pure bending. In addition to 
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considering interaction between flange and web and different orthotropy ratios, the procedure 

allows for a range of flange and web thicknesses and flange to web ratios. 

Zeinali, Nazari, and Showkati [24] performed experimental-numerical study on lateral 

torsional buckling of pultruded FRP I-section beams having different span to height ratios under 

pure bending. Using Eurocode 3 provisions, reasonable agreement between experimental and 

numerical results has been reported. 

Pandey, Kabir, and Sherbourne [25] have studied the optimal fiber orientation to enhance 

lateral buckling strength of thin-walled open section composite beams. They concluded that for I-

section beams with unidirectional flange layups, the web fiber angle has significant influence on 

lateral buckling of long span beams. Additionally, for length to depth ratio (l/h) of 12 or higher, 

optimal fiber orientation for the flanges and web are 0֯ and +/-45֯ respectively. Barbero and 

Raftoyiannis [26] studied the elastic buckling modes of pultruded I-beams for different loading 

conditions. It was concluded that coupling of local and lateral buckling modes always occurs due 

to lower material stiffness in the transverse direction. Moreover, lateral buckling was found to be 

the dominant failure mode for I-beams with high depth to width ratios while coupled local and 

distortional buckling for lower height to width ratios contributed to the reduction in the critical 

load compare to pure local or pure lateral buckling loads. 

 

5.3 Problem Statement 

Obtain a closed form analytical solution for lateral torsional buckling problem of thin-

walled I- beam with arbitrary layups under pure bending. 

5.4 Formulation for a Section with Arbitrary Shape 

For the derivation of the stiffness matrix, three coordinate systems are introduced. The 

(𝑋,̅ 𝑌̅, 𝑍̅) coordinate system with the origin at an arbitrary point, (𝑋, 𝑌, 𝑍) with a fixed origin at 
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the centroid of the section, and (𝜉, 𝜂 , 𝜁) with origin at the center of the reference plane of k-th wall 

segment shown in the figure below. 

 

 

 

 

 
 

 

 

 

Figure 5.1: Local and global coordinate system 

 

 

Figure 5.2: Global forces and moments 

 

 
𝜕𝑢

𝜕𝑥
= 𝜀𝑥 ,

𝜕2𝑣

𝜕𝑥2
= −

1

𝜌𝑧
 ,
𝜕2𝑤

𝜕𝑥2
= −

1

𝜌𝑦
   , 𝜗 = 𝜗𝜉 =

𝜕𝜑

𝜕𝑥
 Eq. (5.1) 
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 𝜗 =
𝜕𝜑

𝜕𝑥
=
𝜕(𝜕𝑤 𝜕𝑦⁄ )

𝜕𝑥
=
𝜕2𝑤

𝜕𝑥𝜕𝑦
 Eq. (5.2) 

 

 𝜀𝜉𝑘 = 𝜀𝑥 + 𝑧
1

𝜌𝑦
+ 𝑦

1

𝜌𝑧
  Eq. (5.3) 

 

 𝜀𝜉𝑘 = 𝜀𝑘 + 𝜂Κ𝑠𝑘  Eq. (5.4) 

 

 Κ𝜉𝑘 =
1

𝜌𝑦
cos(𝛼𝑘) −

1

𝜌𝑧
sin(𝛼𝑘) Eq. (5.5) 

 

 Κ𝜉𝜂 = −2
𝜕2𝑤

𝜕𝑥𝜕𝑦
 Eq. (5.6) 

 

The relation for curvature due to twisting using Eq. (5.2) and (5.6) becomes 

 𝜗 = −
1

2
Κ𝜉𝜂 Eq. (5.7) 

 

Note that the twist of any point in a wall segment is equal to the twist of the whole section.  

 𝜑: Angle of twist 

𝜀𝜉𝑘: Strain at any arbitrary point on k-th wall segment’s reference surface 

𝜀𝑥: Axial strain at the centroid of the section  

𝜀𝑘: Axial strain of a wall segment or strain at the center of the wall segment of interest 

𝑧: Coordinates of an arbitrary point on k-th wall segment’s reference surface along z-axis 

𝑦: Coordinates of an arbitrary point on k-th wall segment’s reference surface along y-axis 

Κ𝜉𝑘: Curvature of the k-th wall segment’s axis in 𝜉𝜁 plane (see Figure 5.1) 
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Κ𝑠𝑘: Curvature of the k-th wall segment’s axis in 𝜂𝜉 plane (see Figure 5.1) 

b𝑘: Width of the wall segment 

 

 

 

The compliance matrix [𝑊𝑘] and transformation matrix [𝑅𝑘] are followed from [28] and modified 

for I-section beam to account for shear and warping deformations.  

 

 

[𝑊𝑘] =
1

𝑏𝑘

[
 
 
 
 
 
 
 
 
 
 
 𝛼11 𝛼16 0 𝛽11 0 −

𝛽16
2

𝛼16 𝛼66 0 𝛽16 0 −
𝛽66
2

0 0 𝜚 0 0 0

𝛽11 𝛽16 0 𝛿11 0 −
𝛿16
2

0 0 0 0
12

(𝐴̂11)𝑘𝑏𝑘
2

0

−
𝛽16
2

−
𝛽66
2

0 −
𝛿16
2

0 −
𝛿66
4 ]
 
 
 
 
 
 
 
 
 
 
 

 

 

[𝑅𝑘] =

[
 
 
 
 
 
1 0 0 𝑍𝑘 𝑦𝑘 0
0 cos (𝛼𝑘) sin (𝛼𝑘) 0 0 0
0 −sin (𝛼𝑘) cos (𝛼𝑘) 0 0 0
0 0 0 cos (𝛼𝑘) −sin (𝛼𝑘) 0
0 0 0 sin (𝛼𝑘) cos (𝛼𝑘) 0
0 0 0 0 0 1]

 
 
 
 
 

 

Eq. (5.8) 

[𝛼], [𝛽], and [𝛿] matrices are the inverse of [𝐴], [𝐵], and [𝐷] explained in the previous chapter. 

𝐴̂11 is calculated from Eq. 20 of [28] as follows: 

 

 [

𝐴11̃ 𝐴12̃ 𝐴13̃
𝐴12̃ 𝐴22̃ 𝐴23̃
𝐴13̃ 𝐴23̃ 𝐴33̃

]

𝑘

= [

𝛼11 𝛽11 𝛽16
𝛽11 𝛿11 𝛿16
𝛽16 𝛿16 𝛿66

]

𝑘

−1

 Eq. (5.9) 
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[
 
 
 
 
 
𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

     
𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

 

 
𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

     
𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

  
]
 
 
 
 
 
−1

=

[
 
 
 
 
 
𝛼11 𝛼12 𝛼16
𝛼12 𝛼22 𝛼26
𝛼16 𝛼26 𝛼66

     

𝛽11 𝛽12 𝛽16
𝛽12 𝛽22 𝛽26
𝛽16 𝛽26 𝛽66

 

 

𝛽11 𝛽12 𝛽16
𝛽12 𝛽22 𝛽26
𝛽16 𝛽26 𝛽66

     
𝛿11 𝛿12 𝛿16
𝛿12 𝛿22 𝛿26
𝛿16 𝛿26 𝛿66

  
]
 
 
 
 
 

 

Eq. (5.10) 

 

 

 

{
 
 
 

 
 
 
𝑁̂𝜉

𝑁̂𝜉𝜂

𝑁̂𝜉𝜁

M̂𝜉

M̂𝑠

𝑇̂𝜉 }
 
 
 

 
 
 

𝑘

= [𝑅𝑘]

{
 
 
 

 
 
 
𝑁̂𝑥
𝑁̂𝑥𝑦

𝑁̂𝑥𝑧
M̂𝑦

M̂𝑧

𝑇̂𝑥 }
 
 
 

 
 
 

𝑘

 

{
 
 

 
 
𝜀𝜉
𝛾𝜉𝜂
𝛾𝜉𝜁
Κ𝜉
Κ𝑠
𝜗𝜉 }
 
 

 
 

𝑘

= [𝑅𝑘]

{
 
 
 

 
 
 
𝜀𝑥
𝛾𝑥𝑦
𝛾𝑥𝑧
1

𝜌𝑦
1

𝜌𝑧
𝜗 }
 
 
 

 
 
 

𝑘

 

 

Eq. (5.11) 
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{
 
 

 
 
𝜀𝜉
𝛾𝜉𝜂
𝛾𝜉𝜁
Κ𝜉
Κ𝑠
𝜗 }
 
 

 
 

𝑘

=
1

𝑏𝑘

[
 
 
 
 
 
 
 
 
 
 
 𝛼11 𝛼16 0 𝛽11 0 −

𝛽16
2

𝛼16 𝛼66 0 𝛽16 0 −
𝛽66
2

0 0 𝜚 0 0 0

𝛽11 𝛽16 0 𝛿11 0 −
𝛿16
2

0 0 0 0
12

(𝐴̂11)𝑘𝑏𝑘
2

0

−
𝛽16
2

−
𝛽66
2

0 −
𝛿16
2

0 −
𝛿66
4 ]
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 

 
 
 
𝑁̂𝜉

𝑁̂𝜉𝜂

𝑁̂𝜉𝜁

M̂𝜉

M̂𝑠

𝑇̂𝜉 }
 
 
 

 
 
 

 

Eq. (5.12) 

 

 ( ^ ) indicates quantities per unit length of the wall segment. 

 

{
 
 
 

 
 
 
𝑁̂𝑥
𝑁̂𝑥𝑦

𝑁̂𝑥𝑧
M̂𝑦

M̂𝑧

𝑇̂𝑥 }
 
 
 

 
 
 

𝑘

=∑([𝑅𝑘]
𝑇[𝑊𝑘]

−1[𝑅𝑘])

𝑘

𝑘=1

{
 
 
 

 
 
 
𝜀𝑥
𝛾𝑥𝑦
𝛾𝑥𝑧
1

𝜌𝑦
1

𝜌𝑧
𝜗 }
 
 
 

 
 
 

 Eq. (5.13) 

 [𝑃]6𝑥6 = [𝑅𝑘]
𝑇[𝑊𝑘]

−1[𝑅𝑘] shall be calculated for each wall segment separately and then added 

together to give a new [𝑃]6𝑥6 for the whole section. 
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5.5 Out-of-Plane Shear Effects 

Out-of-plane shear effects are calculated based on 2.4.4b, 2.4.8, and 3.4.19a of [37] as 

follows. 

 

Figure 5.3: Out-of-plane shear stresses for flange and web 

 

 {
𝑄𝑥,𝑓

𝑄𝑥,𝑤 = 0
} = Κ [

𝐴44 𝐴45
𝐴45 𝐴55

] {
𝛾𝑥𝑧
𝛾𝑦𝑧
} Eq. (5.14) 

Κ is the shear correction factor and its value depends on lamina properties and stacking 

sequence. In this study an approximate value of  5 6⁄  is assumed.  

 (𝐴44, 𝐴45, 𝐴55) = ∑(𝑄̅44
𝑘 ,

𝐾

𝑘=1

 𝑄̅45
𝑘 , 𝑄̅55

𝑘 )(𝑧𝑘+1 − 𝑧𝑘) Eq. (5.15) 

And 

 

𝑄44 = 𝐺23, 𝑄55 = 𝐺13,   

𝑄̅44 = 𝑄44𝑐𝑜𝑠
2𝜃 + 𝑄55𝑠𝑖𝑛

2𝜃 

𝑄̅45 = (𝑄55 − 𝑄44)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 

𝑄̅55 = 𝑄55𝑐𝑜𝑠
2𝜃 + 𝑄44𝑠𝑖𝑛

2𝜃 

Eq. (5.16) 
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From Eq. (5.14), 

 

𝛾𝑦𝑧 = −
𝐴45𝛾𝑥𝑧
𝐴55

 

𝛾𝑥𝑧 =
𝑄𝑥,𝑓

Κ(𝐴44 −
𝐴45
2

𝐴55
)

 

Eq. (5.17) 

 

 
𝜚 =

1

Κ(𝐴44 −
𝐴45
2

𝐴55
)

 
Eq. (5.18) 

For the web, change 𝛾𝑥𝑧 into 𝛾𝑥𝑦 and use the corresponding layers to calculate 𝐴44, 𝐴45 

and 𝐴55. 

 

5.6 Formulation for I-section Beam 

In this section, stiffness and compliance matrices are formulated for I-section beam 

following the same procedure described in the previous section. In the compliance matrix, a new 

term to account for warping deformation is followed from [29]. Although it is originally derived 

for orthotropic beams, it is also recommended for balanced anisotropic open section beams. This 

is further discussed in section 5.9 of this chapter. For the equations that follow, it is assumed that 

the origin of (𝑋,̅ 𝑌̅, 𝑍̅) coordinate system is located at the centroid of the I-section. Hence, both 

coordinate systems i.e., (𝑋,̅ 𝑌̅, 𝑍̅) and (𝑋, 𝑌, 𝑍) share the same origin. 
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{
 
 
 
 

 
 
 
 
𝜀𝑥
𝛾𝑥𝑦
𝛾𝑥𝑧
𝑑2𝑤

𝑑𝑥2

𝑑2𝑣

𝑑𝑥2

𝛽′

−𝛽′′′}
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝑤11 𝑤12 𝑤13 𝑤14 𝑤15 𝑤16 0
𝑤12 𝑤22 𝑤23 𝑤24 𝑤25 𝑤26 0
𝑤13 𝑤23 𝑤33 𝑤34 𝑤35 𝑤36 0
𝑤14 𝑤24 𝑤34 𝑤44 𝑤45 𝑤46 0
𝑤15 𝑤25 𝑤35 𝑤45 𝑤55 𝑤56 0
𝑤16 𝑤26 𝑤36 𝑤46 𝑤56 𝑤66 0

0 0 0 0 0 0
1

𝐸𝐼𝑤̂
𝑏𝑘,𝑓𝑙𝑎𝑛𝑔𝑒

]
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 

𝑁̂𝑥
𝑁̂𝑥𝑦

𝑁̂𝑥𝑧
𝑀̂𝑦 = 𝑀𝑜

𝑀̂𝑧 = 𝛽𝑀𝑜

𝑀𝑠.𝑣.

𝑇̂𝑤 }
 
 
 
 

 
 
 
 

 

Eq. (5.19) 

𝛽  is the twist angle and 𝐸𝐼̂𝑤 is calculated from Eq. 6.238 of [38]. Elements 𝑤11  to 𝑤66  are 

calculated from [𝑃6𝑥6]
−1  which is equal to the inverse of  ([𝑅𝑘]

𝑇[𝑊𝑘]
−1[𝑅𝑘]). The W-matrix 

above is calculated for flange and web separately. 

5.6.1 Section Beam under Pure Bending 

For a simply supported I-section beam under pure bending the constitutive relationship 

becomes: 

 

{
 
 
 
 

 
 
 
 

𝑁̂𝑥 = 0

𝑁̂𝑥𝑦 = 0

𝑁̂𝑥𝑧 = 0

𝑀̂𝑦 = 𝑀𝑜

𝑀̂𝑧 = 𝛽𝑀𝑜

𝑀𝑠.𝑣.

𝑇̂𝑤 }
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
 
𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 𝑆16 𝑆17
𝑆12 𝑆22 𝑆23 𝑆24 𝑆25 𝑆26 𝑆27
𝑆13 𝑆23 𝑆33 𝑆34 𝑆35 𝑆36 𝑆37
𝑆14 𝑆24 𝑆34 𝑆44 𝑆45 𝑆46 𝑆47
𝑆15 𝑆25 𝑆35 𝑆45 𝑆55 𝑆56 𝑆57
𝑆16 𝑆26 𝑆36 𝑆46 𝑆56 𝑆66 𝑆67
𝑆17 𝑆27 𝑆37 𝑆47 𝑆57 𝑆66 𝑆77]

 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝜀𝑥
𝛾𝑥𝑦
𝛾𝑥𝑧
𝑑2𝑤

𝑑𝑥2

𝑑2𝑣

𝑑𝑥2

𝛽′

−𝛽′′′}
 
 
 
 

 
 
 
 

 Eq. (5.20) 

Note that the summation of Saint Venant’s torsion and (𝑀𝑠.𝑣.) and warping torsion (𝑇̂𝑤) is equal 

to the total twisting moment on the section i.e.,−𝑀𝑜
𝜕𝑣

𝜕𝑥
  (Figure 5.5). The 7x7 matrix in Eq. (5.20) 
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shall be calculated for flange and web and added together to give the stiffness matrix for the whole 

section. 

 

𝑆𝑎 = [

𝑆11 𝑆12 𝑆13
𝑆12 𝑆22 𝑆23
𝑆13 𝑆23 𝑆33

]       𝑆𝑏 = [

𝑆14 𝑆15 𝑆16 𝑆17
𝑆24 𝑆25 𝑆26 𝑆27
𝑆34 𝑆35 𝑆36 𝑆37

] 

𝑆𝑐 = [

𝑆14 𝑆24 𝑆34
𝑆15 𝑆25 𝑆35
𝑆16 𝑆26 𝑆36
𝑆17 𝑆27 𝑆37

]       𝑆𝑑 = [

𝑆44 𝑆45 𝑆46 𝑆47
𝑆45 𝑆55 𝑆56 𝑆57
𝑆46 𝑆56 𝑆66 𝑆67
𝑆47 𝑆57 𝑆66 𝑆77

] 

Eq. (5.21) 
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Figure 5.4: I-section beam under pure bending and deformed configuration 

 

 
Figure 5.5: Moment along original and deformed coordinate system 

From Eq. (5.20) for the zero terms 
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 [𝑆𝑎] {

𝜀𝑥
𝛾𝑥𝑦
𝛾𝑥𝑧
} + [𝑆𝑏]

{
  
 

  
 
𝑑2𝑤

𝑑𝑥2

𝑑2𝑣

𝑑𝑥2

𝛽′

−𝛽′′′}
  
 

  
 

= {

0
0
0
0

} Eq. (5.22) 

Using the static condensation approach the relationship between load and displacement becomes 

 {

𝑀𝑜

𝛽𝑀𝑜

𝑀𝑠.𝑣.

𝑇̂𝑤

} = {−[𝑆𝑐][𝑆𝑎]
−1[𝑆𝑏] + [𝑆𝑑]}4𝑥4

{
  
 

  
 
𝑑2𝑤

𝑑𝑥2

𝑑2𝑣

𝑑𝑥2

𝛽′

−𝛽′′′}
  
 

  
 

 Eq. (5.23) 

 

For simplicity [𝑁] = {−[𝑆𝑐][𝑆𝑎]
−1[𝑆𝑏] + [𝑆𝑑]}4𝑥4.  

 

The last row and column of the 4x4 𝑁  matrix for any arbitrary layup, in other words, any 

combination of fiber orientation is zero except 𝑁44.This makes the buckling equation easy to solve. 

 

 {

𝑀𝑜

𝛽𝑀𝑜

𝑀𝑠.𝑣.

𝑇̂𝑤

} = [

𝑁11 𝑁12 𝑁13 0
𝑁12 𝑁22 𝑁23 0
𝑁13 𝑁23 𝑁33 0
0 0 0 𝑁44

]

{
  
 

  
 
𝑑2𝑤

𝑑𝑥2

𝑑2𝑣

𝑑𝑥2

𝛽′

−𝛽′′′}
  
 

  
 

 Eq. (5.24) 

 

 

 𝑀𝑜 = 𝑁11 (
𝑑2𝑤

𝑑𝑥2
) + 𝑁12 (

𝑑2𝑣

𝑑𝑥2
) + 𝑁13𝛽

′ Eq. (5.25) 

 

 𝛽𝑀𝑜 = 𝑁12 (
𝑑2𝑤

𝑑𝑥2
) + 𝑁22 (

𝑑2𝑣

𝑑𝑥2
) + 𝑁23𝛽

′ Eq. (5.26) 

 

 𝑀𝑠.𝑣. = 𝑁13 (
𝑑2𝑤

𝑑𝑥2
) + 𝑁23 (

𝑑2𝑣

𝑑𝑥2
) + 𝑁33𝛽

′ Eq. (5.27) 
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 𝑇̂𝑤 = 𝑁44(−𝛽
′′′) Eq. (5.28) 

 

From Eq. (5.25)  

 
(
𝑑2𝑤

𝑑𝑥2
) =

𝑀0 − 𝑁12 (
𝑑2𝑣
𝑑𝑥2

) − 𝑁13𝛽
′

𝑁11
 

Eq. (5.29) 

Substituting Eq. (5.29) into (5.26)  

 

 𝛽𝑀0 = 𝑁12 [
𝑀0 − 𝑁12 (

𝑑2𝑣
𝑑𝑥2

) − 𝑁13𝛽′

𝑁11
] + 𝑁22 (

𝑑2𝑣

𝑑𝑥2
) + 𝑁23𝛽′ Eq. (5.30) 

 

 (
𝑑2𝑣

𝑑𝑥2
) =

𝑁12
𝑁11

(𝑀𝑜 − 𝑁13𝛽′) − 𝛽𝑀0 + 𝑁23𝛽′

(
𝑁12
2

𝑁11
− 𝑁22)

 Eq. (5.31) 

Substituting Eq. (5.29) into (5.27) 

 𝑀𝑠.𝑣. = 𝑁13 [
𝑀0 − 𝑁12 (

𝑑2𝑣
𝑑𝑥2

) − 𝑁13𝛽
′

𝑁11
] + 𝑁23 (

𝑑2𝑣

𝑑𝑥2
) + 𝑁33𝛽

′ Eq. (5.32) 

Substituting Eq. (5.31) into (5.32) 

 

 

𝑀𝑠.𝑣. =
𝑁13
𝑁11

(𝑀0 − 𝑁13𝛽′)

+ (−
𝑁13𝑁12
𝑁11

+ 𝑁23) [

𝑁12
𝑁11

(𝑀𝑜 − 𝑁13𝛽′) − 𝛽𝑀0 +𝑁23𝛽′

(
𝑁12
2

𝑁11
− 𝑁22)

]

+ 𝑁33𝛽
′ 

Eq. (5.33) 

 

Adding Eq. (5.33 and (5.28) together yields 
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𝑀𝑠.𝑣. + 𝑇̂𝑤 = 𝑇𝑜𝑟𝑞𝑢𝑒𝑡𝑜𝑡𝑎𝑙 = −𝑀0

𝜕𝑣

𝜕𝑥

=
𝑁13
𝑁11

(𝑀0 − 𝑁13𝛽
′)

+ (−
𝑁13𝑁12
𝑁11

+ 𝑁23) [

𝑁12
𝑁11

(𝑀𝑜 − 𝑁13𝛽
′) − 𝛽𝑀0 + 𝑁23𝛽

′

(
𝑁12
2

𝑁11
− 𝑁22)

] + 𝑁33𝛽
′

− 𝑁44𝛽
′′′ 

Eq. (5.34) 

Differentiating Eq. (5.34) with respect to x 

 

−𝑀0 (
𝑑2𝑣

𝑑𝑥2
) = −

𝑁13
2

𝑁11
𝛽′′

+ (−
𝑁13𝑁12
𝑁11

+ 𝑁23) [
−
𝑁12𝑁13
𝑁11

𝛽′′ − 𝛽′𝑀0 +𝑁23𝛽
′′

(
𝑁12
2

𝑁11
− 𝑁22)

]

+ 𝑁33𝛽
′′ − 𝑁44𝛽

′′′′ 

Eq. (5.35) 

Substituting Eq. (5.31) into (5.35) 

 

𝑀0 [

𝑁12
𝑁11

(𝑀𝑜 − 𝑁13𝛽′) − 𝛽𝑀0 + 𝑁23𝛽′

(
𝑁12
2

𝑁11
− 𝑁22)

] −
𝑁13
2

𝑁11
𝛽′′

+ (−
𝑁13𝑁12
𝑁11

+ 𝑁23) [
−
𝑁12𝑁13
𝑁11

𝛽′′ − 𝛽′𝑀0 +𝑁23𝛽
′′

(
𝑁12
2

𝑁11
− 𝑁22)

]

+ 𝑁33𝛽
′′ − 𝑁44𝛽

′′′′ = 0 

Eq. (5.36) 

Rearranging the above equation 
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−𝑁44𝛽
′′′′ + [𝑁33 + (−

𝑁13𝑁12
𝑁11

+ 𝑁23)(
−
𝑁12𝑁13
𝑁11

+𝑁23

𝑁12
2

𝑁11
− 𝑁22

)−
𝑁13
2

𝑁11
] 𝛽′′

+ [
−𝑀0 (−

𝑁13𝑁12
𝑁11

+ 𝑁23) + 𝑁23𝑀0 −
𝑁12𝑁13
𝑁11

𝑀0

𝑁12
2

𝑁11
−𝑁22

] 𝛽′ − (
𝑀0
2

𝑁12
2

𝑁11
− 𝑁22

)𝛽

+ (

𝑁12
𝑁11

𝑀0
2

𝑁12
2

𝑁11
−𝑁22

) = 0 

For simplicity 

𝑃 = 𝑁44 

𝑄 = [𝑁33 + (−
𝑁13𝑁12
𝑁11

+ 𝑁23)(
−
𝑁12𝑁13
𝑁11

+𝑁23

𝑁12
2

𝑁11
− 𝑁22

) −
𝑁13
2

𝑁11
] 

𝑅 = [
−𝑀0 (−

𝑁13𝑁12
𝑁11

+ 𝑁23) + 𝑁23𝑀0 −
𝑁12𝑁13
𝑁11

𝑀0

𝑁12
2

𝑁11
− 𝑁22

] = 0 

𝑆 = (
𝑀0
2

𝑁12
2

𝑁11
− 𝑁22

) 

 

𝑇 = (

𝑁12
𝑁11

𝑀0
2

𝑁12
2

𝑁11
−𝑁22

) 

 

With the new terms Eq. (5.36) becomes 

𝑃𝛽′′′′ − 𝑄𝛽′′ + 𝑆𝛽 − 𝑇 = 0 
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 𝑃𝛽′′′′ − 𝑄𝛽′′ + 𝑆𝛽 − 𝑇 = 0 Eq. (5.37) 

Dividing both sides of Eq. (5.37) by 𝑃 

−
𝑄

𝑃
= 𝑈   ,    

𝑆

𝑃
= 𝑊   ,     −

𝑇

𝑃
= 𝑍 

The final differential equation for thin-walled composite I-beam with arbitrary layups 

under pure bending is: 

 𝜷′′′′ + 𝑼𝜷′′ +𝑾𝜷 + 𝒁 = 𝟎 Eq. (5.38) 
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5.7 Solution of the Buckling Equation for Thin-Walled I-Beam with Arbitrary 

Layups under Pure Bending 

The 4th order differential equation, Eq. (5.35), is solved using infinite series method. The 

approximate solution for the equation is 

 𝛽(𝑥) = ∑𝑎𝑛𝑥
𝑛

∝

𝑛=0

 Eq. (5.39) 

Differentiating Eq. (5.39)  

 𝛽′(𝑥) = ∑𝑛𝑎𝑛𝑥
𝑛−1

∝

𝑛=1

 Eq. (5.40) 

 

 𝛽′′(𝑥) = ∑𝑛(𝑛 − 1)𝑎𝑛𝑥
𝑛−2

∝

𝑛=2

 Eq. (5.41) 

  

 𝛽′′′(𝑥) = ∑𝑛(𝑛 − 1)(𝑛 − 2)𝑎𝑛𝑥
𝑛−3

∝

𝑛=3

 Eq. (5.42) 

 

 𝛽′′′′(𝑥) = ∑𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑎𝑛𝑥
𝑛−4

∝

𝑛=4

 Eq. (5.43) 

 

Substituting the above into Eq. (5.38) 
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∑𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)𝑎𝑛𝑥
𝑛−4

∝

𝑛=4

+ 𝑈∑𝑛(𝑛 − 1)𝑎𝑛𝑥
𝑛−2

∝

𝑛=2

+𝑊∑𝑎𝑛𝑥
𝑛

∝

𝑛=0

+ 𝑍 = 0 

Eq. (5.44) 

 

Replacing 𝑛 ⟶ 𝑛 + 4 on the first term of the series leads to 

∑(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+4𝑥
𝑛

∝

𝑛=0

 

Replacing 𝑛 ⟶ 𝑛 + 2 on the second term of the series leads to 

𝑈∑(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥
𝑛

∝

𝑛=0

 

With the new terms Eq. (5.44) becomes 

 

∑(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+4𝑥
𝑛

∝

𝑛=0

 

+𝑈∑(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥
𝑛

∝

𝑛=0

 

+𝑊∑𝑎𝑛𝑥
𝑛

∝

𝑛=0

+ 𝑍 = 0 

Eq. (5.45) 

 

Taking 𝑥𝑛 as the common factor 

∑[(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1) 𝑎𝑛+4 + 𝑈 (𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 +𝑊𝑎𝑛]𝑥
𝑛 + 𝑍 = 0

∝

𝑛=0

 

For 𝑛 = 0; 
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 (24𝑎4 + 2𝑈𝑎2 +𝑊𝑎0) + 𝑍 = 0 Eq. (5.46) 

 

For 𝑛 ≥ 1; 

 

(24𝑎4 + 2𝑈𝑎2 +𝑊𝑎0) + 𝑍

+∑[(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+4

∝

𝑛=1

+ 𝑈(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 +𝑊𝑎𝑛]𝑥
𝑛 = 0 

Eq. (5.47) 

 The value of 𝑍 is found to be extremely small9 regardless of the laminate staking sequence 

and beam dimensions, therefore it is neglected in the calculations that follow.  

 24𝑎4 + 2𝑈𝑎2 +𝑊𝑎0 ≡ 0 Eq. (5.48) 

 

for  𝑛 ≥ 1 

 

[(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)(𝑛 + 1)𝑎𝑛+4 + 𝑈(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2

+𝑊𝑎𝑛] ≡ 0   
Eq. (5.49) 

For 𝑛 = 1; 

 120 𝑎5 + 6𝑈𝑎3 +𝑊𝑎1 = 0 Eq. (5.50) 

For 𝑛 = 2; 

 360 𝑎6 + 12𝑈𝑎4 +𝑊𝑎2 = 0 Eq. (5.51) 

For 𝑛 = 3; 

 840 𝑎7 + 20𝑈𝑎5 +𝑊𝑎3 = 0 Eq. (5.52) 

For 𝑛 = 4; 

                                                 

9 For different laminate sequence and beam height ratios, Z was found to be in the range of (10-30-10-35)  
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 1680 𝑎8 + 30𝑈𝑎6 +𝑊𝑎4 = 0 Eq. (5.53) 

 

For 𝑛 = 5; 

 3024 𝑎9 + 42𝑈𝑎7 +𝑊𝑎5 = 0 Eq. (5.54) 

For 𝑛 = 6; 

 5040 𝑎10 + 56𝑈𝑎8 +𝑊𝑎6 = 0 Eq. (5.55) 

For 𝑛 = 7; 

 7920𝑎11 + 72𝑈𝑎9 +𝑊𝑎7 = 0 Eq. (5.56) 

Expanding Eq. (5.39) and using the boundary conditions lead to  

𝛽(𝑥) = ∑𝑎𝑛𝑥
𝑛

∝

𝑛=0

= 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3+.  .  . +𝑎𝑛𝑥
𝑛 

𝛽(0) = 𝛽(𝐿) = 0   ⟹ 𝒂𝟎 = 𝟎 

𝛽′′(0) = 𝛽′′(𝐿) = 0   ⟹  𝒂𝟐 = 𝟎  

Hence 𝑎4 = 𝑎6 = 𝑎8 = 𝑎10 = 0; 

From Eq. (5.50) 

𝑎5 = −
𝑊𝑎1 + 6𝑈𝑎3

120
 

From Eq. (5.52) 

𝑎7 =
20𝑈 (

𝑊𝑎1 + 6𝑈𝑎3
120

) −𝑊𝑎3

840
 

 

 

From Eq. (5.54) 
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𝑎9 = (
−840𝑈2𝑊+ 840𝑊2

120 ∗ 840 ∗ 3024
)𝑎1 + (

−5040 𝑈3 + 10080 𝑈𝑊

120 ∗ 840 ∗ 3024
) 𝑎3 

From Eq. (5.56) 

𝑎11 = −
72𝑈

7920
[(
−840𝑈2𝑊 + 840𝑊2

120 ∗ 840 ∗ 3024
)𝑎1 + (

−5040 𝑈3 + 10080 𝑈𝑊

120 ∗ 840 ∗ 3024
)𝑎3]

−
𝑊

7920
[(

20 𝑈𝑊

120 ∗ 840
) 𝑎1 + (

𝑈2 −𝑊

840
)𝑎3] 

 

Knowing that 𝛽(𝐿) = 0: 

 𝛽(𝐿) = 0 = 𝑎1𝐿 + 𝑎3𝐿
3+𝑎5𝐿

5 + 𝑎7𝐿
7 + 𝑎9𝐿

9 + 𝑎11𝐿
11.  .  . Eq. (5.57) 

Substitute 𝑎5, 𝑎7, 𝑎9, 𝑎11 into the above equation to find relationship between 𝑎1 and 𝑎3 

which yields 

 𝑎3 = −(
𝐸

𝐹
)𝑎1 Eq. (5.58) 

Where 

 

𝐸 = [𝐿 −
𝑊𝐿5

120
+ (

20 𝑈𝑊

120 ∗ 840
) 𝐿7 + (

840 𝑊2 − 840 𝑈2𝑊

120 ∗ 840 ∗ 3024
)𝐿9

−
72 𝑈

7920
(
−840 𝑈2𝑊 + 840 𝑊2

120 ∗ 840 ∗ 3024
) 𝐿11

−
𝑊

7920
(
20 𝑈𝑊

120 ∗ 840
) 𝐿11] 

 

Eq. (5.59) 
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𝐹 = [𝐿3 − (
6 𝑈

120
) 𝐿5 + (

𝑈2

840
) 𝐿7 − (

𝑊

840
) 𝐿7

+ (
10080 𝑈𝑊 − 5040𝑈3

120 ∗ 840 ∗ 3024
) 𝐿9

−
72 𝑈

7920
(
−5040 𝑈3 + 10080  𝑈𝑊

120 ∗ 840 ∗ 3024
) 𝐿11

−
𝑊

7920
(
𝑈2 −𝑊

840
)𝐿11] 

Knowing that 𝛽′′(𝐿) = 0: 

 

𝛽′′(𝐿) = 0 = 6 𝑎3𝐿 + 20 𝑎5𝐿
3 + 42 𝑎7𝐿

5 + 72 𝑎9𝐿
7

+ 110 𝑎11𝐿
9 .  .  . 

Eq. (5.60) 

 

Substituting 𝑎5, 𝑎7, 𝑎9, 𝑎11 which are functions of 𝑎1 and 𝑎3 into the above equation and 

knowing that  𝑎3 = −(
𝐸

𝐹
) 𝑎1 , Eq. (5.60) can be solved for the critical bending moment 𝑀0 using 

Excel “Goal Seek” function. 
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5.8 Finite Element Modeling 

Finite Element Analysis is performed in ABAQUS. Conventional shell type planar element 

is used and the buckling load is calculated from linear perturbation. A shell edge load of unit 

magnitude (1N) is applied on the flanges on both ends, with the top flange in compression and 

bottom in tension. The load is linearly reduced to zero at the center of the beam with the top half 

in compression and bottom half in tension to represent positive bending moment. The 

corresponding first Eigen value times the resulting bending moment gives the critical lateral 

torsional buckling of the beam. S8R element has been used which is recommended for doubly 

curved thick shell elements. Grid Convergence Index (GCI) analysis is performed according to 

[36] to investigate mesh refinement effects on the critical load (Table 5.1). Element size of 12.5 

mm is considered for the beam. Procedure for modeling I-beam is provided in the Appendix. 

Analytical and ABAQUS results are reported in the subsequent section for Carbon Fiber 

Reinforced Polymer (CFRP) I-beam with arbitrary layups for flanges and web. 

Table 5.1: Large CFRP I-Beam F 0/0/0/0 W 45/-45/-45/45 Grid Convergence Index 

Analysis 

Mesh Element 

Size 

(mm) 

Eigen 

Value 

Critical 

Moment, 

M0, 

(N.mm) 

f3-f2 f2-f1 p fh=0 GCI12 GCI23 GCI23/ 

rpGCI12 

1 12.5 638.19 4.9099E+7 1.53E+5 4.07E+4 1.92 4.91E+7 0.03743 0.14123 1.00 

2 25 638.72 4.9140E+7        

3 50 640.72 4.9293E+7        
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Table 5.2: Properties of CFRP laminates used for analysis 

Young Modulus at fiber direction, EL 57488 MPa 

Young Modulus at Transverse direction, ET 4198 MPa 

Poisson's ratio, vLT 0.119   

Poisson's ratio, vTL 0.00869   

Shear Modulus, G12 2026 MPa 

Shear Modulus, G13 2026 MPa 

Shear Modulus, G23 2035 MPa 

 

Table 5.3: Properties of Isotropic beam 

Young Modulus at fiber direction, EL 200000 MPa 

Young Modulus at Transverse direction, ET 200000 MPa 

Poisson's ratio, vLT 0.3   

Poisson's ratio, vTL 0.3   

Shear Modulus, G12 76923 MPa 

Shear Modulus, G13 76923 MPa 

Shear Modulus, G23 76923 MPa 

 

5.9 Results and Discussion 

In the following, critical moment, 𝑀𝑜 , for thin walled I-beam with arbitrary layups under 

pure bending is presented by solving Eq. (5.38). To investigate the effects of l/h and depth to width 

ratios, two I-sections (small and large) are modeled with their dimensions given in Table 5.4 -5.6. 

For comparison, the critical moment, 𝑀𝑜 , from analytical and numerical solutions (ABAQUS) are 

provided in Table 5.9 and 5.9 for small and large I-section beams. 



80 

For the large I-beam, critical moment (𝑀𝑜) from Eq. (5.38) is overall conservative and 

more consistent with finite element results as shown in Figure 5.13. However, it becomes 

conservative for arbitrary layups as the warping effects become significant. This might be due to 

the warping stiffness (𝐸𝐼̂𝑤) which is originally derived for orthotropic beams and used here for all 

other layups including generally anisotropic without modification. Although according to [29], the 

warping stiffness may be used for balanced, anisotropic open section beam, there is a need to 

further modify the term to be used for generally anisotropic open section beams such as 0/30/60/90 

or 15/-30/45/-60 in Table 5.10 where the difference between analytical and finite element solution 

becomes significantly high. Nonetheless, assumptions such as constant twisting rotation of the 

section and plane section remains plane after bending all contribute to the small difference in the 

critical bending moment. 

For small I-beam, the analytical solution in general leads to non-conservative 𝑀𝑜 values 

when a distortional buckling mode is likely to happen. Distortional buckling is a combination of 

local and lateral buckling modes. I-beams are prone to distortional buckling when they have low 

depth to width ratios or when flange and web thicknesses are very small (Figure 5.12).   

The critical moment for equivalent steel section using Eq. (5.38) is close to the 

Timoshenko’s classical solution but not exactly the same (Table 5.8). Again, this is due to the 

warping stiffness terms which is used for isotropic beam without modification.  The warping 

stiffness (𝐸𝐼̂𝑤) was replaced by the warping rigidity in Timoshenko’s solution and the critical 

moment was found to be exactly matching with that of Timoshenko for both beam sections. 
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Table 5.4: Small isotropic I-section dimensions 

Material Flange width 

(mm) 

Web height 

(mm) 

Flange 

thickness 

(mm) 

Web 

thickness 

(mm) 

Length 

(mm) 

Steel / 

isotropic 

38.1 53.08 4 4 609.6 

 

Table 5.5: Large isotropic I-section dimensions 

Material Flange width 

(mm) 

Web height 

(mm) 

Flange 

thickness 

(mm) 

Web 

thickness 

(mm) 

Length 

(mm) 

Steel / 

isotropic 

178 380 12 8 5000 

 

 

Table 5.6: Large CFRP I-section dimensions  

Material Flange width 

(mm) 

Web height 

(mm) 

Flange 

thickness 

(mm) 

Web 

thickness 

(mm) 

Length 

(mm) 

CFRP 178 380 12 8 5000 

 

Table 5.7: Small CFRP I-section dimensions 

Material  Flange width 

(mm) 

Web height 

(mm) 

Flange 

thickness 

(mm) 

Web 

thickness 

(mm) 

Length 

(mm) 

CFRP 38.1 53.08 4 4 609.6 
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Table 5.8: Critical bending moment for isotropic beam under pure bending 

Beam 

Designation 

Material Beam length 

(mm) 

Buckling 

load using 

Eq. (5.38) 

(N.mm) 

ABAQUS 

buckling 

load/Eigen 

Value 

(N.mm) 

Timoshenko 

 (N.mm) 

Small Steel 609.6 8.32 E+06 8.06 E+06 8.65 E+06 

Large Steel 5000 2.17 E+08 2.38 E+08 2.20 E+08 

 As shown, the analytical results are slightly on the conservative side for the large beam. 

Overall they are in good agreement with Timoshenko’s and finite element results.  

 

 

 

Figure 5.6: Small steel I-beam deformed shape top view 
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Figure 5.7: Small steel I-beam deformed shape isometric view 
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Figure 5.8: Small steel I-beam deformed shape front view 

 

 
Figure 5.9: Large steel I-beam deformed shape top view 
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Figure 5.10: Large steel I-beam deformed shape isometric view 

 

 
Figure 5.11: Large steel I-beam deformed shape front view 
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Table 5.9: Critical bending moment for small CFRP beam with arbitrary layups under pure 

bending 

Layup Beam 

length 

(mm) 

Analytical/Buckling 

load using Eq. 

(5.38) 

(N.mm) 

ABAQUS 

buckling 

load/Eigen 

Value 

(N.mm) 

Error10 

(%) 

Flange Web 

0/0/0/0 45/-45/45/-45 609.6 1.81 E+6 1.45 E+6 19.89 

0/0/0/0 45/-45/-45/45 609.6 1.74 E+06 1.45 E+6 16.67 

0/0/0/0 0/0/0/0 609.6 1.60 E+06 1.45 E+6 9.38 

90/90/90/90 90/90/90/90 609.6 1.88 E+05 1.87 E+05 0.53 

30/30/30/30 30/30/30/30 609.6 4.75 E+05 4.26 E+05 10.32 

45/-45/45/-45 45/-45/45/-45 609.6 5.39 E+05 4.70 E+05 12.80 

45/-45/-45/45 45/-45/-45/45 609.6 4.71 E+05 4.26 E+05 9.55 

-60/-60/-60/-60 60/60/60/60 609.6 2.28 E+05 2.22 E+05 2.63 

0/90/0/90 0/90/0/90 609.6 8.54 E+05 8.41 E+05 1.52 

0/90/90/0 0/90/90/0 609.6 9.09 E+05 8.63 E+05 5.06 

60/-30/30/-60 60/-30/30/-60 609.6 6.19 E+05 5.71 E+05 7.75 

60/-30/-30/60 60/-30/-30/60 609.6 4.25 E+05 4.07 E+05 4.24 

0/30/60/90 0/30/60/90 609.6 5.46 E+05 6.27 E+05 -14.84 

15/-30/45/-60 15/-30/45/-60 609.6 7.24 E+05 7.21 E+05 0.41 

 

 

                                                 

10 𝐸𝑟𝑟𝑜𝑟(%) = (𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢)/(𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) ∗ 100 
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Table 5.10: Critical bending moment for large CFRP beam with arbitrary layups under pure 

bending 

Layup Beam 

length 

(mm) 

Buckling 

load using 

Eq. (5.38) 

(N.mm) 

ABAQUS 

buckling 

load/Eigen 

Value 

(N.mm) 

Error 

(%) 

Flange Web 

0/0/0/0 45/-45/45/-45 5000 5.19 E+07 4.96 E+07 4.43 

0/0/0/0 45/-45/-45/45 5000 5.13 E+07 4.96 E+07 3.31 

0/0/0/0 0/0/0/0 5000 5.01 E+07 4.96 E+07 1.00 

90/90/90/90 90/90/90/90 5000 4.78 E+06 5.42 E+06 -13.39 

30/30/30/30 30/30/30/30 5000 1.14 E+07 1.25 E+07 -9.65 

45/-45/45/-45 45/-45/45/-45 5000 1.22 E+07 1.37 E+07 -12.30 

45/-45/-45/45 45/-45/-45/45 5000 1.09 E+07 1.24 E+07 -13.76 

-60/-60/-60/-60 60/60/60/60 5000 5.57 E+06 6.35 E+06 -14.00 

0/90/0/90 0/90/0/90 5000 2.57 E+07 2.80 E+07 -8.95 

0/90/90/0 0/90/90/0 5000 2.75 E+07 2.83 E+07 -2.91 

60/-30/30/-60 60/-30/30/-60 5000 1.59 E+07 1.77 E+07 -11.32 

60/-30/-30/60 60/-30/-30/60 5000 1.06 E+07 1.19 E+07 -12.26 

0/30/60/90 0/30/60/90 5000 1.43 E+07 2.04 E+07 -42.66 

15/-30/45/-60 15/-30/45/-60 5000 1.8 E+07 2.26 E+07 -25.56 
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Figure 5.12: CFRP Small I-section buckling load under pure bending 
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Figure 5.13: CFRP Large I-section buckling load under pure bending 
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5.10 Conclusion 

The closed form analytical solution is conservative and more consistent with finite element 

results for I-beams with lateral torsional buckling as the dominate failure mode. This includes 

majority of the I-beams used in civil engineering structures that often have higher depth to width 

ratios and larger thicknesses for both flanges and web. I-beams with smaller depth to width ratios 

and small thickness often fail due to local buckling or a combination of local and lateral buckling 

which is called distortional buckling. For example, a small I-beam having flange width =38mm, 

and web width =50mm and thickness=1mm will most likely fail in distortional buckling. Such 

beams are used in aerospace applications for giving extra stiffness to plates or panels to which they 

are attached.  

The warping stiffness term that is originally derived for orthotropic beams, shall be 

modified for generally anisotropic beams. Using the present warping stiffness term without further 

modifications can lead to large errors. Therefore, a modified warping stiffness is essential to 

improve the accuracy and consistency of the analytical solution.  

To understand which buckling mode (local, lateral or distortional) is most likely to take 

place requires a more in depth understanding of the relationship between section geometry, lamina 

properties, stacking sequence and load and boundary conditions which is beyond the scope of this 

work. 
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Chapter 6 - Conclusion and Recommendations 

6.1 Conclusion 

In this study, lateral torsional buckling of thin-walled rectangular and I-section CFRP 

beams with arbitrary layups is studied. A closed form analytical solution using classical laminate 

plate theory is obtained for rectangular cantilever beam. The solution could be adapted for beams 

with different load and support conditions, however it is beyond the scope of this study. The 

proposed solution is validated against finite element results which compares favorably confirming 

its accuracy.  

A closed form analytical solution for CFRP I-beam with arbitrary layup under pure bending 

is also presented which takes into account restrained warping and out-of-plane shear effects. The 

solution assumes lateral torsional buckling as the dominant buckling mode for the beam; meaning 

that no local or distortional buckling occurs. The proposed solution matches well with finite 

element results especially for beams with lateral torsional buckling as the dominant failure mode. 

Furthermore, it offers good agreement between Timoshenko’s classical buckling solution for 

isotropic beams of different length-to-depth (l/h) and web-to-flange thickness ratios. 

The warping stiffness term that is originally derived for orthotropic beams shall be 

modified for generally anisotropic beams. Using the present warping stiffness term in the solution 

without any modifications, can lead to significant errors. Hence, introducing a modified warping 

stiffness is essential to improve the accuracy and consistency of the proposed analytical solution. 

Despite the small uncertainties in measurement, the proposed experimental technique was 

reasonably accurate to measure twisting rotation of the section as well as lateral and vertical 

deflection for a load-controlled case. The generated load vs. twisting rotation plots well compares 

with the Riks analysis confirming the method’s accuracy. 
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6.2 Recommendations 

1. The warping stiffness term which is originally derived for orthotropic beams shall 

be modified for anisotropic beams. Introducing a modified warping stiffness would 

further improve the accuracy and consistency of the present solution for I-beams .  

2. To know which buckling mode (local, lateral or distortional) is most likely to 

happen requires a more in depth understanding of the relationship between section 

geometry, lamina properties, stacking sequence and load and boundary conditions. 

3. For more accurate results especially for the case of unidirectional (0°) layups, the 

buckling solution shall allow variation of the twisting rotation (𝛽) along height or 

depth of the section.  

4. Extend the procedure to solve for critical load of I-beam with arbitrary layups 

having different load and boundary conditions including hybrid beams of various 

cross sections (rectangular, hollow square, channel, I shape, etc.) 
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Appendix A - Modeling Procedure for Composite Beams in 

ABAQUS 

Modeling Composite Beams 

In the following, a step-by-step procedure for modeling CFRP beam in ABAQUS is 

presented. 

Steps Description 

Step 1: Open ABAQUS/CAE and click on “With Standard/Explicit Model”. Double click 

on “parts” in the Model Tree. Give a name to the part (i.e., top flange) select 3D 

from the modeling space deformable shell planar. 

Step 2: Using the Toolbox Area, draw the member. In the Prompt Area, click on the red X 

 and Done. The generated part will appear on the Model Tree. To see the part, 

click on the + sign in front of the Parts to expand. 

Step 3: In the Model Tree, click on materials give nameclick on mechanical in the 

material behaviors window ElasticityElastic. From the drop down menu select 

lamina as typeenter material properties i.e., E1, E2, Nu12, etc. Make sure to use 

consistent units.  For example: if the force is in N and distance in mm then stress 

has to be in MPa or N/mm2. 
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Steps Description 

Step 4: In the Model Tree, click on sections  select category i.e., shell  composite  

continue. Click in the blank space under material and pick appropriate material from 

the listadd thickness  orientation angle  and integration points. Right click in 

the blank space to insert or delete rows. Always delete rows that are not needed. 

Step 5: To change fiber orientation or thickness, go to section in the Model Tree  right 

click  edit. 

Step 6: 

Double click on the part of interest in the Model Tree and assign section  

from the Toolbox Area. Follow the instructions on the prompt area. Repeat the same 

process for all parts you have created until each part is assigned a section.  

Step 7: From the Model Tree, click on assembly, select parts in the parts section to create 

instances. Check the box saying dependent (mesh on part) and check the box Auto-

offset from other instances as shown in the figure below. 
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Steps Description 

 

 

Step 8: If certain instances need to be rotated, click on rotate instance in the Toolbox Area 

 and follow instructions on Prompt Area. Check the orientation using different 

view options on the Toolbar. 

Step 9: For a non-prismatic member (tapered), go to XY plane and use create constraint 

option to create face to face, parallel edge, edge to edge etc. constraints. For 

example: to place top and bottom flanges on a tapered web of an I-beam, flanges 

shall be rotated 90 degrees so they are in the XZ plane. Go to XY plane  click on 

  in the Toolbox Area  select  parallel edge   click on the lower 

edge of I-beam then edge of the lower flange. Follow instructions in the Prompt 

Area. Repeat the same process for placing top flange. Then click on  and 

select the instances to translate. In the case of I-beam, translate lower and top flange 
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Steps Description 

one by one. Select the lower flange, say Done, click on  in the Toolbar for 

isometric view  select a start point for the translation vector (in this case the 

middle point along the width of the flange)  select an end point for the translation 

vector where the point on the flange needs to be when assembled. Repeat the same 

process for the top flange. Follow instructions in the Prompt Area until the I-beam 

is assembled. For a prismatic I-beam, there is no need to select parallel edge unless 

the flanges are not exactly in the XZ plane. 

Step 10: 

Merge / cut instances by clicking in the Toolbox Area. Fill out the dialog box 

 name the new part  select Geometry from the operation box suppress and 

remove in the original instances and geometry sections respectively. Click continue 

and follow instructions. A new part will be created that can be accessed from the 

Model Tree by clicking the + sign in front of Assembly to expand the list and then 

+ in front of Instances to see the new part  

 

 

Step 11: In the Model Tree, click on + in front of Steps to expand  initial  right click on 

the BCs to create boundary conditions. Select Displacement/Rotation and continue, 
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Steps Description 

select regions for boundary condition. You may need to rotate the part  to 

properly add boundary conditions. For the pure bending case and simply supported 

I-beam, Z-axis displacement is restrained on both ends and both edges of the top 

and bottom flange. XYZ displacements restrained in the mid height of web on one 

end and Y-axis displacement restrained on the other end in the same location. 

 

 

Step 12: In the Model Tree, right click on the Step to create a new step. From the procedure 

type drop down menu  select Linear Perturbation  Buckle  continue. In the 

Edit Step window select Subspace or Lanczos for the Eigensolver fill the 

spaces i.e., number of Eigenvalue requested, maximum Eigenvalue of interest and 

maximum number of iterations, etc. The new step could be accesses through the 

Model Tree by expanding Steps on the list. 

Step 13: 
From the Module in the Context Bar  select load  click on   to create load. 

Select the Step you created from the dropdown menu  from the load category 

select Mechanical and the corresponding load type  continue. You may edit the 

load by clicking on   next to  in the Toolbox Area. Follow instructions in 

the Prompt Area to properly apply load(s). For pure bending case, shell edge load 
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Steps Description 

was selected for the top and bottom flanges of the same magnitude but opposite sign 

(in the magnitude box). Linearly distributed load was applied on the web resulting 

a couple. It can be applied on the web by clicking on as shown in the figure 

below.  

 

 

c

ccc

ccc
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Give name to the new loading function select Expression Field from the type 

section  click continue. The Create Expression Field window will open as shown 

below 

 

 

Create datum coordinate system by clicking  and selecting appropriate 

coordinate system type i.e., rectangular, cylindrical or spherical. Select a point to be 

the origin and follow the instructions until the datum is set.  

c

ccc

ccc
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Steps Description 

You may need to partition an edge and select a point to serve as origin for the datum 

coordinate system. To do so  click on + sign in front of the Assembly and 

Instances to expand  right click on the part of concern  click on Make 

Independent. From the Module  select Part  click on  to select 

appropriate partitioning method. In this case, the web was partitioned at the mid 

height / mid depth. Now, with the datum coordinate system established and the web 

partitioned at mid height on both ends  click on   click on Datum CSYS 

List on the bottom right corner in the Prompt Area  select the Datum Coordinate 

System introduced previously. In the space provided write function for your load 

using the listed parameters and operators  click OK and proceed. For instance, for 

the datum coordinate system with the origin at the mid depth of the web and a 

linearly distributed load with magnitude of 1 N at the top and zero at the mid height, 

the function would be Y*1/25; where Y is along web height, 1 is load magnitude 

and 25 mm is half of the web height at which linearly distributed load is applied. 

From the Edit Load window, select the function (which is named AnalyticalField-1 

by default), traction type and load magnitude with correct sign depending whether 

the load is in tension or compression. Notice that the magnitude of the load is already 

taken into account in the loading function or AnalyticalField so there is no need to 

enter the actual magnitude. Considering the load direction, enter 1 or -1 for the load 

magnitude. The loading function can be accessed via Fields in the Model Tree. 
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Steps Description 

Step 14: 
From the Module  select Mesh  click on  to seed part instance. Enter 

approximate global size for meshing. Enter maximum deviation factor and other 

parameters, if applicable. Click on  in the Toolbox area for mesh part instance 

and follow instructions in the Prompt Area. 

If the mesh was not regular which might be the case when the member is tapered or 

there exists an opening, go to Mesh menu  Controls select regions to be 

assigned mesh controls. On the Mesh Control window  select Quad-dominated 

for element shape  Structured  continue. Then check the box saying: 

“Automatically delete meshes invalidated by mesh control changes”. 

To select appropriate element type, go to Mesh menu  click on element type  

 select the regions to be assigned element types. From the Element Type window 

 select Shell from the family section  Quadratic from the geometric order. Then 

select degree of freedom per node, etc. Mesh again as described above. 

 

Step 15: From the Module, select Job and follow instructions. 
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RIKS Analysis Tips in ABAQUS 

Linear analysis shall be performed prior to nonlinear RIKS analysis. Hence, two models 

are needed: one for linear analysis and the next one for RIKS analysis. The second model will be 

built to perform nonlinear analysis. The following steps describe RIKS analysis and how to extract 

data for plotting. 

Steps Description 

Step 1: To build model, follow the same steps as described in the previous section. In the 

Model Tree, right click on Model-1  click on Copy Model. Name the second model 

(i.e., Model-2) which will be used for nonlinear RIKS analysis. 

Step 2: Go to Model-1 right click on Job  create a new job (i.e., Job-1). On Create Job 

window  select Model-1 continue. Before submitting the job, right click on 

Model-1 in the Model Tree  select Edit Keywords  scroll down and at the end of 

the file () type: 

*Output, field, variable=PRESELECT 

*NODE FILE 

U  
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Steps Description 

 

 

Step 3: Right click on Job-1  select Data Check  click on Submit to run linear buckling 

analysis. Once the analysis is successfully completed, right click on Job-1  select 

Results to see the first Eigen mode and Eigen value on the viewport (bottom left 

corner). Record the first Eigen value as it will be needed in the next step. 

Step 4: From the Context bar, select Model-2. If the model is for isotropic material, material 

properties (stress-strain curve) shall be modified accordingly. Materials are introduced 

similar to step 3 of the previous section with the distinction that stress-strain 

characteristics beyond the elastic region shall also be defined. 
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Steps Description 

New materials shall be assigned to the section in the Model Tree. Right click on the 

Sections  select the new materials from the list in the materials section.  

 

 

Step 5: In the Model Tree, expand Steps  right click on Step-1 Replace  General  

Static  select Riks in the Replace Step window. Select Nlgeom:On which represent 

nonlinear geometry. On the incrementation tab, change Initial to 0.1, Minimum to 1E-

015, and Maximum to 1.0. 

Step 6: Select Model-2 as explained before from the Context bar select load from the 

Module. It can also be accessed via Model Tree by clicking the + sign in front of it. 

Click on the load and replace the previous load with the Eigenvalue from running 

Model-1, in other words, linear buckling analysis. 

Step 7: Create a new job (Job-2) for Model-2, make sure Model-02 is highlighted on the Create 

Job window. 

Step 8: Right click on Model-2  Edit Keywords and type the following after material 

properties as shown in figure below. 

*IMPERFECTION, FILE=Job-1, STEP=1 

1,1 

** ---------------------------------------------------------------- 
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Steps Description 

 

 

Right click on Job-2 and submit to run nonlinear analysis. Click on Monitor to see any 

errors or messages while the analysis is running. Once the analysis is completed, go to 

results. On the Results Tree to the left  expand Output Databases  expand Job-2 

 expand History Outputs  double click on the Load Proportionality Factor: LPF to 

view the LPF vs Arc length graph. If the graph has reached the maximum and started 

to decline then select Job from the Module  go back to Job-2 in the Model Tree and 

right click  select Kill the results. 

Step 9: 
To extract the results, select visualization for the Module  click on    ODB 

History Output  select load proportionality factor from the list  click on the plot. 
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On the Results Tree to the left  expand XY Data  right click on the _temp file  

Edit. In the Edit XY Data, X and Y coordinates of the LPF vs Arc length curve are 

given. Copy the Y-coordinates (LPF) into Excel and multiply it by the Eigenvalue 

from linear analysis. 

Click again on   select ODB field output  click ok. On the XY data from 

ODB Field Output window  click on the Variables tab  select Unique Nodal from 

the dropdown list. Check relevant boxes i.e., U: spatial displacement or UR: Rotational 

displacements. Then click on the Element/Nodes tab  Pick from View Port  Edit 

Selection  and click on node(s) of interest in the viewport  then click on Save. The 

data for the selected node(s) can be accesses via the Results Tree and by expanding 

XY Data. Right click on the node name and select Edit to view the data. 
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