

One Drop: Lab on a Chip

Megan Richards, Kaley Brungardt, and Kendra Schuette

Disease Diagnostics

- Traditional Approach
 - Assay test: search for biomarkers in blood
 - Complex equipment
 - Lengthy test time
 - Expensive ~700 million dollars of testing⁵
 - Biopsy: remove tissue from body and perform extensive pathological tests
 - Invasive
 - Time consuming
- New Approach
 - Lab on a Chip

Project Objectives

- Design an assay that simplifies the diagnosis of breast and ovarian cancer
- Design a microfluidic 'lab on a chip' device that will mix blood and reagent streams to generate turbulent flows within a fluidic chamber
- Enable enough mixing for device to detect tumor biomarkers in blood
- 3D Print a Prototype of our most probable design

Technical Requirements

- Size needs to be smaller than a credit card
- Mixing of blood and reagent accomplished without any external forces
- Application to be single-use
- Low cost (<\$1 in materials)
- We must generate turbulence on a small scale
 - Reynold's Number doesn't need to be >2000⁵

Creating Turbulence

- Difficult to create turbulence in small microfluidic chambers^{2,3,4} (microns in diameter)
 - Loops & turns
 - o 3D geometries
- Surface tension (capillary force) and viscous forces (frictional drag) must be calculated¹.
- The best design will depend on channel length and capillary-driven flow rates for quick mixing

Original Four Designs

Redesign

Redesign with Obstructions

COMSOL Research

- Learn software from ground up
 - Help from Matt Campbell from AMI Manufacturing
 - Import SolidWorks & AutoCAD files and set parameters to study fluid profile within microchannels
- Used to determine which of our designs provides the best mixing
 - Simulations can give us numerical analyses of velocity and concentrations at inlets & outlets
- Mimic simulations from Dr. He's studies
 - Many simulations
 - One takes 96 hours

COMSOL Results- Generic Tube

- First successful COMSOL simulation
 - Nearly 3 hours to compute inlet & outlet velocities and concentrations
 - Set predetermined parameters
 - Laminar flow
 - We don't have the software to handle turbulent flows
 - Transport of diluted species
 - Water + Diluted Blood (consistency of water)
 - Post simulation, a 12 page report is produced by the software

Generic Tube: Concentration Slice

Outlet Conditions	Maximum Concentration (mol/m ³)	Minimum Concentration (mol/m ³)	Range	Average Velocity (m/s)
No obstructions tube	.75404	.23639	.51765	.014670

Ladder Tube: Concentration Slice

Outlet Conditions	Maximum Concentration (mol/m ³)	Minimum Concentration (mol/m ³)	Range	Average Velocity (m/s)
Ladder tube	.71882	.27538	.44344	.014521

Crossed Ladder Tube: Concentration Slice

Outlet Conditions	Maximum Concentration (mol/m ³)	Minimum Concentration (mol/m ³)	Range	Average Velocity (m/s)
Crossed Ladder tube	.69840	.29406	.40434	.014526

Diagonal Planes Tube: Concentration Slice

Outlet Conditions	Maximum Concentration (mol/m ³)	Minimum Concentration (mol/m ³)	Range	Average Velocity (m/s)
Diagonal Planes tube	.57433	.42247	.15186	.014762

Results

Outlet Conditions	Maximum Concentration (mol/m ³)	Minimum Concentration (mol/m ³)	Range	Average Velocity (m/s)
No obstructions Tube	.75404	.23639	.51765	.014670
Ladder Tube	.71882	.27538	.44344	.014521
Crossed Ladder Tube	.69840	.29406	.40434	.014526
Diagonal Planes Tube	.57433	.42247	.15186	.014762

Inlet velocity .0074m/s
Inlet 1 concentration 0 mol/m³
Inlet 2 concentration 1 mol/m³

Results: Diagonal Planes Modifications

Outlet Conditions	Maximum Concentration (mol/m ³)	Minimum Concentration (mol/m ³)	Range	Average Velocity (m/s)
Same length, more obstructions	.55050	.44867	.10183	.017433
Longer length, same obstructions	.54857	.44780	.10077	.014759
Longer length and more obstructions	.52651	.46833	.05818	.014983

Inlet velocity .0074m/s
Inlet 1 concentration 0 mol/m³
Inlet 2 concentration 1 mol/m³

Final Recommendation

Diameter = 500 microns Channel Height = 15 mm Chip Dimensions = 3.3 x 1.8 cm

Average Concentration at outlet: .49832mol/m^3

High Mixing Efficiency 99.6%

Future Work

- Modify the diagonal planes tube height and number of obstructions to facilitate an even higher mixing efficiency
- Wet lab research will be conducted with red and blue dyes to verify that the COMSOL results were accurate
- The team will create a cap that attaches to the inlets of the microfluidic chip
- Future Senior Design Teams
 - Design a reagent
 - Work with our advisor, Dr. He, to produce a cell phone application to read concentration from the chip

References

- 1. C. C. Lai and C. K. Chung, "Numerical simulation of the capillary flow in the meander microchannel," Microsyst. Technol. 19(3), 379–386 (2013).
- 2. "The Basic Principles of Microfluidics." (n.d.): 1-55. Web. 16 Oct. 2016.
- 3. Zheng, Z., Yang, Y., Zeng, Y., & He, M. (2016). A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. *Lab Chip*, 489(16).
- 4. Lee, C., Chang, C., Wang, Y., & Fu, L. (2011). Microfluidic mixing: A review. *International Journal of Molecular Sciences*, 12. 3263-3287.
- 5. Plevniak, K., Campbell, M., Myers, T., Hodges, A., & He, M. (2016, October 5). 3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia [WORD]. AIP Publishing.
- 6. "CDC Bloodborne Infectious Diseases Preventing Needlesticks And Sharps Injuries NIOSH Workplace Safety And Health Topic". *Cdc.gov.* N.p., 2017. Web. 13 Dec. 2016.

QUESTIONS?